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Abstract  

The World Climate Research Programme (WCRP) envisions a world “that uses sound, relevant,  

and timely climate science to ensure a more resilient present and sustainable future for  

humankind.” This bold vision requires the climate science community to provide actionable  

scientific information that meets the evolving needs of societies all over the world. To realize its  

vision, WCRP has created five Lighthouse Activities to generate international commitment and  

support to tackle some of the most pressing challenges in climate science today.      

The overarching goal of the Lighthouse Activity on Explaining and Predicting Earth System  

Change is to develop an integrated capability to understand, attribute, and predict annual to  

decadal changes in the Earth system, including capabilities for early warning of potential high  

impact changes and events. This article provides an overview of both the scientific challenges  

that must be addressed, and the research and other activities required to achieve this goal. The  

work is organized in three thematic areas: (i) monitoring and modeling Earth system change; (ii)  

integrated attribution, prediction and projection; and (iii) assessment of current and future  

hazards. Also discussed are the benefits that the new capability will deliver. These include  

improved capabilities for early warning of impactful changes in the Earth system, more reliable  

assessments of meteorological hazard risks, and quantitative attribution statements to support the  

Global Annual to Decadal Climate Update and State of the Climate reports issued by the World  

Meteorological Organization.  

  

Introduction  

The formulation of robust policies for mitigation of, and adaptation to, climate change requires  

quantitative understanding of how and why specific changes are unfolding in the Earth system,  

and what might happen in the future. Quantitative explanation of observed changes – through  

robust process-based detection and attribution – is also fundamental to specification of  

confidence in climate assessments, predictions and projections. However, the capacity to deliver  

these capabilities is very limited, particularly for the annual to decadal (A2D) timescales that lie  

between the timescales of days-to-seasons—the focus of numerical weather prediction (NWP)  

and seasonal forecasting—and the multi-decadal-to-century timescales that are the primary focus  

of climate projection efforts. The World Climate Research Programme (WCRP) Lighthouse  

Activity (LHA) on Explaining and Predicting Earth System Change (EPESC) is intended to  
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address this need. We adopt the nomenclature A2D to define our timescales of interest to be  

consistent with the community working with initialized predictions at subseasonal to seasonal  

(S2S), seasonal to interannual (S2I), and seasonal to decadal (S2D) timescales (Meehl et al.  

2021).  

Given the current non-stationarity of the climate system and the limited sampling of extreme  

events in our global observational records, climate statistics and probabilities of hazards and  

extremes based on past observations are no longer adequate for infrastructure or disaster  

planning (Milly et al, 2008). Indeed, in a changing climate, understanding the development and  

precursors of extreme events, attributing causal factors, and determining the impacts of  

background conditions on the likelihood of event occurrence is crucial (Stott et al., 2011).  

Actionable predictions and risk assessments require full appraisal of all the relevant  

uncertainties, including those stemming from uncertainties in observational records, from  

forcings and climate responses, from internal variability, from climate model structural  

differences, and from interactions between each of these sources of uncertainty (Hawkins and  

Sutton, 2009; Frölicher et al., 2016; Lovenduski et al., 2016; Marzeion et al., 2020; Lehner et al,  

2020; Aschwanden et al., 2021). Understanding and quantifying these uncertainties is  

particularly challenging for small regions and A2D timescales, yet information about these  

spatial and temporal scales is needed to inform adaptation.   

Decadal timescales were targeted by the WCRP Grand Challenge on Near Term Climate  

Prediction (Kushnir et al., 2019), where the authors highlighted the dual dependence on natural  

climate variability and anthropogenically-imposed climate change. As an outgrowth of this large- 

scale international effort, multi-annual forecasts are now routinely issued by the World  

Meteorological Organization (WMO) Lead Centre for Annual to Decadal Climate Prediction   

and in the WMO Global Annual to Decadal Climate Update (GADCU; Hermanson et al., 2022).  

However, improved understanding and attribution of predicted signals is needed to gain further  

confidence in the forecasts and to gain insight on how to improve these forecasts. In addition, the  

WCRP Grand Challenge on Weather and Climate Extremes (Zhang et al., 2014) targeted the  

improved understanding of climate-related hazards. This was organized around four overarching  

themes, to document, understand, simulate, and attribute such extremes. This LHA aims to build  

on the earlier efforts of the now-complete Grand Challenges by first establishing and applying  

attribution methodologies to help explain A2D changes in the climate system and their influence  
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on hazards (including extremes), while also evaluating the requirements needed to fully observe  

and model these changes. Additional effort will be directed towards defining the elements of an  

operational capability that integrates attribution and prediction methods to better understand and  

predict climate hazards on A2D time scales. Outputs of these efforts will enhance the value of  

A2D climate forecasts issued by WMO.  

