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ABSTRACT: The standard approach when studying atmospheric circulation regimes and their

dynamics is to use a hard regime assignment, where each atmospheric state is assigned to the

regime it is closest to in distance. However, this may not always be the most appropriate approach

as the regime assignment may be affected by small deviations in the distance to the regimes due

to noise. To mitigate this we develop a sequential probabilistic regime assignment using Bayes

Theorem, which can be applied to previously defined regimes and implemented in real time as new

data become available. Bayes Theorem tells us that the probability of being in a regime given the

data can be determined by combining climatological likelihood with prior information. The regime

probabilities at time C can be used to inform the prior probabilities at time C +1, which are then used

to sequentially update the regime probabilities. We apply this approach to both reanalysis data

and a seasonal hindcast ensemble incorporating knowledge of the transition probabilities between

regimes. Furthermore, making use of the signal present within the ensemble to better inform

the prior probabilities allows for identifying more pronounced interannual variability. The signal

within the interannual variability of wintertime North Atlantic circulation regimes is assessed using

both a categorical and regression approach, with the strongest signals found during very strong El

Niño years.
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SIGNIFICANCE STATEMENT: Atmospheric circulation regimes are recurrent and persistent26

patterns that characterize the atmospheric circulation on timescales of one to three weeks. They27

are relevant for predictability on these timescales as mediators of weather. In this study we propose28

a novel approach to assigning atmospheric states to six pre-defined wintertime circulation regimes29

over the North Atlantic and Europe, which can be applied in real time. This approach introduces a30

probabilistic, instead of deterministic, regime assignment and uses prior knowledge on the regime31

dynamics. It allows to better identify the regime persistence and indicates when a state does not32

clearly belong to one regime. Making use of an ensemble of model simulations, we can identify33

more pronounced interannual variability by using the full ensemble to inform prior knowledge on34

the regimes.35

1. Introduction36

A thorough understanding of extra-tropical circulation variability on sub-seasonal timescales37

is important for improving predictability on these timescales. Improvement of this predictability38

is of great societal relevance for sectors such as renewable energy. Atmospheric circulation, or39

weather, regimes can describe this variability by dividing the circulation into a small number40

of states or patterns (Hannachi et al. 2017). These regimes are recurrent patterns that represent41

the low-frequency variability in the atmospheric circulation. They have been studied for a long42

time, starting with papers focusing on their identification (e.g Mo and Ghil 1988; Molteni et al.43

1990; Vautard 1990; Michelangeli et al. 1995), with later research discussing their links with other44

processes and surface impacts (e.g. Straus and Molteni 2004; Cassou et al. 2005; Charlton-Perez45

et al. 2018; van der Wiel et al. 2019).46

The most commonly used technique for identifying circulation regimes is :-means clustering47

(e.g. Michelangeli et al. 1995; Straus et al. 2007; Matsueda and Palmer 2018). This method48

separates the phase space into : clusters, where the data within each cluster are similar, but49

dissimilar between the different clusters. The number of clusters : has to be set a priori, for which50

several approaches such as a classifiability index (Michelangeli et al. 1995) or information criteria51

(O’Kane et al. 2013) are used. One of the drawbacks of this clustering approach is that it yields a52

hard, deterministic, assignment of the data to each of the regimes. This means that it is difficult to53
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quantify the uncertainty of the regime assignment, as data close to the regime centre is treated the54

same as data that is only just (by distance) assigned to that regime.55

The hard regime assignment of :-means clustering means that the result is susceptible to noise.56

Consider Figure 1(a) which shows the distance of the data to two regimes in time for a real case57

(discussed later in detail), over a period of 12 days. Initially, the data clearly is categorised to58

belong to regime A, being significantly closer in distance to regime A than to regime B. However,59

from day 7 to 9 the data makes a brief excursion into a part of the phase diagram that is closer to60

regime B, after which it moves back to being closest to regime A. The question is whether this is61

a real signal or simply the effect of noise. Since the regime dynamics is quite persistent in time it62

is likely to be the latter, but this possibility is not picked up by the hard assignment of a standard63

:-means clustering approach. Often a low-pass filter is applied to remove this high-frequency64

variability (e.g. Straus et al. 2007; Grams et al. 2017), but in Falkena et al. (2020) it was shown65

that low-pass filtering can lead to a bias in the observed regime frequencies.66

Another solution is to use a regularised clustering algorithm which constrains, or bounds, the67

number of transitions between the regimes so that it is in line with the natural metastability of the68

underlying dynamics. Such an approach, first introduced in the context of clustering methods by69

Horenko (2010), has for example been applied to discrete jump processes (Horenko 2011a) with70

applications in computational sociology (Horenko 2011b) and for efficient classification in the71

context of sparse data settings (Vecchi et al. 2022). In the context of atmospheric dynamics, time72

regularisation has been used to study the Southern Hemispheric circulation (O’Kane et al. 2013),73

the dynamics of the North Atlantic Oscillation (Quinn et al. 2021), and how to identify persistent74

circulation regimes (Falkena et al. 2020). A regularised clustering method allows to better identify75

the signal within the noise, but does require selecting a constraint parameter. This introduces a76

parameter selection, where e.g. an information criterion is used to decide on a suitable constraint77

value.78

An alternative approach is to make the regime assignment probabilistic rather than deterministic,79

allowing for a more nuanced and informative regime assignment in the presence of noise. Methods80

such as mixture modelling provide such a probabilistic regime assignment (e.g. Hannachi and81

O’Neill 2001; Smyth et al. 1999; Baldo and Locatelli 2022), but are not widely used. Hidden82

Markov Models (HMMs) extend the mixture modelling approach by also taking into account the83
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Fig. 1: A conceptual example of the difficulty :-means clustering has when noise affects the
data, showing what a probabilistic approach can bring. (a) An example trajectory of the data as a
function of the distances to two regimes A (orange) and B (red). The 1-1 line is shown black dashed,
meaning the region above is closer to regime A and the region below to regime B. Numbers indicate
the day corresponding to that point in the trajectory. The likelihood functions shown along the top
and right give the climatological probability of those distances given hard assignment to regime A
(orange, top) or B (red, right). The dotted grey line indicates a slice through the probability space
along which the pdfs in panel (b) are considered. (b) A slice of the likelihood functions, weighted
by the prior probabilities following Bayes Theorem, for each of the regimes (solid lines, A: orange,
B: red) along the grey dotted line in (a), perpendicular to the 1-1 line, for the 7th, 8th, and 9th
day. The location of the data on each day is indicated by the vertical black lines, and the bars at
the edge of the plots show the prior (left) and posterior (right, hatched) probabilities for each of
the regimes (A: orange, left edge, B: red, right edge). The climatological likelihood functions are
shown dashed in all panels and the vertical grey dotted line indicates the location of the 1-1 line.
The insets in each panel show an enlargement of the region around the 1-1 line.

