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Opinion
‘Small Data’ for big insights in ecology
Highlights
The specific context and characteristics
of ecological studies mean datasets are
often small and poorly suited to many
advanced analytical approaches.

Some important ecological insights can
only be derived from Small Data, so its
collection should not be neglected.

Ongoing advances in study design, data
analysis, and machine learning methods
Lindsay C. Todman ,1,* Alex Bush ,2,* and Amelia S.C. Hood 1

BigData science has significantly furthered our understanding of complex systems
by harnessing large volumes of data, generated at high velocity and in great variety.
However, there is a risk that Big Data collection is prioritised to the detriment of
‘Small Data’ (data with few observations). This poses a particular risk to ecology
where Small Data abounds. Machine learning experts are increasingly looking to
Small Data to drive the next generation of innovation, leading to development in
methods for Small Data such as transfer learning, knowledge graphs, and synthetic
data. Meanwhile, meta-analysis and causal reasoning approaches are evolving to
provide new insights from Small Data. These advances should add value to high-
quality Small Data catalysing future insights for ecology.
increase the value of ‘Small Data’ be-
yond the intrinsic purposes for which
they are originally collected.

These methods include transfer learning,
generating synthetic data, using causal
model structures and new approaches
to collating Small Data.

The greatest opportunities will arise if the
reusability of Small Data is improved.
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The ‘Small Data’ trend
In a world that creates zettabytes of data each year, we are living in the ‘Big Data’ (see Glossary)
era. ‘Big Data’ has enabled significant progress in many disciplines, including ecology, and
continues to promise further advances [1]. New technologies are enabling ecological data to be
collected at an unprecedented rate, and for some it is easy to assume that ‘Big Data’ is necessary
to improve our understanding of complex problems. One may therefore question the value of
expensive studies that culminate in a handful of data points. By contrast, many leading data
scientists, companies, and trend analysts predict that the greatest advances in our capability
and knowledge will be driven by methods that utilise ‘Small Data’ [2]i. Such advances will greatly
increase the range of problems available for analysis and broaden the insights that can be drawn.
We hope this paper will help inspire ecologists to see that opportunities are emerging to integrate
and maximise their research outputs at all levels.

Small Data and Big Data represent two ends of a continuum. Big Data is typically considered
as high volume, composed of a complex mix of data types, and may also be generated and
processed at high speed [3]. Conversely, Small Data contain a smaller volume of one or fewmea-
surement types, may have inconsistent structure, and may only be generated intermittently or
even as a one-off. As a result, models analysing Small Data have a greater risk of overfitting
because the number of features in a model are high relative to the degrees of freedom in the
dataset. Overfitting leads to models that are influenced by patterns in the sample data that are
not present in the population (i.e., noise), thus leading to spurious predictions that generalise
poorly to new data. In very Small Data, this may mean no model can be fitted and trends in the
data cannot be interpreted. As a result, the legacy value of Small Data to advance our collective
knowledge is considered proportionately small, rather than recognising their value for offering
unique insights about rare events, or providing tailor-made answers to specific questions.

