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Abstract

During the UN Climate Change Conference (COP26), in November 2021, the international

aviation community agreed to advance actions to reduce CO2 emissions. Adopting more

fuel efficient routes, now that full global satellite coverage is available, could achieve this

quickly and economically. Here flights between New York and London, from 1st Decem-

ber, 2019 to 29th February, 2020 are considered. Trajectories through wind fields from a

global atmospheric re-analysis dataset are found using optimal control theory. Initially,

time minimal routes are obtained by applying Pontryagin’s Minimum Principle. Minimum

time air distances are compared with actual Air Traffic Management tracks. Potential air

distance savings range from 0.7 to 16.4%, depending on direction and track efficiency.

To gauge the potential for longer duration time minimal round trips in the future, due

to climate change, trajectories are considered for historic and future time periods, using

an ensemble of climate models. Next, fixed-time, fuel-minimal routes are sought. Fuel

consumption is modelled with a new physics-driven fuel burn function, which is aircraft

model specific. Control variables of position-dependent aircraft headings and airspeeds or

just headings are used. The importance of airspeed in finding trajectories is established,

by comparing fuel burn found from a global search of optimised results for the discre-

tised approximation of each formulation. Finally, dynamic programming is applied to find

free-time, fuel-optimal routes. Results show that significant fuel reductions are possible,

compared with estimates of fuel use from actual flights, without significant changes to

flight duration. Fuel use for winter 2019–2020 could have been reduced by 4.6% east-

bound and 3.9% westbound on flights between Heathrow and John F Kennedy Airports.

This equates to a 16.6 million kg reduction in CO2 emissions. Thus large reductions in

fuel consumption and emissions are possible immediately, without waiting decades for

incremental improvements in fuel-efficiency through technological advances.
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Chapter 1

Introduction

Commercial aviation can be held responsible for 3.5% of all anthropogenic climate change

(Lee et al., 2020). By 2050 emissions are forecast to be three times those recorded in

2015 (ETS, 2021). We rely on flights, however, to move huge amounts of freight (61.3

million tonnes in 2019) and passengers (4.54 billion in 2019) (Mazareanu, 2020). The

United Nations Framework Convention on Climate Change (UNFCCC) has set a goal of

commercial aviation being net-zero by 2050 (UKCOP26, 2021), with the European Union

also taking the intermediate step of targeting a 55% net reduction in aviation greenhouse

gas emissions by 2030 (ETS, 2021). These are worthy ambitions, but there is a heavy

reliance in the industry on carbon off-setting, with 80% of the 2021-2035 EU emissions

above 2020 levels expected to be offset (ETS, 2021). Not creating the emissions in the first

place would obviously be preferable, but this is not so straightforward, with electrification

impractical for long haul flights and hydrogen powered aircraft needing further research

(Schwab et al., 2021; Airbus, 2021). Clearly we need an immediate answer to limit the

impact of aviation emissions. This is offered by improved trajectory planning. By taking

advantage of wind conditions and a new satellite communications network, aircraft will be

able to fly routes that reduce their fuel use and thus their CO2 emissions (Aireon, 2020;

Girardet et al., 2014).

In this thesis, we look at different ways to plan trajectories across the North Atlantic,

between John F Kennedy Airport in New York (JFK) and London Heathrow Airport

(LHR). We consider the problem through the framing of Optimal Control Theory and

then use three different ways to reach a solution. In the first instance time minimal

trajectories at fixed altitude and airspeed are considered, which allows the correspond-

ing Optimal Control Problem (OCP) to be solved using Pontryagin’s Minimum Principle
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(PMP) (Pontryagin et al., 1962). This method relies on optimisation of the initial system,

before discretisation to allow for an approximate numerical solution. When looking at

fuel optimisation for a fixed-time flight, we instead discretise the system first and find the

control variables which give the minimum value of a cost functional at each time interval,

subject to a non-linear constraint. From here a trajectory can be created. Both of these

approaches are reliant on values being supplied to initiate the optimisation. In the third

method, dynamic programming, this is not necessary, as by solving the Hamilton–Jacobi–

Bellman (HJB) equation a value function is obtained which allows all points on a grid

to be tested for all combinations of control variables. In this way we recover the optimal

feedback control based on discrete time intervals and a spatially discretised state space.

From here fuel optimal, free-time trajetories can be found.

Efficient trajectory planning has been the subject of much research in the past, but previ-

ously routes have often been optimised without accounting for the wind field, or through

simplified wind fields to allow for easier mathematical analysis. In this thesis we use re-

analysis data to allow actual wind fields to be considered (Kalnay et al., 1996). This gives

a more realistic idea of the complexity of the atmospheric conditions encountered across

the North Atlantic and allows for a useful comparison to be drawn between actual flight

data and results from modelled, optimised flights. Whilst previous research has tended to

concentrate on a selection of a few particular days, we use data describing the atmospheric

conditions for all 91 days of an entire winter season. In other trajectory planning research,

actual flight data is often not considered or is used for a restricted number of flights. In

Chapter 7 we compare simulated fuel and time minimal trajectories with over 3000 actual

flight routes. The most important novelty of this research is that a new fuel burn func-

tion has been applied to estimate fuel use for both actual flights and simulations (Poll &

Schumann, 2021a,b). This aims to give an accurate value for fuel consumption, relying on

more transparent methods than Eurocontrol’s Base of Airline Data (Eurocontrol, 2021a).

1.1 What questions remain to be answered?

Although this is a well explored area of research, there are still some key questions that

await answers:

1. How much difference would horizontal time optimal trajectory planning make to

fuel use and thus carbon dioxide emissions, in fixed airspeed transatlantic flights,
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compared with the Organised Track Structure (OTS) used currently?

2. To what extent is climate change likely to affect minimum times of flight within the

next 35 years?

3. Can fixed-time flights be planned for a whole winter season to ensure that fuel is

minimised?

4. In minimising fuel burn of transatlantic flights, can extra benefits result from con-

trolling the airspeed in addition to the heading angle?

5. Would minimising fuel, but allowing time to be free, in a fixed altitude flight produce

trajectories that are more fuel efficient than those currently flown and to what extent

would the flight duration be changed?

Question 1 will form the basis of the research shown in Chapter 4. The main section of

this material has been published in the Environmental Research Letters journal (Wells

et al., 2021). Question 2 is answered in Chapter 5 through a project undertaken jointly

with the Met Office and forms part of a paper submitted to Meteorological Applications.

Results and methods described in this chapter, however, were found independently by the

author of this thesis. Questions 3 and 4 are both discussed in Chapter 6, the content

of which has been published in the Optimization and Engineering Journal (Wells et al.,

2022). The final question is addressed in Chapter 7. A summary of the answers to all

of these questions and a brief overview of possible future research directions are given in

Chapter 8.

1.2 Outline

This thesis aims to present the answers to these questions as well as providing some back-

ground information on motivation, previous research and methodology.

In Chapter 2 the motivation behind this research is explored, looking at why aviation

emissions are a priority, how aviation is affecting climate change and also how climate

change is affecting aviation. We then look at possible solutions to this problem and show

that re-routing is the most immediate way to reduce emissions. There is a brief overview

of the origins of aircraft routing, before a thorough review of more recent research in this

area is presented. Lastly we ask if any of the ideas discussed could actually be applied
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operationally.

Chapter 3 looks in more depth at a variety of optimal control formulations and approaches

to solving these. A heuristic proof of PMP is presented as well as a thorough explanation

of both non-linear and dynamic programming. The fuel burn rate function used for all fuel

minimal optimisation is discussed, along with methods for calculating the take-off mass of

an aircraft. A review of the data source for wind and temperature information is presented

and an analysis of atmospheric conditions at different altitudes is undertaken, to inform

later decisions on model formulation. Finally the OTS, along which transatlantic flights

currently fly, is introduced.

The next four chapters all contain original results. Chapter 4 is based on a published

paper (Wells et al., 2021), in which PMP is used to find a solution to the time minimal

trajectory problem. In this formulation both altitude and airspeed are held constant across

each trajectory and heading angle is varied. The initial heading angle, which allows a time

minimal trajectory to arrive at the destination airport, is found using a bisection method.

The problem is solved approximately, by discretising the dynamical system with respect

to time and applying the Euler forward step numerical method. In order to compare the

efficiency of results from the simulation and flights along the actual OTS, air distance is

used. This metric is the distance flown by an aircraft relative to the air around it. Given

that both airspeed and altitude are fixed, fuel burn and thus emissions are directly propor-

tional to this value. Results for the optimised for wind routes (OFW) are calculated for

each day between 1st December, 2019 and 29th February, 2020 and similarly air distance

estimates along each track are found for each of the daily Air Traffic Management (ATM)

tracks in each direction (ATM tracks). It is shown that fuel use could be reduced by up to

16.4% on a single flight. However, it is also conceded that the majority of aircraft will not

fly on the least efficient tracks, so data from NATS is used, giving the number of flights

along each track each day. In this way a weighted average can be found that allows us

to conclude that on average 2.5% of fuel can be saved flying west and 1.7% flying east,

amounting to 6.7 million kg of CO2 emissions being prevented across the whole winter

season between these two airports.

In Chapter 5 similar methods are applied in order to compare the flight duration for

minimum time trajectories between the same airport pair in a historic time period (1986-
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2005) and a future time period (2036-2055). Both summer and winter of each year are

considered, but this time the atmospheric conditions are taken from an ensemble of eight

different climate models. The trajectory durations based on flying through the daily wind

field for each member of this ensemble are averaged to give a final result for each day. Given

the number of results to be found, there are certain individual days for which a unique

extremal route between the airports does not exist and thus a new method is found to

locate the globally time minimal trajectory. Results show that there is very little differ-

ence between flight durations for these time periods. These findings are compared with

previous research and reasons for the differences between conclusions discussed (Irvine et

al., 2016; Williams, 2016).

Fixed-time, fuel-optimal flights are considered in Chapter 6, which is based on a pub-

lished paper (Wells et al., 2022). Here it is established that time minimal flights are not

always convenient for airports and airlines, but that by fixing the flight duration for a

whole winter season, fuel could be saved that would otherwise be used in airport stacking

patterns. A dynamical system based on change in longitude, latitude and mass forms

the basis of the OCP with the cost functional now given as the integral of the fuel burn

function introduced in Chapter 3. Two formulations are considered, one in which both

the heading angle and the airspeed are controlled and the other in which airspeed is kept

constant and heading angle is the only control variable. Once again the a re-analysis

dataset is used to provide daily atmospheric data (Kalnay et al., 1996) and the altitude

remains constant. The dynamical system and the cost functional are both discretised with

respect to time. Then the new discrete approximation to the problem is optimised via

Matlab’s fmincon function, coded within a global search function. In this way many sets

of initial conditions are tried in searching for the minimum fuel trajectory through each

daily wind field, in each direction. When results from each of the two formulations are

compared, it can be seen that an extra 723 000 kg of CO2 emissions could be prevented

by controlling airspeed in addition to heading angle. A link between average trajectory

airspeed and average tailwind along the Great Circle Route (GCR), the shortest path

between two points, is also established.

The final results chapter, Chapter 7 addresses the problem of finding both time mini-

mal and free-time, fuel minimal routes for the cruise phase across the North Atlantic,

again between LHR and JFK for the same winter period and the same daily atmospheric
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conditions. The state space is divided into a discrete grid of longitude, latitude and mass,

across which a value function is found by solving the HJB equation numerically, using a

Semi-Lagrangian scheme. Thus this method of dynamic programming allows us to retrieve

a set of optimal controls for each formulation of the problem, from which time and fuel

optimal routes can be found. The same atmospheric data is then applied in estimating the

fuel use of actual aircraft routes between this airport pair on each day of the winter sea-

son, adjusted to remain at the same altitude. Comparing the data for time minimal, fuel

minimal and actual flights, we show that emissions could be reduced by 4.6% flying east

and 3.9% flying west, using the fuel minimal formulation and that, although the duration

of such flights tends to be longer than for the other two methods, it is not significantly

longer, at a 5% level, than routes currently flown. This is achieved by a mixture of lower

airspeeds and more efficient routing, accounting for atmospheric conditions.

Finally, the main conclusions are presented in Chapter 8. The research questions discussed

in Section 1.1 are answered and we look at how these responses could affect operational

transatlantic route planning. Lastly we consider some of the limitations of this research

and suggest ways in which it could be enhanced in the future, such as looking at different

stretches of airspace, working out how Trajectory Based Operations (TBO) could schedule

multiple flights, considering other atmospheric phenomena, such as turbulence and using

probabilistic atmospheric data to account for uncertainties in wind fields.
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Chapter 2

Motivation and previous research

2.1 Motivation

In this thesis optimal control theory methods will be applied to find new transatlantic

flight routes for commercial aircraft in order to reduce emissions. Before previous research

is examined and new mathematical models are established, it is important to explain why

this research is both essential and timely.

2.1.1 Why are aviation emissions a priority?

Aviation is currently responsible for approximately 2.4% of all anthropogenic sources of

CO2, but this figure is growing (Graver et al., 2019; Grewe et al., 2019; Lee et al., 2020).

According to the International Civil Aviation Organisation (ICAO), if action is not taken,

aircraft emissions are likely to continue to increase through 2050 (ICAO, 2019). Growth

in flight numbers of 80% was recorded between 1990 and 2014 (Hasan et al., 2021) and

although the recent pandemic has stalled increases in air travel in the last two years, fore-

casts post recovery seem to imply a continued growth. The ICAO’s 2018 estimate of a

compound annual growth rate of 4.3% from 2015 to 2035 still seems likely (Lin et al., 2018;

Quadros et al., 2020). Other estimates put the growth in air traffic by 2050 as somewhere

between a 47 and a 65% increase on 2019 pre-pandemic levels.

The ICAO has already established a policy of improving the fuel efficiency of international

flights by 2% annually, through advances to aircraft technology and ATM and operations

(ICAO, 2016, 2019). Failure to comply with this target will not, however, attract any kind

of penalty for airlines (Hasan et al., 2021).
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During the UN Climate Change Conference, in November, 2021, the international aviation

community agreed to work together to accelerate their actions to reduce CO2 emissions

(UKCOP26, 2021). The agreement was for the ICAO to implement short, medium and

long term goals in order to keep global average temperatures from exceeding 1.5◦ C. States

are encouraged to produce action plans that will be reviewed by the ICAO, to include de-

ployment of sustainable aviation fuel (SAF) and improvements to the Carbon Offsetting

and Reduction Scheme for International Aviation (CORSIA).

SAF, whilst providing an up to 80% reduction in CO2 emissions, is, however, still too

costly and too scarce presently to be economically viable in an industry with histori-

cally low profit margins (Uppink, 2021) and a fleet tuned to use kerosene (Hasan et al.,

2021). The International Energy Agency through their Sustainable Development Scenario

are currently targeting a 10% take-up of biofuel by 2030, rising to 20% within ten years

(Hasan et al., 2021; IEA, 2022). When SAF is more readily available, the costly nature of

the fuel, which has currently limited it to only 0.05% of the EU market, will mean that

airlines will still be interested in the most fuel efficient routes (Uppink, 2021).

In 2016, 192 nations agreed to CORSIA pledging to use offset schemes to maintain net

emissions at the 2020 level (Timperley, 2019). CORSIA only provides short term allevia-

tion, as there are difficulties in ensuring that genuine net emissions reduction takes place

when investing in a range of carbon reduction projects. CORSIA does have the potential

to reduce emissions by 18% by 2039, but in 2021 this figure was just 1.4% and so growth

in demand may well negate any emissions reductions made by the scheme, given an annual

increase in demand for flights in the Middle East and the Asia Pacific region of 13% and

8.8% respectively (Hasan et al., 2021). The ICAO has an offset target of 2.5 billion tonnes

of CO2 from 2021 to 2035, but as this is a voluntary scheme from 2021 to 2026, benefits

may be limited if nations become unable or unwilling to comply (Hasan et al., 2021).

Various alternative solutions to offsetting and the greater use of synthetic bio-fuels include

replacing the entire air transport fleet of approximately 31 000 aircraft with updated mod-

els (CAPA, 2018; Monbiot, 2007). The current fleet have an average age of 11.3 years,

so given that commercial aircraft have an operational lifetime of 25 to 30 years, this will

take time (Hasan et al., 2021). Moreover, those technologies that have the potential to
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produce significant reductions in fuel use are high-risk, high-cost and have implementa-

tion timescales measured in decades (Jensen et al., 2015). By contrast, improvements to

current operational procedures, such as routing flights more efficiently, have the poten-

tial to provide immediate, low-cost, low-risk and significant reductions, with the largest

reductions possible on long-haul flights (Girardet et al., 2014; Németh et al., 2018).

2.1.2 What effect do the emissions have?

Fuel saving through more efficient operations would be a benefit to both the airlines

through reduced fuel expenditure and to the environment through reduced emissions. It

is difficult to trace all of the problems caused by aviation cruise emissions, as this depends

heavily on the state of the winds and other weather effects at the boundary of the upper

troposphere and lower stratosphere. However, a number of different effects are worth not-

ing.

Firstly extra CO2 in the atmosphere accelerates global warming. As a greenhouse gas

it absorbs heat and then gradually releases it, which allows the Earth’s average temper-

ature to be 16◦ C rather than below freezing. In the post-industrial age, however, there

is an unnaturally high concentration of carbon dioxide in the atmosphere, which means

too much heat and so the Earth’s average temperature is rising (Buis, 2019). CO2 has a

long term effect as it stays in the atmosphere for between 300 and 1000 years (Lindsey,

2021). The extra heat is projected to melt Arctic sea ice, altering the temperature gradi-

ent between the pole and the equator in the northern hemisphere. Such changes will alter

weather globally (Eurocontrol, 2021b). The role of CO2 is also important as it dissolves

into water, which has resulted in ocean acidification, posing a threat to marine wildlife

(Godbold & Calosi, 2013).

CO2 is not the only aircraft exhaust gas which contributes to climate change, with three

per cent of anthropogenic nitrogen oxides (NOx) being due to aviation (Schumann, 1997).

It is possible to reduce the amount of NOx emitted by aircraft by reducing the temperature

at which fuel is burned, but this leads to an increase in the amount of fuel used and thus

an increase in CO2 emissions. Quantifying the radiative forcing effect of NOx emissions

is far more complicated than for those associated with CO2, as it lasts for less than a

year in the atmosphere and has both a direct warming effect and an indirect cooling effect

(Grobler et al., 2019). This happens because the aviation NOx leads to higher levels of
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ozone (O3) production. Whilst this increases radiative forcing in the short term, with an

effect which decays in a few months, some of the extra ozone reacts with methane in the

atmosphere, thus reducing the radiative forcing effect of the methane, which has a lifetime

of 10 years (Khodayari et al., 2014). It is thought that the net effect of the aviation NOx

is an increase in radiative forcing, but is difficult to estimate just how large this is due to

the different timescales and also the fact that the increase depends in a non-linear way

on the background NOx levels present at the point where emissions occur. Khodayari et

al. (2014) found a 10-36% difference in estimates of the radiative forcing effect of nitrogen

oxides depending on whether both short and long term effects were included. So although

nitrogen oxides have an important impact in terms of air quality near airports (Grobler et

al., 2019), their net climate effect is less than that of CO2, which has a lifetime of hundreds

of years (Archer et al., 2009).

Contrails (short for condensation trails, line shaped clouds of ice particles left by air-

craft), contrail cirrus (contrail clouds that last for at least ten minutes), water vapour and

NOx can all cause warming (Kärcher, 2018). The non-CO2 impact is said to be double

that of CO2, so why concentrate on reducing fuel use, with its emphasis on CO2 reduction?

Recent work has focused on reducing non-CO2 emissions via flight routing (Matthes et

al., 2020, 2021; Yamashita et al., 2020, 2021), but this has been shown to increase flight

costs and times (Grewe et al., 2017; Rosenow et al., 2018; Grewe et al., 2019) and require

hourly, finer resolution forecasts (Rosenow et al., 2018; Jackson et al., 2001). Whilst the

effect of CO2 emissions on radiative forcing is known with a less than 1% degree of un-

certainty (Lee et al., 2020), the effect of non-CO2 emissions is less certain (Teoh et al.,

2020; Boucher et al., 2013). Teoh et al. (2020) showed that only 2.2% of the flights they

considered produced 80% of the contrails observed, so planning contrail avoidance routes

for all flights would not be efficient (Teoh et al., 2020). In concluding their research, Grewe

et al. (2017) found that the science behind climate routing was not yet robust enough for

airlines to implement such routes. An additional problem is the lack of consensus on how

to exploit the effects of contrails, as in certain situations these can lead to cooling.

Where flights do intercept supersaturated ice regions that could lead to the formation

of contrails, these are often significantly wider than they are deep, so Avila et al. (2019)

found that an increase in altitude by 2000 to 4000 feet could ensure a reduction in contrail

formation with very little cost in terms of fuel. By optimising just the horizontal trajec-
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tory to minimise fuel use, the altitude is left for small tactical changes that may happen

en-route. For these reasons, here only CO2 emissions will be considered from fixed altitude

trajectories.

Cruise altitude emissions also have the potential to impact surface air quality. As early

as 2010 it was estimated that such emissions were the cause of 8 000 premature deaths

a year, particularly through an increase in solid particles less than 2.5 µm in diameter

(Barrett et al., 2010). Ground level impacts from cruise level emissions have been shown

to be higher than emissions from take-off and landing and to have a higher impact in the

winter, due to downward transport from the upper altitudes (Jacobson et al., 2013; Lee

et al., 2013; Xing et al., 2016). However, it is hard to quantify surface air quality effects

accurately. More recently Vennam et al. (2017) have even shown that previous estimates

may have exaggerated some effects due to the coarseness of grid resolution not allowing

processes to have been observed in enough detail. By contrast, it has been estimated that

civil aviation emissions now contribute 16 000 premature deaths annually (Grobler et al.,

2019; Quadros et al., 2020). Such a large effect would normally result in action to reduce

this death rate, but regulation is rendered far less straightforward when the cause and the

effect are often distant. For example, 88% of the health impacts from aviation emissions

over North America actually occur outside of this region (Quadros et al., 2020).

So it seems that re-routing to reduce emissions is the most efficient way at present to

counter both environmental and more immediate health impacts. In addition, long-haul

flight sustainability, at least until better measurement of the other warming effects is

possible, is best tackled by considering just CO2 effects.

2.1.3 Why are we considering the North Atlantic?

The demand for a quick and safe way to cross the vastness of the Atlantic Ocean dates

back to the early twentieth century, well before land planes were capable of taking off with

the sheer weight of fuel needed to complete the trip. Early commercial passengers from

1919 to the end of the 1930s relied on airships and flying boats to reduce the five day sea

voyage to a 29 hour luxury flight (Airlines, 2019). For the seaplanes this trip required such

a weight of fuel to be carried, that they could not actually take off and had to be carried

by larger aircraft to the correct altitude and released (Cummins, 2019). However, using

technology developed during World War II, such as larger piston engines and longer run-
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ways, by the end of the 1950s the transatlantic route was number one in the world in terms

of both traffic and revenue (Airlines, 2019; Cummins, 2019). Flights were scheduled to

take 17 hours 40 minutes flying west and 15 hours 15 minutes flying east (Cummins, 2019).

Eight years later jet aircraft were introduced, leading to more routes, decreasing flight

times and greater flexibility. The next major innovation was the Boeing 747, which, with

its greatly increased capacity, made air travel available to all, despite being a huge de-

velopmental risk at the time when Boeing designed it in just 29 months (Oakley, 2019).

With the exception of supersonic flight, there have been no major technological innova-

tions since this time (Cummins, 2019).

Today transatlantic air routes are the most travelled in the world with about 300 flights in

each direction every day (Irvine et al., 2013). During the winter period of 2019 alone, over

3.8 million passengers were flown between New York and London and from April, 2017 to

March, 2018 this route was the first to produce more than a billion dollars in revenue for

a single airline over a twelve month period (OAG, 2020; Reed, 2018). Globally 92.5% of

aviation fuel is burned in the Northern Hemisphere and 74.6% of all fuel burned happens

at cruise altitudes (Vennam et al., 2017). By choosing the North Atlantic crossing, we are

looking at a region of long-haul flights which spend 92% of the ground distance in cruise

(see Chapter 4) and this is where a move to trajectory based operations (TBO) will have

most effect (Girardet et al., 2014).

Commercial flying is the most emissions intensive form of transport for short-haul travel,

with flights 3 to 1300 times more harmful to the environment than trains across Europe

(Schennings et al., 2019). This implies that there is a case to be made for taxing short-

haul flights to make them less attractive to consumers, particularly when the time needed

for the journeys by air or rail are comparable. However, crossing the North Atlantic is

not an easy journey without an aeroplane. According to carbon offsetting companies, a

seven night crossing on the Queen Mary 2 ocean liner will produce 0.43 kg per passenger

mile of CO2, compared with their estimate of 0.257 kg per passenger mile for a long-haul

flight (CitytoSea, 2022). Not only is the journey longer and less environmentally friendly

(both in terms of carbon dioxide emissions and waste produced), but it is also over three

times more expensive. Although Ren & Leslie (2019) estimate that four billion dollars of

fuel are used annually in flights through the North Atlantic Corridor, their research also
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concludes that aircraft travel remains the most energy efficient option for long interconti-

nental distances.

It would seem, therefore, that a transatlantic crossing is best completed by air, but do we

really need to cross the Atlantic? Has the recent Covid-19 enforced use of virtual meetings

and “staycations” proved that the cessation of some transatlantic travel is a possibility?

According to an article in the Evening Standard on 21st September, 2020, the collapse in

air travel between London and New York has led to millions being lost in business deals

and tourism (English et al., 2020). At a more intrinsic level, flight has also played an

important role in hastening the development of countries and connecting cultures (Singh

& Sharma, 2015). Commercial flying has made an: “undeniable contribution to global

wealth creation and improved quality of life” (Poll, 2011).

Aside from the $691.3 billion this sector contributed to global GDP in 2019 alone (Hasan

et al., 2021), there are also more subtle reasons why commercial aviation is important.

What is overlooked by those calling for fewer flights, is our dependence on weather data

provided by this sector. In 2008, over 230 000 observations per day came directly from

the fleet of commercial aircraft, resulting in a “significantly positive impact on numerical

weather prediction and operational forecasting” according to the World Meteorological

Organisation (WMO) (Grooters, 2008). This data is used by many scientists and meteo-

rologists worldwide, including those at the National Centers for Environmental Prediction

in the United States, due to its excellent quality. For example only 0.8% of recorded wind

data was rejected after data cleaning by the US Navy (Moninger et al., 2003). The im-

portance of this method of data collection was further underlined during the COVID-19

pandemic. With far fewer flights being made between March and May, 2020, available

data from passenger and freight flights fell by 75% causing forecasts to suffer (Freedman,

2020; Chen, 2020). In tests run in which 80% of aircraft collected data was removed from

the global observation system, the reduction in forecast skill was between 30 and 60%,

confirming that these data are essential (James et al., 2020).

2.1.4 Why is this research timely?

Re-routing transatlantic flights to save fuel and thus reduce CO2 emissions sounds like

a win-win scenario, with airlines saving money and the environment also benefitting. In

which case, why has this not been implemented previously? Historically flight routes
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across the North Atlantic have been constrained by the large volume of air traffic and the

absence of radar coverage in mid-ocean (Dhief, 2018). However, a new network of 66 low

Earth orbit satellites currently being tested is set to revolutionise communications across

the Atlantic, with aircraft able to send data continuously during flight. This improved

situational awareness, driven by data analytics, machine learning and artificial intelligence

allows gate-to-gate tracking of flights, making it possible to consider more flexibility within

ATM routing (Aireon, 2020; Poret et al., 2015; NATS, 2019).

Since separation between flights was first introduced in 1955 by the ICAO, it is noticeable

that each time an advance in aircraft tracking or communications has occurred, reductions

in aircraft spacing have followed. When the twice daily OTS first came into use in the

mid 1960s, the time gap between planes on the same track was reduced from 30 minutes

(a gap of about 432 km at today’s airspeeds) to 10 minutes. When it became illegal to fly

without a navigation system, in 1977, the previous lateral safety margin of 120 miles was

halved. In 2015 the Future Air Navigation System became mandatory using ADS (Auto-

matic Dependent Surveillance) and CPDLC (Controller Pilot Data Link Communications)

to send automatic position updates at agreed times or when an aircraft deviates from its

agreed path (NATS, 2007). This surveillance technology, however, requires the aircraft

to cooperate in some way with the ground systems, meaning dependence on primary radar.

It is only with the advent of the Aireon satellite system that we can talk not just about

bringing tracks closer together, but redesigning the system completely to allow for maxi-

mum access to a fuel-optimised route. In fact from 1st March, 2022, the OTS tracks were

removed up to a flight level of 33 000 feet and the separation of aircraft changed from the

previous 40 to 14 nautical miles. This was as a direct response to the communications

upgrade, via the Aireon satellites, that now allows aircraft positions to be updated in less

than 8 seconds (Ahlgren, 2022). It should be noted that the paper on which Chapter 4 of

this thesis is based, was published before this change to the OTS and was in fact cited in

the decision to experiment with such changes (Young, 2021).

My research aims to justify the need for the implementation of fuel and time optimised

routes and prove that these will not only reduce fuel use and CO2 emissions across the

Atlantic, but that it is also possible to schedule flights based on each day’s weather condi-

tions to ensure that landing slots are not missed. Early flights waiting in holding patterns
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for a gate to become available are still burning fuel, with engine efficiency greatly reduced

at these lower altitudes. For overnight transatlantic flights there is also the operational

issue of arriving in Europe too early to adhere to rules on night time noise curfews (Eu-

rocontrol, 2021b). Delayed flights have a knock-on effect for the rest of the day, causing

extra spending on crew, fuel and maintenance. In 2007 costs due to delays amounted to

a total of $8.3 billion across the airline industry (Peterson et al., 2013). Improvements to

routing, allowing weather to be taken more into consideration in scheduling, could also al-

low airlines to reduce “padding” of flight times on their timetables, thus enabling them to

reduce crew costs. This broad overview justifies my research, but it is vital to explore the

large body of material supporting this approach further, in order to focus on all aspects

of the problem.

2.2 Emissions and climate change

If the global economy fails to decarbonise sufficiently rapidly, there may be significant

consequences for aviation from the ensuing climate change. These consequences include

increased turbulence as the jet stream becomes more sheared (Williams & Joshi, 2013;

Williams, 2017; Storer et al., 2017; Lee et al., 2019; Kim et al., 2015), modified flight

routes and journey times as the prevailing high-altitude winds shift and strengthen (Kar-

nauskas et al., 2015; Irvine et al., 2016; Williams, 2016; Kim et al., 2020) and take-off

weight restrictions as warmer air reduces lift and thrust on the runway (Coffel & Horton,

2015; Gratton et al., 2020). Therefore, aviation is not only a contributor to climate change,

but may also suffer from its adverse effects increasingly in future.

This is particularly apparent over the North Atlantic due to the prevailing wind pat-

tern, the “jet stream”. This is an eddy-driven jet comprising a core of strong winds 8 to

11 km above the surface of the Earth and generally flowing from west to east (McSweeney

& Bett, 2020). The jet stream currently appears to have three preferred positions, 35-

38◦ N, 45-47◦ N and 58-60◦ N, but there is no annual pattern for how many days it will

spend in each position (McSweeney & Bett, 2020).
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2.2.1 Climate change impacts affecting flights across the

North Atlantic

As the environment through which aircraft fly evolves, so does the need for flight plan-

ners to change their approach. Just how certain can we be about the way that the wind

fields across the North Atlantic at cruise altitude will be affected by global warming? To

predict future wind patterns, we are reliant on climate models and these are evaluated

by the Climate Model Intercomparison Project (CMIP) to ensure that predictions are

realistic (NCAR, 2022). As research progresses the models being produced need to be

checked by making hindcasts for historical periods and comparing these with data from

a reanalysis dataset, such as ERA5 to evaluate any systemic biases (Hersbach et al., 2020).

Looking at the North Atlantic region, both the storm track and the jet stream are scru-

tinised in terms of their spatial patterns and magnitudes. Harvey et al. (2020) compared

three generations of weather models (CMIP3, CMIP5 and CMIP6) and found that storm

track biases over the North Atlantic were reduced by half in the most recent climate

models. Jet stream biases were also reduced in the winter months. Between CMIP3 and

CMIP5 there were large changes, but these were less marked between the most recent two

generations of models, a pattern also noted by Oudar et al. (2020). This means that the

later models give a much better representation of storm tracks and the jet stream over the

North Atlantic. This is of interest, as research into aviation routing using CMIP3 data

has produced different results to that relying on models from CMIP5 (Eurocontrol, 2021b).

Analysing how climate change is likely to affect this region, Harvey et al. (2020) concluded

that there would be a poleward shift in the jet stream and that high latitude storminess

would be reduced. The MET Office report into “Jet stream position and strength” agreed

with these findings predicting a jet stream shift further North in the autumn and summer

(McSweeney & Bett, 2020).

Oudar et al. (2020) considered three main reasons why the jet stream might change its

position in future. They looked at Arctic amplification (a larger than average increase

in net radiation near the poles due to global warming), tropical amplification (stronger

warming in the upper than the lower troposphere) and polar vortex strengthening (circula-

tion of high winds in the upper stratosphere). The first of these phenomena had a limited
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effect on the jet stream, although there was a slight shift equator-wards. By contrast,

both tropical amplification and polar vortex strengthening created a much more marked

poleward shift. Research by Ruosteenoja et al. (2019) agrees with these findings, but also

suggests that storm activity over the North Atlantic has been extremely variable decade

by decade and so shows no clear longterm trend. According to Manzini et al. (2018) there

is an added source of uncertainty in the climate model data, due to the non-linear way the

jet stream changes under different levels of global warming. For example a higher level of

warming may result in a totally different response from a lower level, rather than just a

similar change with amplified magnitude.

In Eurocontrol (2021b), which uses an ensemble of eight CMIP5 climate models, the lati-

tude of the jet stream core is shown to vary more each day in the future period considered

(2046-2055) than in the historic period (1991-2000). Looking at changes in the jet stream

between these two decades there are different patterns in the winter and the summer. The

polar jet is shown to be stronger at the core, but narrower, with weaker higher latitude

zonal winds in winter. In summer, however, the core spreads and the magnitude of the

jet stream winds decreases. Clearly a stronger jet stream with a more northerly position

will affect future flight operations over the North Atlantic.

In Storer et al. (2017) the effect that doubling the CO2 in the atmosphere would have

on the clear air turbulence (CAT) encountered by commercial aviation was considered.

Results showed that the North Atlantic region would be particularly prone to increases in

CAT during the 2050 to 2080 period, with severe incidents at a pressure level of 200 hPa

occurring almost three times as often as in the control period, during which atmospheric

CO2 was set to pre-industrial levels. This could affect choice of flight paths in the future.

As CAT is not visible to pilots or radar, it is instead forecast depending on a range of

different diagnostics, with only a moderate level of skill. This may result in flight plan-

ning moving towards lower altitudes to limit the likelihood of severe incidents. At FL340

(34 000 feet), the increase in severe CAT forecast, as an annual average, was 88% com-

pared to 181% just 3000 feet higher (Storer et al., 2017).

Kim et al. (2020) found that winters with a positive North Atlantic Oscillation (+NAO),

where differences in sea level pressures across the Atlantic region (between the Subpolar

Low and the Subtropical High) lead to a stronger, more northerly jet stream, resulted in
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significantly longer round trip flight times between New York and London. These could

be from 4.24 to 9.35 minutes longer compared to -NAO seasons. This may not seem like

a great difference, but when the 300 flights in each direction each day are taken into ac-

count this results in between 66 and 144 million kg of extra CO2 being pumped into the

atmosphere. This research looked at flights at 200, 250 and 300 hPa and calculated wind

optimised trajectories as minimum time routes. No distinction was made between results

at each altitude and airspeed was fixed, so optimisation relied entirely on the horizontal

heading angle. As +NAO years can be forecast 6-9 months in advance, airlines will be

able to adjust their seasonal schedules appropriately (Kim et al., 2012; Scaife et al., 2014;

Dunstone et al., 2016). Set timings for flight schedules would need to be longer in a strong

+NAO year and could be shorter in -NAO years.

It is perhaps counter-intuitive that in periods of stronger winds flights will be delayed

in a round trip. This phenomenon can be explained fully as the slower ground speed

caused by adverse winds means a larger time discrepancy than can be made up for by a

faster ground speed in the opposite direction. This is true as the slower speed is main-

tained for a longer time period. In Williams (2016) the difference between eastbound

time minimal routes between JFK and LHR was found to be 4 minutes shorter when the

CMIP3 GFDL CM2 model was used to look at 20 years of doubled CO2 levels compared

with 20 years of pre-industrial CO2 levels, but westbound routes increased by just over 5

minutes. This work looked at keeping the airspeed fixed to 250 m s−1 and the 200 hPa

pressure level. In similar research Irvine et al. (2016) found that using an ensemble of five

different CMIP5 models (based on the RCP8.5 scenario, which forecasts four degrees of

warming by 2100) gave less marked changes when the period from 1979-2005 was com-

pared with the 2073-2099 period. Here eastbound time minimal flights were just under

a minute faster and those flying west were about 1 minute slower. Flights were kept to

the 250 hPa pressure level and to an airspeed of 250 m s−1. Both of these papers found

minimal time routes by applying a shooting method to obtain an initial heading angle and

then solving a dynamical system, based on the change in latitude, longitude and heading

angle of the aircraft, using a numerical method. This approach will be explained in more

detail in Chapter 3 and the research considered more comprehensively in Chapter 5.

By contrast, in the 2021 Eurocontrol report, the Met Office’s TP algorithm, based on

the A star method, was applied to give time minimal routes for the same transatlantic
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journey (Eurocontrol, 2021b). This method uses discrete mathematics based on the Di-

jkstra algorithm to find the time minimal route with reference to a predefined set of grid

points (Cheung, 2018). The wind and temperature data used was from an ensemble of 8

CMIP 5 models run under the RCP8.5 emissions scenario, comparing the historic period

(1991-2000) with a much closer future period of (2046-2055). In this research the Mach

number (ratio of airspeed to speed of sound at the same physical position) rather than

the airspeed was held constant, at 0.82 Mach. The pressure level was again restricted to

250 hPa. Results from this research showed that both eastbound and westbound flights

were actually faster in the future period. This disagreement with the previous research

could be due to the method used for the retrieval of time minimal paths, the differences in

models used or the choice of the future time period. This will be examined more closely

in Chapter 5.

2.3 What can be done?

If we accept that the aviation industry is producing unacceptable levels of pollution,

that are fast accelerating our planet towards a climate catastrophe, then our next logical

question must be “What can be done about this?”

2.3.1 Are airlines already making pro-environmental behaviour

a priority?

Apparently just 25% of the codes of conduct of the top sixteen airlines in the world (judged

on size of fleet and number of scheduled flights) refer to the need to indulge in “climate

friendly behaviour”, with just three of these actually mentioning the importance of cut-

ting emissions (Ruban, 2020). If consumers start to select tickets based on environmental

choices and not just price, then corporate branding will need to embrace an understanding

of the need to reduce emissions in the future. However, Schennings et al. (2019) found that

only 1.6% of the consumers polled in Sweden chose tickets based on the environmental

impact of flights, whilst 81.8% made decisions based on prices. When an algorithm to

rank available flights based on emissions was added to Sweden’s most popular air travel

booking site, only 1.54% of the customers even tried it (Schennings et al., 2019).

Perhaps we need the airlines to act unilaterally, ensuring that all of their flights are more
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environmentally friendly. There are several ways this can be done, with the ICAO backing

SAFs, operational improvements and aircraft technology (ICAO, 2019).

2.3.2 Changes to aircraft technology and passenger provi-

sion

There are currently a number of projects in progress to develop new technology that

reduces emissions. According to Economon et al. (2011) improvements in fuel burn per-

formance will need to come from advances to the aerodynamic shaping of an aircraft, its

structure or the technology behind its propulsion system. However, working out a priori

how fuel burn during operation will be affected by these changes is still very uncertain.

A popular innovation is to use liquid hydrogen as a fuel, thus eradicating all CO2 emis-

sions. This is not a straightforward fuel swap, as hydrogen liquifies at -252.9◦C, so a

cryogenic system is needed to keep it well insulated (Grönstedt, 2021). The low density

of cryogenic hydrogen necessitates large fuel tanks that could no longer be integrated into

the internal wing volume. Rompokos et al. (2020) conclude that for a long-haul flight a

blended-wing-body design is most suitable.

Airbus have decided on two research concepts for long-haul aircraft, which it aims to

have ready for use by 2035. The first is a turbofan aircraft running on liquid hydrogen.

The second is a more revolutionary blended-wing-body design, in which the wide fuselage

provides more options for hydrogen storage and passenger seating. Both would have at

least a 2000 mile range and carry 200 passengers (Airbus, 2020). Although the aircraft

(a) Turbofan aircraft design (b) Blended-wing-body design

Figure 2.1: Innovative Airbus designs for hydrogen powered aircraft (Airbus, 2020)
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may be available by 2035, many changes will be needed in airport infrastructure to supply

the required hydrogen and according to Grönstedt (2021) long-haul flights will not be rou-

tinely powered by hydrogen before 2045. Even then there could be issues with producing

enough hydrogen. If we were to move to all hydrogen powered long-haul flights, by 2090

making the necessary gas sustainably would use over 30% of all renewable electric power

generated (Sethi et al., 2022).