The overarching objective of the WCRP Lighthouse Activity on Explaining and Predicting Earth  

System Change (EPESC) activity is: To design, and take major steps toward delivery of, an  

integrated capability for quantitative observation, explanation, early warning and prediction  

of Earth system change on global and regional scales, with a focus on annual to decadal  

timescales.   

On global to regional and A2D scales, changes in oceanic and atmospheric circulation and their  

consequent impacts are of particular interest because of their importance in shaping hazards, and  

because current capabilities to explain and predict changes in circulation are particularly limited.  

Some examples of changes of interest include the rapid warming of the North Atlantic Ocean  

that occurred in the 1990s (e.g., Robson et al, 2012; Yang et al., 2016; Cheng et al. 2017; Yeager  

2020); weakening of the North Atlantic subpolar gyre (Hakkinen and Rhines, 2004; Piecuch,  

2017); changes in the phase of the Interdecadal Pacific Oscillation (e.g., Thoma et al., 2015;  

Meehl et al., 2016); persistent marine heatwaves such as in the North Pacific during 2013-16  

(e.g., Di Lorenzo and Mantua, 2016; Oliver et al., 2018); persistent droughts such as in the Sahel  

during the 1970s and 1980s (e.g., Held et al., 2005); and the apparent slow-down in global mean  

surface temperature rise that was observed in the 2000s (e.g., England et al., 2014; Fyfe et al.,  

2016). This last example is a particularly fitting case study of how natural decadal variability on  

top of long-term trends can combine to produce a long-lasting signal that can capture both  

research and public attention (Fyfe et al., 2016; Risbey et al., 2018).   

This LHA is concerned both with events that have A2D duration and also with understanding  

how regional and larger-scale changes (e.g., broad atmospheric or oceanic circulation changes)  

on these timescales influence the characteristics of hazards (e.g., severe convective storms,  

tropical and extratropical cyclones, atmospheric rivers, terrestrial and marine heat waves,  

wildfires, etc.) occurring on shorter space and timescales. Examples of A2D variability  

Brought to you by UNIVERSITY OF READING | Unauthenticated | Downloaded 01/24/23 10:44 AM UTC



Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-21-0280.1.

5
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-21-0280.1.

 
 

influencing hazards can be found in the impact of Atlantic multidecadal variability on tropical  

cyclones in the Caribbean basin (Goldenberg et al., 2001) or of the El Ni�̃�𝑛𝑛𝑛o-Southern Oscillation  

(ENSO) on droughts in the United States (e.g., Trenberth et al., 1988; Schubert et al., 2009;  

Findell et al., 2010) or on fire weather in Australia (Squire et al., 2021) and their secondary  

impacts (Damany-Pearce el al., 2022). Physical predictions on A2D timescales can be useful  

even for marine biological forecasting (Minobe et al. 2022).     

  
Figure 1: Key elements of the Lighthouse Activity. The bottom layer shows the importance of  

coordinated observational and modeling efforts serving as key tools and inputs to the integrated  

attribution, prediction and projection efforts in the middle layer. Both of these layers feed into  

the outputs and societal benefits displayed in the top layer: causal explanations, predictions and  

early warnings, and hazard assessments. Arrows along the left side indicate that outputs  

(Themes 2 and 3) and integration (Theme 2) can feedback to improve the inputs (Theme 1).  

Fundamental physical process understanding runs through all aspects of the Lighthouse Activity.  

(Causal explanations figure following Kretschmer et al., 2021.)  
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Given the breadth of the targeted goals, we have found it useful to organize the scientific  

challenges and opportunities around three major themes with associated working groups:  

 Theme 1: Monitoring and Modeling Earth System Change;   

 Theme 2: Integrated Attribution, Prediction and Projection of Earth System  

Change; and   

 Theme 3: Assessment of Current and Future Hazards.  

