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Abstract

The skill of weather forecasts depends on the initial conditions obtained through data

assimilation. Generation of accurate initial conditions for convection-permitting nu-

merical weather prediction (NWP) requires assimilation of a large number of near-

surface observations of high resolution. To optimally extract information from high-

resolution observations, methods of data assimilation must compensate for the un-

certainty due to unresolved scales. Here, we examine uncertainty due to unresolved

scales from two perspectives: crowdsourced vehicle-based observations and data as-

similation. To investigate the potential of crowdsourced observations for convection-

permitting NWP, we examine a novel vehicle-based temperature dataset. A new

quality-control procedure is developed for the vehicle-based temperature dataset.

Approximately 75% of the dataset fails quality-control primarily due to missing or

inaccurate metadata. The characteristics of quality-controlled data are explored

through comparison with other meteorological datasets. We find that the uncer-

tainty of vehicle-based observation-model comparisons is likely weather-dependent

and possibly vehicle-dependent. We investigate two different methods to account for

observation uncertainty due to unresolved scales in data assimilation. The standard

approach includes the uncertainty due to unresolved scales in the observation error

covariance matrix. The alternative approach, used by the Schmidt-Kalman filter

(SKF), considers the variability of the small-scale processes to estimate the large-

scale state. It is shown that the SKF is most suitable in regimes of high uncertainty

due to unresolved scales and low instrument uncertainty. The SKF is extended to

a novel ensemble transform formulation suitable for nonlinear models and shown to

be most beneficial when the uncertainty due to unresolved scales is greater than

the instrument uncertainty. We conclude that crowdsourced observations can help

fill the gap in near-surface observations for convection-perimitting NWP. Our new

ensemble transform SKF has the potential to account for the associated uncertainty

due to unresolved scales in their assimilation.
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Chapter 1

Introduction

For urban areas, where the population number is projected to reach 6.3 billion by

2050 (World Meteorological Organisation, 2021), weather forecasts to mitigate the

effects of high-impact weather are more important than ever. Using these forecasts,

the public can be alerted to the dangers of high-impact weather and appropriate

countermeasures may be implemented in advance. For example, when a heatwave is

forecast there will be increased media alerts about keeping cool, support will be given

to organisations to reduce unnecessary travel, and community and voluntary support

will be mobilised (Public Health England, 2021). The grid spacing of numerical

weather prediction (NWP) models used in current operational centres is currently

1-4km (Gustafsson et al., 2018). As a result of this small grid spacing, operational

NWP can focus on local weather conditions that effect the public such as rain, cloud,

visibility, air temperature and wind.

To produce accurate weather forecasts of local conditions requires spatially-dense

and temporally-frequent observations across the forecast area (Sun et al., 2014;

Gustafsson et al., 2018; Dance et al., 2019). This is currently an issue for oper-

ational weather prediction as the horizontal coverage of near-surface observations

over land is below the recommended minimum requirements (World Meteorological

Organization, 2021). To fill this observation gap, there is a growing interest in the

use of opportunistic data sources such as smartphones and vehicles (Mahoney III

and O’Sullivan, 2013; Madaus et al., 2014; Muller et al., 2015; Waller, 2020). Such

unconventional observations may be obtained for a low cost from the public through

crowdsourcing methods or from partnerships with other organisations (Muller et al.,

2015; Hintz et al., 2019a). Crowdsourced observations have the additional benefit

that they will be densest in urban areas where there are few scientific surface ob-

servation stations. Issues regarding the use of crowdsourced observations include

their uncertainty, the need for suitable metadata (e.g., location, time), and data

privacy (Hintz et al., 2019a). Furthermore, crowdsourced observations will observe

meteorological features that may not be represented in NWP models (Muller et al.,

1
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2015). When crowdsourced observations are used to produce weather forecasts, it is

important that the uncertainty caused by this representation difference is taken into

account. In this thesis we investigate the characteristics of a crowdsourced dataset of

vehicle-based observations obtained from a Met Office proof-of-concept trial.

Data assimilation is a mathematical technique that compares observations with their

modelled prediction to find the most likely state of some system (Asch et al., 2016).

The observations assimilated in NWP can be either in-situ (e.g. measurements from

vehicle sensors) or remotely sensed (e.g., satellite observations). The uncertainty

of an observation is quantified through the observation error statistics. The two

contributing sources of observation error are the instrument error and the represen-

tation error. While the terminology has varied between authors, the representation

error usually refers to the error that occurs whenever the prediction model is un-

able to perfectly represent an observed process. Using the definition of Janjić et al.

(2018), the representation error is formed of three distinct errors: the pre-processing

error, the observation operator error and the error due to unresolved scales. The

pre-processing error is defined as any errors arising from the preparation of an ob-

servation for assimilation. The observation operator error is caused by an incorrect

or approximate conversion of model quantities to observation quantities. The error

due to unresolved scales is the result of any mismatch in the size or period of the

processes observed and modelled.

To obtain the best initial conditions from assimilation of crowdsourced observa-

tions, the error due to unresolved scales must be accounted for by the method of

data assimilation. The treatment of error due to unresolved scales has received sub-

stantial attention from the data assimilation community this decade (Janjić et al.,

2018). The standard approach to compensate for error due to unresolved scales

is to increase the uncertainty associated with the observation (Hodyss and Satter-

field, 2016; Fielding and Stiller, 2019). An alternative, and relatively unexplored,

approach is to use the statistics of the small-scale processes to increase the uncer-

tainty associated with the observation–model comparison (Janjić and Cohn, 2006).

A single observation will have a reduced influence on the initial conditions calculated

through data assimilation algorithm in both of these approaches which will avoid

overfitting and improve forecast skill. In this thesis we investigate the ability of the

Schmidt-Kalman filter, which explicitly accounts for the statistics of the large- and

small-scale processes, to compensate for error due to unresolved scales. We also de-

velop an ensemble form of the SKF to accommodate more applications. Considering

this alternative approach may also provide new insight into observation uncertainty

due to unresolved scales and why it is compensated for.
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1.1 Thesis aims

The objective of this thesis is to improve high-impact weather prediction via a

better treatment of observation uncertainty in data assimilation. This is particularly

important for low-cost crowdsourced observations that are often obtained in urban

areas.

We investigate observation uncertainty due to unresolved scales from two perspec-

tives. We first examine observation uncertainty for crowdsourced observations. The

aim of this part of the thesis is to answer the following research questions:

1. How can we quality-control the vehicle-based air-temperature dataset

obtained from a Met Office proof-of-concept trial?

In 2018 the Met Office ran a proof-of-concept trial to collect observations of

air temperature recorded by private vehicles. We investigate:

– Which quality-control tests would be suitable for a crowdsourced vehicle-

based air-temperature dataset?

– Which improvements can be made to the data collection procedure for

vehicle-based observations used by the Met Office?

2. What are the characteristics of vehicle-based observations of air tem-

perature?

The vehicle-based observations from the Met Office proof-of-concept trial are

quality-controlled in chapter 5. Using the data that passed quality-control, we

investigate:

– What is the uncertainty associated with vehicle-based observation–model

comparisons?

– Does the uncertainty of vehicle-based observation–model comparisons

change with weather conditions or vehicle type?

We next examine how observation uncertainty due to unresolved scales is accounted

for in data assimilation. The aim of this part of the thesis is to answer the following

research questions:

3. Can the Schmidt-Kalman filter effectively treat observation error

and bias due to unresolved scales?

The Schmidt-Kalman filter is a method of data assimilation that explicitly

accounts for the statistics of unresolved processes in the filter algorithm. We

investigate:

– Which regimes of observation uncertainty is the Schmidt-Kalman filter

most suitable for?
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– How can biases due to unresolved scales be treated with the Schmidt-

Kalman filter?

4. How can the Schmidt-Kalman filter be adapted for nonlinear mod-

els?

To use the Schmidt-Kalman filter for atmospheric data assimilation, it must

be extended to an ensemble formulation. We investigate:

– How can the small-scale variability utilised in the Schmidt-Kalman filter

be represented in an ensemble formulation?

– How does the ensemble formulation of the Schmidt-Kalman filter perform

in comparison to standard ensemble Kalman filters?

1.2 Principal new results

The principal new results of this thesis (numbered according to the corresponding

research questions) are:

1. We developed a novel quality-control procedure for the vehicle-based dataset.

The quality of the available metadata is key for the quality-control of vehicle-

based observations.

2. For this dataset, we found that the standard deviation of the observation-

model comparisons is approximately between 1.2◦C and 1.6◦C. The uncer-

tainty of vehicle-based observation-model comparisons is likely weather-dependent

and possibly vehicle-dependent.

3. The Schmidt-Kalman filter can effectively treat observation error and bias due

to unresolved scales. The Schmidt-Kalman filter is most suitable in regimes

of high representation uncertainty and low instrument uncertainty. Our novel

Schmidt-Kalman filter with bias correction scheme is capable of correcting ob-

servation biases and accounting for observation uncertainty due to unresolved

scales simultaneously.

4. We developed a novel ensemble transform Schmidt-Kalman filter that can com-

pensate for errors due to unresolved scales in nonlinear systems. The ensemble

transform Schmidt-Kalman filter is most beneficial when the uncertainty due

to unresolved scales is greater than the instrument uncertainty.

1.3 Outline

The structure of this thesis is as follows.
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• Chapter 2 introduces atmospheric data assimilation and discusses methods

that have been used in operational NWP centres. The Kalman filter and the

ensemble transform Kalman filter are discussed in detail as they are relevant to

chapters 7 and 8. The chapter is concluded by discussing different metrics that

will be used to evaluate the performance of the ensemble transform Kalman

filter in chapter 8.

• Chapter 3 defines the different types of observation error that occur in at-

mospheric data assimilation with a focus on the scale-mismatch component of

the representation error. Methods to include the representation uncertainty

as part of the observation error covariance are discussed. Literature on using

approximate observation error covariances to compensate for representation

uncertainty is reviewed. The Schmidt-Kalman filter, a key filter researched in

chapters 7 and 8, is introduced as an alternative approach to compensate for

observation uncertainty due to unresolved scales.

• Chapter 4 introduces crowdsourced observations as a new potential data

source for NWP. Examples of crowdsourced observations, their quality-control

and their application in meteorological studies is reviewed.

• Chapter 5 describes a novel low-precision vehicle-based air-temperature dataset

obtained from a trial run by the Met Office. The new quality-control procedure

developed for this dataset is detailed. Approximately 75% of the vehicle-based

temperature observations are flagged during quality-control. It is shown that

the method of data collection for this dataset is currently unsuitable due to

missing or inaccurate metadata for many observations. Future recommenda-

tions on the method of data collection and choice of quality-control tests are

given. This chapter has been published as Bell et al. (2021b).

• Chapter 6 contains an exploration of the characteristics of the vehicle-based

observations obtained in the Met Office trial through comparison with NWP

model data and other observation datasets. The possible sources of instru-

ment and representation uncertainty for vehicle-based observations of air tem-

perature are discussed. The uncertainty of vehicle-based observation–model

comparisons is examined. It is shown that the vehicle-based observation un-

certainty is likely weather-dependent and possibly vehicle-dependent. This

chapter has been submitted to Meteorological Applications for publication as

Bell et al. (2021a).

• Chapter 7 examines the Schmidt-Kalman filter’s ability to compensate for ob-

servation uncertainty and bias due to unresolved scales. The Schmidt-Kalman

filter is shown to be most suitable in regimes of high uncertainty due to unre-

solved scales and low instrument uncertainty. A novel Schmidt-Kalman filter
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with bias-correction scheme is derived as a method to correct observation bi-

ases and compensate for uncertainty due to unresolved scales. This chapter

has been published as Bell et al. (2020).

• Chapter 8 details the derivation of the novel ensemble transform Schmidt-

Kalman filter suitable for nonlinear dynamical systems such as those encoun-

tered in NWP. Numerical experiments using the swinging spring (elastic pen-

dulum) model show that the ensemble transform Schmidt-Kalman filter is

capable of compensating for uncertainty due to unresolved scales in nonlin-

ear dynamical systems. The ensemble transform Schmidt-Kalman filter is

shown to be most beneficial when the uncertainty due to unresolved scales is

greater than the instrument uncertainty and performs similarly to the ensem-

ble transform Kalman filter that includes the representation uncertainty in the

observation error covariance matrix.

• Chapter 9 summarises the results of this thesis for the four research questions

presented in chapter 1. The main implications of this work are:

– The quality-control procedure developed in this thesis presents a possible

starting point for future quality-control of vehicle-based observations of

air temperature.

– Vehicle-based observations of air temperature are a promising source

of data for convection-permitting NWP, but their uncertainty is likely

weather-dependent and possibly vehicle-dependent.

– The ensemble transform Schmidt-Kalman filter can compensate for un-

certainty due to unresolved scales in nonlinear dynamical systems and

may be suitable for weather prediction.

Finally, we suggest potential avenues of future work for vehicle-based observa-

tions and the ensemble transform Schmidt-Kalman filter.



Chapter 2

Introduction to atmospheric data

assimilation

In atmospheric data assimilation, observations of the atmospheric state are combined

with prior information, weighted by their respective error statistics, to provide a best

guess of the current atmospheric state (Talagrand, 1997). Data assimilation is widely

used by operational numerical weather prediction centres to obtain initial conditions

to use in their forecast models (Navon, 2009).

2.1 Notation

In numerical weather prediction, the evolution of the atmospheric state is described

by the nonlinear dynamical system

xtk =M(xtk−1)− ηk, (2.1.1)

where xtk ∈ RNt is the true model state vector, M : RNt → RNt is the imperfect

nonlinear forecast model used to evolve the state, ηk ∈ RNt is the model error,

and the subscripts k and k − 1 indicate time. The model errors are assumed to

be Gaussian with zero-mean and covariance given by the expectation of the outer

product of the model errors, Qk ≡ E[ηk(ηk)
T ]. If the model is assumed perfect then

ηk = 0 for all k.

Meteorological observations yk ∈ Rp can be categorised as either in-situ, where a

specific point is measured, or remotely sensed, where the measurement is made by a

sensor that is not in direct contact with the area being observed. Observations are

related to the true atmospheric state xtk by

yk = hk(x
t
k) + eok. (2.1.2)

7
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Here, hk : RNt → Rp is the nonlinear observation operator that maps the true state

from model space to observation space and eok ∈ Rp is the total observation error

defined as the observation departure from the truth. The observation errors are

assumed to be Gaussian with zero-mean and covariance given by the expectation of

the outer product of the observation errors, Rk ≡ E[eok(e
o
k)
T ]. The errors associated

with observations are the instrument error, which is determined by the type of

instrument used to make the measurement, and the representation error, which is

determined by any misrepresentation of an observation by the model (Hodyss and

Nichols, 2015; Janjić et al., 2018). The representation error will be discussed further

in chapter 3.

In addition to observations, prior information on the atmospheric state is provided

by a previous forecast. This state, xbk ∈ RNt , is referred to as the background and

is related to the true state by

xbk = xtk + ebk, (2.1.3)

where ebk ∈ RNt is the background error, assumed to be Gaussian with zero-mean

and covariance Bk ≡ E[ebk(e
b
k)
T ].

2.2 Data Assimilation

Data assimilation aims to find the most likely state through application of Bayes

theorem:

p(xk|yk) ∝ p(xk)p(yk|xk). (2.2.1)

Here, p(xk) is the prior knowledge of our model state provided by the previous

forecast, p(yk|xk) is the likelihood of the observations given the model state, and

p(xk|yk) is the posterior probability of the model state given the observations. As-

suming that the probability density functions are Gaussian, the prior distribution is

given by

p(xk) =
1√

(2π)Ntdet(Bk)
exp

[
−1

2

(
xk − xbk

)T
B−1k

(
xk − xbk

)]
, (2.2.2)

and the likelihood is given by

p(yk|xk) =
1√

(2π)pdet(Rk)
exp

[
−1

2
(yk − hk(xk))

T R−1k (yk − hk(xk))

]
. (2.2.3)
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Hence, the posterior distribution may be expressed as

p(xk|yk) ∝ exp

[
−1

2

(
xk − xbk

)T
B−1k

(
xk − xbk

)
− 1

2
(yk − hk(xk))

T R−1k (yk − hk(xk))

]
.

(2.2.4)

The maximum a posteriori (MAP) estimate is obtained by maximising the posterior

probability, which may be calculated by minimising the 3D-Var cost function,

J (xk) =
1

2

(
xk − xbk

)T
B−1k

(
xk − xbk

)
+

1

2
(yk − hk(xk))

T R−1k (yk − hk(xk)) ,

(2.2.5)

with respect to xk (Talagrand, 2010). The first term in the 3D-Var cost function is

a measure of the deviation of xk from the background xbk whereas the second term is

a measure of the deviation of hk(xk) from the observation yk. For linear models and

observation operators, this is equivalent to the minimum variance solution when the

error statistics are Gaussian as the mean and mode are equivalent (Nichols, 2010).

The state that minimises equation (2.2.5) is denoted the analysis, xak ∈ RNt , and is

used as initial conditions for the next forecast. The analysis is related to the true

state by

xak = xtk + eak, (2.2.6)

where eak ∈ RNt is the analysis error assumed to be Gaussian with zero-mean and

covariance Pa
k ≡ E

[
eak(e

a
k)
T
]
.

Numerical weather prediction is a large and computationally expensive procedure

where Nt = O(109) and p = O(107). As such, the methods of data assimilation used

for weather prediction are constrained to those that can handle a large number of

degrees of freedom in a computationally feasible manner. In the following subsec-

tions, we discuss several methods of data assimilation that have been previously, or

are currently, used in operational NWP.

2.3 The best linear unbiased estimate

The simplest sequential method of data assimilation can be derived through finding

the minimum of equation (2.2.5) explicitly. The analysis obtained is then given

by

xak = xbk + BkH
T
k

(
HkBkH

T
k + Rk

)−1 (
yk −Hkx

b
k

)
, (2.3.1)

where the observation operator Hk is linearised around the background state and

Kk = BkH
T
k (HT

kBkH
T
k + Rk)

−1 is known as the Kalman gain matrix (Nichols,
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2010). Assimilating data through equation (2.3.1) provides the best linear unbiased

estimate (BLUE). The BLUE will be used in chapter 7 to compare the performance

of two methods of data assimilation. While approximate versions of the BLUE have

been used in operational weather prediction centres (e.g., Lorenc, 1981; Lorenc et al.,

1991), they have mostly been abandoned in favour of more complex methods of data

assimilation that do not require as many simplifying assumptions (e.g., Kalnay, 2003,

pp 172–174).

2.4 Variational data assimilation

An alternative class of methods to obtain the analysis involve minimising the cost

function numerically. This type of data assimilation is referred to as variational

data assimilation (Talagrand, 2010). Minimising the 3D-Var cost function given

by equation (2.2.5) is known as 3-dimensional variational data assimilation. The

observation time-dependence can be accounted for using 4D-Var; an extension to

3D-Var that uses the dynamical model to assimilate observations at the correct time

(Sasaki, 1970). The 4D-Var cost function is given by

J (x0) =
1

2

(
x0 − xb0

)T
B−10

(
x0 − xb0

)
+

1

2

n∑
k=0

(yk − hk(xk))
T R−1k (yk − hk(xk)) ,

(2.4.1)

subject to the constraint

xk =M(xk−1), (2.4.2)

for k = 0, . . . , n. Note that for n = 0, equation (2.4.1) reduces to equation (2.2.5).

Variational data assimilation has been successfully been used for the large systems

encountered in operational numerical weather prediction for many years (Bannister,

2017).

The 3D-Var and 4D-Var cost functions are nonlinear least-squares problems which

are commonly solved using Gauss-Newton methods (Courtier et al., 1994; Lawless

et al., 2005). In this approach, the cost function is transformed into an incremen-

tal method where a progression of linear least-squares cost functions are solved.

One key benefit of variational methods is their ability to assimilate a wide range

of different observation types. They are especially appealing for remotely sensed

observations, which are currently the dominant source of meteorological informa-

tion for global forecasts (Eyre et al., 2020), as they can accommodate nonlinear

and nonlocal observation operators. A disadvantage of variational methods is their

treatment of the spatio-temporal structure of the background and model errors. We

note that 4D-Var has some flow dependence as the background errors are implic-



2.5 The Kalman filter 11

itly evolved in the assimilation window. In addition, model error can be accounted

for using a weak-constraint formulation. However, each assimilation window starts

with a climatological background error covariance. The flow-dependence of the

background errors may be accounted for by using hybrid methods that represent

the background error covariance as a weighted sum of a climatological background

error covariance and a background error covariance estimated through an ensemble

of forecasts (Bannister, 2017). Hybrid 4D-Var methods are currently used in the

Met Office operational global data assimilation system (Clayton et al., 2013; Lorenc

and Jardak, 2018) and the ECMWF EDA system (Bonavita et al., 2012).

2.5 The Kalman filter

The Kalman filter (Kalman, 1960) is a sequential method of data assimilation for

linear models and observation operators where observations are assimilated at the

time they occur. In addition to minimising the trace of the analysis error covariance,

the Kalman filter accounts for the spatio-temporal structure of the background errors

through calculation of “flow-dependent” background error statistics (Nichols, 2010).

The Kalman filter is used extensively in chapter 7.

The Kalman filter algorithm can be summarised in two main steps: a correction

step and a prediction step. The correction step is achieved through assimilation

of an observation and is identical to equation (2.3.1) where, by convention, the

background state xb and error covariance B are referred to as the forecast state xf

and the forecast error covariance Pf . The analysis error covariance is given by

Pa
k = (I−KkHk) Pf

k , (2.5.1)

where Kk = Pf
kH

T
k (HkP

f
kH

T
k + Rk)

−1 is the Kalman gain matrix and Hk is the

linear observation operator. Equation (2.5.1) is obtained through minimising the

trace of E
[
eak(e

a
k)
T
]

(e.g., Asch et al., 2016, pp 92–95).

The prediction step is achieved by evolving the analysis to the time of the next

observation through the dynamical system

xfk+1 = Mxak, (2.5.2)

where the forecast model M is linear and xfk+1 is the BLUE of the forecast. (Note

that equation (2.5.2) is obtained by taking the mean of (2.1.1) for a linear M). The

uncertainty associated with the forecast state is then given by

Pf
k+1 = MPa

kM
T + Qk+1. (2.5.3)

Under the assumption of a perfect model, Qk+1 should be omitted from the forecast
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error covariance update.

The Kalman filter is only applicable to systems with linear models and observation

operators which makes it an unsuitable method of data assimilation for numerical

weather prediction. A way to accommodate nonlinearity is to linearise the model

and observation operator around the forecast or analysis states respectively, which

leads to a method known as the extended Kalman filter (e.g. Gelb, 1974, pp 182

– 200). This method, however, is unsuitable for operational numerical weather

prediction due to the unbounded instability resulting from the linearization of the

uncertainty propagation equations (Evensen, 1992) and the computational expense

for high dimensional systems. However, the extended Kalman filter is used for some

applications of land-surface data assimilation (e.g., De Rosnay et al., 2013).

2.6 The ensemble Kalman filter

The ensemble Kalman filter is an extension to the Kalman filter that uses ensemble

statistics to obtain approximations of the forecast uncertainty (Evensen, 1994). Use

of Monte Carlo methods to approximate the flow-dependent forecast error statistics

allows for the ensemble Kalman filter to be a computationally tractable method of

data assimilation for the highly-nonlinear models and observation operators found in

numerical weather prediction. Implementation issues resulting from small ensemble

sizes are discussed in section 2.7.

2.6.1 Ensemble notation

At time tk, the forecast is represented by an ensemble of m state estimates x
(i)
k for

i = 1, . . . ,m. The ensemble mean is denoted with an over-bar and given by

xk =
1

m

m∑
i=1

x
(i)
k . (2.6.1)

The ensemble is stored in the ensemble state matrix given by

Xk =
(
x
(1)
k x

(2)
k . . . x

(m)
k

)
, (2.6.2)

where each column corresponds to an ensemble member. We now define the ensemble

perturbation matrix, Xk ∈ RNt×m, as

Xk =
1√
m− 1

(
x
(1)
k − xk x

(2)
k − xk . . . x

(m)
k − xk

)
. (2.6.3)

Here, we divide by
√
m− 1 so that the outer product of an ensemble perturbation

matrix with its transpose produces the unbiased ensemble covariance (e.g., Brandt,
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1999, pp 111-115),

Pk = Xk (Xk)
T . (2.6.4)

There are two main categories of ensemble Kalman filters which are determined by

the method used to calculate the analysis ensemble (Houtekamer and Zhang, 2016;

Vetra-Carvalho et al., 2018). Ensemble Kalman filters that generate additional

random sample noise for the calculation of the analysis ensemble are referred to

as stochastic. An example of a stochastic ensemble Kalman filter is the perturbed

observation ensemble Kalman filter (Burgers et al., 1998) where noise vectors drawn

from a Gaussian distribution with zero-mean and covariance Rk are added to the

model equivalent of the observations. If no additional random sampling noise is

generated, the ensemble Kalman filter is referred to as deterministic. Instead, the

analysis ensemble is generated by updating the forecast perturbation matrix into an

analysis perturbation matrix. Examples of deterministic ensemble Kalman filters

include the ensemble adjustment Kalman filter (Anderson, 2001) and the ensemble

transform Kalman filter. We now describe the ensemble transform Kalman filter

(Bishop et al., 2001; Wang and Bishop, 2003) which is used in chapter 8.

2.6.2 The ensemble transform Kalman filter

The ensemble transform Kalman filter (ETKF) consists of a prediction step, known

as the forecast, and a correction step, known as the analysis. Given an analysis

ensemble at time tk−1, we forecast each ensemble member to time tk where the next

observation is to be assimilated,

x
f,(i)
k =M(x

a,(i)
k−1 ). (2.6.5)

The forecast mean, xfk , can be obtained using equation (2.6.1) and the forecast error

covariance, Pf
k , can be calculated using equations (2.6.2)-(2.6.4).

The ETKF (Bishop et al., 2001; Wang and Bishop, 2003) uses a mean analysis state

update given by

xak = xfk + Kk

(
yk − hk(x

f
k)
)
. (2.6.6)

The analysis ensemble at time tk is calculated using the statistics obtained from the

forecast ensemble at time tk. We note that it is not necessary to calculate the anal-

ysis error covariance to implement the ensemble Kalman filter, which substantially

reduces the computation cost of this method. To obtain the analysis ensemble, we

calculate the analysis perturbation matrix, Xa
k, scale it by

√
m− 1, and add the

mean analysis state, xak, to each of its columns. The analysis perturbation matrix
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Xa
k ∈ RNt×m is given by

Xa
k = Xf

kTk, (2.6.7)

where Tk ∈ Rm×m. To derive Tk, we express the analysis error covariance update

given by equation (2.5.1) in terms of perturbation matrices to obtain

Xa
k (Xa

k)
T = Xf

k

(
Xf
k

)T
−Xf

k

(
Yf
k

)T
D−1Yf

k

(
Xf
k

)T
(2.6.8)

= Xf
k

(
Im −

(
Yf
k

)T
D−1k Yf

k

)(
Xf
k

)T
, (2.6.9)

where Yf
k ∈ Rp×m is given by

Yf
k =

1√
m− 1

(
hk(x

f,(1)
k )− hk(x

f
k) . . . hk(x

f,(m)
k )− hk(x

f
k)
)
, (2.6.10)

and Dk ∈ Rp×p is the innovation covariance given by

Dk = Yf
k

(
Yf
k

)T
+ Rk. (2.6.11)

Hence, we find that

TkT
T
k = Im −

(
Yf
k

)T
D−1k Yf

k . (2.6.12)

Exploiting the identity

Im −
(
Yf
k

)T
D−1k Yf

k =

(
Im +

(
Yf
k

)T
R−1k Yf

k

)−1
(2.6.13)

(Bishop et al., 2001) and using the singular value decomposition on (Yf
k )TR

−1/2
k ,

the perturbation update matrix Tk may be expressed as

Tk = Uk

(
Im + ΣkΣ

T
k

)−1
UT
k (2.6.14)

(Livings, 2005), where Uk is an orthogonal matrix containing the left-singular vectors

of (Yf
k )TR

−1/2
k and Σk contains the corresponding non-zero singular values. We note

that Tk = Uk(Im + ΣkΣ
T
k )−1 would also be a solution to equation (2.6.12), but the

symmetric choice for Tk ensures the ETKF is unbiased (Livings et al., 2008). Once

the analysis ensemble is calculated, it is forecast to the time of the next observation

using equation (2.6.5) and the cycle repeated.

The ETKF is currently used for convection-permitting data assimilation by the

German weather service (DWD) in the kilometre-scale ensemble data assimilation

(KENDA) system (Schraff et al., 2016) and is a promising candidate for proba-
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bilistic forecasting with the HARMONIE (Hirlam ALADIN Research on Meso-scale

Operational NWP in Euromed) convection-permitting ensemble prediction system

(Frogner et al., 2019). The flow dependence of the forecast errors result in more

realistic error variances, and hence analysis updates, in domains with complex to-

pography are more realistic in comparison with standard variational methods (Pu

et al., 2013; Ha and Snyder, 2014). However, in order for the ETKF to be used

successfully for large systems, the effects of sampling errors caused by small ensem-

ble sizes must be compensated for. In the following section, we describe additional

measures that are taken in order for the ensemble Kalman filter to be implemented

for operational NWP.

2.7 Implementation issues with the ensemble Kalman

filter

The performance of the ensemble Kalman filter is highly dependent on the ensemble

size, which is often several orders of magnitude smaller than the number of model

grid points and observations. In subsections 2.7.1 and 2.7.2, we describe these

problems and commonly adopted methods to compensate for them.

2.7.1 Inflation

The variability represented by a forecast ensemble will systematically underestimate

the true error variance of the mean primarily due to sampling errors (Lorenc, 2003).

We note that other causes of underestimated ensemble variability can be due to

errors from simplified model dynamics, incorrect parameterizations and systematic

observation errors (Furrer and Bengtsson, 2007). Practical solutions to increase the

forecast variability include multiplicative covariance inflation (e.g., Anderson and

Anderson, 1999; Zheng, 2009) or additive inflation (i.e. additive model error) in the

evolution of individual forecast ensemble members (e.g., Mitchell and Houtekamer,

2000; Raanes et al., 2015). We note that use of filters designed to avoid the need

for inflation altogether (e.g., Bocquet, 2011; Luo and Hoteit, 2011) or relaxation-

to-prior methods (e.g., Zhang et al., 2004; Whitaker and Hamill, 2012) may also be

used to increase forecast ensemble variability.

Multiplicative inflation is achieved by multiplying the forecast error covariance by a

scalar τ > 1 where τ is determined through consideration of the dynamical system

and filter used (Hamill et al., 2001). In simple models the inflation factor τ is

close to 1 and multiplicative inflation tends to work well. In complex NWP models,

higher values of τ are needed which can lead to error growth in regions with sparse

observations. To account for this, adaptive algorithms to determine τ have been

developed (e.g., Anderson, 2009; El Gharamti, 2018). Multiplicative inflation is
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currently used in KENDA (Schraff et al., 2016).

Additive inflation (i.e. model error) can be incorporated into the ensemble Kalman

filter by adding random noise to an ensemble member every time-step (Houtekamer

et al., 2009). It is common to take the covariance of this random noise to be pro-

portional to a climatological background error covariance used in variational as-

similation systems (Mitchell and Houtekamer, 2000; Houtekamer and Zhang, 2016).

Therefore, the covariance of the additive noise can be viewed as a tuning parameter

used to increase the spread of the forecast ensemble. However, if the model error

covariance is specified in this way, any spatio-temporal structures in the true model

errors may not be fully represented.

While either inflation method is suitable to increase the forecast variability, Whitaker

and Hamill (2012) found that using a combination of multiplicative inflation and

additive inflation produced a better filter performance than using either method

independently. This lead to their hypothesis that multiplicative inflation is best

suited to compensate for sampling error, whereas additive inflation is best suited

to compensate for model error. In this thesis, additive inflation will be used to

compensate for model error in chapter 8.

2.7.2 Localisation

Undersampling in the ensemble Kalman filter can lead to spurious correlations be-

tween physically unrelated variables or over unrealistically large distances (Houtekamer

and Mitchell, 1998; Anderson, 2012). As ensemble sizes increase, the true error

statistics will be better approximated through sample statistics and hence these

correlations become less of an influencing factor. For NWP, where it is computa-

tionally infeasible to have an ensemble large enough to circumvent long-range and

spurious correlations, it is common to employ a technique known as localisation

where long-range covariances are damped.

Covariance localisation is built on the assumption that correlations between vari-

ables of a dynamical system decrease at a fast rate with physical distance (Hamill

et al., 2001). There are two primary methods of localisation that are employed in

NWP (Greybush et al., 2011). The first method involves taking the Schur prod-

uct (element-wise multiplication) of the forecast error covariance, Pf , with a lo-

calisation matrix to remove any correlations between far away grid points. The

localisation matrix will be a square-symmetric positive-definite matrix of the same

dimension as the forecast error covariance matrix (e.g., Gaspari and Cohn, 1999).

Using Pf localisation will also increase the rank of the ensemble and allow more de-

grees of freedom for the analysis update (Vetra-Carvalho et al., 2018). The second

method involves multiplying the inverse of the observation error covariance, R−1,

by a distance-dependent function such that observations which are far away have
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infinite uncertainty. We note that, to obtain a similar effect to Pf localisation, R−1

localisation is used in conjunction with a technique known as domain localisation

(Hunt et al., 2007). In domain localisation, only observations local to the analysis

state correction are used (Ott et al., 2004). Using domain localisation can result

in significant computational savings as the analysis updates on the smaller domains

may be done independently and hence in parallel (Nerger et al., 2006).

The optimal static localisation length-scale may be determined by performing mul-

tiple experiments using different localisation length-scales and using the value that

produces the smallest root-mean-square error. To avoid such numerical tuning ex-

periments, adaptive localisation methods may be employed (e.g., Bishop and Hodyss,

2009a,b). These methods, however, still require tuning through an observing sys-

tem simulation experiment which may be more costly than determining the optimal

static localisation length-scale (Vetra-Carvalho et al., 2018). In the KENDA sys-

tem, a simple adaptive horizontal R−1 localisation scheme and a static vertical R−1

localisation scheme are used (Schraff et al., 2016).

2.8 Performance metrics for the ensemble Kalman

filter

To gauge the performance of an ensemble Kalman filter it is useful to examine the

results of several performance metrics. We now detail three different performance

metrics used in this thesis.

2.8.1 Root mean squared error

The root mean squared error (RMSE) may be used to determine the average error

size of a time-series (e.g. Jolliffe and Stephenson, 2012, pp 82-84). For a vector of

length Nk, the RMSE is given by

RMSE =

√∑Nk
k=1 (xk − xtk)

2

Nk

. (2.8.1)

The RMSE is suitable for experiments where the truth is known such as twin ex-

periments where a truth run is recreated using data assimilation. Some limitations

of the RMSE are that the direction of the errors are not accounted for and that the

RMSE value will be much more sensitive to large errors than small errors.

The RMSE will be used in chapters 7 and 8 to calculate the average forecast and

analysis error for Kalman filter methods. For ensemble Kalman filters, the ensemble

mean is used to calculate the RMSE. We also use RMSE in chapter 6 to compare

forecasts with observations.
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2.8.2 Rank histograms

Rank histograms, or Talagrand diagrams, may be used to show how well the true un-

certainty of the observations is captured by an ensemble Kalman filter (Hamill, 2001;

Candille and Talagrand, 2005). This is achieved by examining where observations

lie within the forecast ensemble.

Rank histograms are constructed for scalar observations as follows. At observation

time k, the forecast ensemble is mapped into observation space and arranged into

ascending order as Hxf,(1) ≤ Hxf,(2) ≤ . . . ≤ Hxf,(m). If the observation is imperfect,

we add random noise distributed by the observation error statistics to each ensemble

member before they are arranged into ascending order. Using the sorted ensemble,

we define the m+1 histogram bins (−∞,Hxf,(1)], (Hxf,(1),Hxf,(2)], . . . , (Hxf,(m),∞).

If the observation lies in the i-th bin, also called a rank, we save that value in a

list. This is repeated for each observation and a histogram plotted using the saved

values.

The shape of the rank histogram will provide insight on the dispersion characteristics

of the forecast ensemble (e.g. Jolliffe and Stephenson, 2012, pp 146–149). Common

shapes for rank histograms are shown in figure 2.1. Flat rank histograms (figure

2.1a) suggest that the forecast ensemble is reliable or consistent. A ∩-shaped rank

histogram (figure 2.1b) suggests that there is too much variability (i.e. overdisper-

sive) in the ensemble whereas a ∪-shaped rank histogram (figure 2.1c) suggests there

is too little variability (i.e. underdispersive) in the ensemble. An asymmetric rank

histogram (figure 2.1d) suggests that the ensemble is biased. If the left ranks are

largest then the bias will be positive and if the right ranks are largest then the bias

will be negative.

Rank histograms are a useful method to visually check the dispersion characteris-

tics of ensemble systems. We note that a flat rank histogram does not necessarily

indicate a reliable forecast (Hamill, 2001). For example, the forecast ensembles used

to generate a flat rank histogram may have different conditional biases of the co-

variance between model grid points can be misrepresented. We also note that rank

histograms are sensitive to the presence of observation errors (Saetra et al., 2004). If

the incorrect observation error statistics are used to perturb the ensemble, it is likely

that the middle ranks will be over or under populated. To avoid misinterpretation

of the forecast dispersion characteristics, it is vital that a good approximation of the

true observation error statistics is used to perturb the ensemble. Rank histograms

will be used in chapter 8 to diagnose the dispersion characteristics of forecast en-

sembles.
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(a) (b)

(c) (d)

Figure 2.1: Common rank histogram shapes. An ensemble which captures the true
variability of the observations well will have a uniform distribution as in (a). An
ensemble that is too variable will have a ∩-shape as in (b). An ensemble that has
too little variability will have a ∪-shape as in (c). A positively biased ensemble will
have their ranks skewed to the left side as in (d).

2.8.3 Continuous ranked probability score

The continuous ranked probability score (CRPS) is an attractive performance met-

ric as it summarises forecast verification information on reliability, resolution, and

uncertainty into a single score (Hersbach, 2000). Furthermore, it can be used to

compare the accuracy of probabilistic forecasts with deterministic forecasts (Casati

et al., 2008). Denoting the probability density function for the forecast ensemble as

f(xf ), we define

CRPS =

∫ ∞
−∞

[
F (xf )−Θ(xf − xt)

]2
dxf , (2.8.2)

where F (xf ) and Θ(xf ) are the cumulative distribution functions given by

F (x) =

∫ x

−∞
f(y)dy, (2.8.3)

Θ(x) =

0 if x < 0

1 if x ≥ 0
. (2.8.4)

Here, Θ(x) is known as the Heaviside function and is used in forecast verification

for point values (Casati et al., 2008). We also note that the CRPS is defined for

scalar quantities and so is evaluated for each variable in the state vector. The best



2.9 Summary 20

0 < i < m αi βi
xt > xf,(i+1) xf,(i+1) − xf,(i) 0

xf,(i+1) > xt > xf,(i) xt − xf,(i) xf,(i+1) − xt
xf,(i) > xt 0 xf,(i+1) − xf,(i)

Table 2.1: Values for αi and βi in equation (2.8.8).

possible value of the CRPS is 0 and the worst possible value is 1. For a deterministic

forecast, the CRPS is equivalent to the mean absolute error.

The application of CRPS for ensemble forecasts has been derived by Hersbach

(2000). The (scalar) forecast ensemble members are assumed to be equally probable

and arranged in ascending order such that their cumulative distribution function is

given by

F (x) =
1

m

m∑
i=1

Θ(x− xf,(i)). (2.8.5)

Defining xf,(0) = −∞ and xf,(m+1) =∞, we have for xf,(i) < x < xf,(i+1) that

ci =

∫ xf(i+1)

xf,(i)

(
i

m
−Θ(x− xt)

)2

dx (2.8.6)

where

CRPS =
m∑
i=0

ci. (2.8.7)

This may be rewritten as

ci = αi

(
i

m

)2

+ βi

(
1− i

m

)2

(2.8.8)

where the values of αi and βi are given in table 2.1. A pictorial example of the

CRPS is shown in 2.2. It should be noted that outliers will increase the CRPS

substantially. The units for the CRPS are the same as for the forecast ensemble

members. The CRPS will be used to verify the accuracy of forecast ensembles in

chapter 8.

2.9 Summary

In this chapter we have introduced data assimilation for numerical weather predic-

tion. A brief overview of optimal interpolation and variational data assimilation

has been given. A more detailed explanation of the Kalman filter and its exten-

sion to the ensemble Kalman filter have been provided as they are both pertinent to
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Figure 2.2: The true cumulative distribution function (dashed line) and a cumulative
distribution function of a forecast ensemble with 10 members (solid line). The
continuous ranked probability score is the total shaded area.

chapters 7 and 8. Performance metrics have been described. These are used in chap-

ter 8. In the next chapter, we discuss observation errors in data assimilation and

how we may compensate for the scale-mismatch component of the representation

uncertainty.



