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ABSTRACT: The standard approach when studying atmospheric circulation regimes and their dynamics is to use a hard re-
gime assignment, where each atmospheric state is assigned to the regime it is closest to in distance. However, this may not al-
ways be the most appropriate approach as the regime assignment may be affected by small deviations in the distance to the
regimes due to noise. To mitigate this we develop a sequential probabilistic regime assignment using Bayes’s theorem, which
can be applied to previously defined regimes and implemented in real time as new data become available. Bayes’s theorem
tells us that the probability of being in a regime given the data can be determined by combining climatological likelihood with
prior information. The regime probabilities at time t can be used to inform the prior probabilities at time t1 1, which are then
used to sequentially update the regime probabilities. We apply this approach to both reanalysis data and a seasonal hindcast
ensemble incorporating knowledge of the transition probabilities between regimes. Furthermore, making use of the signal pre-
sent within the ensemble to better inform the prior probabilities allows for identifying more pronounced interannual variabil-
ity. The signal within the interannual variability of wintertime North Atlantic circulation regimes is assessed using both a
categorical and regression approach, with the strongest signals found during very strong El Niño years.

SIGNIFICANCE STATEMENT: Atmospheric circulation regimes are recurrent and persistent patterns that charac-
terize the atmospheric circulation on time scales of 1–3 weeks. They are relevant for predictability on these time scales
as mediators of weather. In this study we propose a novel approach to assigning atmospheric states to six predefined
wintertime circulation regimes over the North Atlantic and Europe, which can be applied in real time. This approach
introduces a probabilistic, instead of deterministic, regime assignment and uses prior knowledge on the regime dynam-
ics. It allows us to better identify the regime persistence and indicates when a state does not clearly belong to one
regime. Making use of an ensemble of model simulations, we can identify more pronounced interannual variability by
using the full ensemble to inform prior knowledge on the regimes.

KEYWORDS: Atmosphere; Blocking, North Atlantic Oscillation; Bayesian methods; Classification; Clustering

1. Introduction

A thorough understanding of extratropical circulation variabil-
ity on subseasonal time scales is important for improving

predictability on these time scales. Improvement of this predict-
ability is of great societal relevance for sectors such as renew-
able energy. Atmospheric circulation, or weather, regimes can
describe this variability by dividing the circulation into a small
number of states or patterns (Hannachi et al. 2017). These re-
gimes are recurrent patterns that represent the low-frequency
variability in the atmospheric circulation. They have been
studied for a long time, starting with papers focusing on their
identification (e.g., Mo and Ghil 1988; Molteni et al. 1990;
Vautard 1990; Michelangeli et al. 1995), with later research
discussing their links with other processes and surface impacts
(e.g., Straus and Molteni 2004; Cassou et al. 2005; Charlton-
Perez et al. 2018; van der Wiel et al. 2019).

The most commonly used technique for identifying circu-
lation regimes is k-means clustering (e.g., Michelangeli et al.
1995; Straus et al. 2007; Matsueda and Palmer 2018). This
method separates the phase space into k clusters, where the
data within each cluster are similar, but dissimilar between
the different clusters. The number of clusters k has to be set
a priori, for which several approaches such as a classifiability
index (Michelangeli et al. 1995) or information criteria
(O’Kane et al. 2013) are used. One of the drawbacks of this
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clustering approach is that it yields a hard, deterministic, as-
signment of the data to each of the regimes. This means that
it is difficult to quantify the uncertainty of the regime assign-
ment, as data close to the regime center are treated the
same as data that are only just (by distance) assigned to that
regime.

The hard regime assignment of k-means clustering means
that the result is susceptible to noise. Consider Fig. 1a, which
shows the distance of the data to two regimes in time for a
real case (discussed later in detail), over a period of 12 days.
Initially, the data clearly are categorized to belong to regime A,
being significantly closer in distance to regime A than to
regime B. However, from day 7 to 9 the data make a brief
excursion into a part of the phase diagram that is closer
to regime B, after which they move back to being closest to
regime A. The question is whether this is a real signal or
simply the effect of noise. Since the regime dynamics is

quite persistent in time it is likely to be the latter, but this
possibility is not picked up by the hard assignment of a stan-
dard k-means clustering approach. Often a low-pass filter
is applied to remove this high-frequency variability (e.g.,
Straus et al. 2007; Grams et al. 2017), but in Falkena et al.
(2020) it was shown that low-pass filtering can lead to a bias
in the observed regime frequencies.

Another solution is to use a regularized clustering algorithm
that constrains, or bounds, the number of transitions between the
regimes so that it is in line with the natural metastability of the un-
derlying dynamics. Such an approach, first introduced in the con-
text of clustering methods by Horenko (2010), has for example
been applied to discrete jump processes (Horenko 2011a) with
applications in computational sociology (Horenko 2011b) and
for efficient classification in the context of sparse data settings
(Vecchi et al. 2022). In the context of atmospheric dynamics,
time regularization has been used to study the Southern

FIG. 1. A conceptual example of the difficulty k-means clustering has when noise affects the data, showing what a
probabilistic approach can bring. (a) An example trajectory of the data as a function of the distances to two regimes
A (orange) and B (red). The 1–1 line is shown as a black dashed line and indicates that the region above is closer to
regime A and the region below is closer to regime B. Numbers indicate the day corresponding to that point in the tra-
jectory. The likelihood functions shown along the top and right of the main plot give the climatological probability of
those distances given hard assignment to regime A (orange; top plot) or B (red; right plot). The dotted gray line indi-
cates a slice through the probability space along which the pdfs in (b) are considered. (b) A slice of the likelihood
functions, weighted by the prior probabilities following Bayes’s theorem, for each of the regimes (solid lines: regime
A is orange and regime B is red) along the gray dotted line in (a), perpendicular to the 1–1 line, for the 7th, 8th, and
9th days. The location of the data on each day is indicated by the vertical black lines, and the bars at the edge of the
plots show the prior (left bar of the pair) and posterior (right hatched bar) probabilities for each of the regimes
(regime A in orange at the left edge; regime B in red at the right edge). The climatological likelihood functions are
shown as dashed lines in all plots in (b), and the vertical gray dotted line indicates the location of the 1–1 line. The in-
set plots in each main plot show an enlargement of the region around the 1–1 line.
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Hemispheric circulation (O’Kane et al. 2013), the dynamics of
the North Atlantic Oscillation (Quinn et al. 2021), and how to
identify persistent circulation regimes (Falkena et al. 2020). A
regularized clustering method allows us to better identify the
signal within the noise but does require selecting a constraint
parameter. This introduces a parameter selection, where, for
example, an information criterion is used to decide on a suit-
able constraint value.