In our opinion, Small Data is particularly important for the ecological community for several rea-
sons. Firstly, ecology incorporates mission-oriented disciplines (e.g., conservation, agriculture),
and collecting Small Data facilitates rapid, tailored, evidence-based decision-making. Secondly,
understanding rarity (e.g., rare species) is fundamental to ecology, and Small Data are needed
to do this. Thirdly, many data collection methods are costly and too time-consuming to scale-
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Glossary
Bayesian Belief Network: a
probabilistic graphical model that
captures the relationships between
variables in a series of nodes and edges,
useful for causal reasoning in uncertain
domains.
Big Data: data with typical
characteristics such as high volume,
collected at high frequency and contains
a complex mix of data types.
Counterfactual: expresses what would
have happened if a treatment had not
been applied, in designed experiments
this is typically the control treatment
to which any other treatments are
compared.
Data augmentation: a data science
method to create a kind of ‘synthetic
data’ by distorting existing data.
Deep learning model: a complex
neural network with multiple nodes per
layer and multiple layers (typically >3).
Generalise/generalisability: the ability
of a model to perform well for previously
unseen data.
Knowledge graph: a graph-based
structure that integrates data by
encoding values of individual data points
(nodes) and relationships between them
(edges).
Natural language processing: a
branch of machine learning/artificial
intelligence that aims to learn the
patterns in written or spoken language
to enable computers to understand
language.
Neural network: a machine learning
method that loosely attempts to mimic
processes in the human brain to learn
patterns in data, ‘neurons’ (nodes) are
arranged in a series of layers with each
layer learning from a further
transformation of the data to uncover
more detail.
Relational database: a method for
data integration in which data are
organised according to predefined
relationships, for example, in a series of
columns with each row corresponding
to an individual.
Small Data: data with typical
characteristics such as low volume,
collected as a one off or sporadically with
a specific data structure that is not
generalisable or has irregularities
(e.g., variables that are not observed
elsewhere, differences in measurement
methods to other datasets).
Structural equation model: a
multivariate statistical analysis technique
that originated from causal modelling
up to generate Big Data; this is particularly true in habitats where data collection is particularly
arduous (e.g., rainforests, deep soil), and these are often understudied habitats that can provide
unique insights. Application of new methods for Small Data, as well as amendments to enhance
their usability, could therefore help to maximise the value of ecological data, either for stand-alone
use, or as part of our collective understanding.

Uses and value of Small Data
Intrinsic value
Small datasets are often collected with a particular purpose in mind, for example, a research
hypothesis or a monitoring exercise, that offer direct insights into the stand-alone dataset
(Figure 1). Controlled experiments may only be able to collect a modest amount of information,
but they are an important tool for facilitating rapid, tailored, evidence-based decision-making
and add to scientific understanding of the causal interactions in ecology. Counterfactuals can
be observed (as much as is practically possible, e.g., using matching method [4]), but experi-
ments are often expensive and time-consuming leading to Small Data. These approaches are
widely used in ecology, spanning ‘manipulative’ experiments where conditions are actively
influenced and ‘observational’ experiments where differences between existing conditions are
measured [5]. The design of these experiments is important to increase the value of the data
that are collected and enable causal inference [6]. Equally, resource constraints mean trade-
offs between the scale, frequency, and quality of measurements are implicit in all field studies.
So, while empirical evidence to guide policies and mitigate the global decline of biodiversity is
key, our understanding is also inherently constrained by the fact that most species are rare. A sin-
gle approach would not work for all species, and therefore, the value of monitoring data collected
for modelling rare species depends on a careful, potentially even bespoke, design [7].

In addition to study design, using analytical methods appropriate to Small Data can support new
insights and increase the predictive performance of models. For example, regularisation methods
can be used for linearmodels with small sample sizes [8] while inmachine learning Support Vector
Machines are a common method for Small Data [2]. Dimension reduction approaches can also
improve model performance [2].

Collating
Conceptually, the simplest method to reuse Small Data is to link Small Datasets together so they
become more ‘Big-Data like’ (Figure 1) [9]. One increasingly popular method is knowledge
graphs, which represent the relationships between different data in a flexible and machine-
readable way (Table 1). Unlike relational databases in which the relationships between data
are implicit to the data structure (e.g., data are stored in columns and relationships between
columns are known with each row corresponding to an individual), instead knowledge graphs
store the relational information for each data point as data in its own right [10]. They can integrate
the data and related contextual information from multiple sources. By storing the data and the
type of relationship between them as a series of ‘nodes’ and ‘edges’, knowledge graphs enable
novel queries about the linkages between data [11,12].

Evidence synthesis such as meta-analysis is important for understanding causality in ecology,
because when similar effects are seen in multiple studies, it builds evidence for the causal
mechanisms behind the treatments. Conducting a meta-analysis can be time-consuming,
particularly when linking several small studies, and one challenge is to increase evidence synthesis
efficiency [13]. Approaches to do this include automating the data collation process [14,15] and
dynamic meta-analysis [16] which improves the transferability to different contexts (Table 1).
Another challenge for data collated from small studies is missing data and differences in study
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and uses a hierarchical structure to
capture the relationship between
measured and unobserved (latent)
variables.
Synthetic data: data that are computer
generated, generally to provide a larger
dataset that mimics the characteristics
of a smaller data set.
Transferability: the ability to reuse
knowledge from relevant previous
learning.
Transfer learning: a machine learning
method where a similar but larger
dataset is used to develop an initial
model which is then ‘fine-tuned’ using a
smaller data set.
structure. Bayesian meta-analysis could overcome these challenges and is commonly used in
disciplines such as medicine, but has received less attention in ecology (Table 1) [17].