Chapter 3

Observation uncertainty due to

unresolved scales

To produce the optimal estimate of a state through data assimilation requires cor-

rectly specified error covariances. While it is impossible to know the exact statistics

in practice, a good state estimate may still be obtained using approximations of the

true error statistics. In this chapter we define each component of the observation

error and discuss methods to approximate the representation error covariance. We

also introduce an alternative approach to compensate for error due to unresolved

scales that is used in this thesis.

3.1 Partitioned formulation of the complete sys-

tem dynamics and observations

In this section, we establish notation to mathematically define the components of

the observation error. In particular, we introduce notation for the complete system

dynamics and observations in a partitioned form such that the large-scales resolved

by an NWP model and small-scales unresolved by an NWP model are separated.

This is because in NWP, the numerical models used to predict the weather will be

unable to represent all of the observed spatio-temporal scales (Janjić et al., 2018).

This partitioned form of the complete system dynamics will be used in chapters 7

and 8.

To express the complete system dynamics in partitioned form, we assume that the

true state xtk may be partitioned as (xl,tk xs,tk )T where xl,tk ∈ RNl is the true large-

scale state, xs,tk ∈ RNs is the true small-scale state and Nt = Nl +Ns. The dynam-

ical system describing the large- and small-scale dynamics is assumed to have the

22



3.2 Observation errors in data assimilation 23

form (
xl,t

xs,t

)
k

=

(
Ml 0Nl×Ns

Msl Ms

)(
xl,t

xs,t

)
k−1

−

(
ηl

ηs

)
k

, (3.1.1)

where Ml ∈ RNl×Nl is the large-scale model assumed to contain any subgrid-scale

parameterizations used to mimic the influence of the small-scale processes (Janjić

and Cohn, 2006), Msl ∈ RNs×Nl is the contribution from the large-scale processes

to the small-scale state, Ms ∈ RNs×Ns is the small-scale model, and ηlk ∈ RNl and

ηsk ∈ RNs are the large- and small-scale model errors respectively assumed to have

zero mean. We note that Ml is meant to be representative of the prediction models

used in NWP (Janjić and Cohn, 2006).

The state error covariance Pk ≡
〈
(xk − xtk)(xk − xtk)T

〉
∈ RNt×Nt will be in the

partitioned form

Pk =

(
Pll
k Pls

k

Psl
k Pss

k

)
, (3.1.2)

where Pll
k ∈ RNl×Nl and Pss

k ∈ RNs×Ns are the large- and small-scale state error

covariances, and Pls
k ∈ RNl×Ns is the cross-covariance between the large- and small-

scale state errors and satisfies Psl
k =

(
Pls
k

)T
.

Similarly to Pk, the model error covariance matrix Qk will also be in block form

comprised of the model error covariances for the large- and small-scales along the

diagonal and the cross-covariance between the large- and small-scales on the off-

diagonal:

Qk =

(
Qll
k Qls

k

Qsl
k Qss

k

)
. (3.1.3)

Each model error block has the same dimension as the corresponding block of the

state error covariance given by equation (3.1.2). Now that we have established the

notation, we next consider the components of the observation error.

3.2 Observation errors in data assimilation

The observations assimilated into NWP models can be classified as remotely sensed

or in-situ. Remotely sensed observations are obtained from instruments not in direct

contact with the area they are observing. Satellite observations are an example of

remotely sensed observations and are currently the dominant source of observations

for global NWP (Eyre et al., 2020). In-situ observations have the property that they

observe a single point in space. Such observations are the main source of information
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in the surface-layer and are mostly comprised of meteorological stations, aircraft,

and radiosondes (Candy et al., 2021). In chapter 4, we discuss unconventional in-situ

observations which are not currently widely used in operational NWP.

In data assimilation, the uncertainty of observations can be attributed to two sources:

the instrument uncertainty and the representation uncertainty. The instrument

uncertainty corresponds to any errors made by the instrument in the observation

process. The representation uncertainty corresponds to errors caused by the misrep-

resentation of an observation by the model. Following the definition of Janjić et al.

(2018), the representation error consists of the pre-processing error, the observation

operator error and the error due to unresolved scales. In this thesis, we assume

that an observation at time tk may be expressed as the sum of the true large- and

small-scale states mapped into observation space,

yk = hl,tk (xl,tk ) + hs,tk (xs,tk ) + εk + νk, (3.2.1)

where hl,tk : RNl → Rp and hs,tk : RNs → Rp are the true large- and small-scale

observation operators respectively, εk ∈ Rp is the instrument error, and νk ∈ Rp

is the pre-processing error. We now discuss each component of the representation

error in greater detail.

The pre-processing error, νk, is caused by the incorrect preparation of an observa-

tion for assimilation. For an observation to be assimilated, there must be adequate

knowledge of the observation metadata such as location and time the observation was

taken. If these are incorrectly specified, the data assimilation algorithm will not com-

pare the observation with the corresponding prediction resulting in a pre-processing

error. In practice, quality-control procedures are used to reject any observations that

cannot be modelled correctly or are in gross error (Zahumenskỳ, 2004). Observa-

tions that are incorrectly accepted by the quality-control procedure and assimilated

will also exhibit pre-processing error. The quality-control of observations for NWP

will be discussed in chapter 4. We also note that observations processed or corrected

before assimilation can exhibit pre-processing error. For instance, surface observa-

tions of air temperature are corrected to model-level height using environmental

lapse rates (e.g., Dutra et al., 2020). The correction applied to these observations

will be approximate and hence result in a pre-processing error.

The observation operator error is caused by an incorrect or approximate observation

operator used to map the state variables to observation space. Therefore, using

equation (3.2.1), the observation operator error is given by

γ lk = hl,tk (xl,tk )− hlk(x
l,t
k ), (3.2.2)

where hlk : RNl → Rp is the large-scale observation operator used by the filter. This
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error will usually occur for remotely sensed observations where the observed quanti-

ties are related to the model state variables through complicated nonlinear equations.

For example, Doppler radial winds exhibit observation operator uncertainty at far

ranges if the observation operator does not account for the beam broadening and

bending (Waller et al., 2016c).

The error due to unresolved scales occurs when there is a difference in scales and pro-

cesses observed and modelled. The error due to unresolved scales is state-dependent

and correlated in time resulting in a potential representation error bias (Janjić and

Cohn, 2006; Waller et al., 2014b). Methods to compensate for error due to un-

resolved scales will depend on the observation footprint, which may be larger or

smaller than the model grid (Janjić et al., 2018). For in-situ observations, the

spatio-temporal scales observed will usually be smaller than those represented in

the model. However, for remotely sensed observations, the reverse is possible where

scales represented in the model are smaller than observed (Janjić et al., 2018). In

this thesis, we consider observations that contain information on scales smaller than

those represented by an NWP model. Hence, as we will explain in chapter 7, the

error due to unresolved scales is given by hs,tk (xs,tk ). We note that as the error due

to unresolved scales arises when the forecast model is a truncated representation of

the truth (Hodyss and Nichols, 2015), the scale-mismatch could also be treated as

a model error as there is an improper comparison of the observation and the model

state (e.g., Carrassi and Vannitsem, 2011; Mitchell and Carrassi, 2015). Such an

approach would still increase the uncertainty associated with the observation-model

comparison in the analysis step.

The remainder of this chapter will discuss how observation error due to unresolved

scales may be accounted for in data assimilation. Investigation on how the error due

to unresolved scales changes for an opportunistic observation type will be presented

in chapter 6. Chapters 7 and 8 will present new research on how to compensate for

the error using an approach described in section 3.4.

3.3 The observation error covariance

As discussed in chapter 2, the observation error covariance, Rk, is used to penalise

the deviations of hk(xk) from the observations yk in the 3D-Var and 4D-Var cost

functions given by equations (2.2.5) or (2.4.1) respectively. Therefore, to produce a

good analysis, it is vital that the contributions to the observation error are under-

stood so that a good approximation of Rk may be calculated.

In operational centres, it is typical to compensate for the error due to unresolved

scales by including its statistics in the total observation error covariance. Mathemat-

ically, the total observation error covariance may be expressed as Rk = RI
k + RH

k ,
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where RI
k is the instrument error covariance and RH

k is the representation error

covariance. The instrument error covariance, RI
k, will depend on the instrument

used to measure the observation. It is commonly assumed that the instrument er-

ror is uncorrelated such that RI
k is a diagonal matrix. The representation error

covariance, RH
k , has a more complicated structure. In particular, the error due to

unresolved scales is state-dependent and correlated (Janjić and Cohn, 2006; Waller

et al., 2014b). Throughout this thesis, accounting for representation uncertainty by

including it in observation error covariance matrix will be referred to as the standard

approach and is used in chapters 7 and 8.

3.3.1 Residual-based diagnosis

In data assimilation, the representation error statistics are unknown and meth-

ods to approximate observation error statistics are employed. Statistical diagnostic

methods such as the Hollingsworth-Lönnberg method (Hollingsworth and Lönnberg,

1986; Garand et al., 2007) or the Desroziers et al diagnostic (Desroziers et al., 2005)

are common methods to obtain an approximation of the entire observation error

covariance.

The Hollingsworth-Lönnberg method estimates the complete innovation error co-

variance using the relationship

E
[(
yk − hk(x

b
k)
) (
yk − hk(x

b
k)
)T]

= HkBkH
T
k + Rk. (3.3.1)

To separate the covariances, it was originally assumed that the background errors

are spatially correlated whereas the observations are not. Therefore, any spatial

observation error correlations caused by the unresolved scales are neglected. This

method was adapted to account for observation error correlations by (Garand et al.,

2007) by fitting correlation functions to the background uncertainties. This modi-

fied version of the Hollingsworth-Lönnberg method has been used to show significant

interchannel correlations for various satellite instruments (Garand et al., 2007; Bor-

mann and Bauer, 2010; Bormann et al., 2010). However, the size of the observation

error correlations is dependent on the fitted correlation function. Determining the

best correlation function to use is difficult and makes the results of the modified

Hollingsworth-Lönnberg method subjective.

The Desroziers et al diagnostic estimates the complete observation error covariance

using the relationship

E
[
(yk − hk(x

a
k))
(
yk − hk(x

b
k)
)T]

= Rk. (3.3.2)

This diagnostic has been widely used to estimate satellite interchannel error correla-

tions (e.g., Bormann and Bauer, 2010; Bormann et al., 2010; Weston, 2011; Weston
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et al., 2014; Stewart et al., 2014; Campbell et al., 2017; Gauthier et al., 2018) and

spatial correlations (e.g., Waller et al., 2016a,c; Cordoba et al., 2017; Michel, 2018).

However, it is still common for uncorrelated observation error covariances to be

used in operational data assimilation systems. For example, the Desroziers et al

diagnostic has been used to obtain diagonal observation error covariances in the

COSMO-KENDA system by neglecting the off-diagonal components (Schraff et al.,

2016; Lange and Janjić, 2016; Zeng et al., 2021). We note that the results of the

diagnostic will only be correct if the true statistics are used in the assimilation.

Since approximate error statistics will be used in operational data assimilation, the

Desroziers et al diagnostic will produce an inexact approximation of the complete ob-

servation error covariance for operational systems. Theoretical interpretation of the

results obtained from the Desroziers et al diagnostic when incorrect error statistics

are used are given in Waller et al. (2016b) and Ménard (2016). Incorporation of the

Desroziers et al diagnostic into the ensemble Kalman filter algorithm has also been

researched (Li et al., 2009; Miyoshi et al., 2013; Waller et al., 2014a, 2017).

Both the Hollingsworth-Lönnberg method and the Desroziers et al diagnostic may be

computed offline such that no extra computational cost is incurred in operational

systems. A large number of observation samples are required for these methods

which are usually taken over an assimilation window. Hence, when using either

method it is implicitly, and incorrectly, assumed that the errors are not changing

over time such that R is time-independent.

3.3.2 The metrological approach

An alternative approach to approximate the total observation uncertainty is to es-

timate each component of the observation error covariance matrix individually and

combine them. In this approach, the instrument error covariance is usually supplied

by the manufacturer and the representation error covariance is approximated from

first principles. A common method to estimate the uncertainty due to unresolved

scales is to use high-resolution data as a proxy for the truth. This dataset can be

high-resolution observations (e.g., Oke and Sakov, 2008) or high-resolution model

data (Daley, 1993; Liu and Rabier, 2002; Schutgens et al., 2016).

Oke and Sakov (2008) presented two methods to approximate the uncertainty due

to unresolved scales using high-resolution observations for ocean data assimilation.

The first method averages the observations to the resolution of the model and then

interpolates this average back to the high-resolution grid. The difference between the

high-resolution observations and the interpolated averages is taken as the error due

to unresolved scales. If the high-resolution observations do not resolve all scales,

the uncertainty due to unresolved scales will be underestimated. We also note

that the interpolation can cause an additional source of error. The second method
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approximates the uncertainty due to unresolved scales for a grid box by calculating

the variance of the high-resolution observations contained within it. For this method

to produce acceptable approximations, a grid box must contain a sufficient number

of high-resolution observations that adequately span it. Therefore, the estimates

that are obtained from this method can exhibit substantial sampling error.

Approximation of the uncertainty due to unresolved scales using high-resolution

model data was first presented by Daley (1993) and later used by Liu and Rabier

(2002). This method assumes that the observations can be expressed as the mapping

of a high-resolution state into observation space, the model state is a truncation

of this high-resolution state, the observation operator is linear, and the domain

periodic. We note that the approximation obtained from this method will be a time

average. Additionally, by assuming the model state is a truncation of the high-

resolution state, the approximation will likely be an underestimation. Waller et al.

(2014b) used this method in conjunction with convective-scale NWP model data

(1.5km grid spacing) in order to diagnose the spatial observation error correlations

arising from the error due to unresolved scales for meso-scale NWP (12km grid

spacing). Their results showed significant spatial observation error correlations are

caused by the error due to unresolved scales and that the natural logarithm of specific

humidity has larger error due to unresolved scales than air temperature.

An alternative method to approximate the error due to unresolved scales is to use

high-resolution model data as perfect error-free observations of the model state

variables. The low-resolution model equivalent to these observations are calculated

by spatial and/or temporal averaging the high-resolution model data. Schutgens

et al. (2016) first proposed this method to examine the differences between perfect

observations and perfect models due to spatial sampling for global aerosol models.

Their results showed significant root-mean-square differences for a range of variables.

This framework provides a simple way to estimate the error due to unresolved scales

explicitly from which statistics may be calculated. However, as the high-resolution

model data will not resolve all scales, the uncertainty due to unresolved scales may be

underestimated. Using this approach with data from the Met Office’s experimental

London model (approximately 300m grid spacing), Waller et al. (2021) examined

the uncertainty and bias due to unresolved scale for temperature, specific humidity,

zonal and meridional wind. Their results showed that the bias and variability is

more substantial in lower model levels and significant vertical correlations for each

variable. They also found insignificant horizontal correlations which contradicts the

results of Waller et al. (2014b). This, however, may be due to averaging over a

larger case study period or because of the difference in methods used.
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3.3.3 Assimilation using estimated observation error corre-

lations

Until recently, diagonal approximations of the observation error covariance were

assumed for all observation types. This was due to the difficulty of estimating ob-

servation error statistics and the computational cost of inverting large correlated

matrices. However, incorrectly specifying the observation error covariance with di-

agonal approximations leads to unrealistically smooth and very suboptimal analyses

(Rainwater et al., 2015). Using observation error correlations has been shown to im-

prove analysis accuracy (Healy and White, 2005; Stewart et al., 2013) and include

more observation information content (Stewart et al., 2008; Rainwater et al., 2015;

Fowler et al., 2018; Simonin et al., 2019).

Using approximate observation error covariances obtained through the Desroziers

et al diagnostic has improved the assimilation in simple model experiments (e.g., Li

et al., 2009; Miyoshi et al., 2013; Waller et al., 2014a) and operational systems (e.g.,

Weston et al., 2014; Bormann et al., 2016; Campbell et al., 2017; Simonin et al.,

2019). In addition, reconditioning correlated observation error covariance matrices

has been shown to be useful in overcoming convergence issues (e.g., Weston et al.,

2014; Tabeart et al., 2020a,b). As a result, operational centres such as the ECMWF,

Met Office and NCEP are increasingly investigating the use of observation error

correlations to improve their assimilation systems (e.g., Geer et al., 2019; Bennitt

et al., 2017; Bathmann and Collard, 2021).

3.4 Accounting for unresolved scales with the Schmidt-

Kalman filter

The Schmidt-Kalman filter (SKF) is an alternative approach to compensate for

error due to unresolved scales that was originally developed for navigation problems

(Schmidt, 1966; Jazwinski, 1970). In contrast to the standard approach, the SKF

uses the statistics of the small-scale processes in state space, without ever evaluating

the unresolved state itself. However, by analysing the state resolved by the model

only, the SKF is deemed suboptimal as it does not minimise the mean-square error of

its estimated states. Janjić and Cohn (2006) applied the SKF within a geophysical

context and demonstrated small analysis uncertainty despite the approximations

and assumptions required for implementation. The SKF remains largely unexplored

within the meteorology community, but has been adapted to a stochastic ensemble

form (Lou et al., 2018). The SKF will be used in chapters 7 and 8. In the following

subsections, we derive the Schmidt-Kalman filter and explain how it may be applied

to compensate for observation uncertainty due to unresolved scales. A more detailed

derivation and discussion of the SKF is given in chapter 7.
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3.4.1 The Kalman filter in partitioned form

Before we derive the SKF equations, it is necessary to state the Kalman filter equa-

tions for the partitioned dynamical system, given by (3.1.1), that analyse all scales

(i.e. both the large- and small-scale state). The Kalman filter equations were intro-

duced in a non-partitioned model in chapter 2. For equations relating to the analysis

update we drop the time subscripts as all components are valid at the same time.

For equations relating to the forecast updates, we retain the subscript as they will

differ between components. The Kalman filter for the partitioned model dynamics

will be used in chapter 7.

When all scales are analysed, the Kalman gain, given by (2.3.1), in partitioned

form will have a large-scale component, Kl ∈ RNl×p, and small-scale component,

Ks ∈ RNs×p, given by(
Kl

Ks

)
=

(
Pll,f Pls,f

Psl,f Pss,f

)(
(Hl)T

(Hs)T

)[(
Hl Hs

)(Pll,f Pls,f

Psl,f Pss,f

)(
(Hl)T

(Hs)T

)
+ R

]−1
,

(3.4.1)

where Hl ∈ Rp×Nl and Hs ∈ Rp×Ns are the imperfect linear large- and small-scale

filter observation operators respectively and the innovation covariance D ∈ Rp×p is

given by the term in square brackets. We note that the observation error covariance

R will be representative of the instrument uncertainty, the observation operator

uncertainty, and the pre-processing uncertainty. It will not contain the observation

uncertainty due to unresolved scales as all scales are analysed. The analysis state

update equation (2.3.1) in partitioned form is given by(
xl,a

xs,a

)
=

(
xl,f

xs,f

)
+

(
Kl

Ks

)[
y −

(
Hl Hs

)(xl,f
xs,f

)]
, (3.4.2)

where the term in square brackets is the innovation. The partitioned form of the

analysis error covariance equation (2.5.1) is given by(
Pll,a Pls,a

Psl,a Pss,a

)
=

(
I−

(
Kl

Ks

)(
Hl Hs

))(Pll,f Pls,f

Psl,f Pss,f

)
. (3.4.3)

The forecast state update equation (2.5.2) for the augmented system is(
xl,f

xs,f

)
k+1

=

(
Ml 0Nl×Ns

Msl Ms

)(
xl,a

xs,a

)
k

. (3.4.4)
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The forecast error covariance update equation (2.5.3) in partitioned form is(
Pll,f Pls,f

Psl,f Pss,f

)
k+1

=

(
Ml 0Nl×Ns

Msl Ms

)(
Pll,a Pls,a

Psl,a Pss,a

)
k

(
Ml 0Nl×Ns

Msl Ms

)T

+

(
Qll Qls

Qsl Qss

)
k+1

.

(3.4.5)

3.4.2 The Schmidt-Kalman filter equations

To derive the Schmidt-Kalman filter (SKF) from the Kalman filter equations shown

in section 3.4.1, we first set Ks = 0Ns×p so that only the large-scale state is analysed.

Additionally, the SKF will use the innovation y−Hlxl,f so that the large-scale state

may be analysed without knowledge of the small-scale state value. The analysis

update for the SKF is then

xl,a = xl,f + Kl(y −Hlxl,f ), (3.4.6)

where

Kl =
(
Pll,f

(
Hl
)T

+ Pls,f (Hs)T
)[(

Hl Hs
)(Pll,f Pls,f

Psl,f
〈
xs,t (xs,t)

T
〉)((Hl)T

(Hs)T

)
+ R

]−1
.

(3.4.7)

We note that since the small-scale state isn’t analysed, Pss,f is replaced by< xs,t(xs,t)T >

in the SKF innovation covariance. Hence, Pls,f and Psl,f are now the flow-dependent

cross-covariances between the large-scale forecast errors and the small-scale variabil-

ity. Similarly to the partitioned Kalman filter, the observation error covariance will

not contain a component corresponding to the error due to unresolved scales.

While the SKF analyses the large-scale state only, it evolves the uncertainty of both

the large- and small-scales. The analysis error covariance update is obtained by

setting Ks = 0Ns×p within the short-form update equation (3.4.3). We note that

while the full update of the analysis error covariance update is symmetric, the short

form update for the SKF is not symmetric, and so we set Psl,a = (Pls,a)T . As

the small-scale state isn’t analysed, < xs,t (xs,t)
T
> is not updated in the analysis

update.

The forecast state update for the SKF is given by

xl,fk+1 = Mlxl,ak . (3.4.8)

The forecast error covariance update for the SKF is given by equation (3.4.5) except

that Pss,f is replaced by < xs,t (xs,t)
T
>.

The SKF provides a methodology to compensate for uncertainty due to unresolved
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scales explicitly within the filter algorithm. It is essentially a generalized form of

the filter proposed by Mitchell and Daley (1997a,b) to compensate for unresolved

scales. The benefit of the SKF is the flow-dependent cross-covariances between the

large-scale state errors and the small-scale variability. However, while computation-

ally cheaper than the optimal Kalman filter, the SKF is still an expensive filtering

strategy due to the augmentation of the state error covariance.

3.5 Summary

In this chapter we have described the observation errors that occur in data assimi-

lation for NWP. Following the definition of Janjić et al. (2018), each component of

the representation error was discussed. In particular, the error due to unresolved

scales, and the implications arising from its state-dependence and correlations, was

discussed in detail. The standard approach to compensate for representation un-

certainty is to include it in the observation error covariance matrix. This may

be achieved by estimating the entire observation error covariance through residual-

based diagnosis to obtain a time-independent approximation. Alternatively, a metro-

logical approach may be used where each contribution to the observation uncertainty

is estimated individually from first principles and suitably combined. The benefits of

including the representation uncertainty in the observation error covariance matrix

for assimilation were reviewed. This chapter concluded with an introduction to the

Schmidt-Kalman filter, which represents an alternative, and relatively unexplored,

approach to account for the error due to unresolved scales. The Schmidt-Kalman

filter, which is researched in chapters 7 and 8, uses the statistics of the small-scale

processes in state-space, without ever evaluating the small-scale state, to estimate

the large-scale state. We next review crowdsourced observations and their applica-

tion to NWP. Crowdsourced observations are likely to be in-situ observations taken

in urban areas and will therefore have uncertainty due to unresolved scales.



Chapter 4

Crowdsourced observations for

numerical weather prediction

Convection-permitting weather prediction requires a large number of spatially-dense

and temporally-frequent observations of high resolution across the forecast area to

constrain short-term forecasts (Sun et al., 2014; Gustafsson et al., 2018; Dance et al.,

2019). However, it may be impractical to extend current scientific surface observa-

tion networks due to the cost of installing, managing and maintaining observing in-

struments. A potential data source that can help fill this observation gap is the use

of non-traditional observing instruments such as personal weather stations, smart-

phones, and vehicles (e.g., Bell et al., 2013; Mahoney III and O’Sullivan, 2013; Mass

and Madaus, 2014; de Vos et al., 2017). Such near-surface land-domain observations

can help achieve the horizontal coverage recommended by the World Meteorological

Organisation (World Meteorological Organization, 2021). In addition, these obser-

vations will likely have high spatio-temporal resolution and may be generated for

a low cost through crowdsourcing (Muller et al., 2015). In this chapter, we discuss

crowdsourcing of meteorological observations and review recent literature on the

subject.

4.1 Crowdsourced observations

The collaboration between the public and researchers to address real-world prob-

lems is known as citizen science (Wiggins and Crowston, 2011). The area of citizen

science that outsources the generation, storage, and utilisation of data to the pub-

lic is known as crowdsourcing. In the context of numerical weather prediction,

crowdsourced data collectively refers to meteorological reports and data generated

by the public through use of privately owned equipment (Hintz et al., 2019a). We

note that there are other opportunistic data sources that are currently used in opera-

tional weather prediction. For example, the Met Office currently assimilate roadside

33
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weather information station data obtained from highways agencies into the United

Kingdom variable-resolution model (Gustafsson et al., 2018). In this thesis, we

are primarily interested in crowdsourced observations which will be researched in

chapters 5 and 6.

Crowdsourced observations have several advantages and disadvantages when com-

pared to traditional scientific observations (Hintz et al., 2019a). The advantages of

crowdsourced observations include that they may be obtained for a low cost, they are

in-situ observations with high spatio-temporal resolution, and they can help fill in

the horizontal coverage of near-surface observations over land. In particular, urban

areas with large populations, where there are few traditional surface observations

networks, are likely to be densely populated by crowdsourced observations. Hence,

as convection-permitting weather prediction requires a large number of observa-

tions of high spatio-temporal resolution (Sun et al., 2014; Gustafsson et al., 2018;

Dance et al., 2019), crowdsourced observations are ideal for improving convection-

permitting forecasts of urban areas. The disadvantage of crowdsourced observations

include that they will be inaccurate in comparison to traditional observations. Other

issues regarding the use of crowdsourced data in NWP include data ownership, in-

termittency, heterogeneity, data provenance and large data volumes (Hintz et al.,

2019a).

The uncertainty of crowdsourced observations can be attributed to five areas (Bell

et al., 2015); calibration issues, communication and software issues, inaccurate or

missing metadata, design flaws, and error due to unresolved scales. We note that

the metadata available for crowdsourced datasets will depend on the constraints

imposed by data privacy laws and will contribute to the pre-processing component

of the representation uncertainty. The error due to unresolved scales will depend on

the influence of the environment local to the in-situ crowdsourced observation (Janjić

et al., 2018). As crowdsourced observations are likely to be taken in urban areas, they

may have substantial uncertainty due to unresolved scales because of the dynamics

induced by the surrounding urban environment. For example, a measurement in a

sheltered street will give a different reading to one made on the top of a skyscraper,

but can still be situated in the same model grid box. In chapter 6, the uncertainty

of crowdsourced vehicle-based observations of air temperature is discussed.

4.2 Examples of crowdsourced datasets

In this section we review the use of crowdsourced observations from personal weather

stations, smartphones and vehicles in meteorology. Quality-control of crowdsourced

observations will be discussed in section 4.3.
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4.2.1 Personal weather stations

Personal weather stations (PWSs) are defined by Bell et al. (2015) as “a weather

station set up by a member of the public for whom the terms weather enthusiast, vol-

unteer, hobbyist and amateur observer are fitting descriptions.” Observations from

PWSs have received much academic interest in part due to the direct observation

of meteorological variables. Furthermore, it is anticipated that the bias correction

of stationary instruments will be simpler than the bias correction of instruments

that change location (Hintz et al., 2019a). However, rules and standards adhered

to by the World Meteorological Organization (WMO) may not be followed by PWS

observations due to the locations they are installed, the measuring instruments they

use and their maintenance (Nipen et al., 2020).

PWSs are typically situated in the gardens of amateur weather enthusiasts where

they can properly observe atmospheric conditions (Bell et al., 2013). As such,

PWSs will be dense in urban and suburban areas making them ideal sources of

air-temperature data in urban heat island studies (e.g., Steeneveld et al., 2011;

Wolters and Brandsma, 2012; Chapman et al., 2017; Meier et al., 2017). Other

uses of PWS observations include analysing severe hailstorms (Clark et al., 2018),

hydrometeorological monitoring in metropolitan areas (de Vos et al., 2017, 2018,

2019a) and diagnosing the distribution of urban wind speeds (Droste et al., 2020).

PWS observations are not currently assimilated in operational weather prediction,

but they are used in post-processing and verification (e.g., Nipen et al., 2020; Kirk

et al., 2021; Hintz et al., 2021).

4.2.2 Smartphone observations

Smartphones are commonly used throughout the world and have the potential to

produce more crowdsourced observations than any other source (Mass and Madaus,

2014). The most researched observation obtainable from smartphones is surface

pressure from built-in barometers (e.g., Madaus et al., 2014; Madaus and Mass, 2017;

Price et al., 2018; McNicholas and Mass, 2018a,b; Hintz et al., 2019b, 2021). Other

observations that have been obtained from smartphones include air temperature

derived from smartphone batteries (Overeem et al., 2013; Droste et al., 2017) and

wind speed from anemometers mounted on smartphones (Hintz et al., 2020).

For data assimilation, surface pressure observations (SPOs) are a desirable observa-

tion that can provide useful information on the three-dimensional structure of the

atmosphere. Additionally, due to the spatial homogeneity of surface pressure fields,

the uncertainty due to unresolved scales associated with SPOs will be small (Madaus

et al., 2014). Hanson (2016) performed a series of observing system simulation ex-

periments to assess the potential value of SPOs from smartphones for high-resolution

weather prediction. They found that, in the absence of any other observation type,
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SPOs from smartphones have the potential to produce forecasts with similar skill

to forecasts produced using conventional SPOs. Additionally, the benefits of the

simulated smartphone observations extended to other surface fields such as 2-metre

air temperature and 10-metre wind. Assimilation of SPOs from smartphones into a

mesoscale model was initially conducted by Madaus and Mass (2017). Their results

showed that systematic sensor biases and elevation uncertainty in the smartphone

data caused by poor data collection and quality-control, inaccurate metadata, sen-

sor bias and user behaviour hindered the impact of the observations. As a result

of these issues, only marginal improvements were attained. In a follow-up study

that compensated for sensor bias and elevation uncertainty, assimilation of smart-

phone observations produced more substantial forecast improvements (McNicholas

and Mass, 2018a,b). The assimilation of bias-corrected SPOs from smartphones into

the HARMONIE numerical weather prediction system, where synoptic surface pres-

sure observations were removed, has been conducted by Hintz et al. (2019b). Their

results showed a decrease in the surface-pressure model bias and an improvement in

the forecast of accumulated precipitation.

4.2.3 Vehicle-based observations

Vehicle-based observations are a source of potentially millions of directly observed or

derived surface-based observations that may be utilised in NWP (Mahoney III and

O’Sullivan, 2013). Such observations may be obtained through connected vehicle

initiatives (e.g., Mahoney III and O’Sullivan, 2013), from built-in sensors of vehicle

fleets via the controller area network (CAN) (e.g., Mercelis et al., 2020), or using

sensors that have been externally mounted on the vehicle (e.g., Anderson et al.,

2012). In chapters 5 and 6, we examine crowdsourced vehicle-based observations

of air temperature from built-in sensors obtained from on-board diagnostic (OBD)

dongles.

Research into the application of vehicle-based observations of air temperature has

primarily been for road weather applications such as modelling (e.g., Hu et al.,

2019) and forecasting (e.g., Siems-Anderson et al., 2019; Mercelis et al., 2020). For

example, vehicle-based observations of the atmospheric state are a primary informa-

tion source for the open-source Pikalert system, which combines weather informa-

tion from disparate sources to provide improved road weather forecasts and hazard

assessments (Siems-Anderson et al., 2019). Additionally, assimilation of vehicle-

based observations of road-surface temperature into the Finnish Meteorological In-

stitute’s road weather model has been shown to improve forecasts in areas with few

roadside weather information stations (Karsisto and Lovén, 2019). Research into

vehicle-based observations for convection-permitting NWP is still in its infancy, but

improvements from assimilation of vehicle-based observations of air temperature,

dewpoint temperature, wind speed and wind direction in observation system simu-
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lation experiments have been obtained (Siems-Anderson et al., 2020). We note that

the vehicle-based observations were simulated using gridded analysis data, surface

station data and roadside weather information station data so the error due to un-

resolved scales caused by the environment local to a vehicle was not fully considered

in the study. The use of vehicle-based observations has also been considered for

nowcasting by the German Weather service (Hintz et al., 2019a).

4.3 Quality control

Before the meteorological information available from crowdsourced observations can

be examined, it is important to remove any observations that are likely in gross

error. This is achieved through quality-control (QC); a vital process performed prior

to data assimilation. Due to the high spatial-temporal variability of meteorological

processes, detection of errors can be a challenging process (Gandin, 1988). Therefore,

QC procedures usually include several simple tests that assess different aspects of the

observed quantities (Zahumenskỳ, 2004; Fiebrich et al., 2010). We now summarise

common tests used in the QC of meteorological observations and their use in the

QC of crowdsourced datasets. In chapter 5, we QC crowdsourced vehicle-based

observations of air temperature.

4.3.1 Range-validity tests

Range-validity tests involve checking that some observed value is within a prede-

termined validity range. Such tests are useful to QC crowdsourced datasets as no

information on the data source is required and so data privacy issues are avoided.

Validity ranges obtained from sensors are determined by the hardware specifica-

tions and have been used in the QC of vehicle-based observations using externally-

mounted sensors (Chapman et al., 2010; Anderson et al., 2012; Boyce et al., 2017).

However, for vehicle-based observations from built-in sensors, whose designs may

be kept secret by the manufacturer, sensor-range tests will be unsuitable. Alterna-

tives to sensor ranges include statistically-derived ranges and climatological ranges.

For example, Meier et al. (2017) defined a validity range of five standard deviations

around a reference minimum temperature in order to determine whether PWSs were

located inside buildings. Climatological ranges are usually determined from histori-

cal datasets and have been used to QC vehicle-based observations (Chapman et al.,

2010; Boyce et al., 2017) and smartphone observations (Hintz et al., 2019b).

4.3.2 Temporal checks

Temporal checks involve examination of a time-series of measurements obtained

from a single instrument. The plausibility of the data is usually assessed through
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either step or persistence checks. These tests require some sort of identification

which may be unavailable for crowdsourced datasets due to privacy concerns (Hintz

et al., 2019a). Step tests examine the difference between sequential observations and

require some sort of numerical calculation to be satisfied. For instance, the Pikalert

system (Boyce et al., 2017; Siems-Anderson et al., 2019) tests for unrealistically large

differences between consecutive vehicle-based observations and Meier et al. (2017)

tests for the diurnal variability in PWS observations using step checks. Persistence

checks are used to determine whether a sensor is stuck on a value by checking that

measurements change over a specified time period. Such checks have also been used

by the Pikalert system (Boyce et al., 2017).

4.3.3 Consistency tests

Consistency tests identify observations that are inconsistent with other nearby ob-

servations. The criteria for inconsistency will depend on the observed variable, the

location of the observations being compared and the distance between them. “Buddy

checks” are a type of consistency test that compare observations of the same type

in close spatio-temporal proximity. These tests have been used to QC PWS obser-

vations (Meier et al., 2017; de Vos et al., 2019b; Droste et al., 2020; Nipen et al.,

2020), smartphone observations (Hintz et al., 2019b) and vehicle-based observations

(Anderson et al., 2012; Boyce et al., 2017). Such tests are useful for the QC of crowd-

sourced observations as they can take advantage of the large observation density in

urban areas and they do not require instrument identification (Nipen et al., 2020).

Crowdsourced observations may also be compared with traditional surface observa-

tion networks provided they are sufficiently close to one another. Such tests have

been used to QC smartphone observations (Madaus and Mass, 2017; McNicholas

and Mass, 2018b; Hintz et al., 2019b) and vehicle-based observations (Chapman

et al., 2010; Anderson et al., 2012; Boyce et al., 2017).

4.3.4 Background checks

Background checks involve calculating the difference between an observation and

the background from an operational NWP system. The size of the background de-

parture will indicate the plausibility of an observation. Background checks have

been used to flag SPOs that have a background departure larger than 1hPa, which

approximately corresponds to an 8m difference in altitude, as the standard deviation

of surface pressure in the NWP model is of the order of 0.3–0.4hPa (Hintz et al.,

2019b). Background checks are suitable for crowdsourced observations as the fore-

cast can be interpolated to the location of each crowdsourced observation. However,

if the forecast for an area is poor, this test may remove good observations in that

area.
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4.4 Summary

In this chapter we have introduced crowdsourced observations as a dataset of op-

portunity for weather prediction. Crowdsourced observations are typically non-

traditional observations generated from the public through use of their privately

owned equipment. Such observations are receiving increased interest for weather pre-

diction as they can help achieve the horizontal coverage recommended by the World

Meteorological Organization (2021) for near-surface land-domain observations for a

low cost. Examples of crowdsourced datasets that are currently researched by the

meteorological community have been discussed including vehicle-based observations

which are investigated in chapters 5 and 6. This chapter concluded with discussion

of range-validity tests, temporal checks, consistency tests and background checks for

the quality-control of meteorological datasets. Applications of these tests to crowd-

sourced datasets in published works, as well as any limitations, have been discussed.

A new quality-control procedure will be developed for crowdsourced vehicle-based

observations in chapter 5. In the next chapter we begin our investigation into vehicle-

based observations obtained from a Met Office proof-of-concept trial.



Chapter 5

Quality-control of vehicle-based

temperature observations and

future recommendations

The first aim of this thesis is to investigate a crowdsourced vehicle-based temperature

dataset as a low-cost source of urban observations. In this chapter we answer the

first research question given in chapter 1: how can we quality-control the vehicle-

based air-temperature dataset obtained from a Met Office proof-of-concept trial? In

addition, we wish to determine:

• Which quality-control tests are suitable for crowdsourced vehicle-based obser-

vations of air temperature?

• Which improvements can be made to the data collection procedure for vehicle-

based observations used by the Met Office?

The remainder of this chapter, except for the chapter summary in section 5.7, is

strongly based on the paper Bell et al. (2021b).

Abstract:

In numerical weather prediction, datasets of opportunity is a collective term

used for meteorological observations obtained from unconventional data sources.

This report presents the quality-control process designed for a vehicle-based dataset

of opportunity containing 67959 observations obtained from a proof-of-concept trial

run from 20th February until 30th April 2018 by the Met Office. In this trial,

on-board diagnostic (OBD) dongles were used to transmit low precision dry bulb

temperature measurements from a vehicle to the driver’s phone which were subse-

quently uploaded to the Met Office cloud servers with time, location, and vehicle

identification metadata using a Met Office phone app. The raw data from the trial

40
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was first filtered to remove observations with missing fields or invalid measurements

and metadata. The resultant filtered dataset contained 32179 observations (47.4% of

original dataset) which underwent further testing. The quality-control tests applied

to the filtered dataset included a climatological range test, a stuck instrument test,

and a GPS test that checks whether an observation location is physically consistent

with the vehicle’s previous location. A substantial number of observations were

flagged by the GPS test due to the accuracy of smartphone GPS measurements,

GPS location update app settings, and poor GPS signal, while the majority of ob-

servations passed the climatological range and stuck instrument test. The 19094

observations which passed all previous quality-control tests were put through a final

sensor ventilation test to determine if the vehicle drove at a sufficient speed for the

temperature sensor to be adequately ventilated. This test flagged 1669 observa-

tions with speeds below a predetermined sensor ventilation threshold. In total, the

quality-controlled dataset consists of 17425 observations (25.6% of original dataset).

The results of the quality-control process have shown that the observation location

metadata can be inaccurate due to unsuitable app settings and poor GPS signal.

Additionally, inadequate sensor ventilation can result in observations with a warm

bias. Recommendations on future data collection include revising OBD dongle and

app settings/features to correct observation GPS, methods to circumvent the need

for vehicle identification in quality-control, and the use of higher precision instru-

ments.

5.1 Introduction

The advancement of convection-allowing data assimilation requires a large number

of observations of high spatio-temporal resolution relevant to the weather processes

being modelled (Sun et al., 2014; Gustafsson et al., 2018; Dance et al., 2019). Due

to the enormous cost of installation, management, and maintenance, it may not be

practical to extend traditional scientific observing networks. A potential alterna-

tive source of inexpensive, high-resolution meteorological observations to constrain

convective-scale numerical weather prediction forecasts is from crowdsourced data

which are currently receiving increased interest from the numerical weather predic-

tion community (e.g., Nipen et al., 2020).

