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A B S T R A C T   

Reflectance imagery is used to aid daytime cloud detection in thermal remote sensing. This paper presents new 
approaches to utilization of reflectance for sea surface temperature (SST) remote sensing for the Sea and Land 
Surface Temperature Radiometer (SLSTR). SLSTR is an along-track scanning sensor with a complex instrumental 
viewing geometry, and no co-registration of the fields-of-view of reflectance and thermal pixels. Reflectance 
channels have twice the spatial resolution of thermal channels, and observations are placed on compatible 
“image grids” for the convenience of users of Level-1 data. We highlight limitations of simple methods, based on 
these image grids, of using reflectance imagery to inform cloud detection at the thermal resolution. We present 
improvements from averaging the N-nearest reflectance observations directly to the infrared instrument geom
etry, where N = 10 is chosen in this study when using the A and B stripes together. We show that the standard 
deviation of the N-nearest reflectance observations is another calculable quantity of use to improve the 
discrimination of clouds in the infrared image, beneficially reducing the weight placed on coarser-scale thermal 
spatial variability. The developments are illustrated by case studies in coastal zones over optically bright waters 
and around strong ocean fronts, and the benefit for SST products is quantified by the impacts on coverage and 
validation statistics. In a case study over optically bright waters, the clear-sky fraction increases from 46.2% to 
93.1%. Coastal zone validation shows a 23.8-31.6% reduction in the false alarm rate and a corresponding 27.1- 
33.3% increase in the cloud detection true skill score. Globally the robust standard deviation for clear-sky 
matches between SLSTR-A and drifting buoys reduces from 0.3 to 0.29 with a 6% reduction in data due to 
improved screening of scattered cloud.   

1. Introduction 

The Sea and Land Surface Temperature Radiometers (SLSTRs) pro
vide high-resolution thermal-infrared observations of the Earth’s oceans 
and are essential to the continuity of high-quality sea-surface tempera
ture (SST) climate data records (CDRs) (Merchant et al., 2019). SLSTR is 
a dual-view instrument flown aboard the Sentinel 3 satellites, making 
observations in a nadir scan and a rear-facing scan (ESA, 2022). The 
SLSTR instruments extend the data record of the Along-Track Scanning 
Radiometer (ATSR) sensor series, from which sea-surface temperatures 

can be retrieved with biases <0.1 K (Embury and Merchant, 2012). Two 
Sentinel 3 satellites are currently operational, flown in tandem with a 
revisit time of 0.9 days at the equator (0.8 days for latitudes >30

◦

) 
(Donlon et al., 2012). Global ocean coverage at daily resolution is 
important for operational oceanographic monitoring and meteorolog
ical applications (Bonekamp et al., 2016; Coppo et al., 2010). Near real 
time (NRT) data products with a timeliness of three hours can be used 
operationally for oceanographic forecasts and numerical weather pre
diction (Bonekamp et al., 2016; Good et al., 2020). 

Retrieval of SST from satellite data requires a pre-processing step to 
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identify and remove cloud-contaminated observations that otherwise 
cause erroneous retrieved-surface-temperature (Merchant et al., 2005, 
2019; Závody et al., 2000; Simpson et al., 2001). Cloud detection al
gorithms work on the premise that clouds are typically ‘brighter’ and 
‘colder’ than the underlying ocean surface (Merchant et al., 2019; 
Závody et al., 2000; Frey et al., 2008; Rossow and Garder, 1993). Clouds 
have different spectral characteristics in both reflectance and emissivity 
to the ocean and different spatial and temporal variability. For daytime 
SST retrievals, the best cloud detection results are often achieved when 
using a combination of observations at reflectance and infrared wave
lengths (Merchant et al., 2019; Frey et al., 2008; Rossow and Garder, 
1993; Bulgin et al., 2018). In coastal regions, cloud detection needs to 
account for conditions not seen over the open ocean, such as water that 
is optically brighter from suspended sediment or biological matter, as 
well as more turbid (Wang et al., 2020; Lu et al., 2021). 

The SLSTR instrument reflectance channels have a higher spatial 
resolution (500 m at nadir) than the channels at infrared wavelengths (1 
km). Measurements are mapped from the measurement grid defined by 
the conical scan of the SLSTR instrument to an image grid which is 
regularly spaced with respect to the satellite track (ESA, 2022). While 
the image grid definition is in common, the transformation of the 
infrared and reflectance channels is undertaken independently. Some 
applications such as cloud detection require the use of the reflectance 
data on the same image grid as the infrared data. It is commonly 
assumed that the higher-resolution reflectance data, maps directly to the 
infrared image grid, using a simple averaging of every 2 × 2 pixels 
(Coppo et al., 2010). However, due to the instrument viewing geometry 
and prior translation of the data from the measurement to image grids, 
this approach often results in sub-optimal spatial reconciliation of the 
reflectance and infrared observations, as shown below. 

Any inconsistency in the mapping to the image grid of reflectance 
and infrared observations will have a direct impact on cloud detection 
skill. This is particularly important in regions with strong gradients e.g. 
ocean fronts, land-sea boundaries or cloud edges, where inconsistently 
mapped pixels may view different features. In this paper we present a 
new SLSTR preprocessor to map reflectance channel observations more 
closely to the location of the infrared data, and assess the impact of this 
improved co-location on cloud detection skill. In the process of mapping 
the reflectance data to the infrared observations, we also calculate the 
sub-pixel reflectance variability, which can be used as an additional 
metric in the cloud detection scheme. 

The remainder of the paper is structured as follows: in section 2 we 
describe the characteristics of the SLSTR instrument and in section 3 we 
present the new SLSTR preprocessor for co-locating infrared and 
reflectance channel information. In section 4 we describe the Bayesian 
cloud detection and introduce the new sub-pixel reflectance variability 
metric. The benefit of the new preprocessor and sub-pixel reflectance 
variability to cloud detection is assessed in section 5 along with the 
presentation of global validation statistics. We discuss the outcomes and 
conclude the paper in section 6. 

2. Imagery from SLSTR 

SLSTR is a dual-view instrument flown aboard the Sentinel 3a and 
Sentinel 3b platforms. Observations are made at nine different wave
lengths covering the visible (VIS, S1–3), shortwave infrared (SWIR, 
S4–6) and infrared (IR, S7–9) parts of the electromagnetic spectrum 
(Table 1). Two additional channels are available at infrared wave
lengths, with an extended brightness temperature range for fire moni
toring (F1–2) (ESA, 2022). VIS and SWIR channels have a higher spatial 
resolution of 500 m compared with 1 km for IR observations. SLSTR has 
a wider nadir swath than the earlier ATSR instruments (ATSR-1, ATSR-2 
and AATSR), at 1470 km compared with 512 km in order to increase 
data coverage, and the dual-view swath width is 740 km (ESA, 2022). 
The IR channels are sensitive to surface temperatures in the absence of 
clouds and the VIS and SWIR channels are present to aid cloud detection 

during the day. 
SLSTRs have synchronised conical scanners making observations in 

both a nadir and rear-facing (oblique) view (with satellite viewing an
gles of no greater than 55

◦

) (Coppo et al., 2010). Every point within the 
oblique view swath is therefore observed twice with two different at
mospheric paths. This “dual-view” capability is useful in reducing un
certainty when retrieving SST (Coppo et al., 2010). This dual-view 
concept is specified to enable SST retrievals with zero bias and an ac
curacy of <0.3 K (Donlon et al., 2012). 

