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We consider whether inflation is a ‘global phenomenon’ for European emerging market
economies, as has been claimed for advanced or high-income countries. We find that a
global inflation factor accounts for more than half of the variance in the national inflation
rates, and show that forecasting models of national headline inflation rates that include
global inflation factors generally produce more accurate path forecasts than Phillips
curve-type models and models with local inflation factors. Our results are qualitatively
unaffected by allowing for sparsity and non-linearity in the factor forecasting models.
We also provide some insight as to why global factors are an important determinant of
domestic inflation, by considering the country-level characteristics that tend to increase
the importance of global factors for domestic inflation.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the last decade or so there has been much de-
ate in the literature about the relative importance of
lobal factors and domestic factors (including a country’s
onetary policy) as determinants of countries’ inflation

ates. Much of the research has focused on the U.S. and
he developed countries of the OECD, with fewer studies
f developing and emerging economies. Even for devel-
ped countries, the importance of the ‘globalization of
nflation’, and its implications for the conduct of domestic
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versions of this paper. However, any remaining errors are solely ours.

∗ Corresponding author.
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monetary policy, has been contested. In this paper, we ad-
dress the relevance of the globalization-of-inflation phe-
nomenon for emerging market (EM) economies, analyzing
a number of emerging European economies.

There are a number of reasons for focusing on less
developed countries. Firstly, less advanced countries typ-
ically experience more variable inflation rates, putting a
premium on the accurate modeling and forecasting of
inflation in those countries, both for the conduct of policy
by monetary authorities and for the savings and invest-
ment decisions of private-sector agents. Secondly, recent
research by Kamber and Wong (2020) suggests that global
factors play a more important role in determining trend
inflation (as opposed to cyclical inflation) in emerging
economies than in developed economies. They suggest
(referring to Draghi (2015)) that although global factors
affect the inflation gap in both emerging and developed
countries, central banks will ‘look through’ foreign shocks
that only have transitory effects (that is, that only affect
the inflation gap). Hence, for the conduct of monetary
rnational Institute of Forecasters. This is an open access article under
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policy, determining the effects of foreign shocks on devel-
oping countries may be a more pressing concern than for
developed economies, especially if these shocks do have a
greater effect on trend inflation in developing economies.

As for developed economies, there does not appear to
e a clear consensus on the importance of global factors
or domestic inflation rates for EM economies. (We re-
iew a number of the studies in Section 2.) There are
number of issues that might affect the findings, and
e seek to provide a detailed examination of some of
hese. Firstly, in the context of the emerging European
conomies, what is an appropriate ‘global’ inflation fac-
or? A factor could be extracted from all the countries
aken together (i.e., emerging and developed), or from
he subset of emerging countries, or from the developed
ountries. The shared geographic location of the emerging
uropean countries, and their close ties in terms of cul-
ural, political, and industrial development, might suggest
n emerging-country factor, but equally we might expect
he EU member countries to be affected by European-
ide, or even global, inflation. We regard this as an em-
irical question, and we allow the data to choose between
hese possibilities based on which generates the best fore-
asts. Related to the choice of factor, how to calculate the
actor(s) turns out to matter. We estimate factors using
artial least squares, rather than the oft-used principal
omponent analysis. As we explain, this makes it more
ikely that the factors will be able to predict national
nflation rates.

The second main consideration is the choice of fore-
asting model with which to determine any potential
enefits from including factors. The forecasting models
n which ‘global’ effects are included can affect the im-
ortance we attribute to global developments, as can
he benchmark models we use as comparators,1 and the
failure to model domestic influences might misleadingly
point to an important role for external factors in fore-
casting domestic inflation. We attempt to guard against
finding a role for ‘global inflation’, because of the omis-
sion of relevant domestic sources, by including a factor
calculated from a large set of domestic variables, which
includes the traditional Phillips curve determinants. We
use a factor to capture a wide range of possible domestic
influences.

As part of the choice of forecasting model, it may be
important to allow for non-linearities. At least for the
U.S., evidence has accumulated against the traditional
Phillips curve, with the ‘missing disinflation’ in the U.S.
following the 2008 financial crisis (see, e.g., Stock (2011)

1 A case in point is the study by Gillitzer and McCarthy (2019), who
show that a head-to-head comparison of the forecast performance of
the global inflation model of Ciccarelli and Mojon (2010) with the ‘no
change’ benchmark of Atkeson and Ohanian (2001) (discussed below,
in the main text) does not favor the former. The benchmark model
of Atkeson and Ohanian (2001) happens to closely correspond to the
model of Stock and Watson (2007) for U.S. inflation for a particular
epoch. However, adding the global factor to the model of Atkeson and
Ohanian (2001) was found to improve accuracy at longer horizons. This
can be understood in terms of the concept of forecast encompassing:
a model can be less accurate than another but still carry useful
incremental information for forecasting (see, e.g., Chong and Hendry
(1986) and Ericsson and Marquez (1993)).
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and Coibion and Gorodnichenko (2015)) and the recent
low rates of inflation despite low rates of unemployment
(see, e.g., Ball and Mazumder (2020)). McLeay and Ten-
reyro (2019) argue that the actions of monetary author-
ities will diminish the observed responsiveness of prices
to slack, leading to a flattening of the Phillips curve. Atke-
son and Ohanian (2001) had earlier found that a simple
average of the four quarterly inflation rates up to the
forecast origin was more accurate than forecasts obtained
from Phillips curve specifications. That said, our Phillips
curve model is broader than a simple relationship be-
tween inflation and unemployment rate or the output
gap, and captures a broad range of domestic influences.
We allow the domestic variables to have a non-linear or
time-varying influence on inflation, consistent with the
view that the Phillips curve might exhibit important non-
linearities (see, e.g., Hooper, Mishkin, and Sufi (2019)). We
consider whether our findings change when we allow for
non-linearities.

The literature also suggests an important distinction
between core and headline inflation, where the former
excludes food and energy prices. Global determinants of
commodity prices will likely influence domestic energy
and food prices, and hence headline inflation. But the
‘globalization of inflation’ phenomenon is sometimes un-
derstood to go beyond this direct effect, to refer to an
effect on core inflation. While food and energy prices will
affect the headline figure, they may not be closely related
to the domestic level of activity, so that Phillips curve
specifications may not work well for the headline rate.2
We unpack these issues as follows. Our primary focus
is on headline inflation rates, and we check whether a
global factor has predictive power once we have sepa-
rately controlled for commodity (food and energy) prices.
We then consider whether our findings change when
headline inflation is replaced with core inflation.

Looking ahead: in our baseline linear models (de-
scribed in Section 4), we find that global factors play
an important role in determining European EM national
headline inflation rates, in addition to the explanatory
power provided by local, domestic factors; thus inflation
is a global phenomenon for the European EM countries’,
just as it has found to be for advanced economies (see
Section 5). This finding is tempered somewhat when we
forecast core inflation instead. For forecasting headline
national inflation rates, global inflation is found to have
predictive power beyond the information carried by the
factor regarding commodity prices.

Our baseline findings are shown to be robust to other
modeling approaches. They carry over to factor-selection
methods that enforce sparsity, as well as to a machine-
learning method that allows for a non-linear relationship
between national inflation rates and the sets of factors.
These results serve as a robustness check, and they extend
the analysis over a range of models that are becom-
ing increasingly popular in the literature. The additional

2 See e.g., Ball and Mazumder (2020), who argue that large relative
price changes may also occur in industries other than food and energy,
and suggest measuring inflation using the weighted median of price
changes across industries (proposed as a measure of core inflation
by Bryan and Cecchetti (1993)).
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methods are described in Section 6.1, and the results in
Section 6.2. We consider a number of methods of eval-
uating forecast performance – we look at path forecasts
and the horizon of predictability – but the bottom line is
essentially unchanged.

Finally, we undertake two additional sets of analyses,
ith the aim of furthering our understanding of why

nflation appears to be a global phenomenon for EM
conomies. In Section 7 we consider whether we can ex-
lain national inflation rates better (in terms of generating
ore accurate forecasts) if we make an allowance for the
ifferent degrees of ‘connectedness’ between countries
hen we calculate the global inflation factor. For shorter-
nd medium-horizon forecasts, allowing for network ef-
ects yields improvements for some countries. However,
or some EM countries at all horizons, and for most
ounties at longer horizons, allowing for network effects
s not beneficial. Section 8 casts light on the country-
evel characteristics that make a country’s inflation rate
ore responsive to global inflation. That is, we explore

he potential propagation channels of global factors on
omestic inflation rates for emerging markets.

. Literature review

Before presenting our approach and results, we briefly
eview some of the literature on the relative impor-
ance of global factors and domestic factors (including
country’s monetary policy), as determinants of coun-

ries’ inflation rates, for both developed and developing
ountries. Ciccarelli and Mojon (2010) argue that the
nternational character of economic fluctuations is not
ew (see, e.g., Kose, Otrok, and Whiteman (2003)), but
uggest the recognition that inflation might also be a
lobal phenomenon has come more slowly, with Ciccarelli
nd Mojon (2010) being an important contribution, along
ith Neely and Rapach (2011a) and Mumtaz and Surico
2012), inter alia.3 Ciccarelli and Mojon (2010) show that
common factor accounts for nearly 70% of the variance
f inflation of 22 OECD countries, capturing trend com-
onents and cyclical variation. However, the importance
f the ‘globalization of inflation’ for the effectiveness of
omestic monetary policy has been disputed,4 as has the

appropriate way of modeling and forecasting inflation.
One reason for suspecting that global factors might

have been more important is the literature on interna-
tional interconnectedness, as measured by global value
chains; see e.g., Auer, Borio, and Filardo (2017). Greater
international interconnectedness might result in an in-
crease in the importance of ‘global slack’ (relative to
domestic conditions) in determining national inflation
rates. Kabukçuoğlu and Martínez-García (2018) find that
modeling cross-country inflation spillovers also improves
upon traditional ‘closed’ Phillips curve forecasting models.

3 That said, it has long been recognized that the Phillips
curve (Phillips, 1958) relationship between the real side of the econ-
omy (the unemployment rate, or an activity variable or measure
of slack more generally) and price or wage inflation ought to be
supplemented with a role for international developments, such as oil
prices or import prices (see, e.g., Franz and Gordon (1993) and Roberts).
4 See, e.g., Carney (2015), Draghi (2015) and Jordan (2015).
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Yet the importance of global factors (with the exception of
commodity prices) in determining advanced economies’
national inflation rates is contested by Mikolajun and
Lodge (2016). They show that in Phillips curve models
for the period of relative stability from the mid-1990s
onwards, global factors other than commodity prices tend
to be of little importance, especially once forward-looking
expectations are included to capture long-term trends. Al-
tansukh, Becker, Bratsiotis, and Osborn (2017, p.2) suggest
that ‘the observed convergence in aggregate and core
inflation may be the product of many economies sharing
a similar inflation target concurrently, rather than due to
a global transmission factor’.

The evidence for emerging or low-income countries
in favor of the globalization of inflation is also equivo-
cal. Duncan and Martínez-García (2019) consider a range
of models for 14 EM economies, including open-economy
Phillips curve models, and generally find they are out-
performed by the Atkeson and Ohanian (2001) bench-
mark. Parker (2018) comes to a similar conclusion for
middle- and low-income countries. His findings match
those of Ciccarelli and Mojon (2010) in that global in-
flation matters for high-income countries but accounts
for only 10% or so of the variation in national inflation
rates for low-income countries (and only 15%–20% for
middle-income countries). Parker (2018, p.175) argues
that in high-income countries it is ‘the lower average
inflation, lower inflation volatility, higher GDP per capita,
deeper financial development and more transparent mon-
etary policy that explain a greater role for global inflation
factors’. Jašová, Moessner, and Takáts (2019) find a dimin-
ished role for global inflation in determining EM national
inflation rates following the global financial crisis, in con-
trast to their evidence for developed countries. Finally,
both Hałka and Szafranek (2016) and Lovin (2020) offer
a more positive assessment of the effects of global factors
on EM economies. Hałka and Szafranek (2016) find that
Central and Eastern European countries’ inflation rates are
affected by inflation in the euro area, and Lovin (2020)
finds a role for euro area inflation and the output gap
for European emerging countries’ inflation rates, although
core CPI was less affected than food and energy.

3. Data

We collected a large set of macroeconomic indicators
on the Central and Eastern European countries: Bulgaria,
Czech Republic, Greece, Hungary, Poland, and Romania
(hereinafter referred to as EM European countries). We
selected EM European countries which have made the
largest strides in terms of globalization in recent years.5
The dataset includes both ‘hard indicators’ and country
level survey data. In the hard indicators, we have supply-
side variables such as construction, industrial produc-
tion indices, and demand-side variables such as energy
usage. Among the survey variables, we have consumer
confidence indices: the European Commission economic
sentiment index, Market PMI survey, etc. To capture the

5 See Gygli, Haelg, and Sturm (2019).
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Table 1
Number of variables in each data group across countries.

