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Using the (Iterative) 
Ensemble Kalman 
Smoother to Estimate the 
Time Correlation in Model 
Error

JAVIER AMEZCUA 

HAONAN REN 

PETER JAN VAN LEEUWEN 

ABSTRACT
Numerical weather prediction systems contain model errors related to missing and 
simplified physical processes, and limited model resolution. While it has been widely 
recognized that these model errors need to be included in the data assimilation 
formulation, providing prior estimates of their spatio-temporal characteristics is 
a hard problem. We follow a systematic path to estimate parameters in the model 
error formulation, specifically related to time-correlated model errors. This problem 
is more difficult than the standard parameter estimation problem because the 
model error parameters are only visible through the random model error realisations. 
By concentrating on linear and nonlinear low-dimensional systems, we are able to 
highlight the many aspects of this problem, using state augmentation in an ensemble 
Kalman smoother (EnKS) and its iterative variant (IEnKS). It is not possible to estimate 
the model error parameters in one assimilation window because enough information 
has to be gathered to see the parameters through the random errors, even when every 
time step is observed. If only one parameter is estimated in a linear one-dimensional 
system the EnKS works well, but when we try to estimate two parameters the method 
fails. An IEnKS is able to find the correct parameter values for the linear system. For 
the highly nonlinear logistic map the IEnKS can get stuck in local minima, but with 
careful tuning of the step length in the iterations and careful transformation of the 
solution space the correct parameter values can be found. The main conclusion is that 
estimating model error parameters –even in low-dimensional systems– is a difficult 
problem, but via careful reformulation of the problem practical solutions can be found.
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1 INTRODUCTION

Data assimilation (DA) combines observations –obtained 
from the real world– with a numerical forecast to 
improve the accuracy in the estimation of the state of 
a system. This new estimate acts as initial condition for 
new forecasts, see e.g (Asch, Bocquet, and Nodet, 2016; 
Evensen, Vossepoel, and Leeuwen, 2022) for a complete 
overview. Forecast models have often been considered 
perfect representations of the processes in the real 
world, the so-called strong constraint in the DA literature. 
This leaves the uncertainty in initial conditions as the 
sole culprit for any forecast errors. In reality, however, 
model error can become as important as initialisation 
error in degrading forecast accuracy (Orrell et al., 
2001). In numerical weather prediction (NWP) systems, 
model error arises from time and space discretisations, 
approximate parameterisations of physical processes 
that are not represented explicitly, unresolved sub-grid 
processes, etc. While these errors are often ignored in the 
DA process, it is common knowledge that more accurate 
solutions can be obtained if they are included.

Due to limited computational power and insufficient 
observations from reality, model error was originally 
considered in relatively simple cases, extending from 
one-dimensional systems to two-dimensional shallow-
water systems (see e.g seminal papers by Ghil et al., 
1981; Cohn and Parrish, 1991). Later, the increase in 
computational power and in knowledge of the model 
error allowed for the successful application of weak 
constraint DA into more complex models (Ghil, 1989; 
Tremolet, 2006; Palmer et al., 2009; Berner et al., 2017; 
Howes, Fowler, and Lawless, 2017; Evensen, 2019). 
For simplicity, model error has often been treated as a 
random variable with Gaussian distribution and no time 
auto-correlation in time, i.e. white in time. The reality 
can be quite different. The impact of model error caused 

by unresolved processes on the forecast and DA results 
can last for several model time steps. Bennett (1992), 
typically way ahead of his time, extensively discussed 
the use of correlated model errors and solution of the 
problem using the representer method, Amezcua and Van 
Leeuwen (2018) formulated the time-correlated problem 
for ensemble smoothers, and Evensen (2021) extended 
this to iterative ensemble smoothers. An obstacle in this 
endeavor, however, is that it is hard to describe a prior 
on the model errors, especially if one is to include non-
trivial probabilistic elements in both space and time. As a 
result, there has been interest in estimating model errors 
in DA schemes in the last two decades (Brasseur et al., 
2005; Crommelin and Vanden-Eijnden, 2008; Zhu, Van 
Leeuwen, and Zhang, 2018; Lucini, Leeuwen, and Pulido, 
2019; Bonavita and Laloyaux, 2020; Brajard et al., 2021; 
Pathiraja and Leeuwen, 2022; Evensen, 2021).

Let us provide a simple illustration of the way time 
auto-correlated model error arises. Consider the time 
evolution of the logistic map with coefficient γtrue = 3.75, 
which is shown in Figure 1. This zero-dimensional non-
linear discrete map was made popular by Robert (1976), 
and is described with more detail in section 3. The nature 
(or true) evolution is shown by the black solid lines and 
the black dots. Now, consider an imperfect forecast 
model. The simplest one we can think of is persistence, 
i.e. no evolution over one model time step. If we take the 
exact values of the nature run at every model time step, 
and evolve them with this imperfect forecast model over 
one step, we obtain the blue lines. Taking the difference 
between the true value of the variable and the imperfect 
1-step forecast renders the dashed magenta lines. These 
are 1-step model error values diagnosed offline, and 
therefore useful only retrospectively.

To characterise this model error, we run the 
described process for a long time period (104 model 
steps), save the model error values for each time 

Figure 1 Simple illustration for the origin of auto-correlated model error. The system evolves under a real system represented by the 
logistic map (black line). 1-lag forecasts are produced with an imperfect model (blue line), persistence. The 1-lag model errors are 
computed by taking the differences of the two values (dashed magenta lines).
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step, and compute statistics on these values (similar 
to Evensen and Fario, 1997). Figure 2 shows three 
statistics: mean (left panel), standard deviation (centre 
panel), and lag-1 auto-correlation (right panel). To 
make the experiment more general, we keep the true 
model fixed, but in the forecast model we vary the 
coefficient multiplying the value in the previous time 
step (persistence is when the coefficient is one). In 
each panel, the horizontal axis corresponds to values 
of this coefficient, while the vertical axis corresponds 
to the value of the statistic. The three statistics vary 
as function of the coefficient in the forecast model. 
Moreover, the lag-1 auto-correlation shows a non-
trivial behaviour, and is zero in only one occasion. 
Hence, only for a very particular coefficient choice the 
model error is independent in time, and in general it is 
not. This model error has been diagnosed offline. The 
question we aim to answer is whether it is possible to 
obtain these estimates online.

A previous work (Ren, Amezcua, and Van Leeuwen, 
2021) investigated the impact of time auto-correlated 
model error in DA. The current work has the specific 
objective to perform online estimation of the time-related 
characteristics of this model error. Our goal is to improve 
the accuracy of the forecast by sequentially updating 
the error using an ensemble Kalman-based method 
(Kalman, 1960; Kalman and Bucy, 1961). In particular, 
we use the Ensemble Kalman Smoother (Evensen and 
Van Leeuwen, 2000; Evensen, 2018; Amezcua and 
Van Leeuwen, 2018). As a smoother, instead of only 
updating fields at observation time, it updates the whole 
trajectory over a simulation window using all available 
observations in that window. The EnKS uses ensemble 
integrations to approximately represent the density for 
the prior model evolution. This ensemble is then used to 
solve the DA problem under the Gaussian assumption 

for model states, parameters and observation errors, 
and an observation operator that does not deviate too 
much from linear. Ren, Amezcua, and Van Leeuwen 
(2021) performed parameter estimation for the model 
error with spatial and temporal autocorrelation using 
an EnKS, and, while successful in some cases, the 
parameter estimation failed in others. It was argued 
that the failures were due to the linear correlations 
that are assumed in an EnKS. We will investigate this 
claim by using a nonlinear iterative EnKS (IEnKS) (Sakov, 
Oliver, and Bertino, 2012; Evensen, 2018). The IEnKS can 
be regarded as an ensemble variational method that 
does not require the tangent linear of the evolution and 
observation models, nor the adjoint of these models 
(Bocquet and Sakov, 2014).

This paper is organised as follows. In section 2 we 
show how the problem of jointly estimating state 
variables and time-related parameters in the model 
error is a difficult one. We show that even when the state 
variables follow linear dynamics, the time-related model 
error parameters appear in a very non-linear fashion 
within the associated cost function. This complicates 
the estimation problem, and makes that the minimum 
variance and maximum a posteriori solutions differ 
considerably. In practice, it requires the use a nonlinear 
DA method such as the IEnKS for the joint estimation 
problem. In section 3 we describe our experimental 
setup. We choose two types of memory for the model 
error: one with pure exponential decay, and one with a 
mixed oscillatory-exponential decay. In this section we 
also describe the two models used in our experiments: 
the simple model of section 2, and also the logistic map, 
which provides insight into what happens with non-linear 
dynamics. Results of these experiments are presented 
and discussed in section 4. Finally, section 5 provides a 
summary and discussion of the work.

Figure 2 Model error statistics (mean in left panel, standard deviation in centre panel, lag-1 auto-correlation in the right panel). These 
statistics are computed off-line, after a long model run, in the way illustrated in figure 1. These are computed for different coefficients 
in the forecast model (horizontal axis in panels).
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2 ESTIMATING AUTO-CORRELATED 
MODEL ERROR IN A SIMPLE LINEAR 
MODEL

Estimating model error is a difficult problem, especially 
when these errors are correlated in time. We explore 
a systematic approach in which we aim to estimate 
parameters of the time-correlation part of the model 
error formulation. Specifically, we assume a model 
error structure that is separable in space and time. 
We parameterise the time-dependent behaviour with 
decaying and oscillatory parameters, and then use use 
DA to estimate them.

This section illustrates how the parameters related to 
time-dependent model error are involved in a nonlinear 
manner in the imperfect model evolution. Therefore, 
the online estimation of these parameters becomes a 
challenge for Bayesian estimation. For simplicity, let us 
consider zero-dimensional systems, which serves two 
purposes. First, it allows for analytic steps to be feasible 
and provide important insight. Second, we do not need to 
worry about spatial structures in the model error and can 
focus on the time structures.

