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Abstract— Research and development on the electrification 

of road vehicles have been dominated by light-duty passenger 

vehicles and vans. Recent developments in Electric Vehicle (EV) 

technology, however, are bringing attention to the electrification 

of heavy-duty vehicles and raising questions about fleet 

charging profiles and related implications for power networks. 

In this paper, a semi-stochastic model is developed for the 

simulation of Heavy Goods Electric Vehicle (HGEV) depots' 

charging demand profiles. The modelling of daily fleet charging 

profiles, managed and unmanaged, are addressed in this paper 

to investigate the characteristics of the typical load profile and 

the potential of the demand side management in response to 

price signals. Issues of charging constraint and optimal depot 

charging, from a power network perspective, have been applied 

to understanding how the fleet demand is met. The findings of 

this work pavs the way to study the impacts of heavy-duty 

vehicle electrification on the network and the maximum power 

demanded from the grid based on the charging strategies taken. 

Adoption of flexibility programs or network reinforcement 

plans around sites of fleet charging can be informed by this 

study - helping to mitigate the overall stress that the grid could 

face due to increasing future demands. 

Keywords— Electric Vehicle, Charging Station, Load 

Modelling, Demand Side Management. 

I. INTRODUCTION 

Road transport in the UK remains largely based on fossil 
fuels and accounts (pre-Covid) for over 70% of all transport-
related energy consumption. Of this, Heavy Goods Vehicles 
(HGV) energy use accounts for 17% and has demonstrated a 
long-term upward trend (growth) in energy consumption since 
the 1970s. More recently, the impact of Covid on road 
transport has shown a less pronounced impact on HGV and 
Light Goods Vehicles (LGV) use than that on cars [1]. These 
trends highlight challenges of emission reduction associated 
with HGV transportation and the need to deal with this 
growing and seemingly critical demand. The electrification of 
transport, here fuelling HGV powertrains with electric 
batteries and electricity derived energy vectors such as 
hydrogen and ammonia, is promoted as an important 
development in addressing Green-House Gas (GHG) 
emissions [2].  

It is anticipated that transport electrification will bring 
challenges to the electricity network. The severity of the 
implications is a complex phenomenon that mainly depends 
on the capacity of existing infrastructure, demand level and 
the charging methods adopted by the fleet operators. An 

invaluable amount of analytical data and collective 
experience, both in industry and academia, have been acquired 
since the commencement of the electrification of light-duty 
vehicles (including passenger cars and vans). However, the 
electrification of heavy-duty vehicles is less developed due to 
the challenges of power and range performance of battery 
technology but has started to get wider attention.  

One of the few works on heavy goods electric vehicles 
from a power grid perspective, which considers load/demand 
characteristics, has been conducted by the USA National 
Renewable Energy Laboratory (NREL) [3]. The main concern 
of this research was the grid impact analysis of Heavy Goods 
Electric Vehicle (HGEV). Regarding the Tesla HGEV 
productions, the authors assumed that the long-haul trucks 
with high battery capacities provide an average rate of 375 
miles on a charge available. As a result, it is stated that 
charging the high-capacity batteries required extremely fast 
chargers to reduce the charging time. It might lead to adding a 
multi-megawatt very high loading to the network. This 
loading is consistent with a public charging station that 
provides the capacity of parallel charging of HGEV at the 
same time. In reference [3], an agent-based modelling 
approach has been used to model the load profile of charging 
stations. These stations are facilitated by DC fast-charging 
system, which has been analysed earlier in [4]. 

In [3], it is also highlighted that the performance of electric 
vehicles (heavy or light)  and the related charging stations 
modelling is dependent on determining defined properties. 
The property set is introduced in [5] and include battery 
capacity, arrival time, initial State Of Charge (SOC), final 
desired SOC or energy demand and a power acceptance curve. 
Reference [5] defined arrival time and SOC as random 
variables governed by probability distributions obtained in 
this research via a combination of real telemetry data analysis 
and EV systems. Reference [3] also emphasised that the 
charging demand curve of a vehicle and its battery pack is a 
chemistry-dependent process and affected by the complex 
control algorithms of Battery Management Systems (BMS). 
Sample demand profiles of the stations are determined 
assuming the availability of various HGEV charging ports (1, 
5 & 10) with traffic of 30 vehicles per day.  