An alternative approach is to make the regime assignment
probabilistic rather than deterministic, allowing for a more
nuanced and informative regime assignment in the presence
of noise. Methods such as mixture modeling provide such a
probabilistic regime assignment (e.g., Hannachi and O’Neill
2001; Smyth et al. 1999; Baldo and Locatelli 2023) but are not
widely used. Hidden Markov models (HMMs) extend the
mixture modeling approach by also taking into account the
dynamics of the system and not just the statistics (Majda et al.
2006; Franzke et al. 2008), but they are hard to fit for rela-
tively short time series when the data are high dimensional.
Another approach is to approximate the regime model using
local Markov distance functionals with corresponding time
dependent probabilities (Horenko 2011a). In studies that look
into forecasting of regimes on subseasonal time scales, the
probability of being in a regime is often considered by looking
at the empirical distribution of the (hard) regime assignment
across an ensemble (Vigaud et al. 2018; Cortesi et al. 2021;
Büeler et al. 2021; Falkena et al. 2022). Such an approach is
already used in an operational setting by, for example,
ECMWF (Ferranti et al. 2015). A limitation of this method is
that it requires availability of ensemble data, where typically
the ensemble size is small, and verification is done against a
hard regime assignment from reanalysis.

A probabilistic regime assignment that does not require
this availability of ensemble data would help in better assess-
ing the skill in predicting regimes, as it could be applied to re-
analysis data, which are also subject to noise. Such a regime
assignment would allow us to identify the instances in which
the observations cannot be clearly assigned to one regime or
in which a wrong hard assignment is potentially due to noise.
This approach allows for a fairer verification of the model by
taking some degree of observational uncertainty into account.
Here it is desirable for the approach to be sequential, which
allows for the regime assignment to be done in real time, mak-
ing it suitable for operational applications. Most probabilistic
regime assignment methods, such as mixture models or HMMs,
require the availability of the full dataset when computing the
regime probabilities, which would mean one has to rerun the
clustering algorithm whenever a new data point is added. A
method that, after training on an initial dataset, can easily be
applied to data as it becomes available is more suitable for an
operational setting. Such a method can also be applied to prede-
fined regimes, to provide traceability with previous work.

The standard hard regime assignment can be considered as
a random process that takes a value in the set of possible re-
gimes at each time. The associated probability can be com-
puted on the basis of metastability frequencies computed
from previous or currently available batch data. The aim is to
determine the corresponding conditional probability of being

in a regime given the data, i.e., P(Regime|Data). Following
Bayes’s theorem, this is given by

P(Regime|Data) 5 P(Data|Regime)P(Regime)
P(Data) , (1)

combining prior knowledge of the probability of being in a re-
gime P(Regime) with an observed likelihood given a regime
P(Data|Regime). The latter can sometimes be computed from
the climatological data. In Fig. 1a the observed (climatologi-
cal) likelihood functions for both regimes are shown next to
the trajectory. The working of Bayes’s theorem for such a tra-
jectory is shown in Fig. 1b, which shows how the inclusion of
prior information P(Regime) following Bayes’s theorem
given in (1) affects the posterior P(Regime|Data) for the tra-
jectory at days 7, 8, and 9, following a section along the dotted
line in Fig. 1a. The climatological likelihood functions of the
two regimes A and B, indicated by the dashed lines, are
weighted (solid lines) using the prior regime probabilities,
shown by the nonhatched bars at the edge of the panels. The
posterior probabilities are then computed as the values of the
weighted likelihood functions at the data point (vertical black
line). The obtained Bayesian probabilities are indicated by
the hatched bars and used to inform the prior probabilities for
the next time step, using climatological information about
transition probabilities.

At day 7 the prior information indicates a very high probabil-
ity of being in regime A as all previous days belonged clearly to
that regime. This increases the probability of t 5 7 belonging to
regime A and decreases that of belonging to regime B with re-
spect to the climatological likelihood, which would otherwise be
evenly balanced between the two regimes. Thus, there is a high
probability that the data at day 7 belong to regime A. Given the
known persistence of regimes, the prior information for day 8
again then indicates a high probability of being in this regime,
albeit slightly smaller than at t5 7, which weights the likelihood
functions accordingly. Although the data are closer to regime B,
the prior information means that there is an approximately
equal probability of being in either of the two regimes. The
prior for t 5 9 thus does not weight the likelihood functions as
much as for t 5 7 and 8, and thus the data at day 9 being
equally close to both regimes means that again the probability
of being in either of the regimes is close to a half. This discus-
sion shows how the inclusion of prior information can be used
to compute the probability of a regime given the data, and
thereby soften the effects of noise, following the fundamental
principles of probability as encoded in Bayes’s theorem [in (1)].
As noted above, the approach as discussed here is sequential
and can be applied to individual realizations, making it suitable
for operational applications. An initial training dataset can be
used to obtain the climatological likelihood functions, after
which the regime assignment can be applied to data as they be-
come available. The latter regime assignment step is similar to
finding the most probable sequence once an HMM is known
(Viterbi 1967; Rabiner 1989).

Other aspects than persistence can affect the prior regime
likelihood as well. It is likely that nonstationary external
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factors, such as El Niño–Southern Oscillation (ENSO) or sud-
den stratospheric warmings (SSWs), have an influence on the
prior regime probabilities (e.g., Toniazzo and Scaife 2006;
Ayarzagüena et al. 2018; Domeisen et al. 2020). The Bayesian
approach allows us to incorporate such information, either by
looking at, for example, an ENSO index or by making use of
the availability of ensemble data. In a previous study a regu-
larized clustering method helped to identify a more pro-
nounced interannual regime signal by making use of the
information available in an ensemble (Falkena et al. 2022).
Similarly, having a more informative prior for Bayes’s theo-
rem from (1), incorporating information from external pro-
cesses, can help in identifying a stronger nonstationary regime
signal. The Bayesian approach discussed here is not the only
method in which information on external forcing can be incor-
porated in the regime assignment (e.g., Franzke et al. 2015),
but it is (to our knowledge) the first that allows to do this in a
sequential manner.

In this paper we formalize the intuition of Fig. 1 and study
how to use Bayes’s theorem to obtain a probabilistic regime
assignment based on predefined regimes for the wintertime
Euro-Atlantic sector. The use of predefined regimes respects
the scientific value that has already been established for those
regimes (e.g., in the relationship with particular climate im-
pacts). In section 2 we discuss the data that are used and the
use of standard k-means clustering to obtain the circulation
regimes that we consider for this study. The two sections that
follow explain the way in which Bayes’s theorem can be used
for the regime assignment, where an important aim of our work
is to link our method to existing work on clustering of circulation
regimes. We start with the most intuitive sequential form (as dis-
cussed above) in section 3, and in section 4 we consider how the
use of ensemble data, which picks up some external forcing sig-
nals, can help to update the prior regime probabilities to study in-
terannual regime variability, which is discussed in section 5. A
discussion and conclusions are given in section 6.