Transfer learning
AI methods have typically required big training data sets to allow computers to ‘learn the rules’
for a classification problem from scratch (Figure 1) [18]. Transfer learning leverages existing
big datasets with a lot of labelled information to train the architecture of a model (that may
include millions of parameters), and that primed structure is then applied to solve a problem
in an analogous way for Small Data (Table 1). Thus, while all models aim to generalise an under-
standing to unseen data based on patterns within the training data, transfer learning does so
for an entirely new task, while retaining knowledge of the generic processes in the parent
model.

Transfer learning is effective because neural networks start by identifying features that are
common to a wide variety of tasks, whereas later layers are most specific to the features
upon which the model was trained. Thus, base layers from an existing model are often a better
starting point for a wide variety of tasks than random initialisations, but tuning is required to
decide at which point to split the model for a new task [19]. In imagery, base features like
texture waveform, vector recognition, and contiguous regions of contrast are all identified
early on by neural networks (e.g., [20]). As a result, models trained on the generic image data-
base ImageNet have then been tuned to classify other images such as photos of diseased plant
leaves [21], and, by treating spectrograms as images, for identification of birds and frogs from
audio (Table 1) [22].

One approach for transfer learning is to design a deep learning model that solves multiple
tasks, sharing layers at first for all tasks and preserving generality, before subsequently splitting
task-specific layers [23,24]. A more common alternative is to use an existing pre-trained deep
learning model (e.g., Keras Applicationsii or MicrosoftML packagesiii for both R and Python
users), and only replace the last layers to suit the new Small Data task [25,26]. This approach
is particularly popular for image and audio processing because the pre-trained model can
dramatically reduce the size of the input dataset and computation time.

Synthetic data
In many situations, Small Data can be supplemented prior to the application of machine learning
by the addition of computer-generated synthetic data (Figure 1). These data are generated in a
systematic way to incorporate key characteristics of the Small Data, while the ‘noise’ in the data is
varied. The simplest form of data generation is data augmentation, whereby the original Small
Data are transformed or distorted to provide alternative instances of the data. This may be
cropping or transposing for image processing [27], a change in pitch or noise overlay for an
audio sample (e.g., to classify animal noises [28]), or applying a transformation, such as the radial
basis function (e.g., applied to clinical trial data [29]). However, these augmentation methods are
still based on the original sample, and generalisability can be limited.

More complex methods to generate synthetic data aim to create new samples with characteristics
similar to the original data points. For image analysis, methods include Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs) [30]. A statistical model can also be used
to generate data with similar statistical characteristics to a Small Data set (Table 1). Synthetic
data of this kind is still related to the Small Data set from which statistical characteristics have
been estimated, but within the synthetic data set more examples of the expected noise are
included, so that the noise is not overfitted in a machine learning model.
Trends in Ecology & Evolution, July 2023, Vol. 38, No. 7 617
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Figure 1. Uses of Small Data; see Table 1 for advances in these areas.
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Another alternative is to use a causal model of the relevant process to capture the key signals that
should also theoretically be present in the Small Data set. While this clearly requires some insight
into the causal processes, these could be hypothetical and be tested with the Small Data set.
Synthetic data could still be useful predictively even if it includes a number of realisations that
are not present in the true population, as long as sufficient samples are present in the population,
618 Trends in Ecology & Evolution, July 2023, Vol. 38, No. 7
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Table 1. Inspiring advances in Small Data use

Method and use Examples Opportunities for ecology

Collating
data

Knowledge graph, novel
queries

Dorpinghaus et al. [48] developed an ontology to improve
interoperability of clinical data from patients, combining it
in a knowledge graph with contextual information and
information from literature studies, thus linking numerous
Small Datasets. They demonstrate how this knowledge
graph enables them to answer queries, such as ‘which
patients are found most often in the context of a risk
group?’ combining aspects from data of different
structures.

Structured linking of Small Data through common
ontologies would enable novel queries. For example,
rapidly locating data from studies with common contextual
factors and direct queries on the linkages between data.