dynamics of the system and not just the statistics (Majda et al. 2006; Franzke et al. 2008), but are84

hard to fit for relatively short timeseries when the data is high dimensional. Another approach85

is to approximate the regime model using local Markov distance functionals with corresponding86

time dependent probabilities (Horenko 2011a). In studies that look into forecasting of regimes on87
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sub-seasonal timescales, the probability of being in a regime is often considered by looking at the88

empirical distribution of the (hard) regime assignment across an ensemble (Vigaud et al. 2018;89

Cortesi et al. 2021; Büeler et al. 2021; Falkena et al. 2022). Such an approach is already used in90

an operational setting by e.g. ECMWF (Ferranti et al. 2015). A limitation of this method is that it91

requires availability of ensemble data, where typically the ensemble size is small, and verification92

is done against a hard regime assignment from reanalysis.93

A probabilistic regime assignment that does not require this availability of ensemble data would94

help in better assessing the skill in predicting regimes, as it could be applied to reanalysis data which95

is also subject to noise. Such a regime assignment would allow to identify the instances in which96

the observations cannot be clearly assigned to one regime or in which a wrong hard assignment97

is potentially due to noise. This approach allows for a fairer verification of the model by taking98

some degree of observational uncertainty into account. Here it is desirable for the approach to be99

sequential, which allows for the regime assignment to be done in real time making it suitable for100

operational applications. Most probabilistic regime assignment methods, such as mixture models101

or HMMs, require the availability of the full dataset when computing the regime probabilities,102

which would mean one has to rerun the clustering algorithm whenever a new datapoint is added. A103

method that, after training on an initial dataset, can easily be applied to data as it becomes available104

is more suitable for an operational setting. Such a method can also be applied to predefined105

regimes, to provide traceability with previous work.106

The standard hard regime assignment can be considered as a random process that takes a value107

in the set of possible regimes at each time. The associated probability can be computed on the108

basis of metastability frequencies computed from previous or currently available batch data. The109

aim is to determine the corresponding conditional probability of being in a regime given the data,110

i.e. %(Regime|Data). Following Bayes Theorem this is given by111

%(Regime|Data) = %(Data|Regime)%(Regime)
%(Data) , (1)

combining prior knowledge of the probability of being in a regime %(Regime) with an observed112

likelihood given a regime %(Data|Regime). The latter can sometimes be computed from the113

climatological data. In Figure 1(a) the observed (climatological) likelihood functions for both114

regimes are shown next to the trajectory. The working of Bayes Theorem for such a trajectory is115
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shown in Figure 1(b), which shows how the inclusion of prior information %(Regime) following116

Bayes Theorem (1) affects the posterior %(Regime|Data) for the trajectory at days 7, 8 and 9,117

following a section along the dotted line in Figure 1(a). The climatological likelihood functions118

of the two regimes A and B, indicated by the dashed lines, are weighted (solid lines) using the119

prior regime probabilities, shown by the non-hatched bars at the edge of the panels. The posterior120

probabilities are then computed as the values of the weighted likelihood functions at the datapoint121

(vertical black line). The obtained Bayesian probabilities are indicated by the hatched bars and122

used to inform the prior probabilities for the next timestep, using climatological information about123

transition probabilities.124

At day 7 the prior information indicates a very high probability of being in regimeA as all previous125

days belonged clearly to that regime. This increases the probability of C = 7 belonging to regime A126

and decreases that of belonging to regime B with respect to the climatological likelihood, which127

would otherwise be evenly balanced between the two regimes. Thus, there is a high probability128

that the data at day 7 belongs to regime A. Given the known persistence of regimes, the prior129

information for day 8 again then indicates a high probability of being in this regime, albeit slightly130

smaller than at C = 7, which weights the likelihood functions accordingly. Although the data is131

closer to regime B, the prior information means that there is an approximately equal probability of132

being in either of the two regimes. The prior for C = 9 thus does not weight the likelihood functions133

as much as for C = 7 and 8, and thus the data at day 9 being equally close to both regimes means134

that again the probability of being in either of the regimes is close to a half. This discussion shows135

how the inclusion of prior information can be used to compute the probability of a regime given the136

data, and thereby soften the effects of noise, following the fundamental principles of probability137

as encoded in Bayes Theorem (1). As noted above, the approach as discussed here is sequential138

and can be applied to individual realisations, making it suitable for operational applications. An139

initial training dataset can be used to obtain the climatological likelihood functions, after which the140

regime assignment can be applied to data as it becomes available. The latter regime assignment141

step is similar to finding the most probable sequence once a HMM is known (Viterbi 1967; Rabiner142

1989).143

Other aspects than persistence can affect the prior regime likelihood as well. It is likely that144

non-stationary external factors, such as the El Niño Southern Oscillation (ENSO) or Sudden145
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Stratospheric Warmings (SSWs), have an influence on the prior regime probabilities (e.g. Toniazzo146

and Scaife 2006; Ayarzaguena et al. 2018; Domeisen et al. 2020). The Bayesian approach allows147

to incorporate such information, either by looking at e.g. an ENSO index or by making use of the148

availability of ensemble data. In a previous study a regularised clustering method helped to identify149

a more pronounced interannual regime signal by making use of the information available in an150

ensemble (Falkena et al. 2022). Similarly, having a more informative prior for Bayes Theorem (1),151

incorporating information from external processes, can help in identifying a stronger non-stationary152

regime signal. The Bayesian approach discussed here is not the only method in which information153

on external forcing can be incorporated in the regime assignment (e.g. Franzke et al. 2015), but it154

is (to our knowledge) the first that allows to do this in a sequential manner.155

In this paper we formalise the intuition of Figure 1 and study how to use Bayes Theorem to obtain156

a probabilistic regime assignment based on predefined regimes for the wintertime Euro-Atlantic157

sector. The use of predefined regimes respects the scientific value that has already been established158

for those regimes, e.g. in the relationship with particular climate impacts. In Section 2 we discuss159

the data that are used and the use of standard :-means clustering to obtain the circulation regimes160

that we consider for this study. The two sections that follow explain the way in which Bayes161

Theorem can be used for the regime assignment, where an important aim of our work is to link162

our method to existing work on clustering of circulation regimes. We start with the most intuitive163

sequential form (as discussed above) in Section 3 and in Section 4 we consider how the use of164

ensemble data, which picks up some external forcing signals, can help to update the prior regime165

probabilities to study interannual regime variability, which is discussed in Section 5. A discussion166

and conclusion are given in Section 6.167

2. Data and Clustering168

For the identification of the circulation regimes the 500 hPa geopotential height fields (Z500)169

from two datasets are used: the ECMWF SEAS5 hindcast ensemble dataset (Johnson et al. 2019)170

and the ERA-Interim reanalysis dataset (Dee et al. 2011). For both datasets, daily (00:00 UTC)171

gridpoint (2.5◦ ×2.5◦ resolution) Z500 data over the Euro-Atlantic sector (20◦ to 80◦N, 90◦W to172

30◦E) are considered for all winters (DJFM) for which the SEAS5 ensemble data are available173

