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Abstract: In the Ethernet lossless Data Center Networks (DCNs) deployed
with Priority-based Flow Control (PFC), the head-of-line blocking prob-
lem is still difficult to prevent due to PFC triggering under burst traffic
scenarios even with the existing congestion control solutions. To address
the head-of-line blocking problem of PFC, we propose a new congestion
control mechanism. The key point of Congestion Control Using In-Network
Telemetry for Lossless Datacenters (ICC) is to use In-Network Telemetry
(INT) technology to obtain comprehensive congestion information, which is
then fed back to the sender to adjust the sending rate timely and accurately.
It is possible to control congestion in time, converge to the target rate quickly,
and maintain a near-zero queue length at the switch when using ICC. We
conducted Network Simulator-3 (NS-3) simulation experiments to test the
ICC’s performance. When compared to Congestion Control for Large-Scale
RDMA Deployments (DCQCN), TIMELY: RTT-based Congestion Control
for the Datacenter (TIMELY), and Re-architecting Congestion Management
in Lossless Ethernet (PCN), ICC effectively reduces PFC pause messages and
Flow Completion Time (FCT) by 47%, 56%, 34%, and 15.3×, 14.8×, and
11.2×, respectively.

Keywords: Data center; lossless networks; congestion control; head of line
blocking; in-network telemetry

1 Introduction

In recent years, more and more data center applications have begun to require extremely low
latency and high bandwidth. Datacenter networks’ link speeds have increased from 1 to 100 Gbps, and
the growth continues. Applications inside the data center make the network more demanding because
they demand incredibly low latency and the high bandwidth required to support future high-speed
networks.

There are several latency-sensitive applications present in modern data centers. For example, large-
scale machine learning [1] and distributed memory caching require ultra-low latency message delivery

https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2023.035932
https://www.techscience.com/doi/10.32604/cmc.2023.035932
mailto:jinbinhu@csust.edu.cn


1196 CMC, 2023, vol.75, no.1

(less than 10 us per hop). Furthermore, there are real-time interactive applications that are latency-
sensitive, such as Web Search and query services, which generate a large number of short burst flows.
To improve each application’s performance and quality of service, the completion time of these short
burst flows [2] should be minimized.

There are numerous long flows in the data center that have different throughput demands at the
same time. Using high-speed computing devices for large-scale machine learning training, data mining,
and backup, for example, which regularly transfer large amounts of data to form long flows, leads to
the coexistence of long and short flows [3–5] in the data center for lengthy periods. The data center’s
bottleneck is the network since storage and computation are so fast.

To meet the growing demands of customers, data centers need 100 Gbps or more bandwidth.
Traditional Transmission Control Protocol/Internet Protocol (TCP/IP) protocol stacks cannot be used
with such high-speed networks due to their highly high Central Processing Unit (CPU) [6] overhead.
To avoid using the host’s network stack, data centers have developed Remote Direct Memory Access
(RDMA) [7] technology, which completely implements the network interface card’s network protocols.
By enabling network adapters to transfer data directly between application memories, it is possible to
provide applications with extremely low latency and high throughput with very low CPU overhead.
This is because it eliminates the necessity of copying data between the application’s memory [8] and
the operating system’s buffers.

RDMA is deployed using InfiniBand (IB) [9] technology, which is implemented using a self-built
network stack and specially designed hardware. However, modern data center networks are built using
IP and Ethernet technologies, and IB protocol stacks cannot be used with Ethernet technologies. To
reduce the cost of network deployment and management, operators are reluctant to run two separate
networks in the same data center. As a result, the RDMA over Converged Ethernet (RoCE) [10]
standard and its successor, RDMA over Converged Ethernet version 2 (RoCEv2), were developed
to implement RDMA technology over Ethernet and IP networks. The RoCEv2 protocol must be
deployed in a lossless network to achieve the same level of performance as RDMA in IB networks. To
ensure a lossless network, RoCE utilizes priority-based flow control (PFC) [11].