2. Data and clustering

For the identification of the circulation regimes the 500-hPa
geopotential height fields (Z500) from two datasets are used: the
ECMWF SEAS5 hindcast ensemble dataset (Johnson et al. 2019)
and the ERA-Interim reanalysis dataset (Dee et al. 2011). For
both datasets, daily (0000 UTC) gridpoint (2.58 3 2.58 resolution)
Z500 data over the Euro-Atlantic sector (208 to 808N, 908W to
308E) are considered for all winters [December–March (DJFM)]
for which the SEAS5 ensemble data are available (1981–2016).
The regimes are computed using gridpoint anomaly data, where
the anomalies are computed with respect to the average DJFM
climatology [see Falkena et al. (2020) for the rationale for this
choice]. Here the climatologies of ERA-Interim and SEAS5
are used as a reference for the computation of their respective
anomalies. The SEAS5 hindcast ensemble has 51 members and
is initialized each year on 1 November, which means that by
considering data only from December onward the effect of the
atmospheric initial conditions has been effectively lost. This al-
lows us to treat each ensemble member as an alternative, physi-
cally plausible yet not observed realization of the atmosphere

(Thompson et al. 2017), subject to the nonstationary influences
for that year (notably ENSO).

A standard k-means clustering algorithm (Jain 2010), with
a Euclidian distance to compute the distance between the
data and regimes, is used to identify six circulation regimes
over the Euro-Atlantic sector for both ERA-Interim and the
SEAS5 hindcast ensemble. In k-means clustering the data are
sorted in k clusters that are close together within one cluster,
but far from data in the other clusters based on some distance
measure. These clusters are represented by their mean, which
corresponds to the circulation regimes, where the number of
clusters k has to be set a priori. Six was identified as a suitable
number of regimes for such unfiltered data in a previous study
(Falkena et al. 2020). The regimes for the SEAS5 hindcast en-
semble are shown in Fig. 2 and are the two phases of the
North Atlantic Oscillation (NAO), the Atlantic Ridge (AR),
Scandinavian blocking (SB) and both their counterparts. Note
that these regimes are slightly different in their patterns from
those of ERA-Interim [see Falkena et al. (2022) for details
on this], thereby providing an inherent bias correction between
the model and reanalysis. These hard regime assignments are
used to compute the likelihood functions that are used in the
Bayesian approach, for which a detailed discussion is given in
section 3a. In addition we consider the (hard) regime assign-
ments obtained using the time-regularized clustering algorithm
from Falkena et al. (2020). This allows for a comparison of dif-
ferent approaches to identify the persistent regime signal.

3. Sequential Bayesian regime assignment

In this section the Bayesian approach to regime assignment
is discussed, which can be applied to ERA-Interim data as
well as single ensemble realizations. We start with the details
of the method itself in section 3a, followed by a comparison
with the results of both a standard and time-regularized
k-means clustering method in section 3b.

a. Method

The starting point for our sequential Bayesian regime as-
signment is the six regimes obtained using k-means clustering
discussed in section 2 and shown in Fig. 2. The likelihood
functions in Bayes’s theorem given in (1) are computed based
on the distance to these regimes, and remain fixed throughout
the sequential Bayesian regime assignment. The discussion of
the method as phrased below is general and can be applied to
all types of regime dynamics as long as the regimes themselves
and the likelihood functions are specified a priori.

Let r be a discrete random variable indicating a regime
(i.e., taking values in {1, … , k} for k regimes) and let d 2 R

k

be a vector containing the distances to each of the regimes
(here the Euclidian distance is used, which is also the standard
cost function in the k-means setting). Specifically, d are the
data we consider in our Bayesian approach. The use of the re-
gime distance as data is not the only option. When one consid-
ers only a limited number of principal components (PCs) for
the regime representation the PC values can be directly used.
However, for the spatial fields considered here [see Falkena
et al. (2020) for the arguments in favor of using gridpoint
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data] this is unfeasible as the high dimensionality means the
phase space is sparsely sampled, leading to large uncertainty
in the resulting distributions. Therefore, a means of dimen-
sion reduction is required for which we consider the distances
to the different regimes since this is the metric used in most
clustering approaches. At a given time we are interested in
the probability to be in a regime r given the data [i.e., P(r|d)].
Bayes’s theorem tells us that

P(r|d) 5 P(d|r)P(r)
P(d) : (2)

Here, P(r) is the prior probability of regime r and P(d) is the
probability of the data. Since we only consider a discrete num-
ber of regimes that are mutually exclusive and exhaustive, the
latter can be computed by

P(d) 5 ∑
k

r51
P(d|r)P(r), (3)

making it a normalization factor.
Last, P(d|r) is the likelihood of the data given a regime r.

The likelihood of the data can be determined from the dis-
tance to each of the regimes by considering how the data fall
within the conditional distance distributions (i.e., the distribu-
tions conditioned on data belonging to one of the regimes).
For each data point in either the SEAS5 or ERA-Interim time
series we have this distance to each of the k regimes, which

has been computed in the k-means clustering procedure to de-
termine the hard regime assignment (section 2). This gives the
distributions of the distances to each of the regimes condi-
tional on regime r, which for SEAS5 are shown in Fig. 3.

There are a few things to note concerning these distributions.
First, the distance to the regime the data is assigned to is small-
est, but can still be larger than the distance to other regimes for
a different data point belonging to that regime. Second, for data
assigned to AR1, SB1, AR2, and SB2 the distances to the
other regimes are roughly equally distributed with the means
being relatively close to each other. However, for data assigned
to either NAO1 or NAO2 the distance to the other phase is
larger than that to the other four regimes. Thus these two re-
gimes are farther away from each other than the rest of the re-
gimes, and information on the proximity to one regime is
providing information on the proximity to the other.

Also, we see that these distributions are approximately normal,
justifying us to approximate the corresponding k-dimensional
conditional probability density functions (pdf) by a multivari-
ate normal. The likelihood P(d|r) is then given by the value of
the conditional pdf, that is

P(d|r) 5
exp 2

1
2
(d 2 mr)TS21

r (d 2 mr)
[ ]

������������
(2p)k|Sr |

√ , (4)

where | | represents the determinant. The mean mr and covari-
ance Sr, representing the variability around the cluster center,

FIG. 2. The six circulation regimes obtained for the SEAS5 ensemble using k-means clustering:
1) NAO1, 2) NAO2, 3) Atlantic ridge (AR1), 4) Scandinavian blocking (SB1), 5) AR2, and
6) SB2.
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are estimated from the conditional distance distributions ob-
tained from the k-means clustering results for each regime.
These estimates are done separately for ERA-Interim and
SEAS5 to avoid biases due to the regimes being slightly dif-
ferent. The estimates of the mean and covariance are surpris-
ingly similar between both datasets, indicating that, apart
from the slight difference in regimes, the model does a rea-
sonable job in representing the variability of the regime dy-
namics. A further discussion on this, including a robustness
analysis of the distance distributions, is given in the online
supplemental material.