Figure 1 provides an overview of the three scientific themes, how they interact, and how they  

will deliver benefits to society. Expertise in many areas relevant to these themes is found in  

many of WCRP’s core projects and other Lighthouse Activities. Active communication between  

EPESC and other WCRP entities is crucial to the success of this endeavor.  

Three cross-cutting dimensions connect the work of the LHA’s three thematic elements. First,  

the development of a capability to observe, explain, and predict changes in the Earth system  

requires the tight integration of observations and models, including characterization and  

quantification of uncertainties. Comprehensive model calibration and evaluation of model skill  

each require observational datasets that capture the phenomena of interest, but also  

computational frameworks for achieving rigorous model calibration. Just as observations can be  

used to confront models, calibrate model parameters, and determine model skill, models can be  

leveraged as tools to inform the design of efficient, targeted observing systems (e.g., Fujii et al.,  

2019; Cheng and Zhu, 2016). We envision an interactive workflow between model and  

observing system improvement, as both represent incomplete yet complementary knowledge  

bases. Similarly, identification of causal factors and processes leading to large-scale climate  

regime shifts or changes in regional hazard risk require integrated usage of both observations and  

modeling systems.   

Second, initial steps to develop a capability to observe, explain, and predict Earth system change  

will focus on a few (two or three) compelling case studies targeting climate “events” that have  

occurred in recent decades, such as the examples given above. Through these case studies, we  

seek to develop a systematic approach across all three themes to identify causal factors shaping  

these events, to assess the potential for predictions of the events themselves, to investigate  
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opportunities for observations targeted at realizing predictability of the events, and, where  

relevant, to determine the impact of the event on hazard likelihoods.   

Finally, we envisage that large ensembles of single-forcing experiments will inform the  

activities at the heart of each of the themes.  These are essential to characterize the responses to  

different forcing factors, thereby informing observing system design (Theme 1), providing  

quantitative process-based attribution (Theme 2), and improving our understanding of the drivers  

of changing hazard frequencies and intensities (Theme 3).   

  

Theme 1: Monitoring and Modeling Earth System Change   

Key Research Questions:  

1. What are the observational and modeling requirements to measure, explain and predict  

changes in the Earth system on A2D and regional to global scales?  

2. How can we most effectively combine observations and models to quantify, explain and  

predict changes in the Earth system on A2D and regional to global scales?  

3. Which enhanced observations will offer the greatest improvements in predictive and  

explanatory skill, and where should those enhancements be targeted?   

The Global Climate Observing System (GCOS) has developed over many decades, with a steady  

expansion of the spatial coverage and physical quantities recorded, punctuated by major  

advances in funding allocations and/or observing technologies (e.g., GCOS, 2021). For example,  

though satellite observations of environmental quantities began in the late 1950s, the beginning  

of the satellite era is commonly recognized as 1979, when microwave measurements were  

included in NOAA weather satellites, enabling measurement of tropospheric temperature  

(Thorne et al., 2010) and sea ice cover in polar regions (Parkinson, 2019). Similar expansions  

occurred with the beginning of the era of satellite altimetry for monitoring sea level change in  

1992/93 (Fu et al., 2018). Observations of upper ocean temperature for climate monitoring relied  

on hydrographic measurements from research vessels including buckets and moorings (sea  

surface), Nansen Bottles, Mechanical Bathy Thermographs (MBTs) (upper 250m), and  

expendable bathythermographs (XBTs) (upper 700m) since late-19th century (Abraham et al.,  

2013). During the 1990s, increased subsurface measurement coverage of the global ocean using  
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high-quality hydrographic sections was achieved as part of the World Ocean Circulation  

Experiment (WOCE; Ganachaud and Wunsch, 2000). Subsequently, since around 2005, the  

Argo array began to dominate ocean observations, measuring the upper 2000 meters at  

unprecedented resolution (Johnson et al., 2021). Plans for deep ocean Argo measurements are  

well-developed (Roemmich et al., 2019), and would provide improved capabilities for model  

initialization and verification for A2D understanding and applications (Meehl et al., 2021).     