Knowledge graph,
meta-analysis

Tiddi et al. [14] developed a knowledge graph of social
science studies on human co-operation in order to
conduct a meta-analysis. They develop a structured
schema for the data they collate and suggest this as a
format for data formatting of future studies to allow the
meta-analysis to be updated.

Similar structures for ecological data used for new studies
would facilitate rapid integration into meta-analyses.

Dynamic meta-analysis Dynamic meta-analysis [16] enables users to interactively
filter and weight data based on their own criteria
(e.g., climate) via an online interface. The user can tailor
their analysis easily by clicking buttons which produce
statistical outputs (e.g., subgroup analyses) and plots
(e.g., funnel plots).

This approach could increase the impact of Small Data,
as it makes analysis of collated data easily accessible to
decision-makers to answer questions in specific contexts
by reusing collated datasets.

Transfer
learning

Image processing,
species identification

Knausgård et al. [49] used existing frameworks for object
identification and feature extraction to automated marine
fish identification.

There are a range of species identification applications
for these methods and many more opportunities for their
use for additional species.

Natural language
processing

Models used to analyse wildlife Twitter hashtags [50] or
to automate the mining of taxonomic information from
scientific literature [51] were transferred from test
processing pipelines trained on Wikipedia entries and
medical literature, respectively.

The general layers from natural language processing
algorithms could greatly increase opportunities to collate
insights from ecologically specific texts.

Natural language
processing, genomics

Transfer learning from text processing has improved the
ability to infer gene functions of microbes from complex
sequence datasets [52,53].

Provides opportunities to make greater use of public omics
databases [54].

Synthetic
data

Synthetic data, based on
statistical properties

Kantidakis et al. [55] generated synthetic data for 1000
individuals with the statistical characteristics of clinical
trial data to model expected survival time for a bone
cancer (osteosarcoma). The synthetic data was then
used to train a neural network that had comparable
performance to an existing modelling approach.

These approaches could be applied to generate
synthetic data from designed experiments so that
machine learning can be used to develop predictive
models, potentially improving predictive capacity
compared with regression models.

Synthetic data, using
causal model

Trafton et al. [56] generated synthetic data for 20 000
individuals using a process-based cognitive model of
human decision-making to predict behaviour when
managing multiple unmanned arial vehicles, and
combined this with observations of ten individuals to
improve predictive performance of a deep neural
network.
Mazumder et al. [57] used a process-based model of
a heart to generate synthetic data to combine with
observed data to improve coronary artery disease
classification.

There are numerous causal models in ecology that could be
used to supplement experimental data for a range of
applications, for example, game theory models of human or
animal behaviour that could be supplemented with
observations. The challenge will be to develop approaches
to use these robustly, respecting the limitations of uncertain
causal models.

Causal model, natural
language processing

Ancin-Murguzur and Hausner [35] used text mining to
develop a map of causal relationships in an artic tundra
ecosystem.

Causal structures from mining the scientific literature
could be used to improve model structures used for
analysis of Big Data and collated datasets.

Trends in Ecology & Evolution
OPEN ACCESS
although this would decrease algorithm efficiency. Where reasonable causal models exist, and
risks of extrapolation of knowledge are considered, this could provide a powerful way to supple-
ment Small Data in a way that goes beyond the characteristics of the original data by drawing on
broader process understanding.
Trends in Ecology & Evolution, July 2023, Vol. 38, No. 7 619
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Causal reasoning
Causal inference can be used in a number of different approaches from machine learning to
decision support tools (Figure 1). It is of increasing interest in machine learning to overcome the
criticism that the structure of these approaches is a ‘black box’, with growth in ‘explainable AI’
and ‘causal AI’ that make algorithmic reasoning more explicit by drawing on existing understand-
ing or by inferring causality from data [31]. Bayesian networks have been used in a range of
contexts in ecology and offer a way to combine empirical data with a wider body of knowledge
for applications such as risk assessment [32]. In ecology, the causal structure is often elicited
from experts [33]. In many cases, these experts are researchers in the topic, whose expertise
has developed through their previous work including the collection and analysis of Small Data.
Structural equation modelling [34] and Bayesian Belief Networks [33] are important
methods for quantitative causal modelling, and Small Data can play an important role in both
establishing the causal structure of a model and in parameterising specific links within the
model. Similarly, natural language processing is increasingly being applied to scientific text to
learn causal model structures (Table 1) [35,36]. Rather than using Small Data directly, an algorithm
takes a researcher’s description of their data sets, analysis, and results, and recognises causal
words and phrases (e.g., ‘X increased Y’) to develop amodel of causal interactions.While this relies
on the accuracy of statement in published papers, justifiable approaches of this kind are linking
the individual insights drawn by researchers and can be used to look for common patterns across
multiple sources.