(1981-2016). The regimes are computed using gridpoint anomaly data, where the anomalies are174
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computed with respect to the average DJFM climatology (see Falkena et al. (2020) for the rationale175

for this choice). Here the climatologies of ERA-Interim and SEAS5 are used as a reference for the176

computation of their respective anomalies. The SEAS5 hindcast ensemble has 51 members and is177

initialised each year on November 1st, which means that by considering data only from December178

onwards the effect of the atmospheric initial conditions has been effectively lost. This allows us179

to treat each ensemble member as an alternative, physically plausible yet not observed realisation180

of the atmosphere (Thompson et al. 2017), subject to the non-stationary influences for that year181

(notably ENSO).182

A standard :-means clustering algorithm (Jain 2010), with a Euclidian distance to compute the183

distance between the data and regimes, is used to identify six circulation regimes over the Euro-184

Atlantic sector for both ERA-Interim and the SEAS5 hindcast ensemble. In :-means clustering the185

data are sorted in : clusters that are close together within one cluster, but far from data in the other186

clusters based on some distance measure. These clusters are represented by their mean, which187

corresponds to the circulation regimes, where the number of clusters : has to be set a priori. Six188

was identified as a suitable number of regimes for such unfiltered data in a previous study (Falkena189

et al. 2020). The regimes for the SEAS5 hindcast ensemble are shown in Figure 2 and are the two190

phases of the North Atlantic Oscillation (NAO), the Atlantic Ridge (AR), Scandinavian Blocking191

(SB) and both their counterparts. Note that these regimes are slightly different in their patterns192

from those of ERA-Interim (see Falkena et al. (2022) for details on this), thereby providing an193

inherent bias correction between the model and reanalysis. These hard regime assignments are194

used to compute the likelihood functions that are used in the Bayesian approach, for which a195

detailed discussion is given in Section 3a. In addition we consider the (hard) regime assignments196

obtained using the time-regularised clustering algorithm from Falkena et al. (2020). This allows197

for a comparison of different approaches to identify the persistent regime signal.198

3. Sequential Bayesian Regime Assignment199

In this section the Bayesian approach to regime assignment is discussed, which can be applied to200

ERA-Interim data as well as single ensemble realisations. We start with the details of the method201

itself in Section a, followed by a comparison with the results of both a standard and time-regularised202

:-means clustering method in Section b.203
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Fig. 2: The six circulation regimes obtained for the SEAS5 ensemble using :-means clustering.
From top-left to bottom-right: 1. NAO+, 2. NAO-, 3. Atlantic Ridge (AR+), 4. Scandinavian
Blocking (SB+), 5. AR-, 6. SB-.

a. Method204

The starting point for our sequential Bayesian regime assignment is the six regimes obtained205

using :-means clustering discussed in Section 2 and shown in Figure 2. The likelihood functions206

in Bayes Theorem (1) are computed based on the distance to these regimes, and remain fixed207

throughout the sequential Bayesian regime assignment. The discussion of the method as phrased208

below is general, and can be applied to all types of regime dynamics as long as the regimes209

themselves and the likelihood functions are specified a priori.210

Let A be a discrete random variable indicating a regime, i.e. taking values in {1, ..., :} for :211

regimes, and letd ∈R: be a vector containing the distances to each of the regimes (here the Euclidian212

distance is used which is also the standard cost function in the :-means setting). Specifically, d213
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are the data we consider in our Bayesian approach. The use of the regime distance as data is not214

the only option. When one considers only a limited number of principal components (PCs) for the215

regime representation the PC values can be directly used. However, for the spatial fields considered216

here (see Falkena et al. (2020) for the arguments in favor of using gridpoint data) this is unfeasible217

as the high dimensionality means the phase space is sparsely sampled leading to large uncertainty218

in the resulting distributions. Therefore, a means of dimension reduction is required for which219

we consider the distances to the different regimes since this is the metric used in most clustering220

approaches. At a given time we are interested in the probability to be in a regime A given the data,221

i.e. %(A |d). Bayes Theorem tells us that222

%(A |d) = %(d|A)%(A)
%(d) . (2)

Here, %(A) is the prior probability of regime A and %(d) is the probability of the data. Since we223

only consider a discrete number of regimes which are mutually exclusive and exhaustive, the latter224

can be computed by225

%(d) =
:∑
A=1

%(d|A)%(A), (3)

making it a normalisation factor.226

Lastly, %(d|A) is the likelihood of the data given a regime A. The likelihood of the data can227

be determined from the distance to each of the regimes by considering how the data fall within228

the conditional distance distributions, i.e. the distributions conditioned on data belonging to one229

of the regimes. For each datapoint in either the SEAS5 or ERA-interim timeseries we have this230

distance to each of the : regimes, which has been computed in the :-means clustering procedure231

to determine the hard regime assignment (Section 2). This gives the distributions of the distances232

to each of the regimes conditional on regime A, which for SEAS5 are shown in Figure 3.233

There are a few things to note concerning these distributions. Firstly, the distance to the regime234

the data is assigned to is smallest, but can still be larger than the distance to other regimes for235

a different datapoint belonging to that regime. Secondly, for data assigned to AR+, SB+, AR−236

and SB− the distances to the other regimes are roughly equally distributed with the means being237

relatively close to each other. However, for data assigned to either NAO+ or NAO− the distance238

to the other phase is larger than that to the other four regimes. Thus these two regimes are further239
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away from each other than the rest of the regimes, and information on the proximity to one regime240

is providing information on the proximity to the other.241

Also, we see that these distributions are approximately normal, justifying us to approximate242

the corresponding :-dimensional conditional probability density functions (pdf) by a multivariate243

normal. The likelihood %(d|A) is then given by the value of the conditional pdf, that is244

%(d|A) =
−1

2 (d− `A)
)Σ−1

A (d− `A)√
(2c): |ΣA |

, (4)

where | · | represents the determinant. The mean `A and covariance ΣA , representing the variability245

around the cluster centre, are estimated from the conditional distance distributions obtained from246

the :-means clustering results for each regime. These estimates are done separately for ERA-247

Interim and SEAS5 to avoid biases due to the regimes being slightly different. The estimates of248

the mean and covariance are surprisingly similar between both datasets, indicating that, apart from249

the slight difference in regimes, the model does a reasonable job in representing the variability of250

the regime dynamics. A further discussion on this, including a robustness analysis of the distance251

distributions is given in the Supplementary Material.252

To obtain the prior probability %(A) there is a natural choice from propagating the probabilities253

of the previous timestep forward. From :-means clustering an estimate of the regime dynamics254

is known, which is characterised by the climatological regime frequencies %2 and transition255

probabilities ) 2
8 9
between the regimes. For SEAS5 these are given by (Falkena et al. 2022) (for the256

regimes ordered as in Figure 2)257

%2 =

©­­­­­­­­­­­­«

0.176

0.158

0.160

0.163

0.175

0.168

ª®®®®®®®®®®®®®¬
, ) 2 =

©­­­­­­­­­­­­«

0.728 0.000 0.039 0.062 0.060 0.112

0.000 0.822 0.050 0.046 0.053 0.029

0.079 0.054 0.702 0.075 0.021 0.069

0.069 0.058 0.065 0.739 0.037 0.031

0.072 0.032 0.035 0.045 0.771 0.045

0.065 0.033 0.095 0.029 0.070 0.708

ª®®®®®®®®®®®®®¬
. (5)
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Fig. 3: The distributions of the distances (normalized, gpm/#gridpoints) to each of the regimes
(color) conditional on the SEAS5 hindcast data being assigned to the regime given in the title,
based on a hard assignment. The means of each distribution are indicated by the vertical dotted
lines.