Simultaneous development of global climate modeling capabilities over more than sixty years  

has seen similar gradual improvements in complexity, resolution, and skill, with occasional step  

changes in both theoretical understanding and computational capacity (e.g., Forster 2017;  

Manabe and Broccoli 2020; Balaji 2021). These largely separate (though interdependent) efforts  

have covered enormous ground and helped the climate science community substantiate the  

unequivocal human influence on climate (IPCC 2021; Hegerl 2022). However, for the near- and  

long-term climate-related challenges the world now faces, tighter integration between the global  

climate observing system and the climate modeling community is necessary to address several  

interrelated obstacles. The joint consideration of observation and modeling challenges (Figure 1,  

bottom panel) provides a conceptual framework for identifying major gaps and opportunities for  

progress in observing, monitoring, and modeling Earth system variability and change.  

Fundamental to this tighter integration is the need to better understand the observational and  

modeling requirements to measure, explain and predict changes in the Earth system on A2D and  

global to regional scales, as well as the current limitations on these capabilities. These  

requirements and limitations are certainly case-specific, but through the initial case studies  

discussed above, we aim to develop a systematic methodology that can be applied subsequently  

to assess a wider set of events and address a number of scientific questions. Foremost among  

these: how early were these events recognized as significant and how well were they monitored  

by different elements of GCOS? Additionally, we will need to assess how well models, analysis  

and reanalyses represented these events. Case studies will also prove useful for determining how  

well observations constrained the underlying metrics (e.g., regional versus global ocean heat  

content anomalies; global mean values as small residuals of large regional variations; climate  

anomalies at the margins of the polar ice sheets), and if current observations allow for a  

mechanistic understanding of the propagation or evolution of relevant anomalies. In particular,  

these case studies will be testbeds to determine if observations were sufficient to provide  
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coverage of “upstream” or precursor processes that led to the events of interest. Many potential  

case studies are active areas of research and may require additional investigation to determine  

which measurable quantities are the most relevant upstream indicators. With this in mind, we  

seek to develop methods that could inform quantitative observing system design, targeting scales  

relevant to EPESC goals, and help objectively determine What climate indices are to be  

measured? What measurements constrain such indices? Where, and over what time horizons  

should they be measured? How many observations are sufficient? What are optimal  

combinations of different observing networks (satellite and in-situ)? The observing networks that  

operate under GCOS and the Global Ocean Observing System (GOOS, 2020) can play a major  

role in this approach. For such case studies, the value of these networks could be assessed, major  

gaps (as well as potential redundancies) identified, and observational requirements formulated.    

While addressing observational limitations on Earth system understanding, we can also tackle  

persistent Earth system model and reanalysis biases through the use of comprehensive estimation  

methods that bring modeling and (re-)analysis closer together and lead to better usage of the  

diverse, heterogenous observing networks underlying the in-situ ocean, terrestrial and  

atmospheric networks, in addition to satellite capabilities. This necessarily touches on the need to  

harness and improve data assimilation (DA) efforts, viewed more broadly as parameter  

estimation or inference methods, and objective analysis procedures. This opportunity for a “DA  

for climate” initiative is being approached in partnership with the Digital Earths Lighthouse  

Activity. This collaborative effort allows for a focus on major climate-specific needs (e.g., initial  

condition estimation versus model parameter calibration) and issues that might not receive much  

attention in other data assimilation applications (e.g., conservation laws and other physical  

constraints that are key on climate timescales, but not of primary concern in NWP). In addition,  

the exploration of synergies between data assimilation and machine learning concepts will be  

beneficial (e.g., Schneider et al., 2017; Abarbanel et al., 2018; Ham et al., 2019; Gordon et al.,  

2021).  

A parallel issue relates to the data available for assimilation. We currently have both sparse  

observational sampling of various elements of the Earth system, and an under-utilization of the  

wide array of observational data which are collected. Under-observed variables allow for errors  

to be hidden during assimilation of observed quantities (e.g., altering soil moisture when  

assimilating near-surface temperature and humidity, Mahfouf et al., 2009). Model calibration  
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efforts could benefit from expanded use of GCOS and GOOS observations, and at the same time,  

optimization techniques could be harnessed to identify regions of the Earth where enhanced  

observations could offer substantive improvements in predictive and explanatory skill (e.g.,  

Hakim et al., 2020) or reduce uncertainty in chosen climate indices (e.g., Loose and Heimbach,  

2021). All of this must include novel approaches for dealing with the combined stream of  

uncertainties from observations and models.   

