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Abstract

We examine the clustering behavior of price and variance jumps using high-
frequency data, modeled as a marked Hawkes process (MHP) embedded in a bivari-
ate jump-diffusion model with intraday periodic effects. We find that the jumps of
both individual stocks and a broad index exhibit self-exciting behavior. The three
dimensions of the model, namely positive price jumps, negative price jumps, and
variance jumps, impact one another in an asymmetric fashion. We estimate model
parameters using Bayesian inference by Markov Chain Monte Carlo, and find that
the inclusion of the jump parameters improves the fit of the model. When we quan-
tify the jump intensity and study the characteristics of jump clusters, we find that in
high-frequency settings, jump clustering can last between 2.5 and 6 hours on aver-
age. We also find that the MHP generally outperforms other models in terms of
reproducing two cluster-related characteristics found in the actual data.

Key words: jump clustering, marked Hawkes process, stochastic volatility, high-frequency data,

Bayesian inference

JEL classification: C11, C52, C58

Understanding the behavior of large market movements or jumps in asset prices and its

variance is essential to risk management. There are many studies that examine the import-

ance of including both price and volatility jumps in asset pricing models (see, e.g., Eraker,

2004; Asgharian and Bengtsson, 2006; Barndorff-Nielsen and Shephard, 2006). These stud-

ies often assume serial independence of the jump components and use daily data in their

empirical studies. However, less is known about the extent to which one jump presages sub-

sequent jumps, especially at the intraday level. In this article, we study the clustering
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behavior of jumps using intraday high-frequency data and a marked Hawkes process

(MHP) embedded in a bivariate jump-diffusion model. We find evidence of self-excitation

of jumps in both individual stocks and a broad equity index, and that jumps in prices and

volatilities impact one another in an asymmetric manner. We also find evidence that the

magnitudes of the jumps matter. Further, we demonstrate that the inclusion of jump param-

eters in the model significantly improves the fit of the model. Lastly, we simulate jump

intensities under our models’ settings and study cluster characteristics. We find the MHP

model outperforms other benchmark models in reproducing some features of the actual

data.

A potential explanation of why jumps might cluster comes from information asymmetry

(Grossman, 1976). Suppose a publicly listed company’s financial report indicates lower

profitability. The most informed trader or investor would liquidate the company’s stock

from their portfolio, which may have a negative effect on the company’s stock price. Less

informed investors may follow suit, potentially producing negative variations, or jumps,

clustering together. Lee (2012) also finds evidence of jumps in the stock market caused by

information releases at both the macro level and firm level. These reasons suggest the po-

tential importance of allowing for jump clustering in traditional asset pricing models, espe-

cially in recent times, given the higher-than-normal volatility in financial markets.

Some previous studies provide models of events clustering using self-exciting processes

or Hawkes processes (HPs) (as proposed by Hawkes, 1971a,b). HP differs from a Poisson

process, where events arrive randomly and independently of each other. HP relaxes the as-

sumption of independent events arrivals and allows the underlying intensity of events to de-

pend on past events. In addition, HP can be extended to MHP and multivariate MHP

(MMHP) (e.g., Liniger, 2009). These models emphasize the impact of marked values (jump

sizes) by allowing the intensities of events to depend on occurrences of past events. In add-

ition, intensities are allowed to depend on the marked values attached to other past events

(e.g., price jumps may depend on variance jumps).

There are many recent studies containing financial applications. Aı̈t-Sahalia, Cacho-

Diaz, and Laeven (2015) apply a multivariate HP to study jumps in international markets

(see also Gresnigt, Kole, and Franses, 2016; Lee and Seo, 2022). Lee and Seo (2017) apply

an MMHP to take both the impact of marked values and periodicity into account. They as-

sume a symmetric structure in their study of price and variance. They find that intraday

periodicity1 is an important aspect of the modeling of price and variance dynamics (also see

studies by Andersen and Bollerslev, 1997; Boudt, Croux, and Laurent, 2011). Lee and Seo

(2017) cut off the first and last 30 minutes in every trading day to reduce the effects of intra-

day periodicity, and study the interaction between price and variance jumps. These studies

provide a number of valuable insights regarding the application of Hawkes models.

However, they use nonparametric methods to filter out financial market jumps. We are

interested in incorporating the jump clustering feature into a general stochastic volatility

model.

A strand of literature considers parametric models of price and variance dynamics for

processes comprising both continuous and jump components. They accommodate Poisson

1 The variance of returns typically varies over a trading day, and tends to be highly correlated with

trading volume, which is often higher during market opens and closes (Andersen and Bollerslev,

1997).
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or Lévy processes in a continuous time semimartingale and commonly adopt the assump-

tion that jumps arrive randomly, and increments are mutually independent (see e.g.,

Merton, 1976; Duffie, Pan, and Singleton, 2000; Eraker, 2004). More recently, potential

interactions between price and variance jumps have been studied by Jacod et al. (2010) and

Bandi and Renò (2016). Our goal is to investigate whether allowing for jump clustering

provides superior models that better capture the characteristics of actual data.

Maneesoonthorn, Forbes, and Martin (2017) is similar to our study in some respects.

They use high-frequency (intraday) data to detect jumps and calculate variance estimates

and show that self-excitation is apparent in these estimates. However, their modeling uses

daily-frequency data. Consequently, they may miss intraday clustering: a jump can raise the

probability of a jump happening in the following few hours, but this may not show up in

daily movements.

Our interest is investigating the stochastic volatility model in the high-frequency setting:

a jump occurring in one day might, in fact, comprise a number of jumps within that day. At

a daily level, any interdependencies in the intraday jumps would not be evident. Consider

again a company disclosing negative news during trading hours. Traders can liquidate their

assets quickly, perhaps within the same day, establishing intraday movements in prices and

volatilities. So although jump clustering or self-excitation may be apparent in high-

frequency data, it may not be so at a daily level. Other aspects may be of interest too:

whether jump size is a determinant of clustering behavior, and the nature of the relationship

between the magnitude of the jumps and the effect on the future intensity of jumps.

Hence our main contribution is to study the intraday dynamics of jump clustering

within a general continuous-time asset pricing model. Our methodological contribution

is to embed an MMHP in a price and variance state space model, and simultaneously esti-

mate variances, jump magnitudes, and the effects price and variance jumps have on each

other, etc. In addition, we consider intraday periodicity, and the potential this has to

“hide” clustering behavior. In the estimation, we jointly estimate the static parameters

and latent states by Bayesian Markov chain Monte Carlo (MCMC). We conduct a prior

sensitivity analysis, and report diagnostic tests which attest to the reliability of the

estimates.

In our empirical work, we find that both high-frequency stocks and an index exhibit

self-exciting features. Our model also quantifies jump intensity. For example, using S&P

500 data, we show jump intensity or probability of jumps is lower than 1% during a

“peaceful” period and becomes as high as 15% during a cluster. However, it decays quickly

in the next few hours. We also show that price and variance jumps interact in an asymmet-

ric fashion. Specifically, negative price jumps are more likely to be produced by past nega-

tive jumps rather than positive jumps, while positive jumps are as likely to be produced by

past jumps of either sign. In addition, in some individual stocks, jump sizes are positively

correlated with the following jump intensity: larger jumps tend to generate higher future

jump intensity. Regarding the variance jumps, we find that variance jumps are more likely

to produce negative return jumps rather than positive return jumps. However, the effect of

variance jumps is much smaller than that of jumps in returns.

To judge the support the data lends to the various models in our study, we report the

Deviance Information Criteria (DIC) and the Bayes Factor. These are shown to favor the

modeling of returns and variance with MMHP models. We also evaluate the range of
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models we consider in terms of their ability to generate features found in the data—namely

aspects of the clustering of jumps. This goes beyond the general fit of the models to the

data, and highlights the ability of the models to capture aspects of particular importance.

The MMHP generally outperforms the other models in terms of reproducing these charac-

teristics. There is some evidence that the simpler HP is already sufficient to reproduce some

features of the clustering of variance jumps. The findings in this article may be relevant to

risk managers, high-frequency traders, and other practitioners, who may benefit from the

knowledge of the interdependencies of jumps.

The article is organized as follows. Section 1 contains the theoretical framework.

Section 2 presents the estimation method, along with jump detection methods. Section 3

discusses the empirical findings. Section 4 describes the simulation tests. We conclude in

Section 5. Some technical results are confined to an Appendix.

1 Theoretical Setup

In this section, we introduce a continuous-time price and variance jump-diffusion process

with an MMHP embedded, and present the discretized form of the model.

1.1 Continuous-Time Representation of Price and Variance Process

We let Pt be the natural logarithm of asset prices and Vt be the variance at time t, and con-

sider the following jump-diffusion process:

dPt � St ¼ ldt þ
ffiffiffiffiffi
Vt

p
dWP

t þ nPþ
t dNPþ

t þ nP�
t dNP�

t (1)

dVt ¼ cðh� VtÞdt þ rV

ffiffiffiffiffi
Vt

p
dWV

t þ nV
t dNV

t ; (2)

where St is a periodic component, l is a drift term, c and h denote the mean reversion speed

and the long-run variance mean, respectively, and rV refers to the volatility of volatility.