Starting from the regime probabilities at time C−1, a best estimate of the prior probabilities for the258

next time step is259

%(C) = ) 2%(C −1|d), (6)

where %(C) is the vector of prior probabilities {%(A)}A=1,...,: at time C and %(C − 1|d) the vector260

of posterior probabilities {%(A |d)}A=1,...,: at time C − 1. Note that in the transition matrix ) 2 the261

diagonal elements — corresponding to persistence of the current regime — dominate. At the262

start of each winter, on December 1st, there is no previous probability to use, and thus little prior263

information on the probability of being in any of the regimes. For that reason the climatological264

regime frequencies %2 are used as a prior. Note that this is nearly as uninformative as using a265

uniform distribution. Here the hard regime assignment is used to obtain both the initial prior for266

each winter and the transition probabilities to obtain subsequent priors. This is by no means the267
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only option, e.g. one could also use a uniform prior at the start of winter. The choice made here is268

closest to existing methods and therefore least biased when comparing the results.269

Using the prior probabilities %(A) and likelihood of the data %(d|A) following the conditional270

distance distributions we can compute the posterior Bayesian probability of a regime given the data271

%(A |d) using Bayes Theorem (2) in every timestep. This yields a sequential probabilistic regime272

assignment, where the regime probabilities of one day are used to obtain a prior for the next day.273

Applying this method to ERA-Interim data and the ensemble members of the SEAS5 ensemble274

yields a probability of being in each of the six regimes at every day in winter. From here on we refer275

to this posterior Bayesian probability simply as the Bayesian probability. This Bayesian approach276

can be related to a HMM approach, where the regime patterns and their transition probabilities are277

given a priori, leaving only the hidden regime assignment to be discovered. Here the used likelihood278

differs from that commonly used in the standard Expectation-Maximization (EM) algorithm (e.g.279

Dempster et al. 1977; Rabiner 1989). In case the transition matrix ) cannot be obtained directly,280

as is done here through observation of the hard regime assignment, one could employ techniques281

to find ) via algorithms designed in the context of HMMs.282

The above described sequential Bayesian regime assignment is simple and allows for a straightfor-283

ward comparison with the commonly used hard regime assignment, as well as with the regularised284

clustering results (without the need of selecting a constraint parameter). However, there are other285

options to model the uncertainty and to update the corresponding model parameters sequentially.286

For instance one can model each regime individually and associate its center estimates with the287

mean of a Gaussian. The updating procedure for such a model is called the Kalman filter (Kalman288

1960) or the corresponding Monte Carlo approximation the Ensemble Kalman Filter (Evensen and289

van Leeuwen 2000), and of course various other methods for more general distributions as well as290

iterative assimilation of incoming information exist (e.g. Kantas et al. 2014; Hu and van Leeuwen291

2021; Acevedo et al. 2017). The method used here is closer to a particle filter (Del Moral 1997;292

Doucet et al. 2001) as our ensemble members are weighted with importance weights stemming293

from the likelihood rather than using an analytic formula such as is used in the Kalman filter.294

However, in this paper we specifically aim to stay close to existing methods and model the process295

of hard regime assignments as random variables in each time step. This allows for a straightforward296

implementation which can be readily applied in an operational setting. Furthermore, using this297
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method we can investigate whether the results are comparable to those found using regularised298

clustering methods, which have been used to improve the regime persistence in the identification299

procedure, without the need to select a constraint parameter.300

b. Evaluation301

The first question to answer is what the effect is of this Bayesian approach in practice, andwhether302

this matches the intuition behind the method. How does the prior affect the Bayesian probabilities?303

A next step is to compare the probabilistic approach with results obtained using a hard regime304

assignment, as given by :-means clustering. Is the average regime frequency affected? What is305

the effect on the regime persistence? In this section we start by discussing the first question by306

looking at some examples to get a sense for how the method is working in practice, after which we307

look at the statistics of the results compared to a :-means clustering approach to answer the other308

questions.309

To start, we consider the Bayesian regime probabilities for a single randomly chosen ensemble310

member. As the sequential Bayesian regime assignment works on a single-member basis this is311

the best way to gain insight into the workings of the Bayesian method. In Figure 4 the prior312

and Bayesian regime probabilities for the 23rd ensemble member are shown together with the313

climatological likelihood corresponding to the observed datapoint. A first aspect to note is that314

most of the time the regime likelihood %(d|A) gives a clear indication of the regime the data315

belong to. Secondly, we see that the prior quite closely follows the Bayesian probabilities with316

a delay of one day, corresponding to the high persistence in the transition matrix (Equation (5)).317

The initial prior, given by the climatological values, is uninformative and in that case the regime318

likelihood nearly fully determines the Bayesian probabilities. Subsequently, the prior is much more319

informative but in most cases the regime likelihood still strongly determines the final probability.320

However, when the likelihood does not clearly point towards one regime, e.g. around days 8-12,321

the prior information shifts the probabilities towards stronger persistence, in this case of the AR+322

regime. This can also be seen around day 99-101, corresponding to days 7-9 in the example shown323

in Figure 1 in Section 1, where the inclusion of prior information favors persistence over a short324

excursion away from the most likely regime. In this way the Bayesian regime assignment allows325

for identifying stronger persistence, i.e. high probability of the dominant regime, without losing326
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the signal of other regimes entering the dynamics as they still have some non-zero probability. The327

effect of this approach for ERA-Interim data is similar.328
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Fig. 4: The prior probability, conditional regime likelihood and Bayesian regime probability for
the 23rd ensemble member in the sequential Bayesian regime assignment procedure for the winter
of 1992-1993. The bar at the bottom indicates the hard regime assignment following :-means
clustering.