In [6], the authors investigate the electrification of land 
transport in a fully renewable, complex electricity network. 
This work is developed for the national electricity market of 
Australia (on an hourly energy balance scale) with full uptake 



of electric vehicles for land transport (except trains). Train 
demand is calculated from the average daily travelling 
distance and the energy consumption per distance travelled 
along with energy losses. The land transport modes involved 
in this research were categorised as rail, non-freight carrying 
trucks, rigid trucks, buses, motorcycles, articulated trucks, 
light commercial vehicles, and passenger vehicles. The 
charging strategies were categorised into flat (uniform 
charging load 24 h per day), daytime charging (charges during 
daytime e.g. day 08 -17), peak-low rate charging (charges 
during the evening peak, e.g. 4-21, at a low-power rate), night 
time (charges during the night after the evening peak period, 
e.g. 21-09), end of the trip (charges as soon as the trip finishes) 
and pick high rate charging (charges during the evening peak, 
e.g. 16-21 at a high-power rate). 

The competitiveness of electric vehicles is evaluated in [7] 
using the advantage of a new cost-benefit for everyday usage 
compared to other options. In [8], the authors argue that little 
attention is drawn to the study of topological characteristics of 
traffic networks, although this is highly likely to have a great 
influence on the macroscopic characteristics of the electric 
vehicle group. Therefore, the research applied a typical 
approach study on the impact of the traffic network and 
charging profiles of large-scale electric vehicle groups. 
Tempo-spatial distribution of this group of electrical vehicles 
is employed via a multi-agent technique to model adaptive 
systems considering the electric vehicle group, traffic network 
and charging stations. Their findings illustrate the charging 
power of regional HGEV follows a logarithmic normal 
distribution while the mathematical expectation of probability 
density deliver a periodic performance.  

There are gaps in understanding of both deployment of the 
emerging HGV technologies and the interaction with the 
power network. Questions arise concerning the energy 
demand level expected from heavy-duty vehicle fleets and the 
difference between their charging behaviours and light-duty 
vehicles. For the HGV operators, there will be a significant 
choice to be made between on route charging and depot-based 
charging. Solely depot-based options will only suit some 
fleets. Where depot-based charging is viable, and vehicles 
have material idle time at the depot there will be opportunities 
to manage to charge to minimise fuel cost and network 
impacts simultaneously. A range of approaches have been 
adopted in the literature to simulate charging loads [9-14]. 
Broadly these can be grouped into three main categories, the 
deterministic, stochastic and artificial intelligence-based 
approaches. As expected, each of them considers various sub-
methods. Depending on desire, further details are available in 
[15, 16].  

The HGEV depot and the fleet charging have similarities 
with the light vehicle and public station, although remarkable 
differences. As with light vehicles and public charging 
stations, HGEV fleet charging is influenced by some key 
stochastic variables, e.g. daily travelling distance. However, 
the management rules of HGEV depots change the nature of 
some parameters commonly deemed stochastic variables in 
public station modelling to parameters that can be deemed 
effectively deterministic, e.g. the state of charge and starting 
time of charging/time of arrival. Therefore, addressing the 
gap, this work benefits the advantage of a new semi-stochastic 
approach to model HGEV depot charging demand and 
evaluate the capacity of demand side management in the case. 

Furthermore, considering the remarkable differences 
between the HGEV and light EVs in battery capacity and 
consequently the required time of charge, as well as 
considering the rating power of chargers commonly used for 
this task, make it severe required to specify research on 
analysing HGEV charging demand separately. The time 
schedules are common in the operation of the depots 
emphasises this necessity which is answered in this research. 
Also, the central management system of depots makes them 
highly capable of demand-side management. Therefore, 
evaluating the capacity of price-based management in HGEV 
depots is the other question that is answered in this research. 
Having managed and unmanaged HGEV load profiles 
available is also required to evaluate the grid impacts of 
HGEV electrification in the future research. 