WP
t and WV

t are Wiener processes of return and variance, respectively, and we let incre-

ments of them be correlated EðdWP
t ; dWV

t Þ ¼ qdt. In terms of the jump components in the

processes, we separate price jumps into positive and negative groups. However, we only

consider positive variance jumps in our study, with decreases of variance captured by c and

h. fnPþ
t ; nP�

t ; nV
t g denote the size of the jumps. For ease of estimation, we let the sizes of the

price jumps jointly follow a normal distribution nPþ
t ; nP�

t � NðlP; rPÞ, and those of vari-

ance jumps follow an exponential distribution with mean lV , nV
t � expðlVÞ. In terms of

jump components, we employ the following three-dimensional MHP to present the jump

components in the processes:

PðdNi
t ¼ 1Þ ¼ ki

tdt; i ¼ fPþ;P�;Vg; (3)

where ki
t denotes the intensity of the counting process, which is defined as an MMHP in

Equation (4). This constitutes a departure from the literature. The continuous-time asset

pricing model typically assumes a constant jump intensity (see, e.g., Duffie, Pan, and

Singleton, 2000; Eraker, 2004; Bandi and Renò, 2016). Our model allows mutually de-

pendent jump intensities, which may be correlated with jump size. Another departure from

the literature is our use of intraday data to investigate the dynamics of price, variance, and

jump clustering, as opposed to the use of daily data in most previous studies.
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1.2 A Three-Dimensional MHP

Here we introduce an MMHP. The corresponding intensity of the jump processes in

Equation (3) is given by:

ki
t ¼ ki

0 þ
Xd

q¼1

#i
q

ð
½0;tÞ�N

/i
qðt � sÞxi

qðnqÞNqðds� dnÞ; (4)

where ki
0 denotes the immigration intensity of dimension i (three dimensions are indicated

in Equation 3) which is constant; q is a branching coefficient matrix; /i
q is a decay function

such that / : Rþ ! Rþ and we assume an exponentially decaying kernel /i
qðt � sÞ ¼

bi
qe�bi

qðt�sÞ; bi
q > 0. xi

qðnqÞ is an impact function of jump sizes, such that x : R! Rþ.

Remark 1 (Interpretation) Under a general HP, the immigrants arrive as a Poisson process

with immigration intensity ki
0 and jump sizes n. They generate subsequent arrivals (further

jumps), with an intensity which decays exponentially with the speed parameter b. q is

defined as a ð3� 3Þ branching matrix q :¼ #i
q; q; i 2 fPþ;P�;Vg and #i

q measures the

expected number of jumps in dimension i that is produced by jumps in dimension q. The

impact function xi
qðnqÞ measures the impact of the jump sizes nq in the dimension q.

Further details of MMHP and its interpretations are provided by Liniger (2009).

Remark 2 (A simple example) For a simple example of MMHP, given an occurrence of a

jump in dimension q (size: nq), the underlying intensity of dimension i will increase from ki
0

to ki
0 þ #i

q � xi
qðnqÞ � bi

q. Then, the incremental part of the intensity #i
q � xi

qðnqÞ � bi
q will

decay at a speed of /i
qðdtÞ ¼ bi

qe�bi
q �dt for every dt.

Further details, including stationary assumptions, are in Daley and Vere-Jones (2003),

with which most of our mathematical setup is in line.

Remark 3 (Impact Functions) Inspired by Liniger (2009), we normalized our impact func-

tions to satisfy some stationary conditions, denoting ~xqð�Þ as the impact function before

being normalized. The normalized impact function is given by:

xi
qðnqÞ ¼

~xi
qðnqÞ

E½~xi
qðnÞ�

(5)

and we consider four impact functions (before normalization) as follows:

~xi
qðnqÞ ¼ ~a i

q þ ~b
i

qjnqj þ ~ci
qjnqj2 ðIÞ

~xi
qðnqÞ ¼ jnqj~a

i
q ðIIÞ

~x i
qðnqÞ ¼ e~a i

q jnq j ðIIIÞ

~x i
qðnqÞ ¼ ~ai

q þ ~b
i

q logð1þ jnqjÞ ðIVÞ

(6)

We assume the parameters in the above impact functions fa;b; cg satisfy those within each

function, as at least one of the parameters is strictly positive. Also, noticeably, the jump

sizes have no impact on intensity processes when xðnÞ � 1. In addition, we assume an iden-

tical independent distribution of jump sizes.

Chen et al. jModeling Price and Variance Jump Clustering 5

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbad007/7082927 by guest on 20 July 2023



1.3 Discretized Form of Return and Variance Processes

Similar to previous studies, we apply an Euler discretization to the processes with Dt ¼
1

79�252 (equivalent to five minutes) and obtain the following forms:

ðPt � Pt�DtÞSt ¼ lþ
ffiffiffiffiffiffiffiffiffiffiffi
Vt�Dt

p
�Pt þ nPþ

t DJPþ
t þ nP�

t DJP�
t (7)

Vt ¼ av þ ð1þ bvÞVt�Dt þ rV

ffiffiffiffiffiffiffiffiffiffiffi
Vt�Dt

p
�Vt þ nV

t DJV
t ; (8)

where Pt and Vt denote the logarithm of the asset price and the variance at time t, St is a

periodic component and St ¼ It;s � fs, where s ¼ 1;2; . . . ; 79, and It;s is an indicator variable

such that It;s ¼ 1 when s corresponds to time t.2 l denotes the drift term, and rV denotes

the volatility of volatility. The mean reversion speed and level of variance are translated to

av, and bv, where av ¼ ch and bv ¼ �c (c; h are mean reversion speed and level of variance,

see Section 1.3). �Pt and �Vt are two random variables that follow a normal distribution

Nð0;1Þ with correlation corrð�Pt ; �Vt Þ ¼ q. ni
t; i ¼ fPþ;P�;Vg denote jump magnitudes,

which we specify by:

nPþ
t ; nP�

t � NðlP;rPÞ (9)

nV
t � expðlVÞ: (10)

The sizes of price jumps jointly follow a normal distribution, and variance jump sizes fol-

low an exponential distribution with a parameter lV , while DJi
t ¼ Ji

t � Ji
t�Dt; i ¼ fPþ;P�;Vg

is a Bernoulli random variable with corresponding time-varying intensity ki
t, so:

DJi
t � Bernoulliðki

tÞ; i ¼ fPþ;P�;Vg; (11)

DJi
t ¼ 1 can be viewed as an occurrence of a jump, and ki

t can be regarded as the probability

of a jump happening at time t. We consider a number of cases. The simplest and most com-

mon is that jumps follow a Poisson process, and the underlying intensity ki
t is constant at

ki
t � ki

0, such that the probability of a jump happening is the same over time and jumps ar-

rive independently. For a multivariate HP, without considering the impact of marks, the in-

tensity process is specified as follows:

kiðtÞ ¼ ki
0 þ

X
q

#i
q

X
0< s< t

/i
qðt � sÞ; i; q ¼ fPþ;P�;Vg; (12)

where #i
q is a branching matrix and /i

qð�Þ is an exponentially decaying kernel (see details of

interpretations in Remarks 1 and 2). In addition, by adding an impact function on jump

sizes xi
qð
:Þ, an MMHP can be introduced to define the intensity of dimension i at time t as

follows:

kiðtÞ ¼ ki
0 þ

X
q

#i
q

X
0< s< t

/iðt � sÞxi
qðnqÞ; i; q ¼ fPþ;P�;Vg; (13)

where xi
qð�Þ is the impact function. When xi

qð�Þ � 1, we obtain the previous multivariate

HP model in which jump size has no effect on intensity. We consider four different impact

functions (see Remark 3). By adding components of the right-hand side of Equation (13) in

2 We employ five-minute data, and, therefore, have seventy-nine observations in a trading day. The

time variable t is indexing every five minutes, and when s corresponds to time t, we adjust returns

by the periodic component fs.
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addition to ki
0, intensity, or probability of a jump happening is allowed to depend on past

jumps through the branching matrix #i
q and jump sizes through impact functions xi

qð�Þ.
Duffie, Pan, and Singleton (2000) proposed a stochastic volatility with correlated jumps

(SVCJ) model. They specify a dependent structure between the size of the price and the vari-

ance jump. But price and variance jump in the model are still assumed to arrive independ-

ently with constant underlying intensities. In our model, we assume the underlying

intensities of jumps are time-varying and consider how jump size affects the underlying

intensities.

2 Bayesian Estimation

We follow Eraker (2004) in using a Bayesian approach to estimate the stochastic volatility

model. Estimating parameters in the HP can be easily embedded in the estimation of the

price and variance dynamics. The Bayesian analysis of HP is provided by Rasmussen

(2013). We denote the static parameter vector as H ¼ fl; av; bv;rV ;q; k
i
0; b

i;Uig, where Ui

denotes parameters in the impact function (6) and depends on which function is used. We

also denote the latent state vector as Xt ¼ fDJPþ
t ;DJP�

t ;DJV
t ; n

Pþ; nP�; nV ;q;Vtg. Then, the

joint posterior distribution using the Bayes formula is:

pðH;XtjPtÞ / pðPtjH;XtÞpðXtjHÞpðHÞ (14)

The posterior given in Equation (14) is apparently not available in closed form due to

the complexity of the processes. Therefore, we adopt a MCMC method to generate a se-

quence of draws on parameters and latent variables and simulate the posterior. The specifi-

cation of priors and details of the algorithm are in Appendix A.