Bulgaria Czech R. Greece Hungary Poland Romania

Macroeconomic variables 84 70 68 65 74 82
Disaggregated price variables 79 89 81 80 89 80
Emerging markets headline CPI 71 71 71 71 71 71
Developed markets headline CPI 27 27 27 27 27 27
t
f
r
a

potential vulnerability of EM European countries to ex-
ternal factors, we also considered the current account
balance and export and import value indices. The macroe-
conomic indicators were downloaded from Bloomberg.

In addition to the macroeconomic indicators, we em-
loy a large dataset of disaggregated harmonized indices
f consumer prices (HICP), up to the product level, for our
ample of countries. This is a higher level of disaggrega-
ion than sector-specific price data, and includes product
eries such as ‘meat’, ‘milk’, ‘package holidays’, ‘dental ser-
ices’, etc. The number of HICP components ranges from
3 to 89 indices across countries, since not all items are
ot available for all countries.6 The disaggregated price
ata were obtained from the Eurostat database.
To construct a proxy for global inflation, we collected

large panel of headline consumer price indices for a set
f 98 countries, including the 71 advanced countries and
7 emerging markets. Hence, our dataset covers inflation
ates for countries in different regions such as the Middle
ast, Asia, Africa, and Europe. The selection of countries
as based on data availability: earlier-period high-quality
ata were not available for some countries we would have
therwise included. The country-level headline consumer
rice indices were taken from the IMF database.
Our complete monthly dataset covers the period Jan-

ary 2002 to January 2020, the starting date being de-
ermined by data availability. All series are adjusted for
easonality (where relevant), and made stationary as ap-
ropriate by either differencing, year-over-year differenc-
ng, or log differencing. Table 1 summarizes the number
f variables in each data group across countries.

. Methodology

.1. Constructing the local and global factors using partial
east squares (PLS)

In much of the existing literature, a proxy for global
nflation is constructed as a common factor of a group
f country inflation rates, often either as a static factor
esulting from the application of principal component
nalysis (PCA) or from dynamic factor models estimated
sing Bayesian methods (Ciccarelli & Mojon, 2010; Mum-
az, Simonelli, & Surico, 2011; Parker, 2018). Unlike those
tudies, we use partial least squares (PLS) to extract com-
on factors, and calculate factors from our three separate
atasets. The first is a country-specific macroeconomic
ndicators dataset, the second a country-specific dataset
f disaggregated CPI indices, and finally we calculate a
umber of factors from a dataset of national inflation

6 We only utilized the indices that have available data for our whole
sample period.
163
rates, as described below. PLS reduces the large number
of variables in each of these datasets to a small number
of factors, which have maximum explanatory power for
a given target variable. As indicated by Fuentes, Pon-
cela, and Rodríguez (2015), Groen and Kapetanios (2016),
PLS estimates the latent factors by maximizing the co-
variance between the target forecast variable and pre-
dictor variables. The explicit consideration of the target
forecast variable counters the main criticism of PCA: it
ensures that the resulting factors are related to the target
variable.

In this paper, the PLS method is utilized by follow-
ing the two-step approach proposed by Friedman, Hastie,
et al. (2001). For each dataset X , the algorithm standard-
izes each predictor variable xj (j = 1, . . . , n) to have
zero mean and unit variance.7 Then, univariate regression
coefficients γ̂1j = ⟨xj, y⟩ are stored for each j, where y
alternatively represents the headline inflation rates of our
EM European countries. Using these coefficients, the first
PLS direction z1 =

∑
j γ̂1jxj is determined as the weighted

sum of the original set of predictor variables, where the
weights are given by the vector of univariate regression
coefficients. Accordingly, the estimation of the PLS direc-
tion incorporates the degree of association between target
variable y and the predictor variables. Subsequently, the
arget variable y is regressed on z1, resulting in a coef-
icient θ1, and then all inputs are orthogonalized with
espect to z1. This process is repeated until PLS constructs
sequence of k < n orthogonal directions, z1, z2, . . . , zk.

Hence, PLS attempts to capture the directions that have
high variance and high correlation with the target variable
concurrently. In particular, the pth PLS direction γ̂p solves
the following optimization problem:

max
α

Corr2(y, Xα)Var(Xα),

subject to ∥α∥ = 1, α′Mγ̂k = 0, k = 1, . . . , p − 1

(1)

where M denotes the sample covariance matrix of the
xj. The condition α′Mγ̂k = 0 ensures that zk = Xα is
uncorrelated with all the previous linear combinations
zk = Xγ̂k.

In our forecasting exercise, we first make use of factors
that summarize the information contained in a broad set
of macroeconomic indicators for each of the EM European
countries in our sample. We label these PLS factors as
‘Local macro factors’ (LocalMACRO) since they are based

7 For each country, the dataset X alternatively represents the
aggregated harmonized indices of consumer prices, the set of macroe-
conomic indicators, the headline inflation rates for 98 countries, the
headline inflation rates of 71 advanced countries, and the headline
inflation rates of 27 emerging markets.
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on only local or ‘own-country’ variables. Similarly, using
the highly disaggregated CPI data for a given country, we
extract PLS factors for each country, which will be highly
correlated with that country’s headline inflation rate. We
name these ‘Local (domestic) inflation factors’ (LocalCPI).

Three competing measures of global inflation are con-
idered. We partition our dataset of headline inflation
ates, covering countries across the globe, into three sets:
Global’ (includes all countries), ‘Emerging’ (includes only
M countries) and ‘Developed’ (includes only developed
ountries). Each subset is used to generate a PLS factor
hat may prove instrumental in capturing global inflation
ynamics. These new PLS factors are called the ‘Global
nflation factor’ (GlobalCPI, constructed using the inflation
ates of all countries), the ‘EM inflation factor’ (EMCPI,
onstructed using only inflation rates of emerging coun-
ries), and the ‘developed market inflation factor’ (DM-
PI, constructed using only inflation rates of developed
ountries).

.2. Forecasting experiment: Factor-augmented predictive
egressions

To evaluate the predictive ability of global and local
actors for the year-over-year inflation rates of emerging
uropean countries, we specify factor-augmented predic-
ive regressions, where factors are extracted using both
CA and PLS approaches. We utilize both a recursive
cheme and an 84-month fixed-length rolling window
orecasting scheme to generate forecasts from the differ-
nt specifications. We design a set of models that allow
s to isolate any accuracy gains from the incorporation of
ither country-specific or global inflation factors, condi-
ional on the model already including Phillips curve-type
ariables (proxied by the LocalMACRO factor). That is,
e are not so interested in whether a model with a
lobal factor, say, is better or worse than a Phillips curve
odel, as whether the global factor has any additional

ncremental predictive ability when added to a Phillips
urve model. Note that the method of constructing the
actors does not impose orthogonality between the fac-
ors in different groups (e.g., between the factors in the
ocalMACRO and LocalCPI groups). Hence, any potential
mprovement from adding a LocalCPI factor, say, may
e tempered to the extent that the LocalCPI factor is
orrelated with the included LocalMACRO factors. Or, for
xample, the LocalCPI factor may partly reflect global de-
elopments. Nevertheless, our suite of models facilitates
ncompassing-type comparisons (see footnote 3) and will
llow us to discern improvements from adding factors
onditional on the factors already included, even though
ome care is required with the interpretation. Hence, the
orecasting exercise consists of the following models:8

• Specification 1: Local macro factor model (+Local-
MACRO)
yt+h = µ + Lpyt + β ′F LocalMACRO

t + εt+h

8 The lag length is selected via the Schwarz information criterion
(SIC) for the benchmark AR model.
164
• Specification 2: Local inflation factor model (+Local-
CPI)
yt+h = µ + Lpyt + β ′F LocalMACRO

t + ϑ ′F LocalCPI
t + εt+h

• Specification 3: EM inflation factor model (+emCPI)
yt+h = µ+Lpyt+β ′F LocalMACRO

t +ϑ ′F LocalCPI
t +θ ′F EMCPI

t +

εt+h
• Specification 4: Developed market inflation factor

model (+dmCPI)
yt+h = µ+Lpyt+β ′F LocalMACRO

t +ϑ ′F LocalCPI
t +θ ′FDMCPI

t +

εt+h
• Specification 5: Augmented inflation factor model

(+em_dmCPI)
yt+h = µ+Lpyt+β ′F LocalMACRO

t +ϑ ′F LocalCPI
t +θ ′F EMCPI

t +

δ′FDMCPI
t + εt+h

• Specification 6: Global inflation factor model (+Glob-
alCPI)
yt+h = µ + Lpyt + β ′F LocalMACRO

t + ϑ ′F LocalCPI
t +

θ ′FGlobalCPI
t + εt+h

where yt , alternatively, denotes the year-over-year infla-
tion rates of European emerging countries, Lp is shorthand
for a lag polynomial of order p, and F j

t for j = [Local-
MACRO, LocalCPI, EMCPI, DMCPI, GlobalCPI] represents
the estimated country-specific common factors described
in Section 4.1.9 The lag length p of the AR component of
each specification type is selected based on the SIC. While
Specifications 1 and 2 enable us to assess the importance
of local inflation and macro factors in addition to lags
of the inflation rate and constant, Specifications 3–6 are
extensions that include global inflation factors. All mod-
els are re-estimated at each step using the information
available up to time t . We use exactly 50% of the sample
period to assess out-of-sample forecasts, giving us 103-
h observations where forecast horizons are evaluated for
h = 1-, 2-, 3-, 4-, 5-, 6-, 9-, and 12-step-ahead forecasts.
Furthermore, we compare forecast accuracy using the
mean squared forecast error (MSFE).

In addition to these models, we examine the useful-
ness of various time-varying parameter and shrinkage
models in Section 6. These models are designed to be flex-
ible enough to capture some forms of structural change
and parameter non-constancies (Korobilis, 2019). The use
of a rolling window forecasting scheme will allow some
model adaptation, but we also investigate the potential
for time-varying parameter models to improve on the
linear factor models.

4.3. Forecast evaluation

Our baseline forecasting results consist of the standard
approach of comparing models’ forecasts for a particular
horizon, and of testing the null of equal predictive ability,
for that specific horizon, popularized by the Diebold and
Mariano (1995) test (DM). Various extensions have been
proposed, such as the Giacomini and White (2006) tests
of conditional predictive ability, which remain applicable

9 For each country, all the common factors are re-estimated at each
forecast origin using the information available up to time t to prevent
the look-ahead bias.
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when the forecasts come from nested models (as do the
tests of Clark and West (2007)).

However, we also consider the evaluation of fore-
ast performance based on the forecast path. A forecast
ser (e.g., a central banker) may be more interested in
he forecast path than performance at given horizons
n isolation. Hence, we compare the different specifi-
ations (and thus the incremental usefulness of ‘global
nflation’) in terms of their ability to produce accurate
orecast paths (Jordà & Marcellino, 2010). This preempts
he practical difficulties which arise when one model fares
etter at some horizons, and a rival model is better at
ther horizons – that is, we obtain incoherent inferences.
t also allows us to sidestep issues to do with multiple
esting, arising from comparing forecast accuracy at many
orizons, and the appropriate way of dealing with this
see, e.g., Hansen (2005), Patton and Timmermann (2012),
uaedvlieg (2021) on this and related issues).
Hence, we utilize the multi-horizon superior predictive

bility (SPA) test of Quaedvlieg (2021), and we report
esults for the DM and related tests. In particular, we
enote the variable of interest at time t as yt over the

time period t = 1, . . . , T . Since our aim is to compare the
forecast path of 1- to H-step-ahead forecasts, we define
ŷ i,t =

[
ŷ1
i,t , . . . , ŷ

H
i,t

]′

, where ŷh
i,t represents the point

orecasts of a model i at horizon h = 1, . . . ,H . We also
describe a loss function L i,t = L

(
yt , ŷ i,t

)
= (yt − ŷ i,t )2

hich maps prediction errors into an H-dimensional vec-
or where Lhi,t = L

(
yt , ŷ

h
i,t

)
represents a typical element.

ased on squared error loss, the models’ loss differentials
re given by:

ij,t ≡ L i,t − L j,t , (2)

here d ij,t is an H-dimensional vector with elements dhij,t .
ollowing Quaedvlieg (2021), we use expected loss dif-
erentials E

(
d ij,t

)
= µij,t in our hypothesis, where µij ≡

imT→∞
1
T

∑T
t=1 µij,t .10 We test the following hypothesis

f equal predictive performance at a single horizon h,
orresponding to a standard DM test:
DM