To avoid redesigning the aircraft fuselage, novel engine and propulsive systems have been

suggested. One such idea is a water enhanced turbofan engine, in which water is injected

into the engine to increase the heat capacity, allowing better heat extraction. This reduces

fuel burn and thus carbon dioxide emissions. The extra water is condensed by cold envi-

ronmental air and reused, so that there is no water in the exhaust, also reducing contrail

formation. At the moment this design is at the proof of concept stage as its use may affect

the weight and balance of an aircraft (Pouzolz et al., 2021).

Another suggestion is to improve propulsive efficiency by ingesting wake flow and use this

extra momentum to increase thrust. In the test stage, this technology has been shown to

reduce fuel usage by 3 to 4 % (Seitz, 2012). However, this work has been ongoing for the

last ten years and still requires further research before it can be used operationally. Test-

ing of similar boundary layer ingestion fans show that this technology has a detrimental

effect on the aerodynamics of an aircraft (Mårtensson, 2021).

Fully electric aircraft are set to be a reality for short-haul commercial flight as early

as 2026, with Heart Aerospace developing the ES-19, a 19 passenger airliner with a range

of 400 km (HeartAerospace, 2022). The sheer weight of the battery power needed for long-

haul flights, due to the inferior energy density of batteries compared to kerosene, makes

using just electrical power unfeasible (Doctor et al., 2022). However, another innovative

idea would be to print circuits into the fuselage structure of the aircraft, thus allowing the

removal of weighty bundles of electric cables and even to replace the cabin floor with a

structural battery using carbon reinforced plastic (Linde, 2020). At present, though, these

technologies are still a long way from becoming an operational reality.

These upgrades to technology would all be costly to develop and implement, so it can

be concluded that operational changes, such as route and airspeed optimisation, are more
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Figure 2.2: Plot from Graver & Rutherford (2018) showing the most and least fuel

efficient transatlantic carriers in 2017.

practical in the short term (Economon et al., 2011).

Changing how on-board space is used in the current fleet could be a more immediate way

to reduce overall emissions. By allowing less space per passenger, fewer flights could be

made. However, this is unlikely to be popular with heritage airlines as although premium

passengers only make up 5.2% of air traffic, they generate 30.4% of passenger revenue

(Graver & Rutherford, 2018). Increasing flight occupancy reduces emissions per passen-

ger without any need for design changes. Budget airlines currently operate the most fuel

efficient services with 84 to 93% occupancy, whilst other groups fly with as few as 76% of

the seats filled (Schennings et al., 2019). Both of these factors contribute to the findings

displayed in Figure 2.2 in which British Airways is shown to be 63% less fuel efficient

than Norwegian Airlines. Although Norwegian’s long-haul flights were casualties of the

difficulties faced by airlines throughout the COVID-19 pandemic, Norse Atlantic Airlines

hope to replace them as the most fuel efficient transatlantic carrier by summer of 2022

(Partridge, 2021).

Another idea to help to reduce emissions lies in flying formations of aircraft. In this

way the lead aircraft could provide a slip stream for follower aircraft that would there-

fore save fuel during the trip. The centralised approach, which requires formations to be
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planned in advance of flights, means that follower aircraft would benefit not just from this

slip streaming, but also from being able to carry less fuel and thus being lighter, which

also reduces fuel burn. Kent & Richards (2015) showed that formations of two aircraft

forming at the start of the cruise phase for a transatlantic flight could save 8.7% of fuel

compared with a solo flight and formations of three aircraft could lead to savings of 13.1%.

However, the method used to generate these savings did not optimise for wind, but instead

considered the best way to pair flights up, assuming set routes.

Verhagen et al. (2018) looked at using aircraft communications to set up formations with

nearby aircraft during flight. This method would not give the added advantage of reducing

the amount of fuel to be carried, but would mean that any airport delays encountered by

an aircraft would not have a knock-on effect to other members of a planned formation.

The research was limited by a method which assumed a set 10% fuel flow reduction for

trailing aircraft and did not take into account issues like turbulent weather causing prob-

lems for in flight communications or maintaining the suggested formation.

The airbus “Fello’fly” project tested this idea of wake-retrieval, with two aircraft fly-

ing 3 km apart in November, 2021. Results showed a 5% reduction in CO2 emissions

compared with two aircraft flying separately. Whilst the technology for such flights is set

to be ready by 2025, the regulatory framework may take longer to adapt to formation

flights (Airbus, 2022).

2.3.3 Why is re-routing a good idea?

With airlines, ATM and the ICAO keen to increase the sustainability of commercial flight

(ICAO, 2020; Molloy, 2020; AirlinesUK, 2019), it has been shown that TBO provide the

key to improving overall efficiency (Wickramasinghe et al., 2012; Garćıa-Heras et al.,

2014). This approach centres on designing individual flight routes accounting for weather

conditions in order to optimize efficiency with regard to a number of different factors.

The International Air Transport Association (IATA) states that improvements to aircraft

emissions efficiency of up to 12% could be made by improving ATM procedures; a more

flexible approach to how airspace is managed will allow use of more of the available capac-

ity (Gardi et al., 2016). For long-haul flights, such as those between LHR and JFK, for

which the cruise phase makes up around 92% of the ground distance of the flight, TBO

promises the greatest rewards (Girardet et al., 2014).
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Currently flight tracks in the North Atlantic’s OTS are created on a daily basis by air

navigation service providers (ANSPs), NATS in the United Kingdom for the westbound

paths and NAV CANADA for those going east. These are based primarily on the need

to separate aircraft safely, whilst taking some account of the winds. Airlines request their

preferred tracks by submitting Preferred Route Messages (PRMs) in the hours before a

flight and the ANSPs create a daily track system that reflects the airlines’ wishes as closely

as possible. By comparing data from flown routes with those simulated, the amount of

fuel savings possible can be quantified.

There are many different methods for defining optimal routes and the efficacy of these

is measured in different ways. Time minimal routes aim to take greater advantage of

the prevailing eastward winds when flying east and reduce the negative impact of these

same air currents when flying west, in order to record the shortest flight time possible.

Air distance, the distance flown by an aircraft relative to the surrounding air, is also a

good measure of the efficiency of a flight path. As fuel burn is directly proportional to

air distance and as emissions, including carbon dioxide, are directly proportional to fuel

burn, any saving made in air distance can be translated into a reduction in CO2 emissions

(Henderson et al., 2012; Green, 2009).

Sometimes time optimal routing is not necessarily the most practical option for airlines

and airports. Flight capacity in air is far greater than that at each end of a trajectory,

with runway availability causing the largest bottleneck in scheduling flights (Soomer &

Franx, 2008). For operational and financial reasons airlines need to adhere to their pub-

lished timetables. Flights arriving early, or late, create additional costs, through extra fuel

burned in holding patterns, missed connecting flights and additional crew time. Customer

dissatisfaction is also a key issue for airlines when delays occur. If flight trajectories are

planned to ensure a fixed flight time, whilst minimising fuel burn, then the costs to both

the airlines and the environment associated with early or late arrival can be saved. In this

case the fuel burn itself would provide a means of measuring the effectiveness of the new

routes. The method of calculating fuel burn in this research, will use an aerodynamic fuel-

burn model (Poll & Schumann, 2021a,b), whereas in previous studies there is a standard

reliance on EUROCONTROL’s BADA (Wickramasinghe et al., 2012; Garćıa-Heras et al.,

2014; Soler et al., 2020; Yamashita et al., 2020, 2021; Matthes et al., 2021).
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2.4 Addressing the routing problem

2.4.1 Origins of aircraft routing

Initial work on the minimum time routing problem was proposed by Ernst Zermelo in his

lecture of 1930, which focused on a two-dimensional planar wind field (Zermelo, 1930). By

choosing an initial heading angle, the differential equations in zonal (x) and meridional (y)

positions can be solved numerically for a particular time step length. Zermelo’s equations

form the following dynamical system:

dx

dt
= V cos θ + u, (2.1)

dy

dt
= V sin θ + v, (2.2)

where V is fixed airspeed, θ is heading angle, u is zonal wind and v is meridional wind.

Once at the new position a third differential equation concerning the rate of change of

the heading angle is solved to give the direction for flight. This new differential equation

is derived using PMP (see Appendix A for the derivation and Section 3.3.1 for more

information about PMP):

dθ

dt
= sin2 θ

∂v

∂x
− cos2 θ

∂u

∂y
+ (

∂u

∂x
− ∂v

∂y
) sin θ cos θ. (2.3)

In this way progress is planned, timestep by timestep across the trajectory.

Levi-Cività was quick to respond to the initial lecture, pointing out some errors in Zer-

melo’s calculations (Levi-Civita, 1931). This led to Zermelo’s publication of a clarified

and corrected theory paper the next year (Zermelo, 1931).

By 1951, Dixon Speas had formed a company to calculate minimum time routes over

the Atlantic for airlines. The method used discrete dynamic programming across 15 to 20

flight regions. Paths across these regions were optimised using data about high altitude

winds that was gathered from a network of weather balloons (Jardin & Bryson, 2012a).

These Zermelo formulae are extended to a spherical model in Arrow (1949), which con-

cludes that for flights of over 1000 miles, it is worth deviating from the shortest distance

route. In the original model, Arrow uses a single heading angle for the whole trajectory,

but in the second part of the research a time minimal path with fixed airspeed and altitude

is found with a varying heading angle.
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After this, the spherical Zermelo system can be found as the basis of many academic

works on optimal route planning, such as Warntz (1961), which provides a comprehensive

guide to routing through a wind field. In this study Warntz discusses the far greater

convenience of using the wind to ensure the minimum flight time is obtained rather than

following the shortest distance path, but bemoans the fact that ATM considerations pre-

vent such paths from being followed. It is also mooted that having a centralised routing

body for all flights would avoid any issues arising from separate airspace restrictions. This

now seems like an early foreshadowing of the European Union’s Single European Sky ATM

Research (SESAR) (SESAR, 2022).

2.4.2 An overview of current research

Singh and Sharma (2015) reviewed 277 articles published between 1973 and 2014 on every

angle of fuel optimisation in aviation. These not only cover the key topics of aircraft

design, alternate fuels and aviation operations, but also discuss policies to deal with the

excessive fuel consumption of the aviation sector. An increasing trend in pursuing this

area of research was highlighted, with 68% of the research being completed after 2000.

Another conclusion from the paper was that technical improvements take a long time in

development, whilst operational change is quicker to find and implement.

It is also important to remember that there is no single solution to the problem of making

air travel more sustainable. Re-routing flights can be undertaken immediately, but this

does not mean that finding alternative fuels and improving flight technology cannot also

be undertaken to allow fuel optimisation to continue. In the same way, a flight using

alternative fuel or incorporating fuel saving technology, will still need to be efficient in its

flight path.

Estimation of fuel burn is difficult. Fuel use from actual flights is not available in the

public domain, as airlines are not prepared to share this sensitive data. In the past fuel

use has been estimated using radar tracks and flight data recorder information giving posi-

tions of aircraft at certain times. Next the BADA is applied to polynomial functions, fitted

to aircraft performance by manufacturers, to estimate fuel used (Dalmau et al., 2020). It

has been found that BADA can underestimate fuel use in some circumstances. In Mouil-

let et al. (2019) it was found that BADA 4 was not suitable for on-board applications
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or economic studies as the estimated airspeed and fuel burn in cruise optimisation could

contain errors of up to 5% when compared to actual flights. Both the drag and fuel flow

models were found to be in need of improvement. It was, however, deemed suitable for

environmental impact assessments and ATM simulations. Up until now, the vast majority

of papers discussing the re-routing of aircraft to minimise fuel have made use of the BADA

datasets as there has been a shortage of accurate fuel burn data. In this thesis, where

fuel burn has been considered, a new physics-driven fuel burn function, which is aircraft

model specific, has been used (Poll & Schumann, 2021a,b). This estimates fuel burn at

any point during the cruise phase of a flight by considering atmospheric data, as well as

the altitude, airspeed and mass of the given aircraft.

Whatever the performance index being minimised or the choice of control and state vari-

ables, the basic problem structure for trajectory optimisation is the same. The dynamics

of the system are stated, based on a variety of variables describing aircraft performance.

Sometimes atmospheric data may be included within this system. Then the cost must

be defined, sometimes as a terminal penalty or as a running cost or as a combination of

the two. In addition to the boundary conditions on the state and control variables, these

elements make up the OCP.

The problem of optimising flight routes has been addressed by aeronautical engineers,

mathematicians, computer scientists and meteorologists, for the purposes of designing

more fuel efficient flight routes, more environmentally friendly flight routes, more cost

efficient flight routes and sometimes the theory is even used to predict what aircraft that

are in flight might do next.

Algorithms to use in real time for tactical ATM and the military, tend to look more

at the aircraft dynamics and possible routes in terms of an offline data driven exercise,

fed into a dynamic programming model. Strategic planning uses a variety of methods to

produce optimised routes for the horizontal path, the vertical path or sometimes a com-

bination of the two. Most papers split the problem up into the ascent and descent phases

and the cruise phase between these.

Long range cruise trajectories minimising fuel for a fixed mass aircraft have previously

been researched by others using control variables of thrust and flight path angle (Schultz
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& Zagalsky, 1972; Speyer, 1973) or lift and thrust (Schultz, 1974; Menon, 1989), but these

have not accounted for the wind field. In these papers the fuel flow is minimised for a

set distance of flight. Wind has been factored into fixed range cruise calculations which

compare fixed and free thrust as airspeed varies (Erzberger & Lee, 1980), but here a direct

operating cost is minimised, consisting of both time and fuel burn factors.

Fixed-time trajectories minimising direct operating cost have also been generated, but

unlike the model formulation for fixed-time flights in Chapter 6, the optimal control model

is set up with a free final time (Sorensen & Waters, 1981; Burrows, 1983). The trajectory

best fitting the imposed arrival time constraint is then selected. Changes to this arrival

time are dealt with by changes to airspeed and altitude in Burrows (1983), in which the

use of take-off delays to avoid early arrival and thus increased fuel burn through stacking,

are also considered.

Trying to arrive at a fixed-time can be compromised by inflated airspeed during the cruise

phase, so in Chakravarty (1985) ways to change the cruise and descent phase tactically,

in order to avoid early arrival, are considered. The problem would involve the solution of

a ten-order two point boundary value problem (TPBVP), which in real-time would not

be feasible, so in this research singular perturbation theory and an energy-state approxi-

mation are applied to find sub-optimal solutions of the problem. It is concluded that for

fuel efficient delay absorption it is best to reduce both altitude and airspeed in the cruise

phase, but to keep the descent as steep as possible. In Chapter 6 fixed-time trajectories

are obtained with airspeed as a control variable, so that a piecewise-continuous strategic

adjustment of the airspeed should avoid the need for en-route alterations. However, this

does depend on the reliability of the atmospheric data available before the flight and the

careful and timely scheduling of arrivals at the destination airport.

In Jardin & Bryson (2012a) two different methods are compared for finding time min-

imal paths through wind fields. The first is the standard Zermelo problem transformed to

fit a spherical system and backwards integrated from the destination for a range of initial

heading angles, with the minimum time path being chosen from the admissible paths gen-

erated. The second method linearises the flight dynamics about a nominal optimal route,

which here is the shortest distance path, known as the great circle route (GCR). This does

not necessarily guarantee that a path found is a global minimum. It does, however, have
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the benefit of greater computational efficiency and so can be applied in a more tactical

way. In both cases the airspeed and altitude are kept constant.

2.4.3 Simplified wind fields

Where winds are included in research, a useful simplification lies in modelling these as

simple constant headwinds or tailwinds, or creating more complicated functions based on

position, which are nonetheless still differentiable.

In Franco & Rivas (2011), a dynamical system is used which describes Mach number

as a function of flown distance along a constant heading route, with fixed altitude, but

variable mass. The control variable is taken to be the throttle setting, which can vary

between 0 (no throttle) and 1 (full throttle). PMP is applied to ensure trajectories found

satisfy the necessary conditions for optimality and so are extremal, with the cost func-

tional given as specific fuel consumption multiplied by thrust. Only constant headwinds or

tailwinds are considered in this research and constant cruise airspeed is often found to be

optimal. In Franco & Rivas (2013) this method is repeated in order to see the fuel cost of

meeting a fixed arrival time given that the winds are not correctly modelled. Mismodelled

headwinds are found to have a much greater effect than mismodelled tailwinds. This is

due to the increase in drag at the high Mach numbers used to arrive at the correct time,

given that the flight route throttle setting has been optimised for more favourable en-route

winds. Cruising with a constant Mach number is again found to be very often close to the

optimal solution, given the constant headwinds and tailwinds applied (between -15 m s−1

and 15 m s−1). Using accurate atmospheric conditions from re-analysis data, these winds

are far more varied, justifying Chapter 6’s investigation into the effect of varying airspeed,

fixed-time, fuel minimal flights through a data driven wind field.

In Nguyen (2006) the focus is the time optimal climb route of an aircraft. Although

in this study it is acknowledged that the inclusion of wind data is important, as this has

a large effect, in the research itself, the zonal wind field is modelled as a differentiable

function, which changes with altitude, with no meridional effects considered. As real wind

fields are not necessarily differentiable, in the research in Chapters 4 and 5 we rely on

numerical gradients to approximate the rate of change of the wind speed in each direction

and in Chapter 6 we apply a different approach in which these gradients are not required.
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2.4.4 Routes avoiding atmospheric phenomena

By using PMP, with a running cost based on both flight time and the amount of turbu-

lence encountered, Kim et al. (2015) create shortest time routes that also avoid areas of

turbulence. This is important as two thirds of all severe clear air turbulence is situated

near the jet stream (Lester, 1994). However, although factoring convection and turbu-

lence into atmospheric data for route planning is in many ways essential to practical flight

planning, prediction accuracy decreases rapidly as the forecast lead time increases (Steiner

et al., 2010). Ensemble forecasts used in Kim et al. (2015) over-predicted occurrences of

poor conditions by a factor of 2. So in order to make the inclusion of turbulence and

convection avoidance more accurate for strategic planning, improvements in long-term,

high resolution forecasts are needed. In the meantime, turbulence avoidance can be dealt

with tactically by a change of altitude. This means that creating minimum time and fuel

burn routes optimised at a single altitude is justified, as planning specifically for altitude

will prohibit any altitude changes needed to avoid turbulence. Such climbs will not overly

affect the efficiency of the planned horizontal route as there is minimal change in the pre-

vailing air currents encountered at neighbouring altitudes (Krozel et al., 2011).

Sridhar et al. (2011) solve the horizontal optimal trajectory problem for a cost functional

involving fuel use, time and penalty areas, which would lead to contrails being formed.

The method involves solving a TPBVP, involving aircraft position, but ignoring mass

change during flight. The shooting method is applied to find the initial heading angle at

a number of different altitudes, so flights can use the most efficient flight level at each

stage of the trajectory. Fuel use is based on BADA models, the airspeed is fixed and the

terminal time is kept free. This study concludes that avoiding regions which could lead

to the formation of contrails requires a 2% increase in fuel use and additional travel time

of up to 4.3%. The research is based on deterministic weather data from a single day, but

if this were to be used operationally, the extra CO2 emissions would need to be justified

and so more research needs to be completed into the effect of contrails and the certainty

with which we can predict their formation hours before a flight.

Soler et al (2020) try to balance the need to arrive promptly, using as little fuel as possi-

ble, with the need to avoid areas of convective risk, where storms are likely to propagate.

Unlike the prevalent daily wind patterns across the North Atlantic, areas likely to become

stormy cannot generally be predicted early. Instead the storm risk must be assessed in the
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1 to 3 hour window before a flight. The research shows that reducing exposure to convec-

tive regions cost 100 to 200 kg of fuel per flight. Unlike previous papers this research takes

into account an ensemble of 51 weather predictions and also includes a penalty for entering

areas of high weather uncertainty. The key idea behind this work is to provide airlines

with a range of solutions so that the uncertainty in predicting storms can be factored into

trajectory choices.

One limitation of Soler et al. (2020), is that flights in the model are kept to a pres-

sure altitude of 200 hPa, which is a flight level of over 38 000 ft. Changes to altitude

could in some cases help aircraft to avoid convective regions without more costly horizon-

tal detours. The scope of the findings is also narrowed by the application of a detailed

and rigorous optimal control method to just one ensemble forecast made nine hours before

the 19th December, 2016. As a principal focus of the research was the variability of the

weather across the North Atlantic, discussion of multiple wind fields would have been more

appropriate. However, Soler et al. (2020) do suggest that there is now a move towards

individual routes rather than “more rigid airspace structures”, which reinforces the need

for increased research into TBO.

2.4.5 Direct methods for trajectory optimisation

Unlike indirect optimisation methods, in which a dynamical system is first optimised then

discretised, direct methods can be applied that reverse this order. The pseudospectral

method used in Fahroo & Ross (2002) finds trajectories by fitting Nth order weighted

polynomials, comprising N+1 cardinal functions, across a trajectory split into N+1 time

intervals. The cost functional is evaluated based on the approximate solutions and deriva-

tives are approximated by polynomial derivatives. By adjusting the weighting of the func-

tions within the polynomial, increasingly cost effective trajectory solutions can be found.

In this way the whole problem is first discretised and then optimised. This method forms

the basis of the DIDO software which has been used for manoeuvring the International

Space Station and a range of other NASA spacecraft (Ross & Karpenko, 2012). While

NASA saved an estimated one million dollars in just under three hours using DIDO (Ross,

2015), the software has yet to allow for the use of a position dependent, data-driven wind

field and is therefore not suited to searching for fuel optimal real-world aircraft trajectories.

A different direct method, sequential quadratic programming (SQP), is used by Pierson &
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Ong (1989) to find fuel minimal aircraft trajectories from a range of different dynamical

models. Flight paths are considered in three dimensions with both fixed and free ranges.

Four different pairs of control variables are used:

1. the angle of attack and the thrust setting,

2. the flight path angle and the thrust setting,

3. the airspeed and the thrust setting,

4. the angle of attack and the thrust setting including a lag factor.

First control functions are approximated by piece-wise linear or cubic spline functions.

The equations of motion are then integrated numerically across the time of flight allowing

the cost functional to be evaluated directly. As the OCP is now a non-linear programming

problem, the SQP algorithm can be applied until convergence of the control parameters

is achieved, resulting in an approximation to an optimal solution. By using this direct

approach, changing the dynamic models is made easier, allowing for more straightforward

comparisons between results. This showed that engine dynamics were relatively unim-

portant, but that heading angle was key. Although demonstrating that SQP can solve

an OCP directly, this research is a theoretical exploration of solution methods, rather

than considering specific flight routes and neglects atmospheric data. In Chapter 6, a

similar direct method is used to find fuel minimal, fixed-time trajectories across data

driven wind fields. However, in this thesis the numerical procedure used trials different

initial conditions to search for a global minimum and thus makes the method more robust.

Four different techniques are applied to the solution of the OCP for a minimum fuel

cruise, at constant altitude, with fixed arrival time by Garćıa-Heras et al. (2014), includ-

ing pseudospectral collocation as used by Fahroo & Ross (2002) and described in the first

paragraph of Section 2.4.5. The approach is based on flat segments of travel and shows

that different results are gained from each method and each has its own advantages and

disadvantages in terms of sensitivity to numbers of time steps and computation time.

However, the wind field is not considered in this analysis and as is demonstrated in other

research, routes through complex wind fields are often very different from their wind-free

equivalents (Girardet et al., 2014).
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2.4.6 Dynamic programming in route planning

Dynamic programming is most often associated with 4D flight trajectory optimisation,

which gives paths as a set of waypoints in space, reached at certain times. A discrete

dynamic programming method is used by Ahmed et al. (2021) to examine either fuel re-

duction or, in a second formulation, a range of different emissions, for short-haul flights.

The approach works by moving between three dimensional positions as part of a grid using

controls of acceleration, rates of change of flight path pitch angle and heading angle. The

conclusions show possible savings of 10% compared with actual flight data. However, the

method does have some simplifications which make the results suboptimal: trajectories

are forced to move between gridpoints to avoid the problem caused by expanding the grid

to allow for every point that could be visited, which can make a numerical solution too

computationally expensive. However, the main difficulty in comparing simulations from

these calculations with actual flights, is that there is no consideration of wind conditions,

the state space does not take into account the curvature of the Earth and the aircraft mass

is assumed to remain at its initial value throughout.

Dynamic programming is used by Wickramasinghe et al. (2012) in modelling climb, cruise

and descent to optimize fuel flow by controlling flight path angle, heading angle and en-

gine thrust. However, the aircraft paths are limited to 0.5◦ latitude either side of the

GCR, which would be limiting for long-haul, transatlantic flights. This method does not

take into account other transatlantic traffic, but it has been shown that aircraft travelling

across the Atlantic fly fast enough compared to the evolution of the wind field, to allow

optimal trajectories to stay the same despite any small shifts in departure times (Sridhar

et al., 2015). This allows for at least some conflict resolution to occur naturally through

time planning of flights.

In Girardet et al. (2014) dynamic programming is again applied, but this time over a

three dimensional simplex mesh, taking into account wind data, but keeping airspeed con-

stant. At each point the cost of all possible new positions in an aircraft cruise trajectory

is calculated and a time minimal front established. During every time interval this front is

pushed forwards across the grid. Once the values at each grid point have been computed,

the shortest time route from the departure to the destination airport can be retrieved. A

method similar to this is used in Chapter 7, but for a grid of cuboids, based on horizontal

position and mass and with a cost functional based on fuel use. Girardet et al. (2014)
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applies the method to three days of air traffic across Europe and concludes that comput-

ing trajectories without using atmospheric data leads to very different routes compared

to those taking this into account. It is also found that optimisation is most beneficial for

the longest routes flown.

One advantage of using the HJB equation, is that once a map of values across the given grid

has been found in advance of a flight, this can be used to obtain a number of flight paths in

real time, so that tactical conflict avoidance is possible. Using a grid based method allows

certain areas of the airspace, where conflicts would occur to be blocked out. In Parzani &

Puechmorel (2017) the airspace is simplified to a 2D planar grid and conflict free minimal

time trajectories are found by altering aircraft heading angles, whilst maintaining fixed

airspeeds. The HJB equation is solved using the Ultra-Bee numerical scheme, rather than

the Semi-Langrangian scheme applied in Chapter 7 of this thesis. In this way the calcula-

tion is simplified so that aircraft trajectories can be considered simultaneously, doubling

the dimension of the initial problem. Both wind free routes and analytic wind fields are

considered, leading to globally optimal solutions without the difficulty of initialising the

trajectory search as is inherent in indirect methods.

A combination of both dynamic programming and calculus of variations is developed in

Ng et al. (2011, 2014) to find minimum time and fuel burn routes through complex wind

fields with step changes to flight altitude. In the first of these papers transpolar routes are

considered as a way to reduce emissions on flights between North America and Asia. This

initial method involves limiting contrail formation at the expense of the CO2 emissions.

It is found that by changing altitude tactically to avoid contrail formation, the increase

in CO2 can be limited to 1% for the two days trialled (7th August and 10th December,

2010). However, it is noted that the difficulty in applying this methodology operationally

lies with the lack of flexibility in the entry and exit points of trans-polar airspace available.

In Ng et al. (2014) a number of step changes is planned to be included in a trajectory

strategically. Once this number has been decided, the position of these step changes is

found using discrete dynamical programming to minimise fuel use. Then the OCP for the

horizontal flight path is solved using calculus of variations. A range of heading angles from

the departure point is applied to the dynamical system which is then integrated forward

until the first step climb point is reached. Similarly this method is applied with backward
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stepping to go from the destination to the first step point. By using the time minimal

results for both approaches the heading angles can be triangulated to give the heading

angle for the time optimal route where the forwards and backwards generated paths meet.

This method is repeated to find the route segments between each pair of step changes

until the final step is reached at which point a TPBVP can be solved to find the time

optimal route to the final destination. As the airspeed and altitude are kept constant

for each step, the time minimal horizontal route will also be fuel minimal. This method

was shown to provide savings of between 1 and 3% compared with recorded flight plan

trajectories if altitudes were kept constant and up to 10% for trajectories including step

climbs. Although these results sound very promising, the airspeed is not varied in the

optimisation so its affect on fuel burn rate is kept constant.

Direct and indirect methods to solve the control problem of optimising an approach tra-

jectory for both fuel use and noise level are compared to using a dynamic programming

method in Khardi (2012). Results show that the direct and indirect methods give the

same results both in terms of position and throttle settings. However, by using HJB to

simplify the discretisation, a different solution is obtained, which is easier to implement

for an in-flight management system, given the reduction in computer time needed for its

calculation. Therefore, all three methods are of use in trajectory planning, but each is

best fitted to a particular scenario. This is exploited in my research, with an indirect

method used for time minimal fixed airspeed trajectories with an assumed constant mass,

a direct method applied to reduce fuel burn for fixed-time flights with varying airspeed and

mass and dynamical programming via the HJB equation employed to allow for changes to

airspeed when fuel is minimised for free-time flights.

2.4.7 Dynamic programming used with indirect methods

Two of the three main methods for finding flight trajectories are combined in both Vil-

larroel & Rodrigues (2016) and Fan et al. (2020). In these papers the cruise trajectory of

a flight is optimised for a cost index (CI) calculated as the ratio of time-related costs to

fuel-related costs. First the OCP is formulated to find the associated HJB equation, with

airspeed as the control variable, then Pontryagin’s Maximum Principle is applied to the

Hamiltonian of the HJB equation to reduce it to a simpler state. In so doing a more time

efficient, though sub-optimal solution can be obtained. In neither case are atmospheric

conditions considered.
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The cruise flights in Villarroel & Rodrigues (2016) are restricted to a longitudinal track

between the top of ascent and the top of descent waypoints. Altitude is considered as

fixed, with airspeed controlled to minimise CI. An analytical formula for optimal velocity

based on a co-state of the weight is proved and then this is further simplified by assuming

that this co-state is zero, resulting in suboptimal analytic solutions. These solutions are

shown to be very close to results gained from a more computationally expensive shooting

method. By applying the approximate method, the calculation becomes possible in real

time and so could be used as part of the Flight Management System on board a commer-

cial aircraft. A sensitivity analysis of the CI, weight and specific fuel consumption (SFC)

is performed, showing that when CI is very small (so fuel cost is the main component) the

sensitivity to SFC is zero and sensitivities to weight and CI are very small. However, for a

large CI, which means the time related costs are dominant, only the change in weight has

a small effect on the optimal airspeed.

In Fan et al. (2020) the simplified HJB equation can be solved by a MATLAB func-

tion to give the best airspeed for each altitude trialled. The aim of the system is to find

the vertical profile that is most economical for a flight, based on keeping thrust and pitch

angle within certain operational constraints. In both of these studies the state space is

viewed as a planar slice through the atmosphere. The calculation of best airspeed depends

on the particular model of the aircraft, its mass at each waypoint on the journey and the

thrust applied. It does not, however, account for wind, so airspeed adjustments due to

changing winds at different altitudes are not considered.

2.4.8 Non-analytical trajectory search methods

Not all solutions to flight trajectory problems involve continuous optimal control meth-

ods. In Ho-Huu et al. (2019) departure flight routes are found from Schiphol Airport

in the Netherlands that minimise both the fuel use and the noise annoyance caused by

the aircraft. This is done by approximating a take-off flight path by straight and fixed

radius curved sections in the horizontal and vertical planes. Possible routes are compared

by using a multi-objective evolutionary algorithm to make the problem into a set of sub

problems, which can in turn be solved simultaneously using a genetic algorithm. Once

the routes are set, specific flights can be assigned to different routes using an integer op-

timisation model to allow for most efficient use of the available airspace. This research
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was limited by not taking atmospheric conditions into account, but shows that discrete

optimisation can be applied to flight trajectories if legs are limited to certain shapes. The

researchers also found that the process had to be completed in two stages, as combining

the routing and allocation algorithms led to a prohibitively large computational cost.

Another example of a non-analytical trajectory search approach is the AirTraf Simula-

tion which is used as part of an atmospheric chemistry model (EMAC) together with

BADA and ICAO engine and fuel use data. This again finds aircraft cruise trajectories by

way of a genetic algorithm. The benefit of such a system is that computation of deriva-

tives is not required. First the GCR between the two airports is found. The longitude

between the airports is split into four equal parts using three points, which are placed at

the latitudes of the GCR in each case. These points serve as the centres of three user

defined rectangles. Control points are chosen randomly inside each rectangle (which are

used to bound all subsequent control point choices) and these can move independently

of each other at each iteration of the system. A B-spline curve is then plotted in the

horizontal plane, using the control points to locate it. Five vertical control points are now

added along this route, equally spaced vertically and another B spline curve is generated

to fit through these to make a 3D path. At each iteration the cost of a flight is evaluated

by splitting the trajectory into a user defined number of waypoints so that every sec-

tion uses relevant atmospheric data from a 2.8◦ resolution grid. Next selection (deciding

which individual control points will be used to generate others), crossover (deriving new

control points from two previous points) and mutation (the introduction of random noise

to control point position) are used to create the next set of control points within their

bounding rectangles horizontally and within the cruise range vertically. From these the

new trajectory is found and so the process continues until the difference in cost between

subsequent iterations is below a user set tolerance. This method does not guarantee a

global minimum, but it is hoped that it converges to a cost minimal route. It is lim-

ited by the use of a constant Mach number for each trajectory. One major advantage

of this method is that many different factors can be optimised by just changing the cost

functional to be evaluated, so although in the first instance only wind optimal routes

are plotted (Yamashita et al., 2015), in the second version of the model time optimal,

cost optimal, fuel optimal and climate optimal paths are all considered (Yamashita et

al., 2020). The drawback to such a method is that each route takes about 20 hours to

compute (Yamashita et al., 2015) and that this reduces the number of days of atmospheric
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conditions that can be trialled (Yamashita et al., 2021). To try to limit this effect, the

position and strength of the jet stream on different days is used to characterise weather

conditions and then five examples of each weather type are chosen for running the simula-

tions. In Yamashita et al. (2021) climate optimised routing, trading off between economic

cost and climate impact is investigated. The conclusion shows that the disadvantage of the

increased costs involved would only be reduced if environmental taxes were levied globally.

Both Murrieta Mendoza et al. (2020) and Cheung (2018) use methods derived from graph

theory to find aircraft trajectories. Murrieta Mendoza et al. (2020) apply the Floyd-

Warshall Algorithm to minimise a cost functional based on fuel burn, flight time and an

airline CI. In effect they turn the space between the departure and destination airports into

a directional weighted graph across a three dimensional mesh. The flight model used takes

into account deterministic weather forecasts from Environment Canada and uses BADA

fuel burn data. Flight routes obtained have a constant Mach number and varying mass,

but do not include a required time of arrival. Compared with actual flight data simulated

trajectories were more fuel and time efficient when both heading angle and altitude were

varied, rather than altitude alone. It was noted that climbing to a new altitude is very

expensive in terms of fuel burn, a finding echoed in Lovegren & Hansman (2011) in which

fixed horizontal flight path trajectories showed a larger potential to improve speed per-

formance, with nearly 2.4% savings possible from speed optimisation compared to 1.5%

for altitude optimisation. From these findings and analysis of the differences between

atmospheric data at different altitudes, it was decided to use only fixed altitude flights

throughout this thesis.

Cheung (2018) uses a different discrete method for finding optimal routes, based on an

enhanced Dijkstra’s algorithm. The area between the airports is split into a square mesh

with 25 points zonally and the corresponding number of points meridionally to keep the

grid square. Wind and temperature data are interpolated to get values at the chosen grid

points. In the transatlantic examples completed, the 48 grid points closest to the current

position are accepted as possible destinations. Then the great circle distance to each is

divided by the ground speed of the aircraft to give the cost functional for the Dijkstra

algorithm, for that particular stage of the journey. This would be too computationally

expensive as is, especially as points that backtrack on the previous route would be tried.

To avoid this an extra heuristic function is added to the sum of previous stages resulting in
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the A* cost functional. The heuristic function works out the great circle distance from the

current point to the destination and divides this by the airspeed of the aircraft added to

a nominal 80 m s−1 tailwind. In this way, any parts of the journey that appear to go back

towards the departure airport are identified and can be ruled out. This allows a shortest

path across the network to be chosen, which has the advantage of being completely ro-

bust, (there will always be a path that goes from the departure to the destination airport).

Another advantage of this method is that areas of the grid can easily be blocked out, to

simulate regions of storms or no-fly zones. However, the trajectories are limited by the

available grid points and the method is computationally expensive.

To avoid the need for complicated optimisation techniques during time sensitive manoeu-

vres, Dancila et al. (2019) take an already optimised horizontal trajectory and create a

vertical profile which constrains airspeeds and pitch angles in order to reduce wear and

tear on the aircraft, as well as fuel burn. This is formed using basic geometry and aircraft

specific data allowing for fast calculations with limited computing resources, but it does

not account for mass changes or atmospheric conditions and so it is less useful in strategic

flight trajectory planning.

2.4.9 Machine learning for route prediction

A newer tactic for trajectory prediction in the case of an approaching collision is to use

machine learning. In Hashemi et al. (2020) machine learning is applied to find a more

time efficient solution to this problem than traditional methods. Model Predictive Con-

trol (MPC), where new trajectories depend on creating dynamic and kinematic models can

be slow and costly. Hashemi et al. (2020) showed that data driven solutions outperformed

MPC if enough training data is used. Unfortunately, the drawback to this method was

found to be its susceptibility to “adversarial attack”. If data was added to the training

data that might lead to a collision, then 80 to 90% of the time the result would be cor-

rupted by this. In the future it would be interesting to see if fuel optimal routes could be

planned more quickly by a machine learning approach, trained on data from fuel optimal

flights through deterministic wind fields.

Similarly in Jiang et al. (2021) the trajectory of an aircraft already in flight is predicted by

using a combination of a database of aircraft performance models (drawn from BADA),

gridpoint wind and temperature data and a large set of historical data. The data is mined
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offline to formulate a horizontal flight path to which altitude and airspeed profiles are

then added. As a flight progresses, this initial prediction can be tweaked using current

information about the aircraft’s actual route, in the same way that data assimilation is

used to adjust numerical weather predictions. This method is time efficient and shows

a better level of accuracy than a prediction model based purely on aircraft performance.

Landing times predicted by this system are shown to be within 5% of actual times.

Lin et al. (2020) apply neural networks to solve the HJB equation approximately, in

order to control automated land vehicles. By minimising a cost functional dependent on

steer angle error and distance error, the vehicle is guided on a path. The neural networks

increase the speed of mapping of the system states onto value functions and control in-

puts by 500 times, compared with a standard MPC solver. So in the future this method

could perhaps be applied in order to create a real time aircraft trajectory map that could

respond almost instantaneously to weather updates.

2.4.10 Route planning algorithms based on nature

Some authors have chosen to approach trajectory planning by borrowing techniques from

the natural world. For example Murrieta Mendoza et al. (2016) use an algorithm based

on ants finding food and Zhang et al. (2018) mirror the predatory behaviour of the antlion

larva.

Ants when following paths to find food, leave behind a trace of pheromone. Other ants

know from the strength of the pheromone how popular a path has been and therefore,

where the food is most likely to be. In Murrieta Mendoza et al. (2016) lateral airspace is

marked out as a grid in which the nodes are waypoints that aircraft may pass. The Ant

Colony Optimization algorithm is a swarm intelligence algorithm. In the first sweep, many

random paths are travelled, with weighting given to each to mirror the way pheromone is

deposited. Then the 5 paths with the lowest performance index (based on time and fuel

use) are selected and more weighting is given to these. With time, some of the weighting

“evaporates”, so when an “ant” is now placed at the departure node it will select a route

to the destination node based on the strength of “pheromone” on each route. This is re-

peated a few times until convergence to a single route occurs. Improvements were shown

between the cost of the routes obtained in this way and the shortest distance routes, taking

into account the winds encountered across the grid. This approach, though innovative,
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gives no guarantee that routes found are minimal. The grid system is predetermined and

so fixes a selection of waypoints that may not be the best positions to fly to. The search

technique should converge to a minimum cost path for this grid, but again, this is not

guaranteed.

In Zhang et al. (2018) the behaviour of the antlion larva when hunting prey is exploited

to create an optimisation process that finds weights and thresholds for a Long Short-Term

Memory neural network. This network is used to predict the movements of one fighter

plane relative to another based on nine different input variables, such as current 3D posi-

tions and relative speeds of the fighters. This system is trained in advance to allow for real

time results in the air and provides a glimpse at where whole flight trajectory optimisation

may go in the future. Obviously the need to take weather data into account will make the

training more complicated and increase the number of inputs dramatically, but this is an

interesting potential area for future research.

2.4.11 Innovations applied to drone flight planning

Trajectory optimisation is not just restricted to manned aircraft. Recent research has used

a range of optimisation techniques to reduce power requirements of drone flights.