However, the estimation is subject to a significant computational burden. Therefore, we

make an assumption regarding Equation (12), namely that:

kiðtÞ ¼ ki
0 þ

X
q

#i
q

X
i< s< t

/i
qðt � sÞxi

qðnqÞ; i;q ¼ fPþ;P�;Vg; (15)

where i ¼ �log c
bi

q

� �
and we take c ¼ 0:01%. Note in the original Equation (12), i ¼ 0. This

assumption on i avoids the need to consider the impact of all the past jumps. Instead, we

consider only those jumps whose impact has not decayed by over 99.99%. In other words,

we assume that when the incremental intensity raised by a past jump has decayed by over

99.99%, it can be ignored. This greatly facilitates the calculation of the marginal likelihood

of the jump processes, and speeds up the MCMC estimation algorithm.

3 Empirical Application

In this section, we introduce our dataset and set out the range of models to be considered.

We first report the parameter estimates of the price and variance process and MMHP ker-

nels. We then compare the models in terms of their fit to the data, and finally present a

prior sensitivity analysis and some diagnostic tests regarding the convergence of the

MCMC. We estimate the model with 40,000 loops, with the first 10,000 as the burn-in

period.
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3.1 Data

We retrieved five-minute price data from Bloomberg for four individual stocks across dif-

ferent industries; namely, Apple (AAPL), Boeing (BA), J.P. Morgan (JPM), Coca-Cola

(KO), and the S&P 500 Index from January 3, 2012 to December 31, 2019. We chose these

stocks as they are large firms that have high liquidity, are from different industries, and are

likely to be followed by analysts and therefore react to news quickly. We also examine three

ETF data, namely iShares FTSE China Index Fund, iShares MSCI Spain ETF, and SPDR

S&P 500 Trust ETF. We cleaned the data following the approach in Barndorff-Nielsen

et al. (2008). We set the time unit Dt ¼ 1
79�252. We do not discard overnight returns, but in-

stead capture the large variation of overnight returns by an intraday periodicity term in

some instances. In Figure 1, we plot the log return (Yt ¼ Pt � Pt�Dt), the log return minus

estimated jumps (Yt � nP
t ), and estimated volatility (

ffiffiffiffiffi
Vt

p
) of the individual stocks and the

S&P 500 Index, for the period 2012–2019.

3.2 Parameters Estimated in Price and Variance Process

We estimate Equations (7) and (8), but with different specifications for the intensities of

jumps fJPþ
t ; JP�

t ; JV
t g. We specify seven models (M1 toM7) in Table 1 representing alterna-

tive ways of modeling jump intensity. M1 is our benchmark model, corresponding to the

SVCJ model of Duffie, Pan, and Singleton (2000).3 M2 and M3 exhibit jump clustering,

modeled by the multivariate HP, but M2 ignores the intraday periodicity and assumes

St � 1.M4 toM7 model jumps by MMHP with different impact functions.

In Table 2, we report the parameter estimates of the price and variance processes for

M1. We do not record the estimates of these parameters for the other model specifications,

because they change little, and are of secondary interest compared to the jump parameters.

3.3 Jump Clustering Parameters

In this subsection, we report the parameter estimates of the Hawkes kernels in M2 and

M3. We set the impact function to xqðnqÞ � 1, which implies jump sizes do not impact fu-

ture jump intensities. A summary of the results is in Table 3, with full results reported in

the Supplementary Appendix. In Table 3, we give the posterior means of the parameters,

and their significance.4 For price jumps, there is a clear finding that, without periodicity

(M2), f#pþ
pþ; #

pþ
p�; #

p�
pþ; #

p�
p�g, are significantly greater than 0. Although this self-excitation

feature appears in individual stocks data, it does not do so for the S&P 500 Index. This re-

sult is in tune with previous studies, such as Foschi, Lilla, and Mancini (2019). However,

with periodic components (M3), the price jumps in the S&P 500 also display self-

excitation. We find that the decay speed of some variance jumps is faster than others judged

by the values of fbv
v;b

v
p�; b

v
pþg.

3 They assume a constant jump intensity but allow jump sizes be correlated:

nP
t � NðlJ þ qJnV

t ; rJÞ.
4 To give a broad view of whether estimated parameters are different from 0, we look at whether

95% of their posterior distribution is greater than 0. For those posteriors that are truncated at 0

(they are not allowed to be sampled at any negative values), we look at whether their posterior

means minus two times their posterior standard deviations is greater than 0. We refer to this as

“significance” throughout this article.
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The results also suggest asymmetry of the branching coefficient matrix q. Specifically,

posterior mean of #
pþ
p� is not statistically significantly different from that of #

pþ
pþ (0.046

and 0.044, first column inM3 panel). There is no evidence that positive jumps are more or

less likely to be produced by positive as opposed to negative price jumps. However, a pos-

terior mean of #p�
p� is statistically significantly greater than #p�

pþ (0.046 and 0.088, 2nd col-

umn in M3 panel). This suggests negative jumps are more likely to follow from negative

jumps than to be produced by positive jumps. There are some other studies that look at the

heterogeneity of positive and negative return variations. For example, Bollerslev, Li, and

Zhao (2020) find that positive and negative return variations are priced differently in asset

prices.

Furthermore, we find that variance jumps are more likely to produce negative return

jumps than positive ones (0.02 and 0.025 in Column 3, M3; 0.038 and 0.048 in the last

column, M3). This is consistent with the results in Ait-Sahalia, Fan, and Li (2013), which

Figure 1 Log return, estimated volatility and return minus return jumps of individual stocks and S&P

500 Index.

Notes: This figure presents log returns (Yt ¼ Pt � Pt�1), return minus estimated return jumps (Yt � nP
t ),

and the estimated volatility (
ffiffiffiffiffi
Vt

p
).

Table 1 Specification ofM1 toM7

Price and variance process with jumps modeled by

M1 Correlated jump size components (SVCJ) model

M2 HP without intraday periodicity (St � 1)

M3 HP with intraday periodicity

M4 MHP with impact function (6, I)

M5 MHP with impact function (6, II)

M6 MHP with impact function (6, III)

M7 MHP with impact function (6, IV)
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Table 2 Posterior mean and standard deviation of parameters in price and variance process

AAPL BA JPM KO SPX

Posterior

mean

Posterior

std. dev.

Posterior

mean

Posterior

std. dev.

Posterior

mean

Posterior

std. dev.

Posterior

mean

Posterior

std. dev.

Posterior

mean

Posterior

std. dev.

lð�10�4Þ 3.822 3.721 0.602 3.533 1.128 3.018 2.980 2.304 6.610 1.815

avð�10�3Þ 1.461 0.057 1.572 0.044 0.924 0.032 0.610 0.021 0.171 0.005

bv 20.017 0.001 20.024 0.001 �0.018 0.001 20.028 0.001 20.014 0.001

r2
Vð�10�3Þ 2.039 0.057 1.984 0.046 1.097 0.031 0.634 0.019 0.272 0.008

q 20.161 0.010 20.070 0.009 20.129 0.011 20.053 0.010 20.237 0.010

lP 20.019 0.031 20.038 0.031 0.013 0.030 20.005 0.023 20.039 0.015

rP 0.7264 0.0566 0.7805 0.1239 0.4932 0.0498 0.2650 0.0272 0.1586 0.0172

lV 0.0025 0.0005 0.0021 0.0004 0.0040 0.0011 0.0050 0.0016 0.0054 0.0018

Notes: Parameters are estimated with data inflated by 79 � 100 times. Significant values (95% of the posterior distribution is greater than 0) are marked in bold.

1
0

J
o

u
rn

a
l
o

f
F

in
a

n
cia

l
E

co
n

o
m

e
trics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbad007/7082927 by guest on 20 July 2023



Table 3 Summary of select parameter posteriors

Individual stocks S&P 500 ETF

pþ p� v pþ p� v pþ p� v

# inM2

pþ 0.02 (0/4) 0.014 (0/4) 0.015 (0/4) 0.007 (0/1) 0.006 (0/1) 0.015 (0/1) 0.016 (0/3) 0.019 (0/3) 0.016 (0/3)

p� 0.043 (4/4) 0.036 (4/4) 0.015 (0/4) 0.02 (0/1) 0.016 (0/1) 0.012 (0/1) 0.029 (2/3) 0.047 (2/3) 0.010 (1/3)

v 0.024 (0/4) 0.017 (0/4) 0.009 (0/4) 0.014 (0/1) 0.011 (0/1) 0.027 (0/1) 0.003 (0/3) 0.008 (0/3) 0.037 (0/3)

# inM3

pþ 0.046 (4/4) 0.046 (4/4) 0.02 (2/4) 0.039 (1/1) 0.034 (1/1) 0.023 (1/1) 0.051 (3/3) 0.031 (3/3) 0.038 (2/3)

p� 0.044 (4/4) 0.088 (4/4) 0.025 (4/4) 0.052 (1/1) 0.077 (1/1) 0.033 (0/1) 0.075 (3/3) 0.091 (3/3) 0.048 (3/3)

v 0.017 (0/4) 0.009 (0/4) 0.026 (2/4) 0.011 (0/1) 0.009 (0/1) 0.013 (0/1) 0.012(0/3) 0.102(2/3) 0.116 (2/3)