While PFC ensures a lossless network environment, it also introduces new problems, such as Head-
of-line blocking (HOL) [12], which adversely affects the network’s performance. Congestion control
mechanisms in data center lossless networks, such as DCQCN [13], TIMELY [14], and PCN [15], do
not entirely solve this problem. PFC head-of-line blocking still occurs in the scenario of mixed bursts
of long and short flows, even with these classical congestion control mechanisms.

By examining whether the queue length of the switch’s outgoing port exceeds a predetermined
limit, the algorithm DCQC determines whether congestion exists. Congestion is marked in the Explicit
Congestion Notification (ECN) if it occurs; otherwise, it is not marked. The congestion information is
transmitted to the receiver, sending the signal back to the sender. The TIMELY method uses Round-
Trip Time (RTT) to determine congestion, whereas the PCN method uses queue length to estimate
congestion. PFC is likely activated during congestion signals returning from the switch to the source,
resulting in head-of-line blocking.

We discovered that queue length and round-trip time are fundamental congestion indicators.
DCQCN, TIMELY, and PCN use them to measure congestion, but they are unable to do so in a
timely and accurate manner. Additionally, the switch to the receiver and the receiver to the source
are the paths of congestion signals, significantly impacting the timely feedback of congestion signals.
In response to the congestion signal, the source side adopts a heuristic algorithm that converges to a
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stable rate after several iterations. In this iterative approach, large-scale congestion events are handled
slowly, negatively affecting the performance of the data center.

In the paper, we propose a new congestion control mechanism—ICC—for large-scale, high-
speed networks with mixed bursts of long and short flows because none of the existing schemes can
adequately address this problem. The key idea of ICC is that the switch collects various precise link
load data from in-network telemetry (INT) [16,17]. It feeds these congestion signals back to the source
through the switch promptly, and the source then adjusts the sending rate of the source based on this
rich and accurate data, preventing PFC head-of-line blocking.

In addition to using link utilization, network bandwidth, and other additional information to
help detect and recognize congestion, INT technology can also obtain rich and accurate congestion
information from the switch promptly. The congestion information can be processed and passed
quickly by bypassing the receiver and sending it directly from the switch back to the source. As a
result, the sender can quickly reduce the rate to avoid triggering PFC or promptly increase the rate
to improve network utilization using ICC. This enables the network [18] to converge rapidly to the
appropriate rate without requiring multiple iterations. Furthermore, this solution does not require a
custom switch and can be implemented with a standard commercial switch.

We propose ICC, a lossless network congestion control mechanism based on the above insights.
Following is a summary of the main contributions:

1) As a result of our experiments, we have found that PFC can cause head-of-line blocking
problems under conditions such as bursts and mixtures of long and short flows. As an example
of how this problem can be effectively illustrated, we define a typical, but not overly general,
network scenario.

2) Our newly developed congestion control strategy, called ICC, consists of the following com-
ponents: a) a highly innovative congestion detection and prevention mechanism capable of
detecting congestion and preventing PFC activation by analyzing precise load data obtained
from INT. b) a sender-driven rate regulation rule with a fast convergence rate and high
efficiency for burst flows.

3) Commercial switches were used for implementing ICC, and the NS-3 platform and testbed
experiments were used for simulation. ICC achieves higher link utilization and lower latency
and ensures low queue accumulation and low queue oscillation, as demonstrated by extensive
simulations of typical network topology traffic and large-scale real network load traffic.
Further, it improves PFC pause suppression by 47%, 56%, and 34% over TIMELY, DCQCN,
and PCN, respectively.

As a result, the remainder of the document is organized as follows. Section 2 provides background
information. In Section 3, we explain why we decided to write this paper. The design concept of our
scheme is detailed in Section 4. The main objective of Section 5 is to evaluate the efficiency of the ICC
mechanism. Section 6 concludes the paper.