Fig. 1a shows the across-track viewing geometry for the nadir and 
oblique views. The nadir swath is asymmetric around the sub-satellite 
point extending 472 km on one side and 935 km on the other (Coppo 
et al., 2010). This offset swath provides full overlap with observations 
from the Ocean and Land Colour Instrument (OLCI), which is also car
ried on Sentinel 3 platforms. The oblique view swath is narrower with a 
constant satellite zenith angle. 

SLSTR observations made in each of the two views follow the conical 
scan of the instrument and form the measurement grid (where obser
vations are irregularly spaced). These are then mapped onto an image 
grid, regularly spaced with respect to the satellite track, and form the 
basis of the Level-1 data product. Where there are no corresponding 
observations on the measurement grid, or the data are invalid, the image 
grid pixel is cosmetically filled with duplicate data from the nearest of 
the eight surrounding pixels (ESA, 2022). There are also some data 
points on the measurement grid that are not used in the mapping to the 
image grid (due to the grid alignment they may not be the closest point 
to any image pixel); these are provided in the SLSTR level-1 product as 
an additional “orphan” pixel array. 

In the IR (S7-S9), data are provided on a regular 1 km grid known as 
the ‘I stripe’ (Table 1). The higher-resolution VIS and SWIR channels 
have two detectors providing stripe A and stripe B data. Channels S1-S3 
have stripe A data only, with nominally two observations corresponding 
to each I stripe pixel. Channels S4–6 have both A and B stripe data with 
four observations corresponding to each I stripe pixel. A, B and I stripe 
data are all mapped independently from the measurement to image 
grids. 

Fig. 1 shows the differing alignment of the of the I, A, and B stripe 
observations on the measurement grid as a function of instrument view 
and swath location. The footprints of the SLSTR pixels on the ground are 
defined by the instantaneous field of view (IFOV) of the detectors, 
propagated using a model along the instrument line of sight (Cox et al., 
2021). The IFOV map for each detector, with the scanning mirror sta
tionary, was measured during the ground testing of SLSTR before launch 
with a resolution of 10

′ ′

(corresponds to approximately 40 m). The 
projected footprint depends on both the position and motion of the 
scanning mirror during the detector integration time for each pixel. Due 
to the conical nature of the SLSTR scan, the footprint shape is stretched 
and increases in area towards the edge of the swath, and so must be 
calculated separately for every pixel. The footprint map was calculated 
from the 2D autocorrelation of the projected IFOV during the detector 

Table 1 
SLSTR channel characteristics including number, wavelength, spatial resolution 
and detectors.  

Channel Number Central Wavelength (μm) Resolution (km) Detectors 

S1 0.55 0.5 A 
S2 0.66 0.5 A 
S3 0.87 0.5 A 
S4 1.38 0.5 A + B 
S5 1.61 0.5 A + B 
S6 2.25 0.5 A + B 
S7 3.74 1 I 
S8 10.85 1 I 
S9 12.0 1 I 
F1 3.74 1 I 
F2 10.85 1 I  

C.E. Bulgin et al.                                                                                                                                                                                                                                
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integration at each pixel position. 
In the SLSTR Level-1 (L1) product, each pixel has an associated pixel 

number determined by its position in the swath. To convert between this 
pixel number and a footprint shape, the shape at four reference pixels 
across the swath is approximated using 6 vertices on the 10% contour of 
the footprint map. The positions for these vertices were chosen to give a 
good visual fit for all the detectors in the channel. The shape of the 
remaining pixels is found by interpolating between the vertex positions 
for the four reference pixels. 

Footprint vertices were generated for channels S6 and S7 and these 
were assumed to be representative of all other VIS, SWIR and IR chan
nels respectively. Channel S6 was chosen to represent the VIS and SWIR 
channels as it has a slightly broader footprint than the VIS channels, and 
thus the 10% contour for channels S1-S3 is enclosed within the set of 
vertices picked for S6. To determine the position of the vertices on the 
ground in latitude and longitude coordinates, it is necessary to find the 
angle between the along-track direction and north as this sets the 
orientation of the footprint. This was done by calculating the bearing 
between points thirty pixels above and thirty pixels below the pixel in 
the instrument grid. The latitude and longitude of the centre of each 
pixel are recorded in the L1 product. Combining this information with 
the orientation of the pixel and the shape of the footprint (as determined 
by the pixel number) enables calculation of the latitude and longitude of 
the vertices on the ground. 

Subplot 1b shows the nadir view, close to the sub-satellite point. The 
large blue dot denotes the centre of the infrared pixel, and the blue line 
indicates the extent of the I stripe pixel IFOV. Pixel centres for obser
vations from the A and B detectors are shown in orange and green 
respectively. Under this viewing geometry, around six pixel centres from 
both the A and B detectors fall within the IR IFOV, and the A and B 

observations are well aligned. Subplot 1c shows the oblique view, for the 
same part of the satellite swath. The increased satellite zenith angle 
enlarges the IR pixel footprint, with 12–15 observations from the A and 
B detectors falling within the IR IFOV. At the edge of swath for the nadir 
view (subplot 1d) there is a similar enlargement of the IR IFOV and more 
irregularity in the spacing of the A and B detector pixel centres. 

Given the nature of the measurement grid as shown in Fig. 1, inde
pendent nearest-neighbour mapping of the A, B and I observations to 
two compatible image grids at different resolutions can lead to obser
vations appearing in the same location that only partially overlap in 
reality. Using a simple averaging to downscale the VIS channel obser
vations to the IR resolution can give rise to inconsistencies in the geo
location between channels, particularly along feature edges e.g. 
coastlines, cloud edges. This is demonstrated in Fig. 2 in imagery along 
the Norwegian coastline. Subplot 2a shows the S7 infrared channel, 
where the leftmost coastline appears to have a saw-tooth edge which is 
caused by cosmetic fill to locations over the ocean from nearest neigh
bours that are really over the land. The higher resolution S6 channel 
imagery (subplot 2b) verifies that the coastline is reasonably straight in 
the direction of the satellite track. Subplot 2c shows the outcome of 
coarsening the S6 data in the obvious manner using the image grids: 2 ×
2 averaging of the reflectance measurements that in the image grid 
correspond to the infrared location. Along the coastline we see disparity 
in the signal and apparent shape of the coastline between the S7 and 
coarsened S6 data due to the independent mapping of each channel from 
the measurement to image grids, prior to coarsening the S6 data. While 
2 × 2 averaging is the obvious approach given the image grids provided, 
the results are not optimal for joint use of infrared and reflectance im
agery. No knowledge of cosmetically filled pixels in the IR is taken into 
account, and orphan pixels are excluded. 

Fig. 1. SLSTR viewing geometry showing the satellite zenith angle across-swath for the nadir and oblique views (a), and the IR pixel field of view relative to the A 
and B detector pixel sensors for the nadir view at the sub-satellite point (b), the oblique view centre-swath (c) and the nadir view edge of swath (d). 
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3. Reflectance imagery optimised for joint use with thermal 
channels 

The spatial mismatch between the VIS and IR footprints that arises 
when coarsening the VIS data on the image grid can be demonstrated 
using the pixel IFOVs. Fig. 3 shows the two nadir view IR IFOVs from 
Fig. 1, one at the sub-satellite point (3a) and one at the edge of swath 
(3d). The corresponding VIS pixel IFOVs obtained when selecting 2 × 2 
pixels from the VIS image grid to be averaged, are shown in orange. For 
the nadir pixel at the sub-satellite point, we see that the VIS channel data 
is offset from the centre of the IR IFOV, observing parts of neighbouring 
IR pixels and not fully observing the spatial extent of the matching IR 
IFOV. For the pixel close to the edge of swath, only two corresponding 
VIS pixels are available. Both fall within the IR IFOV but don’t cover the 
full spatial extent. 