~binM4

pþ 0.35 (3/4) 0.35 (2/4) 0.325 (0/4) 0.351 (0/1) 0.452 (1/1) 0.309 (0/1) 0.382 (2/3) 0.015 (0/3) 0.057 (0/3)

p� 0.3 (1/4) 0.375 (4/4) 0.3 (0/4) 0.37 (0/1) 0.382 (1/1) 0.358 (0/1) 0.252 (1/3) 0.651 (3/3) 0.267 (0/3)

v 10.775 (0/4) 14.425 (1/4) 15.5 (3/4) 12.225 (0/1) 16.155 (0/1) 8.217 (0/1) 12.4 (1/3) 19.5 (1/3) 10.1 (1/3)

~c inM4

pþ 0.025 (0/4) 0.05 (0/4) 0.05 (0/4) 0.053 (1/1) 0.021 (0/1) 0.085 (0/1) 0.042 (1/3) 0.028 (0/3) 0.036 (0/3)

p� 0.05 (0/4) 0 (0/4) 0.075 (0/4) 0.03 (0/1) 0.024 (0/1) 0.043 (0/1) 0.012 (0/3) 0.039 (1/3) 0.024 (0/3)

v 11.65 (3/4) 12.6 (3/4) 8.1 (2/4) 28.024 (1/1) 29.456 (1/1) 52.929 (1/1) 27.56 (1/3) 19.6 (2/3) 94.9 (3/3)

~b inM7

pþ 0.825 (4/4) 0.85 (3/4) 0.875 (0/4) 0.811 (1/1) 0.739 (0/1) 0.795 (0/1) 1.157(2/3) 1.542 (2/3) 0.108 (0/3)

p� 0.775 (4/4) 0.75 (4/4) 0.775 (1/4) 0.78 (1/1) 0.782 (1/1) 0.781 (0/1) 1.368 (3/3) 2.015 (3/3) 0.095 (0/3)

v 13.3 (2/4) 14.925 (2/4) 15.175 (1/4) 10.245 (0/1) 18.212 (0/1) 14.373 (0/1) 9.62(1/3) 12.548 (2/3) 9.541 (1/3)

Notes: This table presents posterior means and the number of significant results of some parameters in models. The rows record the responses to the dimensions of variables in the col-

umns. For example, # denotes the mean number of jumps of one dimension that is produced by another dimension. So, the 0.043 (#pþ
p� in the 2nd row, 1st column) means in individual

stock data, there are, on average, 0.043 negative price jumps (p�) produced by positive price jumps (pþ). In addition, there are in total four individual stocks and this parameter is sig-

nificant for all of them, hence, (4/4).
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find jumps to be a source of the leverage effect. In addition, the impact of variance jumps

on other types of jumps is smaller, and often associated with a faster rate of decay.

3.4 Impact of Jump Sizes

We next examine the impacts of jump sizes. The results of the jump-size-related parameters,
~b and ~c inM4, and ~b inM7, are also reported in Table 3. These parameters are from the

impact functions (see Equation 6) of MMHPs.

In Table 3, some of the coefficients of jump size are significantly greater than 0, and are

associated with a high decay rate (b). For example, given b ¼ 0:5, the intensity heightened

by past jumps will decay to 5% of the original after five time-units (30 minutes), and it will

decay to 0.3% within the same time if b ¼ 1. However, the percentage will be 41% if

b ¼ 0:15. Therefore, the magnitude of b, and not just its statistical significance, plays key a

role in determining the likelihood of future jumps being generated.

Table 3 also shows that some of the coefficients f~bpþ
pþ;

~b
p�
p�g, f~cpþ

v ;~cp�
v ;~cv

vg in M4 and

f~bpþ
pþ;

~b
pþ
p�;

~b
p�
pþ;

~b
p�
p�g in M7 are statistically significantly positive. This suggests that the

underlying intensities of jumps may be affected by both positive and negative jumps, and

that larger price jumps may generate higher intensities for future price jumps.

Moreover, the interaction between price jumps and variance jumps is captured by the

coefficients of squared jump sizes f~cv
pþ;~c

v
p�g, but they are less significant in the log trans-

form of jump sizes.

The parameter estimates for M5 and M6 suggest strong evidence of self- and cross-

exciting behavior. The parameters in M5 are mostly significant, and

f~apþ
pþ; ~a

pþ
p�; ~a

p�
pþ; ~a

p�
p�; ~a

v
vg inM6 are all significant.

Finally, to better bring out some of the features of the models, we provide a graphical

analysis of some of the latent variables of our model (M7 in Table 1), estimated using S&P

500 Index data from December 12, 2018 to December 26, 2018 (two weeks, ten trading

days) in Figure 2. Note the flat line of price and return on December 24, 2018 is due to the

early close (2:00 P.M.) of the stock market on Christmas eve. The intraday periodicity com-

ponent (third figure) is estimated as having a clear U-shape. The last three figures plot the

estimated return jumps, volatility jumps, and the negative jump intensity. We collect these

jumps and jump intensities from the last iteration of the MCMC algorithm. We see that on

December 21, 2018, the market was turbulent, and the index dropped by 3.1% at the end

of the day. The model estimated volatility (green line) shows a clear increase during that

day, but this is insufficient to fully explain the variability of returns. Instead, three negative

jumps are identified, creating a cluster of negative return jumps. This cluster lasted

1.5 hours in total, and the underlying intensity of negative jumps is as high as 15%. The

index dropped by 1.6% during the cluster. Although there are four spikes in the estimated

intensity, only three negative jumps are shown, with the additional spike being created by

cross-excitation from a positive return jump. We provide two more examples of return and

variance jump clustering in the Supplementary Appendix.

3.5 Model Fit

To assess the goodness-of-fit of our models (M1 to M7), we calculate the DIC of

Spiegelhalter et al. (2002) and the Bayes factor of Kass and Raftery (1995). The DIC is cal-

culated from the log-likelihood penalized by model complexity, and can be easily obtained
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in an MCMC algorithm. A lower value indicates a better fit of the model. Table 4 shows

thatM1 (modeling jumps as a Poisson process) has the highest DIC, while the MMHP with

impact function (6, VII) is rewarded with the lowest DIC (M7). In addition, three of the

four MMHP models (M4, M5, M7) outperform the multivariate-HP model M3 which

does not feature an impact from jump size. Finally, not surprisingly,M6 with an exponen-

tial impact function underperforms M3, since the parameters inM6 suggest there are few

self-exciting features in the data.

Table 5 reports the log values of the Bayes factor across the seven models. We find that

M1 is inferior to all the other models. In addition, the results show a large discrepancy be-

tween other models against M2 and M3, which suggests the importance of considering

intraday periodicity. In addition, the log Bayes factor ofM6 againstM3 is negative, which

is in line with the results for the DIC.

It is unclear whether M4 or M7 provides the better fit. Overall, M7 presents better

results, butM4 prevails for the BA data. The marginal likelihood estimates for the different

models can be seen in Appendix B.

3.6 Robustness Check

Since our model is heavily parameterized, it is important to ensure the estimation is reliable.

We perform a prior sensitivity analysis and some diagnostic tests on the convergence of the

MCMC.

Figure 2 Latent variables of S&P 500 Index two weeks from December 12, 2018 estimated inM7.

Notes: This figure plot some latent variables of the model (M7) estimated using S&P 500 Index data

from December 12, 2018 to December 26, 2018 (two weeks, 10 trading days). The first figure (P �t ) is the

price of S&P 500, and Yt denotes the log return. We collect the last three variables (return jumps, vola-

tility jumps, and the negative return jump intensity) from the last iteration of the MCMC algorithm.

Note the flat line on December 24, 2018 is due to the early close (2:00 P.M.) of the stock market on

Christmas eve. Note on December 21, 2018, the market entered a turbulent trading period and the

index dropped by 3.1% at the close. Three negative jumps are identified, which created a cluster of

negative return jumps and lasted 1.5 hours. The index dropped by 1.6% during the cluster.
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3.6.1 Prior sensitivity analysis

We conduct a sensitivity analysis of the prior to investigate if the estimates of the latent var-

iables and some of the key variables of interest are unduly sensitive to the values chosen for

the priors. We follow Chib, Nardari, and Shephard (2002) and Nakajima and Omori

(2009), who specify alternative priors of variance and jump-related parameters to test their

sensitivities. Our selected values are summarized in Table 6. We examine the prior of the

mean-reversion speed parameter bv and the jump variance parameter r2
P. We also consider

the jump-clustering-related parameters fq; bg. The alternative settings of jump-clustering-

related parameters are inspired by Rasmussen (2013). In the tests, we focus on M4 and

M7, because these models contain jump clustering parameters and are the best-performing

models in terms of fit.

The results of the sensitivity analysis are presented in Table 7. Overall, parameters in

the price and variance processes are not overly affected by different prior settings. Some

parameters fl;q;rYg vary more than others (fav; bv;r
2
V ;lVg) under alternative settings. Of

the jump clustering parameters, Pr1 has the biggest influence inM7. Nevertheless, the devi-

ations of the posterior means from their original values (Pr0) are no higher than 7.5%.

Posterior standard deviations are more affected. The full table of results for the sensitivity

analysis is provided in the Supplementary Appendix.