The Bayesian probabilistic regime assignment allows to understand some of the subtleties of329

the regime dynamics, e.g. regime transitions occur in the form of a decrease/increase of the330

regime probabilities. How does such an approach compare to the commonly used hard regime331

assignment obtained using :-means clustering? The bar at the bottom of Figure 4 shows the332

hard regime assignment corresponding to this time series. The Bayesian regime probabilities333

vary more smoothly, and show less short back-and-forth transitions between regimes which occur334

several times for the hard regime assignment, e.g. around day 9 and 20. In Falkena et al.335

(2020) a constraint on the number of transitions between regimes was introduced to reduce the336

number of short back-and-forth transitions between regimes, based on the regularised clustering337

method introduced by Horenko (2010). This was shown to increase the regime persistence without338

affecting the regime occurrence rates, provided the constraint parameter was chosen appropriately.339
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The optimal constraint parameter corresponded to an average regime duration of 6.3 days. It was340

selected by considering the Bayesian Information Criterion and falls within the region where the341

regime occurrence rates are not affected by the regularisation.342

In Figure 5 a comparison between the regime likelihood, Bayesian regime probabilities and343

a hard regime assignment obtained using either a standard or regularised :-means approach is344

shown for ERA-Interim for the winter of 1993-1994. The regularisation does reduce the number345

of regime transitions, by e.g. removing the NAO+ regime between two occurrence of SB− around346

day 18. At the same time the Bayesian probabilities show a small increase in the NAO+ likelihood,347

with SB− still having the highest probability. Here the regularisation and Bayesian approach348

thus yield similar results. On the other hand, around e.g. day 84 and 107 the regularisation349

eliminates some regime transitions where the Bayesian probabilities still show some signal of350

the corresponding regimes. The probabilistic approach thus allows to identify the data where351

the regime assignment is less clear, showing an increase in probability instead of a hard regime352

change. It also retains some regime transitions that the regularised clustering eliminates due to353

it being difficult to select the “correct” constraint value. In the probabilistic approach these show354

as increases in the corresponding regime probability. This analysis confirms that the Bayesian355

approach seems to be doing something sensible, without having to tune any parameters. When the356

data clearly belongs to one of the six regimes, there is little benefit to the Bayesian approach. The357

main times where it makes a difference are the periods when one regime transitions into another, or358

when a regime loses some of its strength in favor of another regime but then gains in strength again.359

Such a reduction in the regime probabilities could be an indication of increased flow instability,360

being close to transitioning into another of the six canonical states.361

The impact of the sequential Bayesian approach on the regime frequencies, computed as the362

average Bayesian regime probability for this method, and (1-day) autocorrelation is shown in363

Figure 6. Here the autocorrelation for the hard regime assignment is computed using a time series364

which is one when data is assigned to the corresponding regime and zero otherwise. The average365

frequencies of the regimes do not change when using the Bayesian regime assignment, as can be366

seen in Figure 6(a). This holds both for the SEAS5 hindcast ensemble data and for ERA-Interim,367

where also the results of the regularised :-means clustering algorithm are shown for comparison.368

On the other hand the autocorrelation, being an indication of the persistence of the regimes, is369
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Fig. 5: The observed regime likelihood and Bayesian regime probability for ERA-Interim, with
the hard assignment using a standard or time-regularised (persistent) :-means algorithm shown by
the bars for the winter of 1993-1994.

strongly affected (Figure 6(b)). For ERA-Interim we see that the sequential Bayesian approach370

increases the autocorrelation even beyond that obtained using a regularised clustering algorithm371

that contains a persistence constraint. Also for SEAS5 a strong increase in autocorrelation is found372

using the sequential Bayesian regime assignment compared to a standard hard assignment. For373

most regimes the ERA-Interim values lie at the top of the SEAS5 autocorrelation range, both for374

the standard and Bayesian approach. Thus we find that the Bayesian approach does not alter the375

regime frequencies, but does lead to more persistent regime dynamics, as we might hope. This376

suggests that the transition probabilities in Equation (5), which are used to obtain the prior regime377

probabilities, likely are an underestimation of the true persistence, which is improved by the use of378

Bayes Theorem.379

4. Ensemble Bayesian Regime Assignment380

The implicit assumption made in the sequential Bayesian approach as discussed in the previous381

section is that the regime dynamics is statistically stationary in time. That is, the climatological382

likelihood functions and transition probabilities do not change in time. This is a reasonable and383

minimal first assumption yielding good results, but it is likely that external factors such as ENSO384
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Fig. 6: The regime frequencies and 1-day autocorrelation as obtained using either standard :-
means clustering (circles) or a sequential Bayesian regime assignment (stars) for the SEAS5
hindcast ensemble (symbols with error bars) and ERA-Interim (symbols only), for which also the
values obtained with the time-regularised :-means clustering method are shown (squares). Error
bounds are determined using bootstrapping with one member per year (with replacement, 500
times), where the thick bars indicate the plus-minus one standard deviation range with thin bars
extending showing the 95% confidence interval.

affect some aspects of the regime dynamics as discussed in Section 1. There are two obvious ways385

in which to include the effect of external forcing in the Bayesian approach. The first is to update386

the regime likelihood functions in time. The second is to update the prior probabilities. These two387

aspects are by no means the only aspects of the regime dynamics that can be affected by external388

forcing. For example, one can imagine that the regimes themselves change as a consequence389

of external factors causing changes in the climate system. However, this is nearly impossible to390

quantify with the limited available data and no robust evidence for this has been found so far (e.g.391

Corti et al. 1999; Dorrington et al. 2022). Therefore, we only discuss the above-mentioned two392

approaches.393
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In the following analysis we focus on the latter of these two approaches. The main reason for394

this is the lack of data availability. Even though the SEAS5 hindcast ensemble has 51 members for395

each year, this still is insufficient to allow for e.g. weekly updating of the likelihood functions. An396

option for which sufficient data are available would be to compute the likelihood function during397

e.g. strong El Niño years, and use those to change the likelihood functions each year. However,398

this relies on the hypothesis that the regions in phase space belonging to each of the regimes shift399

as a consequence of ENSO forcing, while it may simply be the case that some regions are visited400

more often than others. As there are only 36 years of data available it is impossible to test this401

hypothesis and thus we refrain from pursuing this approach further. On the other hand, there is402

sufficient data to update the prior probabilities in time. There are several ways in which this can be403

done. For example, one can use information on ENSO to shift the prior probabilities, or one can404

make use of the ensemble information by allowing the transition probabilities to change in time.405

We pursue the latter approach, as it makes use of the information within the SEAS5 ensemble and406

does not require any external information. It is explained and evaluated in the next two sections407

followed by an analysis of the resulting interannual variability in Section 5.408

a. Updating the Transition Probabilities409

To obtainmore informative prior regime probabilities, the transition probabilities)8 9 from regime410

8 to 9 are updated following the ensemble behavior. This allows not only for (fixed) persistence411

to inform the prior, but also non-stationary external factors, such as ENSO, through the ensemble412

statistics. Although there is not sufficient data to robustly estimate the transition probabilities413

directly, they can be inferred from the occurrence rates. The main assumption we make when414

updating the transition matrix) in time is that the regime probabilities are approximately stationary415

with respect to the current best estimate of the transition matrix. That is, we look for a transition416

matrix ) (C) for which the regime probabilities averaged over the ensemble at time C, %̄(C), are417

approximately stationary:418

) (C)%̄(C) = %̄(C) + n C . (7)

Here n C is a noise term. Note that the climatological transition probabilities %2 are (nearly)419

stationary with respect to the transition matrix ) 2. The aim thus is to find a transition matrix ) (C)420

for which Equation (7) holds. In addition we have that a transition matrix is normalised, meaning421
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its columns each sum to unity:422