: µh
ij = 0 (3)

h
DM,ij =

√
T d̄hij
ω̂h

ij
(4)

where d̄hij =
1
T

∑
dhij,t , and ωh

ij = Ω
1/2
ij,hh denotes the square

oot of the diagonal element in the hth horizon. We test
he null hypothesis using a standard t-test with HAC-type
tandard errors.
Utilizing the DM test may lead to situations where

odel i yields better forecasts than those of model j at
ome specific horizons, while model j generates signifi-
antly better forecasts for other specific horizons. In this
ase, the DM test may not present a clear picture of which
odel we should choose. To address this issue, Quaed-
lieg (2021) proposes two types of SPA tests: the uniform
uperior predictive ability (uSPA) and average superior

10 See Quaedvlieg (2021) for assumptions regarding the properties
of d .
ij,t
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predictive ability (aSPA). While the uSPA requires superior
forecasts at each individual horizon, the aSPA compares
the weighted average loss across horizons by considering
the relative importance of superior forecast performance
at one horizon against inferior prediction ability at an-
other. The loss difference can be defined as µ

(Uniform )
ij =

minh µh
ij for the uSPA and µ

(Avg)
ij = w′µij =

∑H
h=1 whµ

h
ij

with weights w = [w1, . . . , wH ]′ for the aSPA.
To test the uniform superior predictive ability, we test

the following null hypothesis:

H0,uSPA : µ
(Unif)
ij ≤ 0 (5)

tuSPA,ij = min
h

√
T d̄hij
ω̂h

ij
(6)

against the one-sided alternative that µ
(Uniform )
ij > 0 using

the tuSPA test statistic, which is the minimum of DM test
statistics defined in Eq. (4). Similarly, the associated null
for the aSPA test can be written as:

H0,ASPA : µ
(Avg)
ij ≤ 0 (7)

taSPA,ij =

√
T d̄ij
ζ̂ij

(8)

with the alternative µ
(Avg)
ij > 0, where d̄ij = w′d ij and ζij ≡√

w′Ω ijw. Since these ‘t-statistics’ do not follow Student’s
t-distribution in either case, inference is based on the
moving block bootstrap techniques of Kunsch (1989), as
suggested by Quaedvlieg (2021).

5. Results

5.1. Do global inflation factors drive local inflation rates?

Fig. 1 shows the percentage of the variance in the infla-
tion rates of EM European countries explained by global
and local inflation factors, where the factors are obtained
using the PLS and PCA methods. As can be seen in Fig. 1,
there is a notable rise in the variance explained by the
first common factor, especially for the Czech Republic
and Poland, when the factors are extracted utilizing the
PLS approach. This finding shows the importance of con-
sidering the degree of association between the inflation
rate (our target variable) and the predictor variables to
construct the common factors. Hence, the PLS approach
results in a better proxy for capturing the local and global
price dynamics, although previous studies used PCA (Cic-
carelli & Mojon, 2010; Mumtaz et al., 2011; Parker, 2018).
Fig. 1 shows that although the local CPI factor estimated
based on disaggregated CPI data explains more than 75%
of the variance in inflation rates, the global CPI factor
accounts for more than 50% of the variance of national
inflation rates, indicating a clear role for global factors
in driving headline inflation in EM European countries
in addition to local price dynamics. In particular, the
importance of global factors in driving national inflation
rates is more pronounced for Bulgaria, since the shares of
inflation explained by the global CPI and EM CPI factors
are slightly higher than the local CPI factor.
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Fig. 1. Share of inflation variance explained by the first common factor of each dataset: PCA vs. PLS.
Notes: This figure shows the percentage of variance explained in headline inflation rates of EM European countries by the first common factor of
each data group where factors are obtained using the PLS and PCA factor extraction methods.
In terms of how ‘global’ is global, we note the higher
evel of the variance explained by the (PLS-based) EMCPI
actor compared to the DMCPI factor, that we observe
n all countries.11 Some of the recent literature would
ppear to suggest that our European Union member coun-
ries might be more affected by developed-market
evelopments. In particular, recent empirical studies pro-
ide evidence that global investors tend to see emerging
arkets as a single asset class, resulting in correlated

11 Unsurprisingly, while the first factors of EMCPI and DMCPI tend to
be highly correlated for each country, the correlation coefficients start
to decline in the higher number of factors. For instance, the fourth
factor of EMCPI and the fourth factor of DMCPI is even negatively
correlated for Greece (−0.25) and Romania (−0.03).
166
investment patterns in emerging markets (Miyajima &
Shim, 2014). This results in an increase in the conver-
gence of EM economies’ response to global and domestic
monetary policy shocks, making them more connected.
Furthermore, although our sample countries are members
of the EU, they do not use the euro as their currency
(except for Greece), which may play an essential role
in the exchange rate pass-through into inflation during
large capital outflows from emerging markets. Hence, de-
composing the global price dynamics into emerging and
developed market components expands on the existing
literature by exploring the different facets of inflation
dynamics, which yields interesting nuances.
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Fig. 2. Co-movement of actual inflation rates with local and global CPI factor estimated using the PLS approach.
Notes: This figure plots the actual inflation rates along with local and global inflation factors where the factors are calculated as the first common
component of the PLS approach utilizing the disaggregated CPI and all country-level headline inflation rate data.
Fig. 2 plots the PLS-based local and global inflation
actors along with the actual inflation rates. An examina-
ion of these plots indicates that estimated factors tend
o capture turning points relatively well. Both global and
ocal factors stay high around the years 2007 and 2008
or almost all countries. However, since the onset of the
lobal financial crisis in 2008–09, and again after the
uropean sovereign debt crisis in 2011–12, there is a per-
istent decline in the global and local factors along with
he inflation rates. It appears that low consumer price
nflation has been a common feature of all EM European
ountries between 2014 and 2018. The national inflation
ates move in tandem with the global factors, reflecting
he difficulty faced by the ECB in defusing global propa-
ation channels that pose downside risks to the euro area
nflation outlook. Furthermore, the world economy has
167
become increasingly integrated in recent years, leading to
an increase in the prevalence of global price shocks in do-
mestic inflation dynamics after 2018. As shown in Fig. 2,
the inflation rates became more interconnected to both
global and local CPI factors after 2018, and they started
to move in a highly synchronized manner, especially in
Bulgaria, Czech Republic, Greece, and Romania.12

12 Figures A1–A2 of the appendix provide the plots of local and
global CPI factors over the sample period, where factors are obtained
using the PLS and PCA factor extraction methods. Although they show
similar behavior most of the time, the factors estimated using the PLS
approach capture inflation turning points relatively well.
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Table 2
Point forecast performance: Recursive forecasting – Factors are extracted using the PLS approach.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 9 h = 12

BULGARIA

AR 0.439 0.801 1.082 1.375 1.674 1.974 2.949 3.906
Specification 1 1.141 1.048 0.963 0.826** 0.721*** 0.633*** 0.560*** 0.497***
Specification 2 1.115 0.868*** 0.737*** 0.620*** 0.578*** 0.529*** 0.490*** 0.328***
Specification 3 1.009 0.866** 0.729*** 0.589*** 0.523*** 0.506*** 0.542** 0.315***
Specification 4 1.091 0.875*** 0.754*** 0.630*** 0.594*** 0.587*** 0.562*** 0.451***
Specification 5 1.054 0.944 0.836* 0.631*** 0.549*** 0.556*** 0.624** 0.373***
Specification 6 0.955 0.811*** 0.690*** 0.547*** 0.495*** 0.503*** 0.503*** 0.347***

CZECH REPUBLIC

AR 0.341 0.492 0.628 0.755 0.863 0.964 1.194 1.463
Specification 1 1.051 1.014 0.973 0.900 0.867 0.804* 0.780* 0.705*
Specification 2 1.035 0.939 0.874* 0.796** 0.693*** 0.601*** 0.487*** 0.379***
Specification 3 1.132 1.058 1.032 0.971 0.871* 0.744** 0.498*** 0.430**
Specification 4 1.035 0.938 0.825*** 0.814** 0.869 0.796 0.513*** 0.446***
Specification 5 1.128 1.106 1.008 0.921 0.859* 0.736** 0.570*** 0.505**
Specification 6 1.113 1.046 1.005 0.980 0.899 0.723*** 0.530*** 0.404***

GREECE

AR 0.528 0.687 0.819 0.957 1.144 1.348 2.215 3.135
Specification 1 0.991 0.958 0.943 0.920 0.815 0.692* 0.423** 0.386**
Specification 2 0.908** 0.807** 0.759*** 0.721** 0.641** 0.556** 0.270** 0.187**
Specification 3 0.936* 0.869* 0.795*** 0.721*** 0.591*** 0.482** 0.275** 0.155**
Specification 4 0.894*** 0.817** 0.760*** 0.662*** 0.575*** 0.490** 0.271** 0.188**
Specification 5 0.934** 0.912 0.826** 0.731*** 0.645*** 0.527** 0.265** 0.174**
Specification 6 0.912** 0.837** 0.789*** 0.698*** 0.574*** 0.485** 0.238** 0.174**

HUNGARY

AR 0.463 0.736 0.971 1.235 1.483 1.735 2.480 3.200
Specification 1 1.005 0.990 0.906 0.790 0.736* 0.670* 0.536* 0.481**
Specification 2 1.015 0.933 0.807* 0.740* 0.680* 0.643* 0.402** 0.297**
Specification 3 0.935 0.881* 0.814** 0.738** 0.700** 0.633** 0.334** 0.285**
Specification 4 1.025 0.938 0.805* 0.748* 0.715* 0.683* 0.441** 0.328**
Specification 5 1.006 1.007 0.864* 0.754** 0.680** 0.611*** 0.395** 0.340**
Specification 6 0.981 0.870 0.776** 0.705** 0.638** 0.573** 0.332** 0.266**
POLAND

AR 0.302 0.486 0.674 0.843 1.015 1.158 1.608 2.082
Specification 1 0.917** 0.894** 0.886** 0.853*** 0.786*** 0.728*** 0.552*** 0.525***
Specification 2 0.924 0.866** 0.802*** 0.732*** 0.659*** 0.585*** 0.367*** 0.314***
Specification 3 0.892* 0.813*** 0.751*** 0.726*** 0.656*** 0.504*** 0.312*** 0.327***
Specification 4 0.882* 0.854** 0.815** 0.790** 0.732*** 0.648** 0.426*** 0.366***
Specification 5 0.892* 0.867** 0.819*** 0.822** 0.728*** 0.534*** 0.484*** 0.358***
Specification 6 0.887* 0.798*** 0.730*** 0.695*** 0.614*** 0.445*** 0.295*** 0.268***
ROMANIA

AR 0.625 0.935 1.218 1.398 1.565 1.694 2.158 2.687
Specification 1 1.079 1.127 1.103 1.083 1.025 0.987 0.880 0.833*
Specification 2 1.098 1.085 1.045 1.010 0.995 0.958 0.866 0.846
Specification 3 1.072 1.022 0.928 0.852* 0.784*** 0.727*** 0.550*** 0.591***
Specification 4 1.141 1.208 1.116 1.051 0.978 0.904 0.719*** 0.763**
Specification 5 1.119 1.111 0.986 0.904 0.800** 0.726*** 0.624*** 0.619***
Specification 6 1.146 1.094 0.953 0.833** 0.741*** 0.710*** 0.483*** 0.538***

The entries are MSFEs, with the specification types that yield the smallest MSFE highlighted in bold. The entries in the first row
correspond to actual point MSFEs of the AR model, while all other entries are MSFEs relative to the AR model. Hence, a value smaller
than one implies that the corresponding specification type produces more accurate forecasts than those of the AR model. Entries
marked with asterisks (*** 1% level; ** 5% level; * 10% level) are significantly superior to the AR model, based on the DM forecast
accuracy test. Specification types: Specification 1: +LocalMACRO; Specification 2: +LocalCPI; Specification 3: +emCPI; Specification 4:
+dmCPI; Specification 5: +em_dmCPI; Specification 6: +GlobalCPI.
5.2. Predictability of inflation rates: The role of global infla-
tion factors

Table 2 reports the recursive forecasting exercise re-
sults where model parameters are updated recursively
on a monthly basis. While the entries in the row for
the benchmark AR model denote the actual MSFEs, all
168
other entries are the MSFEs relative to those of the AR
model. As discussed in Section 4.2, there are six different
specifications. Specifications 3–6 include the global fac-
tors in addition to local factors, allowing us to quantify
the importance of global factors for forecasting national
inflation rates for the EM European countries. These fac-
tors are estimated using both PCA and PLS, where we
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set the number of factors to four for each dataset.13 For
the PLS approach, the first four factors of each dataset
explain more than 82% of the variation in inflation rates
for each country. The shares of variance explained by
each individual factor are given in Tables A1–A2 of the
supplementary appendix. The entries in Table 2 lower
than unity indicate a better forecast performance than the
AR benchmark. We produce a sequence of eight h-step-
ahead forecasts for each month, i.e., h = 1, 2, 3, 4, 5,
6, 9, and 12. To make the comparison and interpretation
easier, the entries corresponding to the smallest MSFEs
are highlighted in bold.