In the following we first formulate the problem 
of jointly estimating state variables and parameters, 
followed by the full Bayesian problem set up. We show 
that, because the time-related parameters in the model 
error are related nonlinearly to the state variables, the 
parameter estimation problem is always nonlinear, 
even when the prior on the paramaters is Gaussian and 
the model is linear in the state. Then we formulate two 
solutions, one that finds the mode of the posterior, and 
the other first linearizes the problem and then finds 
the mean. The solution without linearization will be 
more accurate, but also much more computationally 
expensive as it relies on an iterative procedure that 
employs the adjoint model, and does not easily provide 
an error estimate. The solution to the linearized problem 
is computationally much more efficient, but differs 
significantly from the solution to the nonlinear problem. 
We then formulate an iterative ensemble method, which 
is a more accurate solution to the full nonlinear problem. 
No explicit solution exists for this ensemble method, 
but the method is computationally efficient. This is the 
method we use in our numerical experiments we perform 
to achieve online estimation.

2.1 PROBLEM FORMULATION
Let x ÎÂ  be the state variable of our system with initial 
conditions x0 at t = 0. Consider τ independent model 
error jumps ϵt, for t = {1,…,τ} with zero mean. We denote 
the control variable as the column vector 1t+ÎÂz , with 
background distribution ( , )b

z zN Dm :

	 [ ]0 1, , ,x t=
T

z   � (1a)

	 0 , 0, , 0b b
z mé ù= ê úë û

T
m � (1b)

	 2 2 2diag , , ,z b q qé ù= ê úë ûD  � (1c)

where 1b
z

t+ÎÂm  and ( 1) ( 1)
z

t t+ ´ +ÎÂD  are the background 
mean vector and background error covariance matrix, 
respectively. The scalars b2 and q2 represent the 
background and model error variances. Note that z 
has a diagonal covariance matrix since we consider 
statistical independence amongst its elements. We 
use these elements to construct a simple linear 
system with time auto-correlated model errors in its 
evolution. The real linear evolution over one time step 
is prescribed by:

	 1 1t t tx x va+ += + � (2)

i.e. a simple auto-regressive component plus a model 
error realisation. This model error has distribution v(t) ~ N 
(0,q2), and the following structure in time:

	 ( )Corr( , ) | |,t tv v t tf q¢ ¢= - � (3)

Eq. (3) indicates that the model errors are auto-correlated 
in time, and this only depends on the lag |t–t|′ and a vector 
of Nθ parameters Nqq ÎÂ . For τ time steps, this yields an 
auto-correlation matrix t t´ÎÂF . This symmetric Toeplitz 
has the following elements:

	

(1) ( 2) ( 1)1
(1) ( 3) ( 2)1

( 2) ( 3) (1)1
( 1) ( 2) (1) 1

f f t f t
f f t f t

f t f t f
f t f t f

é ù- -ê ú
ê ú- -ê ú
ê ú= ê ú
ê ú- -ê ú
ê ú

- -ê úë û




    



F
� (4)

Being a positive-definite symmetric matrix, a Cholesky 
decomposition Φ is possible, i.e.:

	 = TLLF � (5)

where t t´ÎÂL  is lower triangular.
We now take Eq. (2) and write the time evolution of 

the system from t = 0 to t = τ in terms of the control 
vector z and the Cholesky factor L. Explicitly:

	 0:

1 0

0
xt t

é ù
ê ú= ê úë û

M z
L � (6)

where 1 ( 1)
0:

t
t

´ +ÎÂM  is a row matrix with the model 
evolution from 0 to any time t. For this simple model, the 
elements are decreasing powers of α:

	
1

0: , , , 1t t
t a a -é ù= ê úë ûM  � (7)

Let us define the composed evolution matrix  1 ( 1)t´ +ÎÂM :

	 
0:

1 0

0t

é ù
ê ú= ê úë û

M M
L � (8)
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This includes the effect of the deterministic dynamics 
and the auto-correlation of the model error, and it will 
become useful in the next subsections. Separating the 
initial condition and the model errors, we write Eq. (6) as:

	 0 1:x xtt ta= +M L � (9)

where 1
1:

t
t

´ÎÂM  and tÎÂ  are obtained by removing 
the first element of M0:τ and z respectively. In fact, we can 
recover the value xt at any time (not just the final time) 
using with the corresponding truncated elements in the 
second term.

We consider an observation of the truth at the end 
of the forecast window, i.e. at time t = τ. For simplicity, 
let the observation operator be the identity, so the 
observation equation is:

	 y xt h= + � (10)

with the observation error: η ~ N(0,r2). Obtaining the 
analysis values for z was already discussed in Amezcua 
and van Leeuwen (2018), and Ren et al (2021). In this 
paper we discuss the solution of the joint state-variable 
estimation problem.

2.2 BAYESIAN SOLUTION FOR THE JOINT 
STATE-PARAMETER ESTIMATION
Considering both the control variable z and parameters 
θ to be random variables, the Bayesian solution of this 
problem is to obtain the posterior joint pdf of z and θ 
given the observation y. Namely,

	
p( | , )p( , )

p( , | )
p( )

y
y

y
=

z z
z

q q
q � (11)

The numerator is the joint pdf of z, θ and y. This is 
obtained as the product of the likelihood of y times the 
prior joint pdf of z and θ. If we consider these two to be 
statistically independent, then we have:

	 p( , ) p( )p( )=z zq q � (12)

The marginal pdf of the observations is:

	 p( ) p( , , )d dy y
¥ ¥

-¥ -¥
= ò ò z zq q � (13)

The prior distribution for the control variable and the 
likelihood are easy to characterise. Recall that we 
have:

	 ( )~ ,bz zNz Dm � (14a)

	 ( )( )2| , ~ ,y N rz M zq q � (14b)

From now on, we explicitly note that ( )M q  depends on 
θ. Note that the joint estimation problem is complicated 
since we have the product ( )M zq  in the likelihood, which 
limits the possibility of obtaining an analytical expression 
for the posterior p(x,θ|y). For this reason, we now discuss 
two solutions based in statistics of this pdf: the maximum-

a-posteriori solution, and a popular approximation, the 
extended Kalman smoother solution.

2.3 THE MAXIMUM-A-POSTERIORI SOLUTION
We can try maximising the joint pdf to obtain a 
maximum-a-posteriori (MAP) solution. This is equivalent 
of finding the minimum of the cost function:

	 ( )( , | )) ln p( , | )J y y=-z zq q � (15)

Using the distributions in Eq. (14) and an arbitrary prior 
for θ, the minus logarithm of Eq. (12) is:

	

( )

1

2
2

1
( , | ) constant ( ) ( )

2
1

( ) ln(p( ))
2

b b
z zJ y

y
r

-= + - -

+ - -

T
zz z D z

M z

q m m

q q
� (16)

The minimisers {z*, θ*} of the cost-function can be obtained 
by taking the gradient of J(z, θ|y) with respect to both 
control variables and parameters and equating to zero:

	

J

J

é ù é ùê ú ê ú=ê ú ê úë û ë û

z 0

0q
� (17)

with the gradients 1J t+ ÎÂz  and NJ qÎÂq . If we 
also assume that the parameters follow a MVG –i.e. θ ~ 
(µθ, Dθ)– we are able to compute the gradients explicitly. 
This yields the following system of τ + 1 + Nθ equations:

	
( )  ( )( )1

2

1
( )b

z z y
r

- - - - =TD z M M z 0m q q � (18a)

	 ( )
( ) 

1
2

( )b y
rq q

-
æ ö æ ö¶ ÷ -ç ÷ç÷ ÷ç ç- - =÷ ÷ç ç÷ ÷ç ç÷ ÷¶ ç÷ç è øè ø

T
M M z

D z 0
q q

q m
q

� (18b)

with the Jacobian matrix ( ) ( 1) Nqt
q

¶ + ´
¶ ÎÂM q  defined as:

	

( )







1

2

1

( )

( )

( )t+

é ùê ú
ê ú

¶ ê ú
= ê ú

ê ú¶
ê ú
ê úê úë û

T

T

T

M

M M

M



q

q

q

q

q q
q

q
� (19)

One can solve z from Eq. (18a) to get:

	 ( )( )b b
z zy= + -z K Mm q m � (20)

with K and γ2 defined as

	


2

1
( )zg

= TK D M q � (21a)

	  2 2( ) ( )z rg = +TM D Mq q � (21b)

and similarly from Eq. (18b):

	

( ) ( )2 ( )b y
r
q

q

æ ö¶ ÷ç ÷ç= + -÷ç ÷ç ÷¶ ÷çè ø

T
MD

z M z
q

q m q
q � (22)

Eq. (20) is the Kalman analysis equation for the posterior 
mean (Kalman, 1960; Kalman and Bucy, 1961). The 
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complication, however, is in our case θ is an unknown. 
Hence, Eq. (20) needs to be solved in tandem with Eq. 
(22), which cannot be done analytically in general.

To actually calculate the derivative of the model with 
respect to the parameters, we note the following. For the 
jth parameter θj, Eq. (19) can be readily computed using 
the Cholesky factor L defined in Eq. (5) in the following 
manner:

	

( )
0:

1 0

0
j

j

tq q

é ùæ ö ê ú¶ ÷ç ÷ ê úç ¶=÷ç ÷ ê úç ÷¶ ÷ç ê úè ø ¶ê úë û

T
M

LM
q

� (23)

The derivative of the Cholesky matrix can be found using 
Theorem A.1 of Sarkka (2013):

	
( )1

j jq q
-

æ ö¶ ¶ ÷ç ÷ç= ÷ç ÷ç ÷¶ ¶ ÷çè ø

TTL
LT L L

F
� (24)

where the matrix t t´ÎÂT  is defined as:

	

 if  

1
( )  if  

2
0 if  

ij

ij ij

i j

i j

i j

ì >ïïïïïï= =íïïïï <ïïî

A

T A A � (25)

2.4 THE EXTENDED KALMAN SMOOTHER 
SOLUTION
The extended Kalman Smoother solution can be derived 
directly from the MAP solution by centering the derivative 
of the model to the state and the parameters on the 
background values. Tracing back these derivatives we 
can rewrite Eq. (20) and Eq. (22) as:

  ( ) ( )
1

2
2

1
( ) ( ) ( ) ( )b b b b b

z z z zr yq q q m
g

-
= + + -T Tz D M M D M Mm m m m q � (26)

	

( ) ( )2 ( )
b

b b
z y

r
q

q
q

æ ö÷ç ÷¶ç ÷ç ÷= + -ç ÷ç ÷¶ç ÷÷çè ø

T

MD
M z

m

q
q m m q

q � (27)