2 Data Center Network Background
2.1 PFC Mechanism and Its Downsides

PFC is a traffic control mechanism based on ports or priority levels that aims to prevent packet loss
due to congestion. Fig. 1 illustrates how PFC works schematically. The downstream switch switch1 will
count each packet in the incoming queue. For example, the downstream switch switch1will send a PFC
pause message to the level7 queue of the upstream switch switch0. It occurs if the queue length of the
incoming queue level7 exceeds the switch’s predetermined threshold for PFC. The corresponding port
or priority queue of upstream switch switch0 immediately ceases to transmit packets upon receiving the
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PFC pause message. When the downstream switch’s ingress queue length is less than the PFC threshold
or the pause time in the pause message expires, the upstream switch’s outgoing port continues to send
packets.

Figure 1: PFC mechanism

DCQCN, TIMELY, Delay is Simple and Effective for Congestion Control in the Datacenter
(SWIFT): SWIFT [19] and PCN have been proposed as flow-based congestion control methods since
PFC is a coarse-grained congestion control mechanism that operates at the port level rather than at
the flow level. Even with these cutting-edge end-to-end congestion control protocols, PFC triggering
cannot be avoided entirely. Triggering of PFCs can result in issues such as head-of-line blocking,
deadlocks [20,21], PFC storms [1], and even the proliferation of triggering congestion [15].

2.2 Head-of-Line Blocking Issue

According to Fig. 2, Flow1 and Flow2 send packets to the switch’s outgoing queues Egress1 and
Egress2, respectively, while they share the same ingress queue Ingress1. The downstream switch sends a
PFC pause frame to the upstream switch’s ingress queue Ingress1. This halts the transmission of Flow1
out of that port since the upstream switch’s ingress queue Ingress1 initiates the PFC mechanism. The
congested Flow2 prevents the non-congested Flow1 from flowing because it is suspended and not
flowing to the outgoing queue Egress2. Head-of-line blocking is the result of this process. To address
the head-of-line congestion in PFC, we must implement a flow granularity-based congestion control
scheme.

Figure 2: Head-of-line blocking phenomenon
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2.3 Congestion Signal

Thresholds detect congestion in traditional TCP, Data Center TCP (DCTCP) [22], and DCQCN
schemes. The ECN is designed to carry a single congestion signal, such as a 0 or 1. Google’s Timely
and SWIFT algorithms reduce traffic by using RTT as a congestion signal. Additionally, the PCN
employs thresholds to identify congestion and the ECN to carry the congestion signal. High Precision
Congestion Control (HPCC) differs from them. While ICC does not rely on conventional congestion
signals, it can be implemented on existing commercial switches, which is undoubtedly advantageous
for congestion control in lossless networks. INT collects congestion information, and queue change
rate and link utilization are used to determine congestion.

2.4 Heavy-Tailed and Burstiness of Datacenter Traffic

Recently, data mining, real-time recommendation, large-scale machine learning training, and
other new applications have been running in the data center. Compared to traditional Wide Area
Networks (WANs), they produce different types of data traffic. Currently, data center network traffic
and application requirements are classified as follows:

1) Various applications within the data center generate different data flows with varying trans-
mission performance requirements [23,24]. Application services that produce a lot of short,
burst flows of data, such as Web Search and various query services, must meet strict latency
requirements. Even though they periodically transmit large volumes of data in the form of long
flows, applications such as deep learning online training, data mining, and backup require high
network bandwidth.

2) Data flow length is a heavy-tailed distribution [25] in data center networks. A heavy tail
is observed in the distribution of data flow lengths in data center networks. Based on a
comprehensive study and survey of data center traffic, 90% of data flows in data centers are
short flows with fewer than ten milliseconds of data transfer time. Only 10 percent of data flows
contain more than 100 KB of data. Despite this, over 80% of the data volume is sent via these
lengthy flows. Furthermore, long packets may be sent over the links, resulting in head-of-line
blocking.