A closer examination of the results in Table 2 reveals a
number of interesting findings. First, point forecasts from
models that include both global and local CPI factors are
generally superior to other models that only include local
macro and local inflation factors. In particular, the speci-
fication types that include global factors perform better,
especially for long-term forecast horizons (h = 9, 12),
ndicating the importance of spillover effects from global
rice dynamics for forecasting long-term inflation rates in
M European countries. For example, in Table 2 we see
hat the inclusion of global CPI factors (Specification 6) re-
ults in the lowest MSFE for seven out of the eight forecast
orizons for Hungary and Poland. The forecast gains are
lso increasing in the horizon, and a reduction of over 70%
n the MSFE relative to the benchmark is achieved when

= 12, for both countries. Specification 6 (+GlobalCPI)
chieves reductions in the MSFE of 10% relative to adding
ocal inflation factors (Specification 2), and of nearly 45%
elative to the Phillips curve (Specification 1 with macro
actors), for Hungary at h = 12. For Poland, the equivalent
eductions in the MSFE are even larger.

The picture is equally clear for Bulgaria, where the
lobal CPI factor yields substantial predictive gains, and
he ‘Local macro’ (Specification 1) and ‘Local inflation’
Specification 2) forecasting models are the MSFE-best
odels in only one of the eight cases.
Second, recall that we have eight forecast horizons

nd six countries, such that there are 48 comparisons in
otal. Of the various specification types, Specification 6,
hich augments global CPI factors, performs well in that

t attains the top rank in 26 of the 48 cases. As a result,
ur inflation forecasting model that exploits international
nformation consistently outperforms the AR model. It
s also worth remarking that Specifications 3–6 (which
nclude at least one international factor, namely, EMCPI,
MCPI, and GlobalCPI) are the best in three quarters (40
ut of 48). Hence, Specifications 1 and 2 are not partic-
larly useful for predicting headline inflation rates. For
ur sample of European EM countries, some measure of
global inflation’ tends to work well.14

13 We also experimented with selecting the number of factors based
on the criterion of Bai and Ng (2002), but found that too many factors
were chosen in terms of forecast performance.
14 As a robustness check, we examined the models performances
during the euro area sovereign debt crisis (May 2010 to May 2012).
Table A3 of the appendix shows that global factors play a significant
role in driving local inflation rates, since Specifications 3–6 attain the
top rank in 33 out of 48 cases.
169
Furthermore, we check whether the global inflation
factor might simply be reflecting common shocks such
as those related to commodity prices. The results in Ta-
bles A4–A5 of the supplementary appendix indicate that
Specification 6 (+GlobalCPI) remains superior to the other
models when these are augmented with commodity prices
for both the recursive and rolling window forecasting
schemes. Put differently, the explanatory power of global
inflation does not disappear when we control for com-
modity prices: the global inflation factor does not simply
proxy for commodity prices.15

Third, the plethora of rejections of the DM test in
Table 2 (note that entries that are marked with *, **, or ***,
imply the rejection of the null hypothesis of equal predic-
tive accuracy) confirm that the improvements in forecast
accuracy are also statistically significant, compared to
the AR model. Although the DM is commonly used as
a test of equal predictive ability, and is reported here
for that reason, because our comparisons involve nested
models, we also use the Giacomini and White (2006) test
of conditional predictive ability. This is applicable for both
nested and non-nested models. The findings are reported
in Tables A6–A9 of the supplementary appendix, and are
shown to give similar conclusions to the DM test.16 For a
detailed discussion of the distribution of the test statistics
and power of the DM test in cases of both parameter
estimation uncertainty and nested models, see (Clark &
McCracken, 2012; Clements & Harvey, 2010; Clements
& Hendry, 2005; Corradi & Swanson, 2007; McCracken,
2000). Table A14 of the supplementary appendix shows
the results for the same forecasting exercise as in Table 2,
except that we now use an 84-month rolling window
scheme instead of an expanding window.17 The use of
rolling windows leads to a deterioration in overall forecast
accuracy relative to the expanding window scheme, with
slightly fewer rejections of the null of equal accuracy with
the benchmark.18

15 When we undertake pairwise comparisons of Specification 6 with
a model which replaces global inflation factors with the commodity
price index, we find that Specification 6 is superior (smaller MSFEs)
in 38 cases out of 48. The picture is largely unchanged for the rolling
window scheme (see Table A5). As a proxy for commodity prices, we
use the Commodity Research Bureau BLS All Commodities Price Index,
which measures the price movements of 22 commodities.
16 Harvey, Leybourne, and Newbold (1997) suggest that the DM
test can be over-sized for empirical forecast errors for which the
assumption of normality may not hold. Tables A10–A13 of the appendix
present the equality of the mean squared forecast error test of Harvey
et al. (1997). Again, the findings are similar to those for the DM test.
17 As a robustness check, we repeated the same forecasting exercise
using 60- and 72-month rolling schemes. Similar results were found,
albeit with slightly higher MSFEs.
18 Tables A15–A16 summarize the results for the same forecasting
exercise, but where factors are extracted using the PCA method.
Several interesting conclusions can be drawn – in terms of forecast
accuracy and significance – from a comparison of the results with
Table 2. Immediately apparent is a notable deterioration in the forecast
performance of the competing models compared to the AR model.
In particular, none of the competing models improves on the simple
AR model (virtually all the entries exceed one) in Romania (in the
recursive window) and in Bulgaria (in the rolling window). This is in
sharp contrast to the results obtained when the factors are extracted
by PLS. The DM test further shows that incorporating PCA-based factors
worsens forecast accuracy. A consideration of the specific target when
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Table 3
Multi-horizon forecast comparison: Rolling forecasting – Factors are extracted using the PLS approach.

Short horizon Medium horizon Long horizon All horizon

uSPA aSPA uSPA aSPA uSPA aSPA uSPA aSPA

BULGARIA

Spec.2 against Spec.1 −1.08 −0.69 0.69** 1.38** 1.74*** 2.33*** −1.08 1.60**
Spec.3 against Spec.2 0.55* 1.41** 0.35 0.81* 0.22 0.24 0.22* 0.77*
Spec.4 against Spec.2 −1.08 −0.80 −3.55 −3.11 −2.05 −1.52 −3.55 −2.87
Spec.5 against Spec.4 −0.10 0.80 1.33*** 1.73** 0.14 0.28 −0.10 0.96*
Spec.6 against Spec.5 0.73** 0.93** 0.16 0.73* −0.10 0.69* −0.10 0.88*
Spec.6 against Spec.2 0.34 1.13** −0.15 0.13 −0.42 0.06 −0.42 0.36

CZECH REPUBLIC

Spec.2 against Spec.1 −1.51 −1.20 −0.52 0.20 0.18 0.80* −1.51 0.10
Spec.3 against Spec.2 1.84*** 2.54*** −0.70 0.27 −1.38 −1.30 −1.38 0.49
Spec.4 against Spec.2 0.68** 1.02* −2.39 −1.67 −1.63 −1.29 −2.39 −1.08
Spec.5 against Spec.4 −0.38 0.49 0.50* 1.40** −1.31 −1.56 −1.31 0.57
Spec.6 against Spec.5 −0.04 0.26 −3.02 −1.70 1.65*** 2.61*** −3.02 0.57
Spec.6 against Spec.2 1.05*** 1.65** −2.70 −1.41 −0.64 −0.03 −2.70 −0.41

GREECE

Spec.2 against Spec.1 −1.38 −0.98 0.24 0.59 1.73*** 1.94** −1.38 1.12**
Spec.3 against Spec.2 0.60** 1.02* −2.21 −1.50 −3.88 −3.07 −3.88 −1.99
Spec.4 against Spec.2 −2.03 −1.82 −3.01 −2.15 −2.28 −2.95 −3.01 −2.74
Spec.5 against Spec.4 0.55* 0.76* −1.17 −0.36 −2.49 −2.63 −2.49 −0.52
Spec.6 against Spec.5 1.44*** 2.01** 0.06 0.64 1.24*** 2.45*** 0.06* 1.97***
Spec.6 against Spec.2 0.09 1.63** −2.08 −1.56 −1.23 −1.24 −2.08 −1.13

HUNGARY

Spec.2 against Spec.1 −0.90 0.24 −0.80 −0.81 1.05** 1.21** −0.90 0.43
Spec.3 against Spec.2 −1.44 −1.04 −0.58 −0.14 −0.76 −0.62 −1.44 −0.78
Spec.4 against Spec.2 −0.09 1.05* 0.49* 1.01* 1.16*** 2.28*** −0.09 1.64**
Spec.5 against Spec.4 −2.34 −1.87 −0.32 −0.21 −3.37 −3.33 −3.37 −1.87
Spec.6 against Spec.5 0.14 1.67** −0.74 −0.55 0.59** 1.96** −0.74 0.64
Spec.6 against Spec.2 −1.60 −0.55 −0.08 0.26 0.44* 0.59 −1.60 0.27

POLAND

Spec.2 against Spec.1 −0.68 0.81* 2.57*** 3.05*** 2.26*** 2.54*** −0.68 2.90***
Spec.3 against Spec.2 1.39*** 1.69** −0.86 −0.49 −0.96 −0.18 −0.96 0.05
Spec.4 against Spec.2 0.43** 0.73* −0.29 0.34 0.63* 1.30** −0.29 1.67**
Spec.5 against Spec.4 −1.26 −0.03 −2.19 −1.68 −1.20 −1.00 −2.19 −1.52
Spec.6 against Spec.5 0.81*** 1.40** 0.31** 1.96** −0.93 −1.09 −0.93 0.37
Spec.6 against Spec.2 1.37*** 1.73** −0.63 −0.22 −1.10 −0.55 −1.10 −0.02

ROMANIA

Spec.2 against Spec.1 −1.94 −1.60 −1.90 −1.52 −1.51 −0.90 −1.94 −1.46
Spec.3 against Spec.2 2.54*** 3.04*** 2.76*** 3.13*** 0.51** 1.55** 0.51*** 3.07***
Spec.4 against Spec.2 1.27*** 1.56** 1.36*** 1.51** −2.84 −1.71 −2.84 0.66
Spec.5 against Spec.4 2.38*** 2.85*** 2.08*** 2.82*** −0.28 1.87** −0.28 2.97***
Spec.6 against Spec.5 −1.73 −0.89 −0.29 −0.19 0.56** 2.71*** −1.73 0.19
Spec.6 against Spec.2 1.79*** 3.09*** 3.36*** 3.84*** −0.26 1.00* −0.26 3.41***

This table provides the results of uniform superior predictive ability (uSPA) and average superior predictive ability (aSPA) tests for all
horizons across the countries. The moving block bootstrap techniques of Kunsch (1989) are used for critical values. Asterisks (*** 1%
level; ** 5% level; * 10%) denote the significance levels. Specification types: Spec.1: +LocalMACRO; Spec.2: +LocalCPI; Spec.3: +emCPI;
Spec.4: +dmCPI; Spec.5: +em_dmCPI; Spec.6: +GlobalCPI.
The pairwise comparison of competing models using
the uSPA and aSPA tests is reported in Table 3. As stated
by Quaedvlieg (2021), while this framework accommo-
dates tests of nested models if we use rolling windows
of data to estimate the models, it does not allow for such
comparisons using expanding windows. Hence, we report
pairwise comparison results only for the rolling window
scheme because of this limitation of the superior predic-
tive ability tests. In particular, we perform the following

constructing factors is demonstrably better in our sample. PCA ignores
the target variable when the factors are constructed, and this is shown
to be costly for predicting European EM inflation rates.
 1

170
pairwise tests of models: (i) Specification 2 against Spec-
ification 1, (ii) Specification 3 against Specification 2, (iii)
Specification 4 against Specification 2, (iv) Specification 5
against Specification 4, (v) Specification 6 against Spec-
ification 5, and (vi) Specification 6 against Specification
2. In addition to comparing the accuracy of the complete
path, we also investigate a range of additional hypotheses
which might be of interest, namely, different horizon
ranges, i.e., short-, mid-, and long-term forecasts. In these
cases, the uSPA and aSPA tests are applied to subsets of
horizons. Hence, we also implement the tests for a subset
of horizons by grouping h = 1, 2, and 3 for a short horizon,
h = 4, 5, and 6 for a medium horizon, and h = 9 and
2 for a long horizon. This allows us to reap some of the
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benefits of path evaluation, while tailoring the paths such
that we can determine whether the contribution of the
added factors depends on the horizon.