In the context of numerical weather prediction, crowdsourced data collectively refers

to reports and data generated by the public through use of privately owned equip-

ment (Hintz et al., 2019a). These observations will be inaccurate in comparison

to those obtained from scientific observing networks but have the potential to far

exceed the number of scientific observations currently produced. Application of

crowdsourced data is relatively new and studies into collection methods and obser-

vation characteristics are currently active areas of research (e.g., Bell et al., 2015;
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McNicholas and Mass, 2018b; Hintz et al., 2019a; Nipen et al., 2020).

Crowdsourced observations from citizen observing networks have been shown to

successfully observe meteorological phenomena such as urban heat islands directly

through digital and car thermometer observations (Knight et al., 2010) and ama-

teur/citizen science weather stations observations (Steeneveld et al., 2011; Wolters

and Brandsma, 2012; Chapman et al., 2017; Meier et al., 2017). Additionally, ur-

ban heat islands have been shown to be observable through temperature measure-

ments derived from smartphone battery temperatures (Overeem et al., 2013; Droste

et al., 2017). To ensure representative measurements from direct observations, sev-

eral precautionary measures must be taken into consideration (Bell et al., 2015).

For instance, citizen weather stations need to be shielded from radiation and tem-

perature sensors need to be located a sufficient distance from buildings and in a

naturally ventilated area. Sensor ventilation is especially important to prevent large

air temperature errors in circumstances of large radiative forcing (e.g., World Mete-

orological Organization, 2008; Richardson et al., 1999; Nakamura and Mahrt, 2005).

Though guidance on the proper use of meteorological instruments was provided in

these studies, the overall credibility of the crowdsourced datasets must be evaluated

through quality-control methods before the observed meteorological processes can

be examined.

Quality-control is a vital process performed prior to data assimilation to reject ob-

servations that are likely to contain gross errors (i.e. observations that are clearly

incorrect). The techniques which comprise the quality-control procedure usually

include simple checks designed to test different aspects of the observed values (Za-

humenskỳ, 2004; Fiebrich et al., 2010). Quality-control of crowdsourced observations

is a notably difficult task (Muller et al., 2015). Non-traditional data sources may

suffer from numerous issues that traditional scientific observations will not (e.g. cal-

ibration, user behaviour such as locations above/below ground, low precision data,

sensor-specific measurement errors, etc). As an example, surface pressure observa-

tions from smartphones may not be the desired meteorological measurement due

to user behaviour and inadequate location and elevation metadata. We note that

while smartphone GPS accuracy may be degraded by urban environments, recent

studies on horizontal position accuracy in urban areas have shown they can produce

acceptable location-based metadata for crowdsourced observations (e.g., Merry and

Bettinger, 2019). Due to the previously mentioned issues over half the smartphone

observations examined in the work of Madaus and Mass (2017) and Hintz et al.

(2019b) were removed through quality-control. However, smartphone observations

have been shown to improve forecasts after bias correction and thorough quality-

control had been applied to the data (McNicholas and Mass, 2018a,b; Hintz et al.,

2019b).
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Adverse weather is a leading contributor to severe congestion, large travel time de-

lays and harmful incidents for surface transportation networks (Snelder and Calvert,

2016). To combat this, vehicle-based meteorological observations have been utilised

by the Clarus Initiative (Limber et al., 2010) and the Pikalert System (Boyce et al.,

2017; Siems-Anderson et al., 2019) to provide improved road and atmospheric haz-

ard products to road maintenance operators and the travelling public. Examples of

observations obtainable by vehicles include precipitation (e.g., Haberlandt and Ses-

ter, 2010; Rabiei et al., 2013), air quality (e.g., Devarakonda et al., 2013; Rada et al.,

2016), atmospheric pressure and temperature (e.g., Drobot et al., 2010; Chapman

et al., 2010; Anderson et al., 2012). Studies on the quality-control of vehicle-based

temperature and pressure observations have been performed for experiments where

a set number of vehicles were driven along predetermined routes using fitted me-

teorological sensors with known error characteristics in order to generate weather

statistics for road segments (Chapman et al., 2010; Drobot et al., 2010; Anderson

et al., 2012). This freedom over the experimental design allowed for Anderson et al.

(2012) to use spatial consistency checks between neighbouring vehicles and nearby

surface-stations as well as sensor range tests to check the meteorological instruments.

Chapman et al. (2010) also used a nearby surface-station consistency check and a

sensor range test but used a climatological range test instead of a spatial consistency

test between neighbouring vehicles. In contrast, the small novel dataset examined

in this report allowed for no such freedom in the experimental design and severely

limits the quality-control tests applicable.

The objective of this report is to quality-control a vehicle-based observation dataset

and to provide recommendations on future data collection methods. The structure

of this report is as follows. In section 5.2 we provide an overview of the Met Office

proof-of-concept vehicle-based observations trial. Preparation of the data obtained

from the trial into a filtered dataset to be quality-controlled is discussed in section

5.3. The detailed description of the implementation and results of the quality-control

tests is given in section 5.4. The results of the quality-control process highlight that

the observation location metadata can be inaccurate due to poor GPS signal and

app settings. Additionally, inadequate sensor ventilation can result in observations

with a warm bias. Discussion of the quality-controlled dataset is given in section

5.5. A summary with recommendations is provided in section 5.6.

5.2 Met Office trial

The vehicle-based observations studied in this report are obtained from a trial by

the Met Office from 20th February 2018 to 30th April 2018. In the trial, volunteer

participants connected an on-board diagnostics (OBD) dongle to their vehicle engine

management interface. The OBD dongle used in this trial is an inexpensive adapter
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which is inserted into the OBD port of a vehicle which transfers vehicle diagnostic

data to a Bluetooth-connected computing device. Meteorological parameters and

vehicle speed (given in km/h) selected on the app “Met Office OBD App 0909” are

broadcast to the participant’s Android phone. This app decodes any data sent by

the dongle and appends the corresponding date-time (given by the app as the date

and 24 hour clock time) and GPS location metadata derived through the phone. In

addition, a unique observation ID and sensor ID are appended to each observation. A

sensor ID is used to determine if observations come from the same vehicle. However,

the sensor ID is specific to the installed version of the app and so reinstalling the app

used to record the observations would result in a new identifier for the participant.

The observations along with relevant metadata are then uploaded via 3G or 4G to

the Met Office Weather Observations Website (Met Office, 2011). The preset data

collection frequency and GPS update period are set to 1 minute while the preset

minimum distance for a GPS update is 500 metres. These settings can be changed

by the participant through the app interface.

In total, 31 participants were successful in producing vehicle-based observations from

journeys they undertook during the trial period. For clarity, we define a journey

as a subset of data originating from the same vehicle over a fixed time interval.

Throughout this trial, fewer observations were usually obtained during weekends

than week-days. A “call for data” was made to obtain data for certain weather

conditions on the 9th March (rainy), 22nd March (benign) and 16th April (sunny).

In addition, a large number of observations were obtained on 27th March due to a

few long journeys.

The observations of interest obtained through this trial include dry bulb temperature

(◦C), engine intake temperature (◦C) and air pressure (hPa). Both temperature

observations have low precision (1◦C). The air pressure is precise to 10hPa and hence

not useful in data assimilation. In this report we examine dry bulb temperature

only. Engine intake temperature measures the dry bulb temperature in the vehicle

engine which will not reflect the true atmospheric air temperature. However, a fault

known to have occurred for some observations during this trial is for engine intake

temperature to be recorded as dry bulb temperature.

5.3 The filtered dataset

In order to assess the quality of a dataset, each datum must contain information we

are interested in examining. Any data which are obviously in error or do not have

the relevant observation field we wish to examine will be discarded. The remaining

data will be referred to as the filtered dataset and will undergo the quality-control

process detailed in section 5.4.
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5.3.1 Preparation of the filtered dataset

To obtain the filtered dataset we carry out some gross checks on the dry bulb temper-

ature measurements and accompanying time and speed metadata of the complete

dataset. In particular, we discard any datum which exhibit any of the following

properties:

1. the vehicle speed is less than 0km/h,

2. there is an invalid date-time in the observation metadata,

3. there is no dry bulb temperature observation.

Data that do not exhibit any of these properties will form the filtered dataset.

In total, 35780 observations were discarded resulting in the filtered dataset contain-

ing 32179 observations. No observations were discarded due to an invalid date-time.

Many of the discarded observations contain speeds with value −32768km/h which

is the value used when the vehicle speed is unable to be recorded by the app. This

is the minimum short signed integer for a 2-bit system. A single observation with

speed 255km/h, over double the speed limit for dual carriageways and motorways

in the UK (UK Government, 2015), is discarded as it is likely incorrect. There were

34681 discarded observations without a dry bulb temperature field.

The data that passed this data filtering test underwent further quality-control tests.

We now examine the observations in the filtered dataset before we describe the

implementation of the GPS and sensor ventilation tests detailed in sections 5.4.3

and 5.4.4 respectively.

5.3.2 Characteristics of the filtered dataset

To implement the quality-control process described in section 5.4 it is necessary

to have knowledge of the characteristics of the filtered dataset. In this section

we examine the dry bulb temperature observations (section 5.3.2.1), the temporal

frequency of the observations (section 5.3.2.2) and the GPS measurements (section

5.3.2.3) of the filtered dataset.

5.3.2.1 Dry bulb temperature

The number of dry bulb observations for each month as well as their distribution

is shown in figure 5.1. In total, 5684 observations were taken in February, 16211 in

March, and 10284 in April. We note that, except the two outliers in April that had a

dry bulb temperature of−22◦C, there are no observations with dry bulb temperature

less than −8◦C. Any observations with a temperature greater than 20◦C occurred

in April. Furthermore, the largest dry bulb temperature values (27-34◦C) occurred
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for vehicle speeds less than 25km/h. As discussed in section 5.1, this is likely to be

caused by inadequate sensor ventilation.

February March April All data

Number of observations 5684 16211 10282 32179
Mean 3.33◦C 6.59◦C 11.38◦C 7.55◦C

Standard deviation 3.99◦C 3.48◦C 4.34◦C 4.84◦C
Skew −0.09 −0.44 0.67 0.27

Excess kurtosis −0.74 0.27 1.13 1.14

Table 5.1: Summary of the descriptive statistics for the filtered dataset and split
into each month. The two values of −22◦C have been removed from the descriptive
statistics calculations of “April” and “All data” as they are clearly outliers.

A summary of the descriptive statistics for the filtered dataset and each month is

given in table 5.1. As expected, the distribution of dry bulb temperatures varies

significantly with each month with mean temperatures increasing from February to

April due to season. The distribution for February is the most concentrated dis-

tribution (negative excess kurtosis) with slight asymmetry (negative skew). March

is a less concentrated distribution than February with a longer left tail. The left

tails for both February and March are likely to be caused by the Beast from the

East (22/02/2018 to 05/03/2018 (Met Office, 2020)). Removing the extreme dry

bulb temperatures from April reveals it is the least concentrated distribution with a

longer right tail that is likely caused by inadequate sensor ventilation during more

frequent sunny weather conditions and the April hot spell (18th-22nd April 2018

(Met Office, 2020)). Examining the variability of each month shows that April is

the most variable month (highest standard deviation) and March the least variable.

As the majority of the observations occurred in March and April, the characteris-

tics of the combined temperature distribution share the most similarities with these

months. Namely, the distribution is concentrated around similar temperatures to

March and has a longer right tail like April. However, the combined temperature

distribution has higher variability than each individual month.

5.3.2.2 Multiple reporting

The observations from this trial were designed to have a 1 minute temporal fre-

quency. However, several observations are reported within a minute of the pre-

vious observation but retained a 1 minute temporal frequency with other similar

observations. An example of this is shown in figure 5.2 which shows the dry bulb

temperature observations for a journey segment from a single vehicle. The blue

observations maintain a 1 minute temporal frequency with other blue observations

while the red observations occur 7 seconds after a blue observation and maintain a

1 minute temporal frequency with other red observations. An observation reported
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Figure 5.1: Distribution of dry bulb temperature observations for each month of
the trial for the filtered dataset. The purple bar segments indicate the number
of February 2018 observations, the green segments March 2018, and the orange
segments April 2018. The combined distribution is a stacked histogram that shows
the contribution from each month to the total number of observations for each dry
bulb temperature.

within a minute of the previous observation will be referred to as a multiple reported

observation (MRO) and is suspected to be caused by phone or dongle hardware

technical issues. We note that the GPS metadata may be inaccurate for MROs due

to the short time between observations. This will be discussed further in section

5.4.3.

Denoting the time-gap between consecutive observations from the same vehicle on

a given day as ∆t, a histogram of all ∆t binned into one-minute intervals is shown

in figure 5.3. Noting the log-scale, the vast majority of ∆t have length 0-2 mins (i.e.

the first two bins). The first bin contains all ∆t ∈ [0, 1) minutes which occurs 15364

times. This corresponds to the number of MROs in the filtered dataset. MROs form

a large part of the filtered dataset and will need to be accounted for in the additional

quality check tests we impose on this data. The second bin contains all ∆t ∈ [1, 2)

minutes which occurs 15025 times with 14646 corresponding to the observations

which maintain a 1 minute temporal frequency with the previous observation. Any

∆t ≥ 60 minutes are placed in the 60+ minute bin. Any ∆t ∈ [2, 60) are caused by

breaks in a vehicle journey, issues with the collection method such as loss of phone

signal, or removal of data without the necessary information needed for quality-

control.
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Figure 5.2: Time series segment of dry bulb temperature for a single vehicle taken
on the 28th of February 2018. The blue observations retain a 1 minute temporal
frequency with other blue observations. The red observations retain a 1 minute
temporal frequency with other red observations but always occur 7 seconds after a
blue observation.

Figure 5.3: The distribution of time-gaps between consecutive observations from the
same vehicle and day for the filtered data set binned into minute intervals. Note
that a log-scale has been used for the time-gaps frequency. Any time-gaps greater
than 60 mins are placed into the 60+ minute interval.



5.3 The filtered dataset 49

Figure 5.4: Time series of the distance between consecutive observations calculated
using the great circle distance (black squares), denoted d, the distance estimated
using the time-gap between the observations and the speeds of the observations,
denoted demax (red-dashed line) and 2demax (purple dot-dashed line), for the first half
of a journey along the M5 motorway during the 25th of March 2018. We have used
two estimates to provide a reference for when a distance is realistic (i.e. close to the
red line) or unrealistic (i.e. close to the purple line). Instances of d = 0km indicate
the observation at that time is a GPS-lagged observation. Almost all instances
of d = 0km are immediately followed by demax < d ≤ 2demax which corresponds
to the distance travelled between the observation before and after the GPS-lagged
observation.

5.3.2.3 GPS-lagged observations

The method of data collection in the Met Office trial used smartphones to obtain

location-based metadata. A common occurrence in the filtered dataset is GPS loca-

tion not updating due to poor GPS signal, the vehicle has not travelled far enough

to trigger a GPS update or insufficient time between observations. The default GPS

update distance and period for the app are 500 metres and 60 seconds respectively.

This results in some observations having identical GPS location to the previous

observation taken by the same vehicle. These observations will be referred to as

GPS-lagged observations.

Figure 5.4 shows data from the first half of a journey along the M5 motorway

during the 25th of March 2018. We have plotted a time series of distance between

consecutive observations calculated using the great circle distance,

d = 2r sin−1

(√
sin2

(
Φ1 − Φ2

2

)
+ cos (Φ1) cos (Φ2) sin2

(
λ1 − λ2

2

))
, (5.3.1)

where Φ1 (λ1), Φ2 (λ2), are the latitudes (longitudes) of the two locations and

r = 6371km is the radius of the Earth. We also show the distance estimated using
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the time-gap between the observations and the speeds of the observations,

demax = max(v1, v2)×∆t, (5.3.2)

where v1 and v2 are the recorded speeds at the time of the two observations and ∆t

is the time-gap between them. We have used two estimates to provide reference for

when a distance is realistic (i.e. d ≈ demax) or unrealistic (i.e. d ≈ 2demax). Instances

of d = 0km indicate the observation at that time is a GPS-lagged observation.

Almost all instances of d = 0km are immediately followed by demax < d ≤ 2demax

which corresponds to the distance travelled between the observation before and

after the GPS-lagged observation.

5.4 Quality-control tests

In this section we describe the quality-control tests we use on the filtered dataset.

A schematic showing the complete quality-control process applied to the trial data

is shown in figure 5.5. The climatological range test (section 5.4.1), stuck instru-

ment test (section 5.4.2) and GPS test (section 5.4.3) are applied in parallel to

the filtered dataset obtained in section 5.3. Observations that have passed each

quality-control test undergo a final sensor ventilation test (section 5.4.4). The fi-

nal quality-controlled dataset will be comprised of observations passed by every

quality-control test. Throughout this section we use the units that the data have

been recorded in which are given in section 5.2.

5.4.1 Climatological range test (CRT)

The Climatological range test (CRT) identifies observations which fall outside of

location-specific climatological ranges (Limber et al., 2010; Boyce et al., 2017).

5.4.1.1 Test implementation

To implement this test, we use the Met Office integrated data archive system (MI-

DAS) daily temperature data (Met Office, 2006). This dataset contains observations

of the maximum and minimum temperatures over a specified time window (usually

12 to 24 hours) for various locations in the UK. MIDAS temperature data have a

resolution of 0.1◦C and an uncertainty of 0.2◦C.

To create our climatology dataset we use surface stations active during 2018. For

each station, we obtain the minimum and maximum dry bulb temperature for Febru-

ary, March, and April using pre-2018 MIDAS data. We note that the climatology

of each surface station will depend on when it was made operational and so the

climatology length of each station will vary. Due to this, we remove the MIDAS
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Figure 5.5: The complete quality-control process applied to the complete dataset
obtained from the Met Office trial. The complete data is first prepared into the
filtered dataset whereby all data without dry bulb temperature and necessary meta-
data are discarded. The climatological range test (section 5.4.1), stuck instrument
test (section 5.4.2) and GPS test (section 5.4.3) are applied in parallel to the filtered
dataset. Observations which have passed each quality-control test undergo a final
sensor ventilation test (section 5.4.4). The final quality-controlled dataset consist of
observations that pass the sensor ventilation test.

stations with site IDs 62083 and 62119 from our April climatology dataset as they

became active in 2016 and 2017 respectively. We also remove the MIDAS stations

with site ID 6313 and 15365 from our April climatology dataset as they have im-

plausibly small maximum temperatures despite becoming active in 1914 and 1988

respectively. While it is possible there exist other similarly problematic MIDAS

stations, we have not found any further evidence to support removing any other

stations from our climatology.

The CRT is performed by checking if the vehicle dry bulb temperature observations

are within a predetermined tolerance of the minimum to maximum range for the

nearest surface station. The nearest surface station is calculated through the use of

the great circle distance (5.3.1). (The vehicle GPS measurement will be addressed

in section 5.4.3).

For this test we use a 2◦C tolerance to compensate for a number of factors. For exam-

ple, dry bulb temperature would be expected to change with elevation in the surface

layer (e.g. Stull, 1988, pp 9–19). Additionally, dry bulb temperature measurements

taken on surfaces with higher albedo, such as grass, can produce noticeably different

measurements from those taken on surfaces with lower albedo, such as asphalt (e.g.,

Huwald et al., 2009). The purpose of the tolerance used in this test is to account for

elevation and surface differences between a vehicle and its nearest MIDAS surface

station. This tolerance will also partially compensate for extreme events that oc-

curred during the trial such as the snow and low temperatures that occurred during
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Figure 5.6: The dry bulb temperature observations (black) from one vehicle on
the 25th of March 2018 and the climatological minimum (blue) and maximum (red)
temperatures of the nearest MIDAS surface station. Any fluctuation in the minimum
and maximum lines can be attributed to the tested observation being nearest to a
surface station different from the previously tested observation. The two surface
stations used to test the observations around 16.30 have the same minimum but
different maxima. Each dry bulb temperature observation shown passes the CRT as
each lies between the minimum and maximum temperature of the nearest MIDAS
surface station.

late February and early March 2018 and a hot spell that occurred from 18th-22nd

April 2018 (Met Office, 2020). Operational MIDAS surface stations will likely be

shielded from radiation by Stevenson screens but radiation errors may still occur

for calm and/or sunny conditions due to poor ventilation (Harrison, 2015). Vehicle

dry bulb temperature sensors are not shielded from radiation and will be affected

by re-radiated heat from road surfaces (Donegan, 2017).

The CRT applied to a single vehicle on the 25th of March 2018 is shown in figure

5.6. Observations taken during different segments of longer journeys are likely to

be nearer to different MIDAS surface stations. This is seen by the jumps in the cli-

matological maximum and minimum lines. Each dry bulb temperature observation

plotted here would pass the CRT as each lies between the climatological minimum

and maximum air temperature of the nearest MIDAS surface station.

5.4.1.2 Algorithm

The CRT algorithm is shown in algorithm 1. Here, Nfiltered is the total number of

observations in the filtered dataset, yi is the i-th observation in the filtered dataset

with corresponding dry bulb temperature Ti, θmax and θmin are the maximum and

minimum climatological air temperature observations of the nearest MIDAS surface
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station and tol is the tolerance.

Algorithm 1: Climatological range test pseudocode

1: for i = 1 ... Nfiltered do

2: Determine corresponding MIDAS climatology to use (i.e. February, March

or April)

3: Find MIDAS station nearest to yi to obtain θmax and θmin

4: if θmin − tol ≤ Ti ≤ θmax + tol then

5: Pass yi

6: else

7: Flag yi

8: end if

9: end for

5.4.1.3 CRT results

Using the settings described in section 5.4.1.1 we find that 32129 observations have

been passed (over 99%) by the CRT and 50 observations have been flagged. Since

few observations were flagged by this test we conclude that a 2◦C tolerance is suitable

for this dataset but larger tolerances may be more suitable for other vehicle-based

observation datasets.

5.4.2 Stuck instrument test (SIT)

Persistence tests are a common quality-control test to determine whether an instru-

ment is stuck and/or if the variability of the measurements of some meteorological

field is physically realistic (e.g., Zahumenskỳ, 2004; Drobot et al., 2011). Standard

persistence tests will be unsuitable for the filtered dataset due to a large number

of short journeys undertaken by participants during the trial. Furthermore, insuffi-

cient knowledge on the variability of dry bulb temperature on the scales measured

by vehicles, as well as whether this variability would be adequately reflected in low

precision measurements, add to the infeasibility of persistence tests. We therefore

implement a simplified form of a persistence test which only checks whether an in-

strument is stuck on some value. This test will be referred to as the stuck instrument

test (SIT).

5.4.2.1 Test implementation

To implement the SIT for an observation ytest valid at time ttest we first create

a sample of observations ysample valid at times tsample from the same vehicle such

that

ttest − 15 mins ≤ tsample ≤ ttest + 15 mins. (5.4.1)
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The accepted sample time window is chosen to be symmetric in ttest so that ob-

servations at the start and end of a journey can be tested. We note that a large

time-window is chosen for our sample to compensate for the low precision of the dry

bulb temperature observations. Provided at least one observation in the test sample

has a different dry bulb temperature value to ytest then ytest is passed.

5.4.2.2 Algorithm

The SIT algorithm is shown in algorithm 2. Here, Nfiltered corresponds to the number

of observations in the filtered dataset, ytest is the test observation taken at time ttest

with dry bulb temperature Ttest and sensor ID SIDtest and yi is the i-th observation

taken at time ti with dry bulb temperature Ti and sensor ID SIDi.

Algorithm 2: Stuck instrument test pseudocode

1: for i ... Nfiltered do
2: Set ytest = yi
3: for i ... Nfiltered do
4: if ytest 6= yi, ti ∈ [ttest − 15 mins, ttest − 15 mins] and SIDtest = SIDi

then
5: Add Ti to sample S
6: end if
7: end for
8: if the sample is empty then
9: Cannot test ytest
10: else if at least one dry bulb temperature doesn’t equal Ttest then
11: Pass ytest
12: else
13: Flag ytest
14: end if
15: end for

5.4.2.3 Results

There are 30124 observations passed by the SIT, 2008 observations flagged, and 47

observations which could not be tested as there were no other observations from the

same vehicle in the sample window.

5.4.3 GPS test

Due to the high spatial resolution of vehicle-based observations, it is vital that

accurate knowledge of the observation location is known. GPS-based positioning

has been shown to be acceptable for accurate vehicle navigation, but requires fre-

quent location polling (Menard et al., 2011). The accuracy of GPS measurements is

known to be heavily affected by the smartphone and application used (Hess et al.,
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2012; Bauer, 2013). The GPS test verifies whether the GPS metadata of individual

observations provide physically plausible vehicle locations.

5.4.3.1 Test implementation

To quality check the GPS measurements associated with the vehicle data we examine

the location of a test observation against the location of a reference observation.

The reference observation will have been taken up to 30 minutes before the test

observation and by the same vehicle. We note that the first observation taken by

a vehicle and any observations with a time-gap larger than 30 minutes from the

previous observation cannot be tested by this method as there will be no suitable

reference observation to test against.

The GPS test first calculates the distance between the tested observation and ref-

erence observation, dtest, through the great circle distance (5.3.1). Next, using the

metadata of the two observations, we calculate estimates of the minimum and max-

imum distances the vehicle could have travelled between the times the reference and

test observation were taken. The maximum distance will be estimated by (5.3.2)

where v1 (v2) is replaced by the speed of the test (reference) observation vtest (vref )

and ∆t is the time-gap between the test and reference observations. Similarly, the

minimum distance will be estimated by

demin = min (vtest, vref )×∆t. (5.4.2)

The estimates provided by (5.3.2) and (5.4.2) may not be reflective of the true

distance traversed by the vehicle due to speed fluctuations and the route travelled

between the observations. When estimating the maximum distance we must account

for the vehicle having a larger speed than vtest and vref between the times the

observations were taken. When estimating the minimum distance we must account

for more factors than with the maximum distance. In addition to the vehicle having

a lower speed than vtest and vref between the observation times, the journey may

occur during heavy traffic congestion, the route travelled may not be a straight line,

or the route traversed may be through a residential area. Additionally, MROs must

be accounted for as it is possible their GPS will not have been updated because of

the minimum time and distance update conditions on the app (see section 5.2).

The tested observation will pass the GPS test if Γmin × demin ≤ dtest ≤ Γmax × demax
where Γmin < 1 and Γmax > 1 are tolerance constants used to account for the uncer-

tainty in demin and demax respectively. When an observation is passed by the GPS test,

if ∆t ≥ 1 minute and dtest > 0km between this passed observation and the reference

observation it was tested against it becomes the reference observation for the next

test observation. Otherwise, the reference observation is unchanged for the next test

observation. This is to avoid GPS-lagged observations being reference observations
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as they are known to have inaccurate GPS (see section 5.3.2.3). If the next test

observation is over 30 minutes from the reference observation, the test observation

is unable to be tested and we set it to be the next reference observation.

For our implementation we set the tolerance constants as Γmax = 1.3 and Γmin = 0.6.

To show the suitability of our choices for Γmax and Γmin in the GPS test we calcu-

late the distances between observations and their respective reference observations

denoted dtest. Figure 5.7 shows each dtest plotted against their corresponding demax

(black dots) and lines dtest = demax (red dashed line) and dtest = 1.3 × demax (red

solid line). The gradients of the two lines represent possible choices for Γmax. By

using Γmax = 1.3, all points above the solid line will be flagged by the GPS test,

since for these data, the vehicle appears to have travelled further than physically

plausible since the previous reference observation. Points below the solid line are

not flagged but must also pass a minimum distance test. Figure 5.8 shows each

dtest plotted against their corresponding demin (black dots) and lines dtest = demin

(blue dashed line) and dtest = 0.6 × demin (blue solid line). The gradients of the

two lines represent possible choices for Γmin. Similarly to figure 5.7, by using

Γmin = 0.6, most points below the solid line will be flagged by the GPS test, since

for these data, the vehicle appears to have travelled less than physically plausible

since the previous reference observation. Points above the solid line are not flagged

but must also pass a maximum distance test. Additionally, we will set Γmin = 0

when vref , vtest < 25km/h or ∆t < 1 minute as we expect the test observation to be

relatively near to the reference observation. (The specific choice of 25km/h is related

to the sensor ventilation test which will discussed in section 5.4.4). Therefore, many

observations beneath the solid line in figure 5.8 will not be flagged by the GPS test.

We note that the horizontal threshold dtest ≈ 0.5km in figures 5.7 and 5.8 is caused

by the 500 metre default GPS update distance used by the app.

5.4.3.2 Algorithm

The GPS test algorithm is shown in algorithm 3. Here, NIDs corresponds to the

number of unique sensor IDs in the filtered dataset which determine if observations

come from the same source (i.e. vehicle), Nobs is the number of observations for the

i-th sensor ID and yj is the j-th observation such that yj occurs before yj+1.
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Figure 5.7: Scatter plot to show the distances between observations and their re-
spective reference observation, denoted dtest, against their corresponding demax (black
dots) and the lines dtest = demax (red dashed line) and dtest = 1.3 × demax (red solid
line). The gradients of the two lines represent possible choices for Γmax. We note
that the threshold dtest ≈ 0.5km is due to the 500 metre default GPS update dis-
tance of the app used in this trial. By using Γmax = 1.3, all points above the solid
line will be flagged by the GPS test, since for these data, the vehicle appears to have
travelled further than physically plausible since the previous reference observation.

Figure 5.8: Scatter plot to show the distances between observations and their re-
spective reference observation, denoted dtest, against their corresponding demin (black
dots) and the lines dtest = demin (blue dashed line) and dtest = 0.6× demin (blue solid
line). The gradients of the two lines represent possible choices for Γmin. We note
that the threshold dtest ≈ 0.5km is due to the 500 metre default GPS update dis-
tance of the app used in this trial. By using Γmin = 0.6, all points below the solid
line will be flagged by the GPS test, since for these data, the vehicle appears to have
travelled less than physically plausible since the previous reference observation.
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Algorithm 3: GPS test pseudocode

1: for i ... NIDs do

2: Collect all observations y belonging to the i-th sensor ID into a test dataset

3: Set yref = y1

4: for j = 2 ... Nobs do

5: Calculate the time-gap ∆t between yref and yj

6: if ∆t ≥ 30 mins then

7: Set yref = yj

8: else

9: if ∆t < 1 minute or vtest, vref < 25km/h then

10: Γmin = 0

11: else

12: Γmin = 0.6

13: end if

14: Calculate demin, demax and dtest

15: if Γmin × demin ≤ dtest ≤ Γmax × demax then

16: Pass yj

17: if ∆t > 1 minute and dtest > 0km then

18: Set yref = yj

19: end if

20: else

21: Flag yj

22: end if

23: end if

24: end for

25: end for

5.4.3.3 Results

There are 20162 observations that pass the GPS test of which 9939 are MROs. There

are 11181 flagged observations and 836 observations which could not be tested. The

results of the GPS test are summarised in table 5.2. The majority of the observations

that couldn’t be tested were due to large time-gaps between the test and reference

observations.

For the flagged dataset, 1331 (1429) observations were flagged for having dtest > demax

(dtest < demin). We note that it is possible many of these observations may have ac-

curate location metadata but have inaccurate speed and time metadata resulting in

the disagreement between dtest and demax or demin. The remaining 8421 flagged obser-

vations were GPS-lagged observations. The GPS-lagged observations are primarily

due to the 500 metre default GPS update distance of the app but also because of

poor GPS signal resulting in more time being needed for a location update.
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Determining the uncertainty of the GPS for this dataset would require examination

of the GPS uncertainty caused by the smartphone app and each smartphone make

used by the participants during the trial. Merry and Bettinger (2019) found an

average horizontal position accuracy in urban areas of 7-13m for an iPhone 6. For

convection-permitting NWP this would likely be an acceptable GPS uncertainty for

vehicle-based observations.

A greater concern is the minimum GPS update distance used by the app (500m)

which resulted in a substantial portion of the filtered dataset being flagged by the

GPS test. For all crowdsourced observations accurate spatial location metadata

are needed due to the scales of the atmospheric processes being observed. This is

especially true for vehicles as their locations are non-stationary.

5.4.4 Sensor ventilation test (SVT)

The final quality-control test we apply in this report is the sensor ventilation test

(SVT). As discussed in section 5.1, radiative forcing can result in large errors in

measurements of air temperature. In order to produce realistic temperature mea-

surements it is necessary for sensors to be adequately ventilated. For vehicle-based

observations, sensor ventilation will be determined by the speed the vehicle is trav-

elling at. From our examination of the dry bulb temperatures of the filtered dataset

in section 5.3.2.1, we define the sensor ventilation threshold for the filtered dataset

as vsensor = 25km/h.

The SVT is used to check for adequate temperature sensor ventilation by remov-

ing any observations with speed less than the sensor ventilation threshold vsensor.

This test is implemented last as each observation can be tested individually and

observations flagged by this test are still useful for the SIT or GPS test. We also

note that Γmin = 0 was used in the GPS test for observations with speed less than

vsensor as those observations will be flagged by the SVT regardless of the GPS test

result.

5.4.4.1 Algorithm

The algorithm for the SVT is shown in algorithm 4. Here, N is the number of

observations that have passed all previous quality-control tests and yi is the i-th

observation with corresponding speed ui.
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Algorithm 4: Sensor ventilation test pseudocode

1: for i = 1 to N do

2: if ui ≥ 25 then

3: Pass yi

4: else

5: Flag yi

6: end if

7: end for

5.4.4.2 Results

The SVT is applied to the 19094 observations that have passed all other quality-

control tests. In total, the SVT flags 1669 observations (8.7%). We note that a large

number of observations relative to the number tested are flagged by this test due

to the large number of observations that occurred when the vehicle was stationary

(i.e. 0km/h speed).

5.5 The quality-controlled dataset

The dataset resulting from the quality-control process described in section 5.4 con-

sists of 17425 observations (25.6% of the complete dataset). A summary of the

quality-control test results is given in table 5.2. The number of observations that

passed all tests, were flagged by at least one test, and could not be tested by all

tests for each day is shown in figure 5.9.

Number of tested Number of passed Number of flagged Number of untested
observations observations observations observations

Climatological range test 32179 32129 50 0
Stuck instrument test 32179 30124 2008 47

GPS test 32179 20162 11181 836

Sensor ventilation test 19094 17425 1669 0

Table 5.2: Summary table containing the results from all quality checking tests.

A summary of the descriptive statistics for the quality-controlled dataset and each

month is given in table 5.3. In total, 2833 observations were taken in February,

9012 in March, and 5580 in April. The ratio between the number of observations

that occurred in each month in the quality-controlled dataset is relatively unchanged

from that of the filtered dataset. The distributions of the dry bulb temperatures for

each month, shown in figure 5.10, retain the majority of the characteristics of their

filtered dataset counterparts discussed in section 5.3.2.1. There has been a slight

reduction in skew and kurtosis for February and April as higher temperatures have

been removed by the SVT. Additionally, extreme temperature anomalies have been

removed from April by the CRT.
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Figure 5.9: The observations that passed all tests (blue bar segments totalling
17425), were flagged by at least one test (yellow bar segments totalling 13897) and
could not be tested by all tests (red bar segments totalling 36637). We note that
the red bar segments include all observations removed in the initial filtering stage
and those untested by any QC test.

Figure 5.10: Distribution of dry bulb temperature observations for each month of
the trial for the quality-controlled dataset. The purple bar segments indicate the
number of February 2018 observations, the green segments March 2018, and the
orange segments April 2018. The combined distribution is a stacked histogram that
shows the contribution from each month to the total number of observations for
each dry bulb temperature.
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February March April All data

Number of observations 2833 9012 5580 17425
Mean 3.52◦C 6.67◦C 11.29◦C 7.63◦C

Standard deviation 4.04◦C 3.30◦C 4.26◦C 4.64◦C
Skew −0.22 −0.38 0.72 0.26

Excess kurtosis −0.88 0.13 0.92 1.07

Table 5.3: Summary of the descriptive statistics for the quality-controlled dataset
and split into each month.

5.6 Summary and recommendations

The use of crowdsourced observations in numerical weather prediction is a new re-

search area that is quickly receiving much attention from the meteorology commu-

nity. Indeed, the high spatio-temporal resolution of the observations is particularly

attractive for convection-permitting data assimilation where expansion and man-

agement of conventional scientific surface observing networks are too costly.

This report details the quality-control process applied to a novel low-precision vehicle-

based observation dataset. In order to quality-control the raw dataset, we first

needed to filter the dataset in order to determine which data had the necessary

information. The climatological range test (CRT), stuck instrument test (SIT), and

GPS test were applied in parallel to the filtered dataset. The sensor ventilation test

(SVT) was applied to data that had passed the three previous tests. We note that

as the CRT can be applied to each observation individually it may be more suitable

to apply this test after the SIT or GPS test. The quality-control dataset consists

of the 17425 observations (25.6% of original dataset) which have passed all quality-

control tests. This is in stark contrast to the quality-control of scientific surface

observing networks where most observations are retained. For example, in the Met

Office system approximately 10% of dry bulb temperature observations are flagged

or discarded (Waller, 2019). Recommendations for future quality-control and data

collection are given at the end of this section.

The CRT was used as a range validity test on the dry bulb temperatures. This type

of quality-control test has been successfully used for smartphone observations (Hintz

et al., 2019b) and vehicle-based observations (Chapman et al., 2010; Limber et al.,

2010; Boyce et al., 2017). To implement this test we used monthly climatologies

of the MIDAS surface stations active during the trial. Hence, this test is limited

by the climatology of each MIDAS station. The CRT flagged the lowest number of

observations out of any quality-control test and would be suitable for operational

quality-control of vehicle-based observations.

The SIT was used as a simplified persistence test to determine if the sensor was stuck

on some value. In order to implement this test, a vehicle identifier was required to



5.6 Summary and recommendations 63

determine if observations came from the same source. For operational persistence

tests, it will be important to consider how observations taken from short finite

journeys can be tested for persistence. We note that, despite the simplicity of

this test, there is still a small amount of data in the filtered dataset unable to be

tested. We also note that, because of the low precision of the data, it is also possible

that valid observations have been flagged by this test. However, as the majority of

observations able to be tested were passed, it is unlikely that our sample time-span

was an issue for the implementation of this test on the filtered dataset.

The GPS test was performed to verify the plausibility of the GPS metadata. GPS

accuracy has been an issue for crowdsourced smartphone observations where it is

important to know the elevation of pressure observations (Madaus and Mass, 2017;

Hintz et al., 2019b) but inaccuracies in the horizontal have not been a reported

concern. Similarly to the SIT, vehicle identification is required to implement the

GPS test. The GPS test involves comparing the distance between GPS coordinates

of two observations with minimum and maximum estimates calculated through their

metadata. As such, the results of this test are also dependent on the accuracy of

the speed and time metadata of the observations. We also note that the starting

observation of a journey or after a large time-gap was used as a reference observation

in this test despite their GPS being untested and possibly inaccurate. The number

of flagged observations is substantially greater than the number of observations

flagged by the CRT, SIT and SVT combined. This is primarily due to the existence

of GPS-lagged observations in the filtered dataset which are caused by poor GPS

signal, insufficient distance travelled, or time between observations to trigger a GPS

location update. As vehicles are able to traverse a greater distance in a short time-

span than some current operational weather prediction model grid spacing it is

important that lags in GPS be accounted for.

The SVT is the final quality-control test and is another filtering test where observa-

tions with speed less than vsensor = 25km/h are flagged. A similar precaution was

used by Knight et al. (2010) who found vehicle-based temperature observations to be

reasonably accurate provided the vehicle was moving for a number of minutes prior

to the observation time. Despite being applied to fewer observations than any other

test, a large number of observations were flagged by the SVT. It is expected that a

large amount of vehicle-based observations will be flagged due to traffic congestion

or driving through residential areas.

Unfortunately, we were unable to perform a spatial consistency test on the filtered

dataset due to a lack of observations occurring at similar locations and times. Ad-

ditionally, due to the high spatial resolution of each observation in this dataset, we

were unable to obtain an independent dataset which most observations from the fil-

tered dataset could be tested against. It is possible in the future that vehicle-based
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observations form vast observation networks that are densest in urban areas making

spatial consistency tests more feasible. Additionally, the examination of any biases

present in the observations was also infeasible due to a lack of data. Vehicle-based

observations are likely to be biased due to the sensing instrument and heat from the

car engine and road surface.

Recommendations for future data collection and quality-control of vehicle-based

observations are as follows.

• A substantial amount of data was found without valid speed metadata. Cor-

recting the OBD dongle or app settings/features causing this will result in

fewer observations discarded prior to the quality-control process.

• Reduce the GPS update distance to reduce the number of GPS-lagged obser-

vations.

• The climatology datasets used in the CRT each contained around 400 MIDAS

stations situated within the UK making this test a computationally expensive

matching procedure. In operational settings, it may be more appropriate to

use reduced datasets such as monthly regional climatologies. Additionally, the

comparison of vehicle-based observations with WOW surface station data may

provide another suitable quality-control test.

