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The marginal ice zone (MIZ) is the dynamic interface
between the open ocean and sea ice-covered ocean.
It is characterized by interactions between surface
gravity waves and granular ice covers consisting
of relatively small, thin chunks of sea ice known
as floes. This structure gives the MIZ markedly
different properties to the thicker, quasi-continuous
ice cover of the inner pack that waves do not
reach, strongly influencing various atmosphere–
ocean fluxes, especially the heat flux. The MIZ
is a significant component of contemporary sea
ice covers in both the Antarctic, where the ice
cover is surrounded by the Southern Ocean and
its fierce storms, and the Arctic, where the MIZ
now occupies vast expanses in areas that were
perennial only a decade or two ago. The trend
towards the MIZ is set to accelerate, as it reinforces
positive feedbacks weakening the ice cover. Therefore,
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understanding the complex, multiple-scale dynamics of the MIZ is essential to understanding
how sea ice is evolving and to predicting its future.

This article is part of the theme issue ‘Theory, modelling and observations of marginal ice
zone dynamics: multidisciplinary perspectives and outlooks’.

The profound physical transformations to Arctic [1] and Antarctic [2] sea ice covers caused by
climate change have driven an explosion in research activity on the marginal ice zone (MIZ),
particularly the dynamic (and thermodynamic) feedback processes occurring in the region.
Fundamental research questions are being addressed, such as the rate at which the MIZ ice cover
attenuates ocean waves, the threshold for waves to break up consolidated ice covers, the typical
floe size distributions encountered in the MIZ and the dynamic response of the granular ice cover
to forcing from winds and currents. The field of MIZ dynamics is moving rapidly due to advances
across a range of physical, mathematical, earth and engineering sciences, often revolving around
large multi-national research programmes and experimental campaigns. Progress is beginning to
translate into predictions of the MIZ’s role in the response of sea ice to warming temperatures
and its impact on other components of the atmosphere–ice–ocean–land feedback system.

After approximately a decade of sustained advances in MIZ dynamics, the current theme issue
brings together many of the most prominent research communities involved to showcase the state
of the art in theory, modelling and observations. Beyond presenting the latest research advances,
the theme issue places emphasis on communicating important new findings to the broader
research community and highlighting the critical role of the MIZ in the Earth system. Moreover,
the theme issue aims to delineate pathways for the field to create more significant impact and
improve understanding of climate change, noting that MIZ researchers are demonstrating strong
commitment to integrate MIZ-specific physics into relevant components of Earth-system models
used by influential scientific bodies, such as the International Panel on Climate Change.

The theme issue is dedicated to the career of Prof. Vernon Squire following his retirement
in 2020. Squire was a leading member of the University of Cambridge’s Scott Polar Research
Institute (SPRI) team that conducted pioneering Arctic MIZ experiments in the 1970s and 1980s
[3] and participated in large international experiments [4,5], during an era in which the Arctic
Ocean was a potential battleground for the reigning superpowers. As part of the SPRI team,
Squire helped develop seminal theories for wave attenuation in the MIZ [6] and wave-induced
ice breakup [7], alongside cognate work on iceberg dynamics [8], loads imposed on floating ice
by vehicles [9] and more. He moved to the University of Otago, New Zealand, in 1987, where
he stayed for the remainder of his career, leading a small but productive research team in the
Department of Mathematics and Statistics, which was largely responsible for carrying the field of
MIZ dynamics forward until the early 2010s, and (directly or indirectly) spawned many members
of the present research community. His team is best known for developing the theories of wave–
ice interactions that underpin the present state of the art, but were also active in remote sensing
[10] and laboratory experimental modelling [11,12], both of which have become active research
areas. Squire wrote two highly cited review articles during this period, Of Ocean Waves and Sea
Ice [13] and Of Ocean Waves and Sea Ice Revisited [14], which communicated the field to a broad
audience in his hallmark engaging and (to appropriate one of his favourite words) mellifluous
writing style. He came into the recent research boom recognized as one of the most prominent
figures in MIZ dynamics and has been influential in the rapid development of the field through
his involvement in international programmes, such as the Norwegian-led Waves in Ice Forecasting
for Arctic Operators [15] and the US-led Sea State and Boundary Layer Physics of the Emerging Arctic
Ocean [16], co-organizing the Mathematics of Sea Ice Phenomena research programme at the Isaac
Newton Institute [17], and promoting the progress of the field through perspectives and review
articles [18], including a third instalment in the Of Ocean Waves and Sea Ice series [19]. The
guest editors and authors express their appreciation for his enthusiasm and mentorship, and are
delighted to offer the theme issue to celebrate his contributions. Prof. Squire is actively involved
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in the theme issue as the author of a preface [20] and a synopsis of the research presented in the
theme issue that includes directions for future interdisciplinary research [21].