An inspection of Table 3 leads to several clear-cut
onclusions.19 Firstly, we find strong evidence in favor
f Specification 3 (+emCPI) being superior to Specifica-
ion 2 (+LocalCPI) across the aSPA and uSPA tests for all
orizons together, in Bulgaria and Romania, implying that
he EMCPI factor contains useful information not already
ncluded in the information set comprising Specification 2
which has only local factors). This finding is in line with
speech made by ECB Governor Mario Draghi in October
015. Draghi described the inflation outlook as ‘less san-
uine’ for the euro area, due to the external weakness in
emand, and also highlighted the risks to EM economies
manating from weakness in China.20 Secondly, the aSPA
est, combining all horizons, is positive and statistically
ignificant, suggesting that Specification 4 outperforms
pecification 2 in Hungary and Poland. Finally, although
here are limited episodes that favor the addition of global
actors for medium and long horizons, the picture is much
learer for short horizons. For all countries (with the ex-
eption of Hungary), models with global factors dominate
hose with only local factors for the shorter horizons.21
he reason may be that the variance of the loss differential
ncreases in forecast horizon h, limiting the ability of
he tests to differentiate between competing models, as
ointed out by Quaedvlieg (2021).

.3. Do global inflation dynamics matter for predicting core
nflation rates?

The global economy may influence domestic price de-
elopments in many ways. The routes may be direct, via
mports of final consumer goods, or indirectly via com-
odities and/or intermediate goods imports, as well as
y influencing the prices set by domestic producers who
re also exporters. However, core inflation is defined as
he change in the euro area HICP special aggregate, ‘all
tems excluding energy, food, alcohol, and tobacco’. By
xcluding energy and food from the consumption basket,

19 Multi-horizon comparison test results for the PCA approach are
presented in Table A17 of the appendix.
20 Access to full details of the press conference is available at https:
//www.ecb.europa.eu/press/pressconf/2015/html/is151022.en.html.
21 Furthermore, the results of the forecast efficiency test of Mincer
and Zarnowitz (1969) are reported in Tables A18–A19 of the supple-
mentary appendix for both recursive and rolling forecasting schemes,
for factors extracted using the PLS approach. In the recursive scheme,
forecast efficiency varies across the countries. Efficient forecasts are
found in Bulgaria, Czech Republic, Hungary, and Poland for horizons
h = 1, 2, 3, 4, and 5 where the null generally cannot be rejected.
here is evidence that adding global factors (that is, using Specification
) reduces forecast inefficiency. That is, generating forecasts from a
odel which accords a role to global inflation breaks the correlation
etween these forecasts and their corresponding errors. In Tables A20–
21 of the appendix, we also report the efficiency test results for
ompeting models where factors are based on the PCA approach.
nlike the PLS-based forecasting models, using PCA-based common
actors in forecasting models yields inefficient forecasts for almost all
orizons across the countries, irrespective of the forecasting scheme.
his provides further support for PLS over PCA for calculating factors
or the purpose of forecasting a specific variable.
171
we are able to control for some of the channels through
which global inflation might operate. A direct comparison
of the influence of global CPI factors on core and head-
line inflation should be informative. If the main effects
of global inflation on national inflation are confined to
the effects of short-run seasonal/cyclical movements in
food and energy, we would not expect global factors to
contribute to meaningful reductions in forecast errors for
core inflation.

Table 4 presents the results of the same forecasting
exercise for core inflation rates. Specification 6 (which
includes global CPI factors) still performs well, and attains
the top rank in 16 of the 48 cases. But this marks a
deterioration in performance relative to targeting head-
line inflation, where Specification 6 was best in 26 of
the 48 cases. On the other hand, if we focus on the set
of Specifications (types 3–6) that include at least one
global factor, these models have the best MSFE in 35
out of 48 cases (compared to 40 out of 48 for headline
inflation). We conclude that although global factors still
play an important role in determining European EM core
inflation rates, local factors now play a more prominent
role in driving price changes (relative to headline inflation
rates).22

Drilling down a little deeper, comparing Specifications
3 and 4 (Table 4) shows that the EMCPI factor produces
smaller forecast errors relative to the DMCPI factor, es-
pecially for longer forecast horizons. An interesting con-
jecture for this difference is the following. A depreciation
(appreciation) of EM currencies versus the euro might
precipitate a fall (rise) in import prices and ultimately act
as a drag (push) on domestic consumer prices. On the
contrary, the currency union of euro area members cre-
ates an extra layer of protection against external shocks
in the trading of goods and services within the European
Union, limiting the informativeness of the DMCPI factor.
This stands in contrast to European emerging economies,
which gravitate around the euro bloc and usually exhibit
higher exchange rate pass-through.

6. Robustness checks

In this section, we report on a number of additional
analyses. These serve as robustness checks, and also ex-
tend our analysis. Section 6.1 extends the range of models
to include various time-varying parameter and shrinkage
models. These models are designed to be flexible enough
to capture some forms of structural change and parame-
ter non-constancies (Korobilis, 2019). We investigate the
potential for time-varying parameter models to improve
on the linear factor models, because although more com-
plicated models offer greater flexibility and adaptability,

22 In Table A22 of the supplementary appendix, we report the results
for the rolling forecasting scheme. Point forecasts from models that
only have local factors are generally superior to other models that
include global inflation factors. In particular, Specifications 1 and 2 are
useful for predicting core inflation rates in 23 out of 48 cases (7 out
of 48 cases for headline inflation) under a rolling forecasting scheme.

https://www.ecb.europa.eu/press/pressconf/2015/html/is151022.en.html
https://www.ecb.europa.eu/press/pressconf/2015/html/is151022.en.html
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Table 4
Core inflation: Recursive forecasting – Factors are extracted using the PLS approach.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 9 h = 12

BULGARIA

AR 0.311 0.498 0.639 0.770 0.874 1.016 1.490 2.110
Specification 1 1.042 0.976 0.916 0.861** 0.814*** 0.735*** 0.527*** 0.377***
Specification 2 1.013 0.888* 0.820** 0.731*** 0.697*** 0.640*** 0.476*** 0.341***
Specification 3 1.052 0.906 0.786*** 0.694*** 0.660*** 0.600*** 0.403*** 0.369***
Specification 4 1.045 0.944 0.882 0.807*** 0.791*** 0.694*** 0.504*** 0.404***
Specification 5 1.091 0.962 0.862*** 0.771*** 0.749*** 0.662*** 0.488*** 0.532***
Specification 6 1.060 0.982 0.873 0.734** 0.647*** 0.578*** 0.403*** 0.322***
CZECH REPUBLIC

AR 0.219 0.330 0.404 0.468 0.517 0.562 0.644 0.729
Specification 1 1.349 1.377 1.169 1.010 0.887 0.799** 0.735** 0.686**
Specification 2 1.088 1.075 1.027 0.942 0.834** 0.708*** 0.534*** 0.427***
Specification 3 1.186 1.205 1.123 1.118 1.049 0.928 0.647*** 0.438***
Specification 4 1.171 1.127 0.951 0.828** 0.759*** 0.784*** 0.673** 0.502***
Specification 5 1.237 1.279 1.174 1.216 1.158 0.979 0.746** 0.638***
Specification 6 1.189 1.254 1.153 1.126 0.980 0.888 0.653*** 0.385***
GREECE

AR 0.596 0.726 0.821 0.850 0.977 1.066 1.680 2.187
Specification 1 0.855** 0.764** 0.699** 0.710** 0.652*** 0.547*** 0.355*** 0.255***
Specification 2 0.730*** 0.595*** 0.521*** 0.559*** 0.533*** 0.484*** 0.324*** 0.223***
Specification 3 0.761*** 0.648** 0.558*** 0.580*** 0.594*** 0.510*** 0.340*** 0.210***
Specification 4 0.732** 0.619** 0.555*** 0.553*** 0.567*** 0.512*** 0.325*** 0.225***
Specification 5 0.780*** 0.670** 0.579*** 0.602*** 0.677*** 0.568*** 0.327*** 0.222***
Specification 6 0.761*** 0.631** 0.550*** 0.582*** 0.659*** 0.514*** 0.308*** 0.209***
HUNGARY

AR 0.275 0.414 0.505 0.618 0.722 0.819 1.205 1.569
Specification 1 1.084 1.137 1.064 0.970 0.915 0.918 0.637*** 0.545***
Specification 2 1.190 1.088 0.898 0.761* 0.774* 0.750* 0.453*** 0.407***
Specification 3 1.091 0.999 0.886 0.835 0.793 0.712** 0.451*** 0.336***
Specification 4 1.170 1.027 0.840 0.729** 0.814 0.744* 0.531*** 0.500***
Specification 5 1.071 0.971 0.837* 0.775** 0.807 0.739** 0.491*** 0.470***
Specification 6 1.113 0.977 0.842 0.767* 0.722** 0.681** 0.448*** 0.371***

POLAND

AR 0.242 0.355 0.445 0.533 0.625 0.696 0.903 1.083
Specification 1 1.022 0.929 0.859*** 0.805*** 0.739*** 0.681*** 0.561*** 0.499***
Specification 2 0.989 0.865** 0.737*** 0.623*** 0.559*** 0.536*** 0.361*** 0.379***
Specification 3 0.993 0.885 0.741*** 0.655*** 0.585*** 0.539*** 0.488*** 0.422***
Specification 4 0.966 0.855** 0.744*** 0.691*** 0.666*** 0.655*** 0.384*** 0.454***
Specification 5 1.000 0.922 0.784*** 0.722*** 0.670*** 0.624*** 0.481*** 0.426***
Specification 6 1.000 0.868* 0.717*** 0.629*** 0.577*** 0.552*** 0.454*** 0.390***

ROMANIA

AR 0.297 0.405 0.515 0.619 0.716 0.801 1.032 1.282
Specification 1 1.106 1.330 1.386 1.410 1.366 1.285 1.039 0.825*
Specification 2 1.166 1.157 1.072 0.986 0.910 0.796* 0.667*** 0.588***
Specification 3 1.179 1.195 1.049 0.843* 0.798* 0.773* 0.646*** 0.451***
Specification 4 1.271 1.293 1.117 0.978 0.869 0.717** 0.697*** 0.644***
Specification 5 1.208 1.226 0.966 0.831* 0.782** 0.756** 0.639*** 0.440***
Specification 6 1.227 1.230 1.053 0.830** 0.775** 0.716** 0.605*** 0.423***

See the notes to Table 2.
l

this may not result in improved forecast performance out-
of-sample. The results for these models are discussed in
Section 6.2. Of interest is whether the key finding for
linear models – that global factors are an important de-
terminant of EM inflation rates – remains the case when
we extend the set of models.

Lastly, in Section 6.3 we consider an alternative way of
evaluating forecast performance. Specifically, we calculate
how far ahead the models (based on the different sets
of information) are able to outperform the simple bench-
mark model. This supplements the forecast comparisons
reported in Section 5.
172
6.1. Additional models: Time-varying parameters and shrink-
age

6.1.1. Variational Bayes dynamic variable selection (VBDVS)
algorithm

Koop and Korobilis (2020) introduce the dynamic ex-
tension of variational Bayes (VB) to tackle high-dimensiona
problems where the number of predictors may exceed
the number of time-series observations. The main advan-
tage of the VBDVS algorithm is that it is computation-
ally less demanding than the Markov chain Monte Carlo
(MCMC) algorithm, while achieving estimation accuracy
equivalent to that of MCMC.
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The VBVDS model of Koop and Korobilis (2020) has the
ollowing form:

yt = xtβt + εt
βt = βt−1 + ηt

(9)

where yt is the dependent variable, βt =
(
β1,t , . . . , βp,t

)′
s a p × 1 vector of time-varying parameters, and xt
s a 1 × p vector of predictor variables and lagged de-
endent variables. Moreover, εt ∼ N

(
0, σ 2

t

)
with σ 2

t
ime-varying variance parameter, ηt ∼ N (0,Wt) with
t = diag

(
w1,t , . . . , wp,t

)
is a p × p diagonal matrix.

his approach is implemented with a dynamic variable
election (DVS) prior of the form:

j,t | γj,t , τ
2
j,t ∼

(
1 − γj,t

)
N
(
0, c × τ 2

j,t

)
+ γj,tN

(
0, τ 2

j,t

)
γj,t | πt ∼ Bernoulli

(
π0,t

)
1
τ 2
j,t

∼ Gamma (g0, h0)

π0,t ∼ Beta(1, 1)