Furthermore, in Eq. (27) we use a first-order Taylor 
expansion for ( )M q  as:

	
( ) ( )

( ) ( )
b

b b

q

q q

æ ö÷ç ÷¶ç ÷ç ÷= + -ç ÷ç ÷¶ç ÷÷çè ø

T

M
M M

m

q
q m q m

q � (28)

We can solve then solve Eq. (26) and Eq. (27) by 
introducing a new augmented variable ( , )= T T Tz z q  and 
after some algebra we obtain:

	
 ( )( )a b b b

zz z y q= + -K M m m m m � (29a)

	
 ( ) ( )

( )
,

b

b b
zz z z

q

q

é ù
ê ú¶ê ú= - ê ú¶ê úë û

T M
A D K M D  

m

q
m m

q � (29b)

where Az is denoted as the posterior covariance in the 
extended variable space. In this case, the augmented 

gain  ( 1 ) 1Nqt+ + ´ÎÂK  and augmented residual variance 
2

0g ³ÎÂ  are different from Eq. (21)

	





( )2

( )

1

b

b
z

b
z

q

q

q

m

g

é ù
ê ú
ê ú
ê úæ ö÷ç= ê ú÷¶ç ÷çê ú÷ç ÷ê úç ÷¶ç ÷ê ú÷çè øê úë û

T

T

D M

K M
D

m

q
m

q
� (30a)

( )
 

2 2( ) ( )
( ) ( )

b b

b b b b
z z z r

q q

q q q

m m

g
æ ö÷ç ÷¶ ¶ç ÷ç= + +÷ç ÷ç ÷¶ ¶ç ÷÷çè ø

T

TT M M
M D M D q q
m m m m

q q � (30b)

In the last step we have again assumed that state 
variables and parameters are statistically independent 
in the prior. Notice that even with a Gaussian prior p(θ) 
and a model that is linear in the state z the MAP and 
the extended KS solution can differ considerably. The 
MAP solution results in an implicit equation that needs 
to be solved iteratively. However, even if we manage 
to do this an uncertainty estimate is still lacking. It is 
possible, if the system is low-dimensional, to solve this 
problem with e.g. a particle filter. Unfortunately, for 
higher dimensions particle filters are degenerate, and a 
potential solution for that, localization, is difficult to use 
with global parameters. Instead, we resort to a popular 
approximate solution based on an iterative Ensemble 
Kalman smoother that can easily be scaled up to higher 
dimensions.

2.5 THE (ITERATIVE) ENSEMBLE KALMAN 
SMOOTHER
The Iterative Ensemble Kalman Smoother (IEnKS) does 
solve the parameter estimation problem approximately, 
but it does introduce nonlinearity in the solution 
procedure. Hence it will provide a solution that is closer 
to the MAP solution than the Extended Kalman Smoother 
solution. In an IEnKS parameter estimation is typically 
performed via state augmentation, as in the extended 
Kalman Smoother. We define a variable 1 Nqt+ +ÎÂu  as:

	 0 1 1[ , , , , , , ]Nx x x
qt q q= Tu   � (31)

where the augmented variable includes the state variable 
at all time steps and all the model error parameters, 
sometimes called the state formulation. Notice that this 
is slightly different than Eq. (1), where the augmented 
variable contains the initial conditions, the model error 
jumps, and the model error parameters, leading to the so-
called forcing formulation. In a linear system, it is trivial 
to go from one formulation to the other, as explained in 
Tremolet (2006) and Amezcua and Van Leeuwen (2018). 
For ensemble implementations it is easier to work with 
state variables directly, so this is how we implement the 
experiments in the paper.

Ren, Amezcua, and Van Leeuwen (2021) studied 
the consequences of wrongly prescribing the model 
error decorrelation time scale, which was the only 
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parameter. This is, they performed DA with a model 
error auto-correlation which was different from the one 
‘guessed’ in the ensemble forecast. In the last part of 
the work, they used state augmentation in an EnKS –as 
formulated in Amezcua and Van Leeuwen (2018)– to 
estimate one time parameter in the model error. The 
authors did not, however, perform a systematic analysis 
with different types of model error structure. In this 
work we perform a deeper analysis and more extensive 
experiments.

In this work we perform state augmentation 
experiments using two DA methods, the stochastic EnKS 
and its iterative variant (IEnKS), as formulated in Evensen 
(2018). This formulation aims to find the minimum 
of a cost function using ensemble members, either in 
one step (EnKS) or multiple steps (IEnKS). In the IEnKS 
a cost function is defined for each ensemble member 
j by rewriting the cost function Eq. (16) in terms of the 
extended variable u as:

( )( )
2

1
2

1 1
( ) constant ( ) ( )

2 2
j j j jJ y

r
-= + - - + -T

u u uu u D u M u um m �(32)

in which j
um  is the prior ensemble member j, and

	 j jy y h= + � (33)

is a perturbed observation with the perturbation drawn 
from the observation error pdf, so ηj ~ N(0,r2). In Eq. 
(32) it is clear that the product ( )M u u  is responsible for 
the difficulty of this problem. Evensen (2018) proposed 
a simple Gauss-Newton iteration for each ensemble 
member as:

	
1

1 ( ) j
i

j j jj
i i iJd -
+ = - 

u
u u C u � (34)

where i is the iteration index, (1 ) (1 )N Nq qt t+ + ´ + +ÎÂC  is a 
symmetric approximation of the Hessian of the cost 
function in which the second derivative of ( )M u u  is 
neglected, so
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and 1( )j NJ qt+ + ÎÂu  is the gradient of the cost function 
for ensemble member j. The iteration step length δ is 
tunable. The iteration is started at 0

j j
u=u m . The simple 

descent algorithm can be used with the ensemble 
gradient and the ensemble approximated Hessian 
information, as shown in equation (36) of Evensen (2018). 
For efficiency, we use the particular implementation 
described in Evensen et al. (2019). Tuning factor δ is an 
art. In our implementation we reduce the step size the 
closer we get to the minimum via:

	 1i icd d+ = � (36)

with 0<c<1. The stochastic EnKS can be obtained from 
this formulation by using only one iteration and setting 
δ = 1.

3 EXPERIMENTAL SETUP

For our experiments, we use two types of model error 
(with one and two parameters), and two types of 
evolution models (linear and nonlinear).

3.1 MODEL ERROR FORMULATIONS
The first type of model error was used both in Amezcua 
and Van Leeuwen (2018) and Ren, Amezcua, and Van 
Leeuwen (2021). The correlation of model error between 
two time steps is:

	

| |
Corr( , ) exp .t t

t t
v v

w¢

é ù¢-ê ú= -ê úë û
� (37)

In this case, the auto-correlation decays exponentially, 
and it only has one parameter – the decay time scale 
ω (ω>0). When ω tends to 0 the model error becomes a 
white-noise process. When ω tends to infinity, the model 
error becomes fixed (a bias). Summarizing:
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The second model error structure we explore contains 
both decaying and oscillatory elements:

	
| |Corr( , ) cos(2 | |)t t

t tv v f t tf p¢-
¢ ¢= - � (39)

The first term is a geometric memory term, with base 
–1 < ϕ < 1, which can be considered a decay parameter. 
The second term is oscillatory with frequency f. To avoid 
instability of the system, the decay parameter ϕ is 
bounded as 0 ≤ ϕ ≤ 1, and the frequency f is bounded 
by 0 < f < 0.5. When the frequency is 0.5, the covariance 
becomes purely decaying with time and it becomes 
purely oscillatory when the decaying parameter tends to 
1.0. Summarising:
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3.2 EVOLUTION MODELS
To illustrate the issues that arise when estimating 
model error parameters that are related to temporal 
correlations, we restrict our experimental set up to two 
zero dimensional models. The first is the simple linear 
scalar model used for the analysis in section 2. The true 
model is:

	 1 1t t tx x va+ += + � (41)

Note that this true model is a stochastic model and we 
assume v ∼ N(0,q2). The true model uses a real decay 
timescale ωr, while the forecast model assumes a 
guessed time auto-correlation parameter ωg. This value 
needs to be updated in the DA cycle.

The second set of experiments is much more ambitious 
since we use a non-linear map as the real system. In 



115Amezcua et al. Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.55

particular, we use the well-known logistic map (Robert, 
1976):

	
1 (1 )n n n

r r rx x xg+ = - � (42)

where γ is the control coefficient that gives rise to stable 
solutions when 0 ≤ γ ≤ 4; by stable we mean solutions 
that do not leave the interval [0,1]. In our experiments 
we choose γ = 4 which puts the model in a chaotic 
regime. Note that in these experiments, the true model 
is deterministic. This seemingly simple non-linear map 
is non-invertible, with initialisation errors growing and 
saturating quickly. It has therefore been used before 
to test the performance of different configurations of 
the EnKF (Mitchell and Houtekamer, 2009). The true 
autocorrelation of the model error (computed offline 
as described in the introduction) has both positive and 
negative values, while decreasing in absolute magnitude 
as a function of the lag. Therefore, a 2-parameter 
memory is more appropriate for this case, although 
it increases the difficulty of the problem by having to 
estimate an extra parameter.

As a forecast model, we propose a stochastic linear 
model

	 1 1n g r nx x vg+ += + � (43)

where γg is a prescribed damping coefficient for the 
forecast model, with its value within 0 < γg < 1 to keep the 
model stable. The model error has the same properties 
as in the experiments where the real model is linear. In 
section 1, we described an off-line process to compute 
the statistics of this model error from a long-time 
collection of differences between perfect and imperfect 
forecasts. What we look for, instead, is to estimate the 
time-related parameters online, along with the state 
estimation.