In Dobrokhodov et al. (2020) energy optimal trajectories for unmanned hybrid aircraft

powered by both hydrogen fuel cells and solar photovoltaic cells are found by solving

a TPBVP for aircraft travelling in two dimensions through a time-varying atmospheric

field. It is assumed that both the air speed and heading angle of the craft are continu-

ously adjustable and that air speed will remain within practical bounds. We make similar

assumptions in Chapters 6 and 7. PMP is applied to derive the TPBVP, but due to

the convoluted non-linearities of the fuel burn determination and wind fields, rather than

trying to find an analytical evaluation of the second order necessary conditions to confirm

that a minimum has been found, a numerical test is performed on the results instead.

The optimal controls are perturbed at every instance of time by a small amount. This

perturbation leads to convex energy and fuel costs, as the Hessian matrix is confirmed to

be positive definite and so the retrieved solution is a minimum.

Henninger et al. (2020) minimise the energy for a journey with fixed waypoints by con-

trolling drone airspeed. Here PMP is applied to the trajectory dynamics to minimise a

Chapter 2 Cathie A. Wells 41



Reformulating aircraft routing algorithms to reduce fuel burn

quadratic cost based on kinetic energy throughout the flight. The continuous system is

discretised and then the discrete problem solved to give a good approximation of the solu-

tion to the original problem. As the initial co-state value needed to solve the system is not

known, a simplified structure is used to allow a reasonable initial guess and then a shooting

method based on Matlab’s fminunc, which uses unconstrained non-linear optimisation, is

applied to find the closest path to the waypoints.

2.4.12 What is the best way to plan a flight?

It is clear from this review of the research completed into aircraft trajectory planning that

many methods have been applied to find efficient routes in a theoretical setting. No one

method is the best, but rather each has its advantages and disadvantages, making it most

applicable for a particular scenario.

Data from airlines is not usually shared for reasons of confidentiality, but there are now

online platforms that do give information about flight tracks, if not about fuel use (Fligh-

tradar24, 2020). By plotting tracks of recent flights, some of the operational strategies

can be deduced. For example in Chapter 6, Figure 6.12 shows that actual flights tend to

be spread either side of the time optimal route. Furthermore, the parallel nature of the

tracks flown shows that these paths have been dictated largely by the OTS. However, with

the new focus on TBO this is likely to change.

2.4.13 Can any of these ideas be applied operationally?

Having considered the large body of literature available that details theoretical approaches

to trajectory routing it is worth questioning if using TBO is actually practical. Can a the-

oretically conceived trajectory be used operationally?

There have been a number of initiatives to try to reduce flight emissions over the past

two decades such as SESAR in Europe, the Environmentally Responsible Aviation project

(ERA) in the US, the Asia and Pacific Initiative to Reduce Emissions (ASPIRE) in the

Asia-Pacific region and the Collaborative Actions for Renovation of Air Traffic Systems

(CARATS) in Japan (Gardi et al., 2016). These projects aim to bring theoretical meth-

ods for improving trajectories into a more practical setting, so that after modelling and

simulation, actual trial flights can be used to test emissions reduction predictions fully. If
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aviation is to become sustainable, then it will happen because Multi-Objective Trajectory

Optimisation algorithms are applied in conjunction with Dynamic Airspace techniques,

ensuring that the benefits predicted by mathematical research are not compromised by

inflexible airspace rules and limited communications technology.

2.5 Chapter summary

Due to the competitive nature of commercial aviation, it is not possible to gain informa-

tion about how airlines plan the routes they send to the ANSPs in their PRMs. However,

we do know that the ANSPs do try to reflect these in their route planning for the OTS.

The Met Office in the United Kingdom does provide time minimal trajectories based on

the A-star method (Cheung, 2018), but many of the other research papers summarised

here look instead at minimising a CI based on airline expenses, which combine time and

fuel costs.

A large number of research papers has been written about finding optimal flight routes,

of which this chapter has provided a summary. In general the key methods are indirect

optimisation, direct optimisation and dynamic programming and in Table 2.1 advantages

and disadvantages noted about these three approaches from a range of research papers are

listed.

Where time minimisation is required, then using an indirect method such as PMP allows

extremal solutions to be found, without the need for adjoint variables to be estimated.

This method requires a system for finding the initial values of the control variables, so can

be computationally expensive compared to direct methods and dynamical programming.

Although it allows inclusion of general atmospheric conditions, like the wind field, within

the working, trying to avoid areas of convection or turbulence would be more problematic.

Equally, trying to apply this method when minimising fuel burn would require an approx-

imate analytic formula for fuel burn, making the results less applicable to actual flights.

Direct methods are often used where a CI must be optimised, but simplified atmospheric

conditions are acceptable. In a fixed time problem, these are often the best methods to

use, as they provide more flexibility in choice of discretisation and optimisation methods.

However, they are not guaranteed to even give an extremal like the indirect methods,
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although a unique route will be obtained every time, making the method robust, if subop-

timal. Methods that apply enough initial conditions to allow more certainty that a global

minimum has been found can be slow, as the optimisation must be completed from each

starting set and the lowest local minimum located amongst the candidate solutions.

Dynamic programming has the advantage of trying all points across a mesh and as long

as representative atmospheric conditions are gained via interpolation, then the resulting

trajectory is guaranteed to be optimal, for the chosen discretisation of the variables. The

problem with this method is that all states must be tested with each possible set of controls

and so it is easy for code to become overloaded with data in infeasibly large arrays. Al-

though this is not a time constraint where parallelisation is possible, it can cause computer

memory overload. However, the method of dynamic programming does allow sections of

state space to be blocked out to represent no-fly areas, which could be used for storms or

super-saturated icy regions.

Research into tactical flight planning often uses information from offline data mining that

can then be applied in real time. In future, it might be possible for a method of machine

learning to match previously planned routes to the encountered atmospheric conditions so

that observed relationships can be used to generate likely optimal routes far faster.

In Chapters 4 and 5 of this thesis, we use time minimal route planning so that extremal

routes are found and can be compared to OTS tracks used or to similarly simulated tra-

jectories from different time periods. In Chapter 6 fuel minimal optimisation is favoured

using a direct method for fixed time flights to allow comparison between formulations with

different numbers of controls. Finally dynamic programming is used in Chapter 7 so that

globally optimal fuel minimal routes can be compared with actual flights encountering the

same atmospheric conditions.
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Table 2.1: Summary of main trajectory optimisation methods from literature: indi-

rect (I), direct (D) and dynamical programming (P).

Paper Method Advantages Disadvantages

Schultz & Zagalsky (1972) I Optimised for fuel. Set distance.

Schultz (1974) No wind.

Speyer (1973)

Menon (1989)

Erzberger & Lee (1980) I Use wind data. Fixed range cruise.

Sorensen & Waters (1981) I Take-off delays Final time

Burrows (1983) included. from many runs.

Chakravarty (1985) I Delay absorption. Approximates fuelburn.

Jardin & Bryson (2012b)1 I Finds extremal. Tests many angles.

Jardin & Bryson (2012b)2 I Faster as approximate. Finds suboptimal.

Franco & Rivas (2011) I Finds extremal. Simplified winds.

Nguyen (2006)

Kim et al. (2015) I Avoids convection. Over predicts.

Sridhar et al. (2011) I Avoids contrails. No mass change,slow.

Soler et al. (2020) I Avoids convection. One day tested.

Fahroo & Ross (2002) D Robust, finds route. Suboptimal, no wind.

Pierson & Ong (1989) D Compares methods. Suboptimal.

Garćıa-Heras et al. (2014) Minimises fuel. No wind data.

Ahmed et al. (2021) P Minimises fuel. No wind data.

3 controls. Planar. Fixed mass.

Wickramasinghe et al. (2012) P Minimises fuel. Limited path area.

Parzani & Puechmorel (2017) P Blocks areas. Simplified wind.

Ng et al. (2011) P Minimises fuel. Fixed airspeed.

Ng et al. (2014) Minimises time. Fixed mass.

Khardi (2012) P Fuel/noise optimsed Only descent phase.
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Chapter 3

Background theory, models and

data

3.1 Introduction

This chapter describes in detail the methods that can be used to solve optimal control

theory problems, such as those arising from the need to find optimal routes for crossing

the North Atlantic between LHR and JFK.

In each case deterministic wind fields and temperatures from re-analysis data or pre-

dictions of these wind fields and temperatures from an ensemble of climate models, is used

to give realistic atmospheric conditions for such a flight.

Flight dynamics for rate of change of latitude and longitude around a spherical shell

at a fixed altitude above the Earth’s surface are used as the dynamical system, with an

extra line describing mass change for the examples with varying mass.

Optimal control requires the solution of these systems of non-linear differential equations

subject to certain constraints, costs and conditions. These vary depending on how the

OCP is formulated.
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3.2 OCP specific to transatlantic flights

3.2.1 Optimal control formulation

In general an optimisation problem will involve changing certain variables (the control

variables) in order to navigate from an initial to a final state, whilst minimising or max-

imising a particular cost associated with the journey. Here we assume that a minimum is

required in each case. The state variables describe the trajectory which gives the minimum

cost, once the corresponding control variables have been found.

Problems are stated as:

• cost functional: cost to minimise,

• dynamical system: set of differential equations describing evolution of states,

• boundary conditions on each state: normally not all of these are known,

• constraints on states/control variables: values not to exceed en route.

We define the state equations as:

ẋ = f(x,α, t), (3.1)

where x is a vector of n state variables, which lie in a closed domain Ω ⊂ Rn, α is a vector

of m piecewise continuous controls, which lie in the admissible set of all controls A ⊂ Rm

and t is time, which runs from t0 to tf .

The associated cost functional, or performance index, is composed of the terminal condi-

tion and the integral of the running cost, which describes what is to be minimised:

J = β[x(tf ), tf ] +

∫ tf

t0

L[x(t), α(t), t]dt. (3.2)

However, in the following research, rather than including a terminal cost, which requires

finding β, a non-linear constraint is used. This means that only routes that reach the

specified target set, C, will be accepted as admissible trajectories. This involves measuring

the distance between the final destination and the end of each trajectory. If the distance

between the two lies within a certain range, it is considered to have reached the target set,

where C is a compact subset of Rn. In some contexts this cost functional is known as the

objective function (Cartis et al., 2021).

Chapter 3 Cathie A. Wells 47



Reformulating aircraft routing algorithms to reduce fuel burn

3.2.2 Parameters, states and controls

The OCP itself can be defined in a general way, as a set of parameters, states and control

variables which are all part of the dynamical system under consideration.

In each part of this thesis, the parameter is time, t. This is measured in seconds. In

the infinite horizon case, where fuel burn is to be minimised:

t0 = 0,

tf = T,

where tf is final time and t0 is initial time. Here T is a given, set final time. However,

in the time minimal formulation and the HJB formulation in Chapter 7, tf is unknown a

priori and will be found as part of the optimisation.

The state variables describe the position of the aircraft at any time t and in the case

where mass is not considered as constant, mass is an additional state variable. For exam-

ple in the constant altitude, constant mass case, the state variables (x) are:

x1 =λ(t) ∈ [−π, π],

x2 =ϕ(t) ∈ [−π/2, π/2],

where λ and ϕ are positions of longitude and latitude, in radians, respectively, but in later

problems three different states are considered so we extend this list to include:

x3 =M(t) ∈ [Mmin,Mmax],

where M is the mass of the aircraft in kg. The maximum and minimum masses of an

aircraft are governed by the model of aircraft used and its expected time of flight.

Control variables (α) are the values which are varied to ensure an optimal result. In the

simplest problem only heading angle is controlled, but later airspeed is added to the list

of controls:

α1 =θ(t) ∈ [0, 2π],

α2 =V (t) ∈ [199, 252],

where θ is the heading angle in radians and V is the airspeed in m s−1. The airspeed con-

straints are the boundary values for the fuel burn calculation to be valid at cruise altitude

given the maximum and minimum temperatures across the North Atlantic.
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Figure 3.1: Diagram showing the velocity of an aircraft in flight, showing the state

variable axes and control variables.

A diagram showing the motion of the aircraft is shown in Figure 3.1.

3.2.3 Dynamical system and cost functional for the time

minimal problem

The dynamical system is derived from a planar longitude/latitude grid system, but this

is then scaled conformally to fit the spherical model (as shown in Appendix B). As the

radius of the Earth, R is very much greater than the altitude of the aircraft, h, we assume

that h is negligible in this mapping and use just R as the radius of the spherical shell.

In the time minimal case in Chapters 4 and 5, the mass of the aircraft is considered to

be constant and taken as an average across the whole trajectory. This gives the following

dynamical system to describe the movement of the aircraft:

λ̇ =
1

Rcosϕ
(V cosθ + u(λ, ϕ)), (3.3)

λ(0) = λdept, (3.4)

ϕ̇ =
1

R
(V sinθ + v(λ, ϕ)), (3.5)

ϕ(0) = ϕdept, (3.6)
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where V is airspeed in m s−1, R is the radius of the Earth (taken to be 6 371 km), u is

zonal wind velocity and v is meridional wind velocity (in m s−1). Both wind components

are position dependent, but not time dependent as wind speeds are taken across a position

grid, but averaged over each day. The dynamical system is referred to as f .

In Chapter 4 the airspeed of the aircraft is kept constant throughout each trajectory.

For the system used in Chapter 5 the Mach number of the aircraft is kept constant, so at

each time step the airspeed is slightly altered to allow for any changes to the temperature

of the air. Mach number is the ratio of the airspeed to the speed of sound at any partic-

ular point, which depends on air temperature. It should be noted that across the North

Atlantic ambient temperature changes with location are very small. In the time minimal

calculations in Chapter 7 airspeed V is included as a second control variable, although it

is always chosen to be at its maximum by the algorithm in order to minimise time.

The cost functional is the value to be minimised by varying the control variables. The

basic performance index for an OCP is composed of the terminal cost and the integral of

the Lagrangian, L, which is the running cost, subject to the state vector, x, the control

vector,α, and time, the parameter t. In the current model the terminal cost is removed

and applied as a non-linear inequality constraint leaving only the running cost:

J =

∫ tf

t0

L[x(t), α(t), t]dt. (3.7)

In the case where time is being minimised, the cost functional is reduced to:

J =

∫ tf

t0

L[x(t), α(t), t]dt =

∫ tf

t0

1dt = tf . (3.8)

The non-linear inequality constraint ensures that the spherical distance between the co-

ordinates of the end of a trajectory and the co-ordinates of the destination airport is less

than or equal to a given value. The spherical distance is calculated using the Haversine

formula, which is a standard method in this field (Veness, 2019):

aH = sin2(∆lat/2) + cos(lat1) cos(lat2) sin2(∆lon/2),

cH = 2atan2(
√
aH ,

√
1− aH),

dH = RcH , (3.9)

where lat1 is the final latitude in the state vector, lat2 is the latitude of the destination

airport, ∆lat is the difference in latitudes between these two points, ∆lon is the difference
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in their longitudes and R is the radius of the Earth. The atan2 function is the four-

quadrant inverse tangent of the two real values in the function bracket. This computes

arctan
√
aH√

(1−aH)
, but includes an extra term of π

2 sign(
√
(1−aH))(1−sign(

√
aH)) to extend

the range of results to cover [−π, π]. It also accepts the case where aH = 1, returning π
2 .

3.2.4 Dynamical system and cost functional for the fuel

minimal problem

The fuel minimal problem requires a new dynamical system, where the changing mass is

included. This is essential when minimising fuel, as the fuel used during each time step

causes the mass to change by this amount, with a knock-on effect to the calculation for

the next fuel burn rate. This dynamical system is stated as:

λ̇ =
1

Rcosϕ
(V cosθ + u(λ, ϕ)), (3.10)

λ(0) = λdept, (3.11)

ϕ̇ =
1

R
(V sinθ + v(λ, ϕ)), (3.12)

ϕ(0) = ϕdept, (3.13)

Ṁ = −g(λ, ϕ,M, V ), (3.14)

M(0) =Mdept, (3.15)

where V is the control variable airspeed in m s−1, R is the radius of the Earth, u is zonal

wind velocity and v is meridional wind velocity (in m s−1). The fuel burn function, g is

described in more detail in Section 3.4 of this chapter.

In Chapter 6 this system is solved by a direct method, for both fixed airspeed flights

and those with airspeed as a second control variable.

When dynamic programming is applied to solve this problem in Chapter 7, both heading

angle and airspeed are used as control variables. In this case fuel is being minimised at

fixed altitude, so the cost functional is based on the fuel burn function with altitude kept

constant:

J =

∫ tf

t0

L[x(t), α(t), t]dt =

∫ tf

t0

g(λ, ϕ,M, V )dt. (3.16)
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3.3 A summary of optimal control approaches

Finding a minimum fuel burn route is an optimisation problem with a large number of

potential state and control variables. There are three main ways to resolve optimisation

problems: direct methods, indirect methods and via dynamic programming. Each of these

methods has advantages and disadvantages and normally the statement of the problem

will give an indication of which method to apply.

3.3.1 Indirect methods

Indirect methods involve first optimising and then discretising. The method makes use

of PMP to derive necessary first order optimality conditions, by taking derivatives of

the Pontryagin Hamiltonian. If problem boundary conditions are known this reduces to

a TPBVP, with adjoint values at the final time given by the transversality conditions.

Indirect methods are then needed to solve the resulting system and the solution is not

necessarily a minimum. By working in this way the number of states and controls is

not limited. However, for every starting value the system of differential equations should

have a unique solution. We then look for the initial conditions that give the solution we

are trying to find. For example in the case of minimum time flights, we find the initial

conditions that allow the aircraft to arrive within a given distance of the airport in the

shortest time possible. The minimum time methods used in Chapters 4 and 5 of my thesis

rely on PMP.

Mathematical theory underpinning PMP

PMP gives the necessary conditions for a first order optimal control to exist based on the

Pontryagin Hamiltonian defined as:

H(x,p,α) = L[x(t),p,α(t)] + ⟨p, f [x(t),α(t)]⟩, (3.17)

where L is the running cost, p is a vector of co-states and ⟨·, ·⟩ is the scalar product (Kirk,

1970; Lee & Markus, 1967; Macki & Strauss, 1982; Athans & Falb, 1966).

For the preparation of the formulation of PMP, we follow the method of Athans & Falb

(1966).

Assuming that partial derivatives of f and L with respect to both the state variables and

time, are continuous on Rn ×A× (t0, tf ), then functions H(x,p,α) and ∂H
∂x (x,p,α) are
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continuous on Rn × Rn × Ω. This also means that ∂H
∂α (x,p,α) is well defined and given

by:
∂H

∂α
(x,p,α) = f [x(t),α(t)]. (3.18)

Now let x̂ be the trajectory starting from state vector x at t0 generated by the control

vector α̂ and π be any n vector. For any function p(t) we get:

˙̂x =
∂H

∂p
[x̂(t),p(t), α̂] = f [x̂(t), α̂(t)], (3.19)

ṗ(t) = −∂H
∂x

[x̂(t),p(t), α̂], (3.20)

where Equation (3.20) has a unique solution p(t,π) satisfying p(t0,π) = π.

Pontryagin’s Minimum Principle

From these definitions, PMP for the case where:

• final time is free,

• final position lies within a target set,

• system of state equations ẋ do not depend explicitly on t,

• cost functional J does not depend explicitly on t,

can now be quoted:

Theorem 1: The Minimum Principle of Pontryagin (Athans & Falb, 1966)

Let α∗(t) be an admissible control which transfers (x0, t0) to target C. Let x∗(t) be the

trajectory corresponding to α∗(t) starting at (x0, t0) and meeting C for the first time at

tf , so that x∗(tf ) ∈ C.

In order for α∗(t) to be optimal, it is necessary that there exists a function p∗(t) such

that:

1. p∗(t) corresponds to α∗(t) and x∗(t) so that p∗(t) and x∗(t) are a solution of the

canonical system:

ẋ∗(t) =
∂H

∂p
[x∗(t),p∗(t),α∗(t)], , (3.21)

ṗ∗(t) = −∂H
∂x

[x∗(t),p∗(t),α∗(t)], (3.22)
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satisfying the boundary conditions:

x∗(t0) = x∗ x∗(tf ) ∈ C, (3.23)

2. H[x∗(t),p∗(t),α(t)] has an absolute minimum as a function of α over A at α = α∗

for t ∈ [t0, tf ], which can be expressed as:

min
α∈A

H[x∗(t),p∗(t),α(t)] = H[x∗(t),p∗(t),α∗(t)], (3.24)

3. H[x∗(t),p∗(t),α∗(t)] = 0 t ∈ [t0, tf ],

4. Vector p∗(tf ) is normal to target C at x∗(tf ).

Towards a heuristic proof of PMP

The proof of PMP is stated in full in Pontryagin’s original text: Pontryagin et al. (1962).

This is described in the introduction to Barron & Jensen (1986) as “very long and techni-

cal”, so in their paper the case with just running cost is proved more succinctly by deriving

PMP from the viscosity solution of the HJB equation, which will be discussed further in

Section 3.3.3. More heuristic forms of the proof for particular cases have appeared in a

range of texts including in Athans & Falb (1966), which is summarised here. The material

splits into nine steps, which gradually lead to the proof of PMP.

Firstly an auxiliary variable is introduced into the state vector, so that the the running

cost is expressed as the rate of change of x0 and the system is now of order n+ 1:

ẋ0(t) = L[x(t),α(t)],

ẋ(t) = f [x(t),α(t)].

The optimal trajectory is y∗(t), which can be projected onto the x-axis as x∗(t), allowing

the cost to be plotted on the vertical axis and the state space to be compressed to a single

horizontal axis. At t∗, the final time for the optimised trajectory starting at t0, the optimal

trajectory is given as:

y∗(t∗) =

J∗

x1

 =

x∗0(t∗)
x∗(t∗)

 . (3.25)

If we now change the start time to t0 + r, the control vector, αr(s+ τ), is seen to be the

same as the original control vector for s ∈ (t0, t
∗), α∗(s). This means that a translation

in time results in the same optimal trajectory, with no change to the cost.
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Next the principle of optimality can be demonstrated by showing that the optimal control

α∗ is optimal for any point on the optimal trajectory. By considering smaller segments of

the optimal trajectory it is shown that any trajectory sections plotted below the optimal,

on a cost against state graph, will prevent α∗ from being optimal, so a proof by contra-

diction means that geometrically any y trajectories meeting the target must lie above the

trajectory generated by α∗. Therefore any portion of the optimal trajectory must also be

optimal. This also allows us to generate a tube-like region around the optimal trajectory

within which all control vectors are approximately optimal, thus broadening the target,

which will help in the next stages in the heuristic proof, as the trajectory is perturbed

temporally and spatially.

The third step looks at the effect of a small change to the initial conditions, so that:

y∗(t) + ϵψ(t) +O(ϵ), (3.26)

represents the perturbed trajectory, where a small change in starting position ξ generates

a change to the state ψ(t) at each time t with:

lim
ϵ→0

∥ O(ϵ) ∥
ϵ

= 0. (3.27)

In Figure 3.2 the effect of a shift in initial conditions of ξ is shown. The perturbed trajecto-

ries always lie in a narrow region around the optimal trajectory, which has approximately

constant width as time changes.

In the next step the adjoint variables are considered and these are shown to describe

hyperplanes, using the fact that the adjoint vector at any time t is perpendicular to the

corresponding hyperplane. The first of these, P0, passes through y0 and is perpendicular to

ξ, which is the vector showing the perturbation of the initial values (shown in Figure 3.2).

We can then describe Pt, which is the hyperplane at any time t and will be perpendicular

to ψ(t). In effect P0 is moved along the optimal trajectory to give Pt.

We now consider a set of convex cones, Ct, whose vertices are at y∗(t). The rays of

these cones result from perturbing the optimal control vector, α∗ and are called the cones

of attainability. These will always lie on the same side of the hyperplane defined by the

perpendicular vector of adjoint variables.

The fifth step involves considering the effect to the optimal control, α∗, of a small change,
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Figure 3.2: Plot of cost against position in state space, demonstrating the effect of

a small change to the initial position, ξ. This has been exaggerated for

clarity. This graph has been adapted from Figure 5-21 on page 317 of

Athans & Falb (1966),

τ , to the terminal time, t∗:

α[τ ](t) =


α∗(t) t0 ≤ t ≤ t∗ + ϵτ τ < 0,

α∗(t) t0 ≤ t ≤ t∗,

α∗(t) t0 ≤ t ≤ t∗ + ϵτ τ > 0.

The new end points of these longer or shorter duration versions of the optimal trajectory

are shown to lie along the same ray, −→ρ , which goes through y∗(t∗) and is tangent to the

slope of y∗(t) at this point. This is shown in Figure 3.3.

Step six involves perturbing the optimal control spatially, just across one very short

time interval of length ϵa finishing at time b, during which the control is taken to have a

constant value, ω. The linear sums of such perturbations are also considered. Examples

of spatial perturbations are shown in Figure 3.4.

All of the combinations of the rays −→ρ form a cone
−→
P , whose convex cover co(

−→
P ) is a

convex cone with a vertex at y∗(t∗). (We take the cover to ensure convexity. It is the

smallest convex set containing
−→
P ).
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Figure 3.3: Plot of cost against position in state space, showing the optimal trajec-

tory y∗ and the ray −→ρ , which is generated by perturbing the duration

of the control vector. This graph is based on part of Figure 5-26 on page

324 of Athans & Falb (1966).

In step seven, the two perturbations whose effects were established in the previous

two stages, are now combined to give Ct∗ = −→ρ + co(
−→
P ) which is also a convex cone with

a vertex at y∗(t∗). All points included in this cone are linear combinations of parts of

−→ρ and parts of co(
−→
P ) and all cones of attainability will therefore lie somewhere within

this cone. As Ct∗ can be shown to lie between two half hyperplanes, which coincide

along the ray −→ρ , we can see that all cones of attainability must lie the same side of the

moving hyperplane Pt∗ , which is defined as perpendicular to the vector of adjoint variables.

By considering all of these findings it is possible to show that a ray in the direction

of decreasing cost from y∗(t∗), −→µ , does not meet the interior of Ct∗ , as the hyperplane Pt∗

separates them. The existence of this hyperplane means that there is a non-zero vector of

adjoints, normal to the hyperplane:

 p∗0

p∗(t∗)

 . (3.28)
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Figure 3.4: Plot of cost against position in state space, showing the optimal trajec-

tory y∗ and the rays −→ρ , which are generated by perturbing the optimal

control vector for short duration time intervals at different times during

a trajectory. This effect is shown to be additive, with vector δ being the

sum of −→ρ [ω1, b1] and
−→ρ [ω2, b2], resulting from the two corresponding

perturbations of the control vector as shown in the graphs on the right.

These graphs are based on those in Figure 5-31 on page 330 of Athans

& Falb (1966).
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This means that:

Pt∗ =

〈 p∗0

p∗(t∗)

 ,y − y∗(t∗)

〉
= 0. (3.29)

Motion along the optimal trajectory can be described by:

ψ̇(t) = ν∗(t)ψ(t), (3.30)

where ν∗ is the n+ 1× n+ 1 matrix:

ν∗ =

0 ∂L
∂x1

|∗ ∂L
∂x2

|∗ . . . ∂L
∂xn

|∗

0 ∂f
∂x |∗

 ,
which gives a linear and homogeneous system adjoint: ṗ0

ṗ(t)

 = −ν ′∗(t)

 p0

p(t)

 . (3.31)

This means that:

p∗0(t) = p∗0,

ṗ(t) = −∂L
∂x

∣∣∣∣
∗
p0(t)−

(
∂f

∂x

∣∣∣∣
∗

)′
p(t),

and so on the optimal path:

ṗ∗(t) = −∂L
∂x

∣∣∣∣
∗
p∗0(t)−

(
∂f

∂x

∣∣∣∣
∗

)′
p∗(t), (3.32)

This can then be expressed using the Hamiltonian:

H[x,p,α, p0] = p0L(x,α) + ⟨p,f(x,α)⟩, (3.33)

which gives Equation (3.22).

To prove the second part of PMP we show that α∗ minimises the Hamiltonian. Take a

point t0 ≤ b ≤ t∗ and ω ∈ A. Then we consider the difference in the extended dynamical

system for y∗(b) when the trajectory depends on control ω compared to the optimal control

at b, α∗(b):

ξb(ω) =

L[x∗(b),ω]− L[x∗(b),α∗(b)]

f [x∗(b),ω]− f [x∗(b),α∗(b)]

 . (3.34)

We now define Φ∗(t, b) as the fundamental matrix of ψ̇(t) = ν∗(t)ψ(t), so that for small ϵ:

ϵΦ∗(t
∗, b)ξb(ω) ∈ Ct∗ . (3.35)
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As this is an element of the cone of attainability on the optimal trajectory, the inner

product of the vector of adjoints and ξb(ω) must be non-negative:〈 p∗0

p∗(b)

 , ξb(ω)
〉

≥ 0, (3.36)

which means that:

H[x∗(b),p∗(b),ω, p∗0] ≥ H[x∗(b),p∗(b),α∗, p∗0], (3.37)

which establishes Equation (3.24).

The next part of PMP can be proved by showing first that the Hamiltonian, H, is zero at

the terminal time, t∗ and then that it is constant on the time interval [t0, t
∗].

Consider δ(τ) which is a vector attached to y∗(t∗), and part of ray −→ρ :

δ(τ) =

L[x∗(t∗),α∗(t∗)]

f [x∗(t∗),α∗(t∗)]

 τ, (3.38)

where τ ∈ R. For this to be true:〈 p∗0

p∗(t∗)

 ,
L[x∗(t∗),α∗(t∗)]

f [x∗(t∗),α∗(t∗)]

 τ〉 ≥ 0, (3.39)

which means that:

H[x∗(t∗),p∗(t∗),α∗(t∗), p∗0]τ ≥ 0. (3.40)

However, τ could be positive or negative, so it follows that H = 0 at t∗.

We now assume that α∗ has only as finite number of discontinuities and that in the

continuous interval between two given times [t1, t2], α
∗ is continuous. We consider closed

and bounded sets of states, adjoints and controls on this interval, X1 , P1 and A1. The

Hamiltonian is therefore continuous on [X1 × P1 ×A1] and on this set it is also assumed

to have continuous partial derivatives with respect to both x and p.

We now define a function:

m(x,p) = inf
α∈A1

H[x,p,α, p∗0]. (3.41)

As α∗ is continuous in the given time interval we know that m is a continuous function

when applied to the optimal trajectory. Taking two distinct values of t, ta and tb, such
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that t1 ≤ ta < tb ≤ t2:

m[x∗(ta),p
∗(ta)] ≤ H[x∗(ta),p

∗(ta),α
∗(ta), p

∗
0], (3.42)

which means that:

m[x∗(tb),p
∗(tb)]−m[x∗(ta),p

∗(ta)]

tb − ta
≤ H[x∗(tb),p

∗(tb),α
∗(tb), p

∗
0]−H[x∗(ta),p

∗(ta),α
∗(ta), p

∗
0]

tb − ta
.

(3.43)

If we narrow the time between ta and tb, as tb tends to ta from the right, this inequality

becomes (where s is a general time variable):

d

ds
m[x∗(s),p∗(s)]

∣∣∣∣
t+

≤
〈
∂H

∂x

∣∣∣∣
∗
, ẋ∗(ta)

〉
+

〈
∂H

∂p

∣∣∣∣
∗
, ṗ∗(ta)

〉
= 0, (3.44)

which is true as ẋ∗(ta) and ṗ∗(ta) satisfy Equations (3.21) and (3.22) of the canonical

system respectively.

By reversing the narrowing of the time interval we get the opposite result with:

d

ds
m[x∗(s),p∗(s)]

∣∣∣∣
t−

≥ 0. (3.45)

This shows that:
d

ds
m[x∗(s),p∗(s)]

∣∣∣∣
t

= 0, (3.46)

and therefore:

H[x∗(t),p∗(t),α∗(t), p∗0] = 0 ∀ t ∈ [t0, t
∗]. (3.47)

The last part of PMP is called the transversal condition and holds for when there is a

destination target to reach that is smaller than the whole set Rn and made up of more

than just one point. We assume that this target C is k-dimensional and includes the

terminal optimal trajectory point, x∗(t∗). Next we define two new planes, M [x∗(t∗)] and

N [y∗(t∗)] which can be seen in the representation given in Figure 3.5. M [x∗(t∗)] is the

tangent plane to the target and N [y∗(t∗)] is the projection of M [x∗(t∗)] to the hyperplane

where cost is kept constant at the optimal value.

We also define −→µ as the set of all vectors Bϱ, where:

ϱ =



−1

0

0
...

0


, (3.48)
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Figure 3.5: Plot of cost against position in state space, showing the planesM [x∗(t∗)]

and N [y∗(t∗)], where the first is the tangent plane to target C and the

second is the projection of this plane to the hyperplane where cost is

kept constant at the optimal value.This graph has been adapted from

Figure 5-35 on page 341 of Athans & Falb (1966). The two planes and

the target appear as lines and curves in this image as the state space

has been illustrated as 2D.

62 Chapter 3 Cathie A. Wells



Reformulating aircraft routing algorithms to reduce fuel burn

Figure 3.6: Plot of cost against position in state space, showing the plane N [y∗(t∗)]

(depicted as a line in this representation in 2D state space), where cost is

kept constant at the optimal value, the convex cone Ct∗ , pictured as the

valley between two half hyperplanes A and B and its support Pt∗ . The

ray of decreasing cost, −→µ and the ray along which A and B coincide, −→ρ

are also shown, along with the vector of adjoints. This graph has been

adapted from Figure 5-36 on page 342 of Athans & Falb (1966).

and B ≥ 0. This is a ray pointing in the direction of decreasing cost. By adding this

vector to N [y∗(t∗)] we create a new convex cone with a vertex at y∗(t∗):

N [y∗(t∗)] +−→µ =
{
y : y = y∗(t∗) + ŷ + Bϱ, ŷ ∈ N̂ ,B ≥ 0

}
, (3.49)

where N̂ is a subspace of Rn+1 that is k dimensional and:

N̂ = N [y∗(t∗)]− y∗(t∗). (3.50)

PlanesM andN are shown in Figure 3.6, with ray−→µ also pictured. The target convex cone

Ct∗ is represented by the valley between two half hyperplanes, A and B, which coincide

along −→ρ . The support to Ct∗ is the hyperplane Pt∗ . It is clear that the hyperplane Pt∗ ,

has Ct∗ on one side and N [y∗(t∗)] + −→µ on the other, given the proof of the first part of
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PMP, Equation (3.22). This means that there must be an n+1 adjoint vector, such that:〈 p∗0

p∗(t∗)

 , ŷ + Bϱ

〉
≤ 0 ∀ŷ ∈ N̂ ,B ≥ 0, (3.51)

〈 p∗0

p∗(t∗)

 , δ〉 ≥ 0 ∀δ ∈ Ct∗ . (3.52)

When B = 0: 〈 p∗0

p∗(t∗)

 , ŷ〉 ≤ 0, (3.53)

but if ŷ ∈ N̂ then −ŷ ∈ N̂ as N̂ is a subspace of Rn+1. This means that:〈 p∗0

p∗(t∗)

 , ŷ〉 = 0 ∀ŷ ∈ N̂ , (3.54)

and thus the transversality conditions, the fourth point of the statement of PMP, is proved.

3.3.2 Direct methods

Direct methods work in the opposite order to indirect methods, with the system discretised

on a mesh before it is optimised. Normally polynomial approximation is used to represent

the vectors of state and control variables that define a trajectory. These variables are

retrieved as the unknowns of a non-linear programming problem. This method is easy

to apply, but, although solutions are optimal for the discrete problem, they have the

disadvantage of not guaranteeing a minimum of the continuous problem. However, optimal

trajectories obtained from software are shown to be very close to exact solutions in a range

of test cases. In Chapter 6, the control trajectory is discretised into linear time steps,

leading to a piecewise continuous approximation to the control function.

Mathematical theory underpinning Non-Linear Programming

In the current research the direct method is used by replacing the continuous OCP by one

split into time steps that uses the conditions at each state reached to define the dynamical

system for the subsequent step. Once a route is obtained, the cost of this is compared with

that of an initial trajectory, which is chosen by reviewing the physical system being opti-

mised. Improvements are made by searching for a local minimum of the cost functional.

As the running cost in the current work is not analytical, derivatives are approximated

by finite differences. Matlab’s fmincon function takes a vector of values, α, and returns a

vector αopt. This second vector of values results in a local minimum for a scalar function,
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J(α), subject to linear constraints, non-linear constraints and bounds on α.

An interior point algorithm is applied to the input data. This algorithm is a combination

of two methods. The first uses direct linear algebra to solve the Karush–Kuhn–Tucker

(KKT) conditions followed by a line search to compute step sizes. These conditions are

first derivative tests to see if a solution is optimal, given that it stays within certain con-

straints. Further details can be found in Bertsekas (1999). If this is unable to produce an

acceptable step towards a reduced cost functional, a trust region method using conjugate

gradient iterations is applied. This technique is computationally expensive, but does guar-

antee progress towards a stationary value. By combining these two methods, an approach

is created which balances robustness and efficiency. A detailed description of each part

of the algorithm is given below based on Matlab function documentation and associated

papers (Waltz et al., 2006; Byrd et al., 2000, 1999).

Direct step

The primary step starts with the construction of a sequence of barrier functions to ap-

proximate the original cost functional. The original problem:

min
α
J(α)

subject to h(α) = 0, g(α) ≤ 0, (3.55)

is replaced by the first order optimality conditions for the barrier problem:

min
α,s

Jµ(α, s) = min
α,s

J(α)− µ
∑
i

ln si

subject to h(α) = 0, g(α) + s = 0, (3.56)

where s is a vector of positive slack variables, with length equal to the number of inequality

constraints, g and µ is the barrier parameter. Here µ is chosen so that as it tends to 0, Jµ

tends to the minimum value of the cost functional. By removing the inequality constraints

and replacing them with a series of equality constraints, the system becomes easier to solve.

The Lagrangian, according to Byrd et al. (1999, 2000) is now:

L(α, s,λ;µ) = Jµ(α, s) + λ
T
g (g(α) + s) + λT

hh(α). (3.57)

To take a step, we need to know what the change is in both the control vector, α and in the

slack variables vector, s. To do this the KKT equations are solved using the Lagrangian
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in a linearised form. This is best illustrated by using the matrix equation:
Hn 0 Jnh Jng

0 SΛ 0 −S

Jnh 0 I 0

Jng −S 0 I




∆α

∆s

∆λh

∆λg

 = −


∂J
∂α − JnThλh − JnTg λg

Sλg − µϵ

h

g + s

 , (3.58)

where Hn is the Hessian of the Lagrangian of Jµ (or if no exact second order derivatives

of the objective function can be found, then a quasi-Newton approximation is applied),

Jnh is the Jacobian of the linear equality constraints, Jng is the Jacobian of the linear

inequality constraints, S is a diagonal matrix with the elements of s along its diagonal,

λh and λg are the vectors of Lagrange multipliers associated with h and g respectively,

Λ is a diagonal matrix with the λg elements along its diagonal, I is an identity matrix of

the same size as Jnh and ϵ is a vector of the same length as g. If the Hessian is positive

definite, then the problem is solved to find (∆α,∆s). The step is now tested using the

merit function:

Jµ(α, s) + v∥(h(α, g(α) + s)∥, (3.59)

where v is a scalar that can increase at each iteration to try to force the solution towards

feasibility. If this merit function is smaller than it was on the previous iteration, then the

step is taken.

Now the new control vector can be tested to see if the step tolerance, or optimality

tolerance are met. Step tolerance is a relative bound comparing α value to the previous

one. Optimality tolerance measures how the objective function is varying in all feasible

directions. If it is non-decreasing to within this tolerance, then the optimisation has been

completed. These tolerances both show that a local minimum may have been found. If,

however, the Hessian is not positive definite or the Jacobians are rank deficient, then the

direct step algorithm is abandoned and instead a trust region step is tried.

Trust region step

The trust region step will always guarantee progress towards a stationary value, but is

computationally too expensive to use exclusively. For each value α a neighbourhood N

around it is considered. Within this region, a function q(α) is found which is a good

approximation of J(α), but far less complicated. This then gives a sub-problem of finding

a trial step s which minimises q. If J(α + s) < J(α) then the control is updated to be

(α+s). If this is not the case, then the trust region is shrunk until a suitable step is found.
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N is found by using a preconditioned gradient process (Byrd et al., 1999). It is two di-

mensional in fmincon and spanned by a vector in the direction of the gradient (s1) and

either the direction of negative curvature (s2 for sT2Hns2 < 0) or an approximate Newton

direction found by solving:

Hn.s2 = −g. (3.60)

The trust region sub-problem can be expressed as:

min{1
2
sTHns+ sT

∂J

∂α
: ∥Ds∥ ≤ Ψ}, (3.61)

whereD is a diagonal scaling matrix and Ψ is a positive scalar representing the trust region

dimension. Algorithms to solve this sub-problem, rely on finding all of the eigenvalues of

Hn and applying a Newton process to solve:

1

Ψ
=

1

∥s∥
. (3.62)

Again, once a step length is found, the merit function is used to see if this step is valid.