3) There is a high burstiness [26] in data center network traffic. There is a great deal of erratic
network traffic in data centers. High-speed network interface cards often offload the network
stack to the hardware to reduce CPU overhead and increase link bandwidth. The traditional
network stack can no longer meet ultra-low latency and high bandwidth demands. Due to the
high volume of packets sent in a brief period, such a design produces burst traffic, and existing
transport and application layer protocols further enhance the burst intensity.

2.5 Lossless Ethernet Implementations

Lossless networks can be implemented in three ways: IB, iWarp [27], and RoCEv2. Ethernet data
centers do not typically use IB due to its high cost, need for expensive equipment, and inability to
provide ultra-long distance transmissions. It is generally used in high-performance projects. The iWarp
protocol is another alternative, but it is less stable and suffers from the same problems as TCP, including
high latency and translation vulnerabilities. A hardware network interface card incorporates the entire
TCP stack. Compared to IB, RoCEv2 is low-cost, has excellent stability, and can be deployed using
standard Ethernet switches. Following extensive research, RoCEv2 was selected as the final choice.
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3 Motivation

Although many classical congestion control schemes have been proposed, they do not effectively
address the queue head-blocking problem of PFC. This is in the case of mixed bursts of long and short
flows.

Current congestion control methods, including DCQCN, TIMELY, and PCN, attempt to address
the issue of head-line blocking. However, they primarily concentrate on long flows without considering
how to avoid PFC and prevent congestion when mixed bursts of long and short flows [28] occur
simultaneously. In these schemes, the rate is only adjusted when congestion occurs because the
feedback is not accurate and singular enough.

In this paper, we present a typical and ingenious network scenario. In addition to explaining the
head-of-line blocking problem in the case of mixed bursts of long and short flows, it can also reveal
the basic principle of the core mechanism of lossless Ethernet, enabling us to generalize the result.

As shown in Fig. 3, we chose a typical network topology such as Clos [29] and Fat Tree [30],
commonly found in data centers. We then constructed our network topology diagram. In Fig. 3, H0
and H1 are the senders of long flows, whereas H2 to Hn and Hb are the senders of burst short flows.
The receivers R0, R1, and R2 are connected to the corresponding switches R0 and R1, while the
switches are composed of ports P0 to P6. Typically, each link has a capacity of 100 Gbps and a link
delay of five seconds. We also convert the buffer size of the switch to 5 M using the formula.

Figure 3: Typical data center network topology

To demonstrate the severity of this problem, we perform NS-3 simulation experiments using the
following traffic setups: Server H0 sends a long flow F0 to receiver R0 for comparison with the victim
flow F1. A long flow of 100 M is generated by the server H1 and transmitted to the receiver R0.
Furthermore, servers H2 to Hn send 60 bursts of 64 Kb short flows to R1. In addition, server Hb
delivers 60 short flows to receiver R1. Although F1 and short flows F2 to Fn are transferred to
different receivers, R0 and R1, they are all routed through the same ports, P0 and P1. Because burst
port P1 will become congested quickly and trigger PFC, the pause message from PFC will be sent hop-
by-hop to the upstream switch’s port P0. During this period of congestion, short-flow F1 will not be
able to transmit because it is also blocked by the congestion originating from short flows. Therefore,
long flow F1 is affected by congestion. Congested flow block non-congested flows, which is known
as head-of-line blocking.

We examine several traditional congestion control schemes, including DCQCN, TIMELY, and
PCN, and default the parameters in each mechanism paper. To determine how to prevent head-
of-queue blocking caused by PFC, we designed NS-3 [31] simulation experiments. Our first step in
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addressing this issue was to calculate the PFC pause rate and throughput, two metrics that accurately
reflect the effects of PFC.

Fig. 4 illustrates the pause rate on this link from S0 to H1. Even before the test, all mechanisms
receive minimal pause frames. During the testing phase, long and short flows are sent simultaneously,
causing the buffer to fill up immediately. To prevent packet loss, the downstream switch S1 sends
pause frames to the upstream switch S0’s P0 port to pause it. Eventually, all servers H1 to Hn will be
suspended as the pause message spreads upward in the direction of flow sending. ICC stops sending
pause frames at 1.1 milliseconds and has longer PFC pause times than DCQCN, TIMELY, and PCN.