Reusability of data and insights
Many of the methods presented in this paper depend on the ability to integrate Small Data with
other datasets: big or small. Such integration is easiest if datasets meet the FAIR data principles,
and are: Findable, Accessible, Interoperable, and Reusable [37]. Significant efforts have been
made to increase the FAIRness of datasets, such as many funders and ecology journals now
mandating public data archiving [38], but the majority of datasets in ecology still do not meet
FAIR research principles: for example, 64% of authors in ecology and evolution archive their
data in a way that prevents reuse [39]. Reporting guidelines, such as checklists, have become
increasingly common in the field of medicine in the past two decades [40], and these guidelines
have successfully improved reporting standards [41–43]. The wide uptake of reporting guidelines
in medicine has been facilitated by their widespread endorsement in medical journalsiv and
the development of an online library of searchable guidelinesv. Ecologists also need support to
reformat their data in a way that makes it reusable, as the format used for an individual study is
rarely the most appropriate structure to enable reuse [44]. An infrastructure that provides access
to data management specialists is needed along with time for data formatting, and this requires
sufficient funding [45]. Improved infrastructure, wider uptake of reporting guidelines, and FAIR
data principles in ecology would increase the impact of Small Data by increasing the ability to
integrate and amalgamate datasets.

Meanwhile, we recognise that reusability may not be pragmatic for themost nuanced datasets for
which it is difficult for the data to conform to existing standards. Yet, we propose that the causal
understanding derived from these data is a ‘knowledge fragment’ that could be reused. Clear
reporting of the key findings and contextual factors using common ontologies and phrasing for
causal interactions could enable mining of the literature to develop causal models. In Bayesian
network models, ‘network fragments’ or ‘idioms’ are developed to capture patterns of reasoning
that are commonly used within a discipline so that they can be used elsewhere [46,47]. While
Small Data may not be capturing common patterns, capturing the understanding from a Small
Data study in a machine-readable format such as a knowledge graph would allow understanding
to be integrated by looking for recurring, overlapping, or contradicting causal networks. This
620 Trends in Ecology & Evolution, July 2023, Vol. 38, No. 7
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Outstanding questions
Where else can these methods for
Small Data be applied to draw new
insights in ecology?

How can synthetic data from numerous
process-based models in ecology
be used appropriately to enable new
insights from Small Data while respect-
ing the uncertainty in process-based
models? And how should Small Data
be collected to increase the effective-
ness of synthetic data methods?

How can the understanding from
analysis of Small Data be captured
in a way that enables reuse of this
‘knowledge fragment’?

How can we effectively incentivise data
sharing to build further momentum to
increase good data management and
sharing practices?
could enable rapid integration of causal understanding from Small Data studies and highlight
areas where understanding is most uncertain.

Concluding remarks
Significant advances in data science and machine learning now allow Small Data in ecology to be
viewed differently, and given the active interest in Small Data methods across many fields, new
methods are likely to emerge in the near future with applicability to ecology (see Outstanding
questions). This paper aims to (i) highlight the growing range of uses of Small Data available to
the ecological research community; (ii) add further support for good datamanagement to improve
data reusability, be this raw datasets or key ‘knowledge fragments’ drawn from complex research
studies; and (iii) emphasise the continuing importance of ‘Small Data’ of high quality so that
valuable data collection of this kind is not neglected due to new methods of data collection.
Though widely available, ‘Small Data’ is underused and deprioritised by data scientists
and funders; we recommend that it is reprioritised. In the words of John Ruskin ‘It is small, if
you will; but when you begin to think of things rightly, the ideas of smallness and largeness
pass away’.
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