The main body of the theme issue is divided into three focus topics that encapsulate current
trends in multidisciplinary MIZ-dynamics research. Each topic opens with a mini-review that
introduces the topic and highlights implications for other areas of science, followed by three
to four research articles that collectively cover the latest activity in theory, modelling and
observations within the topic area. Focus topic I is on wave propagation in the MIZ: the mini-
review by Thomson [22] highlights debates in the community on whether wave scattering or
viscous dissipation dominates wave attenuation in the MIZ and the potential coastal impacts
of waves with a weakened sea ice buffer; Shen [23] compares the leading theories for wave
propagation in the MIZ; Toffoli et al. [24] analyse experimental laboratory models of irregular
wave interactions with artificial floes, focusing on nonlinear interaction processes; Waseda et al.
[25] present multiple-platform field observations of waves and ice in the MIZ; and Perrie et al. [26]
implement a new source term for wave–ice interactions in a numerical wave forecasting model.
Focus topic II is on floe size distributions: the mini-review by Horvat [27] summarizes the history
of floe size distribution (FSD) observations and models, and discusses the climate-scale impacts
of the MIZ FSD; Montiel & Mokus [28] provide new theoretical support for lognormal FSDs in the
MIZ; Hwang & Wang [29] use satellite observations in a region of the Arctic MIZ to study the FSD
life-cycle; and Cooper et al. [30] compare in situ wave observations with outputs from coupled
wave and sea ice models, in which the sea ice model contains a recently developed FSD sub-
model. Focus topic III is on ice dynamics and breakup: the mini-review by Dumont [31] gives an
overview of the current state of the art in the area; Herman [32] uses discrete-element simulations
to conduct a theoretical analysis of the MIZ rheology; Boutin et al. [33] compare MIZ extents from
a coupled wave–ice numerical model involving a rheology sub-model to satellite observations;
and Auclair et al. [34] use a numerical model to investigate the effects of wind and wave radiative
stresses on ice dynamics. The theme issue closes with two future-facing articles: the first is the
above-mentioned synopsis by Squire [21]; and the second article is by the guest editors [35] and
generates visions for the future of the field and pathways to create impact in the broader science
community, e.g. impacts on climate science.

Data accessibility. This article has no additional data.
Authors’ contributions. L.G.B.: writing—original draft; C.M.B.: writing—review and editing; D.L.F.: writing—
review and editing; A.L.K.: writing—review and editing; M.H.M.: writing—review and editing. All authors
gave final approval for publication and agreed to be held accountable for the work performed therein.
Conflict of interest declaration. The Guest Editors compiled the theme issue under supervision from the journal’s
Editorial staff, following the Royal Society’s ethical codes and best-practice guidelines. The Guest Editors
invited contributions and handled the review process. Individual Guest Editors were not involved in
assessing papers where they had a personal, professional or financial conflict of interest with the authors or
the research described. Independent reviewers assessed all papers. Invitation to contribute did not guarantee
inclusion.
Funding. L.G.B. is supported by an Australian Research Council Future Fellowship (FT190100404). L.G.B.
and M.H.M. are supported by an Australian Research Council Discovery Project (DP200102828). C.M.B. is
supported by the United States National Science Foundation (PLR-1643431).
Acknowledgements. The Guest Editors give huge thanks to all the contributing authors for their enthusiasm and
hard work in meeting tight deadlines. We also thank the numerous anonymous referees for their feedback on
the articles. We are indebted to the staff of the Phil. Trans. R. Soc. A Editorial Office, and offer special gratitude
to Alice Power, the Commissioning Editor, who was always on hand to guide us through different stages of
the editorial process.

References
1. Stroeve J, Notz D. 2018 Changing state of Arctic sea ice across all seasons. Environ. Res. Lett.

13, 103001. (doi:10.1088/1748-9326/aade56)
2. Eayrs C, Li X, Raphael MN, Holland DM. 2021 Rapid decline in Antarctic sea ice in recent

years hints at future change. Nat. Geosci. 14, 460–464. (doi:10.1038/s41561-021-00768-3)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 F

eb
ru

ar
y 

20
23

 

http://dx.doi.org/10.1088/1748-9326/aade56
http://dx.doi.org/10.1038/s41561-021-00768-3


4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210265

...............................................................