3.6.2 MCMC Convergence diagnostic tests

We perform a Geweke diagnostic test (Geweke et al., 1991) and a Raftery–Lewis test

(Raftery and Lewis, 1991) to examine the convergence of the parameter estimates.

The Geweke test divides a Markov chain of a sampled variable into two parts—p1%

and p2% where p1 þ p2 < 1, and tests whether these two parts of the chain have the same

mean. Geweke et al. (1991) detail the calculation of the standard error for this test, a pro-

cedure known as tapering. After discarding the burn-in period, the traces of the parameters

are divided into two even parts, and Table 8 reports p-values of the test with tapering of

4%, 8%, and 15%. A small p-value indicates the rejection of the null that the two parts of

the chain have equal means.

The Geweke test results suggest that most parameters have converged, but there are

some exceptions. It is also noticeable that although posterior means of some parameters are

significantly greater than 0—suggesting self/cross-excitation behavior, their traces have not

converged (e.g., ~cv
p�). We also perform a Raftery–Lewis test, and the results are similar.

Table 4 DIC ofM1 toM7

AAPL BA JPM KO SPX

M1 276,836 303,607 296,915 394,377 510,339

M2 274,364 301,632 295,344 393,650 506,624

M3 272,104 298,750 291,587 391,447 500,386

M4 267,014 247,398 273,056 383,631 491,936

M5 271,907 294,875 289,265 389,559 499,173

M6 272,454 298,988 291,770 391,608 500,323

M7 264,881 249,458 267,975 382,774 490,330
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Table 5 Log Bayes Factor (BF) ofM1 toM7

AAPL KO

M7 M6 M5 M4 M3 M2 M7 M6 M5 M4 M3 M2

M1 3276.2 1768.5 3154.4 3205.5 2130.3 700.9 M1 4265.4 2351.4 3814.0 4212.8 2904.8 1017.7

M2 2575.3 1067.6 2453.5 2504.6 1429.4 M2 3247.7 1333.7 2796.3 3195.1 1887.0

M3 1145.9 2361.8 1024.1 1075.2 M3 1360.7 2553.3 909.3 1308.1

M4 70.8 21436.9 251.1 M4 52.6 21861.4 2398.8

M5 121.9 21385.9 M5 451.4 21462.6

M6 1507.7 M6 1914.0

BA SPX

M7 M6 M5 M4 M3 M2 M7 M6 M5 M4 M3 M2

M1 10135.6 8409.4 9748.3 10167.9 9265.3 1559.2 M1 7143.3 4159.2 6225.2 6487.5 4032.2 1010.0

M2 8576.4 6850.1 8189.1 8608.7 7706.1 M2 6133.3 3149.2 5215.2 5477.5 3022.1

M3 870.3 2856.0 483.0 902.6 M3 3111.2 127.0 2193.0 2455.3

M4 232.3 21758.5 2419.6 M4 655.9 22328.3 2262.3

M5 387.3 21339.0 M5 918.1 22066.0

M6 1726.2 M6 2984.1

JPM

M7 M6 M5 M4 M3 M2

M1 4484.9 1342.3 3814.9 4354.4 1056.1 337.7

M2 4147.2 1004.6 3477.2 4016.6 718.4

M3 3428.8 286.2 2758.8 3298.2

M4 130.5 23012.1 2539.4

M5 669.9 22472.6

M6 3142.6

Note: The table presents the log BF ofM7 toM2 (row) againstM1 toM6 (column).
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The results are confined to Appendix C. We also provide the trace plots and posterior histo-

grams of parameters in the Supplementary Appendix.

4 Clusters and Simulation Test

We next evaluate the models by focusing on their ability to capture features of the data of

particular interest. We do this by simulating data from the estimated models and seeing

whether these data have the features that characterize the actual data. This approach has

been used by Hess and Iwata (1997) and Clements and Krolzig (2004) to assess whether a

number of time-series models can reproduce business cycle features. Our approach is in line

with that used in Clements and Krolzig (2004).

4.1 Cluster

In this section, we explain how we define a cluster of jumps. The way we define a cluster of

jumps is similar to Foschi, Lilla, and Mancini (2019). The intuition is that jumps may escal-

ate their underlying intensity to be above a “normal” level for a short period, before the in-

tensity returns to the “normal” level. For example, suppose k jumps occurred, and these k

jumps are a cluster. If k ¼ 1, there are no jumps in the cluster other than the original one.

In this case, the intensity returns to normal before any other jumps occur. Jumps occurring

subsequent to this are assumed to belong to a new cluster. The formal definition is as

follows.

Definition 1 (Cluster) Given the occurrence of k jumps at times t1; . . . ; tk during the

period ½t1;T� starting with an immigrant jump at t1, these k jumps form a cluster if the in-

tensity: (i) before the occurrence of t1 jump, is within a range around ground intensity

kt1� 2 ½k0; ~k� and (ii) above the threshold ~k during the period ½t1;T�. The ~k is the tolerance

level.

4.2 Nonparametric Estimation

The models provide estimates of latent jumps and parameters from which the underlying

intensity of jumps can be calculated, allowing us to determine the average number of jumps

in a cluster. However, this would make the determination of the degree of clustering de-

pendent on the model, and would favor those models that, by design, incorporate this fea-

ture over others which do not. To enable a fair comparison between the models, we

estimate the feature of interest in the models’ simulated output, not as a function of the

models’ parameters. We adopt a nonparametric estimation of price and variance jumps,

and underlying jump intensities.

Table 6 Prior settings in the sensitivity analysis

Original setting

Pr1 : bv � Uð0; 1Þ bv � Nð0; 1Þ1bv>0

Pr2 : r2
P � IGð10; 80Þ r2

P � IGð10; 40Þ
Pr3 : q � expð0:1Þ q � Nð0; 0:1Þ1q>0

Pr4 : q � expð0:1Þ, b � expð0:1Þ q � Nð0; 0:1Þ1q>0, b � Nð0; 0:1Þ1b>0
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Table 7 Prior sensitivity analysis

M4

Pr0 Pr1 Pr2 Pr3 Pr4

Posterior

mean

Posterior

std. dev.

Posterior

mean

Posterior

std. dev.

Posterior

mean

Posterior

std. dev.

Posterior

mean

Posterior

std. dev.

Posterior

mean

Posterior

std. dev.

lð�10�4Þ 6.508 1.491 6.477 1.557 6.538 1.571 6.539 1.307 6.478 1.499

avð�10�3Þ 0.167 0.006 0.169 0.006 0.166 0.005 0.170 0.005 0.169 0.005

bv 20.014 0.001 20.013 20.001 20.013 0.001 20.013 0.000 20.014 0.001

r2
Vð�10�3Þ 0.268 0.008 0.268 0.011 0.263 0.010 0.266 0.004 0.265 0.012

q 20.240 0.011 20.236 0.011 20.240 0.010 20.235 0.011 20.244 0.012

lP 20.032 0.019 20.036 0.020 20.037 0.024 20.030 0.016 20.035 0.021

rP 0.160 0.018 0.161 0.019 0.161 0.017 0.158 0.018 0.161 0.018

lV 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002

q 0.450 0.324 4.8% 13.1% 7.3% 15.8% 5.1% 20.0% 5.2% 15.7%
~b 0.351 0.279 3.1% 16.8% 5.9% 18.3% 4.8% 16.2% 5.4% 19.8%

~c 0.053 0.031 3.5% 13.7% 2.3% 8.8% 5.0% 15.1% 4.9% 14.6%

log-likelihood 253,591 253,548 253,576 253,491 253,453

DIC 491,936 492,301 491,953 491,849 492,391

(continued)
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Table 7 Continued

M7

Pr0 Pr1 Pr2 Pr3 Pr4

Posterior

mean

Posterior

std. dev.

Posterior

mean

Posterior

std. dev.

Posterior

mean

Posterior

std. dev.

Posterior

mean

Posterior

std. dev.

Posterior

mean

Posterior

std. dev.

lð�10�4Þ 6.610 1.815 6.657 1.920 6.572 1.941 6.640 1.784 6.602 1.732

avð�10�3Þ 0.171 0.005 0.175 0.006 0.171 0.006 0.171 0.005 0.168 0.005

bv 20.014 0.001 20.014 0.002 20.013 0.001 20.014 20.001 20.013 0.001

r2
Vð�10�3Þ 0.272 0.008 0.274 0.015 0.274 0.009 0.275 0.011 0.274 0.013

q 20.237 0.010 20.232 0.009 20.239 0.010 20.236 0.010 20.241 0.009

lP 20.039 0.015 20.040 0.013 20.042 0.016 20.038 0.021 20.041 0.014

rP 0.159 0.017 0.157 0.019 0.157 0.018 0.159 0.017 0.160 0.017

lV 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002

q 0.507 0.157 6.8% 18.0% 4.1% 10.2% 3.8% 10.8% 3.0% 19.5%
~b 0.811 0.240 4.4% 14.4% 4.2% 11.9% 4.0% 15.0% 3.7% 14.5%

log-likelihood 254,246 254,002 254,272 254,216 254,016

DIC 490,330 490,562 490,397 490,406 490,576

Notes: Since f~b;~cg are 3� 3 dimensions (i.e., ~b ¼ ~b
i

q, i; q 2 fpþ; p�; vg), in this table, we report the mean percentage of deviations from the Pr0 and full details are provided in the

Supplementary Appendix.
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Assume the price process over the time interval [0, T] is observed at times

ti :¼ iDn; 1 	 i 	 n, where Dn ¼ T=n presents the time increments. We further denote

Dn
i J :¼ Jti

� Jti�1
as jumps.5 We filtered price and variance jumps (Dn

i JP, Dn
i JV) nonparamet-

rically, and details can be seen in Appendix D. We use kernel density estimation (KDE) to

estimate the underlying intensity of jumps, and then determine the clusters. The underlying

intensity at a given time s 2 ð0;TÞ is defined as:

k̂
q

s ¼
Xn

i¼1

Khðti�1 � sÞDn
i Jq; q 2 fPþ;P�;Vg (16)

where Khð�Þ is a kernel function with bandwidth h, such that
Ð

KhðxÞdx ¼ 1 and

KhðxÞ ¼ 1
h K x

h

� �
. We use the exponential kernel KðxÞ ¼ 1

2 expð�xÞ and set h ¼ 40Dn. In terms

of the tolerance level, we take ~k ¼ f
2h e�

1
h, f ¼ 5%, which is calculated as 5% of the underly-

ing intensity at the time that the immigrant jump occurred.