:∑
8=1
)8 9 = 1, ∀ 9 ∈ 1, ..., : . (8)

This gives two equations which are used to update ) (C) at each timestep C. The problem of finding423

the values of the transition matrix ) (C) is ill-posed as there are not sufficient constraints, which424

means some choices need to be made in determining its values. The approach we propose in the425

following paragraph is one that follows the regime dynamics closely and is least biased in the sense426

that the deviations from ) 2 are equally distributed over all six regimes.427

The regime dynamics is dominated by persistence, i.e. the probability of a regime to transition428

to itself corresponding to the diagonal elements of the transition matrix, as can be seen in Equation429

(5). Therefore we focus on these diagonal elements )88 (C) for updating the matrix ) (C) in time.430

Writing out Equation (7) elementwise while separating the diagonal and off-diagonal elements431

yields432

)88 (C)%̄8 (C) +
:∑
9≠8

)8 9 (C)%̄ 9 (C) = %̄8 (C) + n C8 , ∀8 ∈ 1, ..., : . (9)

As the diagonal terms dominate, we assume the off-diagonal elements do not differ much from the433

climatological values, that is )8 9 (C) ≈ ) 28 9 for all 8 ≠ 9 . This yields an approximate equation for the434

diagonal elements of ) (C):435

)88 (C)%̄8 (C) ≈ %̄8 (C) −
:∑
9≠8

) 28 9 (C)%̄ 9 (C). (10)

When a particular regime is less populated than it is in climatology, the other regimes will436

conversely be more populated, implying a larger negative term on the right-hand side of (10) and437

thus a smaller value of the self-transition probability, which makes physical sense. Note that this438

approximation breaks down when %̄8 (C) is very small compared to the other %̄ 9 (C), in which case439

we set )88 (C) = 0 to prevent negative values. Starting from the updated diagonal elements, the off-440

diagonal elements are computed using Equation (8) with an equal distribution of the perturbation441

from the climatological value over the off-diagonal terms.442
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The estimation of the transition matrix ) in essence is the same as trying to fit a HMM to the443

data. The difficulty here is the limited availability of data, where we only consider data at one444

point in time to retain the sequential nature of the method. This makes the use of less heuristic,445

more sophisticated methods unreliable due to the large impact of noise on the data. If many446

more ensemble members would be available, something like the Baum-Welch algorithm might be447

a worthwhile approach for estimating ) (Baum et al. 1970). Starting the updating of ) (C) from448

the diagonal elements and adjusting the off-diagonal elements equally is not the only option. It449

might even be better to not adjust the off-diagonal elements equally. However, since %̄(C) is an450

average over only 51 ensemble members, robustness would be an issue when making any further451

assumptions in updating ) (C) and hence we stick to the simplest approach.452

The above method is equivalent to considering ) (C) as the climatological transition matrix plus453

a perturbation, i.e. ) (C) = ) 2 +) ′(C), and subsequently assuming that the perturbations to the454

off-diagonal terms are small. An alternative way of looking at this is by considering it as a Markov455

regression model (Hamilton 1989; Krolzig 1997). That is, we write the transition matrix ) as456

) (C) = ) 2 +
∑
<

U< (C))< . (11)

Here )< are matrices that set the shape of the perturbations to the climatological transition matrix,457

where the sum over each of the columns is zero for every <, and U< (C) gives the strength of that458

term at time C. For a choice of459

)< =

©­­­­­­­­­­«

0 . . . − 1
:−1 . . . 0
...

... 1 ...

...

0 − 1
:−1 0

ª®®®®®®®®®®¬
, (12)

where the <-th column is non-zero this is exactly equivalent to the approach mentioned before.460

Here the U< can be computed using the same assumptions as discussed before. This shows that461

there are several ways of looking at the problem that yield the same outcome, increasing the462

confidence in this approach.463
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b. Evaluation464

To get an idea of how this approach can inform the prior probabilities consider Figure 7, which465

shows both the sequential and ensemble Bayesian regime assignments for the (randomly chosen)466

42nd ensemble member during the winter of 1992-93. This is the same winter for which the 23rd467

ensemble member is shown in Figure 4. As an example, consider the probability of AR−. Around468

days 5-10 the ensemble indicates this regime is less likely, as shown by a lower self-transition469

probability, lowering the prior probability of the regime. On the other hand, from day 25 onward470

AR− is more likely according to the ensemble, increasing its prior probability compared to the471

sequential approach. In most cases changes to the final probabilities are small. The only exceptions472

occur when a regime is deemed very unlikely, i.e. does not occur in any of the other ensemble473

members, as happens twice for the SB+ regime between day 60 and 90. In these two cases a high474

observed likelihood for SB+ is reduced substantially in the Bayesian probabilities in favor of the475

second most-likely regime according to the likelihood, e.g. a 90% likelihood is reduced to a 35%476

Bayesian probability. Yet importantly, the Bayesian probability of this regime is still non-zero, so477

it can quickly respond to new information. The overall regime frequencies and autocorrelation are478

not affected and remain as shown in Figure 6 for the sequential approach.479

5. Interannual Variability480

The interannual variability as obtained using the ensemble Bayesian regime assignment is shown481

in Figure 8, with the result of the sequential Bayesian approach shown for reference (the interannual482

variability of the sequential Bayesian approach is nearly identical to that obtained for the :-means483

clustering assignment). The primary signal in the variability is found during very strong El Niño484

years (vertical red solid lines) with SB− and NAO− showing an increase in frequency, while AR+,485

AR− and NAO+ show a decrease in frequency. The signal during strong La Niña years (vertical486

blue dash-dotted lines) is less clear, with on average an increase in NAO+ and decrease of NAO−487

frequency. However, not every individual event matches this behavior. To define El Niño and La488

Niña years the Niño 3.4 index is used (Trenberth 1997). Strong years correspond to a threshold of489

±1.5, and very strong years to a threshold of ±2. The asymmetry in the thresholds used for El Niño490

and La Niña years is due to there being no very strong La Niña events in the considered time period.491

These results, with a less pronounced regime response to La Niña compared to El Niño, reflect the492
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Fig. 7: In the top three panels the prior probability, conditional regime likelihood and Bayesian
regime probability for the 42nd ensemble member in the Bayesian regime assignment procedure
for the winter of 1992-1993 are shown. The solid line shows the sequential Bayesian approach
and the dashed line the ensemble approach discussed in this section. The bottom panel shows
the difference between the updated self-transition probabilities in the ensemble approach and the
climatological values.

well-known nonlinearity of the response to ENSO (Straus and Molteni 2004; Toniazzo and Scaife493

2006) and are in line with those obtained in Falkena et al. (2022) using a regularisation on the494

ensemble members. The boxes on the right of each panel show the average regime frequencies495

during the identified El Niño and La Niña years for both the sequential and ensemble Bayesian496

approach, where there is an asymmetric response to ENSO for both methods. Some enhancement497

of the signal is found using the ensemble Bayesian regime assignment, which is most clear for the498

AR− and SB− regimes. The ERA-Interim variability from the sequential Bayesian approach is499

shown as well to give a perspective on the magnitude of the interannual variability.500