II. OVERVIEW OF THE PROPOSED ANALYSIS 

In order to develop the modelling approach, a typical case 
is presented in this research which represents a fleet with a 
clear working day and overnight off-duty period. This can be 
expected to be one of the cases with the greatest opportunity 
for taking advantage of charging management. As evidenced 
earlier, the charging demand profile of a fleet of vehicles 
depends on many factors, including the size of the fleet, 
distance travelled, specific energy consumption, battery 
capacity, charge point power, environmental factor, and the 
charging strategy. Here, it is assumed that the fleet returns to 
the depot at the end of its duty, and the vehicle batteries are 
fully recharged over the night to be ready for the next daily 
operation.  

To quantify the capacity of the demand side management 
of the fleet, model has been developed with the consideration 
of two charging strategies: managed and unmanaged charging. 
In the first (unmanaged) strategy, the model considers the 
main parameters of the fleet and the depot along with the start 
and end times for the charging events. These times are set 
considering the State Of the Charge (SOC) of the fleet and the 
available charging power at the depot. Demand profiles for 
individual vehicles and the total demand of the fleet, which is 
covered by the network during the recharge time of the fleet, 
are determined. In the managed strategy the half-hourly 
electricity market price index has been used as a control signal 
to coordinate the recharge of the fleet to minimise electricity 
cost assuming access to dynamic Time of Use (ToU) pricing. 

It  is worth mentioning that the ‘state of charge’ function 
produces the SOC vector based on the distance travelled, and 
the specific energy consumption of a typical vehicle as in 
Fig.1. The generated SOC vector is stored in an Excel file to 
be used in the vehicle charging function.  

Fig. 2. shows the structure of the depot load profile 
modelling. It is comprised of the main controller and the parts 
function with their specific roles. 

 

Fig. 1. State of charge for a given fleet size 
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Fig. 2. Structure of the proposed depot charging model. 

The "fleet travelled distance" block functions 
stochastically to produce a set of travelled distance values 
equal to the fleet size using the daily travelled distance 
distribution. The output of this function is a vector with the 
same size of the fleet that gives the distances travelled by the 
vehicles in completing their daily operations since the time 
they depart the depot until they return to the depot. 

The specifications for the electric trucks in this research 
are assumed considering values reported by vehicle 
manufacturing companies [17-21]. The ‘load profile plotting’ 
function generates the instantaneous load of the fleet demand 
based on the input parameters and the averaged consumptions 
(according to the desired average demand type).  

The “vehicle charging function” models the load profile of 
the fleet based on the SOC of the fleet, the charging power of 
the depot, and the allocated charging time. The depot’s 
charging capacity is the total power of parallel charging points 
available at a station. In the current approach, it is defined as 
the multiple of the fleet’s vehicles, the rating power of the 
charging points and a coefficient identified here as the depot 
factor. For example, if this is the case that the depot has 
enough electrical capacity for the whole fleet’s vehicles to be 
plugged in and charged simultaneously, then the depot factor 
is equal to ‘1’. While, for the case that the depot does not have 
enough capacity for recharging the whole fleet 
simultaneously, the depot factor is less than ‘1’. Fig. 3. 
illustrates the flowchart of the depot charging model. 

III. PRICE BASED CHARGING OPTIMISATION 

Large scale electrification of the transport sector will bring 
challenges to the grid in terms of the demand level and 
capacity limitation of grid infrastructure.  A general view has 
been seen that the current electricity grid has sufficient spare 
capacity to accommodate the demand from transport sector 
electrification with only local exceedance. However, this 
capacity is available at off- peak times, when the demand 
arising from other sectors is lower. This represents an 
opportunity, with the price of electricity and the charge for 
grid use of being lower in off-peak times. To benefit from this, 
the fleet operator would need to have optimising measures in 
place to minimise their total cost of electricity use. There are 
various methods ranging from linear programming, dynamic 
programming to the application of machine learning 
techniques that have been discussed in the literature for 
vehicle charging optimisations [22-33]. In what follows, it is 
sufficient to use a linear optimisation technique, at this stage, 

for the cost minimisation of fleet charging at depots, and the 
objective function is given as: 
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Fig. 3. Depot fleet charging flow chart. 
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Fig. 4. Price minimised fleet charging flow chart. 