Setting h ¼ 40Dn means that intensity is determined based on the trading day around

the period, in keeping with our aim of capturing the intraday jump clustering effect.

Table 8 Geweke diagnostic test

4% 8% 15% 4% 8% 15%

lð�10�4Þ 0.011 0.032 0.049 MMHP parameters inM4

að�10�3Þ 0.205 0.326 0.393 ~b
pþ
pþ 0.499 0.593 0.641

b 0.218 0.331 0.390 ~b
pþ
p� 0.357 0.421 0.533

r2
Vð�10�3Þ 0.482 0.560 0.593 ~b

pþ
v 0.002 0.023 0.074

q 0.059 0.100 0.120 ~b
p�
pþ 0.003 0.023 0.048

lP 0.562 0.627 0.673 ~b
p�
p� 0.099 0.181 0.323

rP 0.508 0.581 0.595 ~b
p�
v 0.027 0.102 0.196

lV 0.349 0.343 0.263 ~b
v

pþ 0.000 0.004 0.017
~b

v

p� 0.049 0.094 0.109

MMHP parameters inM7
~b

v

v 0.489 0.597 0.662

~b
pþ
pþ 0.432 0.508 0.597 ~cpþ

pþ 0.687 0.644 0.600

~b
pþ
p� 0.596 0.681 0.730 ~cpþ

p� 0.121 0.136 0.112
~b

pþ
v 0.601 0.650 0.638 ~cpþ

v 0.000 0.000 0.000
~b

p�
pþ 0.445 0.554 0.613 ~cp�

pþ 0.186 0.107 0.032

~b
p�
p� 0.242 0.368 0.461 ~cp�

p� 0.792 0.804 0.811

~b
p�
v 0.884 0.910 0.924 ~cp�

v 0.000 0.000 0.000
~b

v

pþ 0.027 0.076 0.107 ~cv
pþ 0.173 0.185 0.205

~b
v

p� 0.797 0.836 0.856 ~cv
p� 0.028 0.037 0.037

~b
v

v 0.024 0.078 0.127 ~cv
v 0.047 0.112 0.132

Notes: The burn-in period is discarded and the remaining traces of parameters are divided into two even parts

for the test. The table reports p-values of the Geweke test tapered with 4%, 8%, and 15% autocovariance. A

small p-value indicates the rejection of the null that two parts of the chain have different means.

5 Dn
i J is the same as DJt in Equations (7) and (8). But it is a more general notation for the conveni-

ence of demonstrating our nonparametric estimation approaches.
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We also experiment with different bandwidths. We find that the choice of bandwidth does

not unduly affect our results for a reasonable range of values.

We have investigated this by randomly generating 1000 events during 100,000Dn

(kt ¼ 0:01) and counting the number of jumps in clusters using the proposed

method. We plot the average number of jumps and the standard deviation of the number of

jumps in clusters given different bandwidths in the upper two graphs of Figure 3. Ideally,

the average number of jumps should equal 1 with a very low standard deviation since

events are randomly drawn. The figure shows that results are very similar for bandwidths

smaller than seventy, but become unreasonable for wider bandwidths. The bottom two fig-

ures plot the means and standard deviations of the number of negative jumps in S&P 500

Index with different bandwidths. Again, results are very similar, with bandwidths ranging

from thirty to sixty. We conclude that our findings are not unduly sensitive to the choice of

bandwidth.

Similarly, the choice of f in calculating the tolerance level (~k) does not unduly affect our

results either. We plot the means and standard deviations of the number of negative return

jump in clusters under different f in Figure 4. Very small values of f lead to a too-small tol-

erance level ~k, and an unreasonably high average number of jumps in clusters. The reverse

happens for large values of f. For a range of values between these extremes, we find the

“right” average size of one.

4.3 Characteristics of Interest

We choose the average number of jumps in a cluster, and the standard deviation of the

number of jumps in a cluster, as the two characteristics of interest. Clustering is a feature of

Figure 3 Mean and standard deviation of the number of jumps in clusters under different bandwidth.

Notes: We randomly generate 1000 events during 100,000Dn (kt ¼ 0:01) and count the number of

jumps in clusters using the method we proposed. The upper two graphs plot the average number of

jumps and the standard deviation of the number of jumps in clusters given different bandwidths. The

bottom two figures plot the mean and standard deviation of the number of negative jumps in the S&P

500 Index with different bandwidths.
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the data, so we compare the models in this dimension—their ability to match this feature of

the data—irrespective of their overall fit. Poisson processes treat occurrences of jumps as in-

dependent events, so there should, on average, be only one jump in each cluster, and we

would expect such processes to fail to match the data in this regard. On the other hand,

multivariate HP and MMHP emphasize the clustering of jumps, and are expected to pro-

duce clusters with more than one jump. However, unlike HP, MMHP allows jumps with

larger sizes to raise intensities, which also take a longer time to die away. Hence the distri-

bution of the number of jumps under HP and MMHP can be different, and may allow

some discrimination between these two models.

We consider M1, M3, M4, and M7, and treat these models as the DGP, setting their

parameters to their posterior means of the Bayesian model estimation. The feature value

from the actual data can then be compared to the empirical distributions of the features

from the models. If the feature value on the actual data is “extreme” relative to a model’s

distribution, we infer that the model is unable to capture that feature.

Specifically, denote by Ci the ith characteristic (either the 1st or 2nd moments of the

number of jumps). Assumes there are J simulations. We rank the characteristic on each rep-

lication: fCð1Þi . . . C
ðJÞ
i g. A confidence interval with a significance level SL is given by

½F�1
Ci

SL
2

� �
; F�1

Ci
ð1� SL

2 Þ�, where FCi
denotes the empirical cumulative distribution of charac-

teristic Ci. For example, taking J¼10,000, and significance level at 5%, the upper and

lower limit of the confidence interval will then be F�1
Ci
ð2:5%Þ, and F�1

Ci
ð97:5%Þ, confidence

interval, thus, is taken as ½Cð250Þ
i ;C

ð9750Þ
i �.

4.4 Testing Results

Table 9 presents the summary statistics for the number of jumps in clusters. On average,

there are two-to-three jumps per cluster, with more jumps in clusters for some individual

stock data. In addition, there is a clear pattern that the average number of variance jumps is

lower than that of price jumps. Also, around half of the clusters consist of more than one

jump. We also collect the time spans that clusters of jumps cover, and denote these as clus-

ter lengths. As can be seen in the table, the cluster length of negative return jumps ranges

from thirty to seventy time intervals, that is, 2.5–6 hours. A negative return jump can im-

pact jump probabilities for the next 2.5–6 hours. It is also apparent that negative return

jump clusters last longer than those positive return jumps and variance jumps.

Figure 4 Mean and standard deviation of the number of jumps in clusters under different f.

Notes: This figure studies those statistics of negative return jumps in S&P 500 Index. We test a range

of f from 0.1% to 20%.
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We simulate 50,000 series of data (J ¼ 50,000) and each contains 100,000 data points,

Table 10 reports the results from each of the models (M1,M3,M4,M7). In terms of price

jumps, the HP model (M3) is clearly unable to reproduce the features, while the MMHP-

class models (M4 andM7) perform better. However, in S&P 500 (SPX) data,M7 outper-

formsM4.

In the case of variance jumps, the results are different. For example, for the BA and KO

data, the HP model (M3) is able to adequately capture the clustering feature. This is likely

due to the smaller average number of jumps, and standard deviation, for variances com-

pared to prices. These results are in line with the empirical results in Section 3 (see Table 3),

where variance jumps are less likely impacted by their mark values or jump sizes. It is no-

ticeable that, although M4 and M7 are both MMHP-type models, M4 always provides

higher estimates of the two features. Note we also conduct the test with ETF data, and the

results are consistent. We provide details of these results in the Supplementary Appendix.

5 Conclusion

In this article, we propose a dynamic bivariate jump-diffusion process, in which jump inten-

sities are modeled by a three-dimensional MHP to allow the occurrences and sizes of jumps

to affect future intensities and, thus, capture the clustering features. Unlike other stochastic

volatility state-space models that apply daily data, we use intraday high-frequency data.