• The temperature observations obtained from the Met Office trial are all low-

precision measurements. Because of this, a simplified persistence test was

used as a quality-control test. If precision was increased to 0.1◦C then more

standard persistence tests can be used as a quality-control test. This will allow

for testing of whether the sensor is stuck and whether the variability of the

observed fields is physically plausible simultaneously.

• Both the SIT and GPS test could not have been implemented without a sensor

ID. Due to data privacy, it may be unfeasible to have sensor IDs with potential

vehicle-based observation sources. Using appropriate encryption techniques

on vehicle sensor IDs may allow for the use of vehicle time series in quality-

control (e.g., Verheul et al., 2019). Alternatively, if a phone app is used in

the data collection process it may be possible to quality-control locally on a

smartphone before uploading to WOW servers. Such methods have been used

for the quality-control and bias correction of smartphone observations (Hintz

et al., 2019b).

• To check if a vehicle sensor is stuck without vehicle observation time series

it may be suitable to record the amount of time since the vehicle observed a

different value as metadata for that observation.

• To check GPS accuracy without vehicle location time series it would be use-
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ful to record GPS signal strength between a satellite and a phone, as well

as how many satellites are involved in the GPS polling, as metadata for an

observation. Having access to this information will also assist in determining

the GPS measurement uncertainty. Additionally, provided enough observa-

tions are available, spatial consistency tests may be capable of flagging some

observations with incorrect GPS.

The Met Office proof-of-concept trial has shown it is possible to obtain vehicle-

based observations from in-built vehicle sensors using smartphones and OBD don-

gles. However, the observations obtained through this trial leave much to be desired.

While the quality-control procedure presented in this report may be a suitable refer-

ence point for other crowdsourced datasets, there is much improvement to be made

in both data collection and quality-control for such observations to be utilisable. It is

therefore necessary to conduct further trials possibly with alternative data collection

methods which address the issues raised in this report.

5.7 Chapter summary

In this chapter, we addressed the first research question given in chapter 1: How

can we quality-control the vehicle-based air-temperature dataset obtained from a Met

Office proof-of-concept trial? A novel quality-control procedure was implemented on

crowdsourced vehicle-based observations of air temperature obtained from a Met Of-

fice proof-of-concept trial. The quality-control procedure consisted of range-validity

tests, a new GPS test and a time-series check. We note that the GPS test and

time-series check may be unsuitable more generally due to data privacy. In total,

only 25.6% of the initial dataset passed quality-control. We found that the majority

of observations that were unable to be tested or failed quality-control were due to

missing or inaccurate metadata. Hence, the quality of the available metadata is

key for the quality-control of vehicle-based observations. In the next chapter, we

will explore the characteristics of the vehicle-based observations that passed quality-

control.



Chapter 6

Exploring the characteristics of a

vehicle-based temperature dataset

for convection-permitting

numerical weather prediction

In this chapter we use the quality-controlled dataset obtained in chapter 5 to an-

swer the second research question given in chapter 1: what are the characteristics

of vehicle-based observations of air temperature? In particular, we wish to deter-

mine if the uncertainty of vehicle-based observations of air temperature is weather-

dependent or vehicle-dependent. The remainder of this chapter, except for the

chapter summary in section 6.6, is strongly based on the paper submitted to Mete-

orological Applications for publication (Bell et al., 2021a).

Abstract:

Crowdsourced vehicle-based observations have the potential to improve forecast

skill in convection-permitting numerical weather prediction (NWP). The aim of this

paper is to explore the characteristics of vehicle-based observations of air tempera-

ture. We describe a novel low-precision vehicle-based observation dataset obtained

from a Met Office proof-of-concept trial. In this trial, observations of air temperature

were obtained from built-in vehicle air-temperature sensors, broadcast to an appli-

cation on the participant’s smartphone and uploaded, with relevant metadata, to

the Met Office servers. We discuss the instrument and representation uncertainties

associated with vehicle-based observations and present a new quality-control proce-

dure. It is shown that, for some observations, location metadata may be inaccurate

due to unsuitable smartphone application settings. The characteristics of the data

that passed quality-control are examined through comparison with United Kingdom

66
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variable-resolution model data, roadside weather information station observations,

and Met Office integrated data archive system observations. Our results show that

the uncertainty associated with vehicle-based observation-minus-model comparisons

is likely to be weather-dependent and possibly vehicle-dependent. Despite the low

precision of the data, vehicle-based observations of air temperature could be a useful

source of spatially-dense and temporally-frequent observations for NWP.

6.1 Introduction

Convection-permitting numerical weather prediction (NWP) requires a large number

of observations of high spatio-temporal resolution to constrain short-term forecasts

(Sun et al., 2014; Gustafsson et al., 2018; Dance et al., 2019). However, due to the

cost of installation, management, and maintenance of observing instrumentation, it

may be impractical to extend traditional scientific observing networks to provide

sufficient additional relevant observations. A potential alternative source of inex-

pensive observations is from opportunistic data generated by the public or other

organisations (Waller, 2020; Blair et al., 2021).

The application of opportunistic datasets in NWP has been a popular area of re-

search in recent years (Hintz et al., 2019a). Observations from personal weather

stations (PWSs) (Steeneveld et al., 2011; Wolters and Brandsma, 2012; Chapman

et al., 2017; Meier et al., 2017; Nipen et al., 2020) and smartphones (Overeem

et al., 2013; Droste et al., 2017; Madaus and Mass, 2017; Hintz et al., 2019b, 2020,

2021) are commonly obtained through crowdsourcing. Such observations may be

inaccurate when compared with traditional scientific observations. However, the

number of crowdsourced observations available has the potential to far exceed the

number of scientific surface observations currently produced (Muller et al., 2015).

Opportunistic datasets can also be obtained from partnerships with other organi-

sations. For example, roadside weather information station (RWIS) data obtained

from highways agencies are currently assimilated into the Met Office United King-

dom variable-resolution (UKV) model (Gustafsson et al., 2018).

Observations obtained from vehicles are another dataset of opportunity (Mahoney III

and O’Sullivan, 2013). Similarly to PWS and smartphone observations, vehicle-

based observations can be obtained through crowdsourcing and will therefore be

most densely distributed in urban areas and on major transport networks. Vehicle-

based observations can also be obtained through several non-crowdsourcing meth-

ods. For example, the data can be obtained directly from vehicle manufacturers

through connected vehicle initiatives (e.g., Mahoney III and O’Sullivan, 2013), from

built-in sensors of vehicle fleets via the controller area network (CAN) (e.g., Mercelis

et al., 2020), or through externally mounted sensors (e.g., Anderson et al., 2012). In

this paper, vehicle-based observations of air temperature are obtained from built-
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in vehicle sensors through on-board diagnostic (OBD) dongles. This method of

data collection, which is described in section 6.3, could be used for crowdsourcing

vehicle-based observations.

Vehicle-based observations are currently used to improve road weather modelling

(e.g., Hu et al., 2019) and forecasts to combat adverse road weather conditions on

transportation networks (e.g., Karsisto and Nurmi, 2016; Siems-Anderson et al.,

2019). Karsisto and Lovén (2019) showed that assimilation of vehicle-based ob-

servations into the Finnish Meteorological Institute’s road weather model had the

greatest forecast impact factor when RWISs were sparse. The use of vehicle-based

observations in NWP is still in its infancy, but their use for nowcasting has been

investigated by the German weather service (DWD) (Hintz et al., 2019a). Addi-

tionally, an observing simulation system experiment (OSSE) conducted by Siems-

Anderson et al. (2020) showed a modest but appreciable impact from assimilating

simulated vehicle-based observations.

Before opportunistic datasets can be assimilated, they must undergo thorough quality-

control (QC) and the contributions to their observation uncertainty identified and

investigated. Bell et al. (2015) attributed the total uncertainty of crowdsourced

PWS observations to five sources; calibration issues, communication and software

issues, inaccurate metadata, design flaws, and error due to unresolved scales. As a

result of these issues, which also apply to other opportunistic datasets, the imple-

mentation of QC procedures can become substantially more difficult than the QC

for traditional observations. In some studies over half the crowdsourced data were

removed by the QC procedure (e.g. Meier et al. (2017); Madaus and Mass (2017);

Hintz et al. (2019b)). Siems-Anderson et al. (2019) developed QC for vehicle-based

observations from disparate sources for use in road weather forecasting systems.

However, these QC tests required a large number of observations to be in close

spatio-temporal proximity such that spatial comparisons be used. Due to a lack of

observations occurring at similar locations and times for the dataset examined in

this study, a new QC procedure was developed.

Understanding the characteristics of opportunistic observations is key to their ef-

fective use in NWP (Waller, 2020). For data assimilation, an understanding of the

instrument and representation errors that contribute to the total observation uncer-

tainty is required. Important meteorological features such as sharp discontinuities

caused by precipitation processes can be observed by opportunistic observations but

will likely be misrepresented by a NWP model (Mahoney III and O’Sullivan, 2013).

Hence, it is likely that there will be significant representation error caused by the

mis-match in scales observed and modelled (Janjić et al., 2018). The instrument

and representation components of the vehicle-based observation uncertainty are dis-

cussed in section 6.2. For the vehicle-based observations of air temperature examined
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in this study, an important physical feature misrepresented by a NWP model will be

the underlying road surface. The influence of roads on the air temperature measured

by vehicles will be complex as the road-surface energy balance at a given location

is substantially affected by the availability of water, the quantity of visible sky, and

the amount of traffic (e.g., Anandakumar, 1999; Chapman and Thornes, 2011; Oke

et al., 2017; Karsisto and Lovén, 2019). To properly understand the discrepancy

between what is observed and modelled, it is necessary to examine the character-

istics of the differences between the model and the observations. The objective of

this paper is to explore the characteristics of a vehicle-based temperature dataset

through comparison with other datasets.

The format of this paper is as follows. In section 6.2 the uncertainties associated

with vehicle-based observations of air temperature are discussed. The Met Office

trial used to obtain the vehicle-based observations in this study, the datasets used

for comparison, and the novel quality-control procedure applied to the vehicle-based

observations are detailed in section 6.3. The results of the new quality-control pro-

cess highlight that the observation location metadata can be inaccurate due to poor

GPS signal and application settings. A comparison between vehicle-based obser-

vations and other datasets is given in section 6.4. Our novel results show that

the uncertainty of vehicle-based observations is likely weather-dependent and pos-

sibly vehicle-dependent. In section 6.5 our results are summarised and we conclude

that vehicle-based observations are a promising opportunistic dataset for convection-

permitting data assimilation.

6.2 Uncertainties in vehicle-based observations of

air temperature

6.2.1 Vehicle-based observations of air temperature from

built-in sensors

Most modern vehicles are equipped with a sensor to measure the air temperature of

the surrounding atmosphere. Throughout this paper, these sensors will be referred

to as external air-temperature sensors. Measurements obtained from external air-

temperature sensors are used by vehicle air conditioning systems to adjust cabin air

temperature (Abdelhamid et al., 2014) and alert the driver to safety hazards such

as the possible presence of ice on the roads (Padarthy and Heyns, 2019). External

air-temperature sensors are commonly negative temperature coefficient thermistors

(FierceElectronics, 2014). The location of external air-temperature sensors will vary

with vehicle make and manufacturer. Common placements are usually in the airflow

at the front of the vehicle, such as behind the grill near the bottom of the vehicle

or in the wing mirror (Tchir, 2016). We note that most vehicles also have a sensor
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that measures the air temperature inside the vehicle engine commonly referred to as

the intake air-temperature sensor. These measurements, however, are contaminated

with heat from the vehicle engine and hence will not be representative of the true

atmospheric conditions.

6.2.2 Instrument error

Built-in vehicle sensors are not intended to give high-quality meteorological informa-

tion. As such, observations of air temperature from external air-temperature sensors

are likely to have substantial instrument uncertainty. There are several sources of

instrument uncertainty for vehicle-based observations of air temperature:

1. The observations may be affected by extraneous influences (Mahoney III and

O’Sullivan, 2013).

2. The sensing instrument may not be as accurate or precise as required for

meteorological applications (Mahoney III and O’Sullivan, 2013).

3. The ventilation of the sensing instrument may be inadequate (Harrison, 2015).

We now discuss these issues in more detail.

The extraneous influences that vehicle-based observations of air temperature are

subject to include heating from the vehicle engine or the underlying road surface.

The degree of vehicle influence on the observations will be determined by the sensors

proximity to the vehicle engine. Mercelis et al. (2020) found that observations

of air temperature from external air-temperature sensors situated far away from

the vehicle engine were consistent with reliable observations obtained from road

weather information stations. In contrast, observations obtained from sensors near

the vehicle engine had to be discarded due to sensor biases. While external air-

temperature sensor placement is usually chosen to mitigate the influence of engine

heat (Tchir, 2016), radiation reflected from the road surface can be incident on the

sensor. Observations of air temperature from external air-temperature sensors in

such circumstances may be warmer than the true ambient conditions.

The precision of an observation will depend on the number of significant figures

available for the digital representation of the measured value. (The concept we have

called precision is known in metrology as resolution (BIPM et al., 2012)). The differ-

ence between a continuous variable and its imprecise digital representation is known

as the quantization error (Widrow et al., 1996). As the sensing instruments used for

opportunistic datasets are not intended to give high-quality meteorological informa-

tion, quantization uncertainty will likely be part of the instrument uncertainty (e.g.,

Mirza et al., 2016).

Adequate sensor ventilation is necessary to ensure accurate observations of air tem-
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perature (Harrison and Burt, 2020). Sensor ventilation for external air-temperature

sensors is determined by how fast the vehicle is moving (e.g., Knight et al., 2010).

6.2.3 Representation error

Representation error is defined as the difference between a perfect observation and a

model’s representation of that observation (Janjić et al., 2018; Bell et al., 2020). The

model’s representation of an observation is calculated using an observation operator.

An observation operator is function that maps the model state into observation

space. According to Janjić et al. (2018), the representation error consists of three

components:

1. The pre-processing error caused by the incorrect preparation of an observation.

2. The observation operator error due to any incorrect or approximate observa-

tion operators used in the assimilation of an observation.

3. The error due to unresolved scales and processes when there is a mis-match in

scales and processes observed and modelled.

We now discuss these errors in more detail.

The pre-processing error for vehicle-based observations of air temperature can be

caused by the data collection and quality-control procedures. The height of external

air-temperature sensors will vary with vehicle type and sensor-height metadata will

likely be unavailable in the collection of crowdsourced datasets. Hence, the obser-

vations must be assigned a height, which may differ from the true height, resulting

in a height assignment error. The quality-control for the vehicle-based observations

is discussed in section 6.3.3.

Since air temperature is usually an NWP variable, the observation operator for

vehicle-based observations may be a simple interpolation operator. An observation

operator error may result from the misrepresentation of the vehicle-based observa-

tion height by the NWP model. The resolution of NWP models is likely to be too

coarse to represent the elevation of the vehicle-based observations properly (Waller

et al., 2021). This mismatch in elevation between a surface observation and a NWP

model field is normally accounted for by correcting the observation to be at the same

height as the model field. We note that, for surface observations, the observation

operator will not interpolate the model field to the observation height to prevent

the interpolation of the model field beneath the model surface. As air temperature

is expected to change with altitude in the surface layer (e.g., Stull, 1988, pp 9–19),

the model height selected by the observation operator will influence the value of the

model-equivalent observation.

As discussed in section 6.1, vehicle-based observations of air temperature will mea-
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sure the air temperature above the road surface, which is likely to be influenced

by radiative effects (Chapman et al., 2001). The effect of the radiation absorbed

by the road surface on vehicle-based observations may be understood through the

road-surface energy balance (RSEB) equation

Inet + TR = G+H + LE, (6.2.1)

where Inet is the net radiation into the surface, TR is the heating caused by traffic,

G is the ground heat flux density, H is the sensible heat flux density and LE is

the latent heat flux density (Karsisto and Lovén, 2019). A illustration of the road-

surface energy balance is given in figure 6.1. The materials used for road surfaces

have a large heat capacity such that the majority of the radiation absorbed by the

surface, Inet+TR, is converted into ground heat flux, G (Anandakumar, 1999). The

remaining turbulent heat fluxes, H and LE, are determined by the amount of water

available at the road surface (Oke et al., 2017). If water is unavailable at the road

surface, the remaining energy, Inet+TR−G, is entirely converted to sensible heat, H,

which will result in a strong vertical air-temperature gradient near the road surface.

If water is available at the road surface some, but not all, of the remaining energy,

Inet+TR−G, is converted into latent heat, LE. Hence, the vertical air-temperature

gradient near the road surface will reduce and so the air-temperature profile will be

more uniform. A common approach for modelling surface fluxes in NWP is through

tile schemes (e.g. Essery et al., 2003). Using this approach, the surface flux of a

grid box is the weighted average of several different surface fluxes and hence may

differ from the RSEB substantially. Therefore, we expect the greatest representation

uncertainty to be during dry and sunny conditions when the sensible heat flux, H,

emitted by the road surface will be largest.

The amount of radiation absorbed by the road, Inet + TR, and hence the effect of

the road surface on the air temperature above the surface, will vary across the road

(Chapman and Thornes, 2011). This may be attributed to the sky-view factor and

the complex effect of traffic on road-surface temperature. The sky-view factor corre-

sponds to how much of the sky is visible. Therefore, the sky-view factor determines

how much solar radiation is absorbed during the day and how much cooling there

is at night. The sky-view factor may be highly spatially variable in rural areas with

trees near the road or in urban canyons. Chapman and Thornes (2011) showed a

rural example where the sky-view factor caused road-surface temperature to vary by

almost 3◦C. Road-surface temperature is affected by traffic through the generation

of turbulence by vehicles, friction heat dissipation from tyres, sensible heat flux from

vehicle engines, heat and moisture from exhaust fumes, and the blocking of incoming

solar radiation and outgoing longwave radiation from the road surface. The most

influential of these processes on the temperature profile across the road surface is
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Figure 6.1: Illustration of the road-surface energy balance. The net radiation into
the surface, Inet, and heat from traffic, TR, are converted into ground heat flux G,
sensible heat flux H, and latent heat flux LE. In dry and sunny conditions, there
will be no latent heat LE and so the energy Inet +TR−G is converted entirely into
sensible heat H. When there is water available at the road surface, more, but not
all, of the energy Inet + TR−G will be converted into latent heat LE than sensible
heat H. As the vertical air-temperature gradient above the road surface will be
determined by the magnitude of H, we expect the representation uncertainty to be
greatest in dry and sunny weather conditions.

the heat from vehicle engines and the frictional heat dissipation from tyres (Prusa

et al., 2002; Chapman and Thornes, 2005). Gustavsson et al. (2001) found that,

during morning commuting hours in urban areas, traffic caused the road surface

temperature to increase by approximately 2◦C.

A common approach for modelling surface fluxes in NWP is through tile schemes

(e.g., Essery et al., 2003). Using this approach, the surface flux of a grid box is the

weighted average of several different surface fluxes and hence may differ from the

local RSEB substantially.

For road forecasting applications, outputs from NWP are post-processed in order

to take better account of the road physics (e.g., Clark, 1998; Coulson et al., 2012).

For this initial study, we do not use these post-processing techniques for simplicity.

However, in principle, a more sophisticated observation operator could use a similar

approach to road forecasting models and reduce the uncertainty due to unresolved

scales.
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6.3 Methodology

6.3.1 The Met Office trial

From 20th February 2018 to 30th April 2018 the Met Office ran a proof-of-concept

trial to collect vehicle-based observations of air temperature. The measuring in-

struments used in this trial are those built-in by the manufacturer of the vehicle.

In this trial, on-board diagnostic (OBD) dongles were used to broadcast reports

from the vehicle engine management interface to an application (app) installed on

a participant’s smartphone via Bluetooth. Additional metadata derived from the

smartphone was appended to the report, and uploaded to the Met Office Weather

Observations Website (Kirk et al., 2021) using the smartphone’s connection to the

mobile network (3G etc). A complete description of this trial can be found in Bell

et al. (2021b). We now note some of the important aspects of the trial below.

The data collection frequency and GPS update period was set to 1 minute while the

minimum distance for a GPS update was set to 500 metres. We also note that a

known fault that occurred during this trial was for engine-intake temperature (i.e.

the air temperature inside the vehicle engine) to be recorded as air temperature

for some observations. Observations were collected throughout the United Kingdom

with their locations corresponding to journeys undertaken by the participants.

The dataset obtained through this trial consists of 67959 reports obtained from 31

Met Office volunteers. Each report contains some combination of observations of

air temperature, engine-intake temperature, and air pressure from built-in vehicle

sensors. The observations of temperature have a precision of 1◦C while the ob-

servations of air pressure have a precision of 10hPa. We limit the scope of this

study to air temperature only as engine-intake temperature will not reflect the true

atmospheric-air temperature and air pressure has too low precision to be useful in

NWP. The metadata for each report include vehicle speed (km/h), date-time (given

by the application as date and 24 hour clock time), GPS location, vehicle ID, and

an unique observation ID. With the exception of vehicle speed which was obtained

by the OBD dongle, all metadata was derived by the smartphone app.

6.3.2 Additional datasets used in this study

6.3.2.1 Met Office Integrated Data Archive System data

Met Office Integrated Data Archive System (MIDAS) temperature data consists of

observations of 1.25m-air temperature which have a precision of 0.1◦C and an uncer-

tainty of 0.2◦C for various locations in the UK (Met Office, 2006). We use MIDAS

daily maximum and minimum temperature data in our quality-control procedure

described in section 6.3.3. We also use MIDAS hourly temperature data to provide
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a comparison with vehicle-based observations of air temperature that are within

1.5km of a MIDAS station (see section 6.4.2). These data are linearly interpolated

to the time of a vehicle-based observation.

6.3.2.2 NWP model data

To explore the characteristics of the vehicle-based observations that pass quality-

control we use Met Office 10-minute UK variable-resolution (UKV) model data (Met

Office, 2016). The UKV is a variable resolution configuration of the Unified Model

whose domain covers the United Kingdom and Ireland (Lean et al., 2008). The inner

domain has grid boxes of size 1.5km× 1.5km and fully covers the United Kingdom

(Milan et al., 2020). Surrounding this is a variable-resolution grid with boxes whose

edges steadily increase in zonal and/or meridional directions to 4km in size.

The UKV model fields we use in this study are 1.5m-air temperature and surface-

air temperature defined as the air temperature at the boundary with the sur-

face. The UKV model data are interpolated to the time and horizontal location

of a vehicle-based observation so that we can construct two observation-minus-

background (OMB) datasets (i.e. one OMB dataset using surface-air data for the

background and another OMB dataset using 1.5m-air temperature for the back-

ground). Since a vehicle-based observation and the horizontally interpolated back-

ground are both estimates of the true air temperature, their difference is equal to

the difference of their errors. If their errors are independent, the variance of their

differences will be equal to the sum of their individual error variances. Therefore,

examining the statistics of the two observation-minus-background datasets will pro-

vide insight into the uncertainty of the vehicle-based observations. As the height of

the external air-temperature sensor for each vehicle is unknown, we are unable to

interpolate the model data to the height of a vehicle-based observation or correct

the vehicle-based observation to be at the height of either UKV model field. It is

likely that the vehicle-based observations are between the two model heights and

are closer to the surface than the 1.5m height.

The surface flux for each grid box is determined by expressing the percentage of land

use as a combination of 5 vegetation and 4 non-vegetation tiles (Essery et al., 2003;

Porson et al., 2010). For each grid box, the surface flux is obtained by calculating

the sum of the weighted average of the fluxes from each tile (where instantaneous

interaction between tiles is neglected). The UKV uses the urban canopy model

MORUSES (Met Office-Reading Urban Surface Exchange Scheme) as the urban

tile. MORUSES represents the impervious urban surface through a roof tile and a

canyon tile (Hertwig et al., 2020). However, observations taken on motorways and

major routes will often be surrounded by rural areas, and so the road fraction of

the UKV grid box will be small. For example, a typical UK motorway traversing a
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rural grid box occupies less than 2% of the total area (Bremner, 2019).

6.3.2.3 Roadside weather information station observations

Vehicle-based observations of air temperature from built-in sensors are known to

be consistent with reliable observations obtained from roadside weather information

stations (RWISs), provided the external air-temperature sensor is located away from

the engine block (Mercelis et al., 2020). We therefore use RWIS data provided by

Highways England (2018) to provide a comparison with similar point observations

for different weather conditions. There are over 250 RWISs in England located along

major roads and major routes providing various roadside meteorological information

with a temporal frequency of 10 minutes (Buttell et al., 2020). In this study, we use

RWIS observations of air temperature that have precision of at least 0.1◦C. To give

an indication of the total uncertainty of these observations, we note that the Met

Office currently assimilate RWIS observations of air temperature into the UKV with

an uncertainty of 1◦C. We note that the height that RWISs measure air temperature

is estimated to be between 2 and 3 metres, but can be outside of this range if the

site is located on a bank (Highways England, 2020). Road-state classifiers (i.e. dry,

trace amounts of water, wet) provided by RWISs are used to indicate the availability

of water at the road surface. The RWIS observations are linearly interpolated to

the time that a vehicle passed a station.

6.3.3 Quality-control

In this section, we briefly describe the quality-control (QC) process applied to the

vehicle-based dataset. Further details are given by Bell et al. (2021b). We note that,

due to the size and spatio-temporal sparsity of this dataset, we were unable to use

spatial consistency QC tests.

Before the QC process was implemented, an initial filtering of the raw data from the

trial was performed to ensure each observation had an air temperature observation

and the relevant metadata needed for each test. This filtering removed 35780 ob-

servations due to either a missing air temperature observation or an invalid speed.

The resultant dataset will be referred to as the filtered dataset.

The QC process applied to the vehicle-based dataset began with three tests applied

in parallel: the climatological range test (CRT), the stuck instrument test (SIT), and

the global positioning system (GPS) test. Lastly, observations that passed each of

these tests were then put through a sensor ventilation test (SVT). The final quality-

controlled dataset (QC-dataset) consisted of all observations that passed the SVT.

We now provide a brief description of each QC test.

The CRT checked if an observation was within a specified tolerance of a location-
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specific climatology. For this dataset, we used MIDAS daily temperature data (Met

Office, 2006) to create monthly climatology datasets. These datasets were con-

structed by determining the maximum and minimum air temperature of each MI-

DAS station active during February to April 2018 from pre-2018 data. The CRT

was implemented by comparing the observation to the nearest (in terms of great

circle distance) MIDAS station monthly climatology dataset. If the observation was

within a 2◦C tolerance of the climatological range of the MIDAS station, then the

observation was passed.

The SIT examined portions of vehicle-specific time-series to check whether the ve-

hicle sensor was stuck on an air temperature value. This test required a vehicle

identifier to determine observations that came from the same source. (This may be

unavailable in other crowdsourced observation studies due to data privacy concerns).

The SIT was implemented by comparing an observation with all other observations

from the same vehicle that occurred within a 15-minute time-window. If there was

at least one observation that had a different value of air temperature to the tested

observation, then the tested observation was passed. This test is essentially a sim-

plified version of a persistence test (see Zahumenskỳ (2004) for guidelines) that is

able to account for any short journeys undertaken by participants during the trial

and the low precision of the data.

The GPS test compared the location of an observation, denoted the test observa-

tion, relative to a prior observation from the same vehicle, denoted the reference

observation, to evaluate the plausibility of the observation location metadata. The

reference observation was at most 30 minutes before the test observation. As with

the SIT, a vehicle identifier was required to determine if observations came from the

same source. The GPS test was implemented by calculating the great-circle distance

between the test and reference observations, dtest. Then dtest was compared with the

maximum and minimum distances estimated using the speed and time metadata for

the vehicle. The maximum distance was estimated by

demax = max(vtest, vref )×∆t, (6.3.1)

where vtest and vref are the speeds of the test and reference observations respectively,

and ∆t is the time-gap between the two observations. Similarly, the minimum

distance was estimated by

demin = min(vtest, vref )×∆t. (6.3.2)

The test observation passed the GPS test provided Γmind
e
min ≤ dtest ≤ Γmaxd

e
max

where Γmin = 0.6 and Γmax = 1.3 are minimum and maximum multiplicative tol-

erance constants, respectively. For justification of the choice of Γmin and Γmax, we
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QC test Number of tested Number of passed Number of flagged Number of untested
observations observations observations observations

Climatological range test 32179 32129 50 0
Stuck sensor test 32179 30124 2008 47

GPS test 32179 20162 11181 836

Sensor ventilation test 19094 17425 1669 0

Table 6.1: Summary of the results from all QC tests. The observations untested by
the SIT and GPS test are due to a lack of reference observations. The observations
passed by the SVT form the QC-dataset.

refer the reader to Bell et al. (2021b). Test observations with ∆t < 1 minute or

max(vtest, vref ) < 25km/h were passed if dtest ≤ Γmaxd
e
max as they were expected to

be close to the reference observation. (The specific choice of 25km/h is related to

the sensor ventilation test discussed in the next paragraph). If a test observation

did not have an observation from the same vehicle that occurred at most 30 min-

utes prior, then it was left unclassified by the GPS test and became the reference

observation for the next test observation in the vehicle time-series.

The SVT was the final QC test which was applied to the observations that passed

all previous tests. This test involved checking that the speed metadata for each

observation was above a predetermined sensor ventilation threshold, vsensor. Exam-

ining the speed-temperature pairs of the filtered dataset (not shown) revealed that

the largest air temperatures (above 26◦C) occurred for speeds below 25km/h. We

therefore set vsensor = 25km/h. An observation passed the SVT if it had speed

greater than vsensor. Hence, any observations that were passed by the GPS test with

low speeds were flagged by the SVT.

The QC-dataset contains 17425 observations (25.6% of original dataset). A summary

of the results of each QC test is provided in table 6.1. We note that the SIT and

GPS test could not test every observation in the filtered dataset due to unavailable

or unsuitable reference observations. The most discriminating test was the GPS

test. The majority of observations flagged by the GPS test were likely the result of

the 500m update distance default setting on the app. We also note that the SVT

was a fairly discriminating test.

The QC approach taken with this dataset relied upon range validity and time-

series tests. For crowdsourced observations, time-series tests may be unsuitable as

instrument identification metadata may be unavailable due to data privacy concerns.

This may be overcome with appropriate encryption techniques (e.g., Verheul et al.,

2019) or by performing the QC locally on the sensing device (e.g., Hintz et al.,

2019b). Furthermore, the use of spatial consistency QC tests, which do not require

instrument identification, would be a suitable replacement for time-series-based tests

provided there is a sufficient density of observations in a given area (e.g., Nipen et al.,

2020).
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6.4 Examination of the quality-controlled dataset

In this section we compare the QC-dataset with UKV model data, RWIS data, and

MIDAS hourly data. Illustrative examples of the effect of sunny and rainy weather

conditions on vehicle-based observations are presented in section 6.4.1, analysis of

observation-minus-background (OMB) and observation-minus-observation (OMO)

statistics are discussed in section 6.4.2, and vehicle-specific OMB statistics are ex-

amined in section 6.4.3. We use UKV model data as the background in the OMB

datasets and MIDAS hourly data in the OMO dataset.

The effects of different meteorological factors are quantified through statistical anal-

ysis of OMB departures grouped by sunny, cloudy and rainy weather conditions and

season. The sunny dataset will consist of observations that occur between 09:00

and 17:00 on days with at least 6 sunshine hours and less than 2mm of rainfall.

Therefore, the observations are likely to be influenced by solar radiation incident on

UK roads. The rainy dataset will consist of observations that occur between 09:00

and 17:00 on days with at least 5mm of rainfall and less than 2 hours of sunshine.

The cloudy dataset will consist of observations that occur between 09:00 and 17:00

on days with less 2 hours sunshine and 2mm rainfall. We note that it is possible

the model may not be cloudy at these observation locations. To obtain the weather-

specific sub-datasets, we used the Met Office daily weather summaries (Met Office,

2018). The seasons we consider are Winter, defined as all data occurring between

February 20th and March 20th 2018, and Spring, defined as all data occurring be-

tween March 21st and April 30th 2018. We note that these seasons do not conform

to the usual definitions of meteorological winter and spring, but have been chosen

due to the period of the Met Office trial and so that the Winter and Spring datasets

each contain a similar number of observations.

6.4.1 Case studies on the effect of sunny and rainy weather

conditions on vehicle-based observations

We now show three time-series of vehicle-based observations of air temperature,

10-minute UKV 1.5m-air-temperature and surface-air-temperature model data, and

RWIS observations of air temperature. The routes traversed in each time-series

began and ended in suburban areas and were predominantly on major roads and

major routes in rural areas which occasionally crossed urban areas. The location of

each time-series is shown in figure 6.2. We denote the time-series shown in figure

6.3 as S1, figure 6.4 as S2, and figure 6.5 as R1. S1 and S2 are illustrative examples

of the effect of sunny weather and R1 is an illustrative example of the effect of rainy

weather on vehicle-based observations of air temperature. We note that the same

vehicle produced the observations in S1 and R1, but a different vehicle produced the

observations in S2. We also note that the large data gaps in the three time series
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are due to breaks in the journeys, and the two small data gaps in S2 are due to

observations removed by the QC procedure.

For clarity, we will refer to the OMB data using 1.5m-air temperature for the back-

ground as aOMB and using surface-air temperature data for the background as

sOMB. Furthermore, we denote the bias (mean) and standard deviation of an aOMB

dataset as µa and σa respectively and the bias (mean) and standard deviation of a

sOMB dataset as µs and σs respectively.

Figure 6.3 shows data from sunny weather conditions on March 25th 2018, including

the time-series S1, UKV and RWIS data. The OMB summary statistics for S1 are

shown in table 6.2. The sun rose at 06:52 and set at 18:22 on this day. The RWIS

stations included in this time-series recorded a dry road-state when the vehicle

passed the station. As a result of these conditions, we expect the sensible heat flux

emitted by the road to be large and the road surface to have a noticeable heating

effect on the air temperature above (see section 6.2.3). Additionally, we expect the

surface-air temperature to be larger than the 1.5m-air temperature as the sensible

heat flux emitted by the UKV surface will also be large. The mean difference between

the interpolated RWIS observations and the nearest-in-time UKV model data reveals

that RWIS observations are in most agreement with 1.5m-air temperature and in

least agreement with surface-air temperature. There is a clear separation between

UKV 1.5m-air temperature and surface-air temperature at the start of the time-

series that gradually decreases as the net radiation absorbed by the UKV surface

decreases. The vehicle-based observations generally lie between the model fields as

seen by the difference in sign between the biases, µa and µs. The vehicle-based

observations on average agree most with surface-air temperature as |µs| < |µa|.
This is consistent with the height of the vehicle sensor which is likely to be between

the model field heights of 0m and 1.5m but closer to 0m than 1.5m. Calculating

the standard deviation of the sOMB and aOMB departures shows that the sOMB

departures are more variable as σa < σs. We hypothesise that the variability of the

UKV sensible heat flux induced by the sunny weather conditions is the mechanism

responsible for the larger sOMB variability.

Time-series
Summary Statistics S1 S2 R1

Number of observations 212 193 259
µa
◦C 1.44 0.02 0.65

σa
◦C 0.71 0.90 0.71

µs
◦C −0.46 −0.27 0.37

σs
◦C 1.21 1.71 0.64

Table 6.2: Summary of the OMB statistics for the three time-series shown in figure
6.2 using UKV 1.5m-air temperature and surface-air temperature as the background.
The uncertainty in the mean for each time-series is less than 0.1◦C.
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Figure 6.2: Map of the United Kingdom showing the location of the three time-
series discussed in section 6.4.1. The red squares show the location of cities passed
by or near to the routes travelled in the three time-series. The black diamonds
show the location of the RWIS stations passed on each journey. The two orange
lines correspond to the sunny weather time-series and the blue line corresponds to
the rainy weather time-series. The time-series S1 began near Exeter and travelled
north towards Manchester. The time-series R1 travelled the same initial route as S1,
but headed east from Birmingham towards Cambridge. The time-series S2 began
in Edinburgh and travelled along the coast to Newcastle-upon-Tyne and then the
vehicle travelled further inland and south towards Nottingham.
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Figure 6.3: Time-series S1 of 212 vehicle-based observations of air temperature (blue
circles) from a single vehicle driving along the M5 motorway on 25th March 2018
during sunny weather. Also shown are UKV 1.5m-air temperature (purple triangles)
and UKV surface-air temperature (orange diamonds) linearly interpolated to the
time and horizontal location of the vehicle observations, and RWIS observations of
air temperature (red squares) linearly interpolated to the time the vehicle passed
a station. The 1◦C RWIS error bar represents the uncertainty used to assimilate
RWIS observations into the UKV.

Figure 6.4: Time-series S2 of 193 vehicle-based observations of air temperature (blue
circles) from a single vehicle driving along the A1 and the M1 motorway on April
5th 2018 during sunny weather. Also shown are UKV 1.5m-air temperature (purple
triangles) and UKV surface-air temperature (orange diamonds) interpolated to the
time and horizontal location of the vehicle observations, and RWIS observations
of air temperature (red squares) interpolated to the time the vehicle passed a sta-
tion. The 1◦C RWIS error bar represents the uncertainty used to assimilate RWIS
observations into the UKV.
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Figure 6.4 shows data from sunny weather conditions on April 5th 2018, including

the time-series S2, UKV and RWIS data. The OMB summary statistics for S2 are

shown in table 6.2. The sun rose at 05:27 and set at 18:40 on this day. The RWISs

included in this time-series recorded a dry road-state when the vehicle passed the

station. Similarly to the data in figure 6.3, the RWIS observations are in most agree-

ment with the UKV 1.5m-air temperature and in least agreement with surface-air

temperature. The surface-air temperature is larger than the 1.5m-air temperature

for the first half of this time-series. From approximately 17:00 we see that 1.5m-air

temperature is greater than surface-air temperature. We hypothesise that this is due

to the stabilisation of the boundary layer (e.g. Stull, 1988, pp 499–542). In contrast

to S1, the vehicle-based observations are closest to UKV 1.5m-air temperature at

the beginning of the time-series even though the sensible heat flux emitted from the

road surface is expected to be greatest during this period. Possible reasons for this

include cool breezes from the North Sea influencing the vehicle-based observations

during the beginning of the time-series (see route map in figure 6.2) or because

the air temperature is measured by a different vehicle’s instrument. Furthermore,

the difference between the biases µa and µs is large for S1 and small for S2. This,

however, is likely due to the large number of observations that occurred during the

evening for S2 when the temperature gradient between the surface and 1.5m is ex-

pected to be small. Considering the observations from the first 3 hours of S2 only,

when the net solar radiation absorbed by the road and UKV surface is expected to

be large, we find that the difference between the biases µa and µs is more profound.

We note that the standard deviations σa and σs are larger for S2 than S1. This

is likely due to the following two reasons. The first reason is the relatively long

temporal length of the S2 time-series. The second reason is the possible transition

to the nocturnal boundary layer as the dynamics induced by solar heating and the

generation of convective plumes begins to cease and surface layer starts to become

stably stratified. However, it is also plausible that the placement of the external

air-temperature sensors on the two vehicles is contributing to this behaviour.

Figure 6.5 shows data from rainy weather conditions on March 30th 2018, including

the time-series R1, UKV and RWIS data. The OMB summary statistics for R1 are

shown in table 6.2. The RWIS stations included in this time-series recorded either a

wet road-state or trace amounts of water at the road surface when the vehicle passed

the station. As a result of these conditions, we expect the sensible heat emitted by

the road to be small and the road surface to have a reduced effect on the air temper-

ature above (see section 6.2.3). We note that the drop in air temperature between

12:30 and 13:30 is caused by an increase in altitude and an occluded front. The mean

difference between the interpolated RWIS observations and the nearest-in-time UKV

data reveals that RWIS observations are now in greater agreement with surface-air

temperature than 1.5m-air temperature. The two UKV model fields are similar



6.4 Examination of the quality-controlled dataset 84

Figure 6.5: Time-series R1 of 259 vehicle-based observations of air temperature (blue
circles) from a single vehicle driving along the M5 and M42 motorways and the A5
on 30th March 2018 during rainy weather conditions. Also shown are UKV 1.5m air
temperature (purple triangles) and UKV surface air temperature (orange diamonds)
interpolated to the time and horizontal location of the vehicle observations and
RWIS observations of air temperature (red squares) interpolated to the time the
vehicle passed a station. The 1◦C RWIS error bar represents the uncertainty used
to assimilate RWIS observations into the UKV.

throughout the time-series with multiple segments where the vehicle-based obser-

vations are greater than both fields. The vehicle-based observations are on average

greater than the UKV model data as the biases µa, µs > 0◦C, but agree more with

surface-air temperature as µa > µs. This indicates that there are additional factors

affecting the vehicle-based observations. Potential explanations for this behaviour

are given in section 6.4.2.4. We note that while the aOMB departures are more

variable than the sOMB departures (i.e. σa > σs), they are similar in size.