To further consider the effect the updating of the transition matrix in the ensemble approach has501

on the interannual variability, consider Figure 9 which shows the difference between the sequential502
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Fig. 8: The interannual variability of the occurrence rates for the ensemble Bayesian regime
assignment for SEAS5 (color, with 95% confidence interval shaded), with the sequential Bayesian
approach indicated by the black dashed lines. The grey shaded areas bounded by the grey dotted
lines indicate the 10th and 90th percentile of the ensemble Bayesian assignment for each regime.
The black dotted curve shows the ERA-Interim variability and the box-and-whisker plots on the
right show the average occurrence rate during very strong El Niño (indicated by the vertical red
solid lines) and strong La Niña years (indicated by the vertical blue dash-dotted lines).

and ensemble Bayesian regime assignment as well as the yearly average change to the self-transition503

probabilities, or persistence, of the regimes following the ensemble approach. Note that on average504

the perturbation to the self-transition probabilities is negative. The effect of the ensemble Bayesian505

approach on the regime frequencies is clearly visible for AR+, AR− and SB−, where the signal in506

response to El Niño is enhanced. For NAO+ a strong increase in regime frequency is found for the507

1988-1989 La Niña, together with a weak change during El Niño years. NAO− and SB+ do not508

show much difference in interannual variability between the two methods, although in the latter509

case there is little signal to enhance. The changes in the self-transition probabilities in general510

match those found in the regime frequencies, as expected. One aspect to note here is that for511
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Fig. 9: The difference in interannual variability of the occurrence rates between the standard
and ensemble Bayesian regime probabilities (solid), as well as the change in the self-transition
probability for the regimes following the ensemble (dashed).

NAO+ the changes in the self-transition probability are relatively larger than those in the regime512

frequencies, especially when comparing to SB−.513

The response of the changes in regime frequency to El Niño events found using the ensemble514

Bayesian approach appears to show a true signal and is very unlikely to have arisen by chance.515

To understand this, consider the change in regime frequency for SB−. The marginal probability516

of a very strong El Niño event is 3/36 (3 events in 36 years), so the chance of the first increase517

in SB− frequency aligning with El Niño is 3/36. Then, given the first El Niño event has already518

happened, the probability of the second spike aligning is 2/35 and for the third 1/34. This gives519

a probability of 3/36 · 2/35 · 1/34 ≈ 10−4 for the alignment occurring by chance. The alignment520

of the increase/decrease in frequency for the other regimes only further decreases the probability521

of this being by chance. Also note that the response of both AR+ and AR− is a decrease in522
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regime frequency during El Niño years, indicating another aspect of nonlinearity in the circulation523

response to ENSO.524

Some of these signals in response to ENSOcan already be picked up using 10-member ensembles.525

In Figure 10 the interannual variability of the regime frequency is shown for 50 random 10-member526

ensembles obtained from the full SEAS5 ensemble. For the full ensemble the strongest signal was527

found for SB− during very strong El Niño years, and this is the signal that jumps out most strongly528

again. To quantify this the Probability of Detection (POD) and False Alarm Ratio (FAR) for the529

10-member ensembles are considered for peaks or troughs in regime frequency aligning with El530

Niño and La Niña (Figure 11). Here, peaks and troughs are considered as exceedances with respect531

to the =th percentile. The POD is computed as the number of peaks/troughs aligning with El532

Niño/La Niña years over the total number of El Niño/La Niña years, and the FAR is computed as533

the number of peaks/troughs outside those El Niño/La Niña years divided by the total number of534

peaks/troughs. As expected, for El Niño there is a high POD for peaks in the SB− regime frequency535

with a relatively low FAR (Figure 11(a)). Also for NAO− (peaks), NAO+, AR+ and AR− (troughs)536

there is some signal, with the FAR being comparable to the POD. For La Niña years there is some537

signal for NAO+, AR+ (peaks) and NAO− (troughs), but it is not as strong as for SB− in El Niño538

years (Figure 11(b)). This is to be expected as we cannot expect to identify strong signals using a539

smaller ensemble if they are not clear in the full ensemble. Nevertheless, the relatively high PODs540

for these three regimes are encouraging.541

To see whether the found response to ENSO for some regimes also reflects a predictable signal542

in the observations we regress the ERA-Interim interannual variability onto the SEAS5 one, as543

in Falkena et al. (2022). The results for this, looking at the sequential and ensemble Bayesian544

approach, are shown in Table 1. In addition to the ?-value, we also compute the Bayes factor545

which is the ratio of the probabilities of the data given two different hypotheses �1 and �2, i.e.546

%(� |�1)/%(� |�2) (Kass and Raftery 1995). Here the first hypothesis �1 is that of a linear547

regression model, whereas the second hypothesis �2 assumes a constant, climatological, regime548

frequency. For its computation we follow the Bayesian Information Criterion approximation from549

Wagenmakers (2007). Values of the Bayes factor above one indicate �1 is more likely, with550

values between 3 and 20 constituting positive evidence and values over 20 yielding strong evidence551

towards it (Kass and Raftery 1995).552
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Fig. 10: The interannual variability of the regime frequency for the ensemble Bayesian approach
when applied to (random) ensembles of 10 members. In total 50 random ensembles are shown.
The solid red and dash-dotted blue lines indicate very strong El Niño and strong La Niña years
respectively.

Using the sequential Bayesian approach we already find some predictable signal for the NAO+553

and SB− regimes, with Bayes factors of 7.6 and 5.1 respectively (Table 1). The Bayes factor for554

NAO− is also above 3, but here the ?-value is larger reducing the confidence in this being a true555

signal. These results are comparable with those found in Falkena et al. (2022), with the regression556

coefficients being close to one forNAO+, NAO− and SB−. These regression coefficients around one557

indicate the signal in SEAS5 is of similar magnitude to that in ERA-Interim, showing no evidence558

of a signal-to-noise paradox for the regime frequencies, in contrast to the NAO-index (Falkena559

et al. 2022). Using the ensemble information to update the transition probabilities increases the560

predictable signal for NAO+ and SB−, with smaller ?-values and higher Bayes factors. Also561

the AR− signal is enhanced with a Bayes factor over 3 although the ?-value is still relatively562

large. The enhancement of the NAO+ signal is comparable to that found using a regularised563
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Fig. 11: The probability of detection (solid) and false alarm ratio (dashed) for a peak or trough in
regime frequency in 10-member subsamples of the SEAS5 ensembles occurring in the same year
as a very strong El Niño or strong La Niña, as a function of the percentile used for the definition of
the peaks and troughs. The colored lines indicate the regime values, and the grey lines the values
for peaks and troughs occurring in random years, i.e. no signal.
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Regime NAO+ NAO− AR+ SB+ AR− SB− MLR NAO−