Another important objective is the development of calibration and uncertainty quantification  

(UQ) strategies for existing or emerging models, observations, and methodologies (e.g., data  

assimilation). Quantifying uncertainties of global and regional changes in relevant climate  

metrics, based either on observations, models, or synthesis/data assimilation products, remains a  

great challenge, in part because of the computational complexity of the underlying problem (e.g.,  

Oden et al. 2010, for a general perspective). Inspired by examples described in Bui-Thanh et al.  

(2012), Kalmikov and Heimbach (2014), Schneider et al. (2017), Loose et al. (2020), and  

Aschwanden et al. (2021), an activity should develop frameworks and workflows that will  

account jointly for uncertainties in observations (instrument error, representation error, sampling,  

etc.), models (parametric errors, structural model errors, etc.), and assimilation strategies (to the  

extent that they exist) into comprehensive uncertainty propagation flows that seek to combine  

these error sources, and, for example, propagate them onto specific target metrics relevant to  

climate diagnostics. Ensemble methods used in the climate modeling community would benefit  

from such a systematic approach, both at the point of ensemble generation and—even more so— 

when using observations to “constrain” the ensemble, or to reduce uncertainty in these  

calculations. Coordination with efforts that focus on developing and building communities for  

novel modeling approaches, such as the Digital Earths LHA, will be crucial.  

  

Theme 2: Integrated Attribution, Prediction and Projection of Earth System Change  

Key Research Questions:  

1. How can we best identify and attribute the drivers of changes in the Earth system on  

global to regional and A2D scales?  
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2. What are the requirements for an operational integrated attribution and prediction  

capability focused on global to regional and A2D scales to provide early warnings to  

inform decision making?   

On A2D timescales, climate is influenced by many factors, including internal variability and  

external forcing from greenhouse gases, aerosols, ozone, solar variations, volcanic eruptions, and  

land use changes (Cassou et al., 2018; Kushnir et al., 2019; Merryfield et al., 2020). Climate  

model simulations are essential to disentangle the relative roles of these different factors.  

Promising results demonstrate that there is initial state skill extending into A2D timescales  

(Meehl et al., 2021 and references therein). At the same time, other evidence shows that even if  

most of the A2D timescale skill is coming from external forcing, the initial state of the climate  

system can substantively impact the forcing trajectory (e.g., Bordbar et al., 2019). However,  

climate models are imperfect, with issues of model bias and drift posing challenges for A2D  

predictions (Meehl et al., 2022). Additionally, currently available simulations do not take into  

account the latest estimates of, and uncertainties in, the various radiative forcings. Developing a  

prototype operational attribution capability therefore requires two initial stages:  

1.   Critical assessment of the ability of models to simulate the full range of relevant internal  

variability and responses to radiative forcings. A key outcome of this stage will be  

recommended strategies to eliminate, reduce, or adjust for model errors.  

2.   Operationalization of attribution simulations using the latest estimates of radiative  

forcings and uncertainties, and application of corrections diagnosed in stage 1.   

Taken at face value, large ensemble historical simulations suggest a dominant role for irreducible  

internal variability in regional climate change on decadal timescales (Deser et al., 2020).  

However, there is mounting evidence that climate models may underestimate atmospheric  

circulation signals in sub-seasonal (Domeisen et al., 2019; Charlton-Perez et al., 2019), seasonal  

(Eade et al., 2014; Scaife et al., 2014; Baker et al., 2018; Lee and Ha, 2015), interannual  

(Dunstone et al., 2016) and decadal (Athanasiadis et al., 2020; Smith et al., 2020) predictions,  

and in historical simulations (Lee et al., 2014; Zhang and Kirtman, 2019; Sévellec and Drijfhout,  

2019; Klavans et al., 2021; Zhang et al., 2021). This error is especially clear in the North  

Atlantic, although there is some ongoing debate about the potential role of non-stationarity and  
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sampling issues (Christensen et al. 2022; Weisheimer et al., 2020). On decadal timescales it  

appears to occur in most regions where there is skill for atmospheric circulation (Smith et al.,  

2019, 2020). Figure 2 illustrates this error for decadal predictions of the North Atlantic  

Oscillation (NAO). The left panel shows that the ensemble mean has little signal and high  

uncertainty. However, there is high correlation (0.79) between the forecast ensemble mean and  

the observations such that ensemble mean forecasts scaled to match the observed variance more  

closely follow the observed changes over this period (Fig. 2 right panel). The mismatch between  

the high correlation and small signal of the ensemble mean occurs because the models  

underestimate the predictable signal by an order of magnitude. Attribution of A2D changes in  

climate is therefore complicated by the possibility that models may not properly represent the  

relative roles of internal variability and external factors (Scaife and Smith, 2018), and due to the  

difficulties of providing robust statistical verification for decadal forecasts (Christensen et al.  