The effect of the sensible heat emitted by the road and UKV surfaces can be ob-

served through comparison of the S1 and R1 time-series shown in figures 6.3 and

6.5, respectively. In sunny weather, the sensible heat emitted by the road and UKV

surface will be large, resulting in a stronger vertical air-temperature gradient be-

tween the surface and the 1.5m height. In rainy weather, the sensible heat emitted

by the road and UKV surface will be small, leading to a vertical air-temperature

profile that is more uniform. Hence, the difference between the biases µa and µs

will be larger in sunny weather conditions than rainy weather conditions. The OMB

standard deviations calculated for each time-series show a negligible difference for

σa and a noticeable difference for σs between the two time-series. For the sOMB

standard deviation σs, we see that it is smaller for rainy weather and larger for sunny

weather. This is likely because the variability of the sensible heat emitted by the

UKV surface will be greater in sunny weather than rainy weather. However, there
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may be other contributing factors such as the difference in observation operator

error between the two time-series.

6.4.2 Statistical analysis of observation-minus-background

and observation-minus-observation departures

In this section we investigate the uncertainty present in the QC-dataset through

statistical analysis of OMB and OMO departures. The OMB datasets will be par-

titioned into weather-specific and seasonal sub-datasets so that we may examine

how the OMB uncertainty changes with weather conditions and season. As there

are only 347 observations within 1.5km of a MIDAS station, we will not split the

OMO dataset into weather-specific and seasonal sub-datasets. We now discuss the

characteristics of each dataset.

6.4.2.1 QC-dataset OMB and OMO statistics

The OMB and OMO statistics corresponding to the QC-dataset are given in table

6.3. Examining the OMB statistics shows that the vehicle-based observations are

in poorer agreement with 1.5m-air temperature than surface-air temperature as the

biases satisfy |µa| > |µs|. This is expected as external air-temperature sensors likely

measure air temperature nearer to the surface than to a height of 1.5m. As µa > 0◦C

and µs > 0◦C, vehicle-based observations are on average warmer than both UKV

model fields despite measuring the air temperature between them. Possible reasons

for this behaviour are discussed in section 6.4.2.4. For the standard deviations, we

have that σa < σs, showing that the sOMB dataset is more variable than the aOMB

dataset. This is also visible in the aOMB and sOMB distributions shown by the

histograms in figure 6.6a. While the distributions overlap substantially, a higher

peak is seen for the aOMB distribution, whereas the sOMB distribution has a larger

left tail. It is likely that the background uncertainty of surface-air temperature is

greater than 1.5m-air temperature due to the simplifying assumptions made by the

UKV in modelling the SEB of a grid box (see section 6.3.2.2).

Examining the OMO statistics reveals that vehicle-based observations are on average

warmer than MIDAS observations. Comparing the OMO departure bias, µm, with

the biases µa and µs obtained from the QC-dataset OMB departures, we find that

µs < µm < µa. Hence, the vehicle-based observations on average agree more with

MIDAS data than 1.5m-air temperature but still agree most with surface-air tem-

perature. While it is plausible that vehicle-based observations will generally agree

more with MIDAS data than the UKV 1.5m-air temperature model data, we note

the following two issues with these calculations. Firstly, the MIDAS data were not

interpolated to the location of the vehicle-based observations and there will likely be

differences in elevation between the two. As air temperature is expected to change
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with elevation in the surface layer (e.g. Stull, 1988, pp 9–19), the omission of any

vertical interpolation may cause a bias. Secondly, while the variability of the OMO

dataset is less than the variability of any OMB dataset shown in table 6.3, it is

calculated with far fewer observations making the statistic less reliable.

6.4.2.2 Weather-specific OMB datasets

The OMB statistics for each weather-specific dataset are given in table 6.3. For all

weather types, the bias µa is positive showing that vehicle-based observations are on

average warmer than UKV 1.5m-air temperature regardless of weather conditions.

For the sunny and cloudy datasets, the bias µs is negative, whereas for the rainy

dataset µs is positive. This agrees with the results of the three time-series discussed

in section 6.4.1. This also suggests that the vehicle-based observations studied in this

paper may be colder on average than UKV surface-air temperature in dry conditions.

The smallest differences between the biases µa and µs occurs for the rainy dataset

while the largest difference occurs for the sunny dataset which is also seen in the S1

and R1 time-series discussed in section 6.4.1. For the rainy dataset biases, we have

that µa > 0◦C and µs > 0◦C which indicates the vehicle-based observations are on

average warmer than the two UKV model fields. This suggests that there are other

influencing factors on the vehicle-based observations that are not represented in the

UKV as vehicles measure the air temperature between these two heights. Potential

explanations for this behaviour are discussed in section 6.4.2.4.

Inspection of the weather-specific standard deviations reveals that, for sunny and

cloudy weather conditions, σs is noticeably larger than σa. This difference in vari-

ability is shown in the histograms for the sunny dataset (figure 6.6b) and the cloudy

dataset (figure 6.6c). The sunny aOMB distribution is unimodal and the sunny

sOMB distribution is bimodal. The bimodal structure may be due to intermittent

cloud cover on the days with less sunshine hours or the relatively small size of the

sunny dataset. Similarly to the QC-dataset, the cloudy aOMB and sOMB distribu-

tions overlap substantially, but a higher peak is seen for the aOMB distribution and

a larger left tail is seen for the sOMB distribution. For rainy weather conditions,

the standard deviations σa and σs are similar leading to similar aOMB and sOMB

distributions as shown in figure 6.6d.

Overall, the variability for the weather-specific datasets agrees with the variability

calculated for the time-series discussed in section 6.4.1. We also find that the stan-

dard deviation σs is larger for the sunny sOMB dataset than for the cloudy sOMB

dataset. This behaviour is likely the result of the increased variability of the sensible

heat emitted by roads and the UKV surface during sunny weather conditions due

to the larger amount of solar radiation absorbed by the two surfaces. This also sug-

gests that the uncertainty of vehicle-based observations may be greatest in sunny
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weather conditions due to the combination of the radiative effects on the vehicle

sensor and the representation uncertainty. Conversely, the aOMB standard devia-

tion σa is largest for the cloudy dataset and not the sunny dataset. This, however,

may be due to changes in the sky-view factor due to variable cloud cover or because

the cloudy dataset has more observations than the sunny dataset. We hypothesise

that the rainy dataset standard deviations σs and σa are similar for the following

three reasons. Rain increases the availability of water at the UKV surface which

reduces the emitted sensible heat flux and hence the vertical air-temperature profile

will be more uniform. There is also little to no sun at the times and locations of

the vehicle-based observations in the rainy dataset resulting in negligible radiation

reflected by the road surface incident on the vehicle temperature sensor. Finally,

the rainy dataset is the smallest of our three weather-specific datasets and so the

OMB statistics are the least robust.

6.4.2.3 Seasonal OMB datasets

The OMB statistics for the seasonal datasets are given in table 6.3 and the his-

tograms are plotted in figures 6.6e (Spring) and 6.6f (Winter). We include informa-

tion on the seasonal datasets to provide a baseline for the vehicle-specific analysis

in section 6.4.3. For the seasonal datasets, the vehicle-based observations are on

average greater than the UKV model fields except for surface-air temperature in

Spring where they are approximately the same. Comparing the biases of the sea-

sonal datasets we see that µs is smaller and µa is greater in Spring than in Winter.

Inspection of the standard deviations of the seasonal datasets reveals that σs is

larger than σa in both Winter and Spring. Comparing the seasonal OMB statistics,

we find that the sOMB standard deviation σs is larger for the Spring dataset than

for the Winter dataset. This agrees with the results of the weather-specific datasets

as the Spring dataset contains more sunny days than the Winter dataset.

6.4.2.4 Discussion of the uncertainty exhibited by the OMB datasets

In this section we discuss several possible contributions to the uncertainty exhibited

in the OMB statistics shown in table 6.3.

• The vehicle-based observations of air temperature are precise to 1◦C. The

details of the observation processing by the OBD system and app are unknown.

However, an indication of the expected size of the processing errors can be

obtained by considering the quantization error from a typical procedure that

rounds to the nearest integer. In this case, the root-mean-squared quantization

error is
√

1/12 ◦C and may be a positive or negative error (Widrow et al.,

1996).

• As discussed in section 6.2.2, the external air-temperature sensors may exhibit
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OMB and OMO statistics
Dataset Number of observations Departure Mean (◦C) Standard deviation (◦C)

QC-dataset
17425

aOMB 0.67 1.24
sOMB 0.12 1.59

347 OMO 0.29 0.95

Sunny 1878
aOMB 1.05 1.15
sOMB −0.77 1.86

Cloudy 2366
aOMB 0.84 1.41
sOMB −0.14 1.74

Rainy 840
aOMB 0.56 0.97
sOMB 0.30 1.00

Winter 7798
aOMB 0.48 1.29
sOMB 0.26 1.55

Spring 9627
aOMB 0.82 1.17
sOMB 0.01 1.61

Table 6.3: Summary of the OMB and OMO departure statistics for each dataset.
The uncertainty in the mean for each dataset is less than 0.1◦C.

a warm bias from extraneous sources. For instance, the sensor may be in close

proximity to the vehicle engine or the location of the sensor may be inadequate

for sensor ventilation. A rough estimate of the bias due to the vicinity of the

engine is 5◦C - 25◦C (Mercelis et al., 2021). However there are several other

factors that may be influencing this estimate (e.g. differing vehicles).

• In unstable atmospheric conditions, the vertical air-temperature gradient be-

tween the surface and the 1.5m height will be negative. When the sensible heat

emitted by the road and UKV surfaces is large, the vertical air-temperature

gradient will be large. Therefore, surface-air temperature will be warmer on

average than vehicle-based observations which likely measure air temperature

between 20cm and 100cm above the road surface. Similarly, 1.5m-air temper-

ature will be cooler on average than vehicle-based observations.

• The vehicle-based observations have not been corrected to the elevation of the

model grid box. In NWP, it is common to correct surface observations using

a standard adiabatic lapse rate of 0.0065◦C m−1 (Dutra et al., 2020; Cosgrove

et al., 2003).

• The road surface temperature is highly variable due to sky-view factors and

traffic (Chapman and Thornes, 2011). As noted in section 6.2.3, these factors

can change the local temperature by as much as 2 or 3◦C.

• The difference in sensible heat emitted by the road surface and the UKV

surface may contribute to the OMB biases. As discussed in section 6.3.2.2,

these model errors will vary depending on the land-surface (e.g. urban/rural)

but are difficult to quantify.



6.4 Examination of the quality-controlled dataset 89

(a) QC-dataset (b) Sunny dataset

(c) Cloudy dataset (d) Rainy dataset

(e) Spring dataset (f) Winter dataset

Figure 6.6: OMB histograms datasets corresponding to the datasets in table 6.3.
Bins of width 0.5◦C have been used for each histogram. The blue bars correspond
to the aOMB bins and the orange bars correspond to the sOMB bins.
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6.4.3 Vehicle specific observation-minus-background depar-

ture distributions

Throughout the Met Office trial, 31 vehicles were used to produce vehicle-based ob-

servations. To investigate whether error statistics differ with vehicle, we plot OMB

histograms for each of the 12 vehicles with the most observations between 09:00

and 17:00 in the QC-dataset in figure 6.7. We use only observations between 09:00

and 17:00 so that the boundary layer is likely to be unstable (i.e. UKV surface-air

temperature is greater than the 1.5m-air temperature). This is to avoid the com-

plications of interpreting the OMB statistics experienced with the S2 time-series

discussed in section 6.4.1 and so that more observations can be classified into the

weather-specific data types discussed in section 6.4.2. The OMB statistics are sum-

marised in table 6.4. Also included in table 6.4 is the percentage of observations

for each vehicle occurring in each weather-specific and seasonal dataset discussed in

section 6.4.2. We note that it is difficult to draw definitive conclusions in this exam-

ination for two reasons. Firstly, many of the vehicles experience different weather

conditions and there are many observations which we are unable to classify into a

weather type. Secondly, there are only 12 vehicles with an acceptable number of

observations that we can examine.

The majority of histograms shown in figure 6.7 resemble normal distributions. The

aOMB and sOMB distributions of vehicles (ii), (iii), (iv), (x), and (xii) are qualita-

tively similar with the visual distinction between them a result of the difference in

means. The remaining vehicles have noticeably different aOMB and sOMB distri-

butions.

Examining the biases of the vehicle-specific OMB distributions shows that there are

some vehicles which agree more with UKV 1.5m air temperature than surface air

temperature as |µa| < |µs|. For these vehicles it is possible that the external air

temperature sensor is located closer to 1.5m height than the road surface or there

are additional unknown factors affecting the vehicle-based observations as in S2

discussed in section 6.4.1. The values of the biases µa and µs also vary substantially

between vehicles. The sign of µs also varies with vehicle whereas only vehicle (x)

has negative µa which suggests that some element of the vehicle’s external air-

temperature sensor or processing procedure may have a cold bias.

Except for vehicle (xii), we find that the aOMB dataset is less variable than the

sOMB dataset (i.e. σa < σs) for all vehicles which agrees with the results obtained

in sections 6.4.1 and 6.4.2. The values of the standard deviations σa and σs also

vary substantially between vehicles. When stratifying the vehicles by seasonal con-

tribution, we are able to find some agreement between the OMB dataset variability.

This can be seen between the groups of vehicles (ii) and (vii), vehicles (iv), (viii) and

(x), and vehicles (i) and (xi). Each vehicle in these groups contains similar ratios of
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Winter to Spring observations. For vehicles (iii), (vi), (ix) and (xii), which contain

predominantly Spring observations, we see that the aOMB standard deviation σa is

similar except for vehicle (xii) and the sOMB standard deviation σs is similar except

for vehicle (iii). This shows that vehicles may have similar OMB uncertainty if they

have similar ratios of seasonal observations.

6.5 Conclusion

In this work we have examined a novel low-precision vehicle-based observation

dataset obtained from a Met Office proof-of-concept trial. An overview of the

quality-control (QC) applied to the vehicle-based observations was given. The data

that passed QC were examined and compared with UKV 1.5m-air-temperature and

surface-air-temperature model data, roadside weather information station (RWIS)

data and hourly Met Office integrated data archive system (MIDAS) data. Using

these datasets, we explored the characteristics of the vehicle-based observations that

passed QC.

The QC procedure consisted of four tests which assessed different aspects of the

vehicle-based observations. Reports that did not have an observation of air tem-

perature or the necessary metadata to be tested were removed prior to the QC

procedure. The climatological range test (CRT), stuck instrument test (SIT) and

global positioning system (GPS) test were applied in parallel. Both the SIT and

GPS test required vehicle identification, which may be unavailable in other crowd-

sourced and opportunistic datasets due to privacy concerns. While the majority of

observations passed the CRT and SIT, a substantial number of observations were

flagged by the GPS test due to unsuitable GPS update settings on the smartphone

application and poor GPS signal. The observations that passed these three QC

tests were put through a final sensor ventilation test (SVT) which flagged observa-

tions from vehicles driving below a predetermined sensor ventilation threshold speed.

The SVT flagged a sizable amount of data relative to the amount tested. The fi-

nal quality-controlled dataset (QC-dataset) consisted of 25.6% of the observations

obtained from the Met Office trial.

Using the QC-dataset, we investigated the uncertainty present in vehicle-based ob-

servations by analysing two observation-minus-background datasets. One dataset

used UKV 1.5m-air temperature as the background (aOMB) and the other dataset

that used UKV surface-air temperature as the background (sOMB). Examining the

OMB statistics of the QC-dataset we found that the vehicle-based observations of

air temperature were on average greater than the UKV model data and agreed

more with surface-air temperature than 1.5m-air temperature. This is expected as
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the vehicle-based observations likely measure air temperature nearer to the surface

than to a height of 1.5m. However, there are several possible contributing factors

to this result such as the quantization error, the difference in height between the

vehicle-based observations and the UKV grid box, or heat from the vehicle engine

contaminating the vehicle-based observations. We also found that the sOMB un-

certainty is greater than the aOMB uncertainty for the QC-dataset. This is likely

because the UKV surface-energy balance has a much stronger influence on surface-

air temperature than 1.5m-air temperature.

To examine how the vehicle-based observation uncertainty changes with weather

conditions, we grouped the OMB datasets by sunny, cloudy and rainy weather. For

the sunny and cloudy OMB datasets, UKV surface-air temperature was on average

greater than the vehicle-based observations with the magnitude of the sOMB bias

greatest for the sunny dataset when the vertical air-temperature gradient near the

surface is large. However, as shown in an illustrative time-series example, vehicle-

based observations can be in greater agreement with 1.5m-air temperature than

surface-air temperature in sunny weather conditions. Possible explanations for this

include the vehicle location (e.g., sea breeze effects) or the placement of the sensor

used by the vehicle. For the rainy OMB dataset, when the vertical air-temperature

gradient near the surface is small, we found that the vehicle-based observations were

on average warmer than both UKV model fields. Inspecting the variability of the

OMB datasets, we found that the sOMB variability is greatest in sunny weather

conditions and smallest in rainy weather conditions. The aOMB variability was

larger for the cloudy dataset than for the sunny dataset but still smallest for the

rainy dataset. The large aOMB variability for the cloudy dataset may be due to

changes in the sky-view factor caused by variable cloud cover or because it was

the largest of the weather-specific datasets. These results strongly suggest that the

uncertainty of vehicle-based observations of air temperature is weather-dependent.

In particular, the uncertainty of vehicle-based observations will be largest in sunny

weather conditions and smallest in rainy weather conditions.

To determine the effect of different vehicles on vehicle-based observations, the OMB

datasets were grouped by vehicle. Due to the large number of observations with

unclassified weather conditions and the different proportions of weather conditions

experienced by vehicles, we were unable to distinguish between meteorological and

vehicle effects on the vehicle-specific OMB distributions effectively. However, we

note that vehicles with similar proportions of seasonal data may exhibit similar OMB

variability. In order to determine the influence of the vehicle on the OMB statistics,

further investigations into vehicle-based observations using a larger dataset must be

conducted.

Vehicle-based observations are a potentially abundant source of low-cost, high-
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resolution meteorological information. However, there are several issues regarding

data collection and privacy in addition to the uncertainty characteristics which must

be addressed before they may be utilised. We first note that an increase in preci-

sion of the vehicle-based observations will allow improved QC, understanding of the

characteristics of the data, and value for NWP. For QC, an alternative to vehicle

identification must be used such that privacy concerns are mitigated. For assimila-

tion, the uncertainty and bias associated with each observation must be sufficiently

evaluated. This will require further trials to assess the effect of local meteorological

conditions and the vehicle sensing instrument. Despite these issues, vehicle-based

observations are a promising opportunistic dataset for convection-permitting data

assimilation.

6.6 Chapter summary

In this chapter, we addressed the second research question given in chapter 1: what

are the characteristics of vehicle-based observations of air temperature? To inves-

tigate the characteristics of vehicle-based observations, we compared them with

convection-permitting NWP model data, roadside weather information station ob-

servations and Met Office integrated data archive system observations. We have

shown that the vehicle-based observation–model comparisons are most variable in

sunny conditions and least variable in rainy conditions. Hence, the uncertainty of

vehicle-based observation–model comparisons is likely weather-dependent. In addi-

tion, the statistics of vehicle-based observation–model comparisons changes when

grouped by vehicle. As the vehicle-specific datasets are small in size, we conclude

that the uncertainty of vehicle-based observation–model comparisons is possibly

vehicle-dependent.

To correctly assimilate vehicle-based observations, the uncertainty due to unresolved

scales must be accounted for in the assimilation system. Having established and

gained some experience of the error due to unresolved scales with a real dataset, in

the next chapter we focus on mathematical methods to account for uncertainty due

to unresolved scales in data assimilation.



Chapter 7

Accounting for observation

uncertainty and bias due to

unresolved scales with the

Schmidt-Kalman filter

The second aim of this thesis is to examine how observation uncertainty due to

unresolved scales is accounted for in data assimilation. In this chapter we answer the

third research question given in chapter 1: can the Schmidt-Kalman filter effectively

treat observation error and bias due to unresolved scales? In particular, we wish to

determine:

• Which regimes of observation uncertainty is the Schmidt-Kalman filter most

suitable for?

• How can biases due to unresolved scales be treated with the Schmidt-Kalman

filter?

The remainder of this chapter, except for the chapter summary in section 7.11, is

strongly based on the paper Bell et al. (2020).

Abstract:

Data assimilation combines observations with numerical model data, to provide

a best estimate of a real system. Errors due to unresolved scales arise when there is a

spatio-temporal scale mismatch between the processes resolved by the observations

and model. We present theory on error, uncertainty and bias due to unresolved

scales for situations where observations contain information on smaller scales than

can be represented by the numerical model. The Schmidt-Kalman filter, which

accounts for the uncertainties in the unrepresented processes, is investigated and

96
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compared with an optimal Kalman filter that treats all scales, and a suboptimal

Kalman filter that accounts for the large-scales only. The equation governing true

analysis uncertainty is reformulated to include representation uncertainty for each

filter. We apply the filters to a random walk model with one variable for large-scale

processes and one variable for small-scale processes. Our new results show that the

Schmidt-Kalman filter has the largest benefit over a suboptimal filter in regimes of

high representation uncertainty and low instrument uncertainty but performs worse

than the optimal filter. Furthermore, we review existing theory showing that errors

due to unresolved scales often result in representation error bias. We derive a novel

bias-correcting form of the Schmidt-Kalman filter and apply it to the random walk

model with biased observations. We show that the bias-correcting Schmidt-Kalman

filter successfully compensates for representation error biases. Indeed, it is more

important to treat an observation bias than an unbiased error due to unresolved

scales.

7.1 Introduction

In atmospheric data assimilation, observations are combined with numerical model

data, weighted by their respective error statistics, to provide a best estimate of the

current atmospheric state, known as the analysis. This is achieved through compar-

ison of observations with the numerical model equivalent of those observations. The

errors associated with the observation-model comparison are the instrument error

and representation error (Janjić et al., 2018). The representation error consists of

the pre-processing error, the observation operator error and the error due to unre-

solved scales that occurs when there is a mismatch between the numerical model

resolution and the scales resolved by the observation. The error due to unresolved

scales depends on the observation footprint, which could be smaller or larger than

the model grid, depending on the observation type and choice of model. For models

which contain information on scales smaller than those observed, the standard ap-

proach to account for scale-mismatch would be to average the model state over the

observation area (Janjić et al., 2018). However, for the purposes of this paper, we

focus only on situations where the observation information content includes smaller

scales than can be resolved by the model. In order to obtain the best analysis from

these observations the representation error must be treated correctly by the data

assimilation system.

Methods of accounting for uncertainty due to unresolved scales include, for exam-

ple, prediction through ensemble statistics (Karspeck, 2016; Satterfield et al., 2017)

and the use of a stochastic superparameterization (Grooms et al., 2014). In this

manuscript we will consider two approaches: the standard approach where the un-

certainty due to unresolved scales is included in the observation error covariance
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matrix (e.g., Hodyss and Satterfield, 2016; Fielding and Stiller, 2019) and an alter-

native approach where unresolved processes are considered in state space and hence

accounted for through the state error covariance (Janjić and Cohn, 2006).

Compensating for representation error through the standard approach involves using

an observation error covariance matrix that takes into account both the instrument

and representation uncertainty. This can then be used within a standard variational

or sequential data assimilation scheme. Estimates of the observation uncertainty

may be obtained using a statistical method, to estimate the entire observation error

covariance matrix (e.g., Desroziers et al., 2005; Stewart et al., 2014; Waller et al.,

2016c,a; Cordoba et al., 2017). Alternatively each component of the representation

error statistics can be estimated separately and then combined with the instrument

error covariance. For example the error due to unresolved scales may be approxi-

mated using high resolution observations (Oke and Sakov, 2008) or high resolution

model data (Daley, 1993; Liu and Rabier, 2002; Waller et al., 2014b; Schutgens et al.,

2016).

The Schmidt-Kalman filter (SKF) (Schmidt, 1966) is an example of a filter which

uses the statistics of the unresolved processes in state space, without ever evaluating

the unresolved state itself, to compensate for the error due to unresolved scales.

This approach allows for consideration of flow-dependent correlations between the

resolved errors and the unresolved processes at the cost of additional assumptions,

approximations and increased computational expense. Janjić and Cohn (2006) have

shown that the SKF can produce positive results despite the approximations and

assumptions required for implementation in a geophysical context. In this paper

we provide new results that determine in which observation and model uncertainty

regimes the SKF performs best. In addition we compare the SKF to two other

Kalman filtering approaches.

The SKF is deemed a suboptimal filter as it does not minimise the mean-square-

error of its estimated states (Janjić and Cohn, 2006). In contrast, the Kalman filter

that treats all scales is deemed optimal (for linear models and Gaussian statistics)

(Nichols, 2010). In practice, suboptimal filters that do not treat all scales are of-

ten used. The analysis error covariances propagated by suboptimal filters are not

representative of the true error statistics due to omitted or incorrectly specified fil-

ter components. As such, the true analysis error equations have been derived to

evaluate the performance of suboptimal filters (e.g., Brown and Sage, 1971; Asher

and Reeves, 1975; Asher et al., 1976). In this article we reformulate previous theory

on true analysis error equations to include representation error (section 7.4) and

evaluate the performance of the SKF.

A further issue noted by Janjić and Cohn (2006) is the potential for the repre-

sentation error to be biased. This is because the error due to unresolved scales is
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sequentially correlated in time and correlated with the state resolved by the model.

Other authors have circumvented this bias by careful construction of their numerical

model (Janjić and Cohn, 2006). However, in operational data assimilation, most ob-

servations are biased and the innovations need to be corrected or the bias accounted

for within the assimilation (Dee, 2005). Bias correction can be incorporated into the

data assimilation algorithm by augmenting the state vector with a bias term (Fried-

land, 1969; Jazwinski, 1970; Ignagni, 1981) which can be estimated along with the

state variables. This method of bias correction is commonly used with variational

data assimilation systems (e.g., Derber and Wu, 1998; Dee, 2004; Zhu et al., 2014;

Eyre, 2016) but has also been applied with ensemble data assimilation systems (e.g.,

Fertig et al., 2009; Miyoshi et al., 2010; Aravéquia et al., 2011). To the best of our

knowledge a bias correction scheme has yet to be implemented in conjunction with

the SKF; in section 7.7 we introduce a bias-correcting SKF as a new method to

compensate for biases due to unresolved scales.

In summary, the objective of this paper is to investigate under which model and

observation error regimes the SKF is most effective. The theoretical aspects of

representation error will be reviewed in section 7.2 with particular emphasis on

the error due to unresolved scales. Section 7.3 details how the SKF can be used

to account for error due to unresolved scales and introduces the optimal Kalman

filter (OKF) and a reduced-state Kalman filter (RKF). In section 7.4 we state the

standard true analysis error equation and reformulate it to include representation

error for each filter.

To evaluate the performance of the SKF in a numerical example we use a Gaussian

random walk model. The numerical experiment methodology and model formulation

are described in section 7.5 and results are presented in section 7.6. Our results show

that the SKF provides the largest improvement in performance compared with the

RKF when there is large error variance due to unresolved scales and small instrument

error variance. In section 7.7 we discuss observation bias correction schemes in

sequential data assimilation and introduce a novel SKF with bias correction scheme.

The methodology and model formulation for the numerical experiments with biased

observations is discussed in section 7.8 and results are presented in section 7.9.

Our results show the SKF with bias correction can simultaneously treat observation

biases and compensate for the error due to unresolved scales. We summarise and

draw conclusions from our results in section 7.10.

7.2 Theoretical framework

In this section we introduce a theoretical framework and the notation used in this

paper. We begin by describing a numerical model (section 7.2.1) and observations

(section 7.2.2). In data assimilation, the error statistics used in filters may not reflect
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the true uncertainties they are intended to model. To help distinguish between

these two sets of statistics throughout this manuscript we will define any true error

statistics with a tilde (∼). Error statistics used in or obtained from filter calculations

will be referred to as perceived error statistics and have no tilde.

The mathematical framework used to examine the error due to unresolved scales in

this manuscript is to estimate the projection of some state from a high, but finite

dimensional real vector space, onto a lower dimensional subspace using observations

and knowledge of the system dynamics, following a similar philosophy to Liu and

Rabier (2002) and Waller et al. (2014b). Our approach differs from that of Janjić

and Cohn (2006) which begins from the standpoint of infinite dimensional function

spaces.

7.2.1 Model configuration

In this section we introduce the perfect and forecast models. We assume that the

phase-space for the large-scale dynamics is a subspace of the phase-space for the full

high dimensional system. The complement of the subspace for the large-scales will

correspond to the phase-space for the small-scale dynamics. The notation for the

models will be in a partitioned form that separates the large and small scales. In

particular, we denote the true, complete state at time tk as
(
(xl,t)T (xs,t)T

)T ∈ RNt

such that xl,t ∈ RNl , xs,t ∈ RNs and Nt = Nl+Ns. Here, and throughout this paper,

any component with a t-superscript indicates that it is a true variable. The l- and

s-superscripts correspond to the large- and small-scale processes within the complete

system dynamics. (We have deviated from the resolved/unresolved nomenclature of

Janjic and Cohn 2006 for clarity, since the different filters used in our experiments

resolve different scales).

An ideal linear model for the true state of a finite dimensional process can be ex-

pressed through the dynamical system(
xl,t

xs,t

)
k

=

(
Ml,t Mls,t

Msl,t Ms,t

)(
xl,t

xs,t

)
k−1

, (7.2.1)

such that the matrix blocks Ml,t ∈ RNl×Nl , Mls,t ∈ RNl×Ns , Ms,t ∈ RNs×Ns and

Msl,t ∈ RNs×Nl . From a numerical modelling perspective, this partitioned descrip-

tion of the dynamics would be suited to a pseudospectral discretization (e.g. Fourier

modes). An illustrative example is given in figure 7.1.

In numerical weather prediction (NWP), the true models that govern the evolution of

the atmosphere are unknown and have to be approximated. For our approximation

of the true dynamical system (7.2.1), we assume that any subgrid-scale parameter-

izations used to approximate the contribution from the small-scale processes to the
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Figure 7.1: Illustrative example of the partitioned formulation of the dynamics. The
complete state (solid black line) is the sum of the large-scale state (blue dashed line)
and a higher frequency wave corresponding to the small-scale state. At the points
of discretization (green squares), the complete state and the large-scale state are
equal.

large-scale state are contained within the large-scale model (Janjić and Cohn, 2006;

Janjić et al., 2018). Hence, the model block Mls = 0Nl×Ns and our approximate

dynamical model describing the complete system satisfies(
xl,t

xs,t

)
k

=

(
Ml 0Nl×Ns

Msl Ms

)(
xl,t

xs,t

)
k−1

−

(
ηl

ηs

)
k

. (7.2.2)

In (7.2.2) each model block has the same dimensions as its true model counterpart.

The large- and small-scale model errors are given by ηl ∈ RNl and ηs ∈ RNs respec-

tively. Model errors are assumed to be random and unbiased with covariance given

by

Q̃ =

(
Q̃ll Q̃ls

Q̃sl Q̃ss

)
. (7.2.3)

Here, using 〈·〉 to indicate the mathematical expectation over the corresponding error

distribution, the matrices Q̃ll ≡ 〈ηl(ηl)T 〉 ∈ RNl×Nl , Q̃ss ≡ 〈ηs(ηs)T 〉 ∈ RNs×Ns and

Q̃ls ≡ 〈ηl(ηs)T 〉 ∈ RNl×Ns (with Q̃ls = (Q̃sl)T ) are the true model error covariances

of the large-scale, the small-scale and cross-covariances between the large- and small-

scale, respectively. We note that for the purposes of this work, the model error

distribution is assumed to be stationary, so that Q̃ is not a function of time.
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Analogously, the complete forecast state
(
(xl,f )T (xs,f )T

)T ∈ RNt satisfies(
xl,f

xs,f

)
k

=

(
Ml 0Nl×Ns

Msl Ms

)(
xl,f

xs,f

)
k−1

. (7.2.4)

The forecast errors can then be defined as(
el,f

es,f

)
k

≡

(
xl,f

xs,f

)
k

−

(
xl,t

xs,t

)
k

=

(
Ml 0Nl×Ns

Msl Ms

)(
el,f

es,f

)
k−1

+

(
ηl

ηs

)
k

, (7.2.5)

where el,f ∈ RNl and es,f ∈ RNs are the large- and small-scale forecast errors

respectively. The true forecast error covariance is denoted

P̃f
k =

(
P̃ll,f P̃ls,f

P̃sl,f P̃ss,f

)
k

. (7.2.6)

Here, P̃ll,f
k ≡ 〈el,fk (el,fk )T 〉 ∈ RNl×Nl , P̃ss,f

k ≡ 〈es,fk (es,fk )T 〉 ∈ RNs×Ns and P̃ls,f
k ≡

〈el,fk (es,fk )T 〉 ∈ RNl×Ns (with P̃ls,f
k = (P̃sl,f

k )T ) are the true forecast error covariances

of the large-scale, the small-scales and cross-covariances between the large- and

small-scale processes, respectively.

This formulation of the complete finite-dimensional dynamics allows us to consider

several filters with different approaches to the treatment of large- and small-scales.

Moreover, we can consider the interactions between scales and the effect they have

on the modelling of observations.

7.2.2 Observations and their uncertainties

In this section we express the equations relating the observations, yk ∈ Rp, to the

model state in a partitioned form and describe their uncertainties. For the rest of

this section, we assume that the model state and observations are valid at the same

time, and drop the time subscript, k. At time tk, the observations are related to the

true model state as

y =
(
Hl,t Hs,t

)(xl,t
xs,t

)
+ ε, (7.2.7)

where ε ∈ Rp is the instrument error, assumed to be random and unbiased with

covariance R̃I = 〈εεT 〉 ∈ Rp×p and Hl,t ∈ Rp×Nl and Hs,t ∈ Rp×Ns are the true

linear observation operators which map the large- and small-scale states into ob-

servation space respectively. The observation operator
(
Hl,t Hs,t

)
is the (linear)

finite-dimensional counterpart to the continuum observation operator of Janjić and

Cohn (2006). We will not consider nonlinear observation operators in the remainder

of this paper.
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Throughout this paper, we assume that there is no pre-processing error. Hence, we

will be concerned with the two cases described in sections 7.2.2.1 (all scales analysed)

and 7.2.2.2 (large scales analysed) below. Case 1 shows the form of the representation

error for filters that resolve all scales and is pertinent to the theoretical optimal

Kalman filter discussed in section 7.3.2. Case 2 shows the form of the representation

error for filters typically used in operational practice and is pertinent to the reduced-

state Kalman filter and the Schmidt-Kalman filter discussed in sections 7.3.3 and

7.3.4, respectively.

7.2.2.1 Case 1: All scales analysed

In this case we assume that both the large- and small-scale states are estimated.

The total observation error (observation departure from the true state), eo, can be

expressed as

eo = y −
(
Hl Hs

)(xl,t
xs,t

)
, (7.2.8)

where Hl ∈ Rp×Nl and Hs ∈ Rp×Ns are the blocks of the observation operator used

by the filter, acting on the large- and small-scale state components, respectively.

Using (7.2.7), we rewrite eo as

eo =
(
Hl,t Hs,t

)(xl,t
xs,t

)
+ ε−

(
Hl Hs

)(xl,t
xs,t

)
,

=
(
Hl,t −Hl

)
xl,t +

(
Hs,t −Hs

)
xs,t + ε,

= γ l + γs + ε, (7.2.9)

where γ l ≡
(
Hl,t −Hl

)
xl,t is the large-scale observation operator error and γs ≡

(Hs,t −Hs)xs,t is the small-scale observation operator error. Thus, the representa-

tion error for this case consists solely of observation operator error, γ l + γs. The

observation operator errors, γ l and γs, will each be assumed to be unbiased, so

that in this case, the representation error is also unbiased. The representation error

covariance for this case will be denoted by R̃G = 〈(γ l +γs)(γ l +γs)T 〉 ∈ Rp×p. The

total observation error covariance is given by R̃ = R̃I +R̃G, where we have assumed

that the representation error and instrument error are mutually uncorrelated.

7.2.2.2 Case 2: Large scales analysed

In this case, we assume that only the large-scale state is estimated such that

eo = y −Hlxl,t, (7.2.10)
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where the observation operator used consists only of the block acting on the large-

scales. The decomposition of eo can be obtained by setting Hs = 0p×Ns in (7.2.9):

eo = γ l + Hs,txs,t + ε. (7.2.11)

The filter observation operator does not act on the small scales, so the term γs is

replaced by Hs,txs,t, the error due to unresolved scales. The representation error for

Case 2 is thus γ l + Hs,txs,t with covariance R̃H = 〈(γ l + Hs,txs,t)(γ l + Hs,txs,t)T 〉 ∈
Rp×p. Equations (7.2.10) and (7.2.11) are analogous to equation (1) in Janjić et al.

(2018) with the pre-processing error omitted. The complete observation error co-

variance for Case 2 is given by R̃ = R̃I + R̃H , where we have assumed that the

representation error and instrument error are mutually uncorrelated. As in Case 1,

γ l is assumed to be unbiased. However, we will see in section 7.2.3 that the expected

value of Hs,txs,t is likely to be non-zero.

7.2.3 Bias due to unresolved scales

Analysing only the large-scales will result in an error due to unresolved scales (section

7.2.2.2) that is sequentially correlated in time and correlated with the resolved state,

leading to a potential bias (Janjić and Cohn, 2006). Assuming that the large-

scale observation operator is unbiased, taking the expectation of the error due to

unresolved scales, (7.2.11), (and reintroducing the time subscript k) results in

〈eo〉 = 〈Hs,txs,tk 〉, (7.2.12)

where 〈·〉 denotes the mathematical expectation over the distribution of representa-

tion errors at time k. Using dynamical system (7.2.1), repeated substitution for the

equation governing xs,t into the expected error due to unresolved scales yields

〈Hs,txs,tk 〉 = 〈Hs,t(Msl,txl,tk−1 + Ms,t(Msl,txl,tk−2 + Ms,t(. . . (Msl,txl,t0 + Ms,t(xs,t0 )) . . .)))〉,
(7.2.13)

Here the underlined terms represent the contribution from the large scales. For many

non-trivial models, these terms will not be identically zero, and potentially introduce

a bias even if the initial value for the small-scale state is zero, xs,t0 = 0. For example,

Janjić and Cohn (2006) solved a model of non-divergent linear advection on a sphere

using a truncated expansion in spherical harmonics. Introducing a shear flow results

in a dynamical system where the unresolved small-scales do not directly influence the

resolved large-scales, but the large-scales influence the small-scales. This yields an

error and bias due to unresolved scales. Janjić and Cohn (2006) were able to mitigate

the bias using specific initial conditions. However, this experimental freedom would

not be available in less-idealized situations. Therefore, when accounting for the
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unresolved scales in data assimilation we must also determine and treat any bias

arising. In the new results in sections 7.5-7.6 below, we carefully construct our model

to avoid bias due to unresolved scales. However, we revisit this problem in sections

7.7-7.9 where we use filters with bias-correction schemes.

7.3 Sequential linear filters and representation un-

certainty

In this section we describe the general linear filtering framework that we use for

data assimilation in our theoretical investigations and numerical experiments. We

consider three filters in more detail: an optimal Kalman filter (OKF) that takes

account of all scales; a reduced-state Kalman filter (RKF) that disregards the small-

scales; and the Schmidt-Kalman filter (SKF) that provides analyses of the large-scale

state through consideration of both the large- and small-scale uncertainties.

7.3.1 A linear filter

A linear filter algorithm can be divided into analysis update and model prediction

steps. The general form of the analysis update at time tk, is given by

xak = xfk + Kkd
o,f
k , (7.3.1)

where xak is the analysis (state estimate), xfk is the forecast state, Kk is the gain

matrix and do,fk = yk −Hkx
f
k is the innovation, defined as the observation-minus-

forecast departure. In this general setting we have not defined the dimensions of

the vectors and matrices in (7.3.1), as this will depend on the specific choice of

filter. For example, the state x in equation (7.3.1) could be either the complete

state
(
(xl)T (xs)T

)T
or just the large-scale state xl. There are various approaches

to determine the gain matrix which will be discussed in sections 7.3.2, 7.3.3 and

7.3.4.

The perceived analysis error covariance update calcluated by the filter at time tk is

given by

Pa
k = (I−KkHk) Pf

k , (7.3.2)

where I is the identity matrix, Hk is the observation operator and Pf
k is the perceived

forecast error covariance. Equation (7.3.2) is known as the short-form of the analysis

error covariance update. This equation only provides the correct estimate of the

analysis error covariance if the background and observation error statistics used in

the filter reflect the true error statistics. The use of a suboptimal gain and the

short form update equation (7.3.2) will result in the filter producing incorrect error
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statistics. The true error statistics will be derived in section 7.4.