To address these limitations, we have developed a new SLSTR pre
processor (McCarroll and Embury, 2022), which remaps the VIS and 
SWIR data provided on the image grids to the IR IFOV, taking into ac
count the individual pixel locations and orphan pixels and avoiding the 
need to coarsen the VIS data with 2 × 2 averaging. The preprocessor first 
identifies a local neighbourhood including the N-nearest VIS or SWIR 
pixels to the IR pixel centre, where N is configurable. For all the results 
presented in this manuscript a value of N = 5 has been used for channels 
with A-stripe data only, and N = 10 for channels with A and B stripe data 
(where the ten nearest pixels are chosen independently of the detector). 
Searches for the N-nearest neighbours are made within a defined region 

of the image, bounded by a distance threshold, D. The location of each 
pixel centre is defined by the along-track and across-track coordinates. 
For each VIS or SWIR pixel in the defined region, the Cartesian distance 
to the centre of the IR pixel is calculated. Orphan pixels are included in 
the search and any duplicates are used only once. Where stripe A and B 
data are available (S4-S6), separate neighbourhoods can be calculated 
for each detector and then merged, so that the N-nearest neighbours can 
be identified from all available observations. The VIS or SWIR data are 
then mapped to the IR pixel by taking the arithmetic mean of the N- 
nearest neighbours. The preprocessor also supports calculation of the 
maximum, maximum-minimum and standard deviation of the N-nearest 
neighbours. 

Subplots 3b and 3e show the improvement in co-registration of the 
VIS and IR data when using the new preprocessor. In this example we 
use only the A stripe and 5 nearest neighbours. This gives a much closer 
match compared to Fig. 2c between the spatial extent of the IR and VIS 
pixel IFOVs. At the swath edge, the VIS pixels cover most of the IR IFOV, 
whilst at the sub-satellite point, the VIS domain slightly exceeds the IR 
IFOV. Subplots 3c and 3f show the co-registration when using 10 nearest 
neighbours with both stripes A and B. The A stripe detector centres are 
shown in indigo and the B stripe detector centres in yellow. Using the B 
stripe where available doubles the number of observations within the IR 
pixel IFOV, where the A and B detector centres are closely aligned. The 
new preprocessor effectively calculates ‘C stripe’ data at 1 km resolution 
for channels S4-S6, combining the information from the A and B stripes 
and is better optimised to benefit any application using VIS data co- 

Fig. 2. SLSTR S7 brightness temperatures (a) and S6 radiance (b) along part of the Norwegian coastline at 1 km and 500 m resolution respectively. (c) shows S6 data 
coarsened to the resolution of the S7 data using a simple 2 × 2 averaging of pixels. Data are extracted from the following L1 file: 
S3B_SL_1_RBT____20200422T110405_20200422T110705_20200423T161953_0179_038_094_1980_LN2_O_NT_004.SEN3. 

Fig. 3. IR and VIS pixel IFOV for a nadir pixel at the sub-satellite point (top) and the swath edge (bottom). VIS pixels are matched to the IR footprint by coarsening 
the VIS image grid (left), using the new preprocessor with five nearest neighbours and A stripe data only (centre) and the new preprocessor with ten nearest 
neighbours and A and B stripe data (right). 
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registered with IR channels. 
The improved co-registration of the VIS and IR data can also be seen 

when applying the new preprocessor to the SLSTR image of the Nor
wegian coastline as shown in Fig. 2. When comparing the S7 brightness 
temperatures (Fig. 4a) to the S6 reflectance (4b) using the new pre
processor, we see a much closer match between the shape of the 
coastline in the data from the two channels. Fig. 4c shows the standard 
deviation of the S6 observations within the IR IFOV. This additional 
metric is also found to be useful in the cloud detection process, as 
described in section 4. The reflectance variability is elevated over land 
(as shown here) but also along reflectance gradients such as those seen at 
cloud edges over a dark ocean. 

4. Application in cloud detection 

4.1. Bayesian cloud detection 

Operational SLSTR SST products are generated in near real time by 
EUMETSAT. A Bayesian cloud detection algorithm is used to screen the 
data prior to retrieving the surface temperature. This algorithm has been 
widely described elsewhere (Merchant et al., 2005, 2019; Bulgin et al., 
2018) so we provide only a brief overview here, focusing on details 
specific to SLSTR processing. Bayes theorem as applied to cloud detec
tion can be used to calculate the probability of clear-sky conditions as 
shown in Eq. (1). 

P
(
c|yo, xb) =

[

1 +
P(c)P(yo|xb, c)
P(c)P(yo|xb, c)

]− 1

(1) 

The clear-sky probability P
(
c|yo, xb

)
is calculated given knowledge of 

the satellite observations (yo) and the prior background state (xb). We 
use the term ‘cloud’ here to describe all non-clear conditions where SST 
cannot be retrieved. P(c) and P(c) are the prior probabilities of clear-sky 
and cloud respectively. The prior probability of cloud is determined by 
the numerical weather prediction (NWP) clear-sky fraction, constrained 
to within the range 0.5–0.95 in order to avoid strongly preconditioning 
the cloud detection by the prior. The prior clear-sky probability is 1 −

P(c). 
The probability of the observations given the background state 

P
(
yo|xb, c

)
can be split into two terms, with a spectral component 

denoted by the subscript ‘s’, and a textural component denoted by the 
subscript ‘t’ (Merchant et al., 2005). 

P
(
yo|xb, c

)
= P

(
yo

s |x
b, c

)
P
(
yo

t |x
b, c

)
(2) 

For clear-sky observations, P
(
yo

s |xb, c
)

is simulated using the fast- 
forward model RTTOV v11.3 (Hocking et al., 2015) constrained by 
NWP data from the European Centre for Medium Wave Forecasting 
(ECMWF) (Cox et al., 2021), provided with the SLSTR data. For cloudy 
observations, an empirical probability density function (PDF) is used to 
describe the prior background state. This is a practical choice given the 
timeliness of the data and the computational expense of simulating all 

possible cloud configurations. 
The empirical PDFs are constructed using ten years of data from the 

Metop-A Advanced Very High Resolution Radiometer (AVHRR) span
ning 2007–2016. PDFs were required prior to the launch of SLSTR to 
commence operational data production. AVHRR data were used in 
preference to ATSR due to the limited view angle ranges of ATSR. 
Cloudy-sky data for inclusion in the PDFs were bootstrapped using the 
EUMETSAT AVHRR cloud mask (EUMETSAT, 2011) and then iterated 
through one cycle of the Bayesian cloud detection (Merchant et al., 
2019). 

The textural component P
(
yo

t |xb, c
)

is represented by an empirical 
PDF for both clear-sky and cloudy conditions. The texture is calculated 
as the standard deviation of the observation in a given channel over the 
pixel of interest and the eight surrounding pixels. These PDFs are 
derived using data from the Advanced Along-Track Scanning Radiom
eter (AATSR). 

To use empirical PDFs from another sensor requires application of a 
shift to the SLSTR data prior to look-up to account for the differences in 
the spectral response functions of the two sensors (Bulgin et al., 2018). 
Essentially we make the SLSTR data ‘look-like’ the data used in the PDF, 
just prior to indexing the PDF. The spectral shifts are cubic functions, 
applied as a function of total column water vapour (TCWV) to the data at 
infrared wavelengths (Bulgin et al., 2018). Coefficients are calculated 
for atmospheric path lengths of 1 and 1.8 (Table 2) corresponding to 
viewing zenith angles between 0 and 56.25

◦

with linear interpolation 
applied to the coefficients between the two atmospheric path lengths. 