If it is, then the new controls can be retrieved. If the tolerances mentioned previously are

satisfied, then the iterations stop. If not a new iteration is attempted.

Iterations

Often the function is evaluated hundreds of times before a step is found that satisfies the

merit function. Only once this happens can the new headings and airspeeds be tested

using the tolerances. If tolerances are not met, then the next iteration is started, changing

each αi, by another small step. A limit is set to stop the search if a set number of function

evaluations is exceeded.

3.3.3 Dynamic programming

Finally there is the method of dynamic programming, with the major advantage that the

whole of the state space is searched for the optimal solution, meaning that a global opti-

mum for the continuous problem is guaranteed. The method relies on the HJB equation

which is based on the principle of optimality. This states that an optimal path from b

to c, will form part of the optimal path from a to c, where b is between a and c. By

solving the HJB equation we can use the value function and the HJB PDE to find an

optimal feedback control, from whence the states and times can be retrieved. Dynamic

programming requires spatial and time discretisation. Unfortunately this method suffers

from the curse of dimensionality. This means that an increase in the number of states
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present in a given problem, leads to an rapid growth in the number of calculations that

must be completed. As well as guaranteeing a globally optimal solution this method does

have the advantage that certain general cases can be solved by applying standard solutions.

In Chapter 7 dynamic programming is used to find minimum time cruise routes across the

North Atlantic. The method is then adapted to find fuel minimal routes. In both cases

mass is altered at each time step. To avoid the implications of the curse of dimensionality,

the HJB equation is solved over a grid of state variables using a long time step. This

information is then used to shrink the number of grid points to those directly around this

initial route and the time step is reduced. The fuel burn results obtained in this way for

the cruise phase of a flight can be compared with those of actual flights made between the

1st December, 2019 and the 29th February, 2020 as long as the actual flights are limited

to a fixed cruise altitude.

Mathematical theory underpinning Dynamic Programming

Results are found for all times, rather than setting a fixed time period. In this way the

minimum time is obtained for a cost functional based purely on time of flight. For fuel

minimal routes the time of flight is retrieved from the number of time steps needed to

reach the target in the final trajectory. The theory from this section can be found in the

work of Bressan & Piccoli (2007), Falcone & Ferretti (2014), Bardi & Capuzzo-Dolcetta

(1997) and Briani (2021). The notation used here follows Falcone & Ferretti (2014).

For the controlled system, the solutions of:

ẏ = f(y(t), α(t)) t ∈ R+, (3.63)

y(0) = x,

are the possible trajectories. The α values are the controls. Two key assumptions must

be made here:

• The control assumption states that the set A ⊂ RM must be closed and bounded.

The set of admissible controls is defined as:

A := {α : R+ → A : α(.) is measurable}, (3.64)

• The dynamics assumption states that f : RN ×A→ RN is continuous and must be

both Lipschitz continuous:

∃ Lf > 0 : |f(x, α)− f(y, α)| ≤ Lf |x− y| ∀x, y ∈ RN ,
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and bounded:

∃ Mf > 0 : |f(x, α)| ≤Mf ∀α ∈ A. (3.65)

These assumptions show that a unique Lipschitz function solution of Equation (3.63)

exists. This solution is a trajectory starting at state x ∈ RN and controlled by α ∈ A:

yx(., α) ∈ Lip(R+;RN ). (3.66)

The cost functional to be minimised is:

J(x, α) =

∫ ∞

0
l(yx(t, α), α(t))e

−λtdt, (3.67)

where l is the running cost and λ is a positive constant known as the discount factor.

The running cost is assumed to be continuously bounded and continuous, so for a non-

decreasing continuous function ωl : R+ → R+ with ωl(0) = 0 and a constant Ml:

|l(x, α)− l(y, α)| ≤ ωl|x− y|, (3.68)

|l(x, α)| ≤Ml ∀ x, y ∈ RN ∀ α ∈ A.

To find the array of controls which leads to a minimum cost, the value function, ν : RN →

R, is introduced, with:

ν(x) = inf
α∈A

J(x, α). (3.69)

If we accept assumptions Equations (3.64) and (3.65), Bellman’s Dynamic Programming

Principle (DPP) for infinite horizon problems is given in Proposition 8.2 of Falcone &

Ferretti (2014) as:

∀ x ∈ Rd and τ > 0,

ν(x) = inf
α∈A

{∫ τ

0
g(yx(s;α), α(s))e

−λsds + e−λτν(yx(τ ;α))

}
. (3.70)

The idea here is that a minimum cost can be found by choosing an arbitrary control and

letting the dynamical system evolve for a set period of time. The cost for the trajectory

generated is added to the cost for continuing past this time to reach the target, using the

best possible control. This sum is repeated for controls across the control set and then

the minimum sum value is chosen.

The DPP is used to characterise the value function in terms of a non-linear partial dif-

ferential equation, the HJB equation. As before we assume Equations (3.64), (3.65) and

(3.68) all hold, then we can say that the value function, Equation (3.69), is a continuous

viscosity solution of:

λν(x) +H(x,Dν) = 0 x ∈ RN , (3.71)
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where H : RN × RN → R is the Hamiltonian defined as:

H(x, p) := sup
α∈A

{−p.f(x, α)− l(x, α)}. (3.72)

It can be proved that ν(x) is the unique, viscosity solution of the HJB. Once the value

function has been found, it can be used to synthesise the feedback control and from this

the states belonging to the optimal trajectory can be obtained. The optimal control:

α∗ : [0,∞) → A, (3.73)

must be found which minimises the exponentially discounted cost functional:

J(y, α)=̇

∫ +∞

0
e−λth(x(t), α(t))dt, (3.74)

where λ > 0 is a constant. The functions f and h are assumed to be bounded and Lipschitz

continuous. It is also assumed that trajectory t → x(t; y, α) is well defined at all t ≥ 0.

The value function is defined as:

ν(y)=̇ inf
α(.)∈A

J(y, α). (3.75)

By the Dynamic Programming Principle (Theorem 8.8.2) for every τ > 0 and y ∈ Rn:

ν(y) = inf
α(.)

{∫ τ

0
e−λth(x(t; y, α), α(t))dt + e−λτν(x(τ ; y, α))

}
. (3.76)

Theorem 8.8.3 of Falcone & Ferretti (2014) states that ν is therefore the viscosity solution

of the HJB equation:

−[−λν +H(x,Dν)] = 0 x ∈ Rn, (3.77)

where the Hamiltonian is defined as:

H(x, p)=̇min
ω∈A

{f(x, ω).p+ h(x, ω)}. (3.78)

The vector p contains the co-states as defined by PMP. This is analagous to Equa-

tion (3.72).

The minimum time problem

To minimise time to a set target, C ⊂ RN we need to make an assumption that the target

is closed with a compact boundary ∂C:

tx(α) :=


+∞ if{t : yx(t, α) ∈ C} = ∅,

min{t : yx(t, α) ∈ C} otherwise.

(3.79)
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From here the minimal time function, T : RN → R is used as the cost functional and can

be expressed as:

T (x) := inf
α∈A

tx(α). (3.80)

The set of all starting points from whence a trajectory can be found which reaches the

target in finite time is called the reachable set, R. This is defined as:

R := {x ∈ RN : ∃ α ∈ A and t ∈ R+ : yx(t, α) ∈ C}. (3.81)

Assuming Equations (3.64) and (3.65), Bellman’s Dynamic Programming Principle for the

minimum time problem says that for all x ∈ R and all τ ∈ (0, T (x)):

T (x) = inf
α∈A

{τ + T (yx(τ ;α))}. (3.82)

The proof is given in Briani (2021).

The HJB equation for the minimum time problem states that given Equations (3.64),

(3.65) and (3.68), the value function, Equation (3.80), is a viscosity solution of:

H(x,DT ) = 1 in R \ C, (3.83)

where H : RN × RN → R, the Hamiltonian, is given as:

H(x, p) := sup
α∈A

{−p.f(x, α)}. (3.84)

It is assumed that T is a continuous function in R, bounded below and satisfying:

T (x) = 0 on ∂C,

T (x) → +∞ as x→ x0 ∈ ∂R.

To avoid having an infinite boundary condition, the Kružkow transform can now be ap-

plied. Let:

ν(x) :=


1 T (x) = +∞,

1− e−T (x) T (x) < +∞.

(3.85)

The value function, ν(x) is now that of an infinite horizon control problem with a running

cost of 1 and a discount factor of 1, so that the cost functional is:

Jx(α) =

∫ tx(α)

0
e−sds, (3.86)

giving:

ν(x) = inf
α∈A

Jx(α), (3.87)

Chapter 3 Cathie A. Wells 71



Reformulating aircraft routing algorithms to reduce fuel burn

which is the unique solution of the HJB equation:

ν(x) + sup
α∈A

{−Dν · f(x, α)− 1} = 0 x ∈ RN \ C, (3.88)

ν(x) = 0 ∀x ∈ C. (3.89)

The optimal feedback control is found as:

α∗ = argmin
α∈A

{−Dν · f(x, α)− 1}. (3.90)

Value iteration algorithm

Both the time minimal and infinite horizon problems can be solved numerically by using

a Semi-Lagrangian scheme. This involves using a time discretisation which allows deriva-

tives in the dynamical system to be approximated by an Euler scheme and the continuous

cost functional by a discrete scheme, such as rectangular quadrature. So the Discrete

Dynamic Programming Principle, characterises the time discrete value function as part

of a semi-discrete approximation scheme. Next a spatial discretisation is applied, which

replaces the time discretised value function with a polynomial interpolation. Thus a finite

dimensional problem is obtained, which can be solved.

The method described here follows Falcone (1997). Consider a minimum time function:

T (x) = inf
α∈A

{t > 0 : yx(t, α) ∈ C}. (3.91)

We will need to use both a Discrete Dynamic Programming Principle and a discrete

version of the Kružkow transform to go from a partial differential equation to a functional

equation. The first step is to apply a time discretisation with step size ∆t. The derivative

in the dynamical system is now approximated by an Euler scheme, so that ẏ = f(y, α) is

replaced by its discrete approximation:

yk+1 = yk +∆tf(y, α). (3.92)

The Euler scheme is used here, as where there are many evaluations of a formula, using a

simple numerical method allows for considerable reductions in computation speed. Sensi-

tivity analysis for time step length has been applied whenever the Euler scheme is used in

this thesis, to ensure that an acceptable balance is maintained between stability and any

errors caused by data truncation. The Kružkow Transform can be expressed as:

ν̂ :=


1 T (x) = +∞,

1− e−∆tN(x) else,

(3.93)
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where N(x) is the number of timesteps to reach a time of T (x). The time discretised value

function can now be characterised as the solution of:

ν̂(x) = min
a∈A

{e−∆tν∆t(y +∆tf(y, a))}+ 1− e−∆t x ∈ Rd \ C, (3.94)

ν̂(x) = 0 x ∈ C. (3.95)

It is worth noting that as ∆t → 0 so the solution of the discrete problem, ν̂(x), tends to

ν(x), the solution of the continuous problem.

Now a spatial discretisation is required to allow solution of the functional equation. A

grid is set up to cover Ω ⊂ Rd which contains all points we will consider for an admissible

trajectory. For the moment we will assume that the grid has equal spacing of m in

all dimensions. As m → 0 so the solution of the time and space discretised problem

ν̂m(x) tends to the solution of the time discretised problem, ν̂(x). The value of ν̂(x) is

approximated by an array of values. For a two dimensional grid this would give a value

of ν̂i,j at node (i, j). For simplicity, however, we number the nodes to appear in a vector

[ν̂]. Now Equation (3.94) can be re-written to reflect the spatial discretisation:

[ν̂]i = min
a∈A

{e−∆tI[ν̂]i(yi +∆tf(yi, a)}+ 1− e−∆t, (3.96)

where the I represents a linear interpolation of the value function. As we obtain the value

function at gridpoints, but yi + ∆tf(yi, a) may not get to a gridpoint, interpolation is

necessary. This is now a fully discrete non-linear equation for [ν̂], as long as we replace

the continuous control function with sets of discrete control values. We can think of the

equation as ν̂ = ω(ν̂) where ω is an operator. By Banach’s fixed point theorem, as long

as ω is a contraction and so satisfies:

||ω(ν̂1)− ω(ν̂2)|| ≤ δ||ν̂1 − ν̂2|| where δ < 1, (3.97)

then a solution to the equation ν̂ = ω(ν̂) can be found by iterating ν̂n+1 = ω(ν̂n) starting

from any ν̂0. Now this is a fully discretised scheme with a fixed point iteration. An

algorithm for the method of solution is shown as Algorithm 1 and a flowchart of its

application is given in Figure 3.7.

Once a value function and the corresponding controls have been found, the off-grid

controls can be approximated by interpolation and then the trajectory traced using a nu-

merical scheme, such as an Euler forward step method, to give states at each time step.
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Algorithm 1 Algorithm to construct the value function

1: Estimate the starting value at each gridpoint. (Here we set the gridpoint values

to 1, except for those in the target which we set to 0.)

2: Construct an interpolant I[ν̂m]

3: Solve

[ν̂]m+1
i = min

a∈A
{e−∆tI[ν̂]mi (yi +∆tf(yi, a))}+ 1− e−∆t (3.98)

for each combination of control variables and for all gridpoints.

4: If a particular set of controls takes the arrival point, yi +∆tf(yi, a), outside of

the specified grid, then set the value for this point to 1.

5: Find the minimum [ν̂]m+1
i values and the controls used to obtain them and store

these.

6: Measure ||ν̂m+1 − ν̂m||. If it is below a pre-set tolerance, stop, if not go to next

step.

7: Update so ν̂m = ν̂m+1

8: Reset target values to 0.

9: Go back to step 2.
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3.4 Fuel burn calculations

In the vast majority of research relating fuel burn to aircraft trajectories, EUROCON-

TROL’s BADA method is used to model aircraft fuel flow. This is true of recent papers

looking for climate optimised trajectories (Yamashita et al., 2020, 2021) as well as previous

research into fuel optimal routing (Garćıa-Heras et al., 2014; Wickramasinghe et al., 2012;

Soler et al., 2020). However, in this thesis a new method of calculating the fuel burn rate

of commercial passenger aircraft is used, based on Poll & Schumann (2021a,b). Charac-

teristic parameters for different models of aircraft are stated that allow the derivation of

the fuel burn rate given current airspeed, temperature, mass and altitude. Certain values

from the International Standard Atmosphere (ISA) and other standard constants are also

used.

All fuel burn rate calculations made at any point in an aircraft’s trajectory in the fol-

lowing chapters are from a Matlab code created from the formulae derived from these

papers.

For the majority of the simulations, a Boeing 777-200ER aircraft is assumed to be used, as

this is the model currently most frequently flown between LHR and JFK (Flightradar24,

2020). Where comparisons are made between actual and simulated flights in Chapter 7

the parameters for the aircraft used for that specific actual flight are used.

For the Boeing 777-200ER the aircraft specific parameters used are given in Table 3.1

(values given correct to appropriate accuracy as specified in Poll & Schumann (2021a,b)).

A further table detailing aircraft specific parameters for all models of aircraft considered

in this thesis is given in Appendix C. Some of the symbols and variable names used here

are, for the purposes of describing the fuel burn rate calculation, different from those in

the rest of the thesis.
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Table 3.1: Table of aircraft specific constants for the Boeing 777-200ER as given in

Poll & Schumann (2021b).

τ 0.122 coefficient in Equations (3.117), (3.118)

ψ1 0.211 coefficient in Equation (3.117)

ψ2 8.09 coefficient in Equation (3.118)

ψ4 0.8106 approx. optimum Mach number with constant Reynolds number

ψ5 1.266 ×108 coefficient in Equation (3.115)

ψ6 0.631 coefficient in Equation (3.120)

MTOM 286900 kg maximum take-off mass of aircraft

a 0.0269 skin friction parameter 1

b 0.14 skin friction parameter 2

The universal constants are given in Table 3.2.

Table 3.2: Table showing universal constants for the fuel burn function.

LCV 4.3×107 J kg−1 lower calorific value of aircraft fuel

(pTP )ISA 226.318 hPa pressure at tropopause in hPa, ISA

T0 288.15 K sea level static temperature, given ISA

(TTP )ISA 216.65 K static temperature at the tropopause, ISA

R 287.05 J (kg K)−1 air constant in ideal gas law

γ 1.4 ratio of constant pressure to volume specific heat for air

Other quantities found from the inputs and constants that are used subsequently in the

derivation of the fuel burn rate are given in Table 3.3.
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Table 3.3: Other quantities that must be calculated from inputs and constants.

a∞ speed of sound at given altitude

(aTP )ISA speed of sound at the tropopause, given ISA

A function dependent on ω derived in Equation (3.111) used in Equation (3.122)

B function dependent on ω derived in Equation (3.112) used in Equation (3.122)

Cac
F mean skin friction coefficient of the aircraft

CL lift coefficient for current state of aircraft

(CL)B lift coefficient for aircraft at best fuel efficiency for given Mach number

(CL)Bcheck CLB
rounded to 1 dp for validity test

(CL)ratio ratio of CL to (CL)B
dmf

dt
rate of fuel burn in kg s−1

f1 function dependent on ω derived in Equation (3.113) used in Equation (3.117)

f2 function dependent on ω derived in Equation (3.114) used in Equation (3.118)

FL Flight Level, given as one hundredth of altitude of aircraft in feet

h altitude of aircraft in m

m mass of aircraft at current time t in kg

mratio fraction of maximum take-off mass remaining at current time t

M∞ Mach number at current airspeed and Flight Level

p∞ static pressure at current position in hPa

Rac Reynolds number for given inputs

T∞ static temperature at given altitude in K

(T∞)ISA ISA static temperature at given altitude in K

V∞ airspeed of aircraft in m s−1

η0 overall efficiency of propulsion system

η0
L
D

maximum value of η0× aircraft lift to drag ratio

(η0
L
D
)B η0× aircraft lift to drag ratio at best fuel efficiency for current Mach number

f0 ratio between η0
L
D

and (η0
L
D
)B

µ∞ current value of dynamic viscosity in Pa s−1

(µTP )ISA value of dynamic viscosity in Pa s−1, given ISA

ϕ atmospheric parameter

χ ratio of pressure at tropopause to recorded pressure level

ω ratio of M∞ to ψ4
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3.4.1 Method to calculate fuel burn rate

The fuel burn rate is given in Poll & Schumann (2021a,b) as:

dmf

dt
=

W × V∞

η0
L
D × LCV

, (3.99)

where W is the current weight of the aircraft in N. Inputs to the formula are V∞ (the

airspeed), T∞ (the temperature), p∞ (the static pressure) and m (the mass). From these

and the values in the previous section, the fuel burn rate,
dmf

dt , can be obtained following

the working in Poll & Schumann (2021a,b). As these two papers provide full working and

derivation for the fuel burn function, what follows here is a short summary.

First χ is calculated:

χ =
(pTP )ISA

p∞
. (3.100)

The flight level can be found based on this value:

FL =

 1454.42(1− 0.751865χ−0.19026) if χ < 1,

360.8924 + 208.058 lnχ if χ ≥ 1.
(3.101)

The altitude in metres, h, is obtained by multiplying the Flight Level (FL) by a conversion

factor. This value is then used along with the sea level ISA static temperature (in degrees

Kelvin), to find (T∞)ISA:

h = 30.48FL, (3.102)

(T∞)ISA =

 T0 − 0.0065h if h < 11000,

216.65 if h ≥ 11000.
(3.103)

The speed of sound and dynamic viscosity at the tropopause, as well as each of these

values at the current position, are needed to calculate ϕ:

(aTP )ISA =
√
γR(TTP )ISA, (3.104)

(µTP )ISA = 0.000001458
((TTP )ISA)

1.5

(TTP )ISA + 110.4
, (3.105)

a∞ =
√
γRT∞, (3.106)

µ∞ = 0.000001458
(T∞)1.5

T∞ + 110.4
, (3.107)

ϕ =
a∞µ∞

(aTP )ISA(µTP )ISA
. (3.108)

The speed of sound at the current position can now be used to find the corresponding

Mach number:

M∞ =
V∞
a∞

, (3.109)
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which in turn allows the value of ω to be calculated:

ω =
M∞
ψ4

. (3.110)

The first test of input validity (as specified in Poll & Schumann (2021a,b)) can now be

applied, 0.8 < ω < 1.08. If a value outside of this range is obtained an unrealistic fuel

burn rate will result, so in the Matlab code the output is set to NaN (not a number). For

ω values within the required range, values of A, B, f1 and f2 can now be calculated:

A =

 −2.6 if 0.8 < ω < 0.975,

−(2.6 + 120(ω − 0.975)2 if 0.975 ≤ ω < 1.08,
(3.111)

B =

 −2.6 if 0.8 < ω < 0.975,

−(2.6 + 270(ω − 0.975)2 if 0.975 ≤ ω < 1.08,
(3.112)

f1 =



1− 6(ω − 1)2 − 15(ω − 1)3

if 0.8 < ω < 0.99,

1− 5.8965(ω − 1)2 + 0.36024(ω − 1)3 − 31.684(ω − 1)4 − 53313(ω − 1)5

if 0.99 ≤ ω < 1.08,

(3.113)

f2 = 1.05− 14.8(ω − 0.8)3 + 116.75(ω − 0.8)4 − 370(ω − 0.8)5. (3.114)

Calculation of the Reynolds number also requires the ω value and once found it can be

used to obtain the mean skin-friction coefficient for the aircraft:

Rac =
ψ5

ϕ
× ω

χ
, (3.115)

Cac
F =

a

Rb
ac

. (3.116)

The best fuel efficiency for the Mach and Reynolds numbers calculated and the corre-

sponding lift coefficient are now found:

(η0
L

D
)B = f1ψ1

(
1

Cac
F

)( 1+τ
2 )

, (3.117)

(CL)B = f2ψ2(C
ac
F )(

1−τ
2 ). (3.118)

The fraction of MTOM remaining at the current time is calculated next, in order to obtain

the lift coefficient for the current state of the aircraft and the ratio between this and the

(CL)B value.

mratio = m/MTOM, (3.119)

CL =
mratioψ6χ

ω2
, (3.120)

(CL)ratio =
CL

(CL)B
. (3.121)
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This lift coefficient ratio provides the second input validity check. First the value is

rounded to one decimal place and renamed CLratiocheck, before it is tested. Valid inputs

will give 0.5 ≤ (CL)ratiocheck < 1.3, as specified in Poll & Schumann (2021a,b). Any an-

swer obtained outside of this range will result in the fuel burn rate in the Matlab code

being returned as NaN, to avoid erroneous values being used in later calculations.

From here the propulsion system efficiency ratio can be found using the unrounded value,

CLratio, which leads to the current state value of propulsion system efficiency:

f0 = 1 +
A

2
((CL)ratio − 1)2 +

B

6
((CL)ratio − 1)3, (3.122)

η0
L

D
= (f0 × (η0

L

D
)B. (3.123)

Finally, if all validity tests have been passed, the fuel burn rate in kg s−1 flown, with the

aircraft and atmospheric conditions in their current state, is given by:

dmf

dt
=

W × V∞

η0
L
D × LCV

, (3.124)

where W is the current weight of the aircraft in N.

3.4.2 Finding the Take-off Mass

In order to track mass change across a trajectory, as is necessary in the third stage of the

optimal control model, it is important to know the mass of the aircraft as it begins its

cruise phase. This is shown in Poll & Schumann (2021a) to be 97.5% of the take-off mass.

To find the take-off mass (TOM) requires the use of the following equation (also from

(Poll & Schumann, 2021a)):

TOM ≈ 0.7×MZFM + 0.3×OEM

exp(−(0.014 + 1.015× g×Rt(air)

η0
L
D
×LCV

))− 0.05
, (3.125)

where MZFM is the maximum permitted zero fuel mass, OEM is the operational empty

mass, Rt(air) is the air distance flown by the aircraft and all other variables and constants

are as given in Tables 3.2 and 3.3. The values of MZFM and OEM can be found in the

aircraft characteristics documentation provided by both Boeing and Airbus (Airbus, 2021;

Boeing, 2021).

For the fixed-time flights at a constant airspeed of 240 m s−1, Rt(air) can be taken as

the scheduled time multiplied by the airspeed, thus for flights west Rt(air) = 6 960 km and

for the shorter eastbound flights Rt(air) = 5 280 km.
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To assess how sensitive to the Rt(air) value the take-off mass is, the partial derivative

of TOM with Rt(air) was found:

∂TOM

∂Rt(air)
=

JK exp−(0.014 +K ×Rt(air))

(exp (−(0.014 +K ×Rt(air)))− 0.05)2
, (3.126)

where:

J = 0.7×MZFM + 0.3×OEM, (3.127)

K =
1.015× g

(ηo
L
D )o × LCV

. (3.128)

To evaluate this the (ηo
L
D )o value is needed. It is found using:

(ηo
L

D
)o = ψ1

(
1

Cac
F

) 1+τ
2

, (3.129)

where the ψ1, τ and Cac
F values are characteristic of a particular aircraft and Cac

F can be

calculated as shown in equation (3.116).

The rate of change of TOM with Rt(air) was found for the range of air distances given

across the winter period by the time optimal westbound model used in Chapter 4 and also

its value for the wind-free air distance between the airports, the great circle distance. By

comparing these answers for the different Rt(air) values the sensitivity of the take-off mass

to the air distance can be seen. The fact that the gradient of the rate of change is only

3×10−10 kgm−1, shows that the sensitivity is very small. The air distance range was then

extended so that its first value is the assumed air distance for eastbound flights used in

Chapter 6 and the final value is the assumed air distance for westbound flights used in

Chapter 6. Both the variation of TOM with Rt(air) and the rate of change of TOM with

Rt(air) are displayed in Figure 3.8.
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Figure 3.8: Graphs showing how changing the air distance flown affects the take-

off mass. These are linear relationships, as demonstrated by the data

lying exactly along a straight line in each case. For every metre flown,

the take-off mass is increased by just 8 × 10−3 kg, whilst the rate of

change of take-off mass with air distance changes by 3× 10−10 kg m−1,

demonstrating that the TOM is not greatly affected by the choice of

Rt(air).
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3.5 Atmospheric state data

In Chapters 4 to 7 of this thesis zonal (eastward) winds, meridional (northward) winds and

temperatures will be used to calculate both minimal time and minimal fuel burn routes.

With the exception of the research in Chapter 5, all flights will be modelled as taking

place between 1st December, 2019 and 29th February, 2020. This allows the full range of

winter weather systems to be considered (Irvine et al., 2013), as the NAO has been shown

to cause transatlantic routes to vary strongly (Woollings & Blackburn, 2012; Kim et al.,

2016). In the future it is expected that cruise level winds in this region will continue to

increase in velocity due to climate change (Williams, 2017; Storer et al., 2017; Simpson,

2016; Kim et al., 2020), so their inclusion in routing calculations seems set to become

increasingly vital.

3.5.1 Re-analysis model

Using complex atmospheric state data in the simulations in this thesis is critical in ensur-

ing their relevance to improving TBO.

Determination of fuel burn rate is dependent on temperature at any point in a trajec-

tory. Numerical solution of the OCPs that arise from trying to find time and fuel minimal

routes, necessitates obtaining speed and direction of the wind at any point across the

North Atlantic. In the case where a varying altitude is included for estimates of actual

flight fuel use, then these winds are required at a variety of different pressure levels.

In Chapters 4, 6 and 7 all atmospheric state data has been downloaded from the re-

analysis data set provided by the National Center for Atmospheric Research (NCAR)

(Kalnay et al., 1996). This is a data-driven model, relying on a large array of observa-

tions. Wind velocity and temperature values are given for a global grid of resolution 2.5◦

as daily averages. Linear interpolation is then applied to obtain atmospheric state data

at specific points in a trajectory. This approach is justified as long haul flight routes have

been shown to be largely insensitive to the resolution of weather data (Lunnon & Mirza,

2007) and the evolution of the jet stream at this altitude shows little variation across

a 24 hour period (Mangini et al., 2018). Data from the 250 hPa pressure level is used

where altitude is kept constant, as this is approximately equal to a standard cruise flight

level of 34 000 feet. However, where altitude is varied during actual flights the wind and
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temperature data is considered from the 150 hPa, 200 hPa, 300 hPa and 400 hPa pressure

levels too. This is linearly interpolated to give winds and temperature information at any

point in the three dimensional space used in the recorded flight data.

3.5.2 Atmospheric state at pressure altitude levels

Despite there being different weather patterns on different days, wind speeds on an in-

dividual day do not appear to be affected by altitude changes within the cruise phase

altitude range. Temperature, which is also used in the fuel burn rate calculation shows

more variation. Figures 3.9 and 3.10 show zonal and meridional winds and temperature

at 150 hPa, 200 hPa, 250 hPa, 300 hPa and 400 hPa for the 1st December, 2019 and 8th

February, 2020.

As current tracks are produced using the 250 hPa pressure altitude level, each set of

weather data was tested by plotting a quantile-quantile plot comparing it with the 250 hPa

level. A quantile-quantile plot assesses whether two sets of sample data come from the

same distribution. The quantile values for the 250 hPa data set appear on the x-axis

and the corresponding quantile values for the other pressure level appear on the y-axis.

Figure 3.11 gives quantile-quantile plots where data points are shown as blue crosses and

the line of best fit is the dashed red line. When quantile-quantile plots are linear, this

means that data is likely to come from the same distribution. These graphs show that

the wind distributions at 200 hPa and 300 hPa for both zonal and meridional wind are

very similar to the distribution of wind at the 250 hPa level, with any differences being

more noticeable at the extremes of the distribution. At 400 hPa the meridional wind

distribution is also similar to that at 250 hPa. The temperature distributions at different

altitudes vary more. Using a two sample Kolmogorov–Smirnov test at the 5% significance

level, the temperature distributions at all other altitudes are shown to be significantly

different from that at 250 hPa. Zonal wind distributions at 300 hPa and 250 hPa and at

200 hPa and 250 hPa are not significantly different, whilst those at 150 hPa and 250 hPa

and at 400 hPa and 250 hPa are. Only the distribution of meridional winds at 150 hPa is

significantly different from that at 250 hPa.

Now winds across all days of the winter period 2019-2020 are considered. The zonal

and meridional wind speeds are interpolated to give winds every ten FLs. The difference

between these values and the value at FL 340 (approximately corresponding to a pressure
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level of 250 hPa) are calculated for all days from 1st December, 2019 to 29th February,

2020 for zonal and for meridional wind. The mean, standard deviation, median and quar-

tiles of each data set are shown in Figures 3.12 and 3.13. As none of the wind fields

followed a normal distribution when tested, the median and interquartile range are better

measures of variability than the mean and standard deviation. Zonally the median differ-

ence between the winds is never greater than 1.8 m s−1. Meridional winds show a similar

pattern, with the median difference never being more than 1.2 m s−1. This demonstrates

that winds at different cruise range altitudes across the North Atlantic are very similar.

Testing winds on a gridpoint by gridpoint basis, using a Spearman’s rank hypothesis

test shows that there is no evidence to suggest that wind fields are significantly different

at different altitudes within the cruise altitude range at the 5% significance level.

So we can conclude from this analysis that across the 2019 to 2020 winter season, the

zonal and meridional winds are very similar at different pressure levels between 400 hPa

and 150 hPa, but that temperature varies much more with static air pressure.
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(a) 150hPa: Zonal wind m/s
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(d) 200 hPa: Zonal wind m/s
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(g) 250 hPa: Zonal wind m/s
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(j) 300 hPa: Zonal wind m/s
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(m) 400hPa: Zonal wind m/s
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Figure 3.9: Weather at different pressure altitudes on 1st December, 2019.
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(a) 150 hPa: Zonal wind m/s
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(d) 200 hPa: Zonal wind m/s
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(g) 250 hPa: Zonal wind m/s
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(h) Meridional wind m/s
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(j) 300 hPa: Zonal wind m/s
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(k) Meridional wind m/s
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(m) 400 hPa: Zonal wind m/s
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Figure 3.10: Atmospheric state at different pressure altitudes on 8th February, 2020.
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(a) Zonal wind quantiles
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(b) Meridional wind quantiles
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(c) Temperature quantiles

150 hPa v 250 hPa
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(d) Zonal wind quantiles

200 hPa v 250 hPa
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(e) Meridional wind quantiles
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(f) Temperature quantiles

200 hPa v 250 hPa
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(g) Zonal wind quantiles

300 hPa v 250 hPa
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(h) Meridional wind quantiles
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(i) Temperature quantiles

300 hPa v 250 hPa

-60 -40 -20 0 20 40 60 80

Quantiles from 250 hPa data

-40

-20

0

20

40

60

Q
u

a
n

ti
le

s
 f

ro
m

 t
e

s
t 

le
v
e

l 
d

a
ta

 

(j) Zonal wind quantiles

400 hPa v 250 hPa
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(k) Meridional wind quantiles
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(l) Temperature quantiles

400 hPa v 250 hPa

Figure 3.11: Comparison of atmospheric state distributions compared to 250 hPa

weather on 1st December, 2019.
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(a) Using mean and standard deviation (b) Using median and quartiles

Figure 3.12: Differences between zonal winds at each point on a grid at different

altitudes and the altitude corresponding to 250 hPa are found for a

grid across the North Atlantic from -80 to 0 degrees longitude and

from 30 to 70 degrees latitude. This is repeated for all days between

1st December, 2019 and 29th February, 2020. The mean value and one

standard deviation each side of the mean for these figures are shown

in (a), whilst the median and quartiles for the same data are shown in

(b).

(a) Using mean and standard deviation (b) Using median and quartiles

Figure 3.13: The same process is repeated with meridional winds, generating the

corresponding charts across the same time period and spatial grid.
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3.6 Track data

Aircraft crossing the North Atlantic have been constrained to fly along routes that form

part of an OTS since the 1960s, with tracks first being published in 1965, although they

were used by ATM as early as 1961.

These tracks were adopted due to this being both the busiest oceanic airspace in the

world and also suffering from a lack of radar coverage across the central section of the

region. To ensure safety, aircraft are kept separated, both horizontally and vertically on

set tracks dictated ANSPs. NATS in the United Kingdom provide the westbound paths

and NAV CANADA those for eastbound flights.

Now that the Aireon low Earth orbit satellites can be used to give 100% global cover-

age it can be argued that such measures are no longer necessary and in Chapter 4 the

possible time and thus fuel and emissions savings that could be made by flying time min-

imal routes, rather than along the OTS, are discussed.

Each day a set of tracks is published in each direction, giving waypoints that must be

flown through on a route. Westbound traffic on the tracks must pass a longitude of 30◦W

between 1130 and 1900 UTC (Co-ordinated Universal Time), whilst aircraft flying east-

bound must pass the same point between 0100 and 0800 UTC. These timings have been

chosen to accommodate the noise level rules at the airports and the needs of air travellers.

Tracks take into account the wishes of the airlines who send PRMs to the ANSPs a

few hours before a flight. The track waypoints used in this thesis have been downloaded

from the website: https://blackswan.ch/northatlantictracks.

Westbound tracks use labels from A to K, where A is always the northernmost route

and eastbound tracks are labelled from N to Z with Z being the southernmost route.

There are different numbers of tracks each day, depending on the wind field and the num-

ber of aircraft flying, so although westbound tracks are always labelled from A whilst

eastbound are labelled in reverse from Z, tracks with the same label on different days are

not necessarily similarly efficient.
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The ATM tracks are used at a variety of different altitudes, but they are optimised at

the 250 hPa iso-bar, since, on average, this is where the jet stream is strongest (Mangini

et al., 2018). An example of daily tracks is given in Chapter 4.

Since the publication of Wells et al. (2021), on which Chapter 4 is based, NATS have

removed the OTS on 21 days, starting on the 9th March, 2021, allowing airlines to de-

cide on their preferred trajectory (Ahlgren, 2022). This has been possible due to reduced

demand during the Covid pandemic, as well as the fact that the Aireon satellites update

aircraft positions every 7 to 8 seconds, reducing the necessary safety margin between air-

craft from 40 to 14 nautical miles. At and below FL330, all tracks have been removed

permanently from 1st March, 2022.

3.7 Chapter summary

In this chapter we have defined how optimal control can be used in finding optimal flight

paths across the North Atlantic. The mathematical theory underpinning the three main

ways of solving OCPs has been summarised, so that future use of an indirect method based

on PMP in Chapters 4 and 5, a direct method incorporating Matlab’s fmincon function

used in Chapter 6 and the dynamic programming method used in Chapter 7 should be

familiar to the reader.

The fuel burn function used to calculate the rate of fuel burn in Chapters 6 and 7 has

been introduced, together with the reanalysis data model used in Chapters 4, 6 and 7 and

the track data used in Chapter 4.

In Chapter 1 we asked some questions about re-routing flights, we have now justified

our chosen methods by way of an extensive literature review given in Chapter 2, showing

that indirect methods for solving an OCP work best with time minimisation at a fixed

mass and airspeed, direct methods work best for fuel minimisation when time of flight

is fixed and dynamic programming is of most use when minimising fuel burn, but with

a free-time for trajectories and multiple control variables. In Chapter 3 each of those

methods has been introduced in general terms, so that in the next four chapters we can

start to tackle the questions from Chapter 1 in depth.
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Chapter 4

Reducing transatlantic flight

emissions by fuel-optimised

routing

4.1 Introduction

By routing aircraft based on daily wind fields, can we reduce the amount of air distance

that they cover during a flight between LHR and JFK compared to the OTS supplied by

NATS and NAV CANADA? This is the key research question answered in this chapter.

As pressure to reduce global greenhouse gas emissions continues to increase (IPCC, 2019),

aviation must respond at least as ambitiously as the other transport sectors. Currently

aviation is responsible for approximately 2.4% of all anthropogenic sources of CO2 (Graver

et al., 2019; Grewe et al., 2019; Lee et al., 2020), but this figure is growing (Ryley et al.,

2020; Grewe et al., 2017; Graver et al., 2019). The ICAO has already established a pol-

icy of improving the fuel efficiency of international flights by 2% annually (ICAO, 2016),

through improvements to aircraft technology, sustainable fuels and ATM and operations

(ICAO, 2019). However, greater savings are needed. Additionally, 192 nations agreed to

CORSIA in 2016, pledging to use offset schemes to maintain net emissions at the 2020 level

(Timperley, 2019). CORSIA only provides short term alleviation, as there are difficulties

in ensuring that genuine net emissions reduction takes place.

If the global economy fails to decarbonise sufficiently rapidly, there may be significant

consequences for aviation from the ensuing climate change. These consequences include
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increased turbulence as the jet stream becomes more sheared (Williams & Joshi, 2013;

Williams, 2017; Storer et al., 2017; Lee et al., 2019; Kim et al., 2015), modified flight

routes and journey times as the prevailing high-altitude winds shift and strengthen (Kar-

nauskas et al., 2015; Irvine et al., 2016; Williams, 2016; Kim et al., 2020), and take-off

weight restrictions as warmer air reduces lift and thrust on the runway (Coffel & Horton,

2015; Gratton et al., 2020). Therefore, aviation is not only a contributor to climate change,

but may also suffer from its adverse effects increasingly in future.

Various alternative solutions to offsetting have been suggested, from greater use of syn-

thetic bio-fuels to replacing the entire air transport fleet of approximately 31 000 aircraft

(CAPA, 2018) with updated models (Monbiot, 2007). However, those technologies that

have the potential to produce significant reductions in fuel use are high-risk, high-cost and

have implementation timescales measured in decades (Jensen et al., 2015). By contrast,

improvements to current operational procedures, such as routing flights more efficiently,

have the potential to provide immediate, low-cost, low-risk and significant reductions

(Németh et al., 2018). Fuel saving through more efficient operations would be a benefit

to both the airlines through reduced fuel expenditure and to the environment through

reduced emissions.

Historically flight routes across the North Atlantic have been constrained by the large

volume of air traffic and the absence of radar coverage in mid-ocean (Dhief, 2018). How-

ever, a new network of low Earth orbit satellites being tested currently will improve situ-

ational awareness dramatically (Aireon, 2020). With aircraft able to transmit and receive

accurate information continuously, it is now possible to consider the implementation of

fuel-optimised routes (NATS, 2019). These new routes would take greater advantage of

the prevailing eastward winds when flying east and reduce the negative impact of these

same air currents when flying west. Air distance, the distance flown by an aircraft relative

to the surrounding air, will be used in this study as a measure of the efficiency of a flight

path. Ground distance, in contrast, is not related to fuel burn in a simple way, because of

the conveyor effect of the winds. As fuel burn is directly proportional to air distance and

as emissions, including carbon dioxide, are directly proportional to fuel burn (Henderson

et al., 2012; Green, 2009), any saving made in air distance is a valuable step towards

meeting the ICAO target.
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Currently flight tracks in the North Atlantic’s OTS are created on a daily basis by ANSPs,

NATS in the United Kingdom for the westbound paths and NAV CANADA for those going

east. These are based primarily on the need to separate aircraft safely, whilst taking some

account of the winds. Airlines request their preferred tracks by submitting PRMs in the

hours before a flight and the ANSPs create a daily track system that reflects the airlines’

wishes as closely as possible. An example of these tracks can be seen in Figure 4.1. By

calculating the air distances for these ATM tracks and comparing them with the optimised

minimum values, the potential savings can be assessed. These savings are characteristic

of the route flown and not of the aircraft being used.