To obtain the prior probability P(r) there is a natural
choice from propagating the probabilities of the previous time
step forward. From k-means clustering an estimate of the re-
gime dynamics is known, which is characterized by the clima-
tological regime frequencies Pc and transition probabilities Tc

ij

between the regimes. For SEAS5 these are given by (Falkena
et al. 2022; for the regimes ordered as in Fig. 2)

Pc 5

0:176
0:158
0:160
0:163
0:175
0:168

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Tc 5

0:728 0:000 0:039 0:062 0:060 0:112
0:000 0:822 0:050 0:046 0:053 0:029
0:079 0:054 0:702 0:075 0:021 0:069
0:069 0:058 0:065 0:739 0:037 0:031
0:072 0:032 0:035 0:045 0:771 0:045
0:065 0:033 0:095 0:029 0:070 0:708

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: (5)

Starting from the regime probabilities at time t 2 1, a best es-
timate of the prior probabilities for the next time step is

P(t) 5 TcP(t 2 1|d), (6)

where P(t) is the vector of prior probabilities {P(r)}r51,… ,k at
time t and P(t 2 1|d) is the vector of posterior probabilities
{P(r|d)}r51,… ,k at time t 2 1. Note that in the transition matrix
Tc the diagonal elements}corresponding to persistence of
the current regime}dominate. At the start of each winter, on
1 December, there is no previous probability to use, and thus
little prior information on the probability of being in any of
the regimes. For that reason, the climatological regime fre-
quencies Pc are used as a prior. Note that this is nearly as un-
informative as using a uniform distribution. Here the hard
regime assignment is used to obtain both the initial prior for
each winter and the transition probabilities to obtain subsequent
priors. This is by no means the only option (e.g., one could also
use a uniform prior at the start of winter). The choice made here
is closest to existing methods and therefore least biased when
comparing the results.

Using the prior probabilities P(r) and likelihood of the data
P(d|r) following the conditional distance distributions we can
compute the posterior Bayesian probability of a regime given
the data P(r|d) using Bayes’s theorem as presented in (2) in
every time step. This yields a sequential probabilistic regime as-
signment, where the regime probabilities of one day are used to
obtain a prior for the next day. Applying this method to ERA-
Interim data and the ensemble members of the SEAS5 ensemble
yields a probability of being in each of the six regimes at every
day in winter. From here on we refer to this posterior Bayesian
probability simply as the Bayesian probability. This Bayesian

FIG. 3. The distributions of the distances (normalized; gpm per number of grid points) to each of the regimes
(colors) conditional on the SEAS5 hindcast data being assigned to the regime given in the title, based on a hard as-
signment. The means of each distribution are indicated by the vertical dotted lines.
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approach can be related to an HMM approach, where the regime
patterns and their transition probabilities are given a priori, leav-
ing only the hidden regime assignment to be discovered. Here
the used likelihood differs from that commonly used in the stan-
dard expectation-maximization (EM) algorithm (e.g., Dempster
et al. 1977; Rabiner 1989). In case the transition matrix T cannot
be obtained directly, as is done here through observation of the
hard regime assignment, one could employ techniques to find T

via algorithms designed in the context of HMMs.
The above-described sequential Bayesian regime assignment

is simple and allows for a straightforward comparison with the
commonly used hard regime assignment, as well as with the reg-
ularized clustering results (without the need of selecting a con-
straint parameter). However, there are other options to model
the uncertainty and to update the corresponding model parame-
ters sequentially. For instance, one can model each regime indi-
vidually and associate its center estimates with the mean of a
Gaussian. The updating procedure for such a model is called
the Kalman filter (Kalman 1960) or the corresponding Monte
Carlo approximation the ensemble Kalman filter (Evensen and
van Leeuwen 2000), and of course various other methods for
more general distributions as well as iterative assimilation of in-
coming information exist (e.g., Kantas et al. 2014; Hu and van
Leeuwen 2021; Acevedo et al. 2017). The method used here is
closer to a particle filter (Del Moral 1997; Doucet et al. 2001) as
our ensemble members are weighted with importance weights
stemming from the likelihood rather than using an analytic for-
mula such as is used in the Kalman filter. However, in this paper
we specifically aim to stay close to existing methods and model
the process of hard regime assignments as random variables in
each time step. This allows for a straightforward implementa-
tion that can be readily applied in an operational setting.

Furthermore, using this method we can investigate whether the
results are comparable to those found using regularized cluster-
ing methods, which have been used to improve the regime per-
sistence in the identification procedure, without the need to
select a constraint parameter.

b. Evaluation

The first question to answer is what the effect is of this
Bayesian approach in practice, and whether this matches the
intuition behind the method. How does the prior affect the
Bayesian probabilities? A next step is to compare the proba-
bilistic approach with results obtained using a hard regime as-
signment, as given by k-means clustering. Is the average
regime frequency affected? What is the effect on the regime
persistence? In this section we start by discussing the first
question by looking at some examples to get a sense for how
the method is working in practice, after which we look at the
statistics of the results in comparison with a k-means cluster-
ing approach to answer the other questions.

To start, we consider the Bayesian regime probabilities for
a single randomly chosen ensemble member. As the sequen-
tial Bayesian regime assignment works on a single-member
basis this is the best way to gain insight into the workings of
the Bayesian method. In Fig. 4 the prior and Bayesian regime
probabilities for the 23rd ensemble member are shown to-
gether with the climatological likelihood corresponding to the
observed data point. A first aspect to note is that most of the
time the regime likelihood P(d|r) gives a clear indication of
the regime the data belong to. Second, we see that the prior
very closely follows the Bayesian probabilities with a delay of
1 day, corresponding to the high persistence in the transition ma-
trix given in (5). The initial prior, given by the climatological

FIG. 4. The (top) prior probability, (middle) conditional regime likelihood, and (bottom) Bayesian regime probabil-
ity for the 23rd ensemble member in the sequential Bayesian regime assignment procedure for the winter of 1992/93.
The bar at the bottom indicates the hard regime assignment following k-means clustering.
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values, is uninformative and in that case the regime likelihood
nearly fully determines the Bayesian probabilities. Subsequently,
the prior is much more informative but in most cases the regime
likelihood still strongly determines the final probability. How-
ever, when the likelihood does not clearly point toward one re-
gime (e.g., around days 8–12), the prior information shifts the
probabilities toward stronger persistence, in this case of the
AR1 regime. This can also be seen around days 99–101, corre-
sponding to days 7–9 in the example shown in Fig. 1 in section 1,
where the inclusion of prior information favors persistence over
a short excursion away from the most likely regime. In this way
the Bayesian regime assignment allows for identifying stronger
persistence (i.e., high probability of the dominant regime) with-
out losing the signal of other regimes entering the dynamics as
they still have some nonzero probability. The effect of this ap-
proach for ERA-Interim data is similar.