3.3 IMPLEMENTATION DETAILS
Our experiments follow the fraternal (non-identical) 
twin set up. A real initial condition is prescribed and the 
true model is run for a long time. In the case of the true 
stochastic linear model shown in Eq. (2), a particular 
realisation of the model error is used for this true run. 
For this model we use α = 0.8 for all experiments. 
Synthetic observations are obtained at different times 
by applying Eq. (10) with r2 = (0.01)2. We generate 
synthetic observations every model time step, although 
we use different subsets in different experiments. The 
ensemble forecast is generated by selecting Ne initial 
conditions coming from N(0,b2), with b2 = (0.1)2. The 
model error realisations are generating using Eq. (2.1). 
This is, uncorrelated model errors are generated from 
N(0,q2), with q2 = (0.1)2. The time auto-correlation is 
inserted by computing the desired Cholesky factor L(θ) 
which depends in the parameter vector θ, performing 
the operation indicated in Eq. (2.1). For model error 
parameters we have the following:

•	 For the one-parameter model error, the prior 
distribution is 2~ ( , )b bN w ww m s  with 0.3b

wm =  and 
2 2(0.5)ws = .

•	 For the two-parameter model error, we consider the 
two parameters to be uncorrelated. Their marginal 
background distributions are: 2~ ( , )b bN f ff m s  with 

0.3b
fm =  and 2 2(0.2)fs = , and 2~ ( , )b b

f ff N m s  with 

0.3b
fm =  and 2 2(0.2)fs = .

Both the EnKS and IEnKS use stochastic implementations, 
(Van Leeuwen, 2020) i.e. one needs to add observational 
noise to observation values predicted by each ensemble 
member. In this way the real observation and the 
predicted observations are generated in the same way. 
In all our experiments, we use an assimilation window 
of τ = 20 time steps plus the initial condition. When we 
assimilate 1 observation per window, this is located at 
the end time. When we assimilate 20 observations per 
window, these correspond to all time steps except that of 
the initial conditions. In order to avoid the introduction of 
sampling errors –which would be difficult to disentangle 
from the other effects we study–, we use a relatively 
large ensemble with Ne = 200. This size is kept constant 
for all experiments.

For the IEnKS, we vary the number of iterations and the 
step length δ. We consider the IEnKS to have converged 
to a solution when the difference |ui+1–ui| < 0.01, which is 
approximately 1% of the range of the parameters.

4 EXPERIMENTAL RESULTS
4.1 ILLUSTRATION OF STATE ESTIMATION
In the first set of experiments we aim to illustrate the 
performance of the EnKS for state estimation. To this end, 
we use the 1-parameter memory setting and choose 
background values very close to the real parameter, both 
the linear and non-linear models. The results of these 
experiments are displayed in Figure 3. In all panels, the 
truth is shown with a black thick line, randomly selected 
background ensemble members in blue, and randomly 
selected analysis members in red. For the analysis, 
the thick red line corresponds to the mean. We do not 
show all members to avoid visual cluttering. For this 
experiment, we only study a single assimilation window.

The top row of this figure shows the results with 
the linear model. In this case, the EnKS is capable of 
recovering an analysis mean quite close to the truth. The 
availability of more observations makes an important 
difference, as noted in the results shown in the two 
columns (left shows 1 observation per window, right 
shows 20 observations per window). In this simple linear 
case, even with very sparse observations, the EnKS can 
still provide a fair estimation of the state.

The bottom row shows the results with the logistic 
map. In the case with a single observation at the end of 
the simulation window, the EnKS was unsuccessful, which 
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is expected considering the length of the assimilation 
window, and that joint estimation is being performed. 
To obtain a better results, more information from the 
observations is needed. With dense observations, 
observing every time-step for instance, the EnKS provides 
a correct estimation of all the state values at all time 
steps.

4.2 PARAMETER ESTIMATION IN THE LINEAR 
MODEL
4.2.1 One-parameter estimation
Our first experiments with the linear model consist of 
trying to estimate the parameter ω via the EnKS, using 
the one-parameter autocorrelation shown in Eq. (37). 
The results are shown in Figure 4. This figure has four 
panels. Panels (a), (b) and (c) have the same format, 
the difference amongst the panels is the number of 
observations per assimilation window. In each panel, the 
black vertical line shows the true value of the parameter. 
Different pdfs are displayed, computed as histograms 
using the ensemble members. The blue line shows the 
background pdf for the estimated parameter, whereas 
the orange-red lines correspond to the analysis pdfs after 

different number of assimilation windows. We see that 
the DA system works well for one-parameter estimation, 
especially with multiple observations. In fact, even with a 
single observation at the end of each simulation window, 
the analysis pdf moves towards the true ω, and the 
variance of the posterior pdfs is smaller than that of the 
prior, and it gets smaller as the number of consecutive 
assimilation windows increases. The effect of using 
more observations in each simulation window is to 
accelerate the convergence of the posterior pdf towards 
a stationary distribution. Panel (d) illustrates more clearly 
the evolution of the analysis estimator for sequential 
assimilation windows (in the horizontal axis). The blue 
horizontal line shows the value of the background 
mean 1b »w , whereas the horizontal black line shows 
the true value of the parameter ωr = 0.5. In this case, 
we only track the analysis mean (solid colour lines) and 
the analysis standard deviation (shaded colour areas). 
With one observation at the end of the assimilation 
window, the convergence of the analysis mean is 
slow, taking about 50 assimilation windows before the 
analysis mean and standard deviation stabilise. There 
is, however, a considerable bias with respect to the true 

Figure 3 State update for both linear model and logistic map with different number of observations over a single simulation window 
using EnKS.
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parameter. Increasing the number of observations in the 
assimilation window accelerates the convergence of the 
mean estimator. The cases with 5 and 20 observations 
per assimilation window approach their final value 
between 10 and 20 assimilation windows. The final 
estimate with 5 observations is still slightly larger than 
the true parameter. The estimate with 20 observations 
satisfactorily converges toward the real parameter 
from below, although at the end of the 80 assimilation 
windows a small gap still remains, much larger then the 
estimated uncertainty in the ensemble.

We perform similar experiments with the IEnKS. Recall 
that in this case the number of iterations can influence 
the performance of the smoother. We analyse the effect 
of the number of iterations in Figure 5. This figure has 
two similar panels corresponding to 1 observation 
(left) and 20 observations (right) per window. The blue 
horizontal line denotes the background mean, and the 
black line the real parameter value. In each panel we 

plot several lines corresponding to analysis mean after 
different number of assimilation windows, as well as a 
shaded area corresponding to the analysis standard 
deviation. In the horizontal axis we have the number of 
iterations in each window. These iterations use a fixed 
step length δ. Perhaps the most important message of 
this figure is that the IEnKS results are independent of 
the number of assimilation windows since there is not a 
noticeable difference between the different lines. For one 
observation at the end of the assimilation window, the 
estimator has not fully converged after 20 iterations. It 
seems that at least 5 iterations per window are necessary 
for the IEnKS to show reasonable performance. In the 
case of 20 observations per window, it takes between 
15 to 20 iterations for the IEnKS to converge to the true 
value of the parameter. Again, the number of assimilation 
windows does not matter. Based on these results we fix 
the number of iterations in the IEnKS to Niter = 10 for the 
rest of our experiments. In practice, one aims to perform 

Figure 4 (a)∼(c) Exponential scale estimation with different numbers of observations and simulation windows using the EnKS and (d) 
the convergence of the mean of posterior pdf with the number of simulation windows.
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as few iterations as possible to minimise computational 
expenses. We implement the IEnKS with a different 
numbers of observations and simulation windows. These 
results shown in Figure 6. The overall format of this figure 
is the same as that of Figure 4. Panels (a) to (c) reveal that 
the convergence to the analysis pdf is faster with more 
observations per window, and the resulting consecutive 
analysis pdf’s have smaller variance. Panel (d) reveals 
interesting results. For the three observation frequencies, 
the major changes to the analysis mean occur in the 
first 20 assimilation windows. For the cases with 1 and 
5 observations per window, the bias in the final analysis 
mean is reduced considerably with respect to the 
estimators obtained by the EnKS. With 20 observations 
per window, the estimation is remarkably accurate, with 
the analysis mean oscillating around the real parameter 
value after 50 windows and remaining there.

In this subsection we have shown that EnKS converges 
to the real parameter value but a small bias remains, 
while its uncertainty estimate tends to contain that 
real value. The results show significant improvement 
increasing in the number of observations and the EnKS 
benefits from more assimilation windows. Next step is to 
extend our experiments to a more complex model error 
setting with two unknown parameters.

4.2.2 Two-parameter estimation
For this part of the experiments, we implement the 
model error with formulated in Eq. (39), which contains 
both decaying and oscillatory parameters. We start by 
experimenting with the EnKS. This method, however, 
fails to find the correct values for both parameters even 
in the case with observations every time step. This case 
is shown in Figure 7. This figure shows the background 
(blue line) and analysis (orange-red lines) pdf’s for the 
oscillatory (left) and decaying (right) parameters. The 
vertical black lines correspond the true parameter values. 
The figure illustrates how the mean of the analysis pdf 

converges towards wrong values of the parameters, 
with noticeable variance reduction after successive 
assimilation windows. This behaviour suggests that the 
minimisation process in the IEnKS is converging to an 
incorrect local minimum. To explore the failure of the 
EnKS in this case, it is useful to display the cost function 
of the problem. This requires computing Eq. (32) using Eq. 
(39) and Eq. (41). For simplicity, we do this for the case of 
a single operation at the end of the assimilation window. 
Before explaining the result, we need to recall some 
aspects of this function:

•	 The input of this function is the vector u and the 
output is a scalar. The function maps 1 + τ + Nθ values 
into a single one.

•	 The background elements needed by the cost 
function are the background mean 

b
um  and and 

covariance Du.
•	 The observation elements needed by the cost 

function are the actual observation y and its variance 
r2.

In Figure 8 we start with a simple setting. We use 
the exact mean 

b
um  and covariance Du, as well as the 

observational variance r2 from section 3.3. Since we are 
not interested in the behaviour of the cost function with 
respect to the state variables, we set the state variables 
to a fixed value. and we only let the values θ = [f,ϕ]T vary 
freely. We plot a cross-section of the cost-function in the 
two-dimensional parameter space. We choose x0 = 0 and 
∊1 = … = ∊τ = 0.1 –note that we have to choose a value 
different from zero, otherwise the cost function would be 
blind to the variation in model error parameters.