4.2. Operational configuration 

The current operational SLSTR daytime cloud detection uses three 
reflectance channels (S2, S3 and S5) and two infrared channels (S8 and 
S9) in the calculation of the spectral probability of the observations 
given the prior background state vector (P(ys

o|xb, c) (Pearson et al., 
2017). For cloudy observations, two empirical PDFs are used as 
described in Table 3. 

Over the open ocean and at sea-ice boundaries, it is typically found 
that adding channels in the visible part of the spectrum aids Bayesian 
cloud detection (Bulgin et al., 2015, 2018). In these regions, the 
reflectance wavelengths help to distinguish between brighter ice or 
cloud surfaces and the darker ocean. They are particularly useful where 
the temperature differences between surfaces are small such as at sea-ice 

Fig. 4. (a) SLSTR S7 brightness temperatures along part of the Norwegian coastline at 1 km resolution. (b) shows S6 radiance remapped to the resolution of the 
infrared observations using the new preprocessor, with stripe A data only and five nearest neighbours. (c) shows the standard deviation of the S6 radiance over the 
footprint of each corresponding infrared observation. Data are extracted from the following L1 file: S3B_SL_1_RBT____20200422T110405_20200422T110705_ 
20200423T161953_0179_038_094_1980_LN2_O_NT_004.SEN3. 

Table 2 
Spectral shift coefficients applied as a function of TCWV for SLSTR infrared 
channels.  

Path length Channel a0 a1 a2 a3 

1.0 S8 − 0.10922 0.00787 − 0.00021 1.49694 × 10− 6 

1.0 S9 − 0.17321 0.03285 − 0.00064 4.50355 × 10− 6 

1.8 S8 − 0.35633 0.01474 − 0.0003 1.92245 × 10− 6 

1.8 S9 − 0.45016 0.05117 − 0.00104 7.45298 × 10− 6  

C.E. Bulgin et al.                                                                                                                                                                                                                                



Remote Sensing of Environment 290 (2023) 113531

6

edges or in regions of low-lying fog. The trade-off for using these 
wavelengths occurs in coastal areas, where optically bright waters can 
be erroneously flagged as cloud. An example of this is presented in 
section 5. This arises when regions of turbid water or suspended matter 
in coastal regions cause enhanced reflectance in the S2 and S3 channels, 
which is not captured by the radiative transfer model. 

The textural probability P
(
yo

t |xb, c
)

is defined using the standard 
deviation of the S8 channel over 3 × 3 pixels, centred on the pixel of 
interest (Fig. 5 (left)). The clear-sky PDF peaks at low local standard 
deviations (LSD), <0.2 K. For LSD values >0.2 K, cloudy conditions are 
more probable. This probability is particularly useful for identifying 
cloud edges and scattered cloud, where there is greater heterogeneity in 
the brightness temperature than over the open ocean (or uniform cloud 
decks). The trade-off when using this metric, is the sensitivity to thermal 
gradients in the ocean caused by SST fronts, which are typically masked 
by the Bayesian cloud detection (Bulgin et al., 2018). This metric may 
also over-flag scattered cloud and waters along the coast where strong 
thermal contrasts are found. An example of this is shown in section 5. 

4.3. Use of optimised imagery and standard deviation 

We propose here a new configuration for the cloud detection which is 
of benefit to cloud detection in coastal regions. Three primary changes 
are made with respect to the operational configuration: 1) We use the 

new preprocessor to match the reflectance channel observations to the 
infrared image grid. 2) We use only the S5, S8 and S9 channels in the 
spectral component of the Bayesian calculation during the day and 3) we 
use the sub-pixel variability in the S3 channel as the texture metric 
during the daytime. 

Changes 2) and 3) are designed to address the shortcomings in the 
current cloud detection configuration as identified in section 4.2. The 
first of these reduces the dependence of the cloud detection on the VIS 
channels where optically bright or turbid waters coastal waters are not 
well modelled. The second is expected to be beneficial to the cloud 
detection as clear-sky oceans are generally invariant with respect to 
reflectance on the kilometres scale of infrared pixels. The exceptions to 
this are sharp fronts separating water masses with contrasting turbidity, 
and near-specular conditions where there may be a sun-glint-related 
reflectance gradient modulated by short-scale changes in wind-driven 
surface roughness. The reduced spatial footprint of the textural proba
bility should also improve edge detection of cloudy features. 

We use the sub-pixel variability in S3 (s) in the cloud detection by 
generating a look-up table of the ratio, ϕ, between the probability of s in 
the cloudy and clear-sky cases. 

ϕ = P(s|c)P(s|c) (3) 

P(s|c) reflects the distribution of the sensor noise, which given a 
sample of N reflectances can be assumed to be drawn from a normal 
distribution over a uniform scene, where the standard deviation of that 
population (σ) is channel dependent. In principle, the reflectance un
certainty in the product should provide σ, but in the present operational 
data this is not available. Therefore we use SLSTR-A clear-sky extracts to 
calculate a typical fixed value of σ, which is 0.00065 for S3. Using the 
standard result that the probability density function of x = Ns2/σ2 is 
described by the function χ2 we derive P(s|c). 

P(s|c) =
2Ns
σ2 χ2

(
Ns2

σ2 , N − 1
)

(4) 

Using the parameter ρ = s/σ collapses the independent variations of s 
and σ onto a single parameter, suitable for use in a look-up table as 
shown in Fig. 5 (right). 

Table 3 
Empirical PDF structure used to calculate the spectral probability of cloud.  

PDF Channels Dimension Range No. of bins 

1 S2, S3, S5 Atmospheric Path Length 
Solar Zenith Angle 
S5 channel 
S3 channel 
S2-S3 channel difference 

1–2.4 
0–95◦

0–1 
0–1 
− 0.5–0.2 

4 
38 
100 
100 
35 

2 S8, S9 Atmospheric Path Length 
Solar Zenith Angle 
NWP SST 
S8-S9 channel difference 
S8 channel – NWP SST 

1–2.4 
0–180◦

260–310 K 
− 1–9 K 
− 20–10 K 

4 
2 
50 
50 
30  

Fig. 5. Daytime S8 local standard deviation (LSD) PDF (left) and S3 Rho PDF (right). Clear-sky conditions are shown in blue, cloud in orange. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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P(ρ|c) = 2Nρχ2( Nρ2,N − 1
)

(5) 

The distribution of s for non-clear samples will include significant 
geophysical variability in addition to sensor noise, the distribution of 
which cannot be determined from first principles. Using non-clear 
samples of SLSTR-A data where the clear-sky probability is <0.1, for 
values of s much greater than the noise level, the distribution is well 
represented by an exponential distribution, where ν = 0.02273. 

P(s|c) =
1
νexp

(
−

s
ν

)
(6) 

This fit was derived over a range beyond the influence of reflectance 
noise, so this exponential distribution is then convolved with the sensor 
noise to give the full distribution of P(s|c). This is stored as a numerical 
look up table, since the convolved distribution has no convenient 
analytical form. We introduce the parameter ϖ = ν/σ to express this 
distribution also in terms of ρ. 

P(ρ|c) = 1
ϖ

exp
(
−

ρ
νϖ

)
(7) 

The result is shown in Fig. 5 (right). All values of ρ > 2 represent 
cloudy conditions. 