(10)

where the subscripts (j, t) represent the jth element of
a time varying parameter at time t . Furthermore, g0, h0
and c denote the prior hyper-parameters where c → 0,
resulting in shrinkage of the first component prior of βj,t
to posterior towards zero. Given these prior settings, the
posterior distributions are obtained by maximizing the
log-marginal likelihood:

q⋆
(
βt , wt | y1:t

)
= argmax

q(βt ,wt |y1:t)

∫
q
(
βt , wt | y1:t

)
× log

(
q
(
βt , wt | y1:t

)
p
(
βt , wt | y1:t

)) (11)

where subscripts (1 : t) indicate observations of a state
variable from period 1 up to period t .23

6.1.2. Gaussian process regression (GPR)
Gaussian process regression is a machine learning

method based on non-parametric kernel-based proba-
bilistic models. GPR can be used to determine whether
inflation can be represented by a time-varying parameter
model or whether a more complex type of non-linear
model is required. Given that a linear regression model
is of the form

y = xTβ + ε, y = f (x) + ε (12)

where ε ∼ N
(
0, σ 2

)
, the GPR model predicts the value of

a dependent variable yi ∈ R given the new input vector
xi ∈ Rd and the training data {(xi, yi) | i = 1, . . . , n}. In
articular, GPR estimates the response of y defining latent
ariables, f (xi) , i = 1, 2, . . . , n, from a Gaussian pro-
ess (GP) and explicit basis functions φ. In other words,
ontrary to the standard Bayesian approach based on the
robability distribution of parameters of a specific func-
ion, GP is a distribution over functions GP

(
m(x), k

(
x, x′

))
ith a fully specified mean function m(x) = E(f (x)) and

23 See Koop and Korobilis (2020) for more technical details.
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co-variance function k
(
x, x′

)
= E(f (x) − m(x))

(
f
(
x′
)
−

m
(
x′
))
. As suggested by Rasmussen and Williams (2006),

we utilize the commonly used covariance function, which
is called squared exponential kernel:

k
(
x, x′

)
= σ 2

f exp
(

−
1
2ℓ2

x − x′
2) (13)

where
x − x′

 denotes the Euclidean distance between
points x and x′, ℓ is the correlation length, and σ 2

f is signal
variance. These hyper-parameters can be estimated from
the data while training the GPR model.

In particular, GPR changes the simple linear regression
model into a new space:

φ(x)Tβ + f (x) (14)

where f (x) ∼ GP
(
0, k

(
x, x′

))
, indicating that f (x) are from

zero mean GP with k
(
x, x′

)
. Then, φ(x) denotes a set of

basis functions that map the input vector xi ∈ Rd into
a new feature vector φ(x) in Rp. Intuitively, GPR projects
the inputs into high-dimensional space using the set of
basis functions and then estimates the linear model in this
high-dimensional space rather than directly on the inputs
themselves. Thus, this model represents a GPR model, and
the response y can be defined as:

P (yi | f (xi) , xi) ∼ N
(
yi | φ (xi)T β + f (xi) , σ 2) (15)

Furthermore, the joint distribution of latent variables
f (x1) , f (x2) , . . . , f (xn) is denoted as follows:

P(f | X) ∼ N(f | 0, K (X, X)) (16)

To estimate the GPR model, we use the Matlab toolbox
GPML developed by Rasmussen and Nickisch (2010).

6.1.3. Least absolute shrinkage operator (LASSO)
We also employ the LASSO approach introduced by Tib-

shirani (1996). Unlike the ridge estimator, the LASSO
imposes an ℓ1-norm penalty on the regression coefficients
for possible shrinkage. The LASSO estimator is denoted
below:

β̂ lasso
=min

β
∥Y − Xβ∥2 + λ

N∑
j=1

|βj|, (17)

where λ is a tuning parameter that adjusts the strength
of the ℓ1-norm penalty. Given that the objective function
in the LASSO is not differentiable, we implement the ef-
ficient iterative algorithm (shooting algorithm) proposed
by Fu (1998) for numerical optimization.

6.1.4. Elastic net (ENET)
Tibshirani (1996) finds that the LASSO’s predictive ac-

curacy is often worse than the forecast performance of
the ridge regression in the presence of highly correlated
variables. Zou and Hastie (2005) overcome this problem
by incorporating a hybrid version of the LASSO and ridge
estimators, known as the elastic net estimator (ENET). The
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ENET estimator is represented as follows:

β̂EN
=min

β
∥Y − Xβ∥2 + λ1

N∑
j=1

|βj| + λ2

N∑
j=1

βj
2,

(18)

where λ1 and λ2 are tuning parameters controlling the
two penalty functions. Similar to the LASSO, ENET also
results in a possible shrinkage of coefficients to zero.

6.2. Do these models improve on the linear models?

Do the time-varying parameter and data shrinkage
(TVP) models yield improvements in forecast performance?
We estimate Specification 6 using four different TVP mod-
els to impose sparsity on the local and global factors in
the forecasting models. Table 6 presents the comparison
of the out-of-sample results of the different TVP models
for the recursive window procedure. While the VBVDS al-
gorithm, LASSO, and ENET are sparsity-inducing shrinkage
methods that place zero coefficients on potentially irrele-
vant factors, GPR is a flexible non-parametric specification
that enables us to determine the role of non-linearity
more generally for inflation forecasting, by admitting non-
sparse solutions. Table 6 is partitioned vertically into
six panels presenting the results for our EM European
countries. The first row of each panel shows the MSFEs
of the AR model, and all other MSFEs are presented as
ratios to the MSFE of the AR model. In the second row
of each panel, we record the best MSFE outcome for a
given forecast horizon across all the constant-parameter
specifications (1 to 6). The values for the best of all models
are emboldened.

An inspection of Table 6 shows that most of the entries
are smaller than one, which indicates that the TVP models
have superior forecasting performance to the benchmark
AR model. Furthermore, it can be seen that the forecast
improvements provided by the TVP models are statisti-
cally significant compared to the AR, based on application
of the DM test. The accuracy gains from implementing
TVP models increase with the forecast horizon. Apart from
a few short horizons, where either ENET or VBVDS deliv-
ers the smallest ratios, the GPR method is the overall win-
ner, being superior to the other time-varying parameters
and shrinkage models for the majority of forecast hori-
zons and countries. In particular, recall that we have a to-
tal of 48 cases (eight forecast horizons and six countries):
the GPR is the MSFE-best model in 20 of the 48 cases,
suggesting that it is possible to improve on the constant-
parameter models. The outstanding performance of the
GPR model suggests that taking non-linearities into ac-
count is key to improving inflation forecasts. The fact
that GPR computes the probability distributions from all
suitable functions that fit the data (function view), rather
than defining the distributions over specific function pa-
rameters, makes it a very flexible way to capture the po-
tential non-linearities between the factors and inflation.
There are several sources of non-linearity (as pointed out
by Medeiros, Vasconcelos, Veiga, and Zilberman (2021))
which might account for the good performance of the GPR
174
model. The relation between inflation and the local macro
factors might be non-linear if it depends on the degree
of economic slackness. Economic uncertainty is another
possible reason, raising the prospect of choosing to de-
lay irreversible economic decisions (Bloom, 2009). In the
presence of such uncertainties, key macroeconomic vari-
ables may well have non-linear effects on inflation. We
do however find that the GPR performance deteriorates at
short horizons, suggesting that the benefits of introducing
non-linearity may be limited for shorter horizons.

Taken together, sparsity-inducing methods do not pro-
vide marked gains compared to the models without shrink
age, supporting the notion of ‘the illusion of sparsity’ in
economic forecasting, as discussed by Cross, Hou, and
Poon (2020), Fava and Lopes (2020), Giannone, Lenza,
and Primiceri (2018). For example, we find that among
the ‘sparse’ models, ENET is the best, but achieves the
best performance overall in only 5 of the 48 cases, out-
performing the competing models. The VBVDS performs
poorly, and generates the MSFE-best outcome in only
one case.24 Furthermore, Table 7 summarizes the MSFE-
best models from Table 6. For each country and forecast
horizon, it shows the pair of model specifications (in
terms of factors) and factor-selection modeling method
(constant parameter, TVP, or GPR) that gives the lowest
MSFE. It is clear that the superiority of the GPR model
comes from its coupling with Specification 6. That is,
when Specification 6 is estimated by the GPR method, the
MSFE-best forecasts are obtained more often than not.

Finally, we pay special attention to the GPR model and
compare the importance of global and local factors for
the GPR. To measure each factors’ importance, we follow
the approach of Medeiros et al. (2021) and compute the
relative importance measure by multiplying the average
coefficient size with the respective standard deviations.
Fig. 3 presents the influence of each of the factor groups
(local macro, local CPI, and global CPI) on inflation for the
GPR method. The values in the graphs are normalized to
sum to one. Fig. 3 reveals that the relative importance
of the factor groups varies across country and forecast
horizon. For instance, in Hungary, global CPI factors gain
importance as the forecast horizon increases, where the
relative importance measure reaches 0.58 (for h = 6) from
the initial level 0.10 (for h = 1). On the other hand, local
and global factors seem to be equally important across
the forecast horizons for the Czech Republic. Despite these
differences, overall we find that the relative importance of
the global factor is generally as important as the local CPI
factor for all countries with the exception of Greece. And
in addition, the importance of local macro factors group is
low for almost all countries and forecast horizons. This is
consistent with our forecasting findings, that Specification
1 (+LocalMACRO) is generally not as good as the models
with inflation factors (local or global). If we interpret the

24 In Table A24, we report the results of the same forecasting
exercise for the rolling window procedure. Overall, the story is similar,
as the GPR method attains the top rank in 28 out of 48 cases, followed
by the VBVDS algorithm. This evidence again strongly supports the
use of GPR methods for inflation forecasting because of the potential
non-linearities.
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Fig. 3. The importance of global and local factor groups for the GPR method.
Notes: The sub-graphs plot the importance of each factor group for the GPR method for all horizons across the countries. The values in the graphs
are normalized to sum to one. h is the forecasting horizon.
odel with local macro factors as an approximation25
o a Phillips curve-type relationship, then our findings
avor global inflation explanations of EM national inflation
ates.

.3. Forecast informativeness: How far can we forecast?

In some instances the policymaker may be interested
n a relatively long horizon, and of interest is how far

25 An ‘approximation’ in the sense that it includes a wide range of
domestic variables in addition to a simple activity variable such as the
unemployment rate or the output gap.
175
ahead our models can forecast. Forecasts are said to be
informative up to the horizon at which the forecast er-
ror variance is no longer smaller than the unconditional
variance of the target variable. (The assumption being that
the forecasting model, which makes use of forecast-origin
information, will initially fare better than the uncondi-
tional mean, but that the relative advantage will diminish
in the forecast horizon as the role of the conditioning data
wanes.) In our context it seems reasonable to suppose
that long-horizon forecast performance will measure the
ability of the models to forecast core inflation, and that
short-horizon performance will bear more on the ability
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to forecast more cyclical or short-acting components such
as food.

Following the work of Breitung and Knüppel (2021),
e test that the forecast ŷt+h|t is not informative for yt+h
sing the null hypothesis:

0 : E
(
e2t+h|t

)
≥ E (yt+h − µ)2 (19)

where et+h|t = yt+h − ŷt+h|t is the forecast error. Then
the maximum forecast horizon h∗ can be defined as h∗

=

hmin − 1, where hmin is the lowest forecast horizon which
satisfies the condition given in the null hypothesis. In
other words, we sequentially test the H0 for h = 1, 2, . . . ,
hmax until the H0 is not rejected for the first time. Then
we select the previous horizon as the maximum forecast
horizon.

As an alternative, we can write the null hypothesis as:

H ′

0 : E (yt+h − µ)
(
ŷt+h|t − µ

)
= 0 (20)

which implies that the forecast error using the uncon-
ditional mean as the forecast is not correlated with the
difference between the two forecasts. We can reject the
null hypothesis if yt+h and ŷt+h|t are positively correlated.
This leads to a one-sided t-test of the null hypothesis
β1,h = 0 against the alternative β1,h > 0, where the
constant α0,h = µ is left unrestricted in the Mincer–
Zarnowitz regression defined in Mincer and Zarnowitz
(1969). Hence, this test can be interpreted as an encom-
passing test – whether the model forecast adds useful
information relative to simply using the unconditional
mean (estimated by the sample average).

Table 5 presents the maximum forecast horizons h∗,
suggested by the encompassing test, for all our mod-
els (for headline inflation), to determine the extent to
which the inclusion of the different factors extends the
horizon at which our models are informative about the
inflation outlook. The results demonstrate that the AR
model forecasts are not informative beyond nine months
when the recursive forecasting scheme is employed. The
encompassing test also implies smaller values of h∗ for
the AR model if the rolling window approach is adopted,
which renders inflation forecasts uninformative beyond
six months ahead for any country.