Figure 8 has nine panels. Each one of the columns 
correspond to a different length of the assimilation 
window (recall that the observation is taken at the end), 
and each one of the columns correspond to a different 
given observation. We already know that the resulting 

Figure 5 Analysis mean and standard deviation resulting from using IEnKS with different number of observations (panels), iterations 
(horizontal axis), after different number of simulation windows (lines).
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Figure 6 (a)∼(c) Exponential scale estimation with different numbers of observations observations and simulation windows using 
IEnKS and (d) the convergence of the mean of posterior pdf with the number of simulation windows.

Figure 7 Two-parameter estimation, f (left) and ϕ (right), using the EnKS with 20 observations and different number of simulation 
windows.
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cost function is not quadratic, and that the deformation 
from a quadratic cost function grows as the number of 
time step grows, and as the difference between the given 
observation and the predicted observation is larger. This 
is exactly what we observe in the figure. Both the first 
and third columns, when the observations are y ∓ 4.0 
respectively, show the largest deformation of the cost 
function and this grows for the rows from top to bottom. 
The middle panel (y = 0) sees little deformation from a 
paraboloid. For each panel, the blue dot represents the 
background mean values of the parameters, and the 
pink dot corresponds to the global minimum of the cost 
function. In all cases, the cost function is still concave 
and there is a unique minimum to be found.

The simple case shown before is not what the EnKS 
encounters in practice. First of all, we do not know the 
real background covariance matrix, so this comes from 
a sample estimator. Second, the cost function is applied 
to each ensemble member separately, and therefore the 
background mean is just the background value for each 
member. The final analysis estimator is the mean of the Ne 
estimated minima. We explore this in Figure 9. First of all, 
we fix given observation to y = –4. Each column represents 
a different ensemble member (3 members out of the 200 
we used to compute background statistics), and each row 
represents a different length of the assimilation window. 
To produce these cost functions, the background values 
are random realisations of the distributions for the initial 
conditions, model errors and parameter values shown in 
section 3.3. Again, we are interested in the behaviour in 
the two-dimensional parameter space, so we fix all the 
state variables to the same constants as before. What 

we see is very different from Figure 8. Figure 9 shows cost 
functions which are not convex, in fact they have very 
intricate topographic features such as narrow elongated 
ridges and valleys, and even some local mimima and 
maxima. The global cost minimum is difficult to converge 
to in a single application of the EnKS. In fact, this does not 
happen. We see that as the assimilation window length 
increases, the complicated features of the cost function 
increase. This agrees with the unsuccessful results we 
had seen in Figure 7. Therefore, it is necessary to apply a 
number of smaller steps via iterations in an IEnKS.

We now apply the IEnKS to avoid getting stuck in a 
valley or a local minimum in the minimisation process. 
The results for the two-parameter estimation using IEnKS 
are shown in Figures 10 and 11. We apply the IEnKS with 
10 iterations and a fixed step length δ = 0.3.

Figure 10 shows the ensemble background and 
analysis pdfs (after different number of assimilation 
windows) for the oscillatory (top row) and decaying 
(bottom row) parameters, for 1 observation (top row) 
and 20 observations (bottom row). This figure reveals 
that the IEnKS works fairly well in this case. Similar 
to the results with the single parameter estimation, 
the two-parameter estimation results improve with 
the increase in the number of observations and 
assimilation windows in the simulation period. The 
IEnKS estimation converges towards the correct values 
of both parameters. In the case of only 1 observation 
in the assimilation window, the pdf stops short of 
the real value (black line), while in the case of 20 
observations the estimation is better. Figure 11 tracks 
the evolution of the analysis mean and standard 

Figure 8 Exact cost function including the two-parameter model error, the state variable, observations with different number of time-
steps and values of observations using the EnKS. The blue point represents the analysis value predicted after 1 EnKS step (with no 
extra iterations), and the pink point represents the exact global minimum.



121Amezcua et al. Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.55

Figure 9 Sample cost function of different ensemble members (from left to right, Ne = 2,4,8) including the two-parameter model 
error, the state variable, observations with different number of time-steps and values of observations using the EnKS. The blue 
point represents the analysis value predicted after 1 ENKS step (with no iterations), and the pink point represents the exact global 
minimum.

Figure 10 Two-parameter estimation using the IEnKS with different number of observations and simulation windows, and 10 
iterations.
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deviation for the two parameters (one for each panel) 
as the number of assimilation windows increases, and 
for three total number of observations: 1, 5 and 20. 
The true and background mean values are shown with 
horizontal lines, black and blue correspondingly. Note 
the improvement in the estimation as the number of 
observations increase. Even for observations every 
time step, there is a bias in the final estimation of the 
frequency parameter, while the decay parameter is 
captured in the ensemble uncertainty. Compared with 
the results from the one-parameter estimation, the 
two-parameter estimation problem seems to be much 
more complicated, and requires more observations to 
make the estimation work.

In closing the experiments for this subsection, we 
want to see how the IEnKS works with different initial 
guess for the two parameters. Given the complicated 
shape of the cost function, it is conceivable that we 
may get stuck in local minimums, even when using 
this sophisticated iterative method. We divide the two-
dimensional parameter space into four quadrants, and 
we choose starting points in each one of the quadrants. 
These results are shown in Figure 12. This figure shows 
results in the case of one observation (left) and 20 
observation (right). In both cases, the true values of the 
parameters are at the centre of the quadrants (denoted 
with a black dot). We see that the position of the initial 
condition can have serious impact on the estimation 
results. When we only observe at the end of the window 
most initial conditions do not lead to a value close to the 
true value. In fact, we see that the DA system cannot 
distinguish between parameter values lying roughly 
on a straight line defined by the red dots. On the other 
hand, when we have observations at every time-step, the 
posterior seems to get fairly close to the true values of 
the parameters, but many local minima exist around the 
true values. The results show the importance of the initial 

guess of the parameters on the parameter estimation 
results.

After experimenting with the linear model, our next 
step is extending the experiments of two-parameter 
model error autocorrelation to the nonlinear model, the 
logistic map.

4.3 PARAMETER ESTIMATION IN A NON-
LINEAR MODEL
The last experiments we perform are also the most 
challenging. In this case our true model is the logistic 
map with the damping coefficient γ = 3.99, and the 
proxy model is linear model with auto-correlated model 
error. The true model error autocorrelation in this case 
has both an oscillatory and decaying behaviour (this can 
be diagnosed offline as described in section 3), so we 
directly try two-parameter estimation. Since the EnKS 
failed on the two-parameter estimation even with the 
linear model, we decide to only apply the IEnKS with 10 
iterations, over times windows of 10 time steps long.

In our first experiments we try to estimate f and 
ϕ using the IEnKS with a fixed iteration step length δ 
= 0.3 as used in the linear experiments. The results 
of these experiments are shown in Figure 13 for both 
parameters (rows) and for 1 and 20 observations in the 
window (columns). With 1 observation at the end of 
the window the smoother does not seem to converge, 
and with 20 observations convergence seems to occur, 
but to incorrect values of the parameters. Increasing 
the number of iterations pr window or the number of 
windows did not improve results.

Since the IEnKS with a fixed step length δ fails to 
estimate the parameters directly, we explored three 
further experimental settings. In the first we transform 
the estimation problem to a more linear setting by 
estimating lag-1 and lag-2 autocorrelations of the model 

Figure 11 Posterior mean of the two parameters over the number of simulation windows with different number of observations.
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Figure 12 Two-parameter estimation for different priors using the IEnKS with different number of observations and simulation 
windows after 10 iterations. The blue dots show different background values, used as initial conditions for the minimisation. The red 
dots show the obtained analysis values. The black dot in the centre shows the true values for the parameters.

Figure 13 Two-parameter estimation using the IEnKS with the logistic map, using a fixed iteration step length (δ = 0.3), 10 iterations 
per window, different number of observations and simulation windows.
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error (labelled as AC(1) and AC(2) respectively), and then 
transform the results to f and ϕ as the following:

	

2

2

2 (1) (2)

(1)
arccos

2 (1) (2)

2

AC AC

AC

AC AC
f

f

p

= -
æ ö÷ç ÷ç ÷ç ÷ç ÷÷ç -è ø

=
� (44)

In the second setting we use a decaying step length δ 
while using the untransformed parameters. However, 
Figure 14 shows that neither method is successful, 
suggesting that the problem is highly nonlinear and a 
more careful tuning of the minimization is required.

In the third setting we both transform problem to 
first estimating the autocorrelations and applying a 
decaying step length. However, with only 1 observation 
in the assimilation window the IEnKS failed, no matter 

what we tried. For a fully observed system with 10 
observations per assimilation window successful results 
can be achieved. We show results for reducing the step 
length δ by 2% after each iteration (i.e. c = 0.98 in Eq. 
(36)). From the two top plots in Figure 15, we can see 
that the results are similar to the successful results for 
the linear model shown in Figure 10. The posterior shows 
improvement with more simulation windows, and the 
variance decreases with more windows as well. Figures 
15 (c) and (d) show that the posterior mean moves 
towards the right values for both parameters, with slowly 
decaying uncertainty.

Even though the minimization is successful the 
convergence is extremely slow, even in this simple zero-
dimensional model. This illustrates that estimating 
parameters in model errors that are related to temporal 
correlations is a very hard problem.

Figure 14 Two-parameter estimation using the IEnKS with 10 observations per window after 10 iterations with the logistic map. On 
the top panel, (a)∼(b) the iteration step-length is fixed (δ = 0.3), and we estimate the lag-1 and lag-2 autocorrelation then transform 
them to f and ϕ. On the bottom panel, (c)∼(d) the parameters are estimated directly with a decaying δ.
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5 SUMMARY AND CONCLUSIONS

Including the model error in the DA process is a difficult 
task to tackle, especially when this model error possesses 
spacial and temporal correlation. The objective of this 
work is to test whether it is possible to include the 
estimation of time-related model error parameters in 
the DA process. We have shown that even in the case of 
linear dynamics, the model error parameters are involved 
in an intricate and non-linear way in the model evolution. 
We have therefore focused in the use of the EnKS and the 
IEnKS combined with parameter augmentation to solve 
the joint state-parameter estimation problem.

With a simple linear-regressive model and exponential 
decaying memory in the model error, the EnKS works 
well using the state augmentation method to estimate 
a single model error parameter, even with only one 
observation at the end of the assimilation window. The 
estimation results are improving with an increasing 

number of observations in each window, and by iterating 
over more assimilation windows. The IEnKS with 10 
iterations gives slightly superior results compared to the 
EnKS in this case, as expected.