5. Results 

5.1. Case study examples 

Cloud detection performance in coastal zones is assessed qualita
tively using 17 SLSTR 3-min granules. These are globally distributed, 
including the Yellow Sea, Red Sea, Gulf of Finland, Cape of Good Hope, 
Chile, Gulf of Venice, Portugal, the Mediterranean, Namibia and the 
Amazon delta. Two case studies are presented here in detail that illus
trate the main differences between the operational and new cloud 
detection configurations (Fig. 6). The top panel shows the Bohai and 
Yellow Seas as observed on the 31st Jan 2020. The S2 channel reflec
tance (6a) shows optically bright waters over much of the Bohai Sea, 
around the entrance to the Yellow Sea and along the coast of Lia
nyungang and Yancheng (towards the bottom of the images). These 
areas are indicated by the red boxes in Fig. 6. Most of these areas are 

Fig. 6. Cloud detection for operational (centre) and new (right) configurations for optically bright waters (top) and thermal SST fronts (second row). a) S2 (0.6 μm) 
reflectance over the Bohai Sea (31/01/2020) and corresponding operational (b) and new (c) clear-sky probability. d) S7 (3.7 μm) brightness temperature around 
South Korea (21/01/2020) and corresponding operational (e) and new (f) clear-sky probability. Highlighted regions show optically bright waters (red), thermal SST 
fronts (magenta), contrails (cyan) and cloud edges (orange). The bottom row (panels g, h, i) show the region of contrails marked by the cyan box in the second row in 
more detail: (g) S7 brightness temperature, (h) operational clear-sky probability and (i) new clear-sky probability. The first example scene is processed from the 
following L1 file: S3A_SL_1_RBT____20200131T0209_20200131T02124_20200131T04080_0179_ 054_217_2340_LN2_O_NR_004.SEN3 and the second from: 
S3A_SL_1_RBT____20200121T012840_ 20200121T013140_20200121T032605_0179_054_074_2340_LN2_O_NR_004.SEN3. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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erroneously flagged as cloud when using the operational configuration 
of the cloud detection. Fig. 6b shows the clear-sky probability from the 
operational Bayesian calculation, to which a threshold of 0.9 would 
typically be applied to generate a binary cloud mask (Merchant et al., 

2019). Therefore only regions that are dark blue over the ocean in these 
plots would be classified as clear-sky. Results for the new configuration 
are shown in 6c. Much of the optically bright waters previously flagged 
as cloud are correctly classified as clear-sky in this configuration (an 

Fig. 7. SLSTR scenes used for coastal validation of the new cloud detection algorithm. Figures show the full SLSTR segment: coastal zones display S7 brightness 
temperatures, open ocean is blue and land is green. Cyan boxes show the regions selected for validation using warm S7 temperatures to identify clouds. Pixel clusters 
used as an alternative validation metric under regimes where the S7 temperature of clouds is not uniformly warmer than the underlying ocean are shown for clear 
pixels (yellow) and cloudy pixels (red). The details of the SLSTR filenames for these scenes and extract locations are provided in Table 4. The rightmost cyan box in 
subplot ‘b)’ is the extract detailed in Fig. 8. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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increase from 46.2% to 93.1% in the clear-sky fraction inside the red 
boxes), primarily resulting from replacing the spectral S2 and S3 infor
mation (where optically bright waters are poorly modelled) with the S3 
sub-pixel texture. The one area still falsely flagged as cloud is Liadong 
Bay (top, centre of the image). The waters in this region are cold, and the 
sub-pixel S3 variability is elevated, suggesting high turbidity. 

The second example (Fig. 6, second row) is around the South Korean 
coast on the 21st January 2020 where there are a number of thermal SST 
fronts to the south and west of the mainland as shown in the S8 infrared 
image (6d, magenta). In the operational configuration (6e) the cloud 
detection is sensitive to many of these fronts along both the south-west 
and south coasts as they raise the local variability in the S8 brightness 
temperature used as the textural metric. In the new configuration (6f), 
replacing the S8 textural metric with the S3 sub-pixel variability de
creases the sensitivity to thermal fronts. To the north-west of the image 
there is an area of cloud, in which a number of contrails are visible in the 
S8 thermal imagery (Fig. 6, cyan box in the second row, and an 
expanded view in the bottom row). These features are better defined in 
the new cloud detection configuration due to the reduced spatial foot
print of the S3 textural metric. This metric also increases the sensitivity 
of the cloud detection to scattered cloud fields often located at cloud 
edges (orange boxes). 

5.2. Coastal zone performance metrics 

Quantitative assessment of cloud detection performance requires a 
‘truth’ against which the mask can be compared. This ‘truth’ is often 
constructed by expert inspection of satellite imagery or semi-automated 
labelling of pixel clusters (Skakun et al., 2022; Bulgin et al., 2018), but 
these datasets are typically limited due to the time-consuming nature of 
manual classification (Bulgin et al., 2014). In this study we make use of 
two methods to validate coastal cloud detection performance. The first 
uses the S7 (3.7 μm) brightness temperature to identify clouds in cases 
where they are markedly warmer than the underlying ocean surface. 
This arises when the cloud top properties and sun-satellite geometry are 
such that significant solar irradiance is scattered towards the sensor by 
the cloud tops (Hunt, 1973). The S7 channel is particularly sensitive to 
fields of broken cloud, where cloud edges enhance reflection (Coakley 
and Davies, 1986) and to ice particle size in cirrus cloud (smaller par
ticles absorb less solar radiation increasing reflectance) (Baran et al., 
2003). In these cases, the scattering increases the observed brightness 
temperature in the S7 channel. When evaluating both the S7 and S8 
brightness temperatures a scene-dependent threshold can be readily 
found by inspection that enables cloud discrimination at the full spatial 
resolution of the thermal image. Warm S7 clouds occur in 47% of the 17 
worldwide granules, as identified by visual inspection (including the 
Yellow Sea, Chile, Gulf of Finland, Portugal, Namibia, Red Sea and the 

Amazon Delta). From these granules, 12 areas are extracted by inspec
tion, in which clouds are warm in the S7 channel and masked in order to 
evaluate the Bayesian cloud detection (Fig. 7). 

An example of this scattering effect and the threshold-based cloud 
‘truth’ is shown in Fig. 8. We extract a halo of 20 pixels (corresponding 
to a distance of 20 km at nadir) around the coastline for each of these 
segments (Fig. 8a). From these pixels we generate a 2D density plot of 
the observations in the S7 and S8 channels (Fig. 8c) with a bin size of 1 
K2. Clear-sky pixels lie close to the 1:1 line, with a scene-dependent 
offset in the S8 channel due to the greater sensitivity of the brightness 
temperature to atmospheric water vapour at this wavelength (Sobrino 
et al., 2003). To set the threshold for classification of cloudy pixels we 
identify the bin with the highest count and use the distance of this bin 
from the 1:1 line to determine the offset (c) in the threshold along the y- 
axis (the S7 channel). 

To this offset we add an additional 2 K representing the uncertainty 
in the observations from sensor noise and water vapour variability and 
assume a slope of one for the threshold. This is illustrated in Fig. 8c, 
where all pixels in the top-left of the plot above the dotted line would be 
classified as cloud and those in the bottom right as clear-sky. The 
resultant cloud mask is shown by the blue shading in Fig. 8b. Using this 
form of validation provides a high-level of objectivity and benefits from 
the inclusion of pixels in the clear-sky to cloud transition zones, which 
are commonly the hardest to classify. In Table 4 we provide a full list of 
the SLSTR-A granules used in this validation along with the x and y 
limits of the extracts and the scene-dependent threshold offset, c. 

The second validation method is used in areas where clouds are not 
uniformly warm in the S7 channel. In these regions, clusters of clear-sky 
pixels and clusters of cloudy-pixels are identified by expert inspection, 

Fig. 8. Threshold-based cloud masking of test-scenes with warm S7 clouds. a) S7 brightness temperatures for a halo of 20 pixels around the coastline. Land is shown 
in green, open ocean excluded from the analysis in white. b) Resultant threshold-based cloud mask overlaid in blue on the S7 brightness temperature field. c) 2D 
density plot using the S8 and S7 brightness temperatures used to determine the threshold for identifying cloudy pixels. The example shown here is extract 6 from 
Table 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
SLSTR-A segments, extraction limits and offset used for coastal cloud detection 
performance analysis. The unique beginning of the L1 filename can be con
structed using the prefix ‘S3A_SL_1_RBT____’ followed by the date and time in the 
following format: 20200121 T012840.  