By way of contrast, the models augmented with factors
produce informative forecasts at horizons greater than the
maximum forecast horizon of the AR model in most of the
cases. For Romania, there is no improvement in h∗ (from
nine months) if only local factors are added (recursive
scheme), but the horizon increases to 12 when global fac-
tors are included. For all other countries, the informative
horizon is at the maximum of 12 for all specifications. This
finding supports the view that inflation is largely a global
phenomenon and highlights the role of global inflation
in local inflation dynamics (Duncan & Martínez-García,
2015). However, the maximum horizon of 12 is reached
for all specifications, so that we are not able to determine
the extent to which informativeness is sensitive to the
different measures of global inflation.

Note that none of the specifications leads to an in-
crease in the maximum forecast horizon for Romania

under the rolling window scheme, which confirms our
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previous finding that a recursive scheme leads to superior
forecasts in these classes of model. However, for all other
countries the results do not depend on whether we adopt
a rolling or recursive scheme.

7. Estimating global inflation factor through interna-
tional inflation spillovers

Up to this point we have worked with a pre-determined
designation of countries as developed or emerging
economies when we construct the global inflation factors,
but this may not correspond to an economic grouping.
In this section, we make use of a measure of economic
connectedness to determine the group structure. We uti-
lize the time-varying parameter VAR (TVP-VAR) model
of Antonakakis, Chatziantoniou, and Gabauer (2020) to
identify inflation spillovers across countries.26 We cal-
culate a pairwise directional connectedness (spillover)
index for every pair of countries, based on the share of
the 10-step-ahead forecast error variance of a country’s
inflation rate that is accounted for by shocks to the other
country.27

In Fig. 4, we depict the network analysis of infla-
tion spillovers for each country. Each edge between two
nodes denotes the net pairwise spillovers between two
countries. The arrow’s direction indicates which coun-
try received shocks from which country on average. The
thickness of the edge between two countries shows the
strength of the propagation of shocks between countries.
Similarly, each node’s size represents the overall magni-
tude of the net total directional connectedness for each
country, implying that a larger node size has a significant
role as sender/receiver of shocks within the network. We
highlight with red (green) if a country is a net transmitter
(receiver) of the shocks within the system.

Our results highlight the global nature of the spillovers
of the inflation shocks from European countries (espe-
cially Spain, Italy, and France) to the rest of the world. On
the contrary, Japan, Norway, and Mexico are the highest
net receivers of inflation shocks in the network.28 We
identify the top 40 countries in terms of the transmission
of inflation shocks to the EM European countries in our
sample. We generate four different PLS factors using the
set of top 10, top 20, top 30, and top 40 countries. Then,
we estimate Specification 6 using these ‘tailored’ global
factors.

Table 8 reports the results. The second row of each
panel records the MSFE outcome when factors are ex-
tracted from all the countries taken together (i.e., emerg-
ing and developed), as in Section 4.1. The results show

26 Technical details of the TVP-VAR model and connectedness
measures are provided in the supplementary online appendix.
27 We also calculated the time-varying total connectedness of the
network, where its average sample value is 90.1%, implying that there
is significant convergence in inflation rates across countries.
28 Auer, Levchenko, and Sauré (2019) analyze the synchronization of
producer price inflation (PPI) across a large set of countries. They find
considerable global co-movement in PPI, similar to the findings for CPI
in previous studies (Auer & Mehrotra, 2014; Bäurle, Gubler, & Känzig,
2021; Mumtaz et al., 2011; Neely & Rapach, 2011b). Akin to these
studies, Ciccarelli and García (2015) examine the spillover of inflation
expectations in the euro area, U.S., and U.K.
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Table 5
Maximum forecast horizons in months, determined by encompassing test.
(A) Recursive Forecasting

Bulgaria Czech Greece Hungary Poland Romania

AR 6 9 6 6 6 9

Specification 1 12 12 12 12 12 9
Specification 2 12 12 12 12 12 9
Specification 3 12 12 12 12 12 12
Specification 4 12 12 12 12 12 12
Specification 5 12 12 12 12 12 12
Specification 6 12 12 12 12 12 12

(B) Rolling Forecasting

Bulgaria Czech Greece Hungary Poland Romania

AR 6 6 6 6 6 6

Specification 1 9 12 12 12 12 6
Specification 2 12 12 12 12 12 6
Specification 3 12 12 12 12 12 6
Specification 4 12 12 12 12 12 6
Specification 5 12 12 12 12 12 6
Specification 6 12 12 12 12 12 6

Notes: The table shows maximum forecast horizons in months for all forecast horizons determined by
the encompassing test.
that choosing a subset of countries by considering the
pairwise inflation spillovers across countries, before con-
structing the global factors, provides forecast improve-
ments for the Czech Republic, Poland, and Romania. In
particular, the forecast gains are primarily obtained for
short and medium horizons (h = 1, 2, 3, and 4), but not
the longer horizons, indicating the importance of using in-
formation related to all countries for longer forecast hori-
zons. Moreover, none of the competing models improves
on Section 4.1 strategy for Bulgaria and Hungary.

8. The role of country characteristics in explaining the
importance of the global inflation factors

The channels through which global shocks are prop-
agated and affect countries’ inflation rates are numer-
ous, and their interactions complex. But to shed some
light on this question, we seek to uncover some of the
country-level characteristics that tend to increase the im-
portance of the effects global factors have on local in-
flation rates. We collect a candidate set of explanatory
variables, consisting of time-varying country-specific vari-
ables, that might explain the (not necessarily mutually ex-
clusive) channels which influence effect of global factors
on domestic consumer prices, either directly or indirectly.

To investigate the relationship between the country-
level characteristics and the strength of the effect of
the global factor on domestic inflation, we consider the
following set of variables: (1) Current account balance to
GDP (CAB), (2) Budget Balance to GDP (BB), (3) Household
consumption to GDP (HCONS), (4) Unemployment rate
(UNR), (5) FX reserves to GDP (FXR), (6) Uncertainty
(UNC), (7) Real GDP growth (RGDP), (8) 5-year Credit De-
fault Swap (CDS), (9) Real effective exchange rate (REER),
(10) Exports to GDP (EXP), and (11) Imports to GDP
(IMP).29 We estimate the following panel regression, al-
lowing for country-specific fixed effects (the αi) to capture

29 The online supplementary appendix presents details on these
variables and data sources.
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time-invariant cross-country differences:

yi,t = αi + θF LocalMACRO
it + γ F LocalCPI

it + βFGlobalCPI
it

+ β1FGlobalCPI
it × CABit + β2FGlobalCPI

it × BBit

+ β3FGlobalCPI
it × HCONSit + β4FGlobalCPI

it

× UNRit + β5FGlobalCPI
it × FXRit

+ β6FGlobalCPI
it × UNCit + β7FGlobalCPI

it × RGDPit
+ β8FGlobalCPI

it × CDSit
+ β9FGlobalCPI

it × REERit + β10FGlobalCPI
it × EXPit

+ β11FGlobalCPI
it × IMPit + ei,t .

(21)

The dependent variable (yi,t ) is the quarterly aver-
age value of the year-over-year inflation rates of Euro-
pean emerging countries. The country-level characteris-
tics listed above appear as interaction terms with the
global factor. This setup allows us to determine whether
the effects of the global factor change with the country-
level characteristics by simply testing for the significance
of the interaction terms.

Table 9 presents the panel regression results. Column
1 of Table 9 suggests that the relative importance of
the global factor is positively associated with the cur-
rent account balance and government debt. As suggested
by Kılınç, Tunç, and Yörükoğlu (2016), higher current
account deficits may result in larger currency depreciation
in EM countries, amplifying the relationship between do-
mestic inflationary pressures and current account deficits.
Similarly, a higher level of household consumption may
create greater dependency on imported goods, making
a country more open to global shocks. The significant
coefficients of the export and import variables indicate
that the degree of trade openness is key to explaining
the transmission of global shocks onto the headline in-
flation rate. In particular, a growing share of imports
from other countries will increase the pass-through of
supply chain shortages, energy, and raw material prices
onto domestic inflation rates. These results are in line
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Table 6
MSFEs based on the use of different dimension-reduction and shrinkage methods – Recursive forecasting.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 9 h = 12

BULGARIA

AR 0.439 0.801 1.082 1.375 1.674 1.974 2.949 3.906
MSFE best w/o shrinkage 0.955 0.811*** 0.690*** 0.547*** 0.495*** 0.503*** 0.490*** 0.315***
GPR 0.981 0.851*** 0.708*** 0.542*** 0.492*** 0.502*** 0.469*** 0.360***
VBDVS 1.058 0.936* 0.835** 0.735** 0.669** 0.640** 0.500** 0.536**
ENET 0.987 0.814*** 0.703*** 0.566*** 0.525*** 0.534*** 0.496** 0.401***
LASSO 0.976 0.817*** 0.699*** 0.567*** 0.523*** 0.531*** 0.497** 0.404***

CZECH REPUBLIC

AR 0.341 0.492 0.628 0.755 0.863 0.964 1.194 1.463
MSFE best w/o shrinkage 1.035 0.938 0.825*** 0.796** 0.693*** 0.601*** 0.487*** 0.379***
GPR 1.019 1.004 0.851** 0.756** 0.644*** 0.563*** 0.460*** 0.370***
VBDVS 0.987 1.008 0.969 0.930 0.890 0.865 0.754* 0.702*
ENET 1.009 0.925 0.817*** 0.799** 0.687*** 0.600*** 0.462*** 0.413***
LASSO 1.013 0.931 0.831*** 0.798** 0.695*** 0.604*** 0.459*** 0.413***

GREECE

AR 0.528 0.687 0.819 0.957 1.144 1.348 2.215 3.135
MSFE best w/o shrinkage 0.894*** 0.807** 0.759*** 0.662*** 0.575*** 0.482** 0.238** 0.155**
GPR 0.896*** 0.801** 0.763*** 0.677*** 0.572*** 0.508** 0.248** 0.158**
VBDVS 0.991 0.852*** 0.913** 0.814* 0.688** 0.673** 0.488** 0.430**
ENET 0.894*** 0.818*** 0.773*** 0.682*** 0.613*** 0.518** 0.253** 0.158**
LASSO 0.899*** 0.816*** 0.772*** 0.679*** 0.605*** 0.509** 0.248** 0.156**

HUNGARY

AR 0.463 0.736 0.971 1.235 1.483 1.735 2.480 3.200
MSFE best w/o shrinkage 0.935 0.870 0.776** 0.705** 0.638** 0.573** 0.332** 0.266**
GPR 0.934 0.880* 0.793** 0.701** 0.638** 0.584** 0.307** 0.275**
VBDVS 1.098 0.962 0.975 0.863 0.826 0.770* 0.564** 0.478**
ENET 0.957 0.884 0.799** 0.722** 0.663** 0.604** 0.350** 0.284**
LASSO 0.950 0.893 0.800** 0.721** 0.664** 0.606** 0.354** 0.285**

POLAND

AR 0.302 0.486 0.674 0.843 1.015 1.158 1.608 2.082
MSFE best w/o shrinkage 0.882* 0.798*** 0.730*** 0.695*** 0.614*** 0.445*** 0.295*** 0.268***
GPR 0.882* 0.877** 0.774*** 0.726*** 0.624*** 0.475*** 0.263*** 0.299***
VBDVS 1.024 0.936 0.933 0.822*** 0.849* 0.799** 0.716** 0.543**
ENET 0.890* 0.791*** 0.738*** 0.715*** 0.610*** 0.462*** 0.316*** 0.322***
LASSO 0.890* 0.809*** 0.724*** 0.718*** 0.611*** 0.470*** 0.313*** 0.323***

ROMANIA

AR 0.625 0.935 1.218 1.398 1.565 1.694 2.158 2.687
MSFE best w/o shrinkage 1.072 1.022 0.928 0.833** 0.741*** 0.710*** 0.483*** 0.538***
GPR 1.072 0.997 0.940 0.831** 0.716*** 0.655*** 0.530*** 0.648***
VBDVS 1.060 1.005 0.947* 0.930 0.873** 0.967 0.824 0.939
ENET 1.080 1.033 0.941 0.839*** 0.757*** 0.737*** 0.552*** 0.598***
LASSO 1.089 1.045 0.939 0.844*** 0.742*** 0.735*** 0.551*** 0.594***

The entries are MSFEs, with the model that gives the smallest MSFE highlighted in bold. The entries in the first row correspond to
actual point MSFEs of the AR model, while all other entries are MSFEs relative to the AR model. Hence, a value smaller than one
implies that the corresponding specification type produces more accurate forecasts than those of the AR model. The entries in the
second row of each panel deliver the best MSFE outcome for a given forecast horizon across all constant parameter Specification
types, which are highlighted in bold in Table 2. Entries marked with asterisks (*** 1% level; ** 5% level; * 10% level) are significantly
superior to the AR model, based on the DM forecast accuracy test.
Table 7
Summary of best-MSFE models and dimension-reduction methods across countries.