When the complexity of the temporal correlation in 
the model error is increased by including an oscillatory 
component state augmentation with the EnKS fails. 
Indeed, the cost functions involved show highly irregular 
shapes and convergence in one step is not possible. 
An IEnKS with a fixed iteration step length is shown 
to converge to the correct values when the number of 
observations in an assimilation window is high enough. 
The failure to converge with one observation at the end 
of the assimilation window can be traced back to the 
long valley with minimal gradients in the cost function, 
identified via different first guess values. There just 
isn’t enough information to estimate both model error 
parameters. However, we do see that the uncertainty 
in the estimates remains large, so the IEnKS does show 

Figure 15 Lag-1 and lag-2 autocorrelation are estimated and transform to the parameters (a) f and (b) ϕ, using the IEnKS with a 
decaying iteration step length, 10 iterations per window, for different numbers of assimilation windows with the logistic map. The 
bottom two figures show the convergence of the posterior mean of (c) f and (d) ϕ over the number of simulation windows with 
observations every time-step.
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consistent results. Increasing the number of observations 
in the window solves this problem.

The nonlinear logistic map proves to be more 
challenging when estimating both model error 
parameters. The EnKS always fails, and the IEnKF fails 
with the standard fixed step length and direct estimation 
of the parameters. The combination of a step length that 
decreases with iteration and transforming the problem 
by first estimating the autocorrelations in the model error 
solves this problem, although we need a fully observed 
system, and convergence is very slow.

Overall, we conclude that estimating temporal-
correlation related parameters in model errors is a highly 
nonlinear problem, and more difficult than expected 
even in zero-dimensional systems. The number of 
observations in an assimilation window needs to be high 
enough for the smoother to have enough information 
on these parameters, and for nonlinear models careful 
tuning of an IEnKS is needed. The bottom line is that it 
is very well possible that the data-assimilation system 
does not have enough information to pinpoint the exact 
model error parameters, while at the same time we 
should realize that these parameterizations of model 
errors are approximate by their very nature.

It is important to keep in mind that these results 
were obtained with a very large ensemble size of 200 
for a zero-dimensional system and two parameters. 
This choice made sense for the focus of this paper, but 
in reality the limited ensemble size will give rise to extra 
noise in the estimates. The IEnKS, while being a very 
powerful method, does not converge to the posterior 
pdf with growing ensemble size for nonlinear data-
assimilation problems (see e.g. Evensen, 2018). Especially 
when multiple modes are present in the posterior, as in 
our case, several of the modes can be missed. This is 
problematic when local modes are almost as high as the 
global mode, in which case the correct solution to the 
data-assimilation problem is this family of modes. To find 
these fully nonlinear methods like local particle filters or 
particle flows are needed (see e.g. Van Leeuwen et al., 
2019; Hu and Van Leeuwen, 2021; Evensen, Vossepoel, 
and Leeuwen, 2022).

Our next step is to investigate how these results carry 
over to more realistic and complex models such as a two-
layer quasi-geostrophic model. The challenge in this case 
is whether the spatiotemporal model error correlation is 
separable or not. The ultimate goal is to have a online 
update for the model error within an operational system.
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	Let  be the state variable of our system with initial conditions x at t = 0. Consider τ independent model error jumps ϵ, for t = {1,…,τ} with zero mean. We denote the control variable as the column vector , with background distribution :
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	where  and  are the background mean vector and background error covariance matrix, respectively. The scalars b and q represent the background and model error variances. Note that z has a diagonal covariance matrix since we consider statistical independence amongst its elements. We use these elements to construct a simple linear system with time auto-correlated model errors in its evolution. The real linear evolution over one time step is prescribed by:
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	i.e. a simple auto-regressive component plus a model error realisation. This model error has distribution v(t) ~ N (0,q), and the following structure in time:
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	  (3)
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	Eq. (3) indicates that the model errors are auto-correlated in time, and this only depends on the lag |t–t|′ and a vector of N parameters . For τ time steps, this yields an auto-correlation matrix . This symmetric Toeplitz has the following elements:
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	Being a positive-definite symmetric matrix, a Cholesky decomposition Φ is possible, i.e.:
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	where  is lower triangular.
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	We now take Eq. (2) and write the time evolution of the system from t = 0 to t = τ in terms of the control vector z and the Cholesky factor L. Explicitly:
	  (6)
	0:100xttéùêú=êúëûMzL

	where  is a row matrix with the model evolution from 0 to any time t. For this simple model, the elements are decreasing powers of α:
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	Let us define the composed evolution matrix :
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	This includes the effect of the deterministic dynamics and the auto-correlation of the model error, and it will become useful in the next subsections. Separating the initial condition and the model errors, we write Eq. (6) as:
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	where  and  are obtained by removing the first element of M and z respectively. In fact, we can recover the value x at any time (not just the final time) using with the corresponding truncated elements in the second term.
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	We consider an observation of the truth at the end of the forecast window, i.e. at time t = τ. For simplicity, let the observation operator be the identity, so the observation equation is:
	  (10)
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	with the observation error: η ~ N(0,r). Obtaining the analysis values for z was already discussed in Amezcua and van Leeuwen (), and Ren et al (). In this paper we discuss the solution of the joint state-variable estimation problem.
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	2.2 BAYESIAN SOLUTION FOR THE JOINT STATE-PARAMETER ESTIMATION
	Considering both the control variable z and parameters θ to be random variables, the Bayesian solution of this problem is to obtain the posterior joint pdf of z and θ given the observation y. Namely,
	  (11)
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	The numerator is the joint pdf of z, θ and y. This is obtained as the product of the likelihood of y times the prior joint pdf of z and θ. If we consider these two to be statistically independent, then we have:
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	The marginal pdf of the observations is:
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	The prior distribution for the control variable and the likelihood are easy to characterise. Recall that we have:
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	From now on, we explicitly note that  depends on θ. Note that the joint estimation problem is complicated since we have the product  in the likelihood, which limits the possibility of obtaining an analytical expression for the posterior p(x,θ|y). For this reason, we now discuss two solutions based in statistics of this pdf: the maximum-a-posteriori solution, and a popular approximation, the extended Kalman smoother solution.
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	2.3 THE MAXIMUM-A-POSTERIORI SOLUTION
	We can try maximising the joint pdf to obtain a maximum-a-posteriori (MAP) solution. This is equivalent of finding the minimum of the cost function:
	  (15)
	()(,|))lnp(,|)Jyy=-zzqq

	Using the distributions in Eq. (14) and an arbitrary prior for θ, the minus logarithm of Eq. (12) is:
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	The minimisers {z*, θ*} of the cost-function can be obtained by taking the gradient of J(z, θ|y) with respect to both control variables and parameters and equating to zero:
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	with the gradients  and . If we also assume that the parameters follow a MVG –i.e. θ ~ (µ, D)– we are able to compute the gradients explicitly. This yields the following system of τ + 1 + N equations:
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	with the Jacobian matrix  defined as:
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	One can solve z from Eq. (18a) to get:
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	with K and γ defined as
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	and similarly from Eq. (18b):
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	Eq. (20) is the Kalman analysis equation for the posterior mean (; ). The complication, however, is in our case θ is an unknown. Hence, Eq. (20) needs to be solved in tandem with Eq. (22), which cannot be done analytically in general.
	Kalman, 1960
	Kalman and Bucy, 1961

	To actually calculate the derivative of the model with respect to the parameters, we note the following. For the j parameter θ, Eq. (19) can be readily computed using the Cholesky factor L defined in Eq. (5) in the following manner:
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	The derivative of the Cholesky matrix can be found using Theorem A.1 of Sarkka (2013):
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	where the matrix  is defined as:
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	2.4 THE EXTENDED KALMAN SMOOTHER SOLUTION
	The extended Kalman Smoother solution can be derived directly from the MAP solution by centering the derivative of the model to the state and the parameters on the background values. Tracing back these derivatives we can rewrite Eq. (20) and Eq. (22) as:
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	Furthermore, in Eq. (27) we use a first-order Taylor expansion for  as:
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	We can solve then solve Eq. (26) and Eq. (27) by introducing a new augmented variable  and after some algebra we obtain:
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	where A is denoted as the posterior covariance in the extended variable space. In this case, the augmented gain  and augmented residual variance  are different from Eq. (21)
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	In the last step we have again assumed that state variables and parameters are statistically independent in the prior. Notice that even with a Gaussian prior p(θ) and a model that is linear in the state z the MAP and the extended KS solution can differ considerably. The MAP solution results in an implicit equation that needs to be solved iteratively. However, even if we manage to do this an uncertainty estimate is still lacking. It is possible, if the system is low-dimensional, to solve this problem with e.
	2.5 THE (ITERATIVE) ENSEMBLE KALMAN SMOOTHER
	The Iterative Ensemble Kalman Smoother (IEnKS) does solve the parameter estimation problem approximately, but it does introduce nonlinearity in the solution procedure. Hence it will provide a solution that is closer to the MAP solution than the Extended Kalman Smoother solution. In an IEnKS parameter estimation is typically performed via state augmentation, as in the extended Kalman Smoother. We define a variable  as:
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	where the augmented variable includes the state variable at all time steps and all the model error parameters, sometimes called the state formulation. Notice that this is slightly different than Eq. (1), where the augmented variable contains the initial conditions, the model error jumps, and the model error parameters, leading to the so-called forcing formulation. In a linear system, it is trivial to go from one formulation to the other, as explained in Tremolet () and Amezcua and Van Leeuwen (). For ensemb
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	Ren, Amezcua, and Van Leeuwen () studied the consequences of wrongly prescribing the model error decorrelation time scale, which was the only parameter. This is, they performed DA with a model error auto-correlation which was different from the one ‘guessed’ in the ensemble forecast. In the last part of the work, they used state augmentation in an EnKS –as formulated in Amezcua and Van Leeuwen ()– to estimate one time parameter in the model error. The authors did not, however, perform a systematic analysis 
	2021
	2018