The algorithm starts by assigning the initial values of the 
parameters and variables such as rating power of the charging 
points, the depot capacity, the start and stop time of the 
charging event, the vehicle battery capacity, the price vector, 
and the state of charge (SOC) of the vehicles. The required 
energy of the vehicles is obtained based on the battery 
capacity of the vehicles and the SOC of the vehicles when they 
arrive at the depot. Then the algorithm follows the charging 
cost minimisation principle, as given above, to find the 
minimum charging cost of each vehicle and the fleet. This 
process is repeated according to the number of the vehicles in 
the fleet as shown in Fig. 4. to complete the recharging of the 
whole fleet to be ready for the next daily operation according 
to the time and depot capacity constraints. 

IV. SIMULATION STUDIES 

In this chapter, the simulation studies considering the 
evaluated case study, the planned operating scenarios, and 
comparative analysis of determinate demand characteristics 
have been presented in detail. 

A. Case Study 

Fleets of 25 and 50 heavy vehicles with a battery capacity 
of 400 kWh (for each) have been analysed in this research. It 
is consistent with the Volvo trucks' specifications have an 
average battery capacity among the products of different 
companies. Based on the case, the power of charging points is 
assumed to be 25 or 50 kW, and the depot factors are 0.5, 0.7 
and 1.0, which means the depots have enough electrical 
capacity to simultaneously charge 50%, 70% and all the 
vehicles, respectively.  

Sample "fleet travelled distance" which is applied in this 
research is given in Fig. 5. [34]. In this modelling all the 
vehicles in the fleet are assumed of similar specifications i.e., 
having similar battery capacity without any loss of generality 
as the vehicles returning to the depot (or arriving at the 
stations).  

 

Fig. 5. Daily travelled distance [34] 

The output of this function is a list of travelling distances 
with the same size of the fleet for the vehicles in completing 
their daily operations since the time they depart the depot until 
they return the depot. The model produces the power demand 
profile, energy profile, and the SOC profile as shown in Fig. 
6. 

The adopted approach, as explained in the methodology, 
is to obtain the power demand profile based on the arrival SOC 
of the vehicle, the time of charging (controlled by the fleet 
operator), and the specifications of the vehicle. In this 
modelling - for the sake of simplicity- the charge acceptance 
of battery is considered as a linear function; in practical cases 
depending on the battery construction and its constituting 
materials it would be a nonlinear phenomenon. 

B. Operating Scenarios 

The model is simulated for two plausible (unmanaged and 
price optimised) scenarios; in both, the SOC of the fleet 
vehicles are kept the same to analyse the performance of the 
model and the potential of the demand side management 
within various cases. Also, during this comparison, the 
vehicles have similar characteristics, and the fleets have the 
same depot factors for each case study. 

Based on the first strategy and with due attention to the 
electrical capacity of the depot, the algorithm takes place by 
dividing the vehicles into two sets. The first set of vehicles are 
charged simultaneously, and with the time as any vehicle from 
the first set completes charging, its place (electrical port) is 
freed to be occupied by a vehicle from the second set. This 
process goes on until the charging of the rest of the vehicles in 
the second set has been completed. Fig. 7. show the charging 
demands in an unmanaged approach for fleets with 25 
vehicles. 

 

 
Fig. 6. Charging load profile of a vehicle. 



 
Fig. 7. Unmanaged charging demand profile  

 

Fig. 8. Electricity prices (half-hourly) for two consecutive days. 

In the second strategy, the same parameters and initial 
values have been considered as in the first. But, there is a 
prioritisation to be considered in the model in facing total price 
minimisation problem scenarios, as explained earlier. A list of 
time slots is determined that have been picked by the 
algorithm, pursuing the price minimisation along with fully 
charging the fleet within the given time window. Since the 
fleets in both cases have similar SOC, approximately the same 
length of time (number of time slots) is required to fully 
charge the fleets. However, due to the depot’s capacity 
restriction in the second case, the optimised times slots are 
different when compared to those of the first case. Fig.8. 
illustrates the prices of electricity for two consecutive days in 
the UK. 