For the model prediction step, the forecast state at time tk+1 is evolved from the

analysis at the previous time-step and is given by

xfk+1 = Mxak, (7.3.3)

where M is a linear model. A model error term is not included in the forecast state

update as linear filters estimate the mean state and we have assumed that the model

error is unbiased. However, the error in the model M is accounted for in the forecast

error covariance update given by

Pf
k+1 = MPa

kM
T + Q, (7.3.4)

which will be discussed further in section 7.4. We note that (7.3.4) will only produce

correct error statistics when Pa
k and Q are equal to their true statistics counter-

parts.

Equations (7.3.1) - (7.3.4) form the core components of the linear filter algorithm.

In the following sections we discuss three linear filters, each based on the Kalman

filter (Kalman, 1960), that we will use in this paper. Table 7.1 summarizes the key

vectors and matrices used in these three Kalman filters.

7.3.2 The Optimal Kalman filter (OKF)

For the optimal Kalman filter (OKF), we assume that we are able to model the

processes for all scales and know the correct error statistics for the initial state,

observations and model. Therefore, the perceived error statistics for the OKF will

be equivalent to the true error statistics. The OKF simultaneously updates the

large- and small-scale states, xl ∈ RNl and xs ∈ RNs , so that the analysis update

takes the form(
xl,a

xs,a

)
=

(
xl,f

xs,f

)
+

(
Kl

Ks

)[
y −

(
Hl Hs

)(xl,f
xs,f

)]
, (7.3.5)

cf. (7.3.1). The gain matrix for the OKF is partitioned into large- and small-scale

components Kl ∈ RNl×p and Ks ∈ RNs×p respectively, and is given in Table 7.1. This

is the optimal Kalman gain which minimises the trace of the analysis error covariance

(e.g., Nichols, 2010). The analysis error covariance update is calculated using (7.3.2)

with state error covariances with the same block structure as the forecast error

covariance (7.2.6).

As the OKF filters all scales, the total observation error is described by Case 1 (all

scales analysed, section 7.2.2.1). Hence, the observation error covariance for the
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OKF is R = RI + RG.

For the OKF forecast step we use the matrix(
Ml 0Nl×Ns

Msl Ms

)
(7.3.6)

as our forecast model in (7.3.3) and the partitioned model error covariance given in

Table 7.1 in the forecast error covariance prediction (7.3.4).

In summary, the analysis and forecast updates for the OKF state and covariance are

a partitioned form of (7.3.1) - (7.3.4). By treating all scales in the assimilation the

OKF has no error due to unresolved scales in the associated observation equation.

However, due to computational constraints and inadequate knowledge of small-scale

processes it is not possible to apply this technique in practice. Hence, methods that

approximate the influence of small-scale processes must be employed instead.

7.3.3 The Reduced-state Kalman filter (RKF)

The suboptimal Kalman filter which estimates only the large-scale state and com-

pletely neglects the modelling of small-scale processes will be referred to as the

reduced-state Kalman filter (RKF).

The analysis and forecast update equations for the RKF are simply the linear filter

equations (7.3.1)-(7.3.4) where, as described in Table 7.1, we use the large-scale

state, error covariances and observation operator. Thus, the forecast innovation

is

do,f = y −Hlxl,f = ε+ γ l + Hs,txs,t −Hlel,f , (7.3.7)

where the second equality can be established by adding and subtracting the term

Hlxl,t. Assuming each error has zero-mean, taking the expectation of the outer

product of (7.3.7) yields the true innovation covariance (i.e. all contributing error

covariances are true error statistics). However, the innovation covariance used by

the RKF is given by

D = HlPll,f (Hl)T + RI + RH , (7.3.8)

where the large-scale forecast error covariance, instrument error covariance and rep-

resentation error covariance are perceived error statistics. The influence of any

small-scale processes is now accounted for through the representation error covari-

ance RH which needs to be approximated.

Reduced-state methods form an attractive approach in situations where computa-

tional expense is an important consideration. However, it is necessary to approx-
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imate the representation error covariance, RH . Hence, the Kalman gain for the

RKF will not minimise the analysis error covariance and the filter will be subopti-

mal.

7.3.4 The Schmidt-Kalman filter (SKF)

The Schmidt-Kalman Filter (SKF) estimates only the large-scale state, but the

statistics of any unmodelled processes are used to determine the Kalman gain for

the filtered state (Schmidt, 1966; Janjić and Cohn, 2006). A summary of the relevant

equations is included in Table 7.1.

As only the large-scale state is estimated the forecast innovation is computed using

the large-scale state, xl,f , and observation operator, Hl. To determine the innovation

covariance we start with the innovation (7.3.7) and add and subtract the term(
Hl Hs

) (
(xl,t)T (xs,t)T

)T
. This allows us to write the innovation in the form

do,f = ε+ γ l + γs +
(
Hl Hs

)(−el,f

xs,t

)
. (7.3.9)

The innovation is now written in terms of the observation errors corresponding to

case 1 (where all scales are analysed, see section 7.2.2.1), the large-scale forecast

error mapped into observation space, Hlel,f , and the term Hsxs,t, the true small-

scale state mapped into observation space. Assuming each error and xs,t has zero-

mean, taking the expectation of the outer product of (7.3.9) gives the true innovation

covariance. The innovation covariance used by the SKF is given by

D =
(
Hl Hs

)(Pll,f Pls,f

Psl,f Cs

)(
(Hl)T

(Hs)T

)
+ RI + RG. (7.3.10)

Here, we have abused our notation, to write Pls,f as the perceived approximation

of 〈−el,f (xs,t)
T 〉, such that Psl,f =

(
Pls,f

)T
. Using this notation for the cross-

covariances of the SKF is common amongst other literature on the filter (e.g., Janjić

and Cohn, 2006; Janjić et al., 2018). Following Janjić and Cohn (2006), we employ a

prescribed error covariance Cs as a time-independent approximation of 〈xs,t (xs,t)
T 〉.

We note that as the small-scale error covariance is prescribed, the innovation covari-

ance is an inexact approximation. The innovation covariance for the SKF is theo-

retically the same as the innovation covariance for the RKF (7.3.8) but expressed in

a different form that includes contributions from the small scale processes.

The analysis state update for the SKF is given by

xl,ak = xl,fk + Kl
k

(
yk −Hl

kx
l,f
k

)
, (7.3.11)
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where Kl
k =

(
Pll,f
k

(
Hl
)T

+ Pls,f
k (Hs)T

)
D−1k is the Schmidt-Kalman large-scale

gain. To obtain an analysis error covariance update equation we augment Kl with

Ks = 0Ns×p and substitute into equation (7.3.2). This is justified as the unfiltered

state is assumed to have a small magnitude. Large instrument uncertainty associated

with observations of the small-scale state or a small-magnitude observation operator

for this state would also justify this assumption (Simon, 2006, pp 309 – 312). As the

short-form analysis error covariance update for the SKF is not symmetric, we cal-

culate Pll,a and Pls,a through the short-form update only and set Psl,a
k =

(
Pls,a
k

)T
.

Thus, the SKF analysis error covariance update equations are

Pll,a
k =

(
INl −Kl

kH
l
k

)
Pll,f
k −Kl

kH
s
kP

sl,f
k , (7.3.12)

Pls,a
k =

(
INl −Kl

kH
l
k

)
Pls,f
k −Kl

kH
s
kC

s, (7.3.13)

Psl,a
k =

(
Pls,a
k

)T
. (7.3.14)

We note that the term −Kl
kH

s
k will usually be non-zero for the SKF. This term

couples the large-scale uncertainty to the small-scale variability. If this term were

zero, the large-scale state and uncertainty estimates produced by the RKF and

SKF may still differ because of the differing innovation covariances between the

filters.

The SKF treatment of the forecast step has a similar philosophy to the analysis

step. The state prediction (7.3.3) is obtained through evolving the large-scale state

xl with the large-scale forecast model Ml:

xl,fk+1 = Mlxl,tk . (7.3.15)

The large-scale and cross-covariance blocks of the forecast error covariance are cal-

culated using the complete forecast model and model error covariance in (7.3.4).

The SKF forecast error covariance update equations are

Pll,f
k+1 = MlPll,a

k

(
Ml
)T

+ Ql, (7.3.16)

Pls,f
k+1 = Ml

(
Pll,a
k

(
Msl

)T
+ Pls,a

k (Ms)T
)
, (7.3.17)

Psl,f
k+1 =

(
Pls,f
k+1

)T
. (7.3.18)

The prescribed small-scale error covariance Cs is assumed constant in time and is

not updated.

The appeal of the SKF is in its ability to compensate for small-scales without esti-

mation of the small-scale state. Practical implementation of the SKF would require

the filter to be adapted to nonlinear models. However, even for linear systems, the

models evolving the small-scale processes would be unknown and their influence on
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the error covariances would need to be quantified. Additionally, the propagation of

the state cross-covariances poses a considerable computational cost.

7.3.5 Discussion

The OKF, SKF and RKF represent three different approaches for dealing with

observation uncertainty due to unresolved scales (see Table 7.1). The OKF analyses

all scales, thus avoiding the error due to unresolved scales altogether, while the

RKF completely disregards the small-scale processes and accounts for the error due

to unresolved scales through the representation error covariance matrix. The SKF,

however, takes a compromise approach where only the large-scale state is estimated,

but the uncertainty in all-scales is accounted for in the estimation. Additionally,

the SKF accounts for the flow-dependence of the correlations between the large-scale

errors and small-scale processes (albeit approximately) through the cross-covariances

in the analysis and forecast error covariances given in equations (7.3.13), (7.3.14),

(7.3.17) and (7.3.18). Applications where it is a poor approximation to neglect these

cross-covariances will benefit the most from using the SKF (as opposed to the RKF

where these cross-covariances are neglected).

7.4 True Analysis Error Equations

A standard metric for assessing the quality of a data assimilation scheme is through

examination of the magnitude of its analysis errors (e.g., Liu and Rabier, 2002).

Under an unrealistic and restrictive set of conditions the Kalman filter is known to

be optimal in a minimum mean-square-error sense and to produce the true error

statistics describing its analysis and forecast (e.g., Todling and Cohn, 1994; Nichols,

2010). In contrast, both the SKF and RKF described in section 7.3 will incorrectly

estimate the true analysis and forecast error covariances due to their treatment

of the small-scales in the filter calculations. In this section we extend the existing

literature on the true analysis error equations to include representation error so that

we may evaluate the analysis obtained through the SKF and RKF.

To obtain the true analysis error equation for a linear filter we assume that we

have exact knowledge of the truth and that both the true and filter models and

observation operators are linear. Under this regime, the true analysis error at time

tk has been derived by Moodey (2013) and is given by

eak ≡ xak − xtk = (I−KkHk) Meak−1 + (I−KkHk)ηk + Kke
o
k, (7.4.1)

where eak is the analysis error, ηk is the model error (see section 7.2.1), eok is the

total observation error which will be specified for different cases in subsections 7.4.1

- 7.4.2 and Kk and Hk are the Kalman gains and observation operators for the
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analysis state updates respectively. Therefore, the Kalman gain is calculated from

the error statistics perceived by a filter. We assume that eak−1, ηk and eok each have

zero-mean and are mutually uncorrelated. (We note that this assumption excludes a

consideration of bias due to unresolved scales. However, this is considered further in

section 7.7). Under these assumptions the true analysis error covariance is obtained

through taking the expectation of the outer product of equation (7.4.1) with itself

to give

P̃a
k ≡ 〈eak (eak)

T 〉 = (I−KkHk) P̃f
k (I−KkHk)

T + KkR̃kK
T
k , (7.4.2)

where

P̃f
k ≡ 〈e

f
k

(
efk

)T
〉 = MP̃a

k−1M
T + Q̃. (7.4.3)

Here we remind the reader that we have used tildes to indicate true error covariances,

to help distinguish these from the covariances perceived by the filters, which may

be suboptimal. Equation (7.4.2) is known as the Joseph-formula (e.g. Gelb, 1974,

pp 305–306). The true analysis error covariance (7.4.2) is valid for any gain matrix.

The Joseph-formula is equivalent to the short form analysis error covariance (7.3.2)

for the optimal case (OKF) in exact arithmetic.

The true analysis error covariance can be calculated separately from the assimilation.

In subsections 7.4.1 - 7.4.2 we use equations (7.4.1) and (7.4.2) to determine the

true analysis error equations and error covariances for Cases 1 and 2 described in

sections 7.2.2.1 and 7.2.2.2. Case 1 corresponds to analysing all scales and includes

the OKF. Case 2 corresponds to analysing the large-scale state only and includes

the RKF and SKF. Table 7.2 summarizes the matrices and vectors used in the true

error calculations.

7.4.1 Case 1: true analysis error covariance when all scales

are filtered

To obtain the true analysis error equation we assume that we have complete knowl-

edge of all scales as with the OKF. As in section 7.2.2.1 the observation error will

consist of instrument error, ε, and the observation operator error for large- and

small-scales, γ l + γs. Under these assumptions the true analysis error equation will

be a partitioned form of equation (7.4.1) and the true analysis error covariance will

be a partitioned form of (7.4.2) with the components given in column 1 of Table

7.2.



7.4 True Analysis Error Equations 113

Table 7.2: Matrices and vectors used in the true error calculations for Case 1 and
2 described in sections 7.4.1 and 7.4.2. The tildes indicate true error covariances.
Case 1 corresponds to analysing all scales and includes the OKF. Case 2 corresponds
to analysing the large scales only and includes the RKF and SKF. The true analysis
error equation, analysis error covariance and forecast error covariance for each case
are obtained by substituting the corresponding components into equations (7.4.1),
(7.4.2) and (7.4.3) respectively.

Case 1 (OKF) Case 2 (SKF and RKF)

Analysis Errors: ea
(

el,a

es,a

) (
el,a

es,a

)
Model Errors: η

(
ηl

ηs

) (
ηl

ηs

)
Observation Errors: eo ε+ γ l + γs ε+ γ l + Hs,txs,t

Kalman Gain: K

(
Kl

Ks

) (
Kl

0Ns×p

)
Observation Operator: H

(
Hl Hs

) (
Hl 0p×Ns

)
Model: M

(
Ml 0Nl×Ns
Msl Ms

) (
Ml 0Nl×Ns
Msl Ms

)
State Error Covariance: P̃

(
P̃ll P̃ls

P̃sl P̃ss

) (
P̃ll P̃ls

P̃sl P̃ss

)
Observation Error Covariance: R̃ R̃I + R̃G R̃I + R̃H

Model Error Covariance: Q̃

(
Q̃ll Q̃ls

Q̃sl Q̃ss

) (
Q̃ll Q̃ls

Q̃sl Q̃ss

)
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7.4.2 Case 2: true analysis error covariance when only large-

scales are filtered

The true analysis error equation for case 2 applies to filters that estimate the large-

scale state only like the RKF and SKF. Using equation (7.4.1) and the state gain

matrices and observation operators, the large-scale analysis error for the RKF and

SKF is given by

el,ak ≡ x
l,t
k − x

l,t
k =

(
INl −Kl

kH
l
k

)
Mlel,ak−1 +

(
INl −Kl

kH
l
k

)
ηlk + Kl

k

(
εk + γ lk + Hs,t

k x
s,t
k

)
.

(7.4.4)

We note that the observation errors correspond to case 2 described in 7.2.2.2 as

both the RKF and SKF filter the large-scale state only. Hence, the effect of the

small-scale processes on el,ak in equation (7.4.4) is determined through the error due

to unresolved scales Hs,txs,tk . We observe that the true large-scale error covariance

may thus be written in terms of the representation error covariance as

P̃ll,a
k ≡ 〈e

l,a
k (el,ak )T 〉 =

(
INl −Kl

kH
l
k

)
P̃ll,f
k

(
INl −Kl

kH
l
k

)T
+ Kl

k

(
R̃I
k + R̃H

k

) (
Kl
k

)T
.

(7.4.5)

However, the true error statistics contributing to the true analysis error covariance

are unknown in practice making the use of (7.4.5) to evaluate filter performance un-

feasible. For theoretical experiments where most error statistics can be prescribed,

determining R̃H
k requires a Monte Carlo approach due to its dependence on xs,t.

Alternatively, a different form of the analysis error equation may be more practi-

cal.

Assuming we know the true behaviour for the small-scales we can express the true

analysis error equation for the RKF and SKF as(
el,a

es,a

)
k

=

(
INl −Kl

kH
l
k 0Nl×Ns

0Ns×Nl INs

)(
el,f

es,f

)
k

+

(
Kl
k

0Ns×p

)(
εk + γ lk + Hs,txs,tk

)
,

(7.4.6)

where el,fk = Mel,tk−1 + ηlk and es,fk = Mslel,tk−1 + Mses,ak−1 + ηsk. We note that, as the

small-scale state isn’t estimated, the small-scale gain is a zero matrix of dimension

Ns× p. We also note that, while the large- and small-scale errors ostensibly appear

uncoupled in equation (7.4.6), they are in fact coupled as es,ak and es,fk each depend

on xs,tk . Adding and subtracting the term Kl
kH

s
ke

s,f
k from the large-scale component
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of the analysis error, (7.4.6) may be written as(
el,a

es,a

)
k

=

(
INt −

(
Kl
k

0Ns×p

)(
Hl Hs

))(el,f

es,f

)
k

+

(
Kl
k

0Ns×p

)(
εk + γ lk + Hs,txs,tk + Hses,fk

)
.

(7.4.7)

Using the definitions of the small-scale observation operator error (7.2.9), the error

due to unresolved scales (7.2.11) and the small-scale forecast error (7.3.9) we find

that

Hs,txs,tk + Hses,fk = γsk + Hsxs,fk . (7.4.8)

Thus the right-hand-side of (7.4.7) can be evaluated without knowledge of the error

due to unresolved scales specifically. Instead, this can be written in terms of the

observation operator error and a small-scale forecast:(
el,a

es,a

)
k

=

(
INt −

(
Kl
k

0Ns×p

)(
Hl Hs

))(el,f

es,f

)
k

+

(
Kl
k

0Ns×p

)(
εk + γ lk + γsk + Hsxs,fk

)
.

(7.4.9)

The partitioned case 2 error equation (7.4.9) can be used to obtain the true analysis

error covariance for the SKF and RKF without knowing the full representation

error covariance R̃H . However, when using this form of the analysis error equation

to obtain the true error statistics the correlations between xs,f and es,f may be

non-negligible. We note that, while xs,f and xs,t will also be unknown in practice,

they could be approximated offline with high-resolution models.

7.5 Experiment Methodology

7.5.1 Gaussian random walk model

We now consider the methodology for numerical experiments where we apply the

three filters to the simple model system(
xl

xs

)
k+1

=

(
1 0

Msl exp(−1/2)

)(
xl

xs

)
k

−

(
ηl

ηs

)
k

,

yk =
(

1 1
)(xl

xs

)
k

+ εk, (7.5.1)

such that ηlk ∼ (0,Ql), ηsk ∼ (0,Qs), and εk ∼ (0,RI) (Brown and Hwang, 2012, pp

192). This system uses one variable for the large-scale state, xl, and one variable for

the small-scale state, xs. The large-scale state xl and small-scale state xs are random
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walk variables driven by the errors ηl and ηs whose structures are determined by

the variances Ql and Qs respectively. There are no cross-covariances in the model

error statistics. The model component Msl is the contribution from the large-scale

processes to the small-scale state. The observations will be taken to be the sum of

the large- and small-scale states plus instrument error.

The random walk model (7.5.1) will first be used for a “nature run” from which

observations can be created. The filters described in section 7.3 will then be used to

assimilate these observations and the true large-scale analysis error variance calcu-

lated at the end of the assimilation window. As the RKF and SKF are suboptimal,

they propagate inexact error variances. Therefore, the true error variances for the

RKF and SKF are calculated using (7.4.9) to provide a comparison between their

performances.

Through our experimental design we are able to easily control the magnitude of

the observation error due to unresolved scales by adjusting Qs. The relationship

between Qs and the error due to unresolved scales is described in section 7.5.3.

This framework also allows for the determination of the optimal Cs as well as the

sensitivity of the SKF to this modelled variance.

7.5.2 Initial conditions and filter parameters

For our experiments, we choose the initial conditions for the true state (nature run)

to be xl,t0 = 10 and xs,t0 = 0 so that the true resolved state is noticeably larger than

the true unresolved state. Setting the small-scale true state to zero also ensures that

the representation errors are initially unbiased.

We set the initial conditions for the forecast state and forecast error covariance to

be

xf0 =

(
xl,f0

xs,f0

)
=

(
xl0 + αl

xs0 + αs

)
and Pf

0 =

(
Pll,f
0 Pls,f

0

Psl,f
0 Pss,f

0

)
=

(
1 0

0 0.1

)
(7.5.2)

where αl ∼ N (0,Pll,f
0 ) and αs ∼ N (0,Pss,f

0 ) are perturbations from the true states.

We have assumed that the initial large- and small-scale forecast errors are uncorre-

lated.

For our first set of experiments we set the model component Msl = 0 so that the

representation errors remain unbiased throughout the assimilation. The large-scale

model error variance, Ql = 1, is used throughout our experiments while Qs will vary

for different experiments.

Observations are assimilated every time-step. The true observation operator is H =

(1 1) which is used by all three filters; this ensures that there is no observation

operator error. Unless otherwise specified, the instrument error variance is set to
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RI = 0.1, and R̃I
k = RI so that each filter correctly accounts for the instrument

error. For the RKF, we set RH = 0 so that the filter completely ignores the small-

scale processes. The prescribed small-scale error variance Cs is varied throughout

our experiments.

To calculate the true analysis error variance with (7.4.9), we neglect the variance of

xs,f and the correlations between xs,f and es,f as the solution for xs,f is exponentially

decaying with time. This method of calculating the true analysis error covariance

has been validated against a Monte Carlo approach.

7.5.3 Determining the small-scale variability over the as-

similation window

For the SKF and RKF, which do not update the small-scale state, the true small-

scale analysis and forecast error statistics are equal at the same time-step. Setting

Msl = 0, the true small-scale error covariance, denoted P̃ss, is evolved through the

difference equation

P̃ss
k = MsP̃ss

k−1(M
s)T + Q̃s. (7.5.3)

For the Gaussian random walk model, we may use a scalar version of this equation,

given by

P̃ss
k = (Ms)2P̃ss

k−1 + Q̃s = (Ms)2kP̃t
0 +

k−1∑
n=0

(Ms)2nQ̃s, (7.5.4)

where P̃ss
0 = P̃ss,f

0 and Ms = exp(−1/2). Noting that the summation term in (7.5.4)

is a geometric series we can express P̃ss
k as

P̃ss
k = e−kP̃ss

0 +
1− e−k

1− e−1
Q̃s. (7.5.5)

For large k, the first term in equation (7.5.5) decays to zero while the second term

tends to the limit Q̃s/(1 − e−1). Hence, after a burn-in period, the error due to

unresolved scales for the SKF and RKF is primarily determined by the size of Q̃s

and increases each time-step.

7.6 Numerical Experiments

In this section we apply the OKF, RKF and SKF to the random walk model defined

in section 7.5.1 with filter parameters and error statistics assumptions detailed in

section 7.5.2.
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Figure 7.2: Contour plot of the values of Cs that give the minimum true large-scale
analysis error variance at the final assimilated observation for the SKF for different
ratios of Qs and RI .

7.6.1 Determining the optimal Cs

Before using the SKF, we first need to approximate the matrix Cs (see Table 7.1).

To find the optimal value of Cs over the whole assimilation window we carry out

numerical experiments for a range of values of RI and Qs. Both of these parameters

will affect the magnitude of the true large-scale analysis error variance. For each

(RI ,Qs) parameter pair, we test a number of values of Cs to determine the value

of Cs which gives the smallest true large-scale analysis error variance at the final

assimilated observation. As we are calculating the variances only, the calculation is

deterministic and the choice of noise realisation is irrelevant. For this experiment,

we assimilate 15 observations. We start with Cs = 0 and increase Cs in steps of

∆Cs = 0.001 until Cs = 1.

The optimal values of Cs that produce the minimum large-scale analysis error vari-

ance for the SKF at the final time-step are shown in figure 7.2. The optimal value

of Cs increases as both RI and Qs increase. In particular, the optimal value of Cs is

most sensitive to any increase in Qs as the error due to unresolved scales is primarily

determined by this error variance in our model. While not as sensitive, we find that

large RI also affects the optimal value of Cs. This is because the optimal value of

Cs is a function of RI and Ql after the initial time. We also find that for small

RI and Qs the optimal value of Cs over the whole assimilation window is similar

to P̃ss given by equation (7.5.5) for the final time-step. For large RI and Qs, the

optimal value of Cs is approximately 1.4 times larger than P̃ss evaluated at the final

time-step.

In operational settings we would not be able to optimise Cs in this way. However,
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it may be possible to approximate part of the representation error covariance using

high resolution observations (Oke and Sakov, 2008) or model data (Waller et al.,

2014b) and use these approximate representation error values to guide the choice of

Cs. To mimic this situation in our experiments, we create an ensemble of 50,000

realizations of xs for the length of the assimilation windows using the random walk

model (7.5.1) and calculate the variance, averaged over the whole ensemble and

time. The variance of this ensemble will be denoted S. The variance, S, represents

an approximation to the total small-scale variability over the assimilation window.

We now compare the values of Cs computed in Figure 7.2 with the values of S.

Figure 7.3(a) shows the optimal Cs values when RI = 0.1 (dashed line) and RI = 0.5

(dotted line) for different values of Qs. The grey region shows all points between

S and 2S. As Qs is increased, the variance S also increases. Both optimal Cs lines

lie within the shaded region for nearly all Qs. We note that when there is little

small-scale variability (i.e. Qs ≈ 0) the optimal Cs values are less than S but both

are close to zero. Figure 7.3(b) shows the effect of changing Cs on the SKF true

large-scale analysis error variance (solid line) when RI = 0.1 and Qs = 0.35 in

comparison to the true large scale analysis error variances for the RKF and OKF.

Thus, for these experiments, a reasonable rule of thumb to avoid areas where the

SKF under- or overcompensates for the error due to unresolved scales, is to choose

S < Cs < 2S.

7.6.2 Comparison of the SKF with the RKF and OKF

Using the optimal values of Cs calculated in figure 7.2, we now carry out experiments

comparing the SKF and RKF for a range of values of RI and Qs relative to the

OKF. The results are illustrated in terms of relative error percentage for the RKF

in figure 7.4(a) and the SKF in figure 7.4(b). To generate these plots, RI ∈ [0, 0.5]

and Qs ∈ [0, 0.35] have been discretised into 50 equally-spaced points. The relative

error percentage is defined as

relative error percentage =

∣∣∣P̃ll,a
RKF/SKF − P̃ll,a

OKF

∣∣∣
P̃ll,a
OKF

× 100%, (7.6.1)

where |·| indicates the absolute value and each term is evaluated at the end of the

assimilation window. In these experiments, the SKF always has a true analysis

error variance smaller than or equal to the RKF. When there is no error due to

unresolved scales (i.e. Qs = 0) we have that Cs = 0 is the optimal value for Cs and

the SKF would reduce to the RKF. The largest relative error percentages for both

the RKF and SKF occur when there is large uncertainty due to unresolved scales

(large Qs) and small RI and the smallest differences are when Qs is small. We also

find that larger values of RI limit the difference in performance between the RKF
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Figure 7.3: (a): The optimal Cs values when RI = 0.1 (dashed line) and RI = 0.5
(dotted line) as functions of Qs. The grey region shows all points between S (lower
edge) and 2S (upper edge) for different values of Qs. (b): The effect of changing
Cs on the final true large-scale analysis error covariance for the SKF (solid line)
when Qs = 0.35 and RI = 0.1. Also shown are the OKF and RKF true large-scale
analysis error variance (lower dashed line and upper dotted line respectively). The
grey region shows all points between Cs = S (left edge) and Cs = 2S (right edge).
The optimal value of Cs (i.e. the minimum of the solid line) lies in this region.
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Figure 7.4: (a): Comparison of the RKF to the OKF at the final time-step in
terms of relative error percentage given by equation (7.6.1). (b): Comparison of the
SKF with optimal Cs to the OKF at the final time-step in terms of relative error
percentage.

and SKF with the OKF. Therefore, the benefits of using the SKF are most apparent

when there is considerable error due to unresolved scales and small instrument error.

Comparing figure 7.4(a) to figure 7.4(b) we see that, for any fixed value of RI , as

the uncertainty due to unresolved scales is increased, the improvement of the SKF

over the RKF will also increase.

To examine the performance perceived by the filter we compare it to the true per-

formance of the filter at the final time-step. Before discussing the results, we note

that the SKF perceived analysis error variance will not be a smooth field for the

(RI ,Qs) parameter pairs considered. This is because in section 7.6.1 the optimal

value of Cs was calculated to a limited precision of 0.001.
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In figure 7.5 we plot the difference between the perceived and true analysis error

variance at the final time-step. We note that the magnitude of the difference between

the perceived and true error variances is smallest for large RI and Qs. Here, the

SKF (RKF) perceived error variance is approximately 1.25 (0.5) times the size of the

true error variance. The SKF perceived-minus-truth difference shown in panel (a) is

always positive for non-negligible representation uncertainty. This shows the SKF is

a conservative filtering strategy when compensating for observations exhibiting error

due to unresolved scales. As both RI and Qs are increased the SKF perceived-minus-

truth difference increases. This is due to two reasons. The first reason is because the

perceived analysis error variance, Pll,a, increases with larger Cs as it is calculated

using the short form update (7.3.2) and the optimal Cs will be larger for higher

values of RI and Qs. The second reason is because, for non-negligible representation

uncertainty, the true analysis error variance, P̃ll,a, will decrease as Cs approaches

its optimal value. An illustrative case is provided by figure 7.3(b) for high represen-

tation uncertainty and low instrument uncertainty. Figure 7.5(b) shows the RKF

perceived-minus-truth difference. This is always negative for non-negligible repre-

sentation uncertainty. This shows the RKF is an overconfident filtering strategy for

observations exhibiting error due to unresolved scales. The RKF is most overconfi-

dent in regimes of low instrument uncertainty and high representation uncertainty.

7.7 Representation error bias correction through

state augmentation

Up to this point we have not considered observation bias in our numerical exper-

iments. However, in operational data assimilation, most observations or their re-

spective observation operators exhibit systematic errors which are referred to as

biases. A common approach for correcting observation biases online in a Kalman

filter algorithm is to augment the state vector with a bias term (Dee, 2005; Fertig

et al., 2009). The bias state will then be estimated and evolved along with the state

variables through the data assimilation algorithm (Friedland, 1969).

In section 7.2.3 we showed that observation errors may exhibit a representation error

bias when there is a contribution from the large-scale processes to the small-scale

state (i.e., when Msl 6= 0Ns×Nl). Throughout the remainder of this manuscript

we only consider bias due to unresolved scales which is linked to the state-space

representation of the small-scale processes. Since we know the exact form and origin

of the observation bias in this study we may treat it as a model bias. Therefore, we
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Figure 7.5: (a): Difference between the perceived and true analysis error variances
at the final time-step for the SKF with optimal Cs. (b): Difference between the
perceived and true analysis error variances at the final time-step for the RKF
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consider the augmented state vector x with form

x =

(
xl

xβ

)
, (7.7.1)

where xβ ∈ RNs is the bias state. Thus, xβ is intended to represent 〈xs,t〉 (cf.

(7.2.13)). For bias correction through state augmentation, we require a prior esti-

mate of the bias and a model to forecast it. Using (7.2.2), the forecast model for

the bias state is given by

xβk = Mslxlk−1 + Msxβk−1, (7.7.2)

where we have assumed the model for the bias to be perfect. Random noise can be

added to (7.7.2) to indicate that the bias evolution model is not perfect (Ménard,

2010) but is not explored here. In operational centres, the model for individual

sources contributing to the bias will be unknown and models describing the total bias

will be used instead. These models for the bias will be obtained from assumptions

imposed on the bias such as assuming it evolves slowly or is constant in time (e.g.,

Lea et al., 2008). In cases such as these, the bias estimate will likely be poor as the

variation of the bias with the evolution of the large-scale processes will be completely

unaccounted for.

We now examine how a bias correction scheme can be implemented in conjunction

with the SKF (section 7.7.1) and the RKF (section 7.7.2) to correct a bias due to

unresolved scales. Table 7.3 summarizes the components for these two filters which

are then substituted into the filter equations detailed in section 7.3.1.

7.7.1 The Schmidt-Kalman filter with observational bias cor-

rection

Bias correction through state augmentation is a common method used in operational

centres but use of a bias correction scheme with the SKF, which will be denoted

SKFbc, is novel.

We assume that we have knowledge of the processes for all scales. We further assume

that we have a model and prior estimate for the bias. The filtered state vector for

the SKFbc is given by equation (7.7.1) and only includes the large-scale state and

the bias term. The small-scale state is split into a biased and unbiased component,

i.e.

xs = xβ + xδ, (7.7.3)

such that 〈xs〉 = xβ. The unbiased small-scale processes, xδ, will be accounted

for through their statistics. The full observation operator for the SKFbc is given
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by (
Hl Hβ Hδ

)
∈ Rp×Na , (7.7.4)

where Hβ ∈ Rp×Ns and Hδ ∈ Rp×Ns are the linear observation operators which

map the bias and unbiased small-scale states into observation space respectively.

However, as with the SKF, the analysis update equation (7.3.1) uses a forecast

innovation that takes no account of the unbiased small-scales,

do,f = y −
(
Hl Hβ

)(xl,f
xβ,f

)
. (7.7.5)

This innovation is unbiased and hence the large-scale analysis errors are also unbi-

ased. The Kalman gain for the SKFbc consists of a large-scale gain Kl ∈ RNl×p and

a bias estimate gain Kβ ∈ RNs×p given by(
Kl

Kβ

)
=

(
Pll,f (Hl)T + Plβ,f (Hβ)T + Plδ,f (Hδ)T

Pβl,f (Hl)T + Pββ,f (Hβ)T + Pβδ,f (Hδ)T

)
D−1, (7.7.6)

where Plβ ∈ RNl×Ns is the perceived cross-covariance between the large-scale errors

and bias estimate errors, Plδ ∈ RNl×Ns is the perceived cross-covariance between

the large-scale errors and unbiased small-scale errors, Pββ ∈ RNs×Ns is the per-

ceived covariance of the bias estimate errors and Pβδ ∈ RNs×Ns is the perceived

cross-covariance between the bias estimate errors and unbiased small-scale errors.

The perceived augmented innovation covariance D is given in Table 7.3. This in-

creases the uncertainty the filter attributes to the forecast innovation compared

with the standard SKF. The additional uncertainty is a result of the errors accrued

in the estimation of the bias. The term HsCδ(Hs)T in the SKFbc innovation error

covariance corresponds to the variability of the unbiased small-scale processes.

The SKFbc equations are obtained from augmenting the large-scale terms with bias

terms and defining the cross-covariance terms appropriately. The analysis state

update for the SKFbc is then(
xl,t

xβ,a

)
k

=

(
xl,f

xβ,f

)
k

+

(
Kl

Kβ

)
k

(
yk −

(
Hl Hβ

)
k

(
xl,f

xβ,f

)
k

)
. (7.7.7)

To obtain the analysis error covariance update we augment the gain (7.7.6) with

Kδ = 0Ns×p and substitute into the short-form analysis error covariance update

(7.3.2). To mirror the SKF analysis error covariance update equations (7.3.12)-
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(7.3.14), we express the SKFbc analysis error covariance update equations as(
Pll,a Plβ,a

Pβl,a Pββ,a

)
k

=

(
INl −KlHl −KlHβ

−KβHl INs −KβHβ

)
k

(
Pll,f Plβ,f

Pβl,f Pββ,f

)
k

−

(
KlHδPδl,f KlHδPδβ,f

KβHδPδl,f KβHδPδβ,f

)
k

, (7.7.8)(
Plδ,a

Pβδ,a

)
k

=

(
INl −KlHl −KlHβ

−KβHl INs −KβHβ

)
k

(
Plδ,f

Pβδ,f

)
k

−

(
KlHδCδ

KβHδCδ

)
k

,

(7.7.9)(
Pδl,a Pδβ,a

)
k

=
((

Plδ,f
)T (

Pβδ,f
)T)

k
. (7.7.10)

Since in the context of the SKFbc the complete model evolving all scales is assumed

to be known, it is appropriate to update the bias term using this model (7.7.2).

Thus, the forecast state update is given by(
xl,f

xβ,f

)
k+1

=

(
Ml 0Nl×Ns

Msl Ms

)(
xl,t

xβ,a

)
k

. (7.7.11)

For the forecast error covariance we need the model for the unbiased small-scale

processes. To determine this model we use the definition (7.7.3) together with the

bias evolution equation (7.7.2), to give

xδk = Msxδk−1 + ηsk. (7.7.12)

Note that the small-scale model error ηs is assumed to be unbiased. To mirror

the SKF forecast error covariance update equations (7.3.16)-(7.3.18), we express the

SKFbc forecast error covariance updates as(
Pll,f Plβ,f

Pβl,f Pββ,f

)
k+1

=

(
Ml 0Nl×Ns

Msl Ms

)(
Pll,a Plβ,a

Pβl,a Pββ,a

)
k

(
Ml 0Nl×Ns

Msl Ms

)T

,

(7.7.13)(
Plδ,f

Pβδ,f

)
k+1

=

(
Ml 0Nl×Ns

Msl Ms

)(
Plδ,a

Pβδ,a

)
k

(Ms)T , (7.7.14)

(
Pδl,f Pδβ,f

)
k+1

=

(
Plδ,f

Pβδ,f

)T

k+1

. (7.7.15)

The prescribed unbiased small-scale error covariance Cδ is assumed constant in time

and is not updated.

The SKFbc allows us to correct biases due to unresolved scales and consider the

effects of the unbiased small-scale processes on the large-scale state. A key ad-
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vantage in this method is that the cross-correlations between the large-scale errors

and small-scale errors are retained. However, the SKF is a computationally expen-

sive procedure. This issue is exacerbated by the use of state augmentation for bias

correction.

7.7.2 The reduced-state Kalman filter with observation bias

correction

To save on the computational expense incurred by the SKFbc we can disregard the

unbiased small-scale processes to obtain the reduced-state Kalman filter with bias

correction (RKFbc). As before, we augment the large scale state vector with a bias

term, so that the estimated state is given by (7.7.1). The observation operator is

also augmented and takes the form,

H =
(
Hl Hβ

)
. (7.7.16)

As with the SKFbc, the forecast innovation (7.7.5) used in the analysis update

(7.3.1) takes no account of unbiased small scale error. Therefore, a properly specified

observation error covariance for the RKFbc contains both instrument error and

representation error (i.e. R = RI + RH).

Similarly to the SKFbc, the Kalman gain for the RKFbc consists of a large-scale

gain Kl ∈ RNl×p and a bias estimate gain Kβ ∈ RNs×p given by(
Kl

Kβ

)
=

(
Pll,f (Hl)T + Plβ,f (Hβ)T

Pβl,f (Hl)T + Pββ,f (Hβ)T

)
D−1, (7.7.17)

where the perceived innovation covariance D ∈ Rp×p is given in Table 7.3. Thus, the

analysis state update for the RKFbc is obtained through substitution of the gain

matrix (7.7.17) and forecast innovation (7.7.5) into the linear filter analysis state

update equation (7.3.1). Likewise, the analysis error covariance update equation is

obtained through substitution of the gain matrix (7.7.17) into the short form analysis

error covariance update (7.3.2) along with the observation operator (7.7.16).

For the RKF we assumed knowledge of the large-scale processes only. Hence, the

model for the bias due to unresolved scales would be unknown and further assump-

tions required for the observation bias correction scheme. Nevertheless, to provide a

direct comparison we will use the same model as the SKFbc (7.7.11) for the forecast

state update. This model and a consistent model error covariance matrix (see Table

7.3) are used for the augmented analysis error covariance update (7.3.2).

Comparison of the OKF column in table 7.1 and the RKFbc column in table 7.3

shows the two filters have similar components as a result of the bias correction
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through state augmentation approach. The key difference between the two filters is

the model error covariance expressions. The OKF accounts for the uncertainty in

all scales and so uses the full model error covariance. The RKFbc accounts for the

uncertainty in the large-scales and the estimate of the bias. Since the model for the

bias (7.7.2) has been assumed perfect the RKFbc will only account for large-scale

model error. We note that, as no knowledge of the small-scale processes is assumed

for the RKFbc, the forecast model will differ in practice from that of the OKF as

the RKFbc bias forecast model would come from additional assumptions placed on

the bias.

The RKFbc is a computationally cheaper alternative to the SKFbc for online bias

correction that takes no account of unbiased small-scale errors, except through the

choice of observation error covariance.

7.7.3 True analysis error equations for bias correcting fil-

ters

The true analysis error equation for the SKFbc and RKFbc will differ from the case

2 true analysis error equation (7.4.4) due to the innovation (7.7.5). The change will

only be in the large-scale part of the true analysis error equations as the small-scale

state is not analysed by either filter. The large-scale true analysis error equation for

the bias correction filters is obtained from subtracting Kl
kH

βxβ,fk from the case 2

true analysis error equation (7.4.4) which produces

el,ak =
(
INl −Kl

kH
l
k

)
Mlel,ak−1 +

(
INl −Kl

kH
l
k

)
ηlk + Kl

k

(
εk + γ lk + Hs,t

k x
s,t
k −Hβ

kx
β,f
k

)
.