Sequential Bayes Reg. Coeff. 1.170 1.094 -0.504 0.258 1.207 1.083 NAO+ -1.369

SB− -1.838

p-value 0.052 0.139 0.592 0.795 0.174 0.082 0.047

Bayes Fac. 7.579 3.251 1.167 1.037 2.696 5.054 21.108

Ensemble Bayes Reg. Coeff. 1.066 1.035 -0.435 0.225 1.037 0.785 NAO+ -1.429

SB− -1.412

p-value 0.044 0.133 0.527 0.782 0.136 0.075 0.041

Bayes Fac. 8.910 3.365 1.240 1.042 3.306 5.487 26.641

Table 1: The regression coefficient, ?-value and Bayes factor for linear regression of the interan-
nual variability in regime frequency (ERA-Interim onto SEAS5) for all six regimes. In addition,
the result of multiple linear regression of the ERA-Interim NAO− frequency against the SEAS5
ensemble mean NAO+ and SB− regime frequencies is shown. Values for both the sequential as
well as the ensemble Bayesian approach are shown.

clustering approach, whereas the change for SB− is weaker (a Bayes factor of 13.2 compared to564

5.5, Falkena et al. (2022)). On the other hand, the decrease in Bayes factors for NAO− and AR−565

using a regularised approach is not found using the ensemble Bayesian method, which shows small566

increases of the Bayes factors. In Falkena et al. (2022) a significant signal was found using multiple567

linear regression of ERA-Interim NAO− onto the SEAS5 NAO+ and SB−, which we find here as568

well with Bayes factors of 21.1 for the sequential method increasing to 26.6 using the ensemble569

approach. Comparing the two methods, we find that the ensemble Bayesian regime assignment570

allows to identify more pronounced interannual variability signals for some regimes while still571

accounting for the signal of the other regimes.572

6. Conclusion and Discussion573

Anew approach exploitingBayes Theorem (1) is proposed to obtain a probabilistic regime assign-574

ment of the atmospheric state on a given day, based on preexisting definitions of the regimes. The575

approach combines climatological likelihood functions with prior information from the previous576

day, using climatological estimates of regime persistence, to obtain a Bayesian regime proba-577

bility. This sequential probabilistic regime assignment allows for smoother transitions between578

the regimes and indicates whenever data does not clearly belong to one regime. In contrast to579

previously studied methods that used a regularised :-means clustering algorithm (Falkena et al.580

2020, 2022) there is no parameter, other than the number of regimes : , that has to be selected.581

Also, the method can be applied in real time as new data comes in. Applying the approach to582
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six wintertime circulation regimes over the Euro-Atlantic sector yields an increase in persistence,583

without affecting the average regime frequencies for both SEAS5 and ERA-Interim (Figure 6).584

In addition, for ERA-Interim the 1-day autocorrelation was found to be higher than that obtained585

using a regularised :-means approach containing a persistence constraint (Falkena et al. 2020).586

The Bayesian probabilistic regime assignment can help overcome the need for some of the heuristic587

devices, such as a “no-regime” category, that are commonly used in circulation regime studies (e.g.588

Cassou et al. 2005; Grams et al. 2017). The regime probabilities indicate when data cannot be589

clearly assigned to one regime, whereas the incorporation of prior information ensures persistent590

regime dynamics. Here, the focus has been on the regime dynamics within the winter season and591

on interannual timescales, leaving the challenging problem of seasonality of regimes aside (e.g.592

Breton et al. 2022).593

A yet more informative prior for the Bayesian approach can be obtained by continuously updating594

the prior probabilities by taking information from the full SEAS5 ensemble into account. Starting595

from the assumption of approximate stationarity of the ensemble mean regime frequencies at each596

day, the regime transitionmatrix is updated. This update is started from the diagonal of the transition597

matrix since the persistence dominates the regimes dynamics. The limited availability of data is598

not sufficient to reliably apply other approaches such as Hidden Markov Models. This updated599

transition matrix in turn affects the prior probabilities, leading to more pronounced interannual600

variability for some regimes. When considering the interannual variability, the response to three601

very strong El Niño events in recent decades clearly stands out (Figure 8). During these three602

winters SB− and NAO− increase in frequency, while NAO+, AR+ and AR− decrease. The603

signals for AR+, AR− and SB− are enhanced by the ensemble Bayesian approach compared to604

the sequential method. The signal during La Niña winters is less pronounced, with the increase in605

NAO+ frequency during 1988-89 standing out most clearly.606

This response to ENSO in the SEAS5 ensemble can already be identified using only a 10-member607

ensemble. The increase in SB− occurrence during El Niño years is a particularly strong signal608

and is found in nearly all 10-member ensembles considered (Figure 10). Also for NAO+, NAO−,609

AR+ and AR− significant probabilities of detection for peaks or troughs coinciding with El Niño610

are found. However, here there also is a substantial false alarm ratio indicating that many peaks or611

troughs in the ensemble occur in non-El Niño years. For La Niña there also is some signal, but not612
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as strong as for El Niño years. These results suggest that one may not need a very large ensemble613

to identify regime signals in response to ENSO.614

We also use a linear regression analysis to identify predictable signals in the observations615

on interannual timescales. Here, as in Falkena et al. (2022), NAO+ and SB− were found to be616

predictable from the SEAS5 ensemble with regression coefficients around one (Table 1), suggesting617

no signal-to-noise deficit for these regimes. The ensemble approach leads to an increase in Bayes618

factor compared to the sequential method for all regimes, with the largest improvement for NAO+.619

ENSO is certainly part of the reason for the predictable signal foundwith the regression approach,620

but it is likely that other processes play a role as well. Previous studies have linked the frequency621

of Euro-Atlantic circulation regimes to the Madden-Julian Oscillation (e.g. Cassou 2008; Straus622

et al. 2015; Lee et al. 2019, 2020) and the stratospheric polar vortex (e.g. Charlton-Perez et al.623

2018; Domeisen et al. 2020), and it would be interesting to see whether the Bayesian approach to624

regime assignment can aid in better understanding the links between these processes and the regime625

frequencies. In that respect, the clear improvement in persistence obtained from the sequential626

method (Figure 5) should be useful for such S2S applications, even if the seasonal averages627

are not much affected. Information about other climatic processes that are known to affect the628

regime occurrence can be used to obtain an informative prior for the regime probabilities. For629

example, knowledge of the states of ENSO or the stratospheric vortex can inform the prior regime630

probabilities. Such priors can be used for both model ensembles as well as reanalysis datasets and631

aid in better distinguishing the signal from the noise.632

The use of the Bayesian regime assignment approach is not limited to atmospheric circulation633

regimes, but can be applied to any case in which the data can be separated into two or more634

regimes. For example, one can think of the two phases of the NAO or the jet latitude (Woollings635

et al. 2010). For the application one needs some information on the regime likelihood function636

and a way to obtain an informative prior. In most cases the latter will be the most challenging and637

requires a thorough understanding of the processes involved. For circulation regimes a prior based638

on climatological transition probabilities, which automatically builds in persistence, was shown to639

be a suitable and natural choice, and incorporating information from a full ensemble enhanced the640

interannual signal. Depending on the regime process considered other choices for the prior may641

be more suitable.642
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