Table 9 Summary statistics of clusters

No. of

cluster

MNJ SDNJ Max(NJ) ML Max(L) No. of cluster containing

only one jump

pþ 660 3.936 3.406 24 41 303 166

AAPL p� 663 4.394 3.988 36 68 402 167

v 198 1.480 0.900 6 12 53 138

pþ 670 3.031 2.547 16 42 318 229

BA p� 645 3.093 2.751 22 68 425 222

v 213 1.268 0.574 4 11 55 168

pþ 517 1.994 1.443 10 29 284 272

JPM p� 518 2.073 1.572 12 41 192 261

v 117 1.265 0.621 4 10 31 95

pþ 432 1.672 0.921 7 18 117 265

KO p� 391 1.714 1.135 9 36 275 231

v 99 1.192 0.444 3 18 47 82

pþ 313 1.454 0.905 7 28 119 221

SPX p� 378 1.870 1.230 9 36 123 198

v 198 1.260 0.587 4 9 48 179

Notes: MNJ denotes mean number of jumps in clusters, SDNJ denotes standard deviation of number of jumps

in clusters, max(NJ) denotes maximum number of jumps in a cluster. ML denotes the mean of cluster length

(length of a cluster of jumps cover) and MaxðLÞ denotes the maximum value of cluster length. Cluster length

figures are rounded to integers.
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Table 10 Simulation results

Characteristics Positive price jump Negative price jump Variance jump

AAPL Data M1 M3 M4 M7 Data M1 M3 M4 M7 Data M1 M3 M4 M7

MNJ 3.936 1.072** 1.213** 4.371 3.711 4.394 1.059** 1.341** 5.924† 3.957 1.48 1.035** 1.069** 1.862* 1.321

SDNJ 3.406 0.211** 0.318** 3.128 2.962 3.988 0.392** 0.429** 3.749 3.152 0.9 0.203** 0.266** 1.159† 0.671

BA Data M1 M3 M4 M7 Data M1 M3 M4 M7 Data M1 M3 M4 M7

MNJ 3.031 1.114** 1.428** 4.447* 3.641 3.093 1.118** 1.466** 3.367 2.618 1.268 1.032** 1.172 1.461** 1.231

SDNJ 2.547 0.365** 0.495** 2.616 2.353 2.751 0.371** 0.395** 2.626 2.317 0.574 0.173** 0.333* 1.072** 0.645

JPM Data M1 M3 M4 M7 Data M1 M3 M4 M7 Data M1 M3 M4 M7

MNJ 1.994 1.07** 1.367** 3.105* 2.286 2.073 1.038** 1.313** 2.342 2.059 1.265 1.032** 1.066** 1.372 1.218

SDNJ 1.443 0.273** 0.482** 2.047† 1.549 1.572 0.194** 0.641** 1.804 1.366 0.621 0.165** 0.263** 0.474† 0.692

KO Data M1 M3 M4 M7 Data M1 M3 M4 M7 Data M1 M3 M4 M7

MNJ 1.672 1.061** 1.344** 1.901 1.693 1.714 1.072** 1.328** 1.917 1.896 1.192 1.047* 1.159 1.385* 1.268†

SDNJ 0.921 0.295** 0.211** 0.863 0.933 1.135 0.345** 0.469** 1.363 1.117 0.444 0.334 0.346 0.791* 0.268*

SPX Data M1 M3 M4 M7 Data M1 M3 M4 M7 Data M1 M3 M4 M7

MNJ 1.454 1.062** 1.129** 1.351 1.416 1.87 1.094** 1.284** 2.129 1.85 1.258 1.029** 1.164* 1.48** 1.254

SDNJ 0.905 0.249** 0.372** 0.683† 0.923 1.23 0.396** 0.502** 1.408 1.371 0.587 0.28** 0.356* 1.046** 0.67

Notes: MNJ denotes the mean of the number of jumps in clusters, and SDNJ denotes the standard deviation of the number of jumps in clusters.
†Indicates less than 10 p.c. of simulations were further out in the tails than the sample estimate.

*Indicates less than 5 p.c. of simulations were further out in the tails than the sample estimate.

**Indicates less than 1 p.c. of simulations were further out in the tails than the sample estimate.
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Table 11 Priors specification

General parameters M4’s impact function

l Nð0; 25Þ ~a Nð0; 0:2Þ1~a>0

av Nð0; 1Þ1av>0
~b Nð0; 1Þ1~b>0

bv Nð0; 1Þ1bv>0 ~c Nð0; 1Þ1~c>0

fs Nð0; 0:5Þ1fs>0

rV IGð2:5; 0:1Þ M5’s impact function

q Uð�1; 1Þ ~a Nð0; 0:3Þ1~a>0

nP Nð0; 50Þ
nV Nð0; 10Þ1nV>0 M6’s impact function

lP Nð0; 50Þ ~a Nð0; 30Þ1~a>0

r2
P IGð10; 40Þ

lV IGð10; 20Þ M7’s impact function

q Nð0; 0:1Þ1q>0 ~a Nð0; 0:2Þ1~a>0

b Nð0; 0:1Þ1b>0
~b Nð0; 1Þ1~b>0

Note: The table presents priors settings in the MCMC algorithm of parameter estimations.

Table 12 Raftery–Lewis Test

N1 N2 I � stat N1 N2 I � stat

lð�10�4Þ 6 1250 2.1 MMHP parameters inM4

avð�10�3Þ 87 14,210 23.8 ~b
pþ
pþ 40 6490 10.9

bv 26 4674 7.8 ~b
pþ
p� 50 8244 13.8

r2
Vð�10�3Þ 312 56,567 94.8 ~b

pþ
v 59 10,269 17.2

q 76 12,813 21.5 ~b
p�
pþ 168 26,356 44.2

lP 188 31,863 53.4 ~b
p�
p� 308 44,283 74.3

rP 228 39,136 65.6 ~b
p�
v 106 14,858 24.9

lV 11 2235 3.7 ~b
v

pþ 48 7785 13.1

~b
v

p� 80 16,368 27.4

MMHP parameters inM7
~b

v

v 114 18,612 31.2

~b
pþ
pþ 186 29,298 49.1 ~cpþ

pþ 14 2748 4.6

~b
pþ
p� 168 27,405 46.0 ~cpþ

p� 12 2208 3.7

~b
pþ
v 51 8400 14.1 ~cpþ

v 190 28,938 48.5

~b
p�
pþ 91 16,548 27.7 ~cp�

pþ 12 2172 3.6

~b
p�
p� 213 33,992 57.0 ~cp�

p� 12 2274 3.8

~b
p�
v 69 11,760 19.7 ~cp�

v 256 39,952 67.0

~b
v

pþ 73 13,533 22.7 ~cv
pþ 13 2334 3.9

~b
v

p� 77 11,892 19.9 ~cv
p� 11 2076 3.5

~b
v

v 72 13,512 22.6 ~cv
v 291 47,003 78.8

Notes: Test settings are quantile q ¼ 0:025, accuracy r ¼ 0:0125, probability s ¼ 0:95. N1: number of itera-

tions that should be discarded in the burn-in period. N2: least number of iterations for parameters to converge.

I � stat: the extent of autocorrelation of the parameter’s chain.
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In addition, we employ an intraday periodic component in the process. A Bayesian MCMC

algorithm is constructed to jointly estimate parameters and latent variables in the model.

We find evidence of strong intraday jump clustering in our empirical study. We find that

self-excitation tends to be hidden by periodicity. We quantify the changing patterns of

jump intensity, and show that jump intensity can rise to over 0.15 after the occurrence of

large jumps. We investigate the interactions between positive price jumps, negative price

jumps, and variance jumps. These are apparent in the branching coefficient matrix q,

which represents the extent to which jumps in one dimension affect intensity in other

dimensions. This turns out to imply some asymmetries. Further, our results from the MHP

suggest that the extent to which jumps inflate future intensities is positively correlated with

jump sizes: large jumps tend to escalate the probability of jumps in the near future. We as-

sess the fit of the various models via DIC and the Bayes factor, and find that modeling

jumps by the MHP are preferred by these criteria.

In addition, we study the numbers of jumps in clusters, in price, and variance, and we

find a cluster of jumps can cover 2.5–6 hours on average. Using the mean and variance of

the number of jumps in clusters, we consider the ability of the models to reproduce these

two characteristics, by simulating artificial data from the models. The MMHP models gen-

erally outperform other models, although the simpler HP model is able to capture the prop-

erties of variance jumps.

Our study indicates the various novel features of our models—including allowing the

occurrences and sizes of jumps returns and variances to affect future intensities—can be

valuable in fitting the data and matching certain key characteristics of the data. A possible

area for future research would be to extend this approach to analyze risk premiums using

options data.

Supplemental Data

Supplemental data is available at https://www.datahostingsite.com.

Appendix A. Bayesian MCMC Algorithm and Specification of Priors

In order to obtain the posterior distribution in Equation (14), we randomly sample from a

set of conditional posteriors derived from Bayes’s rule. An MCMC algorithm is constructed

to approximate the posterior implied by the estimated model. Therefore, for

i ¼ 1; 2; . . . ; n; . . . ;N:

1. Sample static parameters

Draw HðiÞ1 from p
�
HðiÞ1 jPt;H

ði�1Þ
2 ;Hði�1Þ

3 ; . . . ;Hði�1Þ
k ;Xði�1Þ

t

�
,

..