Figure 4: Pause rate of flow F1

Fig. 5 illustrates the entire process of long-flow F1 experiencing a burst. A long-flow F1 almost
always transmits packets at 100 Gbps when no burst occurs, but the throughput rate drops to zero
immediately when a PFC occurs. As the burst disappears, the throughput gradually returns to normal.
Fig. 5 illustrates that DCQCN, TIMELY, and PCN do not recover quickly to their initial values during
concurrent bursts lasting 2.5, 1.8, and 1.4 ms, respectively. It takes only 0.4 milliseconds for ICC to
return to its initial value.

Figure 5: Throughput of F1 under concurrent burst
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4 ICC Algorithm Design

We first discuss the principle and framework diagram of ICC implementation. Then we describe
in detail the particular design of each aspect of ICC, including the module for determining congestion
and modifying the transmitter rate.

4.1 ICC Overview

To address the issues above, we propose ICC, a framework for sender-driven congestion control.
The key to its design relies on the switch to obtain detailed load information from INT. It is then
used to accurately calculate the sending rate and identify congestion in real-time, resulting in high
throughput and low latency without invoking PFC.

Traditional end-to-end congestion control relies on switch queue length or measurement variables
such as RTT to identify network congestion. Due to today’s high-speed lossless Ethernet technology,
a single coarse-grained congestion signal cannot play a more significant role. It does not follow the
current trend of fine-grained network operation to satisfy timely and accurate requirements. We are,
therefore, not limited to standard queue lengths or RTTs but instead use the collected congestion
information to determine congestion and adjust the rate accordingly. This is due to INT, which can
manage rich and accurate congestion signals in real time. INT can control congestion, measure the
network, and detect microbursts.

ICC consists of two primary components, the sender and the switch, as shown in Fig. 6. Switches
use the INT feature of their switching Application Specific Integrated Circuit (ASIC) to insert
metadata into each packet during packet propagation from the sender to the switch. This helps
determine whether congestion occurs and monitor packet propagation. In addition to the timestamp
queue length, link utilization, link bandwidth capacity, and other statistical load data, these metadata
provide information about the switch’s current workload. The switch stores this metadata. The
metadata is then included in a passing Acknowledgement (ACK) and sent to the source. To prevent
the PFC from being initiated, the sender obtains congestion information from the ACK it receives
and adjusts the transmission rate of each flow accordingly. We will then describe in detail the various
components of ICC.

Figure 6: The overview of ICC the framework

4.2 Algorithm for Switch Congestion Identification

The state machine in Fig. 7 is the basis for the switch’s algorithm for determining congestion.
After receiving each packet from the upstream switch’s outgoing port, the switch evaluates its current
state. If the queue length qlen > 0 and the queue change rate qlenrate1 ≥ 0 and qlenrate2 ≥ 0 and
the link utilization lu ≥ 70%, then it can be inferred that the switch is congested at which point, and
the source is informed of the congestion. One thing to keep in mind is that the value of qlenrate2 is
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calculated 5 us after the calculation of qlenrate1, rather than taking the next value right away. This is
done to prevent interference spikes and avoid overreacting.

Figure 7: Algorithm for judging congestion at the switch

If the above conditions can’t be met, then we will proceed to the next step of judgment when the
queue length qlen > 0, queue change rate qlenrate2 < 0 and link utilization lu < 70%, indicating
that at this time, although the queue length is greater than 0, the outgoing port is in a state of
congestion but the queue length is decreasing and link utilization is not high the judgment will not
trigger the threshold, so continue to receive packets and do not slow down at the source. If not, provide
information on congestion.

In addition, the switch has an internal timer that sends congestion data to the sender every 15 us,
regardless of whether congestion is present. This design has the advantage of allowing the sender to
monitor the current network load in real-time. The timer is reset to the current time if congestion is
detected, and information about congestion is sent back to the source immediately.