3. Squire VA, Moore SM. 1980 Direct measurement of the attenuation of ocean waves by pack
ice. Nature 283, 365–368. (doi:10.1038/283365a0)

4. Wadhams P. 1985 The marginal ice zone experiment (MIZEX) 1984: Scott Polar Research
Institute participation. Polar Rec. 22, 505–510. (doi:10.1017/S0032247400005957)

5. Rottier P. 1989 SPRI participation in the winter marginal ice zone experiment, MIZEX-87. Polar
Rec. 25, 33–36. (doi:10.1017/S0032247400009955)

6. Wadhams P, Squire VA, Goodman DJ, Cowan AM, Moore SC. 1988 The attenuation rates of
ocean waves in the marginal ice zone. J. Geophys. Res. 93, 6799. (doi:10.1029/JC093iC06p06799)

7. Squire VA. 1984 How waves break up inshore fast ice. Polar Rec. 22, 281–285.
(doi:10.1017/S0032247400005404)

8. Kristensen M, Squire VA, Moore SC. 1982 Tabular icebergs in ocean waves. Nature 297, 669–
671. (doi:10.1038/297669a0)

9. Squire V, Robinson W, Langhorne P, Haskell T. 1988 Vehicles and aircraft on floating ice.
Nature 333, 159–161. (doi:10.1038/333159a0)

10. Drinkwater M, Squire V. 1989 C-band SAR observations of marginal ice zone rheology in the
Labrador Sea. IEEE Trans. Geosci. Remote Sens. 27, 522–534. (doi:10.1109/TGRS.1989.35935)

11. Montiel F, Bonnefoy F, Ferrant P, Bennetts LG, Squire VA, Marsault P. 2013 Hydroelastic
response of floating elastic discs to regular waves. Part 1. Wave basin experiments. J. Fluid
Mech. 723, 604–628. (doi:10.1017/jfm.2013.123)

12. Montiel F, Bennetts LG, Squire VA, Bonnefoy F, Ferrant P. 2013 Hydroelastic response of
floating elastic discs to regular waves. Part 2. Modal analysis. J. Fluid Mech. 723, 629–652.
(doi:10.1017/jfm.2013.124)

13. Squire VA, Dugan JP, Wadhams P, Rottier PJ, Liu AK. 1995 Of ocean waves and sea ice. Ann.
Rev. Fluid Mech. 27, 115–168. (doi:10.1146/annurev.fl.27.010195.000555)

14. Squire VA. 2007 Of ocean waves and sea-ice revisited. Cold Reg. Sci. Technol. 49, 110–133.
(doi:10.1016/j.coldregions.2007.04.007)

15. Squire VA, Williams TD, Bennetts LG. 2013 Better operational forecasting for contemporary
Arctic via ocean wave integration. Int. J. Offshore Polar Eng. 23, 8.

16. Thomson J et al. 2018 Overview of the Arctic sea state and boundary layer physics program.
J. Geophys. Res.: Oceans 123, 8674–8687. (doi:10.1002/2018JC013766)

17. Smith F, Korobkin A, Parau E, Feltham D, Squire V. 2018 Modelling of sea-ice phenomena.
Phil. Trans. R. Soc. A 376, 20180157. (doi:10.1098/rsta.2018.0157)

18. Squire VA. 2011 Past, present and impendent hydroelastic challenges in the polar and
subpolar seas. Phil. Trans. R. Soc. A 369, 2813–2831. (doi:10.1098/rsta.2011.0093)

19. Squire VA. 2020 Ocean wave interactions with sea ice: a reappraisal. Annu. Rev. Fluid Mech.
52, 37–60. (doi:10.1146/annurev-fluid-010719-060301)

20. Squire VA. 2022 Marginal ice zone dynamics. Phil. Trans. R. Soc. A 380, 20210266.
(doi:10.1098/rsta.2021.0266)

21. Squire VA. 2022 A prognosticative synopsis of contemporary marginal ice zone research. Phil.
Trans. R. Soc. A 380, 20220094. (doi:10.1098/rsta.2022.0094)

22. Thomson J. 2022 Wave propagation in the marginal ice zone: connections and feedback
mechanisms within the air–ice–ocean system. Phil. Trans. R. Soc. A 380, 20210251.
(doi:10.1098/rsta.2021.0251)

23. Shen HH. 2022 Wave-in-ice: theoretical bases and field observations. Phil. Trans. R. Soc. A 380,
20210254. (doi:10.1098/rsta.2021.0254)

24. Toffoli A, Pitt JPA, Alberello A, Bennetts LG. 2022 Modelling attenuation of irregular
wave fields by artificial ice floes in the laboratory. Phil. Trans. R. Soc. A 380, 20210255.
(doi:10.1098/rsta.2021.0255)

25. Waseda T, Alberello A, Nose T, Toyota T, Kodaira T, Fujiwara Y. 2022 Observation of
anomalous spectral downshifting of waves in the Okhotsk Sea Marginal Ice Zone. Phil. Trans.
R. Soc. A 380, 20210256. (doi:10.1098/rsta.2021.0256)