	In this work we perform state augmentation experiments using two DA methods, the stochastic EnKS and its iterative variant (IEnKS), as formulated in Evensen (). This formulation aims to find the minimum of a cost function using ensemble members, either in one step (EnKS) or multiple steps (IEnKS). In the IEnKS a cost function is defined for each ensemble member j by rewriting the cost function Eq. (16) in terms of the extended variable u as:
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	in which  is the prior ensemble member j, and
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	  (33)
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	is a perturbed observation with the perturbation drawn from the observation error pdf, so η ~ N(0,r). In Eq. (32) it is clear that the product  is responsible for the difficulty of this problem. Evensen () proposed a simple Gauss-Newton iteration for each ensemble member as:
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	where i is the iteration index,  is a symmetric approximation of the Hessian of the cost function in which the second derivative of  is neglected, so
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	and  is the gradient of the cost function for ensemble member j. The iteration step length δ is tunable. The iteration is started at . The simple descent algorithm can be used with the ensemble gradient and the ensemble approximated Hessian information, as shown in equation (36) of Evensen (). For efficiency, we use the particular implementation described in Evensen et al. (). Tuning factor δ is an art. In our implementation we reduce the step size the closer we get to the minimum via:
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	with 0<c<1. The stochastic EnKS can be obtained from this formulation by using only one iteration and setting δ = 1.
	3 EXPERIMENTAL SETUP
	For our experiments, we use two types of model error (with one and two parameters), and two types of evolution models (linear and nonlinear).
	3.1 MODEL ERROR FORMULATIONS
	The first type of model error was used both in Amezcua and Van Leeuwen () and Ren, Amezcua, and Van Leeuwen (). The correlation of model error between two time steps is:
	2018
	2021

	  (37)
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	In this case, the auto-correlation decays exponentially, and it only has one parameter – the decay time scale ω (ω>0). When ω tends to 0 the model error becomes a white-noise process. When ω tends to infinity, the model error becomes fixed (a bias). Summarizing:
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	The second model error structure we explore contains both decaying and oscillatory elements:
	  (39)
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	The first term is a geometric memory term, with base –1 < ϕ < 1, which can be considered a decay parameter. The second term is oscillatory with frequency f. To avoid instability of the system, the decay parameter ϕ is bounded as 0 ≤ ϕ ≤ 1, and the frequency f is bounded by 0 < f < 0.5. When the frequency is 0.5, the covariance becomes purely decaying with time and it becomes purely oscillatory when the decaying parameter tends to 1.0. Summarising:
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	3.2 EVOLUTION MODELS
	To illustrate the issues that arise when estimating model error parameters that are related to temporal correlations, we restrict our experimental set up to two zero dimensional models. The first is the simple linear scalar model used for the analysis in section 2. The true model is:
	  (41)
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	Note that this true model is a stochastic model and we assume v ∼ N(0,q). The true model uses a real decay timescale ω, while the forecast model assumes a guessed time auto-correlation parameter ω. This value needs to be updated in the DA cycle.
	2
	r
	g

	The second set of experiments is much more ambitious since we use a non-linear map as the real system. In particular, we use the well-known logistic map ():
	Robert, 
	1976
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	where γ is the control coefficient that gives rise to stable solutions when 0 ≤ γ ≤ 4; by stable we mean solutions that do not leave the interval [0,1]. In our experiments we choose γ = 4 which puts the model in a chaotic regime. Note that in these experiments, the true model is deterministic. This seemingly simple non-linear map is non-invertible, with initialisation errors growing and saturating quickly. It has therefore been used before to test the performance of different configurations of the EnKF (). 
	Mitchell and Houtekamer, 2009

	As a forecast model, we propose a stochastic linear model
	  (43)
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	where γ is a prescribed damping coefficient for the forecast model, with its value within 0 < γ< 1 to keep the model stable. The model error has the same properties as in the experiments where the real model is linear. In section 1, we described an off-line process to compute the statistics of this model error from a long-time collection of differences between perfect and imperfect forecasts. What we look for, instead, is to estimate the time-related parameters online, along with the state estimation.
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	3.3 IMPLEMENTATION DETAILS
	Our experiments follow the fraternal (non-identical) twin set up. A real initial condition is prescribed and the true model is run for a long time. In the case of the true stochastic linear model shown in Eq. (2), a particular realisation of the model error is used for this true run. For this model we use α = 0.8 for all experiments. Synthetic observations are obtained at different times by applying Eq. (10) with r = (0.01). We generate synthetic observations every model time step, although we use different
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	•.For the one-parameter model error, the prior distribution is  with  and .
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	•.For the two-parameter model error, we consider the two parameters to be uncorrelated. Their marginal background distributions are:  with  and , and  with  and .
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	Both the EnKS and IEnKS use stochastic implementations, () i.e. one needs to add observational noise to observation values predicted by each ensemble member. In this way the real observation and the predicted observations are generated in the same way. In all our experiments, we use an assimilation window of τ = 20 time steps plus the initial condition. When we assimilate 1 observation per window, this is located at the end time. When we assimilate 20 observations per window, these correspond to all time st
	Van Leeuwen, 2020
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	For the IEnKS, we vary the number of iterations and the step length δ. We consider the IEnKS to have converged to a solution when the difference |u–u| < 0.01, which is approximately 1% of the range of the parameters.
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	4 EXPERIMENTAL RESULTS
	4.1 ILLUSTRATION OF STATE ESTIMATION
	In the first set of experiments we aim to illustrate the performance of the EnKS for state estimation. To this end, we use the 1-parameter memory setting and choose background values very close to the real parameter, both the linear and non-linear models. The results of these experiments are displayed in . In all panels, the truth is shown with a black thick line, randomly selected background ensemble members in blue, and randomly selected analysis members in red. For the analysis, the thick red line corres
	Figure 3

	The top row of this figure shows the results with the linear model. In this case, the EnKS is capable of recovering an analysis mean quite close to the truth. The availability of more observations makes an important difference, as noted in the results shown in the two columns (left shows 1 observation per window, right shows 20 observations per window). In this simple linear case, even with very sparse observations, the EnKS can still provide a fair estimation of the state.
	The bottom row shows the results with the logistic map. In the case with a single observation at the end of the simulation window, the EnKS was unsuccessful, which is expected considering the length of the assimilation window, and that joint estimation is being performed. To obtain a better results, more information from the observations is needed. With dense observations, observing every time-step for instance, the EnKS provides a correct estimation of all the state values at all time steps.
	4.2 PARAMETER ESTIMATION IN THE LINEAR MODEL
	4.2.1 One-parameter estimation
	Our first experiments with the linear model consist of trying to estimate the parameter ω via the EnKS, using the one-parameter autocorrelation shown in Eq. (37). The results are shown in . This figure has four panels. Panels (a), (b) and (c) have the same format, the difference amongst the panels is the number of observations per assimilation window. In each panel, the black vertical line shows the true value of the parameter. Different pdfs are displayed, computed as histograms using the ensemble members.
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	We perform similar experiments with the IEnKS. Recall that in this case the number of iterations can influence the performance of the smoother. We analyse the effect of the number of iterations in . This figure has two similar panels corresponding to 1 observation (left) and 20 observations (right) per window. The blue horizontal line denotes the background mean, and the black line the real parameter value. In each panel we plot several lines corresponding to analysis mean after different number of assimila
	Figure 5
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	In this subsection we have shown that EnKS converges to the real parameter value but a small bias remains, while its uncertainty estimate tends to contain that real value. The results show significant improvement increasing in the number of observations and the EnKS benefits from more assimilation windows. Next step is to extend our experiments to a more complex model error setting with two unknown parameters.
	4.2.2 Two-parameter estimation
	For this part of the experiments, we implement the model error with formulated in Eq. (39), which contains both decaying and oscillatory parameters. We start by experimenting with the EnKS. This method, however, fails to find the correct values for both parameters even in the case with observations every time step. This case is shown in . This figure shows the background (blue line) and analysis (orange-red lines) pdf’s for the oscillatory (left) and decaying (right) parameters. The vertical black lines cor
	Figure 7

	•.The input of this function is the vector u and the output is a scalar. The function maps 1 + τ + N values into a single one.
	θ

	•.The background elements needed by the cost function are the background mean  and and covariance D.
	bum
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	•.The observation elements needed by the cost function are the actual observation y and its variance r.
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	In  we start with a simple setting. We use the exact mean  and covariance D, as well as the observational variance r from section 3.3. Since we are not interested in the behaviour of the cost function with respect to the state variables, we set the state variables to a fixed value. and we only let the values θ = [f,ϕ] vary freely. We plot a cross-section of the cost-function in the two-dimensional parameter space. We choose x= 0 and ∊ = … = ∊ = 0.1 –note that we have to choose a value different from zero, o
	Figure 8
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	 has nine panels. Each one of the columns correspond to a different length of the assimilation window (recall that the observation is taken at the end), and each one of the columns correspond to a different given observation. We already know that the resulting cost function is not quadratic, and that the deformation from a quadratic cost function grows as the number of time step grows, and as the difference between the given observation and the predicted observation is larger. This is exactly what we observ
	Figure 8
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	The simple case shown before is not what the EnKS encounters in practice. First of all, we do not know the real background covariance matrix, so this comes from a sample estimator. Second, the cost function is applied to each ensemble member separately, and therefore the background mean is just the background value for each member. The final analysis estimator is the mean of the N estimated minima. We explore this in . First of all, we fix given observation to y = –4. Each column represents a different ense
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	We now apply the IEnKS to avoid getting stuck in a valley or a local minimum in the minimisation process. The results for the two-parameter estimation using IEnKS are shown in  and . We apply the IEnKS with 10 iterations and a fixed step length δ = 0.3.
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	 shows the ensemble background and analysis pdfs (after different number of assimilation windows) for the oscillatory (top row) and decaying (bottom row) parameters, for 1 observation (top row) and 20 observations (bottom row). This figure reveals that the IEnKS works fairly well in this case. Similar to the results with the single parameter estimation, the two-parameter estimation results improve with the increase in the number of observations and assimilation windows in the simulation period. The IEnKS es
	Figure 10
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	In closing the experiments for this subsection, we want to see how the IEnKS works with different initial guess for the two parameters. Given the complicated shape of the cost function, it is conceivable that we may get stuck in local minimums, even when using this sophisticated iterative method. We divide the two-dimensional parameter space into four quadrants, and we choose starting points in each one of the quadrants. These results are shown in . This figure shows results in the case of one observation (
	Figure 12