Recursive Forecasting

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 9 h = 12

Bulgaria Spec-6 Spec-6 Spec-6 GPR-6 GPR-6 GPR-6 GPR-2 Spec-3
Czech R. VBDVS-6 ENET-2 ENET-4 GPR-2 GPR-2 GPR-2 LASSO-3 GPR-6
Greece ENET-6 GPR-2 Spec-2 Spec-4 GPR-6 Spec-3 Spec-6 Spec-3
Hungary GPR-3 Spec-6 Spec-6 GPR-6 GPR-6 Spec-6 GPR-6 Spec-6
Poland GPR-4 ENET-6 LASSO-6 Spec-6 ENET-6 Spec-6 GPR-6 Spec-6
Romania AR GPR-3 Spec-3 GPR-6 GPR-6 GPR-3 Spec-6 Spec-6

Notes: Abbreviations: Specification 1 = ‘1’, Specification 2 = ‘2’, Specification 3 = ‘3’, Specification 4 = ‘4’, Specification
5 = ‘5’, Specification 6 = ‘6’. For instance, GPR-6 means that when Specification 6 is estimated with the GPR model, it
yields the lowest MSFE across all TVP models and constant parameter models for a given country.
178
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Fig. 4. Network analysis of inflation spillovers across countries.
Notes: Each edge between two nodes demonstrates the net pairwise inflation spillovers between countries, and the arrow’s direction indicates which
country transmits the shocks to another country. The thickness of the edge between countries represents the strength of the spillovers between
countries. Each node’s size denotes the overall magnitude of net total directional spillovers. The red (green) node indicates whether a country is a
net transmitter (receiver) of the shocks within the system. For a better visualization, we report the pairwise spillovers greater than 0.05. Moreover,
we ran the model with 60 countries, due to the need for a high-powered computer.
with recent research suggesting that global production
networks play a significant role in the transmission of
shocks (Auer et al., 2017, 2019; Carvalho, 2014; Carvalho,
Nirei, & Tahbaz-Salehi, 2021). We also modify the baseline
model by splitting exports and imports into EU and non-
EU countries. Column 2 of Table 9 shows that imports
from the EU are highly significant, but imports from non-
EU countries become insignificant. The reason might be
that the EU has a single customs union with a single
trade policy and tariff system, and that the EM European
countries are more connected to the advanced countries
in the EU than to the rest of the world.

Overall, our results suggest a number of plausible
ropagation channels for global factors on domestic in-
lation. We surmise that the potency of these channels
ay have increased in recent years, with policy rates
eing close to the lower bound of zero, diminishing the
ffectiveness of the countries’ own monetary policies.
179
9. Conclusion

We presented a comprehensive empirical investiga-
tion into the forecasting performance of global factors for
European EM countries’ national inflation rates. We con-
sidered a variety of different models, forecasting schemes,
forecast horizons, and evaluation techniques, to include
in our investigation the breadth of approaches in the
literature. Naturally our results did not always give con-
sistent findings across countries, models, and horizons,
but nevertheless some general patterns emerged.

Our empirical findings based on the outcomes of the
forecasting exercises firmly support the contention that
it is true that ‘inflation is a global phenomenon’ for the
European EM countries’ national inflation rates, and not
just for developed, high-income economies. The support
comes from comparing the forecast performance of mod-
els with global inflation factors to models with local
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Table 8
MSFEs based on the use of different global factors based on inflation spillovers – Recursive forecasting.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 9 h = 12

BULGARIA

AR 0.439 0.801 1.082 1.375 1.674 1.974 2.949 3.906
ALL 0.955 0.811*** 0.690*** 0.547*** 0.495*** 0.503*** 0.503*** 0.347***
Top 10 1.175 0.930* 0.773*** 0.743*** 0.694*** 0.666*** 0.688*** 0.497***
Top 20 1.156 0.925 0.845*** 0.797*** 0.715*** 0.653*** 0.544** 0.445***
Top 30 1.104 0.891*** 0.792*** 0.696*** 0.636*** 0.627*** 0.614** 0.426***
Top 40 1.113 0.894*** 0.798*** 0.777** 0.694** 0.623** 0.640** 0.419***

CZECH REPUBLIC

AR 0.341 0.492 0.628 0.755 0.863 0.964 1.194 1.463
ALL 1.113 1.046 1.005 0.980 0.899 0.723*** 0.530*** 0.404***
Top 10 1.043 0.931 0.864* 0.801* 0.735* 0.595** 0.524** 0.440***
Top 20 1.078 1.022 0.914 0.902 0.864 0.685** 0.569** 0.441**
Top 30 1.083 1.034 0.984 0.985 1.010 0.805* 0.603** 0.354***
Top 40 1.144 1.091 0.925 0.964 0.984 0.835 0.553** 0.368***

GREECE

AR 0.528 0.687 0.819 0.957 1.144 1.348 2.215 3.135
ALL 0.912** 0.837** 0.789*** 0.698*** 0.574*** 0.485** 0.238** 0.174**
Top 10 0.906** 0.820** 0.781** 0.720** 0.617** 0.513** 0.243** 0.209**
Top 20 0.906** 0.809** 0.767*** 0.755** 0.663** 0.602** 0.233** 0.188**
Top 30 0.883** 0.809** 0.803*** 0.729*** 0.630** 0.540** 0.299** 0.191**
Top 40 0.887*** 0.795** 0.748*** 0.661*** 0.572** 0.505** 0.304** 0.185**

HUNGARY

AR 0.463 0.736 0.971 1.235 1.483 1.735 2.480 3.200
ALL 0.981 0.870 0.776** 0.705** 0.638** 0.573** 0.332** 0.266**
Top 10 1.052 0.986 0.880 0.810 0.756 0.776 0.440** 0.320**
Top 20 1.074 1.013 0.839* 0.710** 0.685* 0.676* 0.350** 0.298**
Top 30 1.052 0.946 0.871 0.865 0.788 0.745 0.411** 0.315**
Top 40 1.075 0.950 0.845 0.808 0.733* 0.700* 0.437** 0.299**

POLAND

AR 0.302 0.486 0.674 0.843 1.015 1.158 1.608 2.082
ALL 0.887* 0.798*** 0.730*** 0.695*** 0.614*** 0.445*** 0.295*** 0.268***
Top 10 0.897* 0.869** 0.861* 0.842* 0.750** 0.639** 0.375*** 0.334***
Top 20 0.907 0.851** 0.780*** 0.723*** 0.660*** 0.599*** 0.390*** 0.268***
Top 30 0.921 0.875** 0.832** 0.778** 0.695** 0.620*** 0.386*** 0.343**
Top 40 0.853** 0.776*** 0.709*** 0.672*** 0.617*** 0.507*** 0.345*** 0.396**

ROMANIA

AR 0.625 0.935 1.218 1.398 1.565 1.694 2.158 2.687
ALL 1.146 1.094 0.953 0.833** 0.741*** 0.710*** 0.483*** 0.538***
Top 10 1.058 1.045 0.943 0.888 0.936 0.955 0.770** 0.745**
Top 20 0.990 0.970 0.914 0.884 0.887 0.863* 0.618*** 0.686***
Top 30 1.039 0.966 0.897* 0.823** 0.858** 0.867** 0.654*** 0.679***
Top 40 1.084 1.003 0.916 0.850** 0.895** 0.886** 0.691*** 0.703**

The entries are MSFEs, with the model that gives the smallest MSFE highlighted in bold. The entries in the first row
correspond to actual point MSFEs of the AR model, while all other entries are MSFEs relative to the AR model. Hence,
a value smaller than one implies that the corresponding specification type produces more accurate forecasts than the
AR model. The entries in the second row of each panel deliver the MSFE outcome for the model where factors are
extracted from all the countries taken together, which are reported in Table 2. Top 10, Top 20, Top 30, and Top 40
report the MSFE results of Specification 6 where global factors are estimated considering the top 10, top 20, top 30,
and top 40 countries with the highest inflation shock propagation for a given country, respectively. Based on the DM
forecast accuracy test, entries marked with asterisks (*** 1% level; ** 5% level; * 10% level) are significantly superior to
the AR model.
acro factors, which we contend generalize Phillips curve-
ype models, and to models which may in addition in-
lude local inflation factors. Because our models with
lobal inflation factors also include all the information in
he models with local macro and inflation factors, we are
ble to show the incremental effect of ‘global inflation’.
his is important, because otherwise we might attribute
o global inflation predictive ability which stems from
omestic factors, recognizing that in practice domestic
ariables will respond to the global situation and it might
e difficult to separately disentangle the effects of the two
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sets of factors on national inflation rates. Our approach
shifts the onus on to global factors adding something over
and above that provided by domestic factors.

We provided some insight as to why global factors
are an important determinant of domestic inflation, by
considering the country-level characteristics that tend to
increase the importance of global factors on domestic
inflation. Perhaps not surprisingly, the degree of openness
of a country is a key determinant, but other factors, such
as a higher current account deficits and higher level of
household consumption also matter and work in the same
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Table 9
Determinants of importance of global factor – Panel regression results
Variables (1) (2)

yi,t yi,t
LocalMACRO 0.133 0.125

(0.135) (0.132)
LocalCPI 1.302*** 1.261***

(0.135) (0.130)
GlobalCPI 1.100*** 1.100***

(0.098) (0.097)
GlobalCPI × CAB 0.729*** 0.577**

(0.204) (0.223)
GlobalCPI × BB 0.0086 −0.056

(0.091) (0.091)
GlobalCPI × HCONS 0.700*** 0.643***

(0.192) (0.187)
GlobalCPI × UNR −0.084 −0.012

(0.128) (0.130)
GlobalCPI × FXR 0.343*** 0.103

(0.104) (0.114)
GlobalCPI × UNC −0.016 0.035

(0.068) (0.067)
GlobalCPI × RGDP 0.0311 0.0301

(0.097) (0.091)
GlobalCPI × CDS 0.005 −0.053

(0.066) (0.068)
GlobalCPI × REER −0.127 −0.057

(0.078) (0.099)
GlobalCPI × EXP −2.141**

(0.843)
GlobalCPI × IMP 2.127***

(0.685)
GlobalCPI × EXP_EU −2.183***

(0.764)
GlobalCPI × IMP_EU 2.147***

(0.645)
GlobalCPI × EXP_NonEU 0.329

(0.239)
GlobalCPI × IMP_NonEU 0.103

(0.202)
Constant 3.016*** 3.018***

(0.078) (0.075)

Observations 369 369
F-stat prob. 0.00 0.00
Adjusted R2 0.848 0.855

Asterisks (*** 1% level; ** 5% level; * 10% level) denote significance lev-
els. Robust standard errors are reported in parentheses. All explanatory
variables are used in standardized forms.

direction. Tailoring the global inflation factor to the par-
ticular EM country also matters for some countries – that
is, forming the global factor by extracting a factor on the
subset of countries that are closely connected to the EM
countries.

We used factors throughout to condense the informa-
ion in large sets of variables, both for domestic variables
nd for foreign variables, consistent with a large body
f literature on factor modeling. Where we depart from
ome of the literature on ‘global inflation’ is by calculating
he factors in a way that ensures their relevance for the
ariable being forecast, that is, by PLS rather than PCA.
e showed that this has noticeable effects on our results.
hile our main set of results used linear factor forecasting
odels, we also established that our findings are robust

o factor-selection methods that enforce sparsity, as well
s to a machine-learning method that allows for a non-
inear relationship between national inflation rates and
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the sets of factors. The latter served to further enhance the
forecasting improvements that resulted from the global
inflation factors.

We also considered whether the findings for national
headline inflation rates carry over to core inflation, which
excludes food and energy, recognizing that these ele-
ments of the domestic consumption basket will likely
be directly influenced by global price movements. While
global factors still played an important role in determin-
ing European EM core inflation rates, local factors were
found to play a more prominent role than they did for
headline inflation.

Forecast performance can be evaluated in a number of
ways. We compared the models’ forecasts at each forecast
horizon, using standard tests of equal forecast accuracy,
as is often done in the literature. However, the evaluation
of forecast paths, or of subsets of forecast paths, would
likely be of greater interest to policymakers, as well as
being a way of handling the multiple-testing problem
that arises from comparing two models at a number of
horizons. Generally we found that global factors dominate
local factors at shorter horizons. We also paid particular
attention to the horizon at which the factor models lose
their edge over the ‘long-horizon’ or unconditional mean
forecast, and we showed that the factor models generally
extend this horizon relative to the benchmark AR model.
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