2022; Weisheimer et al., 2020).   

  

Figure 2: Decadal predictions of the NAO. Left panel: observed (black) and model-forecast  
(years 2–9; red) 8-yr running mean boreal winter NAO index (hPa). The red curve shows the  
ensemble mean; the red shading shows the 5%–95% confidence interval diagnosed from the  
individual members. Right panel: same as the left panel but the ensemble mean has been  
adjusted to have the same variance as the observations and the confidence interval has been  
diagnosed from the errors. Adapted from Smith et al., 2020.  
  

Understanding the causes of the signal-to-noise problem, and improving models so that the  

problem does not arise, are major long-term challenges. In the meantime, given the current  

landscape of model capability, the proposed way forward for this LHA is to diagnose the  

response to individual forcing factors from the mean of large ensembles, and then to assess their  

relative roles (and their additivity) by scaling to reconstruct the observed historical record and  

treating the residual as internal variability. Such single forcing experiments have been proposed  
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by the Detection and Attribution Model Intercomparison Project (DAMIP, Gillett et al., 2016).  

However, these experiments are generally low priority and modeling centers have either not  

completed them, or produced only a few ensemble members. Hence, a key objective of Theme 2  

is to develop large ensembles of single forcing historical simulations (LESFs). A LESF model  

intercomparison project (LESFMIP) based on this initiative is detailed in Smith et al. (2022),  

with Tier 1 experiments detailed in Table 1 below. Multiple modeling centers have already  

committed to producing these large ensembles. Additional centers are welcome and would not be  

required to contribute all of the experiments if the computational demands are too high. These  

LESFMIP experiments are expected to provide information on model behavior that will feed  

back on the model development process. Ideally, these experiments will also inform the Theme 1  

activities designed to identify high-priority regions for expansion of observational networks,  

though the complexity of this task should not be underestimated.   

Analysis of the LESFs will provide scaling factors for the different forcings (Table 1) and hence  

corrections for the model simulations. A key part of the analysis of LESFMIP will be to exploit  

differences between the models to diagnose the real-world situation. Hence, multi-model  

simulations are essential, though understanding the causes of model errors and developing  

emergent constraints will be a significant challenge. This will likely involve detailed analysis of  

recent case studies, assessment of observational and forcing uncertainties alongside model  

biases, and exploration of possible non-linear interactions between the responses to different  

forcings. Initial analysis will likely focus on explaining A2D changes in sea surface temperatures  

(SSTs) in the Atlantic, Pacific and Indian Oceans, with a goal of providing initial attribution  

statements to upcoming WMO reports on the State of Climate and GADCU (Hermanson et al.,  

2022). Subsequent efforts will go beyond this analysis of SST changes and focus on their  

associated impacts (e.g., tropical and extratropical cyclones, droughts, wildfires, marine  

heatwaves, etc.).   

In order for an operational system of attribution simulations to produce measures of the relative  

importance of different forcing factors in the observed changes shortly after their occurrence,  

real-time estimates of individual forcing factors, together with their observational uncertainties,  

will be required. Theme 2 will therefore seek to identify annually updated sources of forcing  

information. There will also be a need for research to explore how results from near-real time  

attribution can be used to constrain and improve decadal predictions. This could involve, for  
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example, exploring the sensitivity of predictions to the modification or exclusion of individual  

forcing factors, or sampling large ensembles to match recent observations (Sparrow et al., 2018;  

Mahmood et al, 2022). Overall, this new integrated approach to attribution and prediction  

promises to provide a step change in our understanding of the drivers of A2D climate changes  

and in our ability to provide early warnings for decision-making.   

  
Table 1: Large ensemble single forcing experiments. All experiments to cover the time period  
1850 to 2020, and then to be extended with real time estimates of radiative forcings. All  
experiments are part of DAMIP (Gillett et al., 2016) except for hist-LU. Target ensemble size is  
50 members for all simulations, with a minimum of 10 members. Tier 1 experiments are listed  
here, see Smith et al. (2022) for further details of experiments and analysis plan.  
  