	After experimenting with the linear model, our next step is extending the experiments of two-parameter model error autocorrelation to the nonlinear model, the logistic map.
	4.3 PARAMETER ESTIMATION IN A NON-LINEAR MODEL
	The last experiments we perform are also the most challenging. In this case our true model is the logistic map with the damping coefficient γ = 3.99, and the proxy model is linear model with auto-correlated model error. The true model error autocorrelation in this case has both an oscillatory and decaying behaviour (this can be diagnosed offline as described in section 3), so we directly try two-parameter estimation. Since the EnKS failed on the two-parameter estimation even with the linear model, we decide
	In our first experiments we try to estimate f and ϕ using the IEnKS with a fixed iteration step length δ = 0.3 as used in the linear experiments. The results of these experiments are shown in  for both parameters (rows) and for 1 and 20 observations in the window (columns). With 1 observation at the end of the window the smoother does not seem to converge, and with 20 observations convergence seems to occur, but to incorrect values of the parameters. Increasing the number of iterations pr window or the numb
	Figure 13

	Since the IEnKS with a fixed step length δ fails to estimate the parameters directly, we explored three further experimental settings. In the first we transform the estimation problem to a more linear setting by estimating lag-1 and lag-2 autocorrelations of the model error (labelled as AC(1) and AC(2) respectively), and then transform the results to f and ϕ as the following:
	  (44)
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	In the second setting we use a decaying step length δ while using the untransformed parameters. However,  shows that neither method is successful, suggesting that the problem is highly nonlinear and a more careful tuning of the minimization is required.
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	In the third setting we both transform problem to first estimating the autocorrelations and applying a decaying step length. However, with only 1 observation in the assimilation window the IEnKS failed, no matter what we tried. For a fully observed system with 10 observations per assimilation window successful results can be achieved. We show results for reducing the step length δ by 2% after each iteration (i.e. c = 0.98 in Eq. (36)). From the two top plots in , we can see that the results are similar to t
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	Even though the minimization is successful the convergence is extremely slow, even in this simple zero-dimensional model. This illustrates that estimating parameters in model errors that are related to temporal correlations is a very hard problem.
	5 SUMMARY AND CONCLUSIONS
	Including the model error in the DA process is a difficult task to tackle, especially when this model error possesses spacial and temporal correlation. The objective of this work is to test whether it is possible to include the estimation of time-related model error parameters in the DA process. We have shown that even in the case of linear dynamics, the model error parameters are involved in an intricate and non-linear way in the model evolution. We have therefore focused in the use of the EnKS and the IEn
	With a simple linear-regressive model and exponential decaying memory in the model error, the EnKS works well using the state augmentation method to estimate a single model error parameter, even with only one observation at the end of the assimilation window. The estimation results are improving with an increasing number of observations in each window, and by iterating over more assimilation windows. The IEnKS with 10 iterations gives slightly superior results compared to the EnKS in this case, as expected.
	When the complexity of the temporal correlation in the model error is increased by including an oscillatory component state augmentation with the EnKS fails. Indeed, the cost functions involved show highly irregular shapes and convergence in one step is not possible. An IEnKS with a fixed iteration step length is shown to converge to the correct values when the number of observations in an assimilation window is high enough. The failure to converge with one observation at the end of the assimilation window 
	The nonlinear logistic map proves to be more challenging when estimating both model error parameters. The EnKS always fails, and the IEnKF fails with the standard fixed step length and direct estimation of the parameters. The combination of a step length that decreases with iteration and transforming the problem by first estimating the autocorrelations in the model error solves this problem, although we need a fully observed system, and convergence is very slow.
	Overall, we conclude that estimating temporal-correlation related parameters in model errors is a highly nonlinear problem, and more difficult than expected even in zero-dimensional systems. The number of observations in an assimilation window needs to be high enough for the smoother to have enough information on these parameters, and for nonlinear models careful tuning of an IEnKS is needed. The bottom line is that it is very well possible that the data-assimilation system does not have enough information 
	It is important to keep in mind that these results were obtained with a very large ensemble size of 200 for a zero-dimensional system and two parameters. This choice made sense for the focus of this paper, but in reality the limited ensemble size will give rise to extra noise in the estimates. The IEnKS, while being a very powerful method, does not converge to the posterior pdf with growing ensemble size for nonlinear data-assimilation problems (see e.g. ). Especially when multiple modes are present in the 
	Evensen, 2018
	Van Leeuwen et al., 
	2019
	Hu and Van Leeuwen, 2021
	Evensen, Vossepoel, 
	and Leeuwen, 2022

	Our next step is to investigate how these results carry over to more realistic and complex models such as a two-layer quasi-geostrophic model. The challenge in this case is whether the spatiotemporal model error correlation is separable or not. The ultimate goal is to have a online update for the model error within an operational system.
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	Figure 1 Simple illustration for the origin of auto-correlated model error. The system evolves under a real system represented by the logistic map (black line). 1-lag forecasts are produced with an imperfect model (blue line), persistence. The 1-lag model errors are computed by taking the differences of the two values (dashed magenta lines).
	Figure 1 Simple illustration for the origin of auto-correlated model error. The system evolves under a real system represented by the logistic map (black line). 1-lag forecasts are produced with an imperfect model (blue line), persistence. The 1-lag model errors are computed by taking the differences of the two values (dashed magenta lines).

	Figure 2 Model error statistics (mean in left panel, standard deviation in centre panel, lag-1 auto-correlation in the right panel). These statistics are computed off-line, after a long model run, in the way illustrated in figure 1. These are computed for different coefficients in the forecast model (horizontal axis in panels).
	Figure 2 Model error statistics (mean in left panel, standard deviation in centre panel, lag-1 auto-correlation in the right panel). These statistics are computed off-line, after a long model run, in the way illustrated in figure 1. These are computed for different coefficients in the forecast model (horizontal axis in panels).

	Figure 3 State update for both linear model and logistic map with different number of observations over a single simulation window using EnKS.
	Figure 3 State update for both linear model and logistic map with different number of observations over a single simulation window using EnKS.

	Figure 4 (a)∼(c) Exponential scale estimation with different numbers of observations and simulation windows using the EnKS and (d) the convergence of the mean of posterior pdf with the number of simulation windows.
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	Figure 5 Analysis mean and standard deviation resulting from using IEnKS with different number of observations (panels), iterations (horizontal axis), after different number of simulation windows (lines).
	Figure 5 Analysis mean and standard deviation resulting from using IEnKS with different number of observations (panels), iterations (horizontal axis), after different number of simulation windows (lines).

	Figure 6 (a)∼(c) Exponential scale estimation with different numbers of observations observations and simulation windows using IEnKS and (d) the convergence of the mean of posterior pdf with the number of simulation windows.
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	Figure 7 Two-parameter estimation, f (left) and ϕ (right), using the EnKS with 20 observations and different number of simulation windows.
	Figure 7 Two-parameter estimation, f (left) and ϕ (right), using the EnKS with 20 observations and different number of simulation windows.

	Figure 8 Exact cost function including the two-parameter model error, the state variable, observations with different number of time-steps and values of observations using the EnKS. The blue point represents the analysis value predicted after 1 EnKS step (with no extra iterations), and the pink point represents the exact global minimum.
	Figure 8 Exact cost function including the two-parameter model error, the state variable, observations with different number of time-steps and values of observations using the EnKS. The blue point represents the analysis value predicted after 1 EnKS step (with no extra iterations), and the pink point represents the exact global minimum.

	Figure 9 Sample cost function of different ensemble members (from left to right, N= 2,4,8) including the two-parameter model error, the state variable, observations with different number of time-steps and values of observations using the EnKS. The blue point represents the analysis value predicted after 1 ENKS step (with no iterations), and the pink point represents the exact global minimum.
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	Figure 10 Two-parameter estimation using the IEnKS with different number of observations and simulation windows, and 10 iterations.
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	Figure 11 Posterior mean of the two parameters over the number of simulation windows with different number of observations.
	Figure 11 Posterior mean of the two parameters over the number of simulation windows with different number of observations.

	Figure 12 Two-parameter estimation for different priors using the IEnKS with different number of observations and simulation windows after 10 iterations. The blue dots show different background values, used as initial conditions for the minimisation. The red dots show the obtained analysis values. The black dot in the centre shows the true values for the parameters.
	Figure 12 Two-parameter estimation for different priors using the IEnKS with different number of observations and simulation windows after 10 iterations. The blue dots show different background values, used as initial conditions for the minimisation. The red dots show the obtained analysis values. The black dot in the centre shows the true values for the parameters.

	Figure 13 Two-parameter estimation using the IEnKS with the logistic map, using a fixed iteration step length (δ = 0.3), 10 iterations per window, different number of observations and simulation windows.
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	Figure 14 Two-parameter estimation using the IEnKS with 10 observations per window after 10 iterations with the logistic map. On the top panel, (a)∼(b) the iteration step-length is fixed (δ = 0.3), and we estimate the lag-1 and lag-2 autocorrelation then transform them to f and ϕ. On the bottom panel, (c)∼(d) the parameters are estimated directly with a decaying δ.
	Figure 14 Two-parameter estimation using the IEnKS with 10 observations per window after 10 iterations with the logistic map. On the top panel, (a)∼(b) the iteration step-length is fixed (δ = 0.3), and we estimate the lag-1 and lag-2 autocorrelation then transform them to f and ϕ. On the bottom panel, (c)∼(d) the parameters are estimated directly with a decaying δ.

	Figure 15 Lag-1 and lag-2 autocorrelation are estimated and transform to the parameters (a) f and (b) ϕ, using the IEnKS with a decaying iteration step length, 10 iterations per window, for different numbers of assimilation windows with the logistic map. The bottom two figures show the convergence of the posterior mean of (c) f and (d) ϕ over the number of simulation windows with observations every time-step.
	Figure 15 Lag-1 and lag-2 autocorrelation are estimated and transform to the parameters (a) f and (b) ϕ, using the IEnKS with a decaying iteration step length, 10 iterations per window, for different numbers of assimilation windows with the logistic map. The bottom two figures show the convergence of the posterior mean of (c) f and (d) ϕ over the number of simulation windows with observations every time-step.
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