Extract Date Time x-limits y-limits c 

1 21/01/2020 01:28:40 400:600 0:600 0.0 
2 21/01/2020 01:28:40 600:1400 0:350 0.0 
3 21/01/2020 01:28:40 1025:1400 350:475 1.0 
4 21/01/2020 01:28:40 1150:1400 475:600 3.0 
5 01/02/2020 01:43:38 0:400 0:600 0.0 
6 01/02/2020 01:43:38 800:1450 0:600 1.0 
7 20/02/2020 13:59:01 320:550 0:1200 0.0 
8 26/02/2020 14:43:53 1300:1450 650:1050 7.0 
9 10/06/2020 08:51:36 160:420 900:1200 0.0 
10 23/07/2020 07:07:39 875:1000 200:400 4.0 
11 06/10/2020 13:09:42 600:900 200:475 5.0 
12 07/11/2020 14:32:45 1000:1350 0:800 6.0  
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where the classification is unambiguous (as shown in Fig. 7). This 
validation is included to provide confidence that the algorithm works 
across different atmospheric regimes but doesn’t include the regions of 
transition between clear-sky and cloud (where classification is arguably 
more difficult), by its methodology. 

We calculate four performance metrics for the operational and new 
configurations of the cloud mask (Bengtsson and Hodges, 2005; Mackie et al., 
2010): the percentage of perfect classification (PP), hit rate (HR), false alarm 
rate (FAR) and true skill score (TSS). The percentage of perfect classification 
is defined as the percentage of pixels correctly classified as ‘cloud’ or ‘clear- 
sky over water’ with reference to the ‘truth’. The hit rate is the percentage of 
cloudy pixels correctly identified as cloud and the false alarm rate is the 
number of clear-sky pixels falsely flagged as cloud. The true skill score is 
defined as the hit rate minus the false alarm rate. 

The performance metrics presented in Table 5 are calculated for the 
two validation methods. For the regions where S7 clouds are warm 
(referred to as scene extracts in Table 5) there are a total of 567,439 
coastal pixels, of which 161,625 are cloudy and 405,814 are clear-sky. 
The new configuration increases the hit rate by 1.7% compared to the 
operational configuration, whilst simultaneously reducing the false 
alarm rate by 31.6%. This leads to a net gain in the true skill score of 
33.3% for the new configuration (74.2% compared to 40.9% for the 
operational configuration). The improvement in the percentage of per
fect classification is considerable (84.8% for the new configuration 
compared to 61.7% for the operational configuration). The new 
configuration significantly improves identification of clear-sky pixels in 
coastal regions by reducing the false alarm rate, whilst also improving 
the hit rate, both of which are advantageous in the retrieval of surface 
properties such as sea surface temperature. 

For the pixel cluster analysis, a total of 39,518 pixels were evaluated, 
of which 24,070 are cloud and 15,448 clear-sky. For all metrics, both 
algorithms perform better for the cluster analysis than their corre
sponding performance in the scene extracts, likely because the clusters 
only include pixels that are unambiguous in their classification. A 
similar increase in performance is seen for the new configuration in 
comparison to the operational configuration in the pixel cluster analysis. 
The hit rate increases by 3.3% to 94.3%, whilst the false alarm rate falls 
by 23.8%. The net gain in the true skill score between the new and 
operational configuration is 27.1% and the corresponding increase in 
the percentage of perfect classification is 11.3%. 

5.3. Impact on global validation statistics 

Both case study analysis and calculation of performance metrics have 
demonstrated the positive impact of the new cloud detection configu
ration in coastal zones in the detection of scattered cloud, correct clas
sification of thermal fronts and reduced false-flagging of optically bright 
waters. The primary application of the Bayesian cloud detection algo
rithm operationally is in the identification of clear-sky over ocean pixels 
for SST retrieval. Having demonstrated a clear improvement in cloud 
detection in coastal regions, global, open-ocean validation is required to 
ensure that the proposed modifications are also beneficial (or at least not 
detrimental) over open water and across the globe. Validating SST re
trievals from satellite data against drifting buoys is a good test of cloud 

screening performance. Any reduction in cloud detection skill will 
introduce cold biases and worsen the validation statistics, whilst an in
crease in false-flagging of cloud would significantly reduce the number 
of clear-sky matches. Table 6 shows global validation statistics for a 
nadir-only, two-channel (S8 and S9, 11 and 12 μm), coefficient-based 
retrieval (N2) (Embury et al., 2012a) against global drifting buoy 
data, packaged and distributed by the Copernicus Marine Environment 
Monitoring Service (CMEMS) for all daytime SLSTR-A observations in 
2021. Matches are constrained by the spatial and temporal differences 
between the satellite and buoy measurements with a maximum sepa
ration 1 km and two hours. 

Comparisons show the satellite minus buoy SST’s with skin-to-depth 
comparisons of the raw data and skin-to-skin comparisons where the 
Fairall and Kantha-Clayson (FKC) models (Kantha and Clayson, 1994; 
Fairall et al., 1996), driven by ERA5 fluxes (C3S, 2021) are used to adjust 
buoy temperatures (taken at depth) to skin temperatures. This process 
occurs in two stages: the buoy temperature is first converted to a skin 
temperature and then this skin temperature is adjusted for the time 
difference between the satellite and buoy observations. The Kantha- 
Clayson model accounts for diurnal stratification and time-related 
changes to the water temperature at the depth of the buoy, whilst the 
Fairall model accounts for the physics of the cool skin layer (Embury 
et al., 2012b). These models are used together for each step. 

The non-robust mean and standard deviations are identical for the 
operational and new configurations with a reduction of 6% in the 
number of observations classified as clear-sky when using the new 
configuration. There is a small reduction in the total number of obser
vations in the skin-to-skin case compared to skin-to-depth (for both non- 
robust and robust statistics), that result from instances where the FKC 
model predictions are not available. The robust statistics show an 
improvement in the robust standard deviation of the SST differences 
(0.30 for the operational configuration compared to 0.29 for the new 
configuration), where the new configuration removes more cloudy ob
servations. This indicates that the new configuration does not degrade 
cloud detection performance over the open ocean. Fig. 9 compares the 
distribution of the SST differences for the operational and new config
urations. There is a cold tail to the distribution (represented by the 
median difference of − 0.04 K in the skin-to-skin comparisons) that 
represents cloudy observations mis-classified as clear-sky and we see a 
small reduction in this when using the new configuration. Although this 
improvement is present also in the non-robust statistics, it is less obvious 
in the comparison statistics as outliers are typically driven by other as
pects of the data (poor quality in-situ, the FKC model and aerosol). 

6. Discussion and conclusion 

The three main improvements expected from using the new cloud 
detection configuration during the day are 1) a reduction in the false- 
flagging of thermal fronts, 2) a reduction in the false-flagging of opti
cally bright waters and 3) an improvement in the screening of scattered 
cloud. The first two improvements will not significantly impact the 
global statistics when comparing against drifting buoys as the main 
gains in clear-sky information will be close to the coast, where buoy 

Table 5 
Coastal zone performance metrics for the operational and new cloud detection 
configurations. Metrics are the percentage of perfect classification (PP), hit rate 
(HR), false alarm rate (FAR) and the true skill score (TSS) (Bengtsson and 
Hodges, 2005; Mackie et al., 2010).  