Recent research has focused on limiting energy output, rather than time (Franco & Rivas,

2011; Burrows, 1983; Pierson & Ong, 1989; Murrieta Mendoza et al., 2020). Other strands

of route optimisation have considered turbulence avoidance (Jardin & Bryson, 2012b,a;

Kim et al., 2015) and balancing the reduction of climate effects with time of flight (Grewe

et al., 2019, 2017). This research, however, is the first to identify fuel and emissions savings

for transatlantic traffic by calculating the excess air distance flown along the OTS relative

to the minimum air distance route. Thus the focus of this thesis is CO2 reduction. Fuel

optimised routes are not necessarily climate optimised (Grobler et al., 2019), as additional

effects such as contrail formation, documented in other sources (Teoh et al., 2020; Poll &

Schumann, 2021b), are not taken into account.

This research is set out in five sections. In Section 4.2, the different datasets are de-

scribed. Section 4.3 explains the analysis method, shows how time optimisation impacts

fuel use, how time optimised routes are found and how to compare these with the current

tracks. Results showing potential air distance savings are set out in Section 4.4. Finally,

the results are summarised and discussed in Section 4.5.
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(a) Westbound ATM tracks

(b) Eastbound ATM tracks

Figure 4.1: Figure 4.1a shows all westbound tracks between LHR and JFK on the

3rd December, 2019. The Great Circle path (GC Path), the shortest

distance along the ground between the airports, is shown in white. The

six tracks are labelled from A to F and lie predominantly North of the

GC path to avoid the prevailing jet stream air currents. They were

valid for all flights reaching 30W from 11:00 to 19:00(UTC). Figure 4.1b

shows all eastbound tracks between JFK and LHR on the 3rd December,

2019. The GC path is again shown in white. The ten tracks are labelled

from Q to Z and lie both sides of the GC path. They were valid for

all flights reaching 30W from 01:00 to 08:00(UTC). Map data: Google,

Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Image IBCAO, Image

Landsat/Copernicus.
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4.2 Data sources

Flights between LHR (51.5◦ N, 0.5◦ W) and JFK (40.6◦ N, 73.8◦ W) are modelled both

eastbound and westbound. Although the trajectory prediction methods used by airlines

are commercially sensitive (Cheung, 2018), the resulting tracks are in the public domain.

Past flight tracks were downloaded from the https://blackswan.ch/northatlantictracks

website, which provides archived eastbound and westbound way points for all paths flown

over the last year. Westbound tracks use labels from A to K, where A is always the

northernmost route and eastbound tracks are labelled from N to Z with Z being the

southernmost route. There are different numbers of tracks each day, depending on the

wind field and the number of aircraft flying, so although westbound tracks are always

labelled from A whilst eastbound are labelled in reverse from Z, tracks with the same

label on different days are not necessarily similarly efficient. The ATM tracks are used

at a variety of different altitudes, but they are optimised at the 250 hPa iso-bar, since,

on average, this is where the jet stream is strongest (Mangini et al., 2018). This pressure

level corresponds approximately to FL340, which is an altitude of 34 000 feet in the ISA.

Mangini et al. (2018) found that altering altitude between 200 and 300 hPa when flying

the ATM tracks, made less than a 1% difference to total route time. Therefore, all simu-

lations in this study have been run at the single pressure altitude of 250 hPa.

Flights from 1st December, 2019 to 29th February, 2020, have been considered as the

wind fields in the winter months tend to be at their strongest and most variable. This

can be seen when seasonal weather patterns are split into categories; in winter five are

used, whereas in summer only three are necessary (Irvine et al., 2013). This is (at least

partly) because transatlantic flight routes in winter vary strongly in response to the NAO

(Kim et al., 2016). The average wind speed at typical cruise altitudes in the North At-

lantic flight corridor in winter is expected to increase in future, because of climate change,

meaning that winds will play an increasingly important role in flight routing (Williams,

2016; Simpson, 2016; Kim et al., 2015, 2020).

Past wind field data are obtained from the re-analysis data set provided by NCAR (Kalnay

et al., 1996). Average daily horizontal wind velocities are given every 2.5 degrees of both

latitude and longitude, at a range of pressure levels. Given that there is little variation

in the wind field at this altitude on timescales of one day (Mangini et al., 2018), a daily
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average is sufficiently accurate for these routes. Linear interpolation is used to obtain

meridional (northward) and zonal (eastward) winds in between the grid points. Following

Lunnon and Mirza (Lunnon & Mirza, 2007) the calculated optimal routes are largely in-

sensitive to the wind grid resolution for journeys of this length, with use of high resolution

data making at most a few seconds difference on a transatlantic flight. Air distances for

flights made at the 200 and 300 hPa pressure levels were also considered, but these were

shown to be very similar to values at the 250 hPa level, so only this level is considered in

this chapter.

Since the flights are long haul, the time and distance covered during climb and descent are

small compared to the cruise phase, with flights between LHR and JFK spending about

92% of the ground distance in cruise (Flightradar24, 2020). Therefore, we neglect the

climb and descent phases in this analysis.

4.3 Analysis methods

Here methods used to obtain optimised fuel-efficient flight paths are described. The air

distance of each route is considered. This is the distance travelled relative to the wind

field and so can be calculated by multiplying the time in the air by the airspeed. By

contrast, ground distance is the length of the route that the aircraft is observed to have

flown from the ground. Thus in a zero wind field, the air distance and the ground distance

will be identical and the Great Circle path — the path giving the shortest distance along

the ground between two points on a sphere — will be the minimum time route. However,

if a wind field is added, then maintaining the Great Circle path (GC path) as the ground

track involves a change to the air distance flown, resulting in a flight time that is no longer

the minimum.

In this section, the relationship between fuel use and air distance is first established,

before the time optimisation method used is outlined.

4.3.1 Aircraft Fuel Use

For a given aircraft, the mass of fuel burned per unit time,
dmf

dt , depends on the weight

of the aircraft, the true airspeed and the altitude (Poll, 2018; Poll & Schumann, 2021a,b).

Hence, if the weight, airspeed and altitude are held constant, as we assume here, the
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quantity of fuel burned per unit distance travelled through the air,
dmf

ds , is also constant.

In this case the total fuel required for a journey is the product of
dmf

ds and the total air

distance flown, where total air distance is the product of the constant airspeed and the

total flight time. Therefore, the total fuel requirement for a flight at a given airspeed is

minimised when the total flight time is minimised. Finding the minimum flight time at

constant airspeed through a specified wind field is a classical problem in aeronautics, first

addressed by Zermelo (Zermelo, 1930; Levi-Civita, 1931).

Furthermore, for an aircraft of a given weight at a specified altitude, there is a partic-

ular airspeed at which
dmf

ds is also a minimum (Poll, 2018; Poll & Schumann, 2021b). For

a modern large, long-range, turbofan-powered aircraft, this optimum airspeed is in the

region of 240 m s−1 (Mach≈ 0.82). Hence, for a given aircraft travelling between a given

airport pair, the absolute minimum fuel requirement is found by calculating the airspeed

that minimises the product of
dmf

ds for the aircraft and the minimum air distance through

the wind field. Therefore, the complete problem depends on both the aircraft and the

wind field. In this research the mass of the aircraft has been kept constant at 80% of the

take-off mass, as this gives an approximate average for the aircraft mass as fuel is burned

during the flight.

4.3.2 Time Optimisation

Time minimisation (and therefore air distance minimisation) is achieved by solving a time

OCP, where the dynamics are given by the Zermelo equations (see Appendix A) mapped

conformally onto a sphere (see Appendix B) (Zermelo, 1930; Arrow, 1949; Bryson & Ho,

1975):

dλ

dt
=
u+ V cos θ

R cosϕ
, (4.1)

dϕ

dt
=
v + V sin θ

R
, (4.2)

dθ

dt
= −Wind2D

R cosϕ
, (4.3)

where the Wind2D term is:

Wind2D =− sin θ cos θ
∂u

∂λ
+ u cos2 θ sinϕ+ cos2 θ cosϕ

∂u

∂ϕ
(4.4)

+ v sin θ cos θ sinϕ+ cos θ sin θ cosϕ
∂v

∂ϕ
+ V cos θ sinϕ− sin2 θ

∂v

∂λ
.

Here t is time from departure, λ(t) and ϕ(t) are the aircraft’s longitude and latitude (ra-

dians), u(λ, ϕ) and v(λ, ϕ) are zonal and meridional wind speeds (m s−1), R is the radius
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of the Earth, taken as 6 371 km, V is the constant airspeed (m s−1) and θ is the aircraft’s

heading angle, the direction in which the nose of the aircraft is pointing, here measured

anticlockwise from due east. This is illustrated in Figure 3.1. Initial conditions λ(0) and

ϕ(0) are given by the departure airport’s longitude and latitude respectively. The initial

value for θ(0) is unknown and to be determined. Zonal and meridional components of

both the wind velocity and the velocity of the aircraft relative to the air are combined

to give Equations (4.1) and (4.2), from which Equation (4.3) is derived, using first-order

optimality conditions (Bryson & Ho, 1975; Ng et al., 2011, 2014).

This process of deriving Equation (4.3) from Equations (4.1) and (4.2) using PMP is

described here. For more information on PMP please refer to Section 3.3.1. Initially we

also include aircraft mass, M and the variable fuel burn rate, g, as given by the fuel burn

function in Section 3.4. The first two lines of the dynamical system follow Zermelo’s equa-

tions as expressed in Zermelo (1930) very closely, but this planar system has been scaled

conformally to fit the spherical model:

dλ

dt
=
u+ V cos θ

R cosϕ
, (4.5)

dϕ

dt
=
v + V sin θ

R
, (4.6)

dM

dt
= −g(λ(t), ϕ(t)). (4.7)

It is assumed that thrust is equal to drag. The airspeed is kept constant, with the aircraft

starting from the departure airport at t = 0 and arriving within a certain radius of the

destination airport when t = tf . The control variable is the heading angle.

The cost functional aims to minimise time, giving a Lagrangian of 1, so the Hamilto-

nian of the system becomes:

H = pλ

(
V cos θ + u

R cosϕ

)
+ pϕ

(
V sin θ + v

R

)
+ 1 + pM (−g), (4.8)

where pλ, pϕ and pM are the adjoint variables. As mass is kept constant at 80% of take-off

mass during this chapter, to allow fuel burn to be proportional to air distance, we now

remove Equation (4.7), as the rate of change of mass will be assumed to be zero. The last

term of the Hamiltonian can therefore be ignored giving:

H = pλ

(
V cos θ + u

R cosϕ

)
+ pϕ

(
V sin θ + v

R

)
+ 1. (4.9)

100 Chapter 4 Cathie A. Wells



Reformulating aircraft routing algorithms to reduce fuel burn

From here we look at the partial derivatives of H with respect to each variable:

−ṗλ =
∂H

∂λ
=

pλ
R cosϕ

∂u

∂λ
+
pϕ
R

∂v

∂λ
, (4.10)

−ṗϕ =
∂H

∂ϕ
=
pϕ
R

∂v

∂ϕ
+

pλ
R cosϕ

∂u

∂ϕ
+

pλ
R cosϕ

tanϕ(u+ V cos θ) (4.11)

∂H

∂θ
=

−pλV sin θ

R cosϕ
+
pϕV cos θ

R
. (4.12)

For an extremum to exist this last expression must be zero, giving:

tan θ =
pϕ cosϕ

pλ
. (4.13)

For optimality, H must also be zero. We use this value and rearrange Equation (4.13), to

make pϕ the subject and then substitute this into the equation for H:

0 =
pλ(V cos θ + u)

R cosϕ
+
pλ tan θ(V sin θ + v)

R cosϕ
+ 1. (4.14)

This can now be rearranged to make pλ the subject of the formula:

pλ =
−R cos θ cosϕ

V + u cos θ + v sin θ
. (4.15)

Following the same method, but finding pϕ in terms of V , u, v and θ this time gives us:

0 =
pϕ cosϕ(V cos θ + u)

R cosϕ tan θ
+
pϕ(V sin θ + v)

R
+ 1,

pϕ =
−R sin θ

V + u cos θ + v sin θ
. (4.16)

These adjoint expressions can now be substituted back into Equations (4.10) and (4.11):

ṗλ = −∂H
∂λ

=

(
cos θ

V + u cos θ + v sin θ

)
∂u

∂λ
+

(
sin θ

V + u cos θ + v sin θ

)
∂v

∂λ
, (4.17)

ṗϕ = −∂H
∂ϕ

=

(
sin θ

V + u cos θ + v sin θ

)
∂v

∂ϕ
+ (

cos θ

V + u cos θ + v sin θ

)
∂u

∂ϕ
... (4.18)

+

(
cos θ

V + u cos θ + v sin θ

)
tanϕ(V cos θ + u).

Our aim is to find the rate of change of θ so that we can plot a path, minimising time. So

using implicit differentiation on Equation (4.13) gives:

dθ

dt
sec2 θ =

dϕ

dt

(
−pϕ sinϕ

pλ

)
+
ṗϕ
pλ

cosϕ−
ṗλpϕ
p2λ

cosϕ. (4.19)

Substituting Equations (4.6) and (4.15)-(4.18) into Equation (4.19) we obtain:

dθ

dt
= cos2 θ

[
dϕ

dt

(
−pϕ sinϕ

pλ

)]
+cos2 θ

[
ṗϕ
pλ

cosϕ

]
− cos2 θ

[
ṗϕpϕ
p2λ

cosϕ

]
. (4.20)
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To clarify the working, the coloured sections from the equation above, will be simplified

in turn. The first section can be simplified as:

cos2 θ

[
dϕ

dt

(
−pϕ sinϕ

pλ

)]
= cos2 θ

dϕ

dt

(
tan θ

cosϕ

)
(− sinϕ)

= −dϕ

dt
tanϕ sin θ cos θ

= −
(
v + V sin θ

R

)
tanϕ sin θ cos θ

= −v sinϕ sin θ cos θ
R cosϕ

− V sin2 θ cos θ sinϕ

R cosϕ
. (4.21)

The second section becomes:

cos2 θ

[
ṗϕ
pλ

cosϕ

]
=

[(
sin θ

V + u cos θ + v sin θ

)
∂v

∂ϕ
+

(
cos θ

V + u cos θ + v sin θ

)
∂u

∂ϕ
+ ...

(
cos θ

V + u cos θ + v sin θ

)
tanϕ (V cos θ + u) cosϕ

(
V + u cos θ + v sin θ

−R cos θ cosϕ

)]
cos2 θ

= −
(
sin θ cos θ

R

)
dv

dϕ
−
(
cos2 θ

R

)
du

dϕ
− tanϕ (V cos θ + u)

R
cos2 θ

= −
(
sin θ cos θ

R

)
dv

dϕ
−
(
cos2 θ

R

)
du

dϕ
− V cos3 θ sinϕ

R cosϕ
− u cos2 θ sinϕ

R cosϕ
.

Finally the third part gives:

− cos2 θ

[
ṗλpϕ
p2λ

cosϕ

]
= − cos2 θ

(
cos θ ∂u∂λ + sin θ ∂v

∂λ

V + u cos θ + v sin θ

)
tan θ

cosϕ
cosϕ

(
V + u cos θ + v sin θ

−R cos θ cosϕ

)
=

(
sin θ cos θ

R cosϕ

)
∂u

∂λ
+

(
sin2 θ

R cosϕ

)
∂v

∂λ
. (4.22)

Putting these three sections together gives:

dθ

dt
= −v sinϕ sin θ cos θ

R cosϕ
− V sin2 θ cos θ sinϕ

R cosϕ

−
(
sin θ cos θ

R

)
dv

dϕ
−
(
cos2 θ

R

)
du

dϕ
− V cos3 θ sinϕ

R cosϕ
− u cos2 θ sinϕ

R cosϕ

+

(
sin θ cos θ

R cos θ

)
∂u

∂λ
+

(
sin2 θ

R cosϕ

)
∂v

∂λ
. (4.23)

Rearranging by using cos2 θ + sin2 θ = 1 and sin2 θ = 1− cos2 θ we obtain the expression

for Wind2D, as used in the simulation:

dθ

dt
= − 1

R cosϕ

[
− sin θ cos θ

∂u

∂λ
+ u cos2 θ sinϕ+ cos2 θ cosϕ

∂u

∂ϕ
− ∂v

∂λ
+ cos2 θ

∂v

∂λ
...

+v sin θ cos θ sinϕ+ sin θ cos θ cosϕ
∂v

∂ϕ
+ V cos θ sinϕ

]
.

(4.24)
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Along with Equations (4.5) and (4.6), the expression for dθ
dt forms the dynamical system

used in the simulation.

4.3.3 Numerical Algorithm

We present a numerical method to estimate the unknown initial heading angle θ(0). Each

θ(0) value will have an associated trajectory, which will be time optimal for this particular

set of initial conditions (λ(0), ϕ(0) and θ(0)), but which will intersect the arrival airport

only for certain values of θ(0). The method we use seeks these values of θ(0) by locating

trajectories which satisfy the optimality system shown in Equations (4.1) to (4.3) and also

pass within 200 m of the destination airport. These are obtained using extreme initial

heading angles of 50 degrees either side of the GC path joining the departure and desti-

nation airports. The GC path initial heading from JFK to LHR is 38.7◦ and from LHR

to JFK is 162.1◦. Subsequent headings along the route are found by advancing the Equa-

tions (4.1) -(4.3) using the Euler forward step method (Williams, 2016). At each aircraft

position, the wind field is given by linear interpolation of the re-analysis data. The flight

path is calculated by advancing in time in 1 s intervals. The integration duration is taken

as 1.8 times the time taken to cover the GC path at the chosen airspeed in still air, i.e.

when airspeed is equal to ground speed. This duration ensures that, even in the strongest

headwinds, the calculated paths will always pass through the destination’s meridian.

From the paths for the two extreme initial heading angles, the distance to the destina-

tion airport from each point on each route (dH) is calculated using the Haversine formula

(Veness, 2019):

aH = sin2(∆lat/2) + cos(lat1) cos(lat2) sin2(∆lon/2), (4.25)

cH = 2atan2(
√
aH ,

√
1− aH), (4.26)

dH = RcH , (4.27)

where lat1 is the latitude of the first point, lat2 is the latitude of the second point, ∆lat is

the difference in latitudes between the two points, ∆lon is the difference in their longitudes

and R is the radius of the Earth. The atan2 function is the four-quadrant inverse tangent

of the two real values in the function bracket. (The first of these values dictates the y

position and the second the x position of a point on Cartesian axes. The returned value

is the angle, between −π and π, swept out from the positive x axis to a line joining the

origin to the given position.)
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If no point within 200 m of the destination airport is found along the two paths, a

bisection method is applied to the initial heading angles and the algorithm above is re-

peated until this criterion is achieved. The method is summarised in Figure 4.2 and a set

of diagrams showing intermediate results and the final trajectory is shown in Figure 4.3.

Minimum time trajectories for airspeeds between 200 m s−1 and 270 m s−1 can be found

in this way for all eastbound flights and most westbound flights.

For a small number of westbound flights, the bisection method finds multiple optimal

time paths which pass within 200 m of the destination airport, due to routes from more

than one initial heading angle fulfilling the success criterion. In these cases the time op-

timal route with the shortest duration is chosen. For example, paths for 1st December,

2019 and 8th February, 2020 are plotted in Figure 4.4 over a quiver plot showing the wind

velocity at each grid point. It can be seen in Figure 4.4a that on 1st December, 2019, the

bisection method is successful in finding a single time optimal path. The daily wind field

leads to routes with similar initial heading angles changing heading gradually and almost

identically, so that they do not cross. In contrast, Figure 4.4b shows that on 8th February,

2020, where the region of stronger adverse wind in the mid-North Atlantic causes flights

to change heading more rapidly, three trajectories will reach the destination airport. Only

one of these will, however, be a global (within the initial 100◦-wide search range) minimum

time route for the journey, as the flight times differ. For the three time optimal routes

shown in Figure 4.4b these flight times are 8 hours 53 minutes for an initial heading angle

of 167.5 degrees, 8 hours 23 minutes for an initial heading angle of 196.3 degrees and

7 hours 25 minutes for an initial heading angle of 121.7 degrees.

Thus using the Euler forward method applied to the Zermelo dynamical system, mapped

conformally onto a sphere, the minimal time paths can be plotted between airport pairs

across a range of air speeds for all 91 days in winter 2019-2020. These paths are called

OFW routes. From these trajectories the air distance can be found and compared with

the air distance of an aircraft with a ground track following the GC path and with the

air distances associated with each of the daily ATM tracks in the OTS. Due to the daily

wind field data, the air distance for the GC path will not be equal to the GC ground track

distance.
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(b) 1st bisection
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(c) 2nd bisection
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(d) 3rd bisection
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(e) 4th bisection
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(f) 5th bisection
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(g) 6th bisection
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(h) 13th bisection

Figure 4.3: Initial routes and stages 1-6 and 13 of the bisection method for 1st

December, 2019, westbound. New routes at each stage are in blue.
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(a) Westbound Quiver Plot 1st December, 2019
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(b) Westbound Quiver Plot 8th February, 2020

Figure 4.4: Quiver plots showing values for wind velocity in m s−1 on 1st December,

2019 and 8th February, 2020 across the North Atlantic. The westbound

time optimal flight paths for each day’s wind field, from LHR to JFK

(indicated by green and pink asterisks respectively) are shown in red.

The two routes on 8th February, 2020 which also reach the airport, but

have longer flight times are shown in purple. The GC path is marked as

a dotted black line on each plot.
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4.3.4 ATM tracks and the GC path

The minimised flight times are used to compute air distances, as a function of airspeed, for

all flights between JFK and LHR. Mean time for westbound OFW routes, plus or minus

standard deviation, was 415 ± 18.4 minutes, whilst eastbound it was 323.5 ± 13.7 min-

utes. The OFW route air distances are compared with those covered by aircraft following

as ground tracks the GC path and the ATM tracks (produced by NAV CANADA and

NATS), through the same wind fields. The corresponding air distances for these journeys

are calculated as follows.

To validate comparisons between the GC path and the OFW routes, the GC path is

split into 25 000 way points. For each pair of consecutive way points, the rhumb line

bearing, a single heading that will take an aircraft from the first waypoint to the second

around a sphere, is found and the ground speed for each interval calculated by solving the

vector equation:

uwind + uair = uground, (4.28)

where uwind is a vector comprised of zonal and meridional wind components, uair is a

vector giving the aircraft’s velocity relative to the air and uground is a vector giving the

aircraft’s velocity relative to the ground (see Figure 4.5).

The sum of the rhumb line distances gives the total ground distance. The rhumb line

distances for each interval are divided by the corresponding ground speeds to give the

interval times, which are summed to give total flight time. Multiplying the flight time by

the airspeed gives the air distance travelled in each case.

Air and ground distances for the ATM tracks are calculated in a similar way. The journey

between each of the ATM track way points is divided into smaller intervals reflecting the

ratio between the length of the journey between these way points and the whole journey

distance. Again a total of 25 000 steps is used. Once these intervals are generated, the

methods used for the GC path are applied.
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Figure 4.5: Diagram showing vector triangle of aircraft velocity relative to the

ground, uground, aircraft velocity relative to the air, uair, and wind ve-

locity, uwind. Here θ is the aircraft’s heading angle and β is the rhumb

line or ground-track angle, which is the single heading an aircraft in

wind-free conditions would take to reach the next waypoint.

4.4 Results

4.4.1 Air distance analysis

Air distances for the ATM tracks, GC path and OFW route are now compared. An ex-

ample of the ground tracks for these paths is given in Figure 4.6. This shows that on

the 1st December, 2019, the OFW routes going east are very similar to the most efficient

ATM track, but that flying west there is more of a discrepancy. All routes except for the

westbound ATM track cross the GC path. The savings in air distance made, can be seen

in Figure 4.7, which gives air distances of each route for a range of airspeeds.

As expected the OFW route has the shortest air distance for all airspeeds both westbound

and eastbound. Air distance reduces as airspeed increases for the westbound tracks, whilst

increasing for eastbound flights, since in a strong wind field, airspeed has less effect on air

distance when flying with the prevailing wind than against it. As air distance is airspeed

multiplied by time, if time is greatly reduced by flying faster, the increase in airspeed

does not mean necessarily that air distance is increased. This can be seen in westbound

results. Conversely, when aircraft fly east, extra airspeed does not change the time the
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Figure 4.6: Plots to show the ground tracks of OFW routes and the most efficient

ATM tracks flying both east and west between LHR and JFK. The GC

path is also shown.

110 Chapter 4 Cathie A. Wells



Reformulating aircraft routing algorithms to reduce fuel burn

200 210 220 230 240 250 260 270

Airspeed (m/s)

5800

5850

5900

5950

6000

6050

6100

6150

A
ir
 d

is
ta

n
c
e

 (
k
m

)

Air distances for LHR to JFK on 1st December, 2019

OFW Route

GC Path

Track A

Track B

Track C

Track D

Track E

Track F

Track G

Track H

(a) Air distances 1st December, 2019 westbound

200 210 220 230 240 250 260 270

Airspeed (m/s)

5000

5500

6000

6500

7000

7500

A
ir
 d

is
ta

n
c
e

 (
k
m

)

Air distances for JFK to LHR on 1st December, 2019

OFW Route

GC Path

Track R

Track S

Track T

Track U

Track V

Track W

Track X

Track Y

Track Z

(b) Air distances 1st December, 2019 eastbound

Figure 4.7: The variation of air distance with airspeed for OFW routes, GC paths

and ATM Tracks on 1st December, 2019.
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route takes as dramatically, meaning that the airspeed factor in the air distance product

becomes dominant and the air distance increases with airspeed. Both the GC path curves

in Figure 4.7 approach the great circle distance between the two airports (5.6×106 m) as

the airspeed increases, which is the expected behaviour, because the wind speed becomes

less important and so the air distance tends to the ground distance.

The excess air distances that are incurred by flying the ATM tracks and GC path instead

of the OFW route, averaged across the whole winter period, are shown in Figure 4.8.

Here both westbound and eastbound air distance savings decrease with increasing air-

speed, with the exception of savings made when the OFW route is compared with the

least efficient eastbound ATM track. In this case the savings increase slightly as airspeed

increases, demonstrating that once a track is very far from the advantageous eastbound

winds, flying at a higher airspeed will only burn even more fuel and produce even more

emissions, without reducing air distance. However, in all other cases, there is less of a

saving in air distance as airspeed increases, meaning that increased airspeeds are needed

for less advantageous winds.

Taking the results for an airspeed of 240 m s−1 and averaging savings in air distance

between the most efficient ATM track and the OFW route across all 91 days of winter

2019-2020 for flights from JFK to LHR, gives an air distance saving of 37 km, but the

saving for the least efficient ATM track is over 931 km. The average saving for all ATM

tracks is 232 km. In the opposite direction, flying from LHR to JFK, 54 km of air dis-

tance are saved by using the optimised route compared with the most efficient ATM track

and air distance is reduced by 502 km compared with the least efficient ATM track. The

average across all tracks gives a saving of 173 km. Westbound ATM tracks are normally

closer on average to the most efficient track than those going east, explaining the larger

eastbound average savings in comparison to each day’s least efficient track.

Averaged over all 91 days of data, the difference in air distance between the OFW route

and each ATM track is statistically significant at the 95% level using a one-tailed t-test

(Student, 1908) with unequal variances, for each airspeed. In all cases the adoption of the

OFW routes significantly reduces air distance. Percentage improvement in air distance,

for flights from JFK to LHR flown at 240 m s−1 show a saving of 0.7% when the OFW

route is compared to the most efficient ATM tracks, but 16.2% when compared to the
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Figure 4.8: Plots of air distance saved when the OFW route is compared to the

most efficient ATM track, the least efficient ATM track and the average

ATM track for each day at each airspeed. Savings compared with the

GC path through the same wind field are also shown.
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least efficient ATM tracks. The average across all tracks gives a saving of 4.7%. For the

same journey in reverse the range of savings is from 0.8% to 7.3%, with an average of

2.9%. Table 4.1 shows all percentage savings across both routes, for a range of airspeeds.

Given the large number of flights using these routes every day, adopting the OFW routes

would save a significant amount of air distance and thus a significant amount of fuel and

greenhouse gas emissions.

4.4.2 Observed usage of ATM tracks

As shown in the previous section, air distance savings depend to a large extent on the ATM

track flown, so track usage statistics are crucial when estimating potential savings. We

have obtained such statistics from NATS, giving the number of times each track was flown

in each direction each day. A limitation is that all mid-North Atlantic flights are included,

not just those between JFK and LHR. Also data for 14th and 15th December, 2019 are

not available, so these days have been omitted from the calculations. Nevertheless, using

a weighted average, in which tracks are used in the same ratio as in the NATS daily track

usage figures, to look at differences in air distance between OFW routes and ATM tracks,

provides some insight into potential percentage savings. Figure 4.9 shows that if airlines

use all provided tracks equally their flights are less fuel efficient than the track usage figures

from NATS imply. Therefore airlines already have a good idea of where the most fuel and

time efficient routes are each day. The percentage saving obtained, using this weighted

average for flights at a constant airspeed of 240 m s−1, is 2.5% for eastbound flights and

1.7% for those flying west. Thus with more flexibility allowed in the track system, fuel

savings could be made, enabling an important reduction in emissions.
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Figure 4.9: Plots to show the savings to be made on average at each airspeed for

aircraft flying both east and west along the route between LHR and

JFK. Averages are calculated as if all tracks are used equally for the

unweighted results and then as if tracks are used in the same ratio as in

the NATS daily track usage figures for all mid-North Atlantic crossings,

for the weighted results.
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4.4.3 Limitations

The limitations of the current approach lie in the simplification of the underlying model.

Aiming for the minimum time for a route does not necessarily fit the reality of a timetable

of scheduled flights. However, other assumptions such as maintaining the same altitudes

and airspeeds for the cruise phase could be adjusted in future work to allow flight times

to be fixed. This would allow aircraft to benefit from different wind fields at different al-

titudes. In Figure 4.10a average actual flight times from LHR to JFK are compared with

those found by time optimisation across each daily wind field, for all flights made from

1st December, 2019 to 29th February, 2020. The actual flights have varying airspeeds,

with cruising airspeeds of between 230 m s−1 and 250 m s−1. As the actual flights are

not entirely in cruise phase and are not optimised for time, most actual flight times are

longer than the OFW route times, as is shown by the data points lying above the red

line. However, on a handful of days the opposite is true, as flights are not constrained to

a single airspeed or altitude. The green and pink lines on the plot show the shortest and

longest scheduled times for a crossing from LHR to JFK. As data is widely spread from

these boundaries, this reveals that current scheduling includes much taxiing and contin-

gency time, timetables having been written long before airlines know the nature of the

daily wind fields. However, during this period, eleven westbound flights did exceed their

scheduled time, presumably due to exceptionally strong winds.

In Figure 4.10b the same patterns are shown for the journey from JFK to LHR. In this

case, all flights have shorter OFW route times. All eastbound flights during the 2019-2020

winter period landed well within their scheduled times.

Both OFW route times and average actual times are found to be normally distributed

in a single-sample Kolmogorov–Smirnov test, at a 95% level of significance, so a product

moment correlation coefficient can be calculated. This shows that there is a strong positive

correlation between datasets, as shown by the turquoise line of best fit in Figure 4.10. The

shallow gradient of this line, which is less than one for both eastbound and westbound

flights, shows that as flights take longer, the difference between the actual flight times and

the optimised flight times becomes smaller, as taxi, take-off and landing phases take a set

time and so for longer flights they become a smaller percentage of the whole trip. The line

of best fit for the westbound journeys is steeper than that for the eastbound journeys, as

the OFW routes save more air distance in this direction.
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Figure 4.10: Figure 4.8a shows how the optimal westbound times calculated for each

day’s wind field varied with the average actual flight time recorded each

day from JFK to LHR. Figure 4.8b shows the corresponding informa-

tion for the eastbound route from LHR to JFK.

118 Chapter 4 Cathie A. Wells



Reformulating aircraft routing algorithms to reduce fuel burn

4.5 Chapter summary

Using wind-optimised tracks would reduce North Atlantic air distances significantly, even

in comparison to the most efficient current ATM tracks. This research has been under-

taken at the constant static pressure level of 250 hPa, as this is the level at which the

tracks are optimised (Mangini et al., 2018). At present, the ATM tracks are heavily

constrained by safety considerations driven by the poor situational awareness available

over the mid-Atlantic. This results in a track system that is sub-optimal for fuel use

and thus airlines are obliged to produce excess emissions. Airlines also currently choose

routes which minimise the CI of a flight (the ratio of the time cost to the fuel cost), not

the fuel consumption or emissions. With more reliable and high-resolution situational

awareness available, greater track flexibility should be possible enabling worthwhile fuel

savings to be made by the airlines and reducing emissions. This work demonstrates a

way to compare the current North Atlantic ATM Tracks with routes generated by a time

optimisation method based on solutions of the spherical version of the Zermelo equations.

Air distance is used as a measure of the efficiency of ATM tracks. Savings of between 0.7

and 16.4% in air distance can be made by adopting time-optimised routes through each

daily wind field, with level of savings dependent on flight direction and chosen ATM track.

To estimate the potential CO2 emissions savings over a whole winter period, consider

the 3 833 701 seats provided between New York and London in 2019 (OAG, 2020). Ac-

cording to the ICAO carbon emissions calculator (ICAO, 2020), an economy class return

flight between London and New York generates 670 kg of CO2 per passenger. Taking an

airspeed of 240 m s−1, an average saving of 1.7% can be assumed for the 479 333 passengers

flying west over the winter period and an average saving of 2.5% can be assumed for the

479 093 passengers flying east. These figures are derived from the weighted averages for

the air distance savings as discussed in Section 4.4.2 and from assuming that one quarter

of the annual flight figures provided by OAG (OAG, 2020) pertain to winter flights. This

gives a potential saving of over 6.7 million kg of CO2 emissions across the winter period

of each year alone.

Here we investigated optimal flight trajectories given a deterministic wind field from

re-analysis data. In Chapter 5 we will consider atmospheric data from climate models

allowing us to compare historic and future time minimal flight durations.
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Future changes to minimum flight

times for transatlantic trajectories

5.1 Introduction

Just as the carbon dioxide emitted by aircraft is contributing to climate change, so the

warming climate is likely to affect aviation. These changes could take many forms, such

as increased turbulence due to amplification of the shearing of the jet stream (Williams

& Joshi, 2013; Williams, 2017; Storer et al., 2017; Lee et al., 2019; Kim et al., 2015) or

take-off weight limitations based on the reduced lift afforded by warmer air (Coffel & Hor-

ton, 2015; Gratton et al., 2020). In this chapter the effect on time minimal transatlantic

flight duration, between LHR and JFK caused by the predicted future changes to both the

position and strength of the jet stream will be investigated. We use average daily wind

fields, so consideration of turbulence and convection is not possible. For both of these

effects atmospheric data would need very high spatial and temporal resolution.

Previously increases in round trip flight time across the Pacific have been the subject

of research by Karnauskas et al. (2015). By comparing time optimal trajectories between

Hawaii and continental North America in 2006, to those predicted in 2100, the research

showed that the predicted strengthening of winds at 300 hPa could increase round-trip

flight times by just under a minute, leading to the potential production of an extra 4.6 mil-

lion kg of CO2 per year. This work was based on 34 climate models from CMIP5 (PCMDI,

2018). The data used is from the RCP8.5 scenario, which assumes a rise in average global

temperature of 4.3◦C by 2100, compared to pre-industrial temperatures.
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Optimal transatlantic flight cruise times under climate change were scrutinised by both

Williams (2016) and Irvine et al. (2016). In Williams (2016), the average round trip time

increase for routes between JFK and LHR was found to be 1 minute 18 s. This amounts

to 70 million kg of extra CO2 emissions annually. Here flight times were considered for 20

years of pre-industrial CO2 levels and compared with those from 20 years of doubled CO2.

All simulated flights were run at an airspeed of 250 m s−1 and an altitude of 200 hPa.

Wind data was from the single model GFDL CM2 from CMIP3 (PCMDI, 2007).

Results from Irvine et al. (2016) showed that, on average, eastbound routes in the pe-

riod from 2073 to 2099 were likely to be just under a minute shorter than those flown

between 1979 and 2005, but that westbound routes would be about a minute longer. Here

a constant airspeed of 250 m s−1 was again assumed, but the cruise altitude was 250 hPa.

Simulations were based on five different climate models from CMIP5, including GFDL

ESM2G and MPI-ESM-MR (see Table 5.1).

To quantify the more immediate effects of climate change on commercial flights it was

decided to compare minimum flight times for a historic period, 1986-2005 and a future pe-

riod, 2036-2055. An ensemble of eight different CMIP5 models was used under the RCP8.5

scenario. Both the summer season (1st June to 31st August) and the winter season (1st

December to 28th February) were considered, giving 20 summer and 19 winter seasons in

each time period. We also compare average wind speeds at different latitudes in these two

time periods to explain our flight duration results.

5.2 Choice of climate models

Eight different climate models (shown in Table 5.1) are considered in finding minimal

time trajectories. The flight times for aircraft crossing the North Atlantic between LHR

and JFK recorded for each model are averaged to give final times for analysis. A Met

Office climate specialist chose the ensemble members based on previous research and full

details of all of the models can be found in (Lowe et al., 2018). As each model works with

different zonal (x) and meridional (y) grid points, the data was re-meshed (using linear

interpolation) onto a grid with 35 grid points between the longitudes of the airports. The

grid point latitudes were calculated to give a square mesh. Numbers of grid points in each

direction in the original data are given in Table 5.1.
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Table 5.1: Ensemble of climate models from CMIP5

Model Grid points Description

x y

ACCESS1-3 192 144 General circulation climate model

ARC Centre of Excellence for Climate System Science

Australia

CanESM2 128 64 Fourth generation coupled global climate model

Canadian Centre for Climate Modelling and Analysis

Canada

CMCC-CM 480 240 Coupled atmosphere–ocean circulation model

Centro Euro-Mediterraneo sui Cambianeati Climatica

Italy

CNRM-CM5 256 128 5 existing Earth system models coupled by OASIS

Centre National de Recherches Météorologique

France

GFDL-ESM2G 144 90 Coupled atmosphere–ocean model with biochemistry

NOAA Geophysical Fluid Dynamics Laboratory

US

IPSL-CM5A-MR 144 143 Atmosphere–land–ocean–sea-ice full Earth system

Institute Pierre Simon Laplace Climate Modelling Center

France

MPI-ESM-MR 192 96 Couples atmosphere, ocean and land surface

Max-Planck Institut für Meteorologie

Germany

MRI-CGCM3 320 160 Atmosphere–land, aerosol, ocean-ice, cloud microphysics

Meteorological Research Institute

Japan
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5.3 Optimal control formulation

As in Chapter 4, a dynamical system detailing the zonal and meridional progress of an

aircraft at constant altitude through a wind field is used. This is based on the Zermelo

equations mapped conformally onto a spherical shell (Arrow, 1949; Bryson & Ho, 1975):

dλ

dt
=
u+ V cos θ

R cosϕ
, (5.1)

dϕ

dt
=
v + V sin θ

R
, (5.2)

dθ

dt
= −Wind2D

R cosϕ
, (5.3)

where the Wind2D term is:

Wind2D =− sin θ cos θ
∂u

∂λ
+ u cos2 θ sinϕ+ cos2 θ cosϕ

∂u

∂ϕ
(5.4)

+ v sin θ cos θ sinϕ+ cos θ sin θ cosϕ
∂v

∂ϕ
+ V cos θ sinϕ− sin2 θ

∂v

∂λ
.

Here t is time from departure in s, λ(t) and ϕ(t) are the aircraft’s longitude and latitude

in radians, u(λ, ϕ) and v(λ, ϕ) are zonal and meridional wind speeds in m s−1, R is the

radius of the Earth, taken as 6 371 km, V is the airspeed in m s−1 and θ is the aircraft’s

heading angle in radians. Heading angle is taken as the direction in which the nose of the

aircraft is pointing, measured anticlockwise from due east. A detailed derivation of this

system can be found in Chapter 4.

As before, the dynamical system is solved numerically using an Euler forward stepping

scheme, but this time Mach number (ratio of airspeed to speed of sound) rather than

airspeed is kept constant, resulting in an extra parameter update at each timestep:

V = 0.82 ∗ 340.3 ∗
√
T/288.15, (5.5)

where T is temperature in degrees Kelvin at the start of a time step (TSCM, 2020).

The constant Mach number used is 0.82, with 340.3 m s−1 giving the speed of sound at

288.15 K. This equation is drawn from the fact that airspeed is equal to the product of

Mach number and speed of sound at the point under consideration. As there is very little

variation in temperature at 250 hPa across the North Atlantic, this has very little effect

on the airspeed, which remains very nearly constant. This modification was included to

align with Met Office practices, as the material in this chapter was researched during a

placement with the Aviation Group of the Met Office.
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5.4 Obtaining optimal flight times and their as-

sociated trajectories

By integrating Equations (5.1) to (5.3) forward in time, trajectories can be traced from a

departure point by choosing an initial heading angle. Paths obtained in this way will be

time minimal for the given heading angle, but there is no guarantee that a path will reach

the destination airport. A shooting method is used to improve estimates for the initial

heading angle in order to reach the final airport. Initially trajectories are found using

angles 60◦ either side of the first heading angle of the Great Circle Route between the

airports. Using a bisection method the heading angle is improved until the route reaches

the destination airport. In over 95% of cases this is an adequate approach. However,

where trajectories are complicated by unusual wind patterns, multiple local minima mean

that the bisection method is no longer valid. In these instances a new approach is applied.