26. Perrie W, Meylan MH, Toulany B, Casey MP. 2022 Modelling wave–ice interactions
in three dimensions in the marginal ice zone. Phil. Trans. R. Soc. A 380, 20210263.
(doi:10.1098/rsta.2021.0263)

27. Horvat C. 2022 Floes, the marginal ice zone and coupled wave-sea-ice feedbacks. Phil. Trans.
R. Soc. A 380, 20210252. (doi:10.1098/rsta.2021.0252)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 F

eb
ru

ar
y 

20
23

 

http://dx.doi.org/10.1038/283365a0
https://doi.org/10.1017/S0032247400005957
http://dx.doi.org/10.1017/S0032247400009955
http://dx.doi.org/10.1029/JC093iC06p06799
http://dx.doi.org/10.1017/S0032247400005404
http://dx.doi.org/10.1038/297669a0
http://dx.doi.org/10.1038/333159a0
http://dx.doi.org/10.1109/TGRS.1989.35935
http://dx.doi.org/10.1017/jfm.2013.123
https://doi.org/10.1017/jfm.2013.124
http://dx.doi.org/10.1146/annurev.fl.27.010195.000555
http://dx.doi.org/10.1016/j.coldregions.2007.04.007
https://doi.org/10.1002/2018JC013766
http://dx.doi.org/10.1098/rsta.2018.0157
http://dx.doi.org/10.1098/rsta.2011.0093
http://dx.doi.org/10.1146/annurev-fluid-010719-060301
http://dx.doi.org/10.1098/rsta.2021.0266
http://dx.doi.org/10.1098/rsta.2022.0094
http://dx.doi.org/10.1098/rsta.2021.0251
http://dx.doi.org/10.1098/rsta.2021.0254
https://doi.org/10.1098/rsta.2021.0255
http://dx.doi.org/10.1098/rsta.2021.0256
http://dx.doi.org/10.1098/rsta.2021.0263
http://dx.doi.org/10.1098/rsta.2021.0252


5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210265

...............................................................

28. Montiel F, Mokus N. 2022 Theoretical framework for the emergent floe size distribution
in the marginal ice zone: the case for log-normality. Phil. Trans. R. Soc. A 380, 20210257.
(doi:10.1098/rsta.2021.0257)

29. Hwang B, Wang Y. 2022 Multi-scale satellite observation of Arctic sea ice: a new insight
into the life cycle of the floe size distribution. Phil. Trans. R. Soc. A 380, 20210259.
(doi:10.1098/rsta.2021.0259)

30. Cooper VT, Roach LA, Thomson J, Brenner SD, Smith MM, Meylan MH, Bitz CM. 2022 Wind
waves in sea ice of the western Arctic and a global coupled wave-ice model. Phil. Trans. R. Soc.
A 380, 20210258. (doi:10.1098/rsta.2021.0258)

31. Dumont D. 2022 Marginal ice zone dynamics: history, definitions and research perspectives.
Phil. Trans. R. Soc. A 380, 20210253. (doi:10.1098/rsta.2021.0253)

32. Herman A. 2022 Granular effects in sea ice rheology in the marginal ice zone. Phil. Trans. R.
Soc. A 380, 20210260. (doi:10.1098/rsta.2021.0260)

33. Boutin G, Williams T, Horvat C, Brodeau L. 2022 Modelling the Arctic wave-affected marginal
ice zone: a comparison with ICESat-2 observations. Phil. Trans. R. Soc. A 380, 20210262.
(doi:10.1098/rsta.2021.0262)

34. Auclair J-P, Dumont D, Lemieux J-F, Ritchie H. 2022 A model study of convergent dynamics
in the marginal ice zone. Phil. Trans. R. Soc. A 380, 20210261. (doi:10.1098/rsta.2021.0261)

35. Bennetts LG, Bitz CM, Feltham DL, Kohout AL, Meylan MH. 2022 Marginal ice zone
dynamics: future perspectives and pathways. Phil. Trans. R. Soc. A 380, 20210267.
(doi:10.1098/rsta.2021.0267)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 F

eb
ru

ar
y 

20
23

 

http://dx.doi.org/10.1098/rsta.2021.0257
http://dx.doi.org/10.1098/rsta.2021.0259
http://dx.doi.org/10.1098/rsta.2021.0258
http://dx.doi.org/10.1098/rsta.2021.0253
http://dx.doi.org/10.1098/rsta.2021.0260
https://doi.org/10.1098/rsta.2021.0262
http://dx.doi.org/10.1098/rsta.2021.0261
https://doi.org/10.1098/rsta.2021.0267

	References