Configuration Validation PP (%) HR (%) FAR (%) TSS (%) 

Operational Scene extracts 61.7 90.8 49.9 40.9 
New Scene extracts 84.8 92.5 18.3 74.2 
Operational Pixel clusters 83.4 91.0 28.5 62.5 
New Pixel clusters 94.7 94.3 4.7 89.6  

Table 6 
Validation statistics for N2 two-channel SST retrievals against drifting buoys for 
all SLSTR-A data in 2021. Clear-sky data are identified using the operational and 
new configurations of the Bayesian cloud detection. Non-robust statistics show 
number of matches, mean (standard deviation) and robust statistics show 
number of matches, median (robust standard deviation).  

Comparison Type Operational New 

Skin-to-depth Non-robust 61,402, − 0.23 (0.53) 57,650, − 0.23 (0.53) 
Skin-to-skin Non-robust 60,583, − 0.09 (0.53) 56,782, − 0.09 (0.53) 
Skin-to-depth Robust 61,402, − 0.18 (0.30) 57,650, − 0.18 (0.29) 
Skin-to-skin Robust 60,583, − 0.04 (0.30) 56,782, − 0.04 (0.29)  
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coverage is limited. The third improvement on the cloud detection will 
have the biggest impact on the global statistics by improving the iden
tification of small scattered clouds, which are harder to differentiate 
using the infrared texture metric with the larger spatial footprint. It is 
likely that these features contribute to the majority of the reduction in 
clear-sky matches between the operational and new configurations. 

In this paper we have demonstrated the benefits of the daytime cloud 
screening developments to data coverage in coastal zones, which can be 
achieved without detrimental impact to global validation statistics. This 
increased coverage in coastal regions is beneficial to SST operations and 
climate data records, the importance of which is increasingly recognised 
because a large fraction of the world’s population live close to the coast. 
The higher resolution reflectance channel data from SLSTR is a powerful 
tool for detecting scattered cloud but is also sensitive to highly turbid 
waters as seen in the Bohai Sea case study. Further work is required to 
successfully distinguish clear-sky observations under these conditions. 

More broadly, the SLSTR preprocessor facilitates re-mapping the VIS 
and SWIR data to the IR IFOV and would benefit any application in 
which the joint use of reflectance and infrared data is required. It also 
provides additional metrics including the maximum, the range and the 
sub-pixel variability of the VIS or SWIR data corresponding to any given 
IR pixel, which may have benefits for other applications, in addition to 
cloud detection. The code has been made freely and publicly available 
for download (McCarroll and Embury, 2022). 

Author contributions 

Conceptualization, C.J.M. and G.C.; investigation, A.F., C.E.B and C. 
J.M; software, N.M., C.E.B, A.F and O.E; validation, G.C.; formal anal
ysis, A.F and C.E.B.; SLSTR vertices data, E.P. and C.M.; writing-original 
draft preparation, C.E.B; writing-review and editing, C.E.B., C.J.M., G. 
C., A.F., O.E., E.P. and C.M.; visualization, N.M., A.F., C.E.B. and C.J.M; 
supervision and project administration, C.J.M and C.E.B.; funding 
acquisition, C.J.M. All authors have read and agreed to the published 
version of the manuscript. 

Funding 

This research was funded by the European Organization for the 
Exploitation of Meteorological Satellites, grant number EUM/CO/20/ 

4600002392/GKC. 

Declaration of Competing Interest 

The authors declare no conflict of interest. G.C. as an employee of the 
funder contributed to the validation of SLSTR SSTs against in-situ data 
reported in the manuscript. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This study has been conducted using E.U. Copernicus Marine Service 
Information; https://doi.org/10.48670/moi-00036. 

References 

Baran, A.J., Havemann, S., Francis, P.N., Watts, P.D., 2003. A consistent set of single- 
scattering properties for cirrus cloud: tests using radiance measurements from a 
dual-viewing multi-wavelength satellite-based instrument. J. Quant. Spectrosc. 
Radiat. Transf. 79–80, 549–567. 

Bengtsson, L., Hodges, K.I., 2005. On the impact of humidity observations in numerical 
weather prediction. Tellus 130, 763–778. 

Bonekamp, H., Monatagner, F., Santacesaria, V., Nogueira Loddo, C., Wannop, S., 
Tomazic, I., O’Carroll, A., Kwiatkowska, E., Scharroo, R., Wilson, H., 2016. Core 
operational Sentinel-3 marine data product services as part of the Copernicus space 
component. Ocean Sci. 12, 787–795. 

Bulgin, C.E., Eastwood, S., Embury, O., Merchant, C.J., Donlon, C., 2015. The sea surface 
temperature climate change initiative: alternative image classification algorithms for 
sea-ice affected oceans. Remote Sens. Environ. 162, 396–407. 

Bulgin, C.E., Merchant, C.J., Ghent, D., Klüser, L., Popp, T., Poulsen, C., Sogacheva, L., 
2018. Quantifying uncertainty in satellite-retrieved land surface temperature from 
cloud detection errors. Remote Sens. 10 (4), 616. 

Bulgin, C.E., Sembhi, H., Ghent, D., Remedios, J.J., Merchant, C.J., 2014. Cloud-clearing 
techniques over land for land-surface temperature retrieval from the Advanced 
Along-Track Scanning Radiometer. Int. J. Remote Sens. 35, 3594–3615. 

C3S, 2021. Copernicus Climate Change Service ERA5: Fifth generation of ECMWF 
atmospheric reanalyses of the global climate. Centre for Environmental Data 
Analysis. Cited: May 2022.  

Coakley, J.A.J., Davies, R., 1986. The effect of cloud sides on reflected solar radiation as 
deduced from satellite observations. J. Atmos. Sci. 43, 1025–1035. 

Coppo, P., Ricciarelli, B., Brandani, F., Delderfield, J., Ferlet, M., Mutlow, C., Munro, G., 
Nightingale, T., Smith, D., Bianchi, S., Nicol, P., Kirschstein, S., Hennig, T., 
Engel, W., Frerick, J., Nieke, J., 2010. SLSTR: a high accuracy dual scan temperature 
radiometer for sea and land surface monitoring from space. J. Mod. Opt. 57, 
1815–1830. 

Cox, C., Polehampton, E., Smith, D., 2021. Sentinel-3 SLSTR: Level-1 Algorithm 
Theoretical Basis Document S3-SL-RAL-TN-032. 

Donlon, C., Berruti, B., Buongiorno, A.M.-H.F., Femenias, P., Frerick, J., Goryl, P., 
Klein, U., Laur, H., Mavrocordatos, C., Nieke, J., Rebhan, H., Seitz, B., Stroede, J., 
Sciarra, R., 2012. The global monitoring for environment and security (GMES) 
Sentinel-3 mission. Remote Sens. Environ. 120, 37–57. 

Embury, O., Merchant, C.J., 2012. A reprocessing for climate of sea surface temperature 
from the along-track scanning radiometers: a new retrieval scheme. Remote Sens. 
Environ. 166, 47–61. 

Embury, O., Merchant, C.J., Filipiak, M.J., 2012a. A reprocessing for climate of sea 
surface temperature from the along-track scanning radiometers: basis in radiative 
transfer. Remote Sens. Environ. 116, 32–46. 

Embury, O., Merchant, C.J., Corlett, G.K., 2012b. A reprocessing for climate of sea 
surface temperature from the along-track scanning radiometers: initial validation, 
accounting for skin and diurnal variability effects. Remote Sens. Environ. 116, 
62–78. 

ESA, 2022. Sentinel-3 SLSTR User Guide. https://sentinels.copernicus.eu/web/sentinel 
/user-guides/sentinel-3-slstr. 