Trajectories are sent from angles in the original range at 1◦ increments. A hexagon is then

created joining the closest point to the airport on a trajectory with the points 100 s before

and after it and the corresponding three points on the next trajectory. An example show-

ing a complicated wind pattern in which the destination airport lies in multiple hexagons

is given in Figure 5.1. This is based on climate data from the MPI-ESM-MR model, for

the 12th December, 1988. A sketch illustrating the new approach is shown in Figure 5.2.

Finding all of the initial angle pairs with trajectories forming part of a hexagon containing

the airport, allows us to apply the method repeatedly using increasingly small angle inter-

vals and increments, until paths are found with endpoints within 200 m of the destination

airport. The path with the shortest associated flight time is adopted as the time minimal

path. To demonstrate the method more clearly a less complicated set of trajectories has

been chosen, as shown in Figure 5.3a. This example is based on weather data from the

CNRM-CM5 model, for the 9th January, 1987.

By plotting a path due east from the destination airport (as shown in Figure 5.3b) and

counting how many sides of each hexagon it intercepts, it is possible to locate any hexagons

containing the destination. (In the case of a point lying within a polygon, a horizontal

line projected from the interior of the polygon to the right will always intersect an odd

number of sides.) The initial heading angles generating paths that produce each of these

hexagons can now be examined further. The interval between each pair of such angles is
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Figure 5.1: Plot showing optimal trajectories from a range of initial heading angles

from -60 to 60 degrees either side of the GCR path. The departure and

destination airports are shown by stars.

divided into smaller increments and the new trajectories and hexagons plotted (see Fig-

ures 5.3c and 5.3d). This can be repeated until a trajectory comes within 200 m of the

destination airport (see Figures 5.3e and 5.3f).

This new method is more computationally expensive than the bisection method, so is

used only as necessary. Working to four decimal places of a degree ensures that a path

close enough to the destination is found where this exists, which normally requires three

levels of angle increments being used. Although Pontryagin’s Maximum Principle gives

only necessary and not sufficient conditions for such a path to exist, in this particular

research, time minimal paths were found for all climate models, on all days, in both

directions.
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Figure 5.2: Sketch showing how the pair of trajectories between which the desti-

nation airport lies can be found by creating hexagons on neighbouring

paths and seeing how many sides of each hexagon a line due east from

the destination airport crosses.
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(f) Step 3 zoomed in

Figure 5.3: Plots of trajectories for a number of different initial heading angles. At

each step the choice of angles becomes more focused and the interval

between pairs of angles smaller, so longitude scale changes between Fig-

ures 5.3b, d and f. Changes in line colour show where each side of the

hexagons have been drawn over the flight paths.
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5.5 Results

Minimum times for each day, of each season of each year, for each model were collected,

together with co-ordinates for each minimum time trajectory. Times were averaged across

the ensemble of models to give one minimum time for each day of weather data. These

results are shown as relative frequency histograms in Figures 5.4 and 5.5.

It can be seen that the future minimum times seem slightly shorter than those from

the historic period in all cases, although this is more marked with eastbound journeys. A

Student’s t-test at a 5% significance level was run for the difference between mean times for

corresponding historic and future minimum times. This showed that there is a significant

decrease in time in all cases, but that this decrease is no more than one or two minutes,

depending on season and direction of flight. Confidence intervals for the differences are

shown in Table 5.2. The shorter flight times lead to an average reduction in round trip

duration of 3 minutes in the summer and 2.6 minutes in the winter in the future, which is

inconsistent with both Williams (2016) and Irvine et al. (2016), but agrees with findings

in a new report from the Met Office, in which a different method is used to find minimum

time paths, based on Djikstra’s algorithm (Eurocontrol, 2021b; Cheung, 2018).

Table 5.2: Confidence intervals (at 5% two-tailed significance level) for difference in

mean minimum flight times between historic and future time periods.

Season Direction Confidence Interval (s)

Summer West (38.3, 75.1)

East (104, 140)

Winter West (45.6, 98.0)

East (64.5, 106)

The trajectories, shown in Figures 5.6, 5.7, 5.8 and 5.9 give all points on all routes from

each model. These are not averaged in any way, but instead include 27 360 flights in winter

and 29 440 flights in summer. Plotting all of these routes allows the area of the North

Atlantic flown over in each direction in each season to be seen. Flying West, aircraft do

cover a wide range of latitudes, but most of the routes lie further North than the Great

Circle Route (GCR) (shown in green on each plot). Eastbound, aircraft trajectories have

less meridional range and cover either side of the GCR symmetrically in summer, with

more of a tendency to fly south of the GCR in winter.
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Figure 5.4: Relative frequency histograms showing minimum flight duration between

JFK and LHR. Y axis values display the probability of the given range

of flight times occurring.

Figure 5.5: Relative frequency histograms for the minimum times for trajectories

between LHR and JFK.
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(a) Winter westbound, historic

(b) Winter westbound, future

Figure 5.6: Plots showing trajectories of all westbound winter flights for wind fields

provided by all climate models over the historic and future periods. The

GCR between LHR and JFK is shown in green.
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(a) Summer westbound, historic

(b) Summer westbound, future

Figure 5.7: Plots showing trajectories of all westbound summer flights for wind

fields provided by all climate models over the historic and future periods.

The GCR between LHR and JFK is shown in green.
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(a) Winter eastbound, historic

(b) Winter eastbound, future

Figure 5.8: Plots showing trajectories of all eastbound winter flights for wind fields

provided by all climate models over the historic and future periods. The

GCR between JFK and LHR is shown in green.
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(a) Summer eastbound, historic

(b) Summer eastbound, future

Figure 5.9: Plots showing trajectories of all eastbound summer flights for wind fields

provided by all climate models over the historic and future periods. The

GCR between JFK and LHR is shown in green.
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5.6 Discussion of results

Why should transatlantic flight durations become shorter in the future in both direc-

tions? This seems counter intuitive as faster winds blowing east would seem to imply

faster eastbound flights, but slower journeys westbound. However, it can be explained by

the patterns shown in the jet stream position and strength from the ensemble of climate

models. The average zonal wind speed at each latitude was found for each season and for

each time period.

Figure 5.10 shows that, in the winter, the models predict a faster jet stream core slightly

further South than before, but a weaker jet stream at higher latitudes. As westbound

flights avoid the core already, the weaker winds toward the poles allow for quicker jour-

neys detouring to the North. Eastbound flights will benefit from the increased speed of the

core, as the prevalent current is in the correct direction and the core itself is in the region

of the shortest ground distance path. In the summer the jet stream core is expected to be

of similar strength at the centre, but extend meridionally, both pole-wards and equator-

wards, as shown in Figure 5.10. This results in westbound flights staying more central

and not deviating so far North on longer ground tracks. Flying east the jet core is very

similar, but the added meridional spread, means that tailwinds can be accessed across a

greater portion of the selected route.

To illustrate these points further, graphs were plotted showing the latitude of each trajec-

tory at the point where the longitude was midway between the departure and destination

airports.

Figure 5.11a shows that, as predicted, in the winter more westbound flights detour North

in the future period to avoid the stronger jet stream core. Flying east (Figure 5.11b)

more flights take advantage of the stronger core across the central latitudes. Results for

the summer trajectories are shown in Figures 5.11c and 5.11d. Fewer flights detour so far

North when flying West, as the jet stream core is too spread to make this an advantage.

Eastbound, aircraft are detouring further North and South, which corresponds to the

wider jet stream. So the trajectories seem to reinforce the ideas given to explain how

minimum time flights can be of shorter duration both flying east and west in the future.
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Figure 5.10: Plots showing average zonal winds at each latitude both for the historic

and future climate model data. The winter season is illustrated above

and the summer season below.The difference between historical winds

and projections of future winds is also shown.
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Figure 5.11: Plots showing the average latitude of aircraft when they reach a lon-

gitude halfway between the departure and destination airports.
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5.7 Why the difference between these results and

previous research?

There are two key reasons why results from this research differ from previous studies.

Firstly, in the current research, two relatively close time periods are being discussed.

There is only a three decade gap between the historic and future time periods, whilst in

Williams (2016) the weather data is pre-industrial to double pre-industrial, which would

reflect a significantly longer interval between the historic and future periods. In Irvine

et al. (2016) there was a seventy year interval between the two time periods considered.

It is unlikely that changes to winds as the climate warms will be linear. Thus compara-

tive results between historic and future periods can be expected to show different patterns.

In addition to the time period changes, there is also the reliance on different climate

models. By using an ensemble, differences between models are to some extent averaged

out, so results from an ensemble and results based on a single model are not really com-

parable. In Figure 5.12 the percentage flight time change from the historic to the future

time period is plotted, for each of the climate models used for this research.

All models are shown to produce a faster average flight time eastbound in the summer,

whereas flying west in both seasons and east in the winter some models show an increase

in average journey duration. In Irvine et al. (2016) the GFDL ESM2G climate model

formed part of the ensemble of five CMIP5 models used. Figure 5.12b shows an increase

in average flight time for westbound flights in the winter for this climate model in this

research too. If this pattern were repeated in the other four ensemble members used, it

could explain why flights travelling west appear to be slower in the future.
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Figure 5.12: Barcharts to show percentage change to flight time going from Historic

to Future periods for each ensemble model.

5.8 Chapter summary

An ensemble of eight climate models is used to compare minimum flight times for the

summer and winter seasons of a historic time period (1986-2005), with a future time
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period (2036-2055). Results show that there is very little difference to flight durations,

where routes have been optimised for time, across the North Atlantic in the next three

decades. Any change to the future climate has been shown to reduce flight duration slightly

in both directions. However, research from Williams (2016) and Irvine et al. (2016) shows

that beyond this period, as the climate continues to warm, westbound flights could slow

significantly.

The climate model data used in this research, looks at average zonal and meridional winds

across a 24 hour period, so it does not capture local turbulence or convection, which are

localised effects on a shorter timescale (Storer et al., 2017). As the climate warms, it

is expected that both of these atmospheric phenomena will become more widespread, so

although our analysis predicts faster transatlantic flights based on daily wind fields, there

may be other effects that will need to be avoided in the future, adding to route length and

thus journey times (Storer et al., 2017; Williams & Joshi, 2013; Williams, 2017; Lee et al.,

2020; Kim et al., 2015).
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Chapter 6

The role of airspeed variability in

fixed-time, fuel-optimal aircraft

trajectory planning

6.1 Introduction

In Chapters 4 and 5 minimal time routing was applied, but in this chapter it is explained

that such a method is not necessarily suitable in a commercial setting.

With airlines, ATM and the ICAO keen to reduce the environmental impact of commercial

flight (ICAO, 2020; Molloy, 2020; AirlinesUK, 2019), it has been shown that TBO provide

the key to improving overall efficiency (Wickramasinghe et al., 2012; Garćıa-Heras et al.,

2014). This approach focuses on designing individual flight routes accounting for weather

conditions in order to optimise efficiency with regard to a number of different factors. For

long haul flights, such as those between LHR and JFK, for which the cruise phase makes

up around 92% of the ground distance of the flight (as shown in Wells et al. (2021)), TBO

promises the greatest rewards (Girardet et al., 2014).

Time optimal routing has been shown to reduce fuel burn when altitude and airspeed

are fixed, compared to the tracks provided across the North Atlantic by NATS and

NAV CANADA (Wells et al., 2021). However, this option is not necessarily the most

practical for airlines and airports. For and financial reasons airlines also need to adhere to

their published timetables. Flights arriving early, create additional costs, through extra

fuel burned in holding patterns, missed connecting flights, blocked gates and additional

140



Reformulating aircraft routing algorithms to reduce fuel burn

(a) Difference in times: West (b) Difference in times East

Figure 6.1: Histogram showing differences between scheduled time and flight time

for the 3 000 flights with available flight data, between LHR and JFK

made from 1st December, 2019 to 29th February, 2020.

crew time. Customer dissatisfaction is also a key issue for airlines when delays occur. If

flight trajectories are planned to ensure a fixed flight time, whilst minimising fuel burn,

then the additional costs to both the airlines and the environment associated with early

arrival can be saved.

Figure 6.1 shows the difference between scheduled times and flight times for the flights for

which full data was available, flown between LHR and JFK from 1st December, 2019 to

29th February, 2020. Flight time is measured as the time from the aircraft wheels leaving

the tarmac at the start of the journey, to them touching down on the destination airport

runway. This is not the same as the scheduled time for a flight, as this is composed of the

gate to gate time, thus including time between the gate to the runway at both ends of the

journey and some contingency time.

Flights that arrive more than 15 minutes before or after they are scheduled to be at

the arrival gate are considered early or late. Trying to judge this from flight times is

difficult, as scheduled time does include what is known as “padding” to help to prevent

delays (OAG, 2022), but this can result in passengers spending time in the aircraft once

landed, waiting for a gate to be assigned. Taking into account taxiing times at both ends

of a flight, a fair assumption is that any aircraft with a flight time 60 minutes or more

shorter than its scheduled time is probably inconveniently early.
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In the same way, any aircraft with a flight time less than 10 minutes shorter than its

scheduled gate to gate time is probably unacceptably late, as not enough time has been

left for movement between the runway and the gate. Using these rules, 15.2% of west-

bound flights and 18.5% of eastbound flights shown in Figure 6.1 arrived early and 7.5%

of westbound flights and 1.0% of eastbound flights would be classed as late.

A very early arrival, at a busy time for an airport, can result in the aircraft being stacked

for as much as 30 to 40 minutes. This circling of the airport vicinity at low altitude is

particularly expensive in terms of fuel use and thus emissions produced, as the aircraft

is being forced to fly at sub-optimal airspeeds and altitudes (Yamashita et al., 2015). In

2001, more than half of air traffic delays were caused by ATM (Lane, 2001). Since then

a number of new initiatives have led to some improvements, despite runway capacity still

being one of the biggest issues in ensuring flights arrive as scheduled (Soomer & Franx,

2008). Tactically enhanced arrivals mode at LHR has even seen some aircraft landing on

the departure runway to reduce stack holding delays (Molloy, 2020).

If flight trajectories are planned to ensure a fixed flight time, whilst minimising fuel burn,

then the costs to both the airlines and the environment associated with early or late ar-

rival can be saved. For late arrivals it is clear that missed transfers, departing flight delays

due to crew and aircraft not being available, ground crew rescheduling and crew overtime

payments are all costly (Soomer & Franx, 2008). It is perhaps more surprising to learn

that early arrivals can be just as costly in terms of missed aircraft rotations which could

have generated extra revenue (OAG, 2022).

In order to use a fixed time across the whole of the winter 2019 to 2020 period, it was

necessary to choose a journey time that would allow all flights to reach their destina-

tions regardless of the winds encountered en route. The results described in Chapter 4

show that time optimal flight times westbound between LHR and JFK from 1st Decem-

ber, 2019 to 29th February, 2020 varied in duration between 6 hours 32 minutes (23 524 s)

and 7 hours 54 minutes (28 469 s), so a fixed time of 8 hours 3 minutes (29000 s) is chosen

based on the maximum duration recorded for time minimal flights, to ensure flights can

be completed in any of the daily wind fields encountered. The time optimal model and

the current fuel optimal model consider the entire route as cruise phase, so these times are

slightly shorter than actual flight times. Scheduled times for actual flights on this route
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over the same winter period are between 7 hours 50 minutes (28 200 s) and 8 hours 25 min-

utes (30 300 s), with an average of 8 hours 7 minutes (29 205 s) (Flightradar24, 2020).

Eastbound flight times are shorter due to the generally more favourable wind field. Time

optimal routes from JFK to LHR vary between 4 hour 59 minutes (17 958 s) and 6 hours 6 min-

utes (21 971 s). Flights are scheduled for between 6 hour 45 minutes (24 300 s) and 7 hours

(25 200 s), with an average time of 6 hours 54 minutes (24 819 s). The fixed time for east-

bound flights is set to 6 hours 7 minutes (22 000 s) based on the time minimal maximum

time duration, to allow enough time for flights across each day’s wind field, when the

entire flight is considered to be in the cruise phase. This is shorter than scheduled times,

as we are considering cruise conditions across the whole trajectory.

Optimal control theory (Kirk, 1970; Macki & Strauss, 1982; Bressan & Piccoli, 2007)

is applied here to formulate a problem leading to fixed-time, fuel minimal trajectories sub-

ject to arrival constraints, an aerodynamic fuel burn model and a data-driven wind field.

The fuel usage of trajectories generated by two finite horizon optimal control formulations

are compared. In the first, a single control variable is given as a set of position-dependent

aircraft headings. The second formulation varies both the headings and the airspeed of

the aircraft. Fuel consumption is modelled with a new physics-driven fuel burn function,

which is aircraft type specific (Poll & Schumann, 2021a,b). Optimal trajectories are found

numerically using a reduced gradient approach.

Long range cruise trajectories minimising fuel for a fixed mass aircraft have previously

been researched by others using control variables of thrust and flight path angle (Schultz

& Zagalsky, 1972; Speyer, 1973) or lift and thrust (Schultz, 1974; Menon, 1989), but these

have not accounted for the wind field. In these papers the fuel flow is minimised for a

set distance of flight. Wind has been factored into fixed range cruise calculations which

compare fixed and free thrust as airspeed varies (Erzberger & Lee, 1980), but here a direct

operating cost is minimised, with this cost dependent on both time of flight and fuel use.

Similar comprehensive research into trajectory optimisation for hybrid UAVs, incorporat-

ing weather data and optimising for energy has been completed recently, but these routes

are time variable (Dobrokhodov et al., 2020).

Fixed-time trajectories minimising direct operating cost have also been designed, but
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unlike the current research, the optimal control model is set up with a free final time

(Sorensen & Waters, 1981; Burrows, 1983). The trajectory best fitting the imposed ar-

rival time constraint is then selected. Other methods have been used to solve a minimum

fuel cruise at constant altitude with fixed arrival time (Garćıa-Heras et al., 2014; Franco

& Rivas, 2011), but these either did not consider the effect of wind at all or simplified

the wind fields. Optimal routes through realistic wind fields are often very different from

their wind-free equivalents (Girardet et al., 2014).

The minimum fuel optimisation problem for a fixed-time journey has, therefore, been

examined previously. The novelty in the approach shown here lies in:

• Applying a recently developed, novel, analytic aerodynamic fuel-burn model (Poll

& Schumann, 2021a,b) that is quicker and easier to use in complex computation

schemes than the standard EUROCONTROL BADA (Garćıa-Heras et al., 2014;

Wickramasinghe et al., 2012; Soler et al., 2020; Yamashita et al., 2021, 2020). This

new method is open source and fully transparent.

• A numerical assessment across 91 days, covering the entire winter period from 1st

December, 2019 to 29th February, 2020, using real weather data.

This research is set out in five sections. In Section 6.2, the system dynamics, a description

of the optimal control formulation and an outline of the approximate synthesis of optimal

trajectories are discussed. Section 6.3 contains model data specific to the the data-driven

wind field and the fuel burn function. In Section 6.4 fuel savings by incorporating both

heading angle and airspeed control, rather than just heading angle, are quantified and the

effect of differing wind fields on results is analysed. Finally, the results are summarised

and discussed in Section 6.5.

6.2 Mathematical modelling for trajectory plan-

ning

In this section the dynamical system governing the trajectory of an aircraft is presented.

An optimal control formulation is stated to minimise fuel burn along a fixed time horizon

with a fixed departure point. The destination target comprises all points within 1 km of

the point (λdest, ϕdest). Two different optimal control formulations are presented, repre-

senting fixed and variable airspeed models.
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We then redefine this continuous system as a set of discrete paths, making a piecewise

continuous route, in order to render the solution more practical in an sense. The nu-

merical method applied to provide an approximate solution to this discrete problem is

then discussed. The nomenclature for variables used throughout the chapter is defined in

Table 6.1.

6.2.1 System dynamics for the trajectory of an aircraft

A simplified model for the trajectory of an aircraft is considered. The model is a variation

of Zermelo’s navigation problem transformed conformally onto a sphere, but here the

objective is to minimise fuel burn rather than flight time (Zermelo, 1930). The aircraft

travels the surface of a spherical shell with the same radius as the Earth. Although the

aircraft will actually travel at a fixed altitude h above this shell, as h ≪ R this can be

approximated by R in line with previous research (Arrow, 1949; Jardin & Bryson, 2012b;

Ng et al., 2014; Kim et al., 2016; Williams, 2016). The aircraft trajectory, is characterised

by longitude, λ, latitude, ϕ, and mass,M , at any time t. The rate of change of these states

depends both on airspeed and wind speed. The aircraft is controlled through its heading

angle, θ, and its airspeed, V . By varying these quantities, the path of the aircraft will

be altered, thus resulting in different regions of winds being encountered. The airspeed

V will determine which winds it is possible to access within the given fixed time of flight.

This initial continuous problem assumes that:

1. The aircraft’s heading angle and airspeed are varied continuously.

2. Airspeed will remain within bounds throughout the flight.

The equations of motion for the controlled aircraft are given by:

λ̇ =
1

R cosϕ(t)
(V (t) cos θ(t) + u(λ(t), ϕ(t))), (6.1)

ϕ̇ =
1

R
(V (t) sin θ(t) + v(λ(t), ϕ(t))), (6.2)

Ṁ = −g(λ(t), ϕ(t),M(t), V (t)). (6.3)

Equation (6.1) is derived from the zonal components of both airspeed and wind speed,

mapped conformally onto a sphere. Equation (6.2) is the sum of the meridional compo-

nents of airspeed and wind speed, again multiplied by the correct transformation factor to

allow for all (λ, ϕ) co-ordinate pairs to lie on a spherical shell. Equation (6.3) is the rate
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Table 6.1: Nomenclature

ϕ latitude in radians

ϕdept latitude in radians of departure airport

ϕdest latitude in radians of destination airport

λ longitude in radians

λdept longitude in radians of departure airport

λdest longitude in radians of destination airport

M mass of aircraft in kg

Mdept mass of aircraft in kg at start of trajectory

Mref scaling constant based on nominal aircraft take-off mass 235 113 kg

θ heading angle in radians

u zonal (eastward) wind in m s−1

v meridional (northward) wind in m s−1

R radius of Earth ≈6 371 000 m

h altitude of aircraft above Earth in m (h≪ R)

V airspeed in m s−1

Vref scaling constant based on nominal cruise airspeed 240 m s−1

t time in s

tf final time in s

g fuel burn in kg s−1

dH distance around the sphere between (λdest, ϕdest) and (λ(tf ), ϕ(tf )) in m

δdest radius of target around destination airport in m
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of decrease of fuel over time, according to fuel burn rate function g which is discussed in

detail in Section 6.3.2. However, in order to avoid scaling issues, as the state variables are

of very different orders, it is necessary to non-dimensionalise this dynamical system. Of

the state variables, only M , the mass of the aircraft has a dimension, as angle measures

are considered dimensionless. In the same way airspeed, V , time, t, fuel burn rate, g,

zonal wind speed, u and meridional wind speed, v must be similarly scaled. The following

definitions will be used:

M∗ =
M

Mref
, V ∗ =

V

Vref
, t∗ =

Vref t

R
,

g∗ =
Rg

MrefVref
, u∗ =

u

Vref
, v∗ =

v

Vref
,

leading to the non-dimensionalised dynamical system of:

∂λ

∂t∗
=

1

cosϕ(t∗)
(V ∗(t∗) cos θ(t∗) + u∗(λ(t∗), ϕ(t∗))), (6.4)

∂ϕ

∂t∗
= V ∗(t∗) sin θ(t∗) + v∗(λ(t∗), ϕ(t∗)), (6.5)

∂M∗

∂t∗
= −g∗(λ(t∗), ϕ(t∗),M∗(t∗), V ∗(t∗)). (6.6)

This describes a continuous problem, but ly the trajectory is viewed as a piecewise contin-

uous route. It comprises rhumb-line tracks, the paths with constant heading angle around

the globe between two given points, between waypoints corresponding to the start and

end of equal time intervals. We now discuss this discrete optimal control formulation and

its approximate synthesis.

6.2.2 Optimal control formulation and approximate synthe-

sis

The objective of the dynamic optimisation procedure is to compute the airspeeds and

headings that will ensure fuel burn across the trajectory is minimised. At first, the control

variables are not constrained. However, it is assumed that airspeed, where this is allowed

to vary, will lie within a specified range.

In formulating the OCP a constant altitude flight is considered, starting from the initial

position, (λdept, ϕdept) at a time t = 0 to a final target that encompasses all points within

a certain distance, δdest, of (λdest, ϕdest) at a final time of t = tf , with a fixed time of flight.

An aircraft arriving within δdest = 1000 m of the destination airport is assumed to have
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completed its journey successfully. This terminal constraint is based on the Haversine

formula (Veness, 2019):

aH = sin2(|ϕdest − ϕ(tf )|/2) + cos(ϕdest) cos(ϕ(tf )) sin
2(|λdest − λ(tf )|/2),

dH = 2R atan2(
√
aH ,

√
1− aH), (6.7)

where atan2 is the four-quadrant inverse tangent of the two real values in the function

bracket, dH is the spherical distance to the destination airport in metres and R is the

radius of the Earth.

The mass, M(t), is not constrained, but is assumed to lie between the start of cruise

mass (taken to be 97.5% of the take-off mass and denoted here as SOCM) and the OEM.

At t = 0, M(0) =Mdept which is the SOCM. For a Boeing 777-236ER aircraft, this is cal-

culated as 221 826 kg flying east and 235 112 kg flying West, using the method developed

in Poll & Schumann (2021b).

The formulation involving two control variables is referred to subsequently as OCP2.

The first control is the heading angle in radians, measured anti-clockwise from due East,

in line with the original derivation of the dynamical system in Zermelo (1930). The true

airspeed, V (t), is the second control and is assumed to stay within the boundaries of 199

to 252 m s−1. A second formulation, referred to as OCP1, is a simplified version of OCP2,

involving just a single control variable, the heading angle θ(t). In both cases, as flights

progress, at each time step mass will be reduced by the amount of fuel burned during the

preceding time interval.

In the continuous problem with two control variables, outlined in Section 6.2.1, the optimal

heading angle θ(t) and airspeed V (t) are found by minimising the cost functional:

J∗ = min
θ(·),V (·)

tf∫
0

g(λ(t), ϕ(t),M(t), V (t)) dt , (6.8)

where g(λ, ϕ,M, V ) is the physics-driven fuel burn function discussed further in Sec-

tion 6.3.2, and subject to Equations (6.1)-(6.3).

In the case of OCP1, where a single variable only is applied, the system dynamics re-

main as described in Equations (6.1)-(6.3), but taking a constant airspeed, i.e. V (t) = V .
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The cost functional now becomes:

J∗ = min
θ(·)

tf∫
0

g(λ(t), ϕ(t),M(t), V ) dt. (6.9)

However, for applicability, we do not wish to solve the continuous problem itself, but the

discretisation of the continuous problem.

The construction of a non-linear optimisation approach continues with the discretisation

in time of the system dynamics. A uniform temporal grid with N time steps of size ∆t

is set. The spatial states at the start and end of each time interval are considered as

waypoints in the flight and the temperature and wind conditions at each of these N + 1

waypoints are used in updating the dynamical system as the trajectory progresses. The

third state, the mass of the aircraft at the start of each time interval is used in eval-

uating the fuel burn across each time interval. This is done using a Runge-Kutta 4th

order method with fixed time step for Equations (6.1)-(6.3), providing a set of discrete

state variables {λ(i∆t∗), ϕ(i∆t),M(i∆t∗)}Ni=0, which we denote by (λ(i), ϕ(i),M(i)). In

Chapters 4, 5 and 7 the Euler Scheme is used for numerical approximations, but here

the Runge-Kutta 4th order method is applied as in this case it does not unduly slow the

computational time. This leads to the following non-linear optimisation problem for the

non-dimensionalised system:

J∗
∆t∗ = min

λ(·),ϕ(·),M∗(·)∈RN
∆t∗

N∑
i=1

g∗
(
λ(i), ϕ(i),M∗(i), V ∗(i)

)
, (6.10)

subject to:

λ(i+ 1) = λ(i) + ∆t∗Φλ(λ(i), ϕ(i),M
∗(i), θ(i), V ∗(i),∆t∗) , (6.11)

ϕ(i+ 1) = ϕ(i) + ∆t∗Φϕ(λ(i), ϕ(i),M
∗(i), θ(i), V ∗(i),∆t∗) , (6.12)

M(i+ 1) =M(i) + ∆t∗ΦM (λ(i), ϕ(i),M∗(i), θ(i), V ∗(i),∆t∗) , i = 0 . . . N , (6.13)

with the initial conditions:

(λ(0), ϕ(0),M∗(0)) = (λdept, ϕdept,
Mdept

Mref
) , (6.14)

and the constraints:

d ≤ δdest , (6.15)

M∗(i) ∈
[
OEM

Mref
,
SOCM

Mref

]
, (6.16)

V ∗(i) ∈
[
Vmin

Vref
,
Vmax

Vref

]
. (6.17)
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The function Φ denotes an explicit RK4 time integration expressed as a single-stage up-

date. Controls are considered as piecewise constant, as across each 100s time step controls

and atmospheric conditions are taken to be constant. This is a justifiable assumption, as

a 100 s time step is small in comparison to the whole journey of about six hours flying

east and eight hours flying West. Equations (6.16) and (6.17) of this program include

constraints on the aircraft mass and airspeed.

There are different numerical optimisation solvers which can deal with the solution of

the non-linear programming problem Equations (6.10)-(6.17). We chose not to use a

specialised commercial solver here, but rather one widely used throughout the scientific

community to allow for easier replication of results, with the data, formulae and processes

all in the public domain. Matlab’s fmincon solver was used within the multistart solver

from Matlab’s Global Optimisation Toolbox (Waltz et al., 2006; Byrd et al., 1999, 2000;

Ugray et al., 2007). The multistart solver generates a specified number of starting points

randomly within the bounds of the given problem structure. It then filters to feasible

points before running these through the fmincon function, as a local solver. Once all

points have been run, the local solver output with the lowest cost is found. Fmincon

uses an interior point algorithm to alter heading angles and airspeeds at each iteration to

ensure that the cost functional is reduced. This continues until either the step tolerance or

the optimality tolerance fall below given bounds. Step tolerance is a relative bound which

compares the size of a control value to the size of the previous one. Optimality tolerance

is a measure of how the objective function is varying in all feasible directions. Its value is

taken as the infinity norm of the sum of the partial derivatives of J∗ with respect to the

control variables at each timestep i = 1, 2, ...N :

i=N∑
i=1

∂J∗

∂ψ(i)
+

i=N∑
i=1

∂J∗

∂V ∗(i)
. (6.18)

However, gradients of J∗ are computed using finite differences, avoiding an explicit numer-

ical calculation of gradients for the wind field and the fuel burn model. This is a standard

procedure, as encountering objective functions where the evaluation of derivatives is not

practical is not unusual in real-world systems (Colson & Toint, 2001; Naresh Kumar et

al., 2018). As fmincon finds local minima of a problem, there is no guarantee that results

will be globally optimal, but by using fmincon within the multistart solver the method

becomes more robust.
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6.3 Weather data and fuel burn modelling

In order to solve the discrete problem described in Equations (6.10)-(6.17), data regarding

zonal (eastward) and meridional (northward) winds and temperatures from daily averaged

re-analysis data is needed, in addition to a model for the aerodynamic fuel burn function.

These are detailed fully in this section.

6.3.1 Data-driven wind and temperature fields

The use of realistic atmospheric data in these simulations is critical in ensuring their rel-

evance to improving TBO. Plots of two sample wind fields are shown in Figure 6.2.

Determination of fuel burn rate is dependent on temperature at any point along a trajec-

tory, the mass of the aircraft and also on the airspeed of the aircraft. The temperature is

required in the calculation of both the Mach number and the dynamic viscosity of the air,

both of which values are used to find the current fuel efficiency of the aircraft at any point

on a trajectory. Numerical solution of Equations (6.1) -(6.2), necessitates obtaining speeds

for the zonal and meridional winds at any point across the North Atlantic. Thus both

records of wind speed and temperature are needed in order to find admissible trajectories.

Contour plots of the two temperature fields corresponding to the wind fields in Figure 6.2

are shown in Figure 6.3.

In this research all weather data has been downloaded from the re-analysis data set pro-

vided by the NCAR (Kalnay et al., 1996). This comprises an atmospheric model and a

large array of observations combined via data assimilation to produce a weather hindcast.

Wind velocity and temperature values are given for a global grid of resolution 2.5◦ as daily

averages. Linear interpolation is then applied to obtain wind components and temperature

at specific points in a trajectory. This approach is justified as long haul flight routes have

been shown to be largely insensitive to the resolution of weather data (Lunnon & Mirza,

2007) and the evolution of the jet stream at this altitude shows little variation across a

24-hour period (Mangini et al., 2018). The use of daily wind data is in line with methods

used in previous transatlantic trajectory research (Wells et al., 2021; Kim et al., 2020;

Williams, 2016; Mangini et al., 2018).

Wind fields can be considered to be smooth, as there are no flow discontinuities in the at-
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mosphere. Molecular viscosity prevents discontinuities from occurring by smoothing them

out over the Kolmogorov scale (which is typically a few millimeters). There are no flow

fluctuations smaller than this scale.
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(a) Plot of Norm of Winds 1st December, 2019.
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(b) Plot of Norm of Winds 9th February, 2020.

Figure 6.2: Contour plots showing strength of winds in m s−1 across the North

Atlantic on 1st December, 2019 and 9th February, 2020. Behind these

contour plots is a quiver plot of the same winds to show the direction of

flow. These two wind fields are representative of the winter period. The

positions of LHR and JFK are represented by red stars.
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(a) Contour Plot of Air Temperature at 250 hPa, 1st December, 2019.
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(b) Contour Plot of Air Temperature at 250 hPa, 9th February, 2020.

Figure 6.3: Contour plots showing temperature variation in degrees K across the

North Atlantic on 1st December, 2019 and 9th February, 2020. These

two temperature fields correspond to the wind fields shown in Figure 1.

The positions of LHR and JFK are represented by red stars.
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6.3.2 Fuel burn model

In the vast majority of research relating fuel burn to aircraft trajectories, EUROCON-

TROL’s BADA Version 4 method is used to model aircraft fuel flow (Eurocontrol, 2021a).

This is true for recent papers looking for climate optimised trajectories (Matthes et al.,

2020; Yamashita et al., 2020, 2021) as well as previous research into fuel-optimal routing

(Garćıa-Heras et al., 2014; Wickramasinghe et al., 2012; Soler et al., 2020). However, we

have chosen to use a new analytic method for estimating the fuel burn rate of commercial

passenger aircraft due to Poll & Schumann (2021a,b). This method is more ideally suited

to our research, being quicker and easier to use than BADA, which is proprietary data,

as part of a complex computation scheme. As this method is open source, there is no

need for a licence to access it and there are no restrictions on its use. The derivation of

the method has been set out in refereed journals, ensuring that its validity has received

appropriate endorsement.

The fuel burn rate (in kg s−1) can be expressed as:

g =
VW(

η0
L
D

)
LCV

, (6.19)

where W is the weight of the aircraft in N, V denotes the airspeed in m s−1, LCV is the

lower calorific value of aircraft fuel (43 MJkg−1 for kerosene) and η0
L
D is the maximum

value of overall efficiency of the propulsion system, multiplied by the lift-to-drag ratio.

Full details of this function can be found in Chapter 3.

Obtaining the fuel burn rate for each step of a trajectory depends on aircraft specific

parameters and ISA parameters. Here it is assumed that a Boeing 777-236ER aircraft is

used, as this is the model currently flown most frequently in transatlantic routes between

LHR and JFK (Flightradar24, 2020). In addition, the fuel burn is also dependent, at each

point along a trajectory, on the altitude and airspeed of the aircraft, and on the envi-

ronment temperature T = T (λ, ϕ). The term η0(L/D) = η0(L/D)(T ) has a non-linear

physical dependence on the temperature field, which has been modelled in Poll & Schu-

mann (2021a,b) as shown in Section 3.4.1.

The aircraft are assumed to fly along the 250 hPa isobar, which corresponds to an al-

titude of approximately 34 000 feet. This is close to the average cruise altitude for flights

across the North Atlantic and the flight level at which the OTS is currently calculated
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(Mangini et al., 2018). Aircraft on this route rarely change altitude and so this is an

acceptable simplification.

The fuel burn rate can be seen in Figure 6.4 for a range of airspeeds and temperatures.

The airspeeds are determined by the model of aircraft flown, in this case the Boeing

777-236ER, and the temperatures are representative of those recorded across the North

Atlantic during the winter period from 2019 to 2020.

Figure 6.4: Surface plot showing fuel burn rate variation with airspeed and temper-

ature. The range of airspeeds shown are those practical for a Boeing

777-236ER flying at a cruise altitude of 34 000 ft. The temperatures

cover a realistic range for the winter season over the North Atlantic.

Where both heading angle and airspeed are controlled, fuel burn rate will vary with

airspeed, mass and temperature, whereas in the second case, where airspeed remains con-

stant, fuel burn rate will vary only due to the mass of the aircraft and the temperature

encountered along the route, which can be seen to be a small effect.
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6.4 Results

In this section, the particular parameters for the numerical models used are specified and

then results, given the relevant atmospheric data, are presented and discussed.

6.4.1 Parameters of the system

Trajectories are modelled between LHR (51.5◦ N, 0.5◦ W) and JFK (40.6◦ N, 73.8◦ W)

both eastbound and westbound. This particular route has been chosen as it is not only

one of the busiest, but goes through the slowly evolving background wind field provided

by the jet stream, the prevailing eastbound nature of which causes the challenges of flying

in each direction to be quite different.

All flights modelled occur between 1st December, 2019 and 29th February, 2020. This

allows the full range of winter weather systems to be considered (Irvine et al., 2013), as

the NAO has been shown to cause transatlantic routes to vary strongly (Woollings &

Blackburn, 2012; Kim et al., 2016).

Further model parameters include time step length, number of time steps in each direction,

search algorithm tolerances, chosen airspeeds for the initialization of the OCP2 formula-

tion, the fixed airspeed for OCP1 and the initial estimate for the heading angle at each

time step for both OCP1 and 2.

The time step length was chosen following a sensitivity analysis and a time step of ∆t =

100 s allows a stable and consistent application of the numerical method, whilst not un-

duly increasing truncation errors. This also, in practice, allows time for adjustments to

heading and airspeed to be made. Having a practical knowledge of the situation under

consideration is vital in choosing a reasonable time step (Rumpfkeil & Zingg, 2010).

Travelling from LHR to JFK against a headwind, the fixed final time is set to 29 000 s,

giving N = 290, whilst in the opposite direction this is reduced to just 22 000 s, with

N = 220. These times have been chosen following research into time optimal routes across

the same winter period (Wells et al., 2021). They allow flights on all days enough time to

reach their destination, whilst also lying between the longest and shortest scheduled flight

times given by the airlines for this route between 1st December, 2019 and 29th February,

2020.
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For the interior point algorithm the step tolerance was set to 1 × 10−6, and the opti-

mality tolerance to 1 × 10−3. These values were shown to allow efficient convergence

across all wind fields considered.

Given the time restriction on trajectories, the fixed airspeed yielding the minimum fuel

use will depend on the daily wind field. For this reason, fuel use for trajectories flown

at all airspeeds in increments of 1 m s−1, within the constraints, was calculated and the

trajectory results for the airspeed associated with the lowest fuel use for each day adopted.

In some cases, this was the lowest airspeed allowing the trajectory to reach the destination

target, whereas on days where winds were more favourable, the airspeed chosen depended

on the most efficient airspeed for the model of aircraft used.

The initial airspeed across each time interval in the numerical model for OCP2, V (t),

was chosen to be the airspeed obtained from OCP1, but by using the multistart solver,

a range of other initial airspeeds was also applied. In the original formulation of OCP2,

the airspeed is assumed to be V (t) ∈ R. However, there are obvious boundaries to an

aircraft’s airspeed in the practical setting. In order to apply the fuel function based on

the work of Poll & Schumann (2021b) across the range of temperatures recorded across

the North Atlantic at cruise altitudes, it was necessary to have V (t) ∈ [199, 252]. This

control constraint was applied in judging if a feasible solution had been found. In the

case of westbound flights, optimised airspeeds varied between 199 and 242m s−1 and for

eastbound flights this range was from 199 to 240m s−1, so in all cases a vector of feasible

airspeeds was retrieved from the numerical optimisation.

In solving both OCP1 and OCP2 an initial vector of heading angles is required to produce

the first trajectory. The GCR is now considered for the journey between the airports.