Using some commercial switches, a switch with an internal timer and feedback congestion
information can be easily implemented without any problems.

We pass ACK [31] acknowledge packets to transport congestion information rather than creating
new packages. Active entry sends congestion information every 15 us. If we also develop new packages
to deliver this information, it burdens the already overloaded network, increases the risk of congestion,
and decreases network utilization. Our solution is to convey congestion information by passing an
ACK, which achieves the same result and reduces network load.

4.3 Algorithm for Adjusting the Rate at the Sender

Algorithm 1 describes the pseudo-code used by the sender to adjust the transmit rate in response
to the congestion information contained in the ACK. Table 1 is Algorithm 1, which describes the rate
adjustment algorithm. In the following sections, we will discuss the two modules for a rate reduction
and rate increase at the transmitter in detail.
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Table 1: Pseudocode for rate adjustment algorithm

Algorithm 1: Rate adjustment algorithm

Input: qlen, qlenrate, lu, Vi(t), lineRate
1 for per ACK do
2 if qlen > 0 then
3 (Sender rate decrease)
4 if qlenrate > 0 then
5 Vi(t) = Vmax

6 else
7 Vi(t) = Vmin

8 else
9 (Sender rate increase)
10 Vi(t) = Vi(t) · lu+ lineRate · (1− lu)

11 Until End of the flow

Rate reduction: When the source gets rich congestion information in the ACK, it first jumps to
line 2 to determine whether the queue length qlen is greater than zero. If qlen > 0, the rate reduction
operation is executed. Then, in accordance with line 4, if the queue change rate qlenrate > 0, line 5 is
carried out to lower the rate to the highest rate Vmax that won’t trigger the threshold Qd to ensure that
the PFC threshold won’t be triggered; otherwise, line 7 is executed to lower the rate to the sender’s
minimum rate Vmin. The purpose of reducing the rate to Vmin is not only to empty the accumulated
queue in the switch but also to ensure that there is no loss of throughput.

We rigorously and theoretically analyze the appropriate range of sending rate values to prevent
the PFC from being triggered. The method for adjusting the rate on the sender is shown in Fig. 8.The
sending rate of each source host at time t is Vi(t), the PFC threshold is Qpfc, we set a conservative
threshold of Qd, the link capacity is C, the instantaneous queue length of the incoming port is qlen,
and the queue length change rate is qlenrate.

In the first case, the queue length qlen > 0 and the queue change rate qlenrate > 0, which indicate
that the switch port not only has a queue but also the queue length is increasing rapidly. As a result,
the sending rate should be drastically reduced to avoid triggering PFC. The time required to reach the
Qd threshold at the current rate of change is td = Qd/qlenrate. The delay, td, is the amount of time
needed for the congestion signal to travel from the switch to the source host. After the source receives
the congestion signal, tm = tq − td is the expected amount of time required to reach the Qd threshold.

The following formula can be used to determine the source’s maximum transmit rate:
∑n

i=1

∫ tm

0

Vmax (t) dt − C × tq − B × T × lu = Qd (1)

The switch’s outgoing port rate equals the NIC’s because the outgoing port has a queue. In order
not to trigger the maximum sending rate Vmax(t) of the threshold Qd, it must satisfy the condition that:

Vmax (t) ≤ 1
n × tm

(Qd + B × T × lu) + 1
n

C (2)
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Figure 8: Algorithm for judging congestion at the switch

The case is when qlen > 0 and qlenrate < 0, indicating that the switch out of the port has a queue,
congestion has occurred, but the queue length shows a trend of decreasing. Once this is completed,
we only need to empty the cache queue on the line, without significantly reducing the send rate. As a
result, the PFC will not be activated, and the FCT will also be shortened, ensuring that throughput is
maintained.

With the current queue change rate, the expected queue emptying time is given as t1 and is
calculated as follows: t1 = qlen/qlenrate. If t1 < T , there is no need to slow down the rate because
the queue leaving the port is already empty after one RTT. If t1 > T , the queue is still congested
after one RTT time. As a result, we use the round-trip delay T as the deceleration time, which not
only simplifies processing, but also quickly empties and decongests the queue, thereby guaranteeing
throughput.