(7.7.18)

We note that Hs,t
k x

s,t
k −Hβ

kx
β,f
k has zero-mean. Taking the expectation of the outer

product of el,ak in equation (7.7.18), the true large-scale analysis error covariance for

the bias correcting filters is given by

P̃ll,a
k =

(
INl −Kl

kH
l
k

)
P̃ll,f
k

(
INl −Kl

kH
l
k

)T
+ Kl

k

(
R̃I
k +

(
Hs,t
k x

s,t
k −Hβ

kx
β,f
k

)(
Hs,t
k x

s,t
k −Hβ

kx
β,f
k

)T)(
Kl
k

)T
.

(7.7.19)

The difference between the true analysis error covariance for the non-bias correcting

filters and (7.7.19) is that R̃H
k has been replaced with

(
Hs,t
k x

s,t
k −Hβ

kx
β,f
k

)(
Hs,t
k x

s,t
k −Hβ

kx
β,f
k

)T
,

which corresponds to the uncertainty due to unresolved scales and the uncertainty

in the estimate of the bias. Similarly to (7.4.5), equation (7.7.19) is still dependent

on xs,t and so a different form may be more suitable.

Using the definitions of the small-scale observation operator error (7.2.9), the er-
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ror due to unresolved scales (7.2.11), the small-scale forecast error (7.3.9) and the

identity (7.4.8) we can rewrite (7.7.18) as(
el,a

es,a

)
k

=

(
INt −

(
Kl
k

0Ns×p

)(
Hl Hs

))(el,f

es,f

)
k

+

(
Kl
k

0Ns×p

)(
εk + γ lk + γsk + Hs

kx
s,f
k −Hβ

kx
β,f
k

)
, (7.7.20)

which is analogous to (7.4.9). In order to use (7.7.20) to obtain the true error statis-

tics the correlations between es,fk and Hs
kx

s,f
k −Hβ

kx
β,f
k must be considered.

7.8 Experimental methodology for bias correct-

ing filters

7.8.1 Gaussian random walk model

To investigate the performance of the SKFbc and the RKFbc we will apply them

to the random walk model detailed in section 7.5.1. To introduce a bias into the

observations we will set the contribution from the large-scale processes to the small-

scale state Msl to be nonzero in (7.5.1). As in (7.5.1), the true observation operator

for the large- and small-scale states is H = (1 1) and consequently the observation

operator for the bias state Hβ = 1 and the unbiased small-scale state Hδ = 1.

To calculate the true large-scale analysis error variance of the RKFbc and SKFbc

we proceed as discussed in section 7.7.3. Noting that xs,f0 and xβ,f0 are forecast by

the same equation and tend to the same bias for large times we may neglect the

variance of xs,fk − x
β,f
k and the correlations between xs,fk − x

β,f
k and es,fk as they will

be small at the end of the assimilation window.

7.8.2 Initial conditions and filter parameters

The random walk model with Msl = 0.05 is used to create a reference or truth

trajectory for the large- and small-scale states. For our experiments we set xl,t0 = 10

and xs,t0 = Mslxl,t0 /(1− exp(−1/2)). This choice for the small-scale truth is the limit

of xs,t for the deterministic version of the random walk model (i.e. (7.5.1) with no

model noise). Using these initial conditions, the model equivalent of the observations

will be biased at each time-step. The initial prior large- and small-scale estimates

are set as (
xl,f0

xs,f0

)
=

(
xl,t0 + αl

xs,t0 + αs

)
, (7.8.1)
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where αl ∼ N (0,Pll,f
0 ) and αs ∼ N (0,Pss,f

0 ) where we take Pll,f
0 = 1 and Pss,f

0 = 0.1.

Similarly, we set the initial prior bias estimate as xβ,f0 = xs,t0 + αβ where αβ ∼
N (0,Pss,f

0 ). We take the initial cross-covariances between the forecast errors for

the large-scale and bias state errors to be zero. The modelled unbiased small-scale

error variance Cδ for the SKFbc will be varied for our experiments. We also take

the unbiased small-scale errors to be initially uncorrelated with large-scale and bias

estimate forecast errors. We set the large-scale model error variance as Ql = 1

throughout our experiments while Qs will be varied. Unless otherwise specified, the

instrument error variance will be set to RI = 0.1. For the RKFbc, we set RH = 0

so that the filter completely ignores the unbiased small-scale processes.

7.9 Numerical experiments with bias correcting

filters

7.9.1 Comparison between bias correcting filters and non-

bias correcting filters

We now consider the case of assimilating biased observations with standard and bias

correcting filters. Figure 7.6 shows the analyses created by the SKF and SKFbc

when assimilating biased observations for a single realization of the background,

observation and model errors where Qs = 0.3. As optimal modelled small-scale

error variances have not been calculated for the random walk model with Msl 6= 0,

we set Cδ = Cs = 0.1. These are suboptimal choices for both filters which results in

a small difference in the true analysis error variances between the SKFbc (SKF) and

RKFbc (RKF). Panel (a) shows an almost constant offset between the solutions of

the bias-correcting and non-bias correcting schemes. Furthermore, calculating the

time-average of the squared analysis errors we find the SKF error is over four times

larger than the SKFbc error.

For this realization, the time-average of the squared analysis errors for the RKFbc

and the SKFbc are the same to two decimal places. However, the SKFbc does have

a smaller true large-scale analysis error variance than the RKFbc and the difference

increases more as Cδ is more optimally chosen. The same is true for the RKF and

SKF with modelled variance Cs.

In figure 7.6(b) we see the bias value estimated by the SKFbc and the small-scale

true model solution for a particular realization, which is dominated by noise. The

bias state xβ,ak is intended to estimate the expected value of the small-scale state

evolved with the filter forecast model such that it is unaffected by small-scale noise

(see (7.7.3)). Using (7.2.2) we see that 〈xs,tk 〉 = 〈Mslxl,tk−1 + Msxs,tk−1 + ηsk〉 where

the angular brackets indicate the mathematical expectation over the distribution of
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the small-scale model errors. Here, we have plotted xs,tk which is dependent on the

large-scale noise and small-scale noise (cf. (7.2.2)). From this panel we see that the

bias estimate is consistent with the small-scale true model solution.

Additional experiments using persistence as the forecast model for the bias state

with the SKFbc have been carried out. We find that the time-average of the SKFbc

squared analysis errors is approximately three times smaller than the time-average

of the SKF squared analysis errors without bias correction. Nevertheless, the mean-

square analysis errors for the SKFbc with the persistence bias model are more than

50% larger than when using (7.7.2). Additionally, when using persistence as the

forecast model for the bias state in the RKFbc we find the time-average of the

squared analysis errors is also approximately three times less than the SKF error.

Hence, for this system it is more important to treat the bias due to unresolved scales

than compensate for the unbiased error due to unresolved scales.

7.9.2 Determining the optimal Cδ over the assimilation win-

dow

In this section we determine the optimal Cδ over the whole assimilation window.

For the SKF, we found that the choice of Cs was key to the performance of the

filter. We follow a similar procedure to section 7.6.1 to find the optimal values of

the unbiased small-scale error covariance Cδ. Our experiments have an assimilation

window of 15 time-steps with an observation assimilated at each time-step. To find

the optimal Cδ for given parameter values for RI and Qs, we calculate the true

large-scale analysis error variance of the SKFbc for Cδ ranging from 0 to 1 in steps

of ∆Cδ = 0.001 and save the value that produces the smallest variance at the final

time-step.

Figure 7.7 shows the optimal Cδ for different values of Qs and RI . The behaviour

is qualitatively similar to Cs with the SKF shown in figure 7.2 but numerical com-

parison is not meaningful as a different model is used. In particular, the size of Cδ

is primarily determined by the magnitude of Qs. However, we find that an increase

in RI can also result in a larger Cδ being optimal. If Msl is increased, the opti-

mal Cδ decreases as the uncertainty caused by the contribution from the large-scale

processes to the small-scale state becomes more important.

7.9.3 Comparison of the bias correction filters

In this section we evaluate the performance of the SKFbc and RKFbc relative to

the OKF and examine their perceived error variances.

We now compare the SKFbc and RKFbc with the OKF in terms of relative error

percentage (7.6.1), plotted in figure 7.8. The SKFbc provides most improvement over
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Figure 7.6: (a): The large-scale analysis for the SKFbc (square markers) and SKF
(diamond markers) obtained through assimilation of biased observations to recreate
the true large-scale state (grey dashed line). For this realization the large-scale
analysis mean-square-error for the SKFbc is 0.29 and for the SKF is 1.53. (b): The
SKFbc bias analysis estimate (square markers) and the true small-scale state (grey
dashed line) for the same realization as the top part of this figure.
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Figure 7.7: The values of Cδ which give the minimum true large-scale analysis error
variance at the end of the assimilation window for the SKFbc.

the RKFbc for large Qs and small RI . This behaviour is qualitatively similar to the

comparison between the RKF and SKF with the OKF shown in figure 7.4. We have

also examined the perceived and true analysis error variances for the RKFbc and

SKFbc (not plotted). The results are qualitatively similar to those given in section

7.6.2 for the RKF and SKF. Indeed, for non-negligible representation uncertainty the

SKFbc (RKFbc) is a conservative (overconfident) filtering strategy as the perceived-

minus-truth difference is positive (negative).

7.10 Summary and conclusion

Observations of the atmospheric state may contain information on spatio-temporal

scales unable to be represented by a numerical model. The resulting error caused

by this scale mismatch between the observations and numerical model is known as

the error due to unresolved scales. To obtain accurate analyses from assimilation of

these observations requires that the data assimilation algorithm correctly account

for this error.

In this work we have considered the ability of linear filters to compensate for the error

due to unresolved scales. We considered a finite-dimensional true state which could

be partitioned into a large-scale state resolved by a numerical model and a small-

scale state unresolved by a numerical model. The representation error was defined

in this framework and a bias due to unresolved scales was shown to occur when

there is a contribution from the large-scale processes to the small-scale state.

For our experiments we considered three filters: the Schmidt-Kalman filter (Janjić

and Cohn, 2006) that analyses the large-scales but models the uncertainty on all
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Figure 7.8: (a): Comparison of the RKFbc to the OKF in terms of relative error
percentage given by equation (7.6.1). (b): Comparison of the SKFbc with optimal
Cδ to the OKF at the final time-step in terms of relative error percentage.
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scales; the optimal Kalman filter, which analyses all scales, and a reduced-state

Kalman filter, which completely disregards the small-scale processes.

The three filters were tested numerically on a random walk model with one variable

for the large-scale processes and one variable for the small-scale processes. The

observations were taken to be the sum of the large- and small-scale states with

added noise to simulate instrument error. To obtain the best performance from the

Schmidt-Kalman filter we had to tune the modelled small-scale error covariance to

compensate for the variability of the small-scale processes which grew over the first

half of the assimilation window. The Schmidt-Kalman filter works best in regimes

of high error due to unresolved scales and low instrument error provided a suitable

approximate small-scale error covariance is used. Examination of the perceived

error variances revealed the analysis uncertainty calculated by the Schmidt-Kalman

filter is greater than the true analysis uncertainty when accounting for error due to

unresolved scales.

The novel use of the Schmidt-Kalman filter with an observation bias-correction

scheme was introduced as a means to correct the bias due to unresolved scales.

The Schmidt-Kalman filter with a bias correction scheme proved to be a suitable

method to treat observation biases and compensate for due to unresolved scales. In

our experiments we found it was more important to treat an observation bias than

to compensate for an unbiased error due to unresolved scales.

An important note to make regarding these experiments was that we had complete

knowledge of the small-scale processes. This allowed for minimal approximations to

be made to implement the Schmidt-Kalman filter and to tune the modelled error

variances. In an operational setting, where all the small-scale processes are likely

to be unknown, further approximations would be required. Assuming that the true

small-scale state is forecast by a simple model such as persistence may be a suitable

approximation for implementation. Additionally, the Schmidt-Kalman filter is a

computationally expensive method due to the augmentation and propagation of

the state error covariances. This must also be addressed before the filter could be

considered for large problems.

7.11 Chapter summary

In this chapter, we addressed the third research question given in chapter 1: can the

Schmidt-Kalman filter effectively treat observation error and bias due to unresolved

scales? The Schmidt-Kalman filter can effectively treat observation error due to

unresolved scales and was shown to be most effective in regimes of high uncertainty

due to unresolved scales and low instrument uncertainty. Additionally, by incorpo-

rating a bias correction scheme into the Schmidt-Kalman filter, we have created a
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novel filter that can correct observation biases and compensate for an unbiased error

due to unresolved scales simultaneously. We also found that it is more important

to treat an observation bias than account for an unbiased error due to unresolved

scales.

The Schmidt-Kalman filter provides an alternative method to compensate for obser-

vation uncertainty due to unresolved scales in data assimilation for linear systems.

In the next chapter we develop a new ensemble formulation of the Schmidt-Kalman

filter suitable for nonlinear dynamical systems such as those encountered in numer-

ical weather prediction.



Chapter 8

The ensemble transform

Schmidt-Kalman filter: a novel

method to compensate for

observation uncertainty due to

unresolved scales

In this chapter we build upon the investigation of the Schmidt-Kalman filter in

chapter 7 to answer the fourth research question given in chapter 1: how can the

Schmidt-Kalman filter be adapted for nonlinear models? In particular, we wish to

investigate:

• How can the small-scale variability utilised in the Schmidt-Kalman filter be

represented in an ensemble formulation?

• How does the ensemble formulation of the Schmidt-Kalman filter perform in

comparison to standard ensemble Kalman filters?

Abstract:

Data assimilation is a mathematical technique that uses observations to improve

model predictions through consideration of their respective uncertainties. Observa-

tion error due to unresolved scales occurs when there is a difference in scales observed

and modelled. To obtain an optimal estimate through data assimilation, the error

due to unresolved scales must be accounted for in the algorithm. In this work, we

derive a novel ensemble transform formulation of the Schmidt-Kalman filter (ET-

SKF). The ETSKF compensates for the observation uncertainty due to unresolved

scales in nonlinear dynamical systems by sampling a small-scale ensemble from the

138
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representation error covariance. To test the ETSKF, we use a simple nonlinear sys-

tem of ordinary differential equations with two timescales known as the swinging

spring (or elastic pendulum). The performance of the ETSKF is evaluated through

comparison with two versions of the ensemble transform Kalman filter (ETKF). The

first version of the ETKF completely disregards the uncertainty due to unresolved

scales. The second version of the ETKF includes the uncertainty due to unresolved

scales in the observation error covariance matrix. Our results show that the ET-

SKF is most beneficial when there is more uncertainty due to unresolved scales than

instrument uncertainty. In such situations, the ETSKF performs similarly to the

ETKF that includes the uncertainty due to unresolved scales in the observation

error covariance. Indeed, use of small-scale ensemble statistics has potential as a

new approach to compensate for observation uncertainty due to unresolved scales

in nonlinear dynamical systems.

8.1 Introduction

In ensemble data assimilation, the true state of a dynamical system is estimated us-

ing observational data and an ensemble of forecasts obtained from numerical models

(Houtekamer and Zhang, 2016; Bannister, 2017; Vetra-Carvalho et al., 2018). This

is achieved through consideration of the uncertainty associated with the observa-

tions and the uncertainty characterised by the forecast ensemble. The observation

uncertainty can be attributed to two sources: the instrument uncertainty and the

representation uncertainty. The instrument uncertainty arises from any errors in the

observation process caused by the measuring instrument. The representation uncer-

tainty is caused by the misrepresentation of an observation by the modelling system

(Janjić et al., 2018). The representation uncertainty can be further divided into three

components: pre-processing uncertainty, observation operator uncertainty, and the

uncertainty due to unresolved scales. The pre-processing uncertainty is caused by

the incorrect preparation of an observation for assimilation. The observation oper-

ator uncertainty is the result of an incorrect or approximate mapping of the state

variables to observation space in the analysis update. The uncertainty due to unre-

solved scales arises when there is a mis-match in scales observed and modelled.

The error due to unresolved scales is state-dependent and correlated (Janjić and

Cohn, 2006). For example, for meso-scale numerical weather prediction (NWP)

(12km grid spacing), Waller et al. (2014b) demonstrated that the error due to unre-

solved scales for specific humidity and temperature is state-dependent and spatially

correlated. In a similar study for convection-permitting NWP (1.5km grid spacing),

Waller et al. (2021) showed that the bias and uncertainty due to unresolved scales

for temperature, specific humidity, zonal and meridional wind were greatest in lower

model levels. Bell et al. (2021a) explored the characteristics of crowdsourced vehicle-
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based observations of air temperature and showed that the uncertainty of the cor-

responding observation-model comparisons is likely to be weather-dependent. The

representation uncertainty for Doppler radial winds at low heights consists primarily

of uncertainty due to unresolved scales, but becomes dominated by the observation

operator uncertainty as the height is increased (Waller et al., 2016c, 2019).

Methods to account for the error due to unresolved scales will depend on the size

of the observation footprint relative to the model grid (Janjić et al., 2018). When

the observation footprint is larger than the model grid-length, the error due to

unresolved scales may be compensated for by averaging the model state over the

observed area. When the reverse is true, the uncertainty caused by the small-scale

processes must be accounted for in the data assimilation algorithm. This case is

important for convection-permitting NWP, where high-resolution observations are

used to provide information on the relevant scales for data assimilation (e.g., Sun

et al., 2014; Ballard et al., 2016; Clark et al., 2016; Gustafsson et al., 2018; Dance

et al., 2019; Waller et al., 2019). In this manuscript, we consider the uncertainty

due to unresolved scales that occurs when an observation contains information on

scales smaller than those resolved by the numerical model.

In order to produce an optimal analysis through assimilating high-resolution ob-

servations, the uncertainty due to unresolved scales must be properly accounted

for by the data assimilation algorithm (Stewart et al., 2008, 2013; Stewart, 2010;

Rainwater et al., 2015; Fowler et al., 2018; Simonin et al., 2019; Bell et al., 2020).

There are several methods that may be used to compensate for uncertainty due to

unresolved scales in data assimilation. The standard approach is to include the rep-

resentation uncertainty in the observation error covariance (e.g., Hodyss and Satter-

field, 2016; Fielding and Stiller, 2019). This may be achieved through estimation of

the entire observation error covariance through statistical diagnostic methods (e.g.,

Schraff et al., 2016; Waller et al., 2016c,a; Cordoba et al., 2017; Simonin et al., 2019;

Waller et al., 2019), or by estimation of the representation error covariance using

high-resolution data (e.g., Daley, 1993; Liu and Rabier, 2002; Oke and Sakov, 2008;

Schutgens et al., 2016; Waller et al., 2021). The error due to unresolved scales may

instead be treated as a model error and compensated for with inflation techniques

(e.g., Carrassi and Vannitsem, 2011; Mitchell and Carrassi, 2015).

In this paper, we consider a different approach where the large-scale state resolved

by a model is estimated and the statistics of the unresolved small-scale processes

are considered. Such multiscale approaches have been successful for both variational

(Li et al., 2015) and ensemble Kalman filter (Grooms et al., 2014) methods of data

assimilation. A multiscale method of data assimilation that has been relatively

unexplored for atmospheric data assimilation is the Schmidt-Kalman filter (SKF)

(Schmidt, 1966). The potential of the SKF to compensate for uncertainty due
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to unresolved scales in linear systems was first demonstrated by Janjić and Cohn

(2006). Further experiments conducted by Bell et al. (2020) showed the SKF is most

beneficial in regimes of high uncertainty due to unresolved scales and low instrument

uncertainty. In order to use the SKF for atmospheric data assimilation, it must

be adapted to an ensemble formulation compatible with nonlinear models. While

a stochastic ensemble formulation of the SKF has been derived (Lou et al., 2018),

observation perturbations are required to obtain the desired analysis error statistics.

The ensemble transform Kalman filter (ETKF) is referred to as a deterministic filter

as the analysis ensemble is constructed deterministically. The primary benefit of

using a deterministic filter instead of a stochastic filter is that the sampling error

caused by perturbing observations is eliminated (Tippett et al., 2003). Another

benefit of the ETKF in comparison to other deterministic ensemble filters is the

small computational cost of implementation (Vetra-Carvalho et al., 2018). The aim

of this paper is to develop an ensemble transform formulation of the SKF suitable

for applications with limited ensemble sizes.

The structure of this paper is as follows. In section 8.2 we discuss the model and ob-

servation configurations and provide a description of the ensemble transform Kalman

filter. In section 8.3, we introduce the Schmidt-Kalman filter and extend it to an en-

semble transform formulation. The experimental design that will be used to test the

ensemble transform Schmidt-Kalman filter is described in section 8.4 and the results

are given in section 8.5. We find that the ensemble transform Schmidt-Kalman fil-

ter is most beneficial when the uncertainty due to unresolved scales is greater than

the instrument uncertainty. Furthermore, in our experiments the performance of

the ensemble transform Schmidt-Kalman filter is similar to the ensemble transform

Kalman filter that includes the uncertainty due to unresolved scales in the observa-

tion error covariance. In section 8.6 our results are summarised and our conclusions

are drawn.

8.2 Theoretical framework

Following Bell et al. (2020), the mathematical framework used to examine the error

due to unresolved scales is to estimate the projection of some state from a high,

but finite-dimensional real vector space, onto a lower-dimensional subspace using

knowledge of the system dynamics. We begin by describing the numerical model in

section 8.2.1, the observations in section 8.2.2, and the standard ensemble transform

Kalman filter in section 8.2.3.
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8.2.1 Model configuration

In this section, we introduce the perfect and forecast models. The large-scale dy-

namics are assumed to reside in a subspace of the phase-space for the full system.

The phase-space for the small-scale dynamics will be the complement of the large-

scale subspace. We therefore express the true state xt ∈ RNt in the partitioned

form

xt =

(
xl,t

xs,t

)
, (8.2.1)

where xl,t ∈ RNl is the true large-scale state, xs,t ∈ RNs is the true small-scale state,

and Nt = Nl + Ns. Throughout this paper, any component with a t-superscript

indicates it is a true variable. The l- and s-superscripts correspond to the large- and

small-scale processes within the complete system dynamics.

For nonlinear dynamical systems, the perfect model evolving the true state is given

by the coupled system (
xl,t

xs,t

)
k

=

(
Ml,t(xl,t,xs,t)

Ms,t(xl,t,xs,t)

)
k−1

, (8.2.2)

where Ml,t : [RNl ,RNs ] → RNl and Ms,t : [RNl ,RNs ] → RNs are the true nonlinear

models that map the true large- and small-scale states forward in time respectively.

From a numerical modelling perspective, this partitioned description of the dynamics

could be suited to a pseudospectral discretization (e.g. Fourier modes).

In NWP, approximate models for the large-scale dynamics that use subgrid-scale

parameterizations to represent the influence of the small-scale processes are em-

ployed (Janjić and Cohn, 2006; Janjić et al., 2018) while models for the small-scale

dynamics are disregarded. We therefore assume the imperfect forecast model has

the partitioned form (
xl,t

xs,t

)
k

=

(
Ml(xl,t)

xs,t

)
k−1

−

(
ηl

ηs

)
k

, (8.2.3)

where Ml : RNl → RNl is the imperfect nonlinear forecast model that maps the

large-scale state forward in time and ηl ∈ RNl and ηs ∈ RNs are the large- and

small-scale model errors assumed to have zero-mean and static covariance(
Qll Qls

Qsl Qss

)
. (8.2.4)

Here, Qll ≡ 〈ηl(ηl)T 〉 ∈ RNl×Nl and Qss ≡ 〈ηs(ηs)T 〉 ∈ RNs×Ns are the model error

covariances for the large- and small-scale processes, and Qls ≡ 〈ηl(ηs)T 〉 ∈ RNl×Ns
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(with Qsl =
(
Qls
)T

) is the cross-covariance between the large- and small-scale model

errors. The assumption that the small-scale forecast model is persistence is related

to the implementation of our novel filter which we discuss in section 8.3.3.

Analogously, the complete forecast state
(
(xl,f )T (xs,f )T

)T ∈ RNt satisfies(
xl,f

xs,f

)
k

=

(
Ml(xl,f )

xs,f

)
k−1

, (8.2.5)

where the f -superscript indicates the forecast. We note that the small-scale forecast

xs,f is usually omitted in practice as it is unknown. Similarly to the model error

covariance, the forecast state error covariance at time tk will be in the partitioned

form (
Pll,f Pls,f

Psl,f Pss,f

)
k

, (8.2.6)

where each block has the same dimensions as the corresponding model error block.

Using this formulation of the complete system dynamics, we may apply filters that

analyse the large-scale state only but account for the small-scale processes in different

ways.

8.2.2 Observation configuration

In this section we describe the observations in terms of the true partitioned state

and discuss the observation uncertainty. The observations, y ∈ Rp, are assumed

to be the sum of the true large- and small-scale states mapped into observation

space. Assuming each component to be valid at time k so that we may drop the

time subscript, the observations can then be expressed as

y = hl
(
xl,t
)

+ hs
(
xs,t
)

+ eo, (8.2.7)

where hl : RNl → Rp and hs : RNs → Rp are the imperfect large- and small-scale

observation operators, and eo ∈ Rp is the observation error that is assumed to be

random and unbiased. In this formulation, the error due to unresolved scales is

given by hs(xs,t) and is not part of the observation error term eo. Throughout this

manuscript, we assume there is no observation operator error or pre-processing error

such that eo is comprised entirely of instrument error. Therefore, the instrument

uncertainty is given by RI ≡< eo(eo)T > and the representation uncertainty is given

by

R̃H ≡< hs(xs,t)(hs(xs,t))T >, (8.2.8)
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where the angular brackets denote the mathematical expectation over the corre-

sponding error distribution. Here, we have used a tilde (∼) to indicate the true

representation uncertainty. In later sections, approximations to the representation

uncertainty will not have a tilde.

8.2.3 Data assimilation using the ensemble transform Kalman

filter

The ensemble transform Kalman filter (ETKF) (Bishop et al., 2001; Wang et al.,

2004) is a commonly used filter for environmental data assimilation. The ETKF uses

an ensemble of m forecasts, xl,f,(i) ∈ RNl for i = 1, . . . ,m, as a statistical sample

to approximate the true state of a system. The forecast ensemble is combined with

observations through their respective uncertainties to provide a best estimate of the

true state known as the analysis. The ETKF algorithm consists of a correction

step, known as the analysis, and a prediction step, known as the forecast. We first

describe the ETKF analysis update equations where it can be assumed that all

components are valid at the same time so that the time subscript may be dropped.

The estimate of the true large-scale state of the system is given by the forecast

ensemble mean,

xl,f =
1

m

m∑
i=1

xl,f,(i), (8.2.9)

where the (i) superscript denotes the i-th ensemble member. The uncertainty asso-

ciated with xl,f is given by the large-scale forecast error covariance

Pll,f = Xl,f
(
Xl,f

)T
, (8.2.10)

where Xl,f ∈ RNl×m is the forecast perturbation matrix given by

Xl,f =
1√
m− 1

(
xl,f,(1) − xl,f . . . xl,f,(m) − xl,f

)
. (8.2.11)

The ETKF mean analysis state update is given by

xl,a = xl,f + Kl
(
y −Hlxl,f

)
. (8.2.12)

Here, Kl ∈ RNl×p is the Kalman gain and Hl ∈ Rp×Nl is a linear, large-scale obser-

vation operator. The Kalman gain is given by

Kl = Xl,f
(
Yl,f

)T
D−1, (8.2.13)



8.2 Theoretical framework 145

where Yl,f = HlXl,f and D ∈ Rp×p is the innovation covariance given by

D = Yl,f
(
Yl,f

)T
+ R, (8.2.14)

where R ∈ Rp×p is the observation error covariance assumed by the filter which

may or may not contain a representation uncertainty component. In equations

(8.2.12)–(8.2.14), we have used a linear form of observation operator for notational

convenience, and we will continue to use this linear form throughout the rest of this

article. However, the filter equations are straightforwardly generalizable to nonlinear

observation operators as

Yl,f =
1√
m− 1

(
hl(xl,f,(1))− hl(xl,f ) . . . hl(xl,f,(m))− hl(xl,f )

)
. (8.2.15)

The analysis perturbation matrix is given by

Xl,a = Xl,fT, (8.2.16)

where

TTT = Im −
(
Yl,f

)T
D−1Yl,f (8.2.17)

=
(
Im +

(
Yl,f

)T
R−1Yl,f

)−1
(8.2.18)

with Im ∈ Rm×m the identity matrix. To obtain equation (8.2.18), we apply the

Sherman-Morrison-Woodbury identity (Tippett et al., 2003) to D−1 in equation

(8.2.17).

Lastly, using the singular value decomposition on (Yl,f )TR−1/2 we obtain

T = U
(
Im + ΣΣT

)−1
UT (8.2.19)

(Wang et al., 2004; Livings, 2005; Livings et al., 2008). Here, U ∈ Rm×m is an

orthogonal matrix containing the left singular vectors of (Yl,f )TR−1/2 and Σ ∈ Rm×p

is a rectangular diagonal matrix containing the corresponding non-zero singular

values. The analysis ensemble is obtained by adding the analysis ensemble mean

xl,a to each column of (m− 1)1/2Xl,a.

In the forecast step, the analysis ensemble is evolved using the nonlinear forecast

model. Reintroducing the time subscript, the forecast update is given by

x
l,f,(i)
k+1 =Ml(x

l,a,(i)
k )− ηl,(i)k+1, (8.2.20)

where ηl,(i) is additive inflation or model error for the i-th ensemble member (Houtekamer

and Zhang, 2016). We note that multiplicative inflation (e.g., Anderson and An-
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derson, 1999; Zheng, 2009) could be used instead of additive inflation to ensure

the magnitude of the forecast ensemble variance is sufficiently large. However, in

this manuscript we use additive inflation as it is more in line with the work of Bell

et al. (2020). In the following section, we extend the Schmidt-Kalman filter to a

deterministic ensemble transform formulation.

8.3 The deterministic ensemble Schmidt-Kalman

filter

In section 8.3.1 we describe the Schmidt-Kalman filter (Schmidt, 1966) and how

it may be used to compensate for error due to unresolved scales. We then extend

the Schmidt-Kalman filter to a novel ensemble transform formulation suitable for

nonlinear models in section 8.3.2 and provide additional discussion on the filter im-

plementation in section 8.3.3. Throughout this section, all components are assumed

to be valid at the same time so we do not include any time subscripts.

8.3.1 The Schmidt-Kalman filter

The Schmidt-Kalman filter (SKF) is a linear filter that analyses the large-scale state

only through consideration of the large-scale uncertainty and the variability of the

small-scale processes (Janjić and Cohn, 2006; Bell et al., 2020). The analysis state

update has a similar form to equation (8.2.12), where the large-scale gain matrix Kl

is given by

Kl =
(
Pll,f Pls,f

)((Hl
)T

(Hs)T

)((
Hl Hs

)(Pll,f Pls,f

Psl,f Cs

)((
Hl
)T

(Hs)T

)
+ RI

)−1
.

(8.3.1)

Here, the forecast error covariance blocks Pll,f , Pls,f and Psl,f are defined in equa-

tion (8.2.6), Cs ∈ RNs×Ns is a climatological approximation to the true small-scale

variability, 〈xs,t(xs,t)T 〉, and the observation operator is in partitioned form where

Hs ∈ Rp×Ns is the small-scale observation operator. We note that from equation

(8.2.8), an approximation of the representation error covariance is given by

RH = HsCs(Hs)T . (8.3.2)

The large-scale forecast error covariance Pll,f and forecast cross-covariance Pls,f are

analysed using the gain matrix given by equation (8.3.1).

In the forecast step, the SKF evolves the large-scale analysis state xl,a, the large-

scale analysis error covariance Pll,a, and the analysis cross-covariance Pls,a. Only

knowledge of the large-scale model is required to evolve xl,a whereas knowledge of
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the complete system dynamics is required to evolve Pll,a and Pls,a. For a detailed

description of the SKF equations we refer the reader to Bell et al. (2020).

The difference between the SKF and the standard Kalman filter that analyses the

large-scale state only can be seen through their treatment of the small-scale vari-

ability. The SKF accounts for the small-scale variability in state-space which allows

for the consideration of the flow-dependent cross-covariances between the large-scale

uncertainty and the small-scale variability. As a result of this, the observation error

covariance for the SKF will consist of instrument uncertainty only. The standard

Kalman filter may account for the small-scale variability in observation space (i.e.

R = RI+RH) or completely disregard it altogether (i.e. R = RI) such that only the

large-scale filter and model components are needed for its implementation. There-

fore, the analysis and forecast error cross-covariances are completely disregarded by

the standard Kalman filter. The disadvantage of using the SKF over the standard

Kalman filter is the high computational cost associated with the augmentation of

the state error covariances. Due to the small computational cost of implementa-

tion for the ETKF (Vetra-Carvalho et al., 2018), we believe an ensemble transform

formulation of the SKF would be the most suitable ensemble adaptation. We now

derive the ensemble transform SKF.

8.3.2 The ensemble transform Schmidt-Kalman filter (ET-

SKF)

To derive the ensemble transform SKF (ETSKF), the small-scale covariance Cs must

be approximated through ensemble statistics in the analysis step. As xs,t is not

estimated in the SKF equations, the small-scale perturbation matrix, Xs ∈ RNs×m,

may be obtained by sampling an ensemble of size Ns ×m from the climatological

approximation of the small-scale varability, Cs, and dividing by
√
m− 1. Hence,

the forecast cross-covariance is given by

Pls,f = Xl,f (Xs)T . (8.3.3)

Further discussion regarding the construction of the small-scale perturbation matrix

is given in section 8.3.3.

We next describe the ETSKF analysis update equations. The gain matrix for the

ensemble formulation of the Schmidt-Kalman filter is given by

Kl =
(
Xl,f

(
Yl,f

)T
+ Xl,f (Ys)T

)
D−1, (8.3.4)
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where Ys = HsXs and D is the innovation covariance given by

D =
(
Yl,f + Ys

) (
Yl,f + Ys

)T
+ RI . (8.3.5)

For the same reasons as discussed in section 8.3.1, the observation error covariance

assumed by the ETSKF will not contain a component corresponding to the uncer-

tainty due to unresolved scales. The ETSKF mean analysis state update is obtained

by using the gain in equation (8.3.4) in the ETKF mean analysis state update given

by equation (8.2.12).

To derive the analysis perturbation matrix, we start by writing the SKF large-scale

analysis error covariance update,

Pll,a =
(
INl −KlHl

)
Pll,f −KlHsPsl,f (8.3.6)

(equation (3.12), Bell et al., 2020), in terms of perturbation matrices to obtain

Xl,a
(
Xl,a

)T
=
(
INl −

(
Xl,f

(
Yl,f

)T
+ Xl,f (Ys)T

)
D−1Hl

)
Xl,f

(
Xl,f

)T
−
(
Xl,f

(
Yl,f

)T
+ Xl,f (Ys)T

)
D−1HsXs

(
Xl,f

)T
= Xl,f

(
Im −

[
Yl,f + Ys

]T
D−1

[
Yl,f + Ys

]) (
Xl,f

)T
. (8.3.7)

We now define T ∈ Rm×m such that

TTT = Im −
[
Yl,f + Ys

]T
D−1

[
Yl,f + Ys

]
. (8.3.8)

We now ask the reader to compare equation (8.3.8) with the definition of T for the

ETKF given in equations (8.2.17)–(8.2.18). Similarly to equation (8.2.18), we apply

the Sherman-Morrison-Woodbury identity on D−1 and then use the singular value

decomposition on
[
Yl,f + Ys

]T (
RI
)−1/2

to obtain

T = U
(
Im + ΣΣT

)−1/2
UT , (8.3.9)

where U ∈ Rm×m is now an orthogonal matrix containing the left singular vectors of(
Yl,f + Ys

)T (
RI
)−1/2

and Σ ∈ Rm×p is a rectangular diagonal matrix containing

the corresponding non-zero singular values. Hence, the ETSKF analysis update

equations are obtained by replacing Yl,f with Yl,f + Ys and R with RI in the

ETKF equations. The ETSKF forecast step is identical to the ETKF forecast step

given by equation (8.2.20).
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8.3.3 Discussion of the small-scale perturbation matrix

The ETSKF compensates for uncertainty due to unresolved scales through use of

a small-scale perturbation matrix. Since the small-scale perturbation matrix is

mapped into observation space in the ETSKF equations, we may construct the

small-scale ensemble by sampling an ensemble of size p×m from an approximation

of the uncertainty due to unresolved scales given by equation (8.3.2). For the addi-

tive inflation used in section 8.5, it is necessary to resample the small-scale ensemble

every analysis step to ensure enough degrees of freedom to avoid filter divergence.

However, if sufficiently large additive inflation is used, it may be possible to use

the same small-scale ensemble in each analysis step. An approximation to the cli-

matological uncertainty due to unresolved scales may be obtained in several ways

(e.g., Daley, 1993; Liu and Rabier, 2002; Oke and Sakov, 2008; Schutgens et al.,

2016; Waller et al., 2021). Sampling the small-scale ensemble in observation space is

preferable as it circumvents the need for a small-scale observation operator Hs.

To determine a strategy to sample the small-scale ensemble for the ETSKF, we

examine how the cross-covariance between the large-scale uncertainty and the small-

scale variability, Pls, is treated by the SKF. While the small-scale covariance, Cs,

is taken to be time-independent by the SKF, Pls is explicitly evolved. The cross-

covariance is analysed by

Pls,a =
(
I−KlHl

)
Pls,f −KlHsCs = Xl,fTTT (Xs)T (8.3.10)

(equation (3.13), Bell et al., 2020), where the second equality is obtained by ex-

pressing the covariances in terms of perturbation matrices. We now define two

sampling strategies for the ETSKF. The first sampling strategy is a computation-

ally inexpensive method to sample the small-scale perturbation matrix, but neglects

the evolution of the cross-covariances between the large-scale forecast uncertainty

and the small-scale variability. The second sampling strategy provides an example

of how the evolution of the cross-covariances may be accounted for, but is more

computationally expensive than the first sampling strategy.

1. The small-scale perturbation matrix Ys is sampled from N (0,RH) such that

the evolution of the cross-covariance between the large-scale uncertainty and

small-scale variability is unaccounted for (i.e. random). The ETSKF that uses

this sampling strategy will be referred to as the ETSKF-R.

2. The partitioned perturbation matrix
(

(Yl,a)T (Ys)T
)T

is sampled fromN (0,Ψ)
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where

Ψ =

(
HlPll,a

(
Hl
)T

HlPls,a (Hs)T

HsPsl,a
(
Hl
)T

HsCs (Hs)T

)
=

(
Yl,fTTT

(
Yl,f

)T
Yl,fTTT (Ys)T

YsTTT
(
Yl,f

)T
RH

)
.

(8.3.11)

Here, the second equality is obtained using equations (8.3.2), (8.3.7) and

(8.3.10). The Ys obtained from this sampling will have consistent cross-

covariances and will be used in the ETSKF algorithm. The Yl,a obtained

from this sampling will be discarded. We refer to the ETSKF using this sam-

pling strategy as ETSKF-C.

In both cases, Ys is sampled after Xl,a is calculated and is used in the following

analysis step. We note that as the small-scale forecast model in equation (8.2.3) is

persistence, the cross-covariances are correctly forecast by the ETSKF-C.

8.3.4 Discussion of the computational expense

Due to the use of a small-scale perturbation matrix Ys in the analysis step, the

ETSKF will have a greater computational cost than the ETKF. Provided the obser-

vation error covariance is diagonal, the general leading order of operation count for

the ETKF is O(Nlm
2+pm2+m3) (Vetra-Carvalho et al., 2018). In the forecast step,

the ETSKF evolves the large-scale state using equation (8.2.20), which is identical

to the ETKF forecast step. In the analysis step, the ETSKF equations are obtained

by replacing Yl,f with Yl,f + Ys and R with RI in the ETKF equations. Hence,

the additional computational expense of the ETSKF in reference to the ETKF is

caused by sampling the small-scale ensemble Ys and adding it to Yl,f each analysis

step. Two methods for sampling Ys were given in section 8.3.3. The first strategy

involves sampling Ys from RH . Using this strategy would result in the cheapest

computational implementation of the ETSKF as RH , or a decomposition of RH

that may be used for random sampling such as the Cholesky decomposition, may

be computed offline. The second strategy involves sampling
(
(Yl,a)T (Ys)T

)T
from

Ψ ∈ R2p×2p, given by equation (8.3.11). The computational expense of the second

strategy is a substantially greater than the first sampling strategy as it requires the

construction of Ψ every analysis step before the random sampling can occur. In

operational weather prediction this would be computationally expensive.
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Figure 8.1: Schematic of the swinging spring. The angle θ is measured from the
downward vertical and the length of the spring r is measured from the point of
suspension to the mass.