Experiment name Description 
hist-GHG Well-mixed greenhouse-gas-only historical simulations (WMGHGs) 
hist-aer Anthropogenic-aerosol-only historical simulations (BC, OC, SO2, SO4, NOx, 

NH3, CO, NMVOC) 
hist-sol Solar-only historical simulations (solar irradiance) 
hist-volc Volcanic-only historical simulations (stratospheric aerosol) 
hist-totalO3 Ozone-only historical simulations (stratospheric and tropospheric ozone) 
hist-lu Historical simulations with only land use changes  

  

Theme 3: Assessment of Current and Future Hazards   

Key Research Questions:  

1. How do internal variability and external forcings influence the characteristics and  

occurrence of meteorological hazards on A2D scales in different regions?   

2. How can we use observations, models and process understanding to deliver robust  

assessments of current and future hazards for specific regions and hazard classes?  

Climate hazards and disasters are increasingly costly to human lives and livelihoods, with the  

best estimates for 2021 alone indicating roughly 10,500 lives lost and US$343 billion in  

worldwide economic losses (Aon, 2022). Given the enormity of those numbers, improved  

understanding of the causal factors influencing a wide range of meteorological hazards and  

improved predictions of such hazards merits substantial investments in climate science. As such,  

a key goal of this LHA is to better understand, quantify and predict changes in the characteristics  

and likelihoods of regional weather and climate hazards on A2D scales, taking into account non- 
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stationarity and multi-decadal variability, particularly on large scales like those associated with  

ENSO or the Atlantic Meridional Overturning Circulation (AMOC). Hazards of interest include  

tropical and extratropical cyclones, droughts, floods, heatwaves, wildfires, and cold air  

outbreaks. The Theme 3 portion of Figure 1 (upper right frame) indicates that tropical cyclone  

(TC) frequency is a critically important quantity for this LHA to assess, in part because of the  

documented regional dependence of TCs on A2D variability (e.g., ENSO, Lin et al., 2021; the  

Atlantic meridional overturning circulation, Dunstone et al., 2011, Smith et al., 2010). Figure 3  

provides an additional example of a relevant hazard metric assessing the changing risk of fire  

weather days across the globe. We aim to quantify the current likelihood of specific weather and  

climate hazards, as well as changes in weather and climate hazards on A2D scales. A key  

component of quantifying those changes must be improved understanding of the processes  

connecting changes in hazards to natural and anthropogenic drivers of climate variability and  

change. Each climate hazard brings its own particular requirements in terms of the strength of  

observational data and modeling underpinning current understanding, and in terms of the  

complexity of the hazard in human systems. As such, dedicated analysis is required for each type  

of climate hazard. Our initial efforts will be focused on TCs because of their high salience for  

climate impacts (Figure 1, Theme 3 highlight, top right corner).  

There are many knowledge gaps impeding the quantification of the impacts of natural and  

anthropogenic drivers on hazards. This is in part due to the limited length and limited spatial  

coverage of reliable observational records and the relatively rare occurrences of many types of  

hazards. These factors make it challenging to identify statistically significant trends and to  

distinguish internal variability from responses to external forcings. Our current capability to  

explain hazard changes is also limited due to a lack of process understanding about how drivers  

of large-scale changes may affect hazards, making this a key focal point of this theme. One  

example is the debate on whether Arctic warming impacts midlatitude extreme weather (e.g.,  

Barnes and Screen 2015, Blackport et al. 2019). In general, hazards or weather/climate extremes  

are often regarded as the tail of the distribution of a climate variable, and strong observational or  

theoretical constraints do not exist for most types of hazards.   
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Figure 3: Trend in the number of days per year between 1970 and 2020 for which the Forest  
Fire Danger Index (FFDI) exceeds the climatological 95th percentile, adapted from Richardson  
et al. (2022). Based on data from the reanalysis product JRA55 (Japan Meteorological Agency,  
2013). Shading is the Theil-Sen slope. Stippling indicates a statistically significant result from  
the Mann-Kendall trend test, treated for multiple testing and autocorrelation. See Richardson et  
al. (2022) for details.   
  