The GCR between the departure and destination airports is divided into N equal length

intervals for flights and the rhumbline angle that would take an aircraft from the start to

the end of each interval in a no-wind scenario is calculated. (Rhumbline angles provide a

single heading on which to travel between two points on the surface of a sphere and are

calculated here using the Matlab mapping toolbox.) These angles form the estimate for

θ.

158 Chapter 6 Cathie A. Wells



Reformulating aircraft routing algorithms to reduce fuel burn

6.4.2 Daily results from each numerical model

Results for the numerical solution shown in Section 6.2 are obtained as a vector of optimal

headings and a value for the fuel used along the trajectory for each of the 91 days from

1st December, 2019 to 29th February, 2020. The headings are used to generate the states.

The area spanned by these states and eight example routes can be seen for all days in

Figure 6.5 and Figure 6.6. The shaded area shows the extent of the most extreme tra-

jectory positions across the time period; not all points within this area will have formed

part of a trajectory. Westbound flight routes obtained using just the heading angle as a

control cover an area that stretches further South than those where time of arrival can be

guaranteed by changes to both airspeed and heading angle. The extent of flight routes

with varying airspeed also covers an area further North at the start of the flight, benefiting

from the variable airspeed to allow a deviation into lower headwind regions. Eastbound

flights with variable airspeed can be seen to avoid diversions to both North and South as

they approach LHR. However, the area spanned by the trajectories is very similar whether

just heading angle or heading angle and airspeed vary.
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Figure 6.5: Plots showing region spanned by all fuel optimal trajectories across the

North Atlantic for 1st December, 2019 to 29th February, 2020 found

from the solution of OCP1, with 8 example routes in each direction

shown. The shaded area shows the extent of trajectories, but not all

points within the area are part of a route.
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Figure 6.6: Plots showing region spanned by all fuel optimal trajectories across the

North Atlantic for 1st December, 2019 to 29th February, 2020 found

from the solution of OCP2, with 8 example routes in each direction

shown. The shaded area shows the extent of trajectories, but not all

points within the area are part of a route.
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Percentile plots, shown in Figures 6.7 and 6.8, display the percentage of flights passing to

the South of each particular area of the North Atlantic. Outlying waypoints, those that

have longitudes passed through by fewer than three of the flights, are shown as yellow

crosses. All but one or two flights stayed within a longitude range of 1− 73 ◦W.

These graphs are created by taking longitudes between the maximum and minimum lon-

gitudes of all flight trajectories generated in 1◦ increments and then interpolating to find

the corresponding latitudes for each daily trajectory. Percentiles for the latitudes at each

longitude are found and these are plotted. This demonstrates the distribution of latitude

positions across all routes and allows for easier comparison between the trajectories re-

sulting from OCP1 and 2.

Flying west (Figure 6.7) it can be seen that the range of latitudes at each longitude

is wider for OCP1, but that the interquartile ranges are very similar. More of the OCP2

flights tend to fly further North across the middle of the Atlantic as they can vary their

airspeed to counter headwinds and then slow down in more favourable regions of the wind

field in order to adhere to the fixed journey time and save on fuel. The 1% percentile

for the OCP1 flights demonstrates that at all latitudes certain journeys must go very far

south to avoid headwinds to balance the need for both a prompt arrival at the target and

a low fuel burn rate.

Figure 6.8 shows that the vast majority of flights going east follow a path very close

to the GCR. Using two controls allows a small percentage of flights to go further North or

South than the flights constrained by a fixed airspeed. The interquartile range of latitudes

is also wider for flights with variable airspeed.
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Figure 6.7: Plots showing percentiles of latitude positions for a set of integer longi-

tude positions ranging between the furthest easterly and westerly points

in the westbound trajectories obtained from OCP1 and 2. Waypoints

at longitudes not accessed by all flights are shown in yellow. Percentiles

show proportion of flight routes passing south of each waypoint.

Chapter 6 Cathie A. Wells 163



Reformulating aircraft routing algorithms to reduce fuel burn

]
-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

longitude

30

35

40

45

50

55

60

65

70

la
ti
tu

d
e

1st percentile

5th percentile

10th percentile

25th percentile

50th percentile

75th percentile

90th percentile

95th percentile

99th percentile

JFK

LHR

(a) All days East OCP1

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10
longitude

30

35

40

45

50

55

60

65

70

la
ti
tu

d
e

1st percentile

5th percentile

10th percentile

25th percentile

50th percentile

75th percentile

90th percentile

95th percentile

99th percentile

JFK

LHR

(b) All days East OCP2

Figure 6.8: Plots showing percentiles of latitude positions for a set of integer longi-

tude positions ranging between the furthest easterly and westerly points

in the westbound trajectories obtained from OCP1 and 2. All longitudes

were accessed by all flights. Percentiles show proportion of flight routes

passing south of each waypoint.
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6.4.3 Comparison of fuel use between OCP1 and OCP2

If airspeed is fixed at a level that allows all daily flights to arrive at the target in the

appropriate fixed time, then clearly more fuel will be used than by flights with a variable

airspeed. In this case the highest airspeed used by any of the eastbound flights in the

OCP1 formulation was 240 m s−1 and for the westbound flights it was 241 m s−1. Interest-

ingly the most efficient fixed airspeed for the fixed time crossing between the two airports

in a zero wind field, with a constant ISA temperature of 221◦, would be 252 m s−1 flying

east in the 22 000 s time window and 200 m s−1 flying west in a fixed time of 29 000 s.

Given that one of the key defining points of this research is to create trajectories with

a fixed time across an entire winter season, these results demonstrate the importance of

adapting to the daily wind field within this system. If, instead of varying the OCP1 air-

speed on a daily basis, the maximum OCP1 airspeeds were used for all days in the 2019

-2020 winter season, by comparison the variable airspeed model used in OCP2 would save

an average of 8% of the fuel. However, this can be viewed as unnecessarily high, as the

fixed airspeed in OCP1 can be lowered to navigate the wind field specific to the day of

flight. By analysing data from the solution of the approximate numerical methods for

both OCP1 and OCP2, we can provide an estimate of the improvement in fuel efficiency

when comparing the most efficient fixed airspeed flights each day to the corresponding

most efficient variable airspeed flights.

Comparing results from the solution of OCP1 and OCP2, there are relative differences

of 0.5% across the winter period possible. On particular days, these savings are just under

4%. Figure 6.9 shows the percentage fuel saving made each day by using both airspeed

and heading angle as control variables in each direction rather than just heading angle.

The savings vary on a daily basis, so it is clear that the wind field is instrumental in

dictating the importance of varying the airspeed for a fixed-time flight.

When viewed as a box and whisker plot as in Figure 6.10, the distribution of savings

can be compared across the eastbound and westbound routes. Whilst median values are

similar, the range of eastbound savings is smaller (excluding outliers), as is expected from

a route that is most often benefiting from tailwinds, rather than fighting headwinds.

Figure 6.11 shows the distribution of actual fuel savings made each day by using both

airspeed and heading angle. Here it can be seen that in absolute terms the median fuel
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saving of eastbound flights is lower than that of westbound flights. Flying west just under

23 tonnes of fuel could be saved over the 91 days, whilst flying east fuel savings amount

to over 15 tonnes. This gives a total fuel saving across the winter period for nineteen

flights in each direction per day of 723 tonnes. These savings are a clear indication that

when planning fixed-time trajectories, varying the airspeed and the heading angle will give

more efficient results in terms of fuel usage and thus emissions reduction, than controlling

heading angle alone.

A comparison of routes generated from the time optimal model used in Wells et al. (2021),

the fixed-time, fuel optimal model with both a single control variable and with two control

variables developed in this chapter and actual flight routes flown on the 12th December,

2019 is shown in Figure 6.12. The 12th December, 2019 was chosen as a typical day on

which a large number of flights were scheduled. From these plots it appears that most

airlines prefer to use a path close to the time optimal route and the fuel optimal route,

based on two controls. The fuel optimal route which depends purely on altering the head-

ing angles can be seen to be very different from these. In this simplified model, if strong

tailwinds are encountered the aircraft must deviate from a more direct path to avoid an

early arrival at the destination airport, as the airspeed is fixed throughout the trajectory.

These trajectories are representative of those obtained across the winter season considered.

Airlines currently try to minimise their operating cost, which is made up of both fuel and

time factors. However, trying to adhere to the timetable is also important. On this day

14 of the 19 westbound flights were more than 15 minutes early, with 10 of these being

more than 30 minutes early and 3 being more than 45 minutes early. Eastbound all 18

flights were more than 45 minutes early, with 13 being over an hour early and 1 arriving

an hour and a half early. Although airlines prefer to be early than late, such early arrival

times can lead to added costs. Often aircraft are slowed and stacked as they approach

the airport or extra waiting time is spent on the tarmac before accessing a gate, which is

unpopular with customers and can lead to compensation claims (John, 2020). From an

operations point of view it can lead to blocked gates and ground crew, baggage handlers

and fuel bowsers being in the wrong place.
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(b) Savings made on each day East

Figure 6.9: Bar charts to show percentage of fuel from using the single control vari-

able of heading angle (corresponding to OCP1) saved by using two

control variables, both heading angle and airspeed (corresponding to

OCP2).
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Westbound Eastbound
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Figure 6.10: Box and whisker plot to compare distribution of percentage savings

made made by using OCP2 as the problem formulation rather than

OCP1, for all 91 days of the winter of 2019 to 2020, for both eastbound

and westbound flights.
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Figure 6.11: Box and whisker plot to compare distribution of absolute savings made

by using OCP2 as the problem formulation rather than OCP1, for all 91

days of the winter of 2019 to 2020, for both eastbound and westbound

flights.
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Figure 6.12: Route maps showing constant airspeed time optimal trajectory, con-

stant airspeed fuel optimal trajectory (OCP1), varying airspeed fuel

optimal trajectory (OCP2), the great circle route (GCR) and actual

flights for the 12th December, 2019.
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The time optimal routes are simulated as flown at 250m s−1. The fuel optimal routes with

fixed airspeed are simulated as flown at 238m s−1 going west and 204m s−1 going East,

which are the most fuel efficient airspeeds for a fixed-time flight from the OCP1 formulation

on that day. All simulated routes are considered at a fixed altitude of approximately

34 000 feet, with a variable mass. The fuel optimisation is calculated for a Boeing 777-

236(ER). The actual flights are not fixed time, mass, altitude or airspeed and use a variety

of aircraft. However, they are restricted to the OTS across the North Atlantic, so the

flight path taken does not always reflect the airline’s chosen route. At a particular flight

time, aircraft are given waypoints across the North Atlantic, which must define their

routes, in order to maintain a safe separation between all aircraft in the vicinity, given

the limited situational awareness before the advent of the new satellite communications.

These waypoints can lead to aircraft following less time and fuel efficient routes.

6.4.4 Effect of wind field on optimised airspeed

As the airspeed control allows quite significant fuel savings on some days compared to

optimisation by controlling heading angle alone, but far smaller savings on other days, a

link between daily wind conditions and airspeed variation is sought. Whilst it is true that

mass and airspeed are also connected, with airspeed reducing with mass across a single

trajectory in the absence of winds, this pattern is accounted for in the averaging of daily

airspeed in the current analysis.

The winds along the GCR are used as a measure of likely headwinds and tailwinds expe-

rienced during a flight. These are calculated by splitting the GCR between LHR and JFK

into 290 intervals for a westbound flight and 220 intervals for an eastbound flight. The

rhumbline angle, β, needed to fly directly between each pair of waypoints is calculated.

The wind field for each day is interpolated to give zonal and meridional winds, u and v,

at each waypoint. The sum of the components of these lying along the rhumbline angle

for each interval of the GCR gives the tailwind, τ at each waypoint:

τ =
[
uv
]cosβ

sinβ

 . (6.20)

By plotting airspeed for the OCP1 simulations and average airspeed for the OCP2 simu-

lations each day against average daily tailwind, the effect of the wind field on the airspeed

can be seen.
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For westbound flights, shown in Figures 6.13a and 6.13c, as the headwind strengthens,

the aircraft must fly faster to make up time, so there is a negative correlation at the 5%

significance level, with a product moment correlation coefficient of -0.8. For eastbound

flights, shown in Figures 6.13b and 6.13d, there is a similar negative correlation at the 5%

significance level, but with product moment correlation coefficients of -0.9. This shows

that the aircraft fly more slowly as they have a set time to reach their destination and the

tailwind can help to minimise fuel burn, by avoiding the need for higher, less fuel efficient

airspeeds.

The variation in airspeeds across a trajectory is also likely to be directly affected by the

wind field. In Figure 6.14a the positive correlation, with product moment correlation co-

efficient of 0.5, between average tailwind along the GCR and the standard deviation of

optimal airspeeds from OCP2 used each day, shows that as headwinds become stronger

flying West, the variety of wind speeds used to make a fuel optimal crossing decreases.

This shows that higher airspeeds are being used as necessary to counter the headwinds to

allow prompt arrival, but on days when a lower airspeed is adequate for some parts of the

journey these are used to save fuel. For eastbound flights the strength of the wind around

the GCR only accounts for about 30% of the variation in optimal airspeeds and so the

link between range of airspeeds and GCR average wind speed is less strong.

The airspeed changing along a trajectory in the context of a fixed-time flight, has been

shown to be a result of the winds encountered at each time step of the journey. To il-

lustrate this effect further, the variation in airspeeds used along each daily fuel optimal

trajectory is considered. Flying east on the 28th January, 2020 this variation is at its

smallest and on the 25th January, 2020 it is at its most. On the 8th December, 2019 the

westbound route has the largest variation in airspeeds, with the smallest variation on the

12th February, 2020.

In Figures 6.15a and 6.15b the eastbound trajectories are shown, colour coded for air-

speed, against a quiver plot of the wind field. On the 28th January, 2020, the route

largely follows the wind direction from the middle of the North Atlantic, so airspeed can

be reduced as the flight moves closer to LHR. However, at the start of the trajectory a

higher airspeed is needed to fly perpendicular to the wind. This can be reduced as the
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(b) OCP1 airspeed, eastbound
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(c) OCP2 average airspeed, westbound
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(d) OCP2 average airspeed, eastbound

Figure 6.13: Scatter graphs to show variation of OCP1 trajectory airspeed and

average OCP2 trajectory airspeed each day with average tailwind along

the GCR. Least squares regression line is shown with a 5% confidence

interval. These show that the airspeeds used depend largely on the

wind field along the GCR.

route and the winds begin to come more into line between longitudes of 60◦W and 50◦W.

On the 25th January, 2020 a smaller range of airspeeds is used as the flight is almost

always flying in a direction that is not parallel to the wind vectors shown. This means

that to arrive promptly, the aircraft must use higher airspeeds throughout. The only no-

ticeable slowing occurs between the longitudes of 25◦W and 10◦W when the aircraft uses

the vertical component of the wind to increase its latitude ready for the approach into

LHR. This reinforces the previous finding, that stronger winds in the correct direction do

mean that it is most efficient to use a larger range of airspeeds.
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(a) Winds along GCR, westbound
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(b) Winds along GCR, eastbound

Figure 6.14: Scatter graphs to show variation of standard deviation of OCP2 tra-

jectory airspeed each day with average tailwind along the GCR with

least squares regression line and 5% confidence interval. These show

that there is a weak link between variation in airspeed and the daily

windfield along the GCR.

We now compare the westbound trajectories in Figures 6.15c and 6.15d, on the 8th De-

cember, 2019 and the 12th February, 2020. During the first of these flights, a large range

of airspeeds is used as the aircraft is able to fly further North and thus reach a patch of

very weak winds for the majority of the flight. Having made good time across this central

section, the aircraft can then slow down as it reaches the US coast. On the 12th February,

2020 the headwinds are stronger both as the aircraft leaves LHR and as it approaches

JFK. This means that even across the centre of the North Atlantic a high airspeed must

be maintained. From these examples the pattern from Figure 6.14 is evident, with higher

headwinds around the GCR leading to a smaller range of airspeeds being used to ensure

fuel optimality.
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(a) 28th January, 2020 eastbound
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(b) 25th January, 2020 eastbound
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(c) 8th December, 2019 westbound
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(d) 12th February, 2020 westbound
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Figure 6.15: Fuel optimal trajectory maps showing airspeed change, in m s−1.
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6.5 Conclusions

In this chapter a method is created to optimise fuel burn across a deterministic wind field

for a fixed time of flight, using a novel fuel burn function. The time of flight is discretised

into time steps. The altitude of the aircraft is assumed to be constant. This method

involves controlling just the heading angle of the aircraft, or both the heading angle and

the airspeed.

Flights are between LHR and JFK, with fixed times chosen to be slightly longer than

the longest time optimal flight in each direction between these airports. The whole tra-

jectory is assumed to be completed in cruise phase, as this makes up the vast majority of

all transatlantic flights.

The fuel burn rate is calculated using a new physics based method (Poll & Schumann,

2021a,b) and the flights are assumed to move through the deterministic wind fields sup-

plied by the NCAR re-analysis data. Wind and temperature data at each time step is

found by linearly interpolating the grid of weather data, which is at a 2.5◦ resolution.

Results show that by including true airspeed as a second control up to 4% less fuel is

used than when the flight is flown at constant airspeed. Over the course of all 91 days

of the winter period, if nineteen flights were made each day (as was the case in 2019 to

2020), then just under 723 tonnes of fuel could be saved.

Links between airspeeds obtained from the fuel optimisation using both heading and air-

speed as controls and the daily wind conditions are established. Daily wind conditions

are used to generate an average tailwind speed along the GCR. It is seen that as this

tailwind increases, the average airspeed used falls. Although the range of airspeeds used

along a trajectory is not strongly linked to the average tailwind around the GCR, there is

a weak positive correlation which is further demonstrated using airspeed patterns for four

example days.

Airspeed use along a flight path is plotted for the days with the highest and lowest stan-

dard deviations of airspeed flying both east and west. These flights are considered against

the backdrop of the day’s wind field to show how the airspeed is adapted to make the best
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use of available winds.

As the time of flight is fixed for an entire season, on some days it will be far longer

than for the corresponding time optimal trajectory. This means that despite using more

fuel efficient airspeeds, fixing the time of flight will consume more fuel over all, than us-

ing a time optimal route. This does assume, however, that time optimal flights are able

to land and passengers disembark immediately they arrive at their destination, which in

practice is not always the case. As tarmac delays are treated identically for late and early

arrivals at an airport, arriving too early can also be costly for airlines.

Future research should incorporate more diverse routes and aircraft models, as well as

turbulence avoidance, given the projected increase in more severe turbulence with climate

change (Williams & Joshi, 2013; Williams, 2017; Storer et al., 2017; Lee et al., 2019). The

use of dynamic programming to ensure sufficient conditions for an optimal route is also

of interest as the current method uses a numerical global search function and so cannot

guarantee optimality.

6.6 Chapter summary

In this chapter the need for fuel minimal, fixed-time flights has been established and the

choice of fixed flight times in each direction justified. A direct method has then been

applied to solve two different OCPs, one involving taking heading and airspeed as con-

trols and one using just heading. By using two control variables up to 4% of fuel can be

saved, but this depends on the wind field encountered each day. The link between fuel

use and wind field is established as the average optimal airspeed each day is shown to

have a strong negative correlation with the average wind speed along the GCR on that

day. There is a weak positive correlation between standard deviation of airspeeds and

wind speeds, demonstrating that there is more variation of airspeeds when wind speeds

are higher.

In Chapter 7 dynamical programming will be used to solve the fuel minimal free-time

problem, as fixing the time for a whole winter period means using extra fuel, just for

predictability. Landing times can be varied on a daily basis, without this causing fuel

penalties, with a more flexible approach to landing schedules at airports.
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Chapter 7

Dynamic programming

7.1 Introduction

Instead of a direct or indirect approach to the OCP, which both have the issue of not

guaranteeing a global minimum, here dynamic programming is used. This involves finding

a value function to describe the optimality of each point we may encounter on a tra-

jectory. To do this we apply Bellman’s Dynamic Programming Principle, as shown for

the infinite horizon problem in Equation (3.70) and this leads to the expression given in

Equation (3.76). By solving this HJB equation using the method shown in Section 3.3.3,

given as Algorithm 1, across the whole state space, we create a map of the value function.

From this grid of values an optimal route is retrieved by identifying the controls associated

with the smallest values at the start of each time interval and thus the corresponding states.

In the first instance a minimal time problem is considered, but in the second part of

this work, the fuel burn is minimised, with time unconstrained. As change in mass does

have an effect on the rate at which fuel is burned by an aircraft, mass is included as the

third state variable in the fuel minimal formulation.

In Figures 7.1a and 7.1c the fuel burn rate for the nine different aircraft that flew between

LHR and JFK during the winter of 2019 to 2020 is shown for a set of masses representative

of those corresponding to a transatlantic flight. The airspeed and flight level are fixed at

240 m s−1 and FL340 respectively. The ISA temperature corresponding to this flight level

is also used in the fuel burn calculation which is based on Poll & Schumann (2021a,b).

Aircraft model specific parameters drawn from Poll & Schumann (2021b) to be included
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(d) Change in fuel burn rate

Figure 7.1: Plots showing values for fuel burn rate at a variety of different masses

for the nine aircraft types flown between LHR and JFK during winter

2019-2020. Airspeed, temperature and altitude are fixed. Differences

between eastbound and westbound results reflect the different take-off

masses of aircraft. Differences depend on aircraft model parameters as

given in Appendix C.

in the fuel burn model are given in Appendix C. In Figures 7.1b and 7.1d the change in

fuel burn rate is shown, illustrating the need to include mass changes in the model where

fuel burn is considered. To allow a fair comparison of results from time and fuel minimal

versions of the problem, the fuel burn across each interval for the time minimal approach

will also be included in the working and the mass change incorporated into the model

after optimisation.
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(a) Zonal wind speeds (b) Meridional wind speeds

Figure 7.2: Scatter plots showing values for wind speed in m/s at a number of

different pressure levels on 2nd January, 2020, along the horizontal tra-

jectory of flight VS137.

As was shown in Chapter 3, the zonal and meridional winds across the North Atlantic are

very similar at all cruise altitudes, so step climbs during flight will not give any substantial

benefit from the point of view of atmospheric conditions, except in avoiding unexpected

turbulence. This is illustrated in Figure 7.2, in which both the zonal and meridional wind

speeds are shown for each time interval along the recorded horizontal flight path of a

Virgin Airways flight, VS137, on the 2nd January, 2020. Data is from the Flightradar24

website, as discussed in Section 7.4. Wind speeds are shown at each of the pressure levels

given in the re-analysis model data, as described in Section 3.5. As cruise altitudes are

likely to be between 190 and 300 hPa, it can be seen that both zonal and meridional winds

are very similar along the route at altitudes in this range. Changes in altitude to reduce

drag as fuel is burned are not included in the initial analysis, but are considered in Section

7.7.1.

7.2 Method to retrieve optimal trajectories

In this section parameters and specifications for the grid and target are detailed. Dis-

cretisation of variables is chosen after sensitivity analysis involving small changes to one

parameter in isolation and then a comparison of results. In addition the dynamical sys-

tems for both the time and fuel minimal formulations are non-dimensionalised and the

relevant cost functionals specified.
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7.2.1 Time minimal formulation

The system is modelled with two state variables: longitude, λ and latitude, ϕ. The

state variables are given boundary conditions of -80 to 10◦ for longitude (in radians:

λ ∈ (−4π
9 , π

18)) and 30 to 70◦ for latitude (in radians: ϕ ∈ (π6 ,
7π
18 )), in order to include all

feasible positions of a transatlantic flight. A horizontal grid is set up across this airspace

with a resolution of 2.5◦ or π
72

c. This discretisation was chosen as atmospheric data is

obtained at this level of accuracy and making a finer grid would require the same inter-

polation as is already inherent in reading the optimal route from the value function map.

Although mass was recorded at each time step based on the fuel burned in moving from

one waypoint to the next, it did not form part of the optimisation itself, as fuel use is only

calculated once a time minimal path has been found.

The aircraft begins its flight at the departure airport and continues until it is within

225 km of the destination airport. This target has been chosen to reflect the end of the

cruise phase. Once the route has been found, the first few time intervals are removed from

the route to ensure that only the part of the aircraft flight between 225 km from each

airport is included. This allows for a fair comparison with actual cruise phase data.

In order for an aircraft to finish cruise within 225 km of the destination airport, we can

use a query circle of all points distance d from a target to generate box constraints. Use

of the conformal mapping from a planar to a spherical system is shown in Appendix B.

The angular radius of the query circle is first found by dividing the radius of the query

circle by the radius of the Earth:

r =
d

R
=

225

6371
. (7.1)

As one radian of latitude corresponds to the same distance anywhere on the globe, the

latitude bounds are found by just using a difference of r either side of the target airport:

latmin = ϕdest − r, (7.2)

latmax = ϕdest + r. (7.3)

To find the corresponding longitude boundaries, the fact that the length associated with a

radian of longitude changes with latitude must be taken into consideration. So here ∆lon
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is calculated as:

∆lon = asin

(
sin r

cosϕdest

)
. (7.4)

This gives boundaries for the final longitude as:

lonmin = λdest −∆lon, (7.5)

lonmax = λdest +∆lon. (7.6)

So only points inside this bounding rectangle could possibly be in the destination target.

Now only these need to be checked via the Haversine function to see if they are within the

target. Here the bounding rectangle constraints can be given as:

λdest − asin

(
sin 0.0353

cosϕdest

)
≤ λ(tf ) ≤ λdest + asin

(
sin 0.0353

cosϕdest

)
, (7.7)

ϕdest − 0.0353 ≤ ϕ(tf ) ≤ ϕdest + 0.0353. (7.8)

The value of 225 km is obtained by considering the 3114 flights between LHR and JFK

from 1st December, 2019 and 29th February, 2020 for which route data is available. The

distance between the end of the cruise phase for each flight and the destination airport is

calculated. The 90th percentile for this distance for westbound flights is 224.4 km and for

eastbound flights is 224.6 km. By choosing a radius of 225 km, this covers 90% of actual

flights being considered.

The control variables are the heading angle, θ which varies from 0 to 360◦ in 2◦ inter-

vals (0-2πc with π
90

c resolution) and the airspeed, V which is restricted to the acceptable

flying range of 200 to 250 m s−1, in steps of 2 m s−1. As expected in a time minimal

optimisation, the optimal airspeed obtained is always the maximum value of this range.

Altitude is restricted to a single value corresponding to a pressure of 250 hPa, which ap-

proximates to FL340. The OCP is formulated as for Sections 3.2.2 and 3.2.3 and then the

value iteration algorithm shown in Section 3.3.3, Algorithm 1, is applied.

By non-dimensionalising the dynamical system, any issues with the relative size of the

variables is overcome. Longitude, latitude and heading angle are dimensionless, but air-

speed, wind speed and time all have dimensions. The following definitions are used:

V ∗ =
V

Vref
, u∗ =

u

Vref
,

v∗ =
v

Vref
, t∗ =

Vref t

R
,
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where Vref is the nominal cruise speed of 240m s−1 and R is the approximate radius of the

Earth, 6 371 000 m. Using these definitions the new dimensionless set of state equations

is:

dλ

dt∗
=

1

cosϕ
(V ∗cosθ + u∗), (7.9)

dϕ

dt∗
= V ∗sinθ + v∗. (7.10)

In the time minimal problem the continuous summation of the time for each section of

the trajectory gives the running cost:

J(λ, ϕ, θ, V ∗) =

∫ t∗f

t∗0

1dt∗ = t∗f , (7.11)

which is minimised over the control variables, giving:

min
θ,V ∗

∫ t∗f

t∗0

1dt∗ = t∗f , (7.12)

where t∗f is the time at which the aircraft first reaches the target circle of radius 225 km

around the destination airport.

7.2.2 Fuel minimal formulation

The system when minimising fuel is modelled with three state variables, longitude, λ,

latitude, ϕ and mass, M , with mass non-dimensionalised to give:

M∗ =
M

Mref
, (7.13)

whereMref is taken to be the mass of the aircraft at the start of the cruise phase, which is

97.5% of the take-off mass (TOM). The boundary values for the aircraft mass are taken as

Mmin = OEM and Mmax =Mref . The first of these values is available from the Aircraft

Characteristics documentation provided by both Boeing and Airbus (Airbus, 2021; Boeing,

2021) and a method to find the TOM is given in Section 3.4.2. The fuel burn rate, g, is

also non-dimensionalised as:

g∗ =
Rg

MrefVref
. (7.14)

The state mesh is split into cuboids that are:

δλ× δϕ× δM∗ =
π

72
× π

72
× 3333 kg

Mref
. (7.15)

The mass discretisation is chosen, after a sensitivity study, to give a fine enough third

dimension to the value function for meaningful results, without unduly slowing the com-

putation time. The departure point, altitude and target are the same as for the time
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minimal formulation. The controls also remain as heading angle and airspeed, although

in this formulation airspeed is found to vary considerably across a trajectory. Due to the

extra state, the dynamical system becomes:

dλ

dt∗
=

1

cosθ
(V ∗cosθ + u∗), (7.16)

dϕ

dt∗
= V ∗sinθ + v∗, (7.17)

dM∗

dt∗
= −g∗. (7.18)

The aim of the optimisation is to minimise a cost based on fuel burned during the journey:

min J(λ, ϕ,M∗, V ∗, θ) =

∫ t∗f

t∗0

g∗(λ, ϕ,M∗, V ∗)dt∗, (7.19)

such that the aircraft arrives within a target set as a circle of radius 225 km around the

destination airport at time tf .

7.2.3 Adapting the value function for the fuel minimal case

To solve the fuel minimal, but free-time example, requires a different value function from

the time minimal case, as the running cost is no longer 1, but the fuel burn function,

g. The Hamiltonian is adapted from the infinite horizon problem in Section 3.3.3, but

includes an extra term, involving the terminal cost ω:

H(x, ω, p) := sup
α∈A

{−p.f(x, α)− g(x, α) + (g(x, α)− 1)ω}. (7.20)

Here x represents the state variables, α the control variables, f the dynamical system

and p the adjoints, as in Section 3.3.3. (This expression for the Hamiltonian is drawn

from Cristiani & Martinon (2009).) Taking the terminal cost at each step to be the value

function of the previous iteration, gives us a value function of:

ν(x)− inf
α∈A

{g(x, α) + f(x, α) ·∆ν(x)− (g(x, α)− 1)ν(x)} = 0 x ∈ Rn \ C, (7.21)

ν(x) = 0 x ∈ C, (7.22)

where C is the target set.

Including the initial ν(x) in the infimum we get:

− inf
α∈A

{g(x, α) + f(x, α) ·∆ν(x)− ν(x)g(x, α) + ν(x)− ν(x)} = 0, (7.23)

which is the same as:

sup
α∈A

{−f(x, α) ·∆ν(x) + g(x, α)(ν(x)− 1)} = 0. (7.24)
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This can be approximated to first order by, :

sup
α∈A

{
ν̂(x)− ν̂(x+∆tf)

∆t
+ g(x, α)(ν̂(x)− 1)

}
= 0, (7.25)

where ∆t represents a small change in time and ∆x is approximated to ∆tf . This in turn

leads to:

sup
α∈A

{ν̂(x)− ν̂(x+∆tf) + ∆tg(x, α)(ν̂(x)− 1)} = 0, (7.26)

which means that:

ν̂(x) = min
α∈A

{ν̂(x+∆tf) + ∆tg(x, α)(1− ν̂(x))}, (7.27)

is the value function for which the optimal feedback control can be found as:

α∗ = argmin
α∈A

{ν̂(x+∆tf) + ∆tg(x, α)(1− ν̂(x))}. (7.28)

Using a Semi-Langrangian Scheme which incorporates both a temporal and spatial dis-

cretisation, as in Section 3.3.3, the value policy update is found to be:

[ν̂]m+1
i = min

a∈A
{I[ν̂]mi (xi +∆tf(xi, a)) + ∆tg(xi, α)(1− ν̂mi (xi))}, (7.29)

where the subscript i refers to a grid and the superscript m to a fixed point iteration used

to approximate the solution of Equations (7.21) and (7.22).

7.3 Aircraft specific fuel burn

Ten different aircraft models were used in making the transatlantic crossing between LHR

and JFK between 1st January, 2019 and 29th February, 2020. These are shown in Ta-

ble 7.1, together with the airline that flew them and their model code. It should be noted

that Aircraft 6 and 9 have the same parameters and thus their model code and fuel burn

formula are identical. All model specific parameters are shown in Appendix C.

Using the formula described in Section 3.4 and the aircraft specific parameters for each

of these models of aeroplane, as given in Poll & Schumann (2021a,b), the amount of fuel

used across each time interval of the cruise phase of the minimum time routes is found.

These values are summed to give total cruise fuel, approximating the continuous summa-

tion from the cost functional shown in Equation (7.12) by a discrete summation.

In the case of the fuel minimal flights, the formula is used as part of the optimisation

process, with each set of possible control variables being applied at each state grid point

via the value function to build the value map.
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Table 7.1: Aircraft models flying between LHR and JFK in the winter from 1st

December, 2019 to 29th February, 2020, their aircraft codes and the

airlines that flew them.

Aircraft Model Model code Airlines

1 Boeing 777-236(ER) B772 American Airlines, British Airways

2 Boeing 777-323(ER) B77W American Airlines, British Airways

3 Boeing 747-436 B744 British Airways

4 Boeing 767-432(ER) B764 Delta Air Lines

5 Airbus 330-223 A332 Delta Air Lines

6 Airbus 330-323 A333 Delta Air Lines, Virgin Atlantic

7 Airbus 350-1041 A35K Virgin Atlantic

8 Boeing 787-9 Dreamliner B789 Virgin Atlantic

9 Airbus 330-343 A333 Virgin Atlantic

10 Airbus 340-642 A346 Virgin Atlantic

7.4 Flight data

Recorded sets of timed aircraft positions for all flights between LHR and JFK from 1st

December, 2019 to 29th February, 2020 are used to estimate fuel burned by actual flights.

The data needed is recorded on transponders in the aircraft themselves and gathered from

the Flightradar24 ADS-B (Automatic Dependent Surveillance Broadcast) network of over

20 000 connected receivers (Flightradar24, 2020). Transponders on planes transmit sig-

nals to the receivers based either terrestrially or, where this is not possible, to satellites

equipped with ADS-B receivers. Transponders are positioned in most commercial aircraft

making the transatlantic crossing. The information sent to the Flightradar24 receivers in-

cludes: (i) position as degrees of longitude and latitude, (ii) direction as a bearing, ground

speed in knots and (iii) altitude in feet. However, we recalculated ground speeds as those

recorded are not always consistent with given positions and times.

Data gives a step by step record of all flights, as detailed in Table 7.2. If data is missing

for all or part of a flight, then this is removed from the dataset.
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Table 7.2: Flight numbers for aircraft flying between LHR and JFK in the winter

from 1st December, 2019 to 29th February, 2020. Odd numbers are

westbound flights, for all but Delta Airlines, whose eastbound flights

have odd numbers. Eastbound flights have the corresponding even (or in

the case of Delta Airlines, odd) numbers.

American Airlines British Airways Delta Air Lines Virgin Atlantic

AA101, AA100 BA113, BA112 DL1, DL2 VS3, VS4

AA105, AA104 BA115, BA114 DL3, DL4 VS9, VS10

AA107, AA106 BA117, BA116 VS25, VS26

AA141, AA142 BA173, BA172 VS45, VS46

BA175, BA174 VS137, VS138

BA177, BA176

BA179, BA178

BA183, BA182

To find airspeeds for each stage of each flight, as these provide the basis for fuel burn

calculations, the ground speed and the wind field for each day are used. By taking the

ICAO definition of the ISA and interpolating between the altitude levels with a given

pressure conversion in the hypothetical model, the pressure at each point reached is esti-

mated. This is paired with the co-ordinates of the point. Using linear interpolation of a

three dimensional array, the zonal and meridional wind components and the temperature

at every point in an aircraft’s cruise phase are approximated. Once the wind speeds are

known, the wind in the direction of the plane is calculated. These can be subtracted from

the recorded ground speed, to give the airspeed required in the fuel burn calculation. The

flights are modelled to have constant airspeed between recorded positions, unless the time

step is longer than two minutes.

Across each trajectory, there is usually a large time interval for which no extra infor-

mation is recorded due to signalling issues. In view of this any time intervals longer than

two minutes, are split into smaller steps, with equal duration of approximately two min-

utes. The aircraft positions are then modelled as following a shortest ground distance

route between the co-ordinates recorded for the start and end of the original interval. Al-

Chapter 7 Cathie A. Wells 187



Reformulating aircraft routing algorithms to reduce fuel burn

titude is assumed to stay the same throughout these new time steps, but the atmospheric

conditions are adjusted for the new positions to best model the actual aircraft airspeed

and thus fuel use.

In some cases, the recorded positions when coupled with the re-analysis data do not give

feasible values for airspeed, as the maximum Mach number for the aircraft is exceeded

or the minimum Mach number subceeded. In such cases, the airspeeds are replaced by

the closest feasible values and the time intervals adjusted accordingly. These occurrences

are most likely to be due to inaccuracies in the data recorded. Although there may have

been slight discrepancies between the re-analysis data atmospheric conditions and those

actually encountered, these would be minimal given the large amount of observational

data incorporated in the re-analysis model, with some of that data being recorded directly

by aircraft (Kalnay et al., 1996).

In order to minimise fuel use, aircraft will change altitude to travel at the most efficient

flight level for their current mass. This means that when data from the simulations is

compared to estimated actual fuel use there are some non-optimised flights which appear

to use less fuel than the simulated fuel minimal flights. In view of this, the actual fuel use

was calculated both for the altitudes recorded and for horizontal paths to allow for a fairer

comparison. Ideally the simulation would include a fourth state of altitude, but this was

found to cause issues with data overloading, due to what Richard Bellman described as

“the curse of dimensionality” (Bellman, 1957). This is when adding extra state variables

causes the complexity of a problem to increase rapidly due to the increasing number of

possible combinations of states and controls.

In Figure 7.3 it can be seen that the fuel burn rate is not affected equally by altitude

changes for all models of aircraft, but that it does have an affect. As the total number of

seconds for each flight is so large (approximately 20 000), these differences are magnified.

here the airspeed has been fixed to 240 m s−1.
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Figure 7.3: Plot showing how fuel burn rate varies with altitude for each aircraft

model when half of the flight fuel has been used, at a point midway

across the North Atlantic. Temperatures at each altitude are taken

from a typical day, the 26th January, 2020.

7.5 Practical computational considerations

A time step of 125 s was chosen to allow for the practical adjustment of heading angle

and airspeed. Flight data recorded for transatlantic flights on Flightradar24 has changing

time steps which average to this value (Flightradar24, 2020).

Whilst the time minimal code can be run across the whole state space with a time step of

125 s in a timely manner, including the extra state of mass for the fuel minimal code leads

to lengthy optimisation times of over an hour. In view of this the fuel minimal code is

first run with a time step of 500 s. Once a route is retrieved from the value map given, the

state space is reduced to only include grid boxes including the route and the grid boxes

immediately adjacent to these. In order to work in this way, any grid points outside of

the new range are given a value of 1 at each iteration. The next application of the code

has a time step of 250 s. This process is repeated once more, to arrive at the time step of

125 s. A diagram illustrating this method of reducing the state space is given for a two

dimensional example in Figure 7.4.
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Figure 7.4: 2D example showing how the state space is reduced after the first stage

of the simulation on 1st December, 2019 flying West. In this case the

diagram shows just a horizontal state space, although in the actual sim-

ulation mass is used as a third dimension. The nodes in the shaded

region are taken as the new state space after the initial route has been

found. The Great Circle (GC) path is the shortest distance path around

a sphere between the airports.

The accuracy of this method was confirmed first by comparing time minimal routes to

final fuel minimal routes, as these had not been calculated with a larger initial time step

or on a reduced state space. Next some examples of fuel minimal calculations were run

for an extended computation time using just the 125 s time step across the whole state

space. Results for this method were identical to those for the computationally much faster

version. Code run with a 10 s timestep across the whole region and with a finer spatial

discretisation confirmed that results were accurate, but took up to seven days to run. By

reducing the state space considered and using a more practical timestep, computational

time to create the initial value map was reduced to five minutes.

7.6 Results

Here the data from the time minimal and fuel minimal simulations is compared to actual

flight data that has been limited to a pressure level of 250 hPa, corresponding to an
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(a) Fuel use West (b) Fuel use West

(c) Fuel use East (d) Fuel use East

Figure 7.5: Violin and box plots showing values for fuel burned during the cruise

phase of flights between LHR and JFK during winter 2019-2020. Fuel

burn is considered for actual flights, simulated fuel minimal trajectories

and simulated time minimal trajectories.

altitude of approximately 34 000 ft.

7.6.1 Comparing fuel and time data: all flights

In total, data was available for 1567 flights travelling west and 1547 flights travelling East,

between the 1st December, 2019 and the 29th February, 2020. Time and fuel minimal

routes were simulated using the same atmospheric and aircraft data as was applied to

finding the fuel burn for these actual flights.