8.4 Experimental design

8.4.1 The Swinging Spring model

To evaluate the performance of the ETSKF we will use the swinging spring (elastic

pendulum) model (Lynch, 2002) shown in figure 8.1. The swinging spring consists

of a mass m suspended from a fixed point by a spring with unstretched length `0

and elasticity k in a uniform gravitational field g. The spring is unable to bend

and can stretch along its length. Using polar coordinates, the nonlinear system of

coupled ordinary differential equations describing the motion of the swinging spring

is given by

θ̇ =
pθ
mr2

, (8.4.1)

ṗθ = −mgr sin θ, (8.4.2)

ṙ =
pr
m
, (8.4.3)

ṗr =
p2θ
mr3

− k(r − `0) +mg cos θ, (8.4.4)

where θ is the angle measured from the downward vertical with momentum pθ and

r is the length of the spring measured from the point of suspension with momentum

pr.

The swinging spring system has two equilibrium points: a stable equilibrium with
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the spring stretched vertically below the point of suspension, and an unstable equi-

librium where the spring is compressed vertically above the point of suspension. For

our experiments, we consider only the stable equilibrium point. The equilibrium

length of the spring is given by

` = `0 +
mg

k
. (8.4.5)

The frequency of the rotational motions is

ωθ =

√
g

`
, (8.4.6)

and the frequency of the elastic motions is

ωr =

√
k

m
. (8.4.7)

Provided ωθ/ωr < 1, the rotational motions will correspond to the large-scale pro-

cesses and the elastic motions will correspond to the small-scale processes. For our

experiments, we set ` = 1, m = 1, g = π2, and k = 3π2 so that there is a separa-

tion in scales and substantial small-scale variability. Typical behaviour of the state

variables is shown in figure 8.2. The sign of θ, pθ and pr change over time and all

state variables are out of phase with each other. The frequency of θ and pθ is lower

than the frequency of r and pr. Hence, θ and pθ may be correctly represented with

a coarser temporal resolution than r and pr.

To obtain the true partitioned model in equation (8.2.2), we define r = `+ ρ where

ρ is the displacement of the spring from the stable equilibrium with momentum pρ.

We note that, since ` is fixed, the variability of r is completely associated with ρ.

With this transformation, the swinging spring system of ODEs is given by

θ̇ =
pθ

m(`+ ρ)2
, (8.4.8)

ṗθ = −mg(`+ ρ) sin θ, (8.4.9)

˙̀ = 0, (8.4.10)

ρ̇ =
pρ
m
, (8.4.11)

ṗρ =
p2θ

m(`+ ρ)3
− k(`+ ρ− l0) +mg cos θ. (8.4.12)

Using this form of the swinging spring, the large-scale state is given by (θ pθ `)T

and the small-scale state is given by (ρ pρ)
T .

To obtain the large-scale forecast model in equation (8.2.3), we neglect ρ from

equations (8.4.8)-(8.4.10) such that the large- and small-scale processes are uncou-
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pled:

θ̇ =
pθ
m`2

, (8.4.13)

ṗθ = −mg` sin θ, (8.4.14)

˙̀ = 0. (8.4.15)

We note that the forecast model for θ and pθ will have model error due to unresolved

scales.

To integrate the true system in equations (8.4.8)-(8.4.12) and the forecast model in

equations (8.4.13)-(8.4.15), we will use the MATLAB (version R2020b) ode45 solver.

The ode45 function is a Runge-Kutta method with a variable timestep based on the

Dormand-Prince (4, 5) method (Dormand and Prince, 1980), where we use a relative

error tolerance of 10−3 and an absolute error tolerance of 10−6. The value of the

systems will be recorded every 0.01 model seconds.

8.4.2 Observations and their uncertainty

For our experiments, we consider observations of θt and rt = `t + ρt. Expressing the

observations y ∈ R2 in the form of equation (8.2.7), we have

y =

(
1 0 0

0 0 1

)θ
t

ptθ
`t

+

(
0 0

1 0

)(
ρt

ptρ

)
+ eo, (8.4.16)

where the first matrix-vector product corresponds to Hlxl,t, the second matrix-

vector product corresponds to the error due to unresolved scales Hsxs,t, and eo ∈ R2

is the observation error. We remind the reader that in this instance the observation

error consists only of instrument error.

To generate observations, we take the values of θt and rt at specified time-steps and

add observation error eo. The observation error will have distribution eo ∼ N (0, σ2I)

where σ2 will be specified in each experiment.

In our experiments, we consider filters that analyse the large-scale state only. Hence,

the observations of rt will be treated as observations of `t with error due to unresolved

scales ρt. We note that there is a bias due to unresolved scales as the time average of

ρt is non-zero. The removal of the bias due to unresolved scales from the observations

will be detailed in section 8.4.3.
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8.4.3 Twin experiments

In our experiments we will use four filters: the ETKF that disregards uncertainty

due to unresolved scales (i.e. R = RI) which we denote the ETKF-LS, the ETKF

that compensates for uncertainty due to unresolved scales (i.e. R = RI+RH) which

we will denote the ETKF-RH, the ETSKF-R and the ETSKF-C. The two versions of

the ETSKF we use differ by their sampling strategies which are described in section

8.3.3.

To evaluate the performance of the ETSKF we will perform twin experiments where

a trajectory obtained from the true model given by equations (8.4.1)-(8.4.4) will

be recreated by assimilating imperfect observations of this true trajectory into the

forecast. The bias due to unresolved scales will be removed from the observations

before their assimilation so that we may focus on the ability of the ETSKF to com-

pensate for uncertainty due to unresolved scales. The forecast will be evolved using

the large-scale forecast model given by equations (8.4.13)-(8.4.15). Each experiment

will consist of the following initialization steps.

1. Using the true model in equations (8.4.1)-(8.4.4), evolve the state
(

1 0 1 0
)T

for 100 seconds and use the MATLAB (version R2020b) function randi to

choose a starting point tstart for the assimilation. The truth trajectory is ob-

tained by evolving the truth from time tstart for 10 model seconds.

2. Create observations with form given by equation (8.4.16) from the truth tra-

jectory every 0.9 seconds and remove the bias due to unresolved scales. This

observation frequency is chosen such that each filter produced good approxima-

tions of `t, but there was some difference in performance between the various

filters. When the observations are more frequent, we found that `t was ap-

proximated extremely well by all filters and there was no discernible difference

in performance. In the experiments with less frequent observations, we found

that `t was approximated poorly by all filters. The observation bias is calcu-

lated as 〈rt〉 − `t where the angular brackets denote the temporal average of

the 100-second run of rt produced in step 1 and `t = 1.

3. Using the large-scale forecast model in equations (8.4.13)-(8.4.15), evolve the

state
(

1 0 1 + ζ
)T

, where ζ ∼ N (0, 0.22), to time tstart to obtain the mean

forecast state at the beginning of the assimilation window.

4. Generate an initial forecast ensemble of m = 50 members by adding random

noise el,f0 ∼ N (0,Pll,f
0 ) to the mean forecast state at time tstart obtained in 3.

Due to the low dimensionality of the forecast model, this ensemble size will

be sufficient to circumvent the effects of sampling error on filter performance.
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The initial forecast error covariance is set to

Pll,f
0 =

0.2 0 0

0 0.6 0

0 0 0.2


2

, (8.4.17)

such that the standard deviation of the forecast error is approximately 20%

the amplitude of θt and ptθ and size of `t.

This experiment is repeated 200 times so that we may calculate statistics from the

results of each experiment.

The ETKF-RH, ETSKF-R and ETSKF-C use a time-averaged approximation of the

representation uncertainty. This approximation is obtained by taking the covariance

of a single 100 model second truth run of (rt ptr) used in the initialization procedure

and mapping to observation space with Hs. The climatological approximation of

the representation uncertainty is given by

RH
clim =

(
0 0

0 0.282

)
. (8.4.18)

To account for large-scale model error and prevent ensemble collapse, model noise

will be added to each ensemble member every 0.01 model seconds. The large-scale

model-noise covariance Qll is chosen such that the rank histograms (Hamill, 2001)

produced from the ETSKF-R and ETSKF-C forecast ensembles are uniform. To

construct a rank histogram for the ETSKF, we first take the forecast ensemble

Yf =
(
Hlxl,f,(1) Hlxl,f,(2) . . . Hlxl,f,(m)

)
+
√
m− 1Ys, (8.4.19)

at the time of an observation. To account for the instrument uncertainty, we add

random noise with distribution N (0,RI) to each ensemble member. We note

that we have already accounted for the representation uncertainty in the fore-

cast ensemble through
√
m− 1Ys. For each component of the observation vec-

tor, the corresponding forecast ensemble is sorted into ascending order and the

bins (−∞, yf,(1)], (yf,(1), yf,(2)], . . . , (yf,(m),∞) are defined where yf,(i) indicates an

ensemble member in the ordered ensemble (i.e. yf,(i) < yf,(i+1)). The bin which the

observation falls, known as the rank, is saved to a list and the process repeated for

each observation assimilated over the 200 experiments by the filter. A histogram for

each observed variable is then constructed from the ranks and information regarding

the dispersion characteristics of the forecast ensemble is determined from the shape

of the histogram.
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(a) Rank histogram for θf when RI = 0.12I. (b) Rank histogram for `f when RI = 0.12I.

(c) Rank histogram for θf when RI = 0.22I. (d) Rank histogram for `f when RI = 0.22I.

(e) Rank histogram for θf when RI = 0.32I. (f) Rank histogram for `f when RI = 0.32I.

Figure 8.3: Rank histograms for the ETSKF-R constructed using the observations
assimilated across 200 experiments using Qll given by equation (8.4.20).

The Qll that will be used by each filter in our experiments is given by

Qll =

0.05 0 0

0 0.1 0

0 0 0.001


2

. (8.4.20)

The rank histograms obtained by the ETSKF-R and ETSKF-C with 50 ensemble

members when using equation (8.4.20) for the instrument uncertainty regimes we

examine in section 8.5.1 are shown in figures 8.3 and 8.4 respectively. The rank

histograms for both filters are fairly uniform for each instrument uncertainty regime

indicating that this choice of Qll produces reliable ensembles for the ETSKF-R and

ETSKF-C.

8.4.4 Performance metrics

To assess the performance of the ETSKF and compare it with the ETKF we use two

performance metrics. The first performance metric we use is the root-mean-square
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(a) Rank histogram for θf when RI = 0.12I. (b) Rank histogram for `f when RI = 0.12I.

(c) Rank histogram for θf when RI = 0.22I. (d) Rank histogram for `f when RI = 0.22I.

(e) Rank histogram for θf when RI = 0.32I. (f) Rank histogram for `f when RI = 0.32I.

Figure 8.4: Rank histograms for the ETSKF-C constructed using the observations
assimilated across 200 experiments using Qll given by equation (8.4.20).



8.4 Experimental design 159

error (RMSE) to determine the average forecast-mean error produced by a filter for

a single component of the state vector. For a vector of length Nk, where Nk is the

number of time-steps, the RMSE is given by

RMSE =

√∑Nk
k=1(x

l,f
k − x

l,t
k )2

Nk

. (8.4.21)

The RMSE will be calculated for each component of the state vector over the second

half of the assimilation window and averaged over the 200 experiments.

The second performance metric we use is the continuous rank probability score

(CRPS) which measures the difference between the true cumulative distribution

function and the probabilistic forecast produced by each filter. To calculate the

CRPS at time k, we first sort the ensemble members into ascending order and

define the extra ensemble members xl,f(0) = −∞ and xl,f(m+1) = ∞ (Hersbach,

2000). Assuming that each ensemble member is equally probable, the CRPS is

given by

CRPS =
m∑
j=0

cj, (8.4.22)

where

cj = αj

(
j

m

)2

+ βj

(
1− j

m

)2

. (8.4.23)

Here, the j superscript corresponds to the ensemble member in the ordered ensemble

(i.e. xl,f,(j) < xl,f,(j+1)). The values of αj and βj are given in table 8.1. The best

possible CRPS value is 0 which corresponds to a perfect deterministic forecast.

The CRPS will be calculated for each component of the state vector and averaged

over the second half of the assimilation window to obtain the mean CRPS for that

experiment. The mean CRPS will then be averaged over the 200 experiments.

To provide a comparison between filters, the RMSE and mean CRPS will be ex-

pressed in the relative percentage form

A−B
A

× 100% (8.4.24)

where A corresponds to the value for the ETKF-LS and B corresponds to another

filter.
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0 < j < m αj βj
xl,t > xl,f,(j) xl,f,(j+1) − xl,f,(j) 0

xl,f,(j+1) > xl,t > xl,f,(j) xl,t − xl,f,(j) xl,f,(j+1) − xl,t
xl,f,(j) > xl,t 0 xl,f,(j+1) − xl,f,(j)

Table 8.1: Values for αj and βj in equation (8.4.23). The subscript j indicates
the ensemble member in the ensemble arranged into ascending order (i.e. xl,f,(j) <
xl,f,(j+1)).

8.5 Numerical experiments

8.5.1 Filter performance for different observation uncertainty

regimes

In this section we consider the performance of the four filters for three observation

uncertainty regimes. To assess the performance of each filter for different observation

uncertainty regimes, we calculate the forecast RMSE and mean CRPS over the

second half of the assimilation window for each experiment and then average over

the 200 experiments. The average RMSE and mean CRPS of the four filters for

each observation uncertainty regime is shown in table 8.2.

We first consider the case where RI = 0.12I such that the representation uncertainty

is approximately three times that of the instrument uncertainty. To determine the

statistical significance of the RMSE and mean CRPS results for each filter, we use

the t-test to compare the results averaged across the 200 experiments. The difference

in RMSE and mean CRPS for θf and pfθ between the ETKF-LS and each of the

ETKF-RH, ETSKF-R and ETSKF-C were not found to be statistically significant.

However, the differences in RMSE and mean CRPS for `f between the ETKF-

LS and each other filter is statistically significant. From table 8.2 we see that the

ETKF-RH, ETSKF-R and ETSKF-C have a large, positive percentage improvement

in RMSE and mean CPRS for `f compared to the ETKF-LS. Hence, the ETKF-

RH, ETSKF-R and ETSKF-C on average produce a more accurate probabilistic

forecast with a smaller average forecast-mean error than the ETKF-LS. Additionally,

the difference in RMSE and mean CRPS between the ETKF-RH, ETSKF-R and

ETSKF-C is not statistically significant. Therefore, the ETSKF-R and ETSKF-C

perform similarly to the ETKF-RH in a high representation uncertainty and low

instrument uncertainty regime.

We next examine the performance of the three filters relative to the ETKF-LS when

the instrument uncertainty is increased to RI = 0.22I and RI = 0.32I. Similarly

to the experiments where RI = 0.12I, the difference in RMSE and mean CRPS for

each forecast averaged across 200 experiments between the ETKF-RH, ETSKF-R

and ETSKF-C is not statistically significant when RI = 0.22I and RI = 0.32I.

When RI = 0.22I, only the differences in mean CRPS for `f between the ETKF-
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RI Filter θf pfθ `f

RMSE mean CRPS RMSE mean CRPS RMSE mean CRPS

0.
12

I

ETKF-LS 0.059 0.008 0.178 0.019 0.126 0.016
ETKF-RH 4.51% 13.92% −2.08% 11.86% 17.01% 83.33%
ETSKF-R 4.35% 7.59% −5.85% 6.19% 28.22% 84.57%
ETSKF-C 6.86% 6.32% −1.63% 4.64% 19.0% 80.86%

0.
22

I

ETKF-LS 0.062 0.008 0.210 0.019 0.118 0.007
ETKF-RH 2.57% 6.49% −5.23% 4.64% −0.17% 58.88%
ETSKF-R 6.59% 5.19% −0.19% 3.61% 6.59% 48.53%
ETSKF-C 3.86% −1.30% −2.42% −3.09% 7.85% 54.41%

0.
32

I

ETKF-LS 0.063 0.008 0.238 0.022 0.122 0.005
ETKF-RH 1.59% 8.43% −8.42% 7.72% −9.22% 26.09%
ETSKF-R 1.59% 6.02% −2.48% 8.63% 0.41% 19.57%
ETSKF-C −0.64% 1.20% −3.16% 1.36% 0.74% 30.43%

Table 8.2: Summary of the results for the RMSE and mean CRPS obtained for each
filter averaged across 200 experiments for three different instrument uncertainty
regimes. We note that the same model error covariance was used for each filter
and instrument uncertainty regime. Determination of the model error covariance is
given in section 8.4.3. The results are given in relative percentage form (see equation
(8.4.24)) for the ETKF-RH, ETSKF-R and ETSKF-C. Relative percentages in bold
indicate when the improvement of the ETKF-RH, ETSKF-R or ETSKF-C over the
ETKF-LS is statistically significant.

LS and each other filter is statistically significant. From table 8.2, we see that the

ETKF-RH, ETSKF-R and ETSKF-C have a large, positive percentage improvement

in mean CPRS for `f compared to the ETKF-LS. Hence, the ETKF-RH, ETSKF-R

and ETSKF-C on average produce a more accurate probabilistic forecast than the

ETKF-LS when the instrument uncertainty is approximately 2/3 the size of the

representation uncertainty. When RI = 0.32I, the difference in RMSE and mean

CRPS between the four filters for any forecast variable is not statistically significant.

Hence, the ETSKF-R and ETSKF-C are most beneficial when the representation

uncertainty is greater than the instrument uncertainty. This agrees with the results

of Bell et al. (2020) for a linear system who found that the SKF is most suited to

regimes of high representation uncertainty and low instrument uncertainty.

8.5.2 Comparison of the ETSKF-R and ETSKF-C perfor-

mance

To compare the sampling strategies employed by the ETSKF-R and ETSKF-C, we

examine the gain matrices at observation times for the two filters using a single truth

and observation realization. For the instrument uncertainty we choose RI = 0.12I

such that we are in a high representation uncertainty and low instrument uncertainty

regime. We will examine two realizations of the initial forecast ensemble and sampled

small-scale ensembles. In the first realization, the ETSKF-R produces a smaller

RMSE and mean CRPS for each large-scale state variable than the ETSKF-C. We

refer to this case study as CS1. In the second realization, the ETSKF-C produces a

smaller RMSE and mean CRPS for each large-scale state variable than the ETSKF-
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R. We refer to this case study as CS2.

To examine the gain matrix for the ETSKF-R and the ETSKF-C, we express each

component of the gain matrix in scalar form:

Kl =

Kl
θθ Kl

θ`

Kl
pθθ

Kl
pθ`

Kl
`θ Kl

``

 . (8.5.1)

Here, the subscripts indicate the weighted contribution from the innovation vector

to the analysed state (i.e. Kl
θ` weights the contribution of the `-component of the

innovation y −Hlxl,f to θa). The gains in the first column of equation (8.5.1) may

be expressed as

Kl
•θ =

1

det(D)

{(
m∑
λ=1

Xl,f
•,λX

l,f
θ,λ

)[(
m∑
φ=1

(
Xl,f
`,φ + Xs

ρ,φ

)(
Xl,f
`,φ + Xs

ρ,φ

))
+ 0.12

]

−

(
m∑
ψ=1

Xl,f
•,ψ

(
Xl,f
`,ψ + Xs

ρ,ψ

)(
Xl,f
`,ψ + Xs

ρ,ψ

)
Xl,f
θ,ψ

)}
,

(8.5.2)

where • is a placeholder for a chosen state variable and det(D) is the determinant

of the innovation covariance given by

det(D) =

[(
m∑
λ=1

Xl,f
θ,λX

l,f
θ,λ

)
+ 0.12

][(
m∑
φ=1

(
Xl,f
`,φ + Xs

ρ,φ

)(
Xl,f
`,φ + Xs

ρ,φ

))
+ 0.12

]

−

(
m∑
ψ=1

Xl,f
θ,ψ

(
Xl,f
`,ψ + Xs

ρ,ψ

)(
Xl,f
`,ψ + Xs

ρ,ψ

)
Xl,f
θ,ψ

)
. (8.5.3)

We remind the reader that for our experiments D is a 2×2 matrix and we may there-

fore write the matrix inverse explicitly. Similarly, the second column of equation

(8.5.1) may be expressed as

Kl
•` =

1

det(D)

{(
m∑
λ=1

Xl,f
•,λ

(
Xl,f
`,λ + Xs

ρ,λ

))[( m∑
φ=1

Xl,f
θ,φX

l,f
θ,φ

)
+ 0.12

]

−

(
m∑
ψ=1

Xl,f
•,ψXl,f

θ,ψXl,f
θ,ψ

(
Xl,f
`,ψ + Xs

ρ,ψ

))}
. (8.5.4)

Each component of the gain matrix for the ETSKF-R and ETSKF-C is shown in

figure 8.5 for CS1 and figure 8.6 for CS2. Regardless of filter or case study, θa is

always close to the θ-observation. This is due to two reasons. The first reason is

that the uncertainty of θf is much greater than the uncertainty of the θ-observations

(i.e.
∑m

λ=1 Xl,f
θ,λX

l,f
θ,λ � 0.12). Therefore, the numerator of equation (8.5.2) is ap-
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proximately equal to det(D) such that Kl
θθ ≈ 1. The second reason is that the

errors in θf and `f will be weakly correlated as `f is forecast by persistence. Hence,∑m
λ=1 Xl,f

θ,λX
l,f
`,λ will be small and therefore Kl

θ` will also be small.

Both Kl
pθθ

and Kl
pθ`

vary in size throughout the assimilation window in both case

studies. In most instances, paθ has contributions from both components of the in-

novation vector as there is substantial additive inflation when the state is forecast

and ptθ is not observed. It can be seen from figure 8.2 that ptθ changes sign over time

and is out of phase with θt. We can expect the cross-covariances between θf and

pfθ to reflect this behaviour. Examining Kl
pθθ

for CS1 and CS2 in figures 8.5 and

8.6 respectively, we see that the qualitative behaviour of Kl
pθθ

is consistent between

filters and case studies.

Similarly to Kl
θ`, we see that Kl

`θ ≈ 0 which is likely because the correlation between

the errors in θf and `f is weak. A further implication of the weak correlation between

θf and `f is that the sign of Kl
`` will usually be positive as the second term in the

curly brackets in equation (8.5.4) will be small. The value of Kl
`` is largest near

the start of the assimilation window and generally decreases as more observations

are assimilated. This is expected as the `f forecast uncertainty is initially smaller

than the total uncertainty of the `-observations and there is little additive inflation.

While there are differences in the Kl
`` values between the ETSKF-R and ETSKF-C,

over the whole assimilation window they exhibit similar qualitative behaviour.

The key difference between the ETSKF-R and ETSKF-C is their treatment of the

cross-covariances between the large-scale uncertainty and the small-scale variability.

To determine the influence of these cross-covariances on the two filters, we examine

the correlation between the large-scale forecast errors for each state variable and the

small-scale variability given by ∑m
λ=1 Xl,f

•,λX
s
ρ,λ√(∑m

φ=1 Xl,f
•,φX

l,f
•,φ

)(∑m
ψ=1 Xs

ρ,ψXs
ρ,ψ

) . (8.5.5)

The correlations for the ETSKF-R and ETSKF-C in both case studies are shown in

figure 8.7. In general, the correlations are weak for both filters which suggests that

the cross-covariances will have a small effect on the performance of the filter. This

explains why the difference in performance between the ETSKF-R and ETSKF-C

was small for the experiments performed in section 8.5.1.

8.6 Conclusion

The error caused by a mismatch in scales observed and modelled is known as the

error due to unresolved scales. In this work, we considered the situation where



8.6 Conclusion 164

(a) Kl
θθ, K

l
pθθ

and Kl
`θ for the ETSKF-R. (b) Kl

θθ, K
l
pθθ

and Kl
`θ for the ETSKF-C.

(c) Kl
θ`, K

l
pθ`

and Kl
`` for the ETSKF-R. (d) Kl

θ`, K
l
pθ`

and Kl
`` for the ETSKF-C.

Figure 8.5: The components of the gain matrix at observation times for CS1 for
the ETSKF-R and ETSKF-C. The weights Kl

θ• are indicated by a dashed line with
square markers, Kl

pθ• by a dotted line with circle markers, and Kl
`• by a solid line

with diamond markers.

(a) Kl
θθ, K

l
pθθ

and Kl
`θ for the ETSKF-R. (b) Kl

θθ, K
l
pθθ

and Kl
`θ for the ETSKF-C.

(c) Kl
θ`, K

l
pθ`

and Kl
`` for the ETSKF-R. (d) Kl

θ`, K
l
pθ`

and Kl
`` for the ETSKF-C.

Figure 8.6: The components of the gain matrix at observation times for CS2 for
the ETSKF-R and ETSKF-C. The weights Kl

θ• are indicated by a dashed line with
square markers, Kl

pθ• by a dotted line with circle markers, and Kl
`• by a solid line

with diamond markers.
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(a) Correlation between θf and ρf for CS1. (b) Correlation between θf and ρf for CS2.

(c) Correlation between pfθ and ρf for CS1. (d) Correlation between pfθ and ρf for CS2.

(e) Correlation between lf and ρf for CS1. (f) Correlation between lf and ρf for CS2.

Figure 8.7: The correlation between the large-scale forecast errors and the small-
scale variability. The ETSKF-R correlations are shown in red with diamond markers
and the ETSKF-C correlations are shown in blue with square markers.
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observations contain information on scales smaller than those represented by the

numerical model. The standard approach to compensate for error due to unresolved

scales in data assimilation is to include it in the observation error covariance matrix.

An alternative approach is to estimate the large-scale state resolved by the model

while considering the statistics of the small-scale processes unresolved by the model.

An example of a filter capable of compensating for the error due to unresolved scales

using the alternative approach is the Schmidt-Kalman filter.

In this work, we introduced a new ensemble transform formulation of the Schmidt-

Kalman filter (ETSKF) where the small-scale variability is represented through an

ensemble sampled from the representation error covariance. The sampled small-scale

ensemble is added to the large-scale forecast ensemble to obtain an ensemble with

uncertainty representative of all scales resolved by the observations.

To test the performance of the ETSKF, we performed experiments using the swing-

ing spring (elastic pendulum) model. In the swinging spring model, the large-scale

processes correspond to the rotational motions and the small-scale processes cor-

respond to the elastic motions. Hence, observations of the length of the spring

were treated as having uncertainty due to unresolved scales in our experiments.

The filters we used in our experiments include an ensemble transform Kalman filter

(ETKF) that disregarded the uncertainty due to unresolved scales (ETKF-LS), an

ETKF that accounts for the uncertainty due to unresolved scales using the standard

approach (ETKF-RH), and two versions of the ETSKF that differ in how they sam-

ple the small-scale ensemble. The first ETSKF samples the small-scale ensemble

such that the cross-covariances between the large-scale errors and the small-scale

variability are random (ETSKF-R). The second ETSKF samples the small-scale en-

semble such that the cross-covariances are consistent (ETSKF-C). The four filters

were implemented without localization as the dimensionality of the swinging spring

system is small and we used large ensemble sizes in our experiments. In princi-

ple, localization for the ETSKF may be implemented in the same way as for the

ETKF.

To provide a comparison between filters, we examined the improvement of the

ETKF-RH, ETSKF-R and ETSKF-C relative to the ETKF-LS. The ETKF-RH,

ETSKF-R and ETSKF-C showed statistically significant improvements over the

ETKF-LS in a regime of high representation uncertainty and low instrument uncer-

tainty. We also found that the difference in performance between the ETKF-RH,

ETSKF-R and ETSKF-C was not statistically significant. Experiments using in-

creased instrument uncertainty showed that the ETSKF-R and ETSKF-C provide

most benefit over the ETKF-LS when the representation uncertainty is greater than

the instrument uncertainty. Furthermore, when the representation uncertainty and

instrument uncertainty were similar in magnitude, there was little to no benefit in
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using the ETSKF-R or ETSKF-C over the ETKF-LS. This agrees with the results of

Bell et al. (2020) who showed the Schmidt-Kalman filter is most beneficial in regimes

of high uncertainty due to unresolved scales and low instrument uncertainty.

The effect of the sampling strategies employed by the ETSKF-R and ETSKF-C

on the filter performance was examined for a single realization of the truth and

observations in a high representation uncertainty and low instrument uncertainty

regime. The correlation between the large-scale forecast errors and the small-scale

variability was generally small for both filters and hence the sampling strategies

would have little effect on their performance. This was reflected in the gain matrices

of the two filters which shared several similar qualitative characteristics.

The ETSKF using either sampling method has been shown to be capable of com-

pensating for uncertainty due to unresolved scales in nonlinear systems. However,

further experiments using more complicated models are required to understand the

robustness of the ETSKF, the importance of the cross-covariances, and its suitability

for operational data assimilation.

8.7 Chapter summary

In this chapter, we addressed the fourth research question given in chapter 1: how

can the Schmidt-Kalman filter be adapted for nonlinear models? A novel ensem-

ble transform formulation of the Schmidt-Kalman filter (ETSKF) has been derived.

The performance of the ETSKF using two different sampling strategies for the small-

scale ensemble were evaluated against two forms of the ensemble transform Kalman

filter (ETKF) using the swinging spring model. The first ETKF completely disre-

gards the small-scale processes. The second ETKF includes the uncertainty due to

unresolved scales as part of the observation error covariance matrix and is denoted

the ETKF-RH. We found that the ETSKF using either sampling strategy is capable

of compensating for uncertainty due to unresolved scales in nonlinear dynamical

systems and performs similarly to the ETKF-RH. Furthermore, the ETSKF is most

beneficial when the uncertainty due to unresolved scales is greater than the instru-

ment uncertainty. We were unable to determine the superior sampling strategy for

the ETSKF due to the weak correlation between the large- and small-scale processes

in the swinging spring system. In the next chapter, we conclude this thesis by an-

swering the research questions given in chapter 1 and discussing potential avenues

of future work.
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Conclusions and future work

9.1 Conclusions

The objective of this thesis is to improve high-impact weather prediction via a

better treatment of observation uncertainty in data assimilation. This is partic-

ularly important for low-cost, crowdsourced observations that are often obtained

in urban areas. We investigated observation error due to unresolved scales from

two perspectives. We first considered the uncertainty due to unresolved scales of

crowdsourced vehicle-based observations of air temperature. This involved quality-

controlling vehicle-based observations and exploring the characteristics of the data

through comparison with other datasets. We next considered a largely unexplored

approach to compensate for observation uncertainty due to unresolved scales in data

assimilation. This involved investigating the ability of the Schmidt-Kalman filter to

compensate for observation uncertainty due to unresolved scales and extending the

filter to an ensemble transform formulation. We posed several research questions to

be addressed by the thesis. The main conclusions for each of these questions are

listed below.

1. How can we quality-control the vehicle-based air-temperature dataset

obtained from a Met Office proof-of-concept trial?

A quality-control procedure consisting of range-validity tests, a time-series

check and a new GPS test was developed for the vehicle-based observations.

Approximately 25% of the vehicle-based observations passed quality-control.

Almost 54% of the original dataset was unable to be tested due to missing

air-temperature measurements or invalid speed metadata and a further 12.4%

failed quality-control due to inaccurate location metadata. Therefore, the

quality of the available metadata is key for the quality-control of vehicle-based

observations.

2. What are the characteristics of vehicle-based observations of air tem-

168



9.1 Conclusions 169

perature?

The characteristics of vehicle-based observations of air temperature were ex-

plored through comparison with UKV model data, roadside weather informa-

tion station data and Met Office integrated data archive system data. For this

dataset, we found that the standard deviation of the observation-model com-

parisons is approximately between 1.2◦C and 1.6◦C. Examining the statistics

of the vehicle-based observation–model comparisons under different weather

conditions showed that the variability is greatest in sunny weather conditions

and smallest in rainy weather conditions. These results show that the uncer-

tainty of vehicle-based observation–model comparisons is likely weather depen-

dent. Examination of the observation–model comparisons for specific vehicles

revealed that the uncertainty may also be vehicle-dependent.

3. Can the Schmidt-Kalman filter effectively treat observation error

and bias due to unresolved scales?

Using a random walk model with one variable for the large-scale processes

and one variable for the small-scale processes, the Schmidt-Kalman filter was

shown to produce better estimates of the large-scale state than a Kalman

filter that completely disregards the small-scale processes. Furthermore, the

Schmidt-Kalman filter is most suitable in regimes of high uncertainty due to

unresolved scales and small instrument uncertainty. Observation biases due to

unresolved scales and unbiased error due to unresolved scales may be accounted

for by using the Schmidt-Kalman filter in conjunction with a bias correction

scheme.

4. How can the Schmidt-Kalman filter be adapted for nonlinear mod-

els?

A new ensemble transform formulation of the Schmidt-Kalman filter was de-

rived which samples a small-scale ensemble from the representation error co-

variance to compensate for observation uncertainty due to unresolved scales.

The performance of the ensemble transform Schmidt-Kalman filter using two

different sampling methods was evaluated using the swinging spring model.

The ensemble transform Schmidt-Kalman filter was shown to be most benefi-

cial when the uncertainty due to unresolved scales is greater than the instru-

ment uncertainty. This agrees with the results of the Schmidt-Kalman filter

for a linear system as investigated for research question 3. In such situations,

the ensemble transform Schmidt-Kalman filter was shown to perform similarly

well to the ensemble transform Kalman filter that includes the uncertainty due

to unresolved scales as part of the observation error covariance matrix. Due

to the weak correlation between the large- and small-scale processes in the

swinging spring system, we were unable to determine the superior sampling

strategy.
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9.2 Future work

The work produced for this thesis opens many interesting areas of future research.

Potential avenues of future work for vehicle-based observations and the Schmidt-

Kalman filter are described below.

9.2.1 Vehicle-based observations

The vehicle-based temperature dataset studied in this thesis was initially small in

size and was further reduced through quality-control. An extension to our work

would be to conduct a new trial with improved data collection (see section 5.6), more

accurate metadata and more participants to increase the spatio-temporal density

of the observations. Such a trial would allow for improved quality-control (e.g.,

Boyce et al., 2017; Siems-Anderson et al., 2019) and could reduce the percentage of

observations immediately discarded due to poor metadata. The scope of trial may be

increased through observing more meteorological variables through available built-

in vehicle sensors or through use of externally mounted sensors. It would also be

interesting to compare observations of the same variable obtained from built-in and

externally-mounted sensors.

Using the data from the improved trial, a more extensive exploration of the char-

acteristics of vehicle-based observations may be conducted. Further examination of

the uncertainty of the observation-model comparisons for different weather condi-

tions, seasons and vehicle make would help quantify the observation uncertainty for

data assimilation. Provided additional metadata such as the height or sensor make

was available, it may be feasible to quantify the contribution from each component

of the observation error to the bias and uncertainty of the observation–model com-

parisons. The effects of elevation and atmospheric stability (i.e. day or night) on the

uncertainty of the observation–model comparisons would provide other interesting

lines of exploration.

Provided a sufficient amount of high-quality vehicle-based observations are obtained

and their uncertainty has been adequately quantified, the next step in the study of

vehicle-based observations would be to conduct assimilation experiments. While

Siems-Anderson et al. (2020) have performed assimilation experiments using sim-

ulated vehicle-based observations, the spatio-temporal distribution of observations

was homogeneous and the observation uncertainty consisted entirely of instrument

uncertainty. It is likely that real vehicle-based observation networks will be hetero-

geneous and the observation uncertainty will vary with weather type. Such issues

must be considered when assimilating vehicle-based observations and ultimately de-

termine their benefit to convection-permitting forecasts.
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9.2.2 The ensemble transform Schmidt-Kalman filter

There are a number of questions regarding the performance of the ensemble trans-

form Schmidt-Kalman filter (ETSKF) that must be addressed before it may be

considered in operational numerical weather prediction. The most important next

step for the ETSKF is to examine the performance of the filter on an idealised model

of the atmosphere. As the ETSKF is motivated by convection-permitting numerical

weather prediction, a suitable candidate may be the modified rotating shallow water

model of Kent et al. (2017). In addition, dynamical models of processes with strong

correlations between the large- and small-scales, such as boundary layer turbulence

(e.g., Kaimal and Finnigan, 1994, pp 32–65), would be suitable to determine the

benefit of the cross-covariances in the ETSKF.

Covariance inflation and localisation are integral for the successful implementation

of ensemble Kalman filter algorithms for systems of large dimensionality. For our im-

plementation of the ETSKF, we used additive inflation with a climatological model

error covariance. Further tuning experiments using additive and/or multiplicative

inflation in the ETSKF could provide further insight into the optimal implemen-

tation of the filter. Localisation was not required for our experiments because of

the low dimensionality of the forecast model and the large ensemble used in our

experiments. In principle, localisation for the ETSKF may be implemented in the

same manner as the ensemble transform Kalman filter (ETKF). However, the opti-

mal localisation length-scales may differ between the ETSKF and the ETKF when

applied to the same system due to the difference in treatment between the uncer-

tainty due to unresolved scales. It would therefore be beneficial to examine how the

optimal localisation length-scale for the ETSKF compares with that of the ETKF

for different assimilation systems. It would also be interesting to examine how the

treatment of the small-scale variability in the ETSKF affects adaptive inflation and

localisation techniques.

Another interesting avenue of exploration for the ETSKF involves the approxima-

tion of the statistics of the small-scale processes. In this thesis, a sample was drawn

from a climatological approximation of the representation error covariance to act as

a small-scale ensemble. In operational settings, where ensemble sizes are limited,

there will likely be substantial sampling error in this small-scale ensemble result-

ing in the uncertainty due to unresolved scales being poorly accounted for by the

ETSKF. The implications of this sampling error and how to compensate for it are

key to understanding the limitations of the ETSKF. It would also be interesting

to consider alternative methods to obtain the statistics of the small-scale processes.

For example, Grooms et al. (2014) use stochastic physics to provide estimates of the

statistics of the small-scale processes. It has been suggested by Janjić et al. (2018)

that this approach could be suitable for an ensemble formulation of the Schmidt-
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Kalman filter.
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Dutra, E., Muñoz-Sabater, J., Boussetta, S., Komori, T., Hirahara, S., and Balsamo,

G. (2020). Environmental lapse rate for high-resolution land surface downscaling:

an application to ERA5. Earth and Space Science, 7(5):e2019EA000984.

El Gharamti, M. (2018). Enhanced adaptive inflation algorithm for ensemble filters.

Monthly Weather Review, 146(2):623–640.

Essery, R., Best, M., Betts, R., Cox, P. M., and Taylor, C. M. (2003). Explicit

representation of subgrid heterogeneity in a GCM land surface scheme. Journal

of Hydrometeorology, 4(3):530–543.

Evensen, G. (1992). Using the extended Kalman filter with a multilayer

quasi-geostrophic ocean model. Journal of Geophysical Research: Oceans,

97(C11):17905–17924.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic

model using Monte Carlo methods to forecast error statistics. Journal of Geo-

physical Research: Oceans, 99(C5):10143–10162.



BIBLIOGRAPHY 180

Eyre, J. (2016). Observation bias correction schemes in data assimilation systems:

a theoretical study of some of their properties. Quarterly Journal of the Royal

Meteorological Society, 142(699):2284–2291.

Eyre, J. R., English, S. J., and Forsythe, M. (2020). Assimilation of satellite data

in numerical weather prediction. Part I: the early years. Quarterly Journal of the

Royal Meteorological Society, 146(726):49–68.

Fertig, E., Baek, S.-J., Hunt, B., Ott, E., Szunyogh, I., Aravéquia, J., Kalnay, E.,

Li, H., and Liu, J. (2009). Observation bias correction with an ensemble Kalman

filter. Tellus A: Dynamic Meteorology and Oceanography, 61(2):210–226.

Fiebrich, C. A., Morgan, C. R., McCombs, A. G., Hall Jr, P. K., and McPherson,

R. A. (2010). Quality assurance procedures for mesoscale meteorological data.

Journal of Atmospheric and Oceanic Technology, 27(10):1565–1582.

Fielding, M. and Stiller, O. (2019). Characterizing the representativity error of cloud

profiling observations for data assimilation. Journal of Geophysical Research:

Atmospheres, 124(7):4086–4103.

FierceElectronics (2014). Temperature sensors to generate $8 billion rev-

enue by 2020. https://www.fierceelectronics.com/components/

temperature-sensors-to-generate-8-billion-revenue-by-2020. Accessed:

08-01-2021.

Fowler, A., Dance, S., and Waller, J. (2018). On the interaction of observation

and prior error correlations in data assimilation. Quarterly Journal of the Royal

Meteorological Society, 144(710):48–62.

Friedland, B. (1969). Treatment of bias in recursive filtering. IEEE Transactions

on Automatic Control, 14(4):359–367.

Frogner, I.-L., Andrae, U., Bojarova, J., Callado, A., Escribà, P., Feddersen, H.,
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Gustafsson, N., Janjić, T., Schraff, C., Leuenberger, D., Weissmann, M., Reich, H.,

Brousseau, P., Montmerle, T., Wattrelot, E., Bučánek, A., et al. (2018). Survey
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