The Bayesian probabilistic regime assignment allows us to un-
derstand some of the subtleties of the regime dynamics; for ex-
ample, regime transitions occur in the form of a decrease or
increase of the regime probabilities. How does such an approach
compare to the commonly used hard regime assignment ob-
tained using k-means clustering? The bar at the bottom of Fig. 4
shows the hard regime assignment corresponding to this time
series. The Bayesian regime probabilities vary more smoothly,
and show fewer short back-and-forth transitions between re-
gimes that occur several times for the hard regime assignment
(e.g., around days 9 and 20). In Falkena et al. (2020) a con-
straint on the number of transitions between regimes was
introduced to reduce the number of short back-and-forth tran-
sitions between regimes, based on the regularized clustering
method introduced by Horenko (2010). This was shown to in-
crease the regime persistence without affecting the regime oc-
currence rates, provided the constraint parameter was chosen
appropriately. The optimal constraint parameter corresponded
to an average regime duration of 6.3 days. It was selected by
considering the Bayesian information criterion and falls within

the region where the regime occurrence rates are not affected
by the regularization.

In Fig. 5 a comparison of the regime likelihood, Bayesian
regime probabilities, and a hard regime assignment obtained
using either a standard or regularized k-means approach is
shown for ERA-Interim for the winter of 1993/94. The regu-
larization does reduce the number of regime transitions by,
for example, removing the NAO1 regime between two occur-
rences of SB2 around day 18. At the same time the Bayesian
probabilities show a small increase in the NAO1 likelihood,
with SB2 still having the highest probability. Here the regu-
larization and Bayesian approach thus yield similar results.
On the other hand, around days 84 and 107, for example, the
regularization eliminates some regime transitions where the
Bayesian probabilities still show some signal of the corre-
sponding regimes. The probabilistic approach thus allows us to
identify the data where the regime assignment is less clear,
showing an increase in probability instead of a hard regime
change. It also retains some regime transitions that the regu-
larized clustering eliminates due to it being difficult to select
the “correct” constraint value. In the probabilistic approach
these show as increases in the corresponding regime probabil-
ity. This analysis confirms that the Bayesian approach seems
to be doing something sensible, without having to tune any pa-
rameters. When the data clearly belong to one of the six re-
gimes, there is little benefit to the Bayesian approach. The
main times where it makes a difference are the periods when
one regime transitions into another, or when a regime loses
some of its strength in favor of another regime but then gains
strength again. Such a reduction in the regime probabilities
could be an indication of increased flow instability, being close
to transitioning into another of the six canonical states.

The impact of the sequential Bayesian approach on the re-
gime frequencies, computed as the average Bayesian regime
probability for this method, and (1-day) autocorrelation is
shown in Fig. 6. Here the autocorrelation for the hard regime

FIG. 5. The (top) observed regime likelihood and (bottom) Bayesian regime probability for ERA-Interim, with the hard as-
signment using a standard or time-regularized (persistent) k-means algorithm shown by the bars for the winter of 1993/94.
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assignment is computed using a time series that is 1 when data
are assigned to the corresponding regime and 0 otherwise. The
average frequencies of the regimes do not change when using
the Bayesian regime assignment, as can be seen in Fig. 6a. This
holds both for the SEAS5 hindcast ensemble data and for
ERA-Interim, where also the results of the regularized k-means
clustering algorithm are shown for comparison. On the other
hand, the autocorrelation, being an indication of the persistence
of the regimes, is strongly affected (Fig. 6b). For ERA-Interim
we see that the sequential Bayesian approach increases the au-
tocorrelation even beyond that obtained using a regularized
clustering algorithm that contains a persistence constraint. Also,
for SEAS5 a strong increase in autocorrelation is found using
the sequential Bayesian regime assignment relative to a stan-
dard hard assignment. For most regimes the ERA-Interim val-
ues lie at the top of the SEAS5 autocorrelation range, both for
the standard and Bayesian approach. Thus we find that the
Bayesian approach does not alter the regime frequencies, but
does lead to more persistent regime dynamics, as we might

hope. This suggests that the transition probabilities in (5), which
are used to obtain the prior regime probabilities, likely are an
underestimation of the true persistence, which is improved by
the use of Bayes’s theorem.

4. Ensemble Bayesian regime assignment

The implicit assumption made in the sequential Bayesian
approach as discussed in the previous section is that the re-
gime dynamics is statistically stationary in time. That is, the
climatological likelihood functions and transition probabilities
do not change in time. This is a reasonable and minimal first
assumption yielding good results, but it is likely that external
factors such as ENSO affect some aspects of the regime dy-
namics as discussed in section 1. There are two obvious ways
in which to include the effect of external forcing in the Bayesian
approach. The first is to update the regime likelihood functions
in time. The second is to update the prior probabilities. These
two aspects are by no means the only aspects of the regime

FIG. 6. The (a) regime frequencies and (b) 1-day autocorrelation as obtained using either standard k-means cluster-
ing (circles) or a sequential Bayesian regime assignment (stars) for the SEAS5 hindcast ensemble (symbols with error
bars) and ERA-Interim (symbols only), for which also the values obtained with the time-regularized k-means cluster-
ing method are shown (squares). Error bounds are determined using bootstrapping with one member per year (with
replacement, 500 times), where the thick bars indicate the 61 standard error range, with thin bars extending showing
the 95% confidence interval.
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dynamics that can be affected by external forcing. For exam-
ple, one can imagine that the regimes themselves change as a
consequence of external factors causing changes in the cli-
mate system. However, this is nearly impossible to quantify
with the limited available data and no robust evidence for
this has been found so far (e.g., Corti et al. 1999; Dorrington
et al. 2022). Therefore, we only discuss the above-mentioned
two approaches.

In the following analysis we focus on the latter of these
two approaches. The main reason for this is the lack of data
availability. Even though the SEAS5 hindcast ensemble has
51 members for each year, this still is insufficient to allow for,
say, weekly updating of the likelihood functions. An option
for which sufficient data are available would be to compute
the likelihood function during, for instance, strong El Niño
years, and use those to change the likelihood functions each
year. However, this relies on the hypothesis that the regions
in phase space belonging to each of the regimes shift as a con-
sequence of ENSO forcing, while it may simply be the case
that some regions are visited more often than others. As there
are only 36 years of data available it is impossible to test this
hypothesis and thus we refrain from pursuing this approach
further. On the other hand, there are sufficient data to update
the prior probabilities in time. There are several ways in
which this can be done. For example, one can use information
on ENSO to shift the prior probabilities, or one can make use
of the ensemble information by allowing the transition proba-
bilities to change in time. We pursue the latter approach, as it
makes use of the information within the SEAS5 ensemble
and does not require any external information. It is explained
and evaluated in the next two sections followed by an analysis
of the resulting interannual variability in section 5.

a. Updating the transition probabilities

To obtain more informative prior regime probabilities, the
transition probabilities Tij from regime i to j are updated fol-
lowing the ensemble behavior. This allows not only for (fixed)
persistence to inform the prior, but also nonstationary exter-
nal factors, such as ENSO, through the ensemble statistics.
Although there are not sufficient data to robustly estimate the
transition probabilities directly, they can be inferred from the
occurrence rates. The main assumption we make when updating
the transition matrix T in time is that the regime probabilities
are approximately stationary with respect to the current best es-
timate of the transition matrix. That is, we look for a transition
matrix T(t) for which the regime probabilities averaged over the
ensemble at time t, P(t), are approximately stationary:

T(t)P(t) 5 P(t) 1 et: (7)

Here et is a noise term. Note that the climatological transition
probabilities Pc are (nearly) stationary with respect to the
transition matrix Tc. The aim thus is to find a transition matrix
T(t) for which (7) holds. In addition we have that a transition
matrix is normalized, meaning its columns each sum to unity:

∑
k

i51
Tij 5 1, ∀j 2 1, …, k: (8)

This gives two equations that are used to update T(t) at each
time step t. The problem of finding the values of the transition
matrix T(t) is ill posed as there are not sufficient constraints,
which means some choices need to be made in determining its
values. The approach we propose in the following paragraph
is one that follows the regime dynamics closely and is least bi-
ased in the sense that the deviations from Tc are equally dis-
tributed over all six regimes.

The regime dynamics is dominated by persistence (i.e., the
probability of a regime to transition to itself, corresponding to
the diagonal elements of the transition matrix), as can be seen
in (5). Therefore we focus on these diagonal elements Tii(t)
for updating the matrix T(t) in time. Writing out (7) element-
wise while separating the diagonal and off-diagonal elements
yields

Tii(t)Pi(t) 1 ∑
k

jÞi
Tij(t)Pj(t) 5 Pi(t) 1 eti, ∀i 2 1, …, k: (9)

Because the diagonal terms dominate, we assume the off-diagonal
elements do not differ much from the climatological values, that
is Tij(t)’ Tc

ij for all iÞ j. This yields an approximate equation for
the diagonal elements of T(t):

Tii(t)Pi(t) ’ Pi(t) 2 ∑
k

jÞi
Tc
ij(t)Pj(t): (10)

When a particular regime is less populated than it is in clima-
tology, the other regimes will conversely be more populated,
implying a larger negative term on the right-hand side of (10)
and thus a smaller value of the self-transition probability,
which makes physical sense. Note that this approximation
breaks down when Pi(t) is very small relative to the other Pj(t),
in which case we set Tii(t)5 0 to prevent negative values. Start-
ing from the updated diagonal elements, the off-diagonal ele-
ments are computed using (8) with an equal distribution of the
perturbation from the climatological value over the off-diagonal
terms.

The estimation of the transition matrix T in essence is the
same as trying to fit an HMM to the data. The difficulty
here is the limited availability of data, where we only con-
sider data at one point in time to retain the sequential na-
ture of the method. This makes the use of less heuristic,
more sophisticated methods unreliable due to the large
impact of noise on the data. If many more ensemble mem-
bers were available, something like the Baum-Welch algo-
rithm might be a worthwhile approach for estimating T

(Baum et al. 1970). Starting the updating of T(t) from the
diagonal elements and adjusting the off-diagonal elements
equally is not the only option. It might even be better to
not adjust the off-diagonal elements equally. However,
since P(t) is an average over only 51 ensemble members,
robustness would be an issue when making any further as-
sumptions in updating T(t) and hence we stick to the sim-
plest approach.

The above method is equivalent to considering T(t) as
the climatological transition matrix plus a perturbation

J OURNAL OF CL IMATE VOLUME 368628

Unauthenticated | Downloaded 11/30/23 01:55 PM UTC



[i.e., T(t) 5 Tc 1 T′(t)], and subsequently assuming that the
perturbations to the off-diagonal terms are small. An alterna-
tive way of looking at this is by considering it as a Markov re-
gression model (Hamilton 1989; Krolzig 1997). That is, we
write the transition matrix T as

T(t) 5 Tc 1∑
m
am(t)Tm: (11)

Here Tm are matrices that set the shape of the perturbations
to the climatological transition matrix, where the sum over
each of the columns is zero for every m, and am(t) gives the
strength of that term at time t. For a choice of

Tm 5

0 … 2
1

k 2 1
… 0

..

.

..

.
1 ..

.

..

.

0 2
1

k 2 1
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where the mth column is nonzero, this is exactly equivalent to
the approach mentioned before. Here the am can be com-
puted using the same assumptions as discussed before. This
shows that there are several ways of looking at the problem

that yield the same outcome, increasing the confidence in this
approach.

b. Evaluation

To get an idea of how this approach can inform the prior
probabilities consider Fig. 7, which shows both the sequential
and ensemble Bayesian regime assignments for the (randomly
chosen) 42nd ensemble member during the winter of 1992/93.
This is the same winter for which the 23rd ensemble member
is shown in Fig. 4. As an example, consider the probability of
AR2. Around days 5–10 the ensemble indicates this regime
is less likely, as shown by a lower self-transition probability,
lowering the prior probability of the regime. On the other
hand, from day 25 onward AR2 is more likely according to
the ensemble, increasing its prior probability relative to the
sequential approach. In most cases changes to the final
probabilities are small. The only exceptions occur when a
regime is deemed very unlikely (i.e., does not occur in any
of the other ensemble members), as happens twice for the
SB1 regime between day 60 and 90. In these two cases a high
observed likelihood for SB1 is reduced substantially in the
Bayesian probabilities in favor of the second most-likely re-
gime according to the likelihood (e.g., a 90% likelihood is re-
duced to a 35% Bayesian probability). Yet importantly, the
Bayesian probability of this regime is still nonzero, so it can
quickly respond to new information. The overall regime

FIG. 7. The (top) prior probability, (top middle) conditional regime likelihood, and (bottom middle) Bayesian
regime probability for the 42nd ensemble member in the Bayesian regime assignment procedure for the winter of
1992/93. The solid line shows the sequential Bayesian approach, and the dashed line shows the ensemble approach
discussed in section 4. (bottom) The difference between the updated self-transition probabilities in the ensemble
approach and the climatological values.
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frequencies and autocorrelation are not affected and remain
as shown in Fig. 6 for the sequential approach.

5. Interannual variability

The interannual variability as obtained using the ensemble
Bayesian regime assignment is shown in Fig. 8, with the result
of the sequential Bayesian approach shown for reference (the
interannual variability of the sequential Bayesian approach is
nearly identical to that obtained for the k-means clustering
assignment). The primary signal in the variability is found
during very strong El Niño years (vertical red solid lines) with
SB2 and NAO2 showing an increase in frequency, while
AR1, AR2, and NAO1 show a decrease in frequency. The
signal during strong La Niña years (vertical blue dash–dotted
lines) is less clear, with on average an increase in NAO1 and
decrease of NAO2 frequency. However, not every individual
event matches this behavior. To define El Niño and La Niña
years the Niño-3.4 index is used (Trenberth 1997). Strong
years correspond to a threshold of61.5, and very strong years
to a threshold of 62. The asymmetry in the thresholds used
for El Niño and La Niña years is due to there being no very
strong La Niña events in the considered time period. These
results, with a less-pronounced regime response to La Niña
than to El Niño, reflect the well-known nonlinearity of the re-
sponse to ENSO (Straus and Molteni 2004; Toniazzo and

Scaife 2006) and are in line with those obtained in Falkena
et al. (2022) using a regularization on the ensemble members.
The boxes on the right of each panel show the average regime
frequencies during the identified El Niño and La Niña years
for both the sequential and ensemble Bayesian approach,
where there is an asymmetric response to ENSO for both
methods. Some enhancement of the signal is found using the
ensemble Bayesian regime assignment, which is most clear for
the AR2 and SB2 regimes. The ERA-Interim variability from
the sequential Bayesian approach is shown as well to give a per-
spective on the magnitude of the interannual variability.