 

Fig. 9. Managed (cost optimised) charging demand for a fleet of 25 vehicles 

According to the domain of the time slots – the time 
window to charge the fleet: 19:00 to 6.00 (next day) – the 
algorithm optimally selects the time slots that lead to 
minimum charging cost while making sure that the vehicles 
are fully charged by 6.00 (next day) and be ready for daily 
operation. Fig.9. illustrates sample of the minimum cost load 
profile of a fleet of 25 vehicles (with battery capacity of 400 
kWh); the power of charging point is 25 kW and the depot 
factor of 0.7 

Results obtained via the application of the proposed load 
modelling system for the various HGEV depots charging 
using both (unmanaged and managed) strategies are given in 
Table I.  The potential of the demand side management is 
released as the capacity of the cost reduction and the potential 
for peak period overlapping reduction; it is a projection of the 
capability of load shifting to the off-peak time and determined 
within the cases. 

V. CONCLUSION 

In this paper, a semi-stochastic HGEVs depot charging model 
is proposed based on various essential parameters. The 
suggested model is applied successfully to determine the load 
profiles of the HGEV depots, and the results emphasise the 
practical applicability of the model. The simulations are 
carried out for 24 hours period over several case studies with 
different characteristics and operating using unmanaged and 
price-based management strategies. 

 

TABLE I.  COMPARATIVE RESULTS OF THE PROPOSED MODEL APPLICATION FOR VARIOUS DEPOTS 

Fleet 

Size 

Charger 

Power 

Depot 

Factor 

Max. 

Demand 

Total Daily Price of Energy Cost 

Reduction 

[%] 

Peak Period Overlapping Overlapping 

Reduction 

[%] Unmanaged Managed Unmanaged Managed 

25 25 1.0 625 14588 13583 06.89 13.82 0.00 100.0 

25 25 0.7 425 13440 11239 16.38 09.97 0.00 100.0 

25 25 0.5 300 16304 11213 31.23 08.44 0.00 100.0 

25 50 1.0 1250 13190 10258 22.23 32.08 0.00 100.0 

25 50 0.7 850 14065 10064 28.45 21.12 0.00 100.0 

25 50 0.5 600 11772 10571 10.20 17.64 0.00 100.0 

50 25 1.0 1250 27996 20034 28.45 14.56 0.00 100.0 

50 25 0.7 875 27237 23177 14.91 10.15 0.01 94.29 

50 25 0.5 625 25495 21773 14.60 07.32 0.01 88.01 

• Prices are in penny and power and loads are in kW                             • Overlapping are in percentage    

• Period of peak consumption consistent with UK typica daily load is defined between 16:30 and 19:30 [35]  

 



The analysis of the charging demand profiles of both 
unmanaged and price-optimised strategies show how the fleet 
demand can be spread across the off-peak time under the 
managed strategy; and that, the total cost of charging incurred 
under this strategy is lower than the unmanaged strategy; up 
to 31.23% less than total cost based on a UK typical daily tariff 
variations. From a network perspective, the overlapping of the 
charging profiles with the peak period of energy consumption 
is also evaluated for both unmanaged and managed strategies. 
The findings of this step reveal the potential of demand side 
management over HGEV depots which can be a value of 
88.01% to fully mitigate this conformity depending on the 
fleet size and the depot characteristics.  

The findings confirm Depot Factor (DF), as the ratio of the 
number of available charging ports to the fleet size, along with 
chargers’ power rating are parameters that play leading roles 
in this field and consequent energy price reduction capacity 
and the potential for the demand side management. In future, 
the determined load profiles using this approach can be 
updated depending on the case and incorporated into network 
analysis, e.g. power flow and time sweep, to evaluate the 
impacts of HGEV depots electrification upon available power 
systems.  
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