In Figure 7.5 both violin plots and notched box plots are shown for the fuel use for
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Figure 7.6: Plot showing how much fuel is used for the fuel minimal trajectories

for the 7 most used models of aircraft for routes between LHR and JFK

from 1st December, 2019 to 29th February, 2020.

the routes in each direction. It is clear from the violin plots that the data is not normally

distributed, but follows a bi-modal distribution, indicating that there are two distinct

groups within the data. The first of these has a global maximum and shows fuel use

for the majority of routes flown. The second mode is lower, appearing to show that for a

smaller group of flights more fuel is needed. Although at first glance this might be thought

to be due to the atmospheric conditions encountered on different days, in actual fact it is

entirely due to the different models of aircraft flown. In Figure 7.6, the fuel use for each

fuel minimal trajectory is plotted on a stacked bar chart, clearly showing that the model

of aircraft is causing the second mode. In this chart only the 7 models of aircraft flying the

most routes are included, for clarity. Although the Boeing 747-436 is responsible for far

greater fuel use than the other aircraft, it does also carry more passengers, with capacity

for 524 in a two class layout, compared with 335 for the Airbus 350-1041. In Section 7.6.2

the possible savings for different models of aircraft will be discussed fully.

All sets of routes have a similar distribution of fuel use, but from the notched box-

plots it can be seen that the median of the fuel minimal routes is significantly lower than
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(a) Time of cruise West (b) Time of cruise West

(c) Time of cruise East (d) Time of cruise East

Figure 7.7: Violin and box plots showing duration of the cruise phase of flights

between LHR and JFK during winter 2019-2020. Time is considered for

actual flights, simulated fuel minimal trajectories and simulated time

minimal trajectories.

that for the time minimal routes, as might be expected and also for routes based on the

actual flight data. The difference between the fuel use of the fuel minimal routes and

actual flight routes is tested using a one tailed t-test at a 95% level of significance (Stu-

dent, 1908). The pairwise difference between these data sets has a mean of more than

0, showing that the fuel minimal routes are significantly more efficient in terms of fuel

burn. These patterns are the same for flights in both directions with more pronounced

differences between eastbound data sets, but one westbound flight does use far more fuel

than the rest, as can be seen in Figure 7.5a.

In Figure 7.7 the same charts are plotted for the time of flight for each type of trajec-
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tory. It is unsurprising that the time minimal routes had a significantly shorter duration

than the fuel minimal routes and the actual flight routes. However, the difference in the

distribution of these times is surprising. The violin plots show that the actual cruise flight

times and the fuel minimal cruise flight times are distributed in a far more similar way

than the time minimal values. Flying west the cruise flight durations of the time minimal

routes have a negative skew and both the other two route types show a slight positive

skew. Heading east this pattern is reversed.

A one-tailed t-test is again applied and showed that the time minimal routes are sig-

nificantly faster than the actual routes and the fuel minimal routes (Student, 1908). It

might have been expected that the fuel minimal route would take significantly longer than

the actual routes in order to burn fuel more efficiently, but in fact this is not the case and

there is no evidence at the 95% level of significance that the fuel minimal trajectories are

in fact slower than the actual routes flown.

Overall, by flying a fuel minimal route, it was found that the airlines flying between LHR

and JFK could have saved approximately 2.5 million kg of fuel flying east and 2.8 mil-

lion kg flying West, as is illustrated in Figure 7.8. Using the Environmental and Energy

Study Institute’s estimate that every 1 kg of aviation fuel burned produces 3.16 kg of CO2,

this would amount to a reduction of almost 16.6 million kg of CO2 emissions across just

one winter period (Overton, 2022).

One of the reasons why actual cruise phase flights may be using more fuel than fuel min-

imal flights, is down to the airspeeds that the aircraft are flown at. If these are too high,

the fuel burn rate will rise as the efficiency of the propulsion system decreases, but if they

are too low, the cruise phase will take longer and as fuel burn rate is measured in kg s−1,

more fuel will be burned over all. To check whether airspeed does have an important

effect on fuel efficiency, Figure 7.9 shows box plots of average airspeed per flight for the

fuel minimal and actual routes. The time minimal trajectories were all flown at 250 m s−1

(as the time optimisation chose the highest control value available for airspeed at all time

steps), so a single line on the chart represents all of the data for these routes. It is obvious

from Figure 7.9 that the actual flight routes are flown faster than is optimal. A one-tailed

t-test at a 95% significance level confirmed that along the actual routes mean airspeeds

are significantly higher than those for the fuel optimal trajectories (Student, 1908). This
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Figure 7.8: Plot showing how much fuel could be saved if all aircraft flew fuel

minimal routes between LHR and JFK from 1st December, 2019 to

29th February, 2020.

is true despite some outlying actual route airspeed values being far lower than expected.

If the overall average airspeed per route is significantly lower in the fuel minimal simula-

tions, but these trajectories are not of significantly longer duration, then clearly the fuel

decrease is also due in part to a better route having been chosen via the heading angle

control.

7.6.2 Comparing data: by route, airline and aircraft

The patterns shown in the previous results section do not make a distinction between sub-

sets of data, that could be relevant to our understanding of how improvements in routing

could best be implemented.

In Figure 7.10 we look first at percentage differences in fuel and time use between ac-

tual flights and fuel minimal flights separated by flight number. There are 19 different

flight codes for the journey between JFK and LHR in each direction over the winter of

2019 to 2020. However, on any given day a particular flight may or may not happen or

the flight data may not have been recorded fully. The box plots in Figure 7.10c show the

distribution of complete sets of flight data taken across the whole winter period.
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(a) Average airspeeds West (b) Average airspeeds East

Figure 7.9: Box plots showing average airspeed for each aircraft during the cruise

phase of flights between LHR and JFK during winter 2019-2020. Av-

erage airspeed is considered for actual flights and simulated fuel mini-

mal trajectories. Time minimal trajectories have a constant airspeed of

250 m s−1, as this highest airspeed level is chosen as the optimal feed-

back control in the optimisation.

The charts show that in order to make a fuel saving, it is often necessary to incur a

time penalty on a particular route. This is most marked in the case of the Virgin At-

lantic (VS) flight routes. Most of the other routes show a very small time penalty for a

much larger fuel reduction, with the largest percentage savings in fuel to be made flying

East. This reflects the fact that the OTS prevents all flight routes from accessing the most

favourable winds.

Having seen that the patterns in fuel and time savings between different flight routes

seemed to be largely based on the particular airline flying these routes, it is also useful

to group results just by airline. Now it is more obvious if certain transatlantic service

providers are already flying more efficient routes than others. In Figures 7.11a and 7.11c

the percentage of time and fuel saved by flying the fuel minimal route rather than the

actual recorded flight route is shown. To help to gauge the relative importance of these

effects a pie chart showing the proportion of flights flown by each airline is also included

in Figures 7.11b and 7.11d. From these charts it is clear that the majority of the flights

are flown by British Airways, who would be able to reduce fuel by between 2 and 3% with
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Figure 7.10: Bar charts showing percentage savings in time and fuel made by using

fuel minimal trajectories rather than actual routes during the cruise

phase of flights between LHR and JFK during winter 2019-2020. The

box plot shows the distribution of the number of flights per route code.
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Figure 7.11: Bar charts showing percentage savings in time and fuel made by using

fuel minimal trajectories rather than actual routes during the cruise

phase of flights between LHR and JFK during winter 2019-2020. The

pie charts show the proportion of the flights made by each airline.
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only a very minimal time penalty on eastbound flights. This may mean that both their

routes and airspeeds would become more fuel efficient as part of the simulations. In con-

trast, Virgin Atlantic could save far more fuel, but would also have longer duration flights,

showing that the fuel savings will mainly come from reducing airspeed. Delta Airlines and

American Airlines have a smaller share of the routes between LHR and JFK, but could

save both time and fuel by moving away from the OTS, so may have been flying on the

less efficient tracks in the past.

Finally, as aircraft parameters do have an effect on fuel burn rate, data from each type of

aircraft detailing average fuel saved per cruise flight is plotted in Figure 7.12. It can be

seen from Figures 7.12a and 7.12c that the largest savings are made by the changes to the

routes and airspeed of the Airbus 340-642, 330-323 and 330-343 when flying eastbound,

with the wind and by changes for the Boeing 767-432 and Boeing 787-9 when flying west-

bound against the wind. The Boeing 747-436 has the smallest average absolute savings in

both directions, but as the flights for this model were all British Airways routes, it could

be argued that it was generally flown on the more efficient tracks.
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Figure 7.12: Bar charts showing absolute savings in fuel made by using fuel minimal

trajectories rather than actual routes during the cruise phase of flights

between LHR and JFK from 1st December, 2019 to 29th February,

2020. The pie charts show the proportion of the flights made by each

type of aircraft.
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7.7 Discussion

The results from comparing fuel minimal trajectories with actual routes flown look very

favourable, but there are limitations to these calculations which need further discussion.

7.7.1 Altitude changes

It could be argued that comparing simulation results with routes that have never been

flown at the given altitude may lead to unrepresentative findings. There are two ways to

tackle this idea.

The first is to compare fuel use for the fixed altitude simulations with the actual vari-

able altitude flights. This immediately gives an advantage to the flight routes that are

allowed to change altitude to ensure more efficient fuel burn. However, even given this

extra bonus overall absolute fuel savings of 2.4 million kg are still possible and a t-test

at the 95% level of significance still shows a significant reduction in fuel when results are

compared pairwise between fuel estimates from actual data and fuel minimal simulation

results (Student, 1908). Figure 7.13 shows the fuel usage from these two methods across

all days. Although the fuel minimal data is visibly weighted to the left of the charts, this

is less marked for the westbound flights.

By allowing the actual flights to change altitude and keeping the simulations at fixed alti-

tude reduces the eastbound savings by 47% and the westbound savings by 58%. Although

across all airlines, savings are still made by flying the simulated routes at fixed altitude,

the Airbus 350-1041 actually uses 1% more fuel over the 317 flights it makes going West.

This aircraft has a take-off mass which lies just above the median for all models, but the

design of the propulsion system makes fuel efficiency reduce with altitude more than for

the other aircraft, as shown in Figure 7.3.

The second method is to allow the simulated routes to fly at the most efficient altitudes

and model the wind fields as identical to that at 250 hPa at all cruise altitudes. This is not

completely accurate, but as was explained in Section 7.4, including the altitude as part of

the optimisation was prohibited by computational restrictions. Figure 7.2 shows that our

assumption of the same wind field at each altitude is not entirely spurious. Temperatures,

however, are different, as shown in Section 3.5.2, so the temperature used in the fuel burn
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(a) Fuel use West (b) Fuel use East

Figure 7.13: Histograms showing the distribution of fuel used between LHR and

JFK for all days between 1st December, 2019 and 29th February, 2020.

Results for the estimated fuel used by actual flights changing altitude

and the fuel used in simulated fuel minimal fixed altitude flights is

displayed.

calculations will be taken from the appropriate altitude. By using the horizontal paths

found in Section 7.6 and adjusting the fuel burn calculation to reflect altitude changes we

are also ignoring the fact that the mass state formed part of the original optimisation. The

state at each point is an input to the creation of the value map which in turn allows the

optimal feedback control to be obtained. However, this gives at least an approximation of

the results that could be obtained with more computing power from an optimisation with

four states and three controls.

The altitude was limited to FL 300 at the first and last steps of the trajectory, up to

FL 330 at the second and penultimate steps and up to FL 350 at the third and third to

last steps. Between these states, altitudes were allowed to take any value from FL 300 to

FL 400, with the altitude giving the lowest fuel burn being chosen. In this way cruise was

restricted so that the aircraft would be in the correct positions for the end of the ascent

phase and the start of the descent phase. The actual flights did not always follow these

restrictions, but on average it allows for a fair comparison.

Results for the routes between LHR and JFK show similar, but slightly higher total sea-

son savings than those obtained from limiting the actual flights to FL340. 2.8 million kg
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of fuel savings are possible flying westbound and 3.0 million kg eastbound. This would

reduce CO2 emissions by 18 million kg across the 2019-2020 winter season. The results

for separate aircraft and airlines follow those shown in Section 7.6.2.

7.7.2 Days where results show an increase in fuel use

On a very small number of days, estimates for the actual fuel use for certain routes is

lower than the amount required in the fuel minimal model. These “negative fuel savings”

are included in all of the summary statistics calculated and the previous overall results.

However, this issue is worthy of further review. In this section we consider the original

data in which all flight altitudes are fixed to approximately FL340.

Flying east there are 9 flights where this is observed out of the total of 1547 flights.

These flights take place on 7 different days and involve 5 different models of aircraft. All

increases in fuel use are very small, the smallest being 0.0001% and the largest still under

0.5% of the estimated actual total fuel used. Looking at the routes chosen by the air-

craft, these are very similar to optimised trajectories on these days and the difference is

explained by the distance between the ends of cruise and the airports. In each case the

first and last positions are those just within 225 km of the airports. However, as the actual

data has varying time steps, this means that towards the beginning and end of the cruise

the time steps are sometimes less than half of the simulation time step of 125 s. This has

the effect that although inside the target circles at either end of a trajectory, actual flights

still have further to go in the ascent and descent phases than the fuel minimal trajectories,

which will change the overall fuel use. We can conclude from this that flying eastbound

the simulated routes are always as fuel efficient, if not more fuel efficient, than those cur-

rently flown. Indeed in over 99% of cases the simulated routes lead to obvious fuel savings.

Flying westbound there are more instances where the new routes do not lead to fuel

savings. This is unsurprising, given that there will be more of a choice of routes when

avoiding strong headwinds, than when trying to make use of favourable tailwinds. The

24 flights (out of 1567) where more fuel is required by the simulations than the estimates

for actual flights, are flown by 2 different models of aircraft, the Boeing 777-236 and the

Boeing 747-436, on 12 different days. Of these, 16 instances show small fuel differences

(less than 0.5%) that can be attributed to the distance from the airports as explained

above. This does, however, leave 8 flights (0.51% of the westbound flights). In the case of
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these routes the guaranteed minimum fuel use offered by applying dynamic programming

is limited by the initial choices of time step and control variable resolution. On certain

days, atmospheric conditions may have meant that a less efficient route has been plotted,

due to these restrictions. This can be seen clearly in Figure 7.14 which shows plots of

routes flown on the 19th February, 2020. Here the simulation takes a route South of the
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Figure 7.14: Plots showing routes taken by actual flights and the time and fuel

minimal routes simulated for the 19th February, 2020.

GC path, whilst the British Airways routes go North. Only flights BA113 and BA115 use

significantly less fuel (here taken as 0.5%) than the fuel minimal route, with BA175 using

over a tonne of fuel more. So clearly the wind field on the 19th February, 2020 allows

for similar fuel burn from two very different paths, an effect noted in Chapter 4. The

optimised route flying South of the GC path is more fuel efficient than 88% of the chosen

flight paths taken by all of the aircraft making the journey from LHR to JFK through this

wind field.

Looking at all cases where more fuel is used by the simulated routes there does not seem

to be a particular wind pattern that would warn route planners that this could occur.

As can be seen in Figure 7.15 the winds all follow different patterns. On these days the

majority of routes which are taken by the actual aircraft are not as fuel efficient as the

fuel minimal routes, but one or two use less fuel.
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(b) 23rd January, 2020

-80 -70 -60 -50 -40 -30 -20 -10 0

longitude

40

45

50

55

60

65

la
ti
tu

d
e

Wind field and flight routes for day 55

Arrow scale: 50 m/s

JFK

LHR

GC Path

Actual Route

Fuel Minimal Track

(c) 24th January, 2020
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Figure 7.15: Plots showing fuel minimal simulated routes and actual routes that

did not make a fuel saving. Arrows show the wind field for flights.
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7.8 Chapter summary

Dynamic programming is applied to create both time and fuel minimal routes. This in-

volves using a grid of horizontal positions in the case of the time minimal formulation,

whilst a third dimension of mass is included for the fuel minimal formulation. The dynam-

ical system for each formulation requires information on atmospheric conditions at each

step and these are taken from a reanalysis model. Cost functionals depending on the total

journey duration or the total fuel burn can be minimised by varying the heading angle

and the airspeed.

A numerical solution to the relevant HJB equations is found by discretising both spa-

tially and temporally. This solution provides a value map across the state space. From

here both the optimal feedback control and the optimised trajectory can be retrieved.

Only the cruise phase, here defined as from within 225 km of LHR and JFK is considered.

In the fuel minimal case the fuel use can be obtained directly from the change in mass

state. In the time minimal case the fuel used during each time step is calculated after

optimisation.

Fuel use for optimised trajectories is compared with estimated fuel use of actual cruise

phase routes, based on recorded data. In calculating this, the same atmospheric data and

fuel burn rate formula are applied.

Results show that the fuel use across the cruise phase of flights between LHR and JFK,

from 1st December, 2019 to 29th February, 2020 can be reduced. Looking at actual flights

as restricted to a single altitude of approximately 34 000 feet, the average fuel reduction

flying east is 4.6% and flying west is 3.8%. Overall this amounts to a reduction of 16.6 mil-

lion kg of CO2 emissions for this single winter season.

Time minimal flights are shown to have a significantly shorter duration than actual flights

and fuel minimal flights, but use more fuel. Comparing fuel minimal trajectories to actual

flights flown, the fuel use is significantly reduced, without a significant increase in flight

duration. Average airspeeds are significantly lower for fuel optimised trajectories than

for actual flights, which lowers the fuel burn rate. However, by choosing optimal head-

ing angles, this does not have a significant impact on the fuel minimal trajectory durations.
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Whilst this research shows the value of taking action to plan TBO around a fuel burn

equation that takes atmospheric and model specific data into account, it is limited by the

resolution of the control variables, as is shown by the days where an improved route is not

found.

Increased computational power to simulate flights with an extra state of altitude and

a finer resolution of controls would result in fuel savings on every day for all models of

aircraft. The compromise of optimising altitude for a set horizontal route, although not

accounting for changes to winds at different altitudes, at least shows that it is important

to include changes to altitude in this model. This is due to the propulsion efficiency of

the aircraft themselves, rather than atmospheric conditions.

Comparing just the cruise phases of routes optimised from the departure airport may also

be limiting the optimality of the trajectories, so future work should include the ascent,

cruise and descent phases.

Chapter 7 Cathie A. Wells 207



Chapter 8

Conclusion

8.1 Answering research questions

In Section 1.1 a number of questions were asked, all of which have been answered to some

extent during the course of the last seven chapters. Here we summarise these findings.

8.1.1 Time minimal flights versus the OTS

In the introduction we asked the question:

• How much difference would horizontal time optimal trajectory planning make to

fuel use and thus carbon dioxide emissions, in fixed airspeed transatlantic flights,

compared with the OTS?

By simplifying the problem to look just at flights between LHR and JFK, at a variety

of fixed airspeeds and at a pressure level of 250 hPa (approximately FL340), we are able

to show that significant reductions in fuel use are possible, by moving from the OTS

to TBO. Using the atmospheric conditions given by re-analysis data the air distance for

flights going along the tracks was compared with the air distance given by time minimal

trajectories. These were found by applying PMP to the dynamical system describing the

aircraft movement zonally and meridionally.

Compared to the worst tracks a maximum reduction of 16.4% of the air distance and

thus of the CO2 emissions is possible. However, this is an extreme result as most aircraft

will travel on the more efficient tracks. To gain an estimate of how much CO2 could ac-

tually be prevented by re-routing aircraft, data from the air service navigation provider,
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NATS, showing how many aircraft used each track each day was considered. This gave the

more realistic result that for a fixed airspeed of 240 m s−1 emissions could be reduced by

2.5% eastbound and 1.7% westbound across an entire winter period, amounting to a total

of 6.7 million kg of emissions when all flights between LHR and JFK are taken into account.

These results were communicated as part of a paper and directly to NATS through an

invited presentation (Wells et al., 2021). Since this research was published NATS have

referred to it in justifying their decision to try disbanding the tracks for certain days in

2021 (Young, 2021). Following this the tracks were removed up to FL330 from March

2022, but more changes are likely in the future.

8.1.2 The effect of climate change on trajectory duration

We next asked:

• To what extent is climate change likely to affect minimum times of flight within the

next 35 years?

By comparing the results of time minimal trajectories simulated across the North Atlantic

between LHR and JFK for two different time periods in both the summer and the winter,

we were able to show that there would be no large changes to flight duration in either

direction as a result of climate change. Using an ensemble of eight CMIP 5 climate models

for a historic time period (1986-2005) and a future time period (2036-2055), it was shown

that the round trip flight duration would on average be reduced by between one and two

minutes, depending on the season. This could be explained by the expected changes to

the core position and intensity of the jet stream predicted by the climate models. This

result was contrary to previously published research, based on earlier climate models and

a longer interval between time periods, that had suggested a net increase in round trip

duration.

So we can conclude that for the chosen ensemble of models and selection of time pe-

riods there is very little change to flight duration, but given different models and time

periods the result could change. The data used to answer this question came from part of

a joint project with Jacob Cheung of the Met Office Aviation Group, in which time mini-

mal results obtained by solving a dynamical system numerically were compared with those

found by applying the Met Offices’ A Star discrete mathematics method. The findings of
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the whole project have been accepted for publication in the Meteorological Applications

journal.

8.1.3 Fuel minimal fixed-time flights

• Can fixed-time flights be planned for a whole winter season to ensure that fuel is

minimised?

Here the cost functional of the OCP was changed to minimise the fuel burned across a

trajectory, using the fuel burn model and aircraft parameters given in Poll & Schumann

(2021a,b). This change necessitated a new way to solve the problem. A direct method

was adopted, in which the system was first discretised and then optimised. The Matlab

fmincon function was encased in a global search mechanism, to hunt for a trajectory giving

a global minimum for fuel use in each case.

By solving an OCP based on minimising fuel use for a fixed-time flight it is possible

to plan fuel minimal flights for a whole season. However, in restricting these flights to

a schedule that allows all atmospheric conditions across the whole of the winter to be

taken into account, more fuel is being burned in flight than would be on days when a

shorter duration trajectory is possible. If however, there was no contingency for landing

at variable times and shorter duration flights would remain in low altitude stacks burning

more fuel, then this approach would save fuel.

8.1.4 The benefit of controlling airspeed in addition to head-

ing angle

• In minimising fuel burn of transatlantic flights, can extra benefits result from con-

trolling the airspeed in addition to the heading angle?

In Chapter 6 two different formulations of the OCP were considered, the first where both

heading angle and airspeed were controlled and the second where heading angle was the

only control variable. In this second formulation airspeed was fixed across each trajectory.

Even allowing the fixed airspeed to take the most efficient value for the particular winds

encountered each day, using variable airspeeds yielded up to an extra 4% in fuel savings.

This showed that in answering the final research question including airspeed as a control

variable was necessary.
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It was also found that the airspeed chosen for each time step of the simulated fuel minimal

route was linked to the wind field. This was clear as there was a significant negative cor-

relation between the average airspeed of each trajectory and the average tailwind around

the Great Circle path between LHR and JFK each day.

8.1.5 Comparison of fuel minimal, time minimal and actual

flight trajectories

• Would minimising fuel and having a free time in a fixed altitude flight produce

trajectories that are more fuel efficient than those currently flown and to what

extent would the flight duration be changed?

In solving the time minimal and fuel minimal routing problem for free-time routes at a

fixed altitude, dynamic programming was used. This method involves solving the HJB

equation to create a map of the value function. In moving to a solution, it is necessary to

discretise both temporally and spatially, so we obtain a solution to the discrete problem,

via a Semi-Lagrangian method, that as the time step length tends to zero, approximates

to the continuous solution. For the time minimal optimisation there were the states of

longitude and latitude to consider, but for the fuel minimal optimisation a third state of

mass was required. In each case the control variables were the heading angle and airspeed.

Results from both of these optimisations were compared with estimates of fuel use from

actual flight routes, calculated using the same atmospheric data and fuel burn function as

applied in obtaining the dynamic programming solutions. The actual flight data was given

as a timed horizontal route and treated as if flown at the same altitude as the simulations.

The fuel minimal simulated trajectories were shown to use significantly less fuel than

the actual routes flown and led to a reduction in carbon dioxide emissions of 16.6 mil-

lion kg across the winter of 2019 to 2020 for flights between LHR and JFK. The average

airspeed of simulated routes was significantly lower than that for the actual routes, but

the flight duration was not significantly longer.

This means that it is possible to produce more fuel efficient trajectories than are cur-

rently being flown, that do not result in significant time penalties. It would however,
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necessitate a more fluid approach to timing landing slots, as each trajectory takes a dif-

ferent amount of time. As these could be planned 1-2 days in advance, due to the slow

evolution of the wind field across the North Atlantic, this would give airports time to fine

tune a landing schedule.

8.1.6 Evolution of methodology

In answering these questions a range of techniques has been used and at each stage choices

for parameters, discretisation of variables and numerical methods have been made. In all

cases sensitivity analysis was employed to test for stability, computational time, data stor-

age issues and errors due to truncation of multiple time steps. A TPBVP was also derived

based on moving exactly between the two airports using a simplified analytic windfield

and an approximate fuel burn model. This confirmed the magnitude of the results, but as

co-states had to be found by trial and improvement, incurred its own numerical errors. In

each case the methods employed were checked in a wind-free scenario to ensure that the

shortest distance route, around the GCR, was selected.

In Chapters 4 and 5 a time minimal route was required, which meant that the best

method was the indirect approach, using PMP. This is true as in this case the adjoint

variables cancel out from the dynamical system, leaving only an initial control variable

to be found (see Section 4.3.2). The flights were assumed to be entirely in cruise phase

as the OTS are designed to be most efficient at one particular altitude (Mangini et al.,

2018). In this part of the research the route was simulated to arrive within 200 m of

the destination airport, as it was being compared with routes along the OTS that were

modelled as going directly between LHR and JFK. In Chapter 4 the time step was set to

1 s in finding both the time minimal and OTS route air distances, as this research was

a proof of the concept that the OTS tracks were not as efficient as flying time minimal

routes rather than a system designed to be used operationally. By setting a very small

time step piecewise continuous routes tend to continuous routes. The airspeed, mass and

altitude were fixed to allow the air distance to be a suitable comparative metric, as it

allowed fuel burn to be directly proportional to air distance. A similar system was used

in Chapter 5, but the time intervals were now dictated by the constraints of the A star

method as this project was used to compare the two approaches. Computational time (on

a Macbook Pro, with 2.3 GHz Dual-Core Intel Core i5 and 8GB memory) for generating

the OFW routes was approximately 45 minutes for a single route, varying with the climatic
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conditions encountered. In Chapter 4 routes were recorded for 91 days, at 15 different

airspeeds in 2 different directions, making a total of over 2700 OFW routes. Although

only one Mach number was used for simulations in Chapter 5 over twenty times more

simulations were completed as flight paths were found for both winter and summer over

20 years, using 8 different sets of atmospheric projections for both historic and future time

periods. This meant that code was run a huge number of times. The largest proportion

of computational time was spent on generating routes for the iterations of the bisection

method and so using the Euler forward step numerical method kept run-time manageable.

In Chapter 6 the focus was on trying to fix the time for flights between the two air-

ports for a whole winter season and then test if controlling just the heading angle, or

controlling both the heading angle and the airspeed was most effective, in terms of min-

imising fuel burn. Given that this was a straight comparison between two simulations, the

choice of parameters was based on practical flight considerations as wells as a compromise

between accuracy and computational time and memory constraints. The original function

using fmincon was able to include a Runge-Kutta 4th order method with fixed time step

of 100 s. As initial control vectors were estimated and then improved in the direct opti-

misation method, the code ran in 8 minutes. However, when the global function was used

in order to provide a more rigorous framework by way of including extra sets of initial

controls, the computational time went up to three hours. The direct method was most

useful here as the time was fixed and we were minimising fuel burn via a function that

could not be differentiated or effectively approximated. Routes were modelled to arrive

within 1 km of the destination airport, as runways themselves are often up to 2 km long

and the wider target improved the convergence rate of the code.

In Chapter 7 dynamic programming was used, as it was important to find globally optimal

routes that could be compared with actual flights. The change in mass could be factored

into the mesh, but this did make running times far longer than the dynamic programming

model which just optimised flight duration and so did not need the third mesh dimension.

The mesh discretisation of 3333 kg was chosen after sensitivity analysis showed that the

choice of discretisation for mass made very little difference to the final fuel use. It also

allowed the mesh arrays to remain within the preset size constraints of Matlab. Finding

value maps took approximately 1 hour using the 3 state variables and 2 control variables,

with a 125 s time step, but once a value map was available, retrieving the associated
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controls and states took only 2 minutes. Again it was most time efficient to use an Euler

method within the algorithm as this numerical calculation had to be applied to every

combination of state and control variables. The time step of 125 s was shown to allow a

stable and consistent application of the numerical method, whilst not unduly increasing

truncation errors. It is also of a practical length for pilots and agreed with the average

step length for available flight data. As the main goal of this chapter was to compare with

actual flights, the target was set at 225 km from the destination airport to reflect the end

of the cruise phase as shown in the actual flight data. Data up to 225 km away from the

destination airport was also removed from results to make the start of the cruise phase

comparable to recorded data.

Therefore, in each case, it was important to use the most suitable method for solving

the optimisation problem and to adjust parameters to reflect the context of the research.

8.2 Future directions

The questions answered by this research show potential for change in transatlantic aircraft

routing. However, there are a few limitations of this research that could be addressed in

future studies.

In using deterministic atmospheric data, an ability to predict winds and temperatures

accurately is assumed. In future work a more probabilistic approach to atmospheric data,

by using ensembles to capture forecast uncertainty, would not only enhance the level of

route detail possible, but also enable different routes to be planned based on different

possible weather scenarios.

In the previous chapters only the main wind effects have been taken into account, with no

allowance for localised phenomena such as convective weather patterns, super saturated

icy regions and turbulence. As weather forecasts improve, including such information will

be very useful. With the advent of machine learning enhanced forecasts and the design

of new super computing hardware, which by working to lower numerical precision is able

to perform faster calculations, future forecasts will have greater spatial and temporal res-

olution, both of which are necessary for tactical and strategic aviation route planning
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(Dueben, 2019; METOffice, 2020). According to WMO (2021) the future aim for forecast-

ers is to provide updates on the minute scale. This will be possible using high performance

computing to include increased observations and incorporate more processes into Earth

system models. A full characterisation of the uncertainty of forecast details will also be

provided. With this new data, accurate avoidance of turbulence and convection can be

factored into route optimisation.

Currently only the route between JFK and LHR has been considered, but with airlines

looking to create new longer haul routes, such as Qantas’ Project Sunrise flights between

Australia and destinations such as New York, Rio de Janeiro, Frankfurt, Capetown, and

London it will be essential to fly fuel minimal routes across a variety of different wind

fields (Curran, 2021). During this research a side project was undertaken which involved

creating time minimal routes across the Pacific Ocean to inform research into the effects

ash clouds have on aviation (Capponi et al., 2022). This shows that the theory can be

easily adapted to different oceanic regions. In plotting trajectories over land other issues,

however, such as airspace borders and orography could prove challenging.

One of the main limitations to the routes generated during this research, is that in each

case just one flight is considered at a time. Although the increased situational awareness

across the North Atlantic will make scheduling by departure time possible for the nineteen

flights a day between JFK and LHR, there are obviously many other airport pairs that

would need to be considered in creating a comprehensive route plan for the North Atlantic.

If the idea of flocks of aircraft is used, then having one fuel minimal route to be followed

by the lead aircraft would be essential, but this is still an idea requiring further research.

Another area that could prove very exciting is the use of artificial intelligence, specifically

deep learning, in route planning. Such methods have already been explored by Zhang et

al. (2018) in finding the positions of fighter planes and Jiang et al. (2021) in predicting

trajectories of aircraft currently in the air, but as yet no attempt has been made to work

from atmospheric data and previously planned fuel or time minimal trajectories to create

a neural network capable of route planning for future winds and temperatures. A system

of this type could be trained offline to ensure almost instant results in the air if conditions

changed.
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The questions answered in this thesis, aim to show that TBO are a possibility in the

immediate future and have the potential to reduce aviation CO2 emissions substantially.

The future adoption of either time minimal or fuel minimal routing will depend on the

adaptability of airports and ATM as well as on the number of flights to be scheduled.
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Appendix A

Deriving the Zermelo equations

for planar flight

The minimal time problem across a plane, as described by Zermelo in the 1930s

(Zermelo, 1930, 1931), can be formulated in terms of optimal control theory (Bryson &

Ho, 1975). The Pontryagin Hamiltonian is written to describe the relationship between

the state and adjoint equations. The adjoint equations can be derived from this

Hamiltonian and they form part of the necessary conditions for a weak relative

extremum. The Hamiltonian is minimised with respect to the control variable, according

to Pontryagin’s Minimum Principle (Pontryagin et al., 1962).

To find the minimum time path through a region of position dependent vector velocity

we first need to define parameters, variables, boundary conditions, a dynamical system

and a cost functional.

Parameters:

These set out information about the initial and final values of time:

t0 = 0,

tf ≥ 0.

State Variables:

Here the way in which the zonal (eastwards) and meridional (northwards) positions of

the aircraft vary with time are considered:

x =

x(t)
y(t)

 . (A.1)

Boundary Conditions:
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The fixed values for the state variables are given as the airports at either end of the flight.

x(0) = xdept,

y(0) = ydept,

x(tf ) = xdest,

y(tf ) = ydest,

where (xdept, ydept) and (xdest, ydest) are the co-ordinates of the departure and destination

airports respectively.

Control Variable:

The heading angle is called the control variable, as by changing this value optimally,

time can be minimised:

α(t) = θ.

Dynamical System to be controlled:

The dynamical system is based on the motion of an aircraft in the x (zonal) and y

(meridional) directions, where V is the aeroplane’s constant velocity, u is the speed of

the wind in the x direction, v is the speed of the wind in the y direction and θ is the

heading angle, measured from due east anticlockwise.

From here the state equations are drawn, which are the airspeed components in each

direction added to the corresponding wind speeds:

ẋ = V cosθ + u(x, y), (A.2)

ẏ = V sinθ + v(x, y). (A.3)

Cost/Payoff functional:

We define optimality as a minimisation of time, giving the cost functional to minimise as:

J(x, α) =

∫ tf

t0

L(x, α)dt =

∫ tf

t0

1dt = tf , (A.4)

where L is the Langrangian or running cost, x is a vector including both x and y

positions, t0 is initial time and tf is final time. In this case:

L(x, α) = 1. (A.5)

In order to minimise time, two adjoint variables arise from the necessary conditions for

the solution to the problem, px and py. A Hamiltonian relationship exists between the

state and adjoint equations, which can be written as:

H = px(V cos θ + u) + py(V sin θ + v) + 1. (A.6)
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The partial derivatives of H with respect to each state variable can be found, giving the

adjoint equations. We also find the rate of change of the Hamiltonian with respect to the

control variable:

ṗx = −∂H
∂x

= −px
∂u

∂x
− py

∂v

∂x
, (A.7)

ṗy = −∂H
∂y

= −px
∂u

∂y
− py

∂v

∂y
, (A.8)

0 =
∂H

∂θ
= V (−px sin θ + py cos θ). (A.9)

Equation (A.9) shows that, for a non-zero V value:

tan θ =
py
px

=⇒ px =
py

tan θ
=⇒ py = pxtan θ. (A.10)

As H is not explicitly a function of time, it is a constant of integration and can be

replaced by zero in order to minimise the cost functional. Setting H = 0 and

substituting Equation (A.10) into Equation (A.6) we obtain:

0 =
py

tan θ
(V cos θ + u) + py(V sin θ + v) + 1. (A.11)

Equation (A.11) can be rearranged to make py the subject of the formula, giving:

py =
− sin θ

V + u cos θ + v sin θ
. (A.12)

Following the same method, but finding px in terms of V , u, v and θ this time gives:

px =
− cos θ

V + u cos θ + v sin θ
. (A.13)

These can now be substituted back into Equations (A.7) and (A.8) giving:

ṗx = −∂H
∂x

=
cos θ

V + u cos θ + v sin θ

∂u

∂x
+

sin θ

V + u cos θ + v sin θ

∂v

∂x
, (A.14)

ṗy = −∂H
∂y

=
cos θ

V + u cos θ + v sin θ

∂u

∂y
+

sin θ

V + u cos θ + v sin θ

∂v

∂y
. (A.15)

The aim here is to find the rate of change of θ so that a path can be plotted, minimising

time. In order to do this, we apply the chain rule:

dθ

dt
=

dθ

∂px
× ∂px

dt
. (A.16)

From Equation (A.10) it is clear that:

θ = arctan
py
px
, (A.17)
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and differentiating with respect to px, via the quotient rule gives:

dθ

∂px
=
pxṗy − pyṗx
p2x + p2y

× 1
∂px
dt

, (A.18)

dθ

dt
=
px(−px ∂u

∂y − py
∂v
∂y )− py(−px ∂u

∂x − py
∂v
∂x)

p2x + p2y
. (A.19)

To complete the derivation, Equations (A.12) and (A.13) are substituted into

Equation (A.19), thus giving:

dθ

dt
= − cos2 θ

∂u

∂y
+ sin2 θ

∂v

∂x
+ sin θ cos θ(

∂u

∂x
− ∂v

∂y
). (A.20)

This completes the working, resulting in the dynamical system shown in

Equations (2.1)-(2.3):

dx

dt
= u+ V cos θ, (A.21)

dy

dt
= v + V sin θ, (A.22)

dθ

dt
= sin2 θ

∂v

∂x
− cos2 θ

∂u

∂y
+ (

∂u

∂x
− ∂v

∂y
) sin θ cos θ. (A.23)
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Appendix B

Conformal mapping of the

Zermelo equations onto a sphere

A conformal mapping is one which preserves the angles between curves. Latitude and

longitude require different factors to move from a planar to a spherical system. In the

original system the rate of change of distance in the zonal and meridional directions is

used, but in the spherical system the distances are translated into rates of change of

longitude and latitude.

Figure B.1: Sectors showing how the planar distances (sϕ and sλ) relate to the

Earth’s radius (R) and the change in latitude (ϕ) and longitude (λ).

In Figure B.1 it can be seen that the conformal mapping uses the rule that for an angle

in radians, the length of an arc, is found by multiplying the radius by the angle in the

sector formed by the arc and two radii.

The distance covered as one radian of latitude is swept through, will be the same at any
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point on the sphere, so we can say that:

sϕ = Rϕ. (B.1)

Rearranging Equation (B.1) to make ϕ the subject of the equation and differentiating

with respect to sϕ gives:
dϕ

dsϕ
=

1

R
. (B.2)

The rate of change of meridional distance with time is:

dsϕ
dt

= V sin θ + v. (B.3)

Using the chain rule:
dϕ

dt
=

dϕ

dsϕ
×
dsϕ
dt

=
V sin θ + v

R
, (B.4)

which shows the rate of change of latitude with time.

However, the distance covered as one radian of longitude is swept through, will depend

on the latitude of the horizontal sector we are considering. A change in zonal distance

corresponding to a change in longitude, is defined to be this change in zonal distance at

the equator multiplied by cosϕ. This gives:

sλ = Rλ cosϕ. (B.5)

Rearranging Equation (B.5) to make λ the subject of the equation and differentiating

with respect to sλ gives:
dλ

dsλ
=

1

R cosϕ
. (B.6)

The rate of change of meridional distance with time is:

dsλ
dt

= V cos θ + u. (B.7)

Using the chain rule:
dλ

dt
=

dλ

dsλ
× dsλ

dt
=
V cos θ + u

R cosϕ
, (B.8)

which shows the rate of change of longitude with time. Equations (B.4) and (B.8) are

the first two lines of the dynamical system used in Chapters 4-7 of this thesis.
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Appendix C

Aircraft model specific parameters
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Table C.1: Table showing aircraft model specific parameters as given in Poll & Schumann (2021b). MTOM is maximum take-off mass,

OEM is operational empty mass, MZFM is maximum permitted zero fuel mass and MMO is maximum operational Mach

number. Other parameter values are discussed in Section 3.4.

Aircraft Code MTOM MZFM OEM MMO τ ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

777-236(ER) B772 286900 195000 137050 0.89 0.123 0.211 8.09 0.614 0.811 1.27×108 0.632

777-323(ER) B77W 351530 237683 167829 0.89 0.143 0.219 8.25 0.59 0.811 1.27×108 0.774

747-436 B744 396894 246074 178756 0.92 0.107 0.193 7.84 0.621 0.83 1.47×108 0.652

767-432(ER) B764 204116 149685 103872 0.86 0.146 0.182 8.12 0.566 0.772 9.81×107 0.748

A330-223 A332 233000 170000 124500 0.86 0.138 0.206 8.17 0.63 0.786 1.13×108 0.645

A330-323 A333 233000 175000 127000 0.86 0.142 0.194 8.18 0.612 0.786 1.13×108 0.645

A350-1041 A35K 311000 223000 157000 0.89 0.134 0.244 8.09 0.625 0.82 1.31×108 0.569

787-9 Dreamliner B789 254011 181450 128850 0.9 0.149 0.233 8.13 0.595 0.815 1.17×108 0.657

A330-343 A333 233000 175000 127000 0.86 0.142 0.194 8.18 0.612 0.786 1.13×108 0.645

A340-642 A346 368000 245000 181606 0.86 0.136 0.208 8.26 0.583 0.796 1.26×108 0.822
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