To further consider the effect the updating of the transition
matrix in the ensemble approach has on the interannual vari-
ability, consider Fig. 9, which shows the difference between
the sequential and ensemble Bayesian regime assignment as
well as the yearly average change to the self-transition proba-
bilities, or persistence, of the regimes following the ensemble
approach. Note that on average the perturbation to the self-
transition probabilities is negative. The effect of the ensemble
Bayesian approach on the regime frequencies is clearly visible
for AR1, AR2, and SB2, where the signal in response to
El Niño is enhanced. For NAO1 a strong increase in regime
frequency is found for the 1988/89 La Niña, together with a
weak change during El Niño years. NAO2 and SB1 do not
show much difference in interannual variability between the
two methods, although in the latter case there is little signal to

FIG. 8. The interannual variability of the occurrence rates for the ensemble Bayesian regime assignment for SEAS5
(colors, with 95% confidence interval shaded), with the sequential Bayesian approach indicated by the black dashed
lines. The gray-shaded areas bounded by the gray dotted lines indicate the 10th and 90th percentile of the ensemble
Bayesian assignment for each regime. The black dotted curve shows the ERA-Interim variability, and the box-and-
whisker plots on the right show the average occurrence rate during very strong El Niño (indicated by the vertical red
solid lines) and strong La Niña years (indicated by the vertical blue dash–dotted lines).
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enhance. The changes in the self-transition probabilities in
general match those found in the regime frequencies, as ex-
pected. One aspect to note here is that for NAO1 the
changes in the self-transition probability are relatively larger
than those in the regime frequencies, especially when compar-
ing with SB2.

The response of the changes in regime frequency to El Niño
events found using the ensemble Bayesian approach appears to
show a true signal and is very unlikely to have arisen by chance.
To understand this, consider the change in regime frequency
for SB2. The marginal probability of a very strong El Niño
event is 3/36 (3 events in 36 years), so the chance of the first in-
crease in SB2 frequency aligning with El Niño is 3/36. Then,
given that the first El Niño event has already happened, the
probability of the second spike aligning is 2/35 and for the third
1/34. This gives a probability of 3/36 3 2/35 3 1/34 ’ 1024 for
the alignment occurring by chance. The alignment of the in-
crease/decrease in frequency for the other regimes only further
decreases the probability of this being by chance. Also note that
the response of both AR1 and AR2 is a decrease in regime
frequency during El Niño years, indicating another aspect of
nonlinearity in the circulation response to ENSO.

Some of these signals in response to ENSO can already be
picked up using 10-member ensembles. In Fig. 10 the interan-
nual variability of the regime frequency is shown for 50 ran-
dom 10-member ensembles obtained from the full SEAS5
ensemble. For the full ensemble the strongest signal was
found for SB2 during very strong El Niño years, and this is
the signal that jumps out most strongly again. To quantify this

the probability of detection (POD) and false alarm ratio
(FAR) for the 10-member ensembles are considered for
peaks or troughs in regime frequency aligning with El Niño
and La Niña (Fig. 11). Here, peaks and troughs are consid-
ered as exceedances with respect to the nth percentile. The
POD is computed as the number of peaks/troughs aligning
with El Niño/La Niña years over the total number of El Niño/
La Niña years, and the FAR is computed as the number of
peaks/troughs outside those El Niño/La Niña years divided by
the total number of peaks/troughs. As expected, for El Niño
there is a high POD for peaks in the SB2 regime frequency
with a relatively low FAR (Fig. 11a). Also for NAO2 (peaks),
NAO1, AR1, and AR2 (troughs) there is some signal, with
the FAR being comparable to the POD. For La Niña years
there is some signal for NAO1, AR1 (peaks), and NAO2

(troughs), but it is not as strong as for SB2 in El Niño years
(Fig. 11b). This is to be expected as we cannot expect to identify
strong signals using a smaller ensemble if they are not clear in
the full ensemble. Nevertheless, the relatively high PODs for
these three regimes are encouraging.

To see whether the found response to ENSO for some re-
gimes also reflects a predictable signal in the observations we
regress the ERA-Interim interannual variability onto the
SEAS5 one, as in Falkena et al. (2022). The results for this,
looking at the sequential and ensemble Bayesian approach,
are shown in Table 1. In addition to the p value, we also com-
pute the Bayes factor, which is the ratio of the probabilities of
the data D given two different hypotheses H1 and H2, that is,
P(D|H1)/P(D|H2) (Kass and Raftery 1995). Here the first

FIG. 9. The difference in interannual variability of the occurrence rates between the standard and ensemble
Bayesian regime probabilities (solid lines; left y axis), and the change in the self-transition probability for the regimes
following the ensemble (dashed lines; right y axis).
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hypothesis H1 is that of a linear regression model, whereas
the second hypothesis H2 assumes a constant, climatological,
regime frequency. For its computation we follow the Bayesian
information criterion approximation from Wagenmakers (2007).
Values of the Bayes factor above 1 indicate that H1 is more
likely, with values between 3 and 20 constituting positive evi-
dence and values over 20 yielding strong evidence toward it
(Kass and Raftery 1995).

Using the sequential Bayesian approach we already find
some predictable signal for the NAO1 and SB2 regimes,
with Bayes factors of 7.6 and 5.1 respectively (Table 1). The
Bayes factor for NAO2 is also above 3, but here the p value
is larger, reducing the confidence in this being a true signal.
These results are comparable to those found in Falkena et al.
(2022), with the regression coefficients being close to 1 for
NAO1, NAO2, and SB2. These regression coefficients
around 1 indicate that the signal in SEAS5 is of similar magni-
tude to that in ERA-Interim, showing no evidence of a signal-
to-noise paradox for the regime frequencies, in contrast to the
NAO index (Falkena et al. 2022). Using the ensemble infor-
mation to update the transition probabilities increases the
predictable signal for NAO1 and SB2, with smaller p values
and higher Bayes factors. Also the AR2 signal is enhanced
with a Bayes factor over 3 although the p value is still rela-
tively large. The enhancement of the NAO1 signal is compa-
rable to that found using a regularized clustering approach,
whereas the change for SB2 is weaker (a Bayes factor of 13.2
as compared with 5.5; Falkena et al. 2022). On the other hand,
the decrease in Bayes factors for NAO2 and AR2 using a

regularized approach is not found using the ensemble Bayesian
method, which shows small increases of the Bayes factors. In
Falkena et al. (2022) a significant signal was found using multi-
ple linear regression of ERA-Interim NAO2 onto the SEAS5
NAO1 and SB2, which we find here as well with Bayes factors
of 21.1 for the sequential method increasing to 26.6 using the
ensemble approach. In comparing the two methods, we find
that the ensemble Bayesian regime assignment allows us to
identify more pronounced interannual variability signals for
some regimes while still accounting for the signal of the other
regimes.