EUMETSAT, 2011. European Organisation for the Exploitation of Meteorological 
Satellites AVHRR Level 1b Product Guide. https://www.eumetsat.int/media/15351. 

Fairall, C., Bradley, E., Godfrey, J., Wick, G., Edson, J., Young, G., 1996. Cool-skin and 
warm-layer effects on sea surface temperature. J. Geophys. Res. 101 (C1), 
1295–1308. 

Frey, R.A., Ackerman, S., Liu, Y., Strabala, K.I., Zhang, H., Key, J.R., Wang, X., 2008. 
Cloud detection with MODIS. Part 1: improvements in the MODIS cloud mask for 
collection 5. J. Atmos. Ocean Technol. 25, 1057–1072. 

Good, S., Fiedler, E., Mao, C., Martin, M.J., Maycock, A., Reid, R., Roberts-Jones, J., 
Searle, T., Waters, J., While, J., Worsfold, M., 2020. The current configuration of the 
OSTIA system for operational production of foundation sea surface temperature and 
ice concentration analyses. Remote Sens. 12, 720. 

Hocking, J., Rayer, P., Rundle, D., Saunders, R., Matricardi, M., Geer, A., Brunel, P., 
Vidot, J., 2015. RTTOV v11 Users Guide. 

Fig. 9. Probability distribution function (PDF) for N2 satellite minus drifter SST 
for clear-sky scenes, defined using a threshold of 90% on the clear-sky proba
bility. The PDF for the operational configuration is shown in orange and the 
new configuration in blue. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

C.E. Bulgin et al.                                                                                                                                                                                                                                

https://doi.org/10.48670/moi-00036
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110480938
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110480938
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110480938
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110480938
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110496209
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110496209
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110511718
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110511718
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110511718
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110511718
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123089787
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123089787
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123089787
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110545616
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110545616
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110545616
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123106921
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123106921
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123106921
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030118006378
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030118006378
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030118006378
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110558661
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110558661
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123469163
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123469163
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123469163
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123469163
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123469163
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030118234811
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030118234811
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030119268520
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030119268520
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030119268520
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030119268520
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110579163
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110579163
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110579163
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123515335
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123515335
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123515335
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123520487
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123520487
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123520487
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123520487
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-slstr
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-slstr
https://www.eumetsat.int/media/15351
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110593247
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110593247
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030110593247
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030111170111
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030111170111
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030111170111
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030111185272
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030111185272
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030111185272
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030111185272
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030115559440
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030115559440


Remote Sensing of Environment 290 (2023) 113531

12

Hunt, G.E., 1973. Radiative properties of terrestrial clouds and visible and infra-red 
thermal window wavelengths. Q. J. R. Meteorol. Soc. 99, 346–369. 

Kantha, L.H., Clayson, C.A., 1994. An improved mixed layer model for geophysical 
applications. J. Geophys. Res. 99, 25235–25266. 

Lu, S.M., He, M.J., He, S.Y., He, S., Pan, Y.H., Yin, W.B., Li, P.L., 2021. An improved 
cloud masking method for GOCI data over turbid coastal waters. Remote Sens. 13, 
2722. 

Mackie, S., Embury, O., Old, C., Merchant, C.J., Francis, P., 2010. Generalized Bayesian 
cloud detection for satellite imagery: Part 1: technique and validation for night-time 
imagery over land and sea. Int. J. Remote Sens. 31, 2573–2594. 

McCarroll, N., Embury, O., 2022. surftemp/slstr-preprocessor: v1.0.0. https://doi.org/ 
10.5281/zenodo.6566800. 

Merchant, C.J., Embury, O., Bulgin, C.E., Block, T., Corlett, G.K., Fiedler, E., Good, S.A., 
Mittaz, J., Rayner, N.A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., 
Waterfall, A., Wilson, R., Donlon, C., 2019. Satellite based time-series of sea-surface 
temperature since 1981 for climate applications. Sci. Data 6, 223. https://doi.org/ 
10.1038/s41597-0190236-x. 

Merchant, C.J., Harris, A.R., Maturi, E., MacCallum, S., 2005. Probabilistic physically- 
based cloud screening of satellite infra-red imagery for operational sea surface 
temperature retrieval. Q. J. R. Meteorol. Soc. 131 (611), 2735–2755. 

Pearson, K., Embury, O., Bulgin, C.E., Merchant, C.J.. Bayesian cloud detection scheme 
for the sea and land surface temperature radiometer algorithm theoretical basis 
document. https://www.eumetsat.int/media/50188. 

Rossow, W.B., Garder, L.C., 1993. Cloud detection using satellite measurements of 
infrared and visible radiances for ISCCP. J. Clim. 12, 2341–2369. 

Simpson, J.J., McIntire, T.J., Stitt, J.R., Hufford, G.L., 2001. Improved cloud detection in 
AVHRR daytime and night-time scenes over the ocean. Int. J. Remote Sens. 22 (13), 
2585–2615. 

Skakun, S., Wevers, J., Brockmann, C., Doxani, G., Aleksandrov, M., Batic, M., Frantz, D., 
Gascon, F., Gomez-Chova, L., Hagolle, O., LopezPuidollers, D., Louis, J., Lubej, M., 
Mateo-Garcıa, G., Osman, J., Peressutti, D., Pflug, B., Puc, J., Richter, R.J.-C.R., 
Scaranyzza, P., Vermote, E., Vesel, N., Zupanc, A., Zust, L., 2022. Cloud Mask 
Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for 
Landsat 8 and Sentinel-2. Remote Sens. Environ. 274, 112990. 

Sobrino, J.A., El Kharraz, J., Li, Z.L., 2003. Surface temperature and water vapour 
retrieval from MODIS data. Int. J. Remote Sens. 24, 5161–5182. 

Wang, Z., Du, J., Zia, J.S., Chen, C., Zeng, Q., Tian, L.Q., Wang, L.H., Mao, Z.H., 2020. An 
effective method for detecting clouds in GaoFen-4 images of coastal zones. Remote 
Sens. 12, 3003. 

Závody, A.M., Mutlow, C.T., Llewellyn-Jones, D.T., 2000. Cloud clearing over the ocean 
in the processing of data from the along-track scanning radiometer (ATSR). J. Atmos. 
Ocean. Technol. 17, 595–615. 

C.E. Bulgin et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030115577666
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030115577666
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030115594282
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030115594282
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030116006871
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030116006871
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030116006871
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030121051635
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030121051635
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030121051635
https://doi.org/10.5281/zenodo.6566800
https://doi.org/10.5281/zenodo.6566800
https://doi.org/10.1038/s41597-0190236-x
https://doi.org/10.1038/s41597-0190236-x
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123536949
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123536949
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123536949
https://www.eumetsat.int/media/50188
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030116597024
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030116597024
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123549510
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123549510
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123549510
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123057413
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123057413
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123057413
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123057413
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123057413
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123057413
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123560900
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123560900
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030117031956
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030117031956
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030117031956
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123574557
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123574557
http://refhub.elsevier.com/S0034-4257(23)00082-2/rf202303030123574557

	Improving the combined use of reflectance and thermal channels for ocean and coastal cloud detection for the Sea and Land S ...
	1 Introduction
	2 Imagery from SLSTR
	3 Reflectance imagery optimised for joint use with thermal channels
	4 Application in cloud detection
	4.1 Bayesian cloud detection
	4.2 Operational configuration
	4.3 Use of optimised imagery and standard deviation

	5 Results
	5.1 Case study examples
	5.2 Coastal zone performance metrics
	5.3 Impact on global validation statistics

	6 Discussion and conclusion
	Author contributions
	Funding
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