.

Draw HðiÞk from p
�
HðiÞk jPt;H

ði�1Þ
1 ;Hði�1Þ

2 ; . . . ;Hði�1Þ
k�1 ;X

ði�1Þ
t

�
.
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2. Sample jumps and jump sizes

for t¼ 1, 2, . . ., T:

Draw DJ
PðiÞ
t from p

�
DJ

PðiÞ
t jPt;H

ðiÞ; nPði�1Þ
t ;DJ

Vði�1Þ
t ; nVði�1Þ

t ;qði�1Þ;Vði�1Þ
�

,

Draw nPðiÞ
t from p

�
nPðiÞ

t jPt;H
ðiÞ;DJ

PðiÞ
t ;DJ

Vði�1Þ
t ; nVði�1Þ

t ;qði�1Þ;V
ði�1Þ
t

�
,

Draw DJ
VðiÞ
t from p

�
DJ

VðiÞ
t jPt;H

ðiÞ; nPðiÞ
t ;DJ

PðiÞ
t ; nVði�1Þ

t ;qði�1Þ;Vði�1Þ
�

,

Draw nVðiÞ
t from p

�
nVðiÞ

t jPt;H
ðiÞ; nPðiÞ

t ;DJ
PðiÞ
t ;DJ

VðiÞ
t ;qði�1Þ;Vði�1Þ

�
.

3. Sample variance

for t¼ 1, 2, . . ., T:

Draw Vt from p
�

V
ðiÞ
t jPt;H

ðiÞ; nPðiÞ
t ;DJ

PðiÞ
t ; nVðiÞ

t ;DJ
VðiÞ
t ;qði�1Þ

�
,

4. Sample Branching Coefficient Matrix

for t¼ 1, 2, . . ., T:

Draw qðiÞ from p
�
qðiÞjPt;H

ðiÞ; nPðiÞ
t ;DJ

PðiÞ
t ; nVðiÞ

t ;DJ
VðiÞ
t ;V

ðiÞ
t

�

We set N ¼ 40;000 as the total number of iterations and n ¼ 10;000 as the burn-in

period, which will be discarded. For those conditional posterior distributions where corre-

sponding conjugate priors can be found and posteriors can be obtained in closed form, we

adopt Gibbs sampling; for those posteriors that are unknown, we use Metropolis–Hastings

(MH) to approximate posteriors. MH involves drawing a sample from a proposal density

and another random number from a uniform distribution to decide whether the proposal

draw should be accepted or rejected. Ultimately, we specify priors in our model as follows

(Table 11).

Moreover, when we run the MCMC algorithm, the original data and estimated data are

amplified by 10,000 times.

Appendix B. Marginal Likelihood of Models

We compute the marginal likelihood of data given different models as follows:

pðPtjMiÞ ¼
pðPtjHi;MiÞpðHijMiÞ

pðHijPt;MiÞ
; (IB.17)

where i ¼ 1; . . . ;7 denotes seven different models,Mi denotes corresponding static param-

eters. The likelihood of data given models and static parameters is further marginalized

over k latent variables XðkÞt as follows:
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pðPtjHi;MiÞ ¼
ð

p
�

PtjXðkÞt ;Hi;Mi

�
p
�
XðkÞt jHi;Mi

�
dXðkÞt ; (IB.18)

Using the output of previous MCMC outputs, this is the marginal likelihood of the data

and models averaged over the latent variables. Similarly, the conditional posterior of static

parameters is also marginalized over latent variables:

pðHijPt;MiÞ ¼
ð

p
�
HijPt;X

ðkÞ
t ;Mi

�
dXðkÞt ; (IB.19)

Following methods proposed by Chib (1995) and Chib and Jeliazkov (2001), we decom-

pose the static parameter vector Hi into two components: h1;i denoting parameters in the

price and variance processes, and h2;i, denoting parameters in jumps components (Hawkes

kernel). Therefore,

pðHijPt;MiÞ ¼ pðh1;ijPt;MiÞpðh2;ijh1;i;Pt;MiÞ; (IB.20)

The likelihood of a multivariate HP is derived in Liniger (2009).

Appendix C. Raftery–Lewis Test

Raftery–Lewis test, proposed by Raftery and Lewis (1991), provides bounds of the number

of iterations that should be run and the number that should be discarded given a quantile

that we wish to estimate with a desired accuracy and associated probability.

In this article, we specify the quantile q ¼ 0:025, accuracy r ¼ 0:0125, and probability

s ¼ 0:95. The test results are provided in Table 12. N1 denotes the number of iterations

that should be discarded in the burn-in period. N2 denotes the least number of iterations

for parameters to converge. I � stat presents the extent of autocorrelation of the parame-

ter’s chain. Note we set our MCMC number of iterations as 40,000 with the first 10,000 as

the burn-in period. Overall, most parameters have converged as indicated by the results.

Some parameters appear to have moderate autocorrelation.

Appendix D. Nonparametric Estimation

In this section, we discuss our estimation approaches for the variance and jumps

(Vn
i ;D

n
i JP;Dn

i JV).6 These estimations are used in deciding jump intensities.

D.1 High-frequency Variance Estimator and Price Jump Detection

Assume the price process over the time interval [0, T] is observed at times

ti :¼ iDn; 1 	 i 	 n, where Dn ¼ T=n presents the time increments. Thus, we have Dn
i P :¼

Pti
� Pti�1

as asset returns, and Dn
i P0 ¼ Dn

i P=Sti
as asset returns without intraday periodicity.

The estimation of the intraday periodicity component Sti
will be introduced in Section D.3.

6 For the convenience of demonstrating our estimations, we use these notations, but they are the

same as Vt ;DJP
t ;DJV

t , respectively, in Equations (7) and (8).
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Our nonparametric jump filtering method is mainly based on Mancini, Mattiussi, and

Renò (2015) and Figueroa-López and Mancini (2019). We identify a jump at time t, Jt ¼ 1,

when the squared return is greater than a threshold, ðDn
i P0Þ2 > V̂2

ti
� 2Dn log 1

Dn
. V̂2

ti
is a non-

parametric estimator of spot variance based on pretruncated returns:

V̂2
s ¼

Xn

i¼1

fhðti � sÞðDn
i P0Þ2 � 1fðDn

i P0Þ2 	9D0:99
n g (ID.21)

where fhð�Þ is weight function, fhðtÞ ¼ 1
h � e

�jt=hj

2 . The idea of this filtering is to extract those

standardized squared returns (ðDn
i P0Þ2=V̂2

ti
) which are not likely to have been generated by a

Brownian motion, given the assumed threshold, that is, that their absolute value is greater

than the threshold of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logð1=DnÞ

p
.

D.2 Variance Jumps Detection

In testing variance jumps, we set our null hypothesis H0 : jV̂2
ti
� V̂

2

ti�j ¼ 0 against the alter-

native hypothesis that there is a variance jump jV̂2
ti
� V̂

2

ti�j > 0. So, the test statistic in this

test should be a function of the difference of spot variance f ðV̂2
ti
; V̂

2

ti�Þ. Following Jacod

et al. (2010), we construct our test statistics as follows:

Lv tið Þ ¼ 2 log
1

2
V̂2

ti
þ V̂

2

ti�

� �� �
� log V̂2

ti

� �
� log V̂

2

ti�

� �
(ID.22)

and nbLvðtiÞ ! X2
1, where n denotes the number of observations and b ¼ 1

2� Dn. The tem-

poral variance estimator V̂2
ti

is specified in Equation (ID.21).

D.3 Intraday Periodic Effects

Boudt, Croux, and Laurent (2011) show that taking intraday periodicity into account can

improve the overall accuracy of jump detection. We adopt a weighted standard deviation

(WSD) estimator proposed by Boudt, Croux, and Laurent (2011), which is based on a

shortest half-scale estimator proposed by Rousseeuw and Leroy (1988). Using this ap-

proach, we define the order statistics of returns rð1Þ;i 	 rð2Þ;i 	 . . . 	 rðTiÞ;i. The shortest

half-scale statistics are determined as follows:

ShortHi ¼ 0:741 �minfrðhiÞ;i � rð1Þ;i; . . . ; rðTiÞ;i � rðTi�hiþ1Þ;ig; (ID.23)

where hi ¼ Ti

2 þ 1, which makes the statistics essentially minimum differences among all of

the return’s halves. The shortest half-scale estimator for periodicity is given by:

f̂
ShortH

i ¼ ShortHi

1
T

PT
j¼1

ShortH2
j

; (ID.24)

where T denotes the number of observations within a day and the WSD estimator can be

obtained as follow:
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f̂
WSD

i ¼ WSDi

1
T

PT
j¼1

WSD2
j

; (ID.25)

where:

WSDj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:081 �

PTj

k¼1

wk;jr
2
k;j

PTj

k¼1

wk;j

vuuuuuut ; (ID.26)

wk;j ¼ Iðrk;j=f̂
ShortH

i Þ is a weight function with a identification function Ið�Þ, such that

IðxÞ ¼ 1 if x 	 6:635 and 0 otherwise. We use the WSD estimator (f̂
WSD

i ) as a periodic

component (Sti
) estimator.
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