The formula for calculating the source’s minimum transmit rate Vmin(t) is:
∑n

i=1

∫ T

0

Vmin (t) dt − C × T − B × T × lu = qlen (3)

The source’s minimum send rate, Vmin(t), must meet the requirement that in order to ensure the
throughput:

Vmin (t) ≥ 1
n

(C + B × lu) + 1
n

qlen (4)

The send rate at the source is kept in this range during the degradation period, which prevents
PFC from occurring and maintains high throughput and low latency, and we reach the conclusion
that Vi(t) takes the following values:

Vi (t) ∈
[

1
n

C + 1
n

(B × T × lu + qlen) ,
1

n × tm

(Qd + B × T × lu) + 1
n

C
]

(5)
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Rate increase: Algorithm 1 first decides based on the rule in line 2, and if the queue length qlen is
not greater than 0, it will carry out a rate increase by the formula in line 10.

Vi (t) = Vi (t) × lu + lineRate × (1 − lu) (6)

What are the reasons for accepting such a rate increase? By utilizing the link, the sender
automatically modifies the transmit rate to be between the current transfer rate and the line rate. The
parameters do not need to be manually set, and the link utilization will change with the network load
while achieving the desired result.

When the link utilization lu is large, there are more packets in the link; the line rate is less than
Vi(t), and the send rate can be slightly raised based on the original. When the link utilization rate lu
is small, indicating that the link has not been fully utilized, we can significantly increase the send rate.
Conversely, when the link line rate is high, the send rate quickly rises to nearly the line rate.

Because the source already knows the critical load information of the network, rather than taking
the slow growth approach of DCQCN or PCN over multiple iterations, we do not have to use multiple
rounds of trial and error to increase the rate. Still, we can increase quickly to the appropriate rate to
utilize the effective bandwidth as soon as possible.

5 Evaluation and Analysis

To evaluate ICC’s performance under various test scenarios and compare it with DCQCN,
TIMELY, and PCN, we used the NS-3 simulation platform to run the tests in Sections 5.1 and 5.2.
The congestion detection module and the rate adjustment module are rewritten at the switch’s source,
and the ICC algorithm is developed based on the DCQCN algorithm.

5.1 Performance in Burst Scenarios

This section simulates the n:1 incremental scenario frequently occurring in data center networks.
This scenario involves sending n flows simultaneously to a single destination host over a PFC-enabled
switch, and the performance of ICC is assessed in a burst scenario.

To simulate the incast scenario [15], we use the typical network scenario shown in Fig. 3. Host H1
sends long flow F1, and host H1 receives long flow R0. It is estimated that there are 60 short flow
senders on H2 to Hn and 60 short flow senders on Hb. In an incast traffic scenario, H1 transmits
packets, while the short flow sends packets and flows to R1. There is a speed of 100 Gbps on each link
and a propagation delay of 5 s on each link. All switches are equipped with PFC mechanisms, each
with a 5 MB shared buffer.

We will measure the ICC pause rate, the flow completion time, the throughput, and the queue
length. Using this burst scenario, we compare DCQCN, TIMELY, and PCN with the default
parameters recommended by the relevant literature.

Fig. 9 illustrates the generation rate of PFC pauses. Compared to DCQCN, TIMELY, and PCN,
ICC can prevent at least 56%, 63%, and 38% of PFC pauses. ICC’s congestion detection mechanism
feeds network information every 15 s as soon as congestion occurs, rather than waiting until congestion
exceeds a threshold before triggering control.
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Figure 9: Generating rate of PFC pause

Fig. 5 shows that ICC significantly increases the throughput of F1. All other schemes experience
a period during which their throughput is zero after a burst, while ICC quickly resumes its previous
throughput. This is partly due to ICC’s ability to restore the sending rate to its original level quickly.
ICC outperforms DCQCN, TIMELY, and PCN in this scenario by 51%, 55%, and 38%, respectively.