Our current capability to predict and project hazard changes is limited due to several factors,  

many of which have already been touched upon in discussion of the other themes. First, many  

types of hazards are related to mesoscale, or even convective-scale processes (such as TCs and  

tornadoes), or are closely tied to the coupling between different components of the climate  

system (such as the role of land-atmosphere interactions in droughts or heat waves), neither of  

which are adequately represented in most global models. Additionally, even if a model skillfully  

predicts the mean regional change, there are often large biases in the regional distribution of  

hazards, leading to deficiencies in capturing the impacts of climate variability or changes in these  

hazards. Model biases, sparse observations, and technical difficulties also present major  

challenges to the comprehensive calibration and balanced initialization of coupled prediction  

systems (Theme 1). Furthermore, as discussed above, large inter-model spread exists in predicted  

and projected climate changes on the regional scale, due to differences in model formulation  

(e.g., physics parameterizations and resolution), and signals related to anthropogenic forcing are  

often weak compared to internal variability (Theme 2). Finally, computationally demanding  

large ensembles are required to adequately sample rare events. Use of the LESFs discussed in  
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Theme 2 will allow us to improve our ability to quantify current and future risk of hazards, and  

attribute changes in hazard risk to internal or external climate drivers. These efforts in  

combination will enable us to assess the predictability and uncertainty of changes in hazard risk.  

Additionally, a range of experimental designs will be useful to make progress with the  

challenges in this Theme, including: hindcast datasets to quantify current risk (e.g., Thompson et  

al, 2017, Squire et al, 2021); coupled single-forcing experiments (as described in Theme 2); large  

ensemble atmospheric general circulation model (GCM) experiments, possibly including  

regional downscaling (e.g., Mizuta et al, 2017; Imada et al, 2020), and targeted nudging and/or  

pace-maker experiments (e.g., Kosaka and Xie, 2013; Watanabe et al., 2014). While atmospheric  

GCM experiments cannot fully address predictability and fixed-sea surface temperature (SST)  

experiments can provide biased estimates of changes in climate extremes (Fischer et al., 2018),  

they can nonetheless be helpful to provide mechanistic understanding of the natural and  

anthropogenic contributions to changing hazards, such as the regional risk of heavy precipitation  

(Imada et al. 2020).  

A gap also exists between the research and user communities regarding A2D prediction products  

that are useful, usable, beneficial, and feasible to produce, especially at regional scales. For  

example, although research has demonstrated the predictability of basin-wide statistics of TCs  

(e.g., Smith et al. 2010; Dunstone et al. 2011, Caron et al. 2018), users are often more interested  

in landfalling TC statistics. With increasing computing power, improved climate models and a  

better understanding of A2D predictability sources, skillful predictions of landfalling TC  

statistics are achievable over some basins (Chang and Wang, 2020). In addition, there is likely a  

middle ground, and co-design between researchers and users is needed for it to be identified.  

These overlapping challenges highlight the benefit of combining the proposed activities under  

the broad umbrella of this LHA.  

  

Conclusions  

The WCRP Strategic Plan (WCRP, 2019) for the coming decade highlights four Scientific  

Objectives, three of which relate directly to the objectives of this Lighthouse Activity.  

Fundamental understanding of the climate system (objective 1) and prediction of the near- 

term evolution of the climate system (objective 2) are at the heart of this LHA’s effort to explain  
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and predict annual to decadal-scale Earth system change. Furthermore, this LHA will ensure that  

advances in fundamental understanding of Earth system change are targeted to meet the needs of  

decision-makers facing climate-related risks and opportunities. Societal benefits to be delivered  

by this LHA include early warning of significant global and regional scale changes in the climate  

system, and quantification of current and future hazard risk on regional scales. The benefits of  

this new actionable information will be enhanced through co-development with diverse  

stakeholders (e.g., governments, businesses, public), and thereby offer a major contribution to  

WCRP’s efforts to bridge climate science and society (objective 4).   

WCRP’s new Lighthouse Activities constitute a bold effort to tackle some of the most persistent  

and difficult issues in climate science today. These efforts will require close collaboration with  

many different groups within WCRP and beyond to undertake a full, integrated assessment of  

our observational and modeling capabilities that cross component (ocean, atmosphere, land, ice)  

and disciplinary boundaries, and help push forward the capabilities of explanation, prediction  

and uncertainty quantification for annual to decadal timescales. Successfully addressing these  

issues calls for collaboration and coordination of climate scientists around the world and will  

require support from funding agencies that is commensurate with the magnitude of the task at  

hand.  
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