6. Conclusions and discussion

A new approach exploiting Bayes’s theorem given in (1) is
proposed to obtain a probabilistic regime assignment of the at-
mospheric state on a given day, based on preexisting defini-
tions of the regimes. The approach combines climatological
likelihood functions with prior information from the previous
day, using climatological estimates of regime persistence, to ob-
tain a Bayesian regime probability. This sequential probabilistic
regime assignment allows for smoother transitions between the
regimes and indicates whenever data do not clearly belong to
one regime. In contrast to previously studied methods that used
a regularized k-means clustering algorithm (Falkena et al. 2020,
2022) there is no parameter, other than the number of regimes
k, that has to be selected. Also, the method can be applied in
real time as new data come in. Applying the approach to six win-
tertime circulation regimes over the Euro-Atlantic sector yields

FIG. 10. The interannual variability of the regime frequency for the ensemble Bayesian approach when applied to
(random) ensembles of 10 members. In total 50 random ensembles are shown. The solid red and dash–dotted blue
lines indicate very strong El Niño and strong La Niña years, respectively.
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an increase in persistence, without affecting the average regime
frequencies for both SEAS5 and ERA-Interim (Fig. 6). In addi-
tion, for ERA-Interim the 1-day autocorrelation was found to
be higher than that obtained using a regularized k-means ap-
proach containing a persistence constraint (Falkena et al. 2020).
The Bayesian probabilistic regime assignment can help to over-
come the need for some of the heuristic devices, such as a “no
regime” category, that are commonly used in circulation regime
studies (e.g., Cassou et al. 2005; Grams et al. 2017). The regime
probabilities indicate when data cannot be clearly assigned to
one regime, whereas the incorporation of prior information en-
sures persistent regime dynamics. Here, the focus has been on
the regime dynamics within the winter season and on interan-
nual time scales, leaving the challenging problem of seasonality
of regimes aside (e.g., Breton et al. 2022).

A yet more informative prior for the Bayesian approach can
be obtained by continuously updating the prior probabilities by

taking information from the full SEAS5 ensemble into ac-
count. Starting from the assumption of approximate statio-
narity of the ensemble mean regime frequencies at each day,
the regime transition matrix is updated. This update is started
from the diagonal of the transition matrix since the persis-
tence dominates the regime dynamics. The limited availabil-
ity of data is not sufficient to reliably apply other approaches
such as hidden Markov models. This updated transition ma-
trix in turn affects the prior probabilities, leading to more
pronounced interannual variability for some regimes. When
considering the interannual variability, the response to three
very strong El Niño events in recent decades clearly stands
out (Fig. 8). During these three winters SB2 and NAO2

increase in frequency, while NAO1, AR1, and AR2

decrease. The signals for AR1, AR2, and SB2 are enhanced
by the ensemble Bayesian approach relative to the sequential
method. The signal during La Niña winters is less pronounced,

FIG. 11. The probability of detection (solid) and false alarm ratio (dashed) for a (left) peak or
(right) trough in regime frequency in 10-member subsamples of the SEAS5 ensembles occurring
in the same year as a (a) very strong El Niño or (b) strong La Niña, as a function of the
percentile used for the definition of the peaks and troughs. The colored lines indicate the regime
values, and the gray lines show the values for peaks and troughs occurring in random years (i.e.,
no signal).
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with the increase in NAO1 frequency during 1988/89 standing
out most clearly.

This response to ENSO in the SEAS5 ensemble can al-
ready be identified using only a 10-member ensemble. The
increase in SB2 occurrence during El Niño years is a particu-
larly strong signal and is found in nearly all 10-member en-
sembles considered (Fig. 10). Also, for NAO1, NAO2,
AR1, and AR2 significant probabilities of detection for
peaks or troughs coinciding with El Niño are found. However,
here there also is a substantial false alarm ratio indicating that
many peaks or troughs in the ensemble occur in non–El Niño
years. For La Niña there also is some signal, but not as strong
as for El Niño years. These results suggest that one may not
need a very large ensemble to identify regime signals in re-
sponse to ENSO.

We also use a linear regression analysis to identify predict-
able signals in the observations on interannual time scales.
Here, as in Falkena et al. (2022), NAO1 and SB2 were
found to be predictable from the SEAS5 ensemble with re-
gression coefficients around 1 (Table 1), suggesting no signal-
to-noise deficit for these regimes. The ensemble approach
leads to an increase in Bayes factor relative to the sequential
method for all regimes, with the largest improvement for
NAO1.

ENSO is certainly part of the reason for the predictable sig-
nal found with the regression approach, but it is likely that
other processes play a role as well. Previous studies have
linked the frequency of Euro-Atlantic circulation regimes to
the Madden–Julian oscillation (e.g., Cassou 2008; Straus et al.
2015; Lee et al. 2019, 2020) and the stratospheric polar vortex
(e.g., Charlton-Perez et al. 2018; Domeisen et al. 2020), and it
would be interesting to see whether the Bayesian approach to
regime assignment can aid in better understanding the links
between these processes and the regime frequencies. In that
respect, the clear improvement in persistence obtained from
the sequential method (Fig. 5) should be useful for such S2S
applications, even if the seasonal averages are not much af-
fected. Information about other climatic processes that are
known to affect the regime occurrence can be used to obtain
an informative prior for the regime probabilities. For exam-
ple, knowledge of the states of ENSO or the stratospheric
vortex can inform the prior regime probabilities. Such priors

can be used for both model ensembles as well as reanalysis
datasets and aid in better distinguishing the signal from the
noise.

The use of the Bayesian regime assignment approach is not
limited to atmospheric circulation regimes; it can be applied
to any case in which the data can be separated into two or
more regimes. For example, one can think of the two phases
of the NAO or the jet latitude (Woollings et al. 2010). For the
application one needs some information on the regime likeli-
hood function and a way to obtain an informative prior. In
most cases the latter will be the most challenging and requires
a thorough understanding of the processes involved. For cir-
culation regimes a prior based on climatological transition
probabilities, which automatically builds in persistence, was
shown to be a suitable and natural choice, and incorporating
information from a full ensemble enhanced the interannual
signal. Depending on the regime process considered other
choices for the prior may be more suitable.
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