The average FCT and 99th percentile FCT for different flows are shown in Fig. 10. There is no
doubt that ICC also achieves higher levels of FCT than DCQCN, TIMELY, and PCN. Compared to
DCQCN, TIMELY, and PCN, ICC’s average FCT for the victim flow H1 is 2.3 times, 2.2 times, and
1.7 times faster, respectively. ICC enhances 99th percentile FCT for concurrent burst flows from H2
to Hn by 3.5×, 3.4×, and 2.7× over DCQCN, TIMELY, and PCN, respectively. As a result of ICC,
the queue length of the switch is kept to a minimum. When it reaches a certain threshold, Congestion
is marked and controlled by DCQCN. ICC uses a different mechanism for detecting congestion than
other schemes.

Figure 10: FCT under concurrent burst
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Fig. 11 illustrates the change in queue length for switch S0 over time, and ICC can shorten the
queue promptly. The ICC queue length is almost zero in the steady state without bursts. In contrast
to DCQCN and TIMELY, ICC can abruptly cut the queue length after a burst and maintain it at or
near zero. When ICC detects a queue, it feeds back the congestion signal and lowers the sending rate
promptly to prevent the queue from accumulating.

Figure 11: Queue length under different congestion control schemes

5.2 Performance Under Actual Workload

This section aims to evaluate the performance of ICC in real-world scenarios with high workloads.
ICC’s pause rate and flow completion time were evaluated under various scenarios and compared to
DCQCN, TIMELY, and PCN.

Scenario: As illustrated in Fig. 3, all links have a bandwidth of 100 Gbps, a transmission delay of
5.4 s, and hosts generate a substantial amount of traffic with exponentially distributed arrival times
of more than 50,000 flows.

Workload: FB_Hadoop [32,33] simulated real-world traffic to demonstrate ICC’s effectiveness
under realistic workloads. This is a typical data center traffic pattern that has a heavy tail. More than
80% of the total number of flows occur in this mode, but less than 10% of the total number of bytes,
while long flows greater than 1 M account for 10% of the total number of flows, but almost all of the
bytes.

Various traffic patterns are used to stress test the ICC. Additionally, we conducted measurements
under the widely used WebSearch [34] traffic to verify the performance under burst scenarios [35] and
reach a realistic and general conclusion. Because the results are nearly identical to those obtained with
FB_Hadoop, we only display the performance effect graphs for FB_Hadoop traffic scenarios.

Fig. 12 illustrates the ICC of the average flow completion duration for various workloads. We
evaluate hosts H1 and H2 to Hn and Hb using an average link density and strength of 20% to 70% of the
average flow completion time. ICC significantly reduces the average flow completion time compared
to DCQCN, TIMELY, and PCN.
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Figure 12: The average FCT with various traffic load

At an average link load of 50%, we analyze the average FCT and 99th percentile FCT for each
mechanism. The average FCT is shown at the bottom of Fig. 13, and the 99th percentile FCT is at the
top. Based on FCT improvements of 2.45×, 2.83×, and 1.84×, respectively, and avoiding 47%, 56%,
and 34% of PFC pauses, ICC is superior to DCQCN, TIMEL Y, and PCN, regardless of host type.

Figure 13: Performance under realistic workloads



1210 CMC, 2023, vol.75, no.1

6 Conclusion

To reduce the occurrence of PFC Head-of-Line blocking in data center networks, we proposed
ICC, an INT-based congestion control mechanism for lossless Ethernet that prevents PFC triggering
through the design of smart switches and senders. The ICC can be implemented on current commodity
switches without changing the switch to avoid triggering PFC. The switch judges and forecasts con-
gestion by acquiring rich congestion signals in INT. Simulations and experiments have demonstrated
that ICC can significantly reduce the number of PFC pause messages, relieve congestion, and shorten
the flow completion time under realistic workloads without affecting throughput.
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