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Foreword

One of the oldest and most cherished desires for any quantitative scientific and tech-
nological field is the ability to develop forecasts of the, as yet, unforeseen. Of course,
whatever has been observed already is, in most applications, a moving conveyor belt.
Hence, this ambition raises fundamental questions, such as What actually is a good
forecast?, and What is the value of older data?.

Many realistic challenges involve spikey data, perhaps within nonstationary
(drifting and step change) settings. In turn, this fact modifies the answers to the
questions above. If we aim to predict realistic forward profiles, as opposed to point
estimates, we shall need to generate realistic structures (with spikes, gaps, and so
on). This is problematical for methods that treat errors as a noise component that is
to be minimised (in some way). It presents a meta problem.

This book is timely and very much needed. From my own experience, I see that
whenever novel concepts are posited so as to address some of these issues, they are
eagerly feasted upon and further developed by many scientists within a plethora of
applied fields. The breadth of ideas and methods here is what gives this book its
power: readers will return to it again and again. For data science applications, there
is a need for options that address “what works” as well as “why it works”. In many
fields of highly regulated sciences pertaining to the interests of public individuals,
it is simply unethical to present opaque methods; why is as essential as what. This
provides transparency and assurance to the subject who feels the consequences of
the forecasting outputs.

No serious professional data scientist can be oblivious to the contents presented
here. The interests of readers should be both refined and peaked by dipping into
this book. Open it and read at random (like a grasshopper), or crawl through it (like
an ant): your investment of both interest and effort will be rewarded. Now that is a
forecast!

Oxford, UK
January 2023

Peter Grindrod CBE

v



Preface

Electricity networks around the world are rapidly moving towards digitalisation,
producing an ever-increasing amount of data. This data is opening up vast opportu-
nities to decarbonise the energy system, aswell as helping us to increase the efficiency
of the energy we use. In turn, this improves the chances of addressing some of the
most urgent problems causing climate change.

To implement the necessary data analytical and modelling techniques for the
future, low carbon economy requires a wide range of skills, knowledge, and data
literacy. Without these, there is a genuine threat of a skills gap where there is insuf-
ficient personnel who can put into practice these methods and models. One of the
main goals of this book is to help support these vital skills by providing an accessible
but thorough introduction to the techniques required for household and low voltage
load forecasting.

The area of load forecasting at the Low Voltage (LV) level is relatively immature
compared to high voltage or national level forecasting, and there are many important
and exciting areas still to be explored. The volatile and spiky nature of LV level
demand provides many challenges within applications which utilise forecast inputs,
but also within the forecast themselves. Hence, a second major aim of this book is
to lay a strong foundation for researchers and innovators to develop the future novel
methods and advanced algorithms that can produce ever more varied products and
services.

The seeds of this book started over 10 years ago when the authors began their
research into forecasting smart meters and low voltage demand. At the time there
was very little data available in this area, and its unique challenges such as the
“double penalty effect” were hidden or ignored. Much research simply applied the
techniques which had been successfully applied at the national or system level, with
very little thought to their appropriateness to the LV system. The area is now rapidly
progressing and starting to embrace the much-needed probabilistic techniques and
advanced time seriesmachine learningmethods. Additionally,more data is becoming
available all the time, further supporting the development of robust benchmarks and
new applications.

vii



viii Preface

Although data science techniques are rapidly developing in LV level load fore-
casting (and will continue to), this book provides the fundamental techniques which
serve as the foundation for anyone interested in this area (and load forecasting more
generally), as well as the timeless, but necessary, principles and approaches under-
lying them. Discussed in this book are the core concepts of time series forecasting,
the unique features of LV level demand, fundamental data analytics, methods for
feature engineering, a plethora of statistical and machine learning forecast models,
as well as a demonstration of them in a case study applied to real-world data. At
the end of this book, the reader should be well versed on the complete load forecast
process, as well, perhaps, ready to develop some novel models of their own!

It was our desire to produce a book “we wished was available when we were first
starting out in this field”. We feel that we have achieved this, and we hope that it
supports you on your journey into load forecasting.

Oxford, UK
Berlin, Germany
Reading, UK
January 2023

Stephen Haben
Marcus Voss

William Holderbaum
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Chapter 1
Introduction

This chapter introduces the context and motivation for this book as well as some of
the best ways to use it. It focuses on:

• Why is forecasting needed to help support the future energy system, especially at
the low voltage level.

• Why is this book needed.
• Description of the contents and how to read it.
• What to include in a semester long course.

1.1 Motivation

Mitigation of the climate crisis by meeting global carbon reduction targets is going
to require dramatic changes to how we generate and use energy. Global leaders and
the energy sector must act with urgency if we are to avoid the most catastrophic
outcomes of climate change.

Carbon reduction will mean a continuous shift towards the decarbonisation of
major sectors and infrastructures, especially in heating, industry and transport. Many
of these applications will require electrification with, for example, heating moving
from gas boilers to electric heat pumps, and transport moving from petrol combustion
engines to electric vehicles.1

This electrification is increasingly generated from renewable energy sources, such
as wind, solar, wave, hydro and geothermal (See Fig. 1.1). The change in how energy
is used and generated has two main consequences. First, larger and more volatile
demand consumption behaviour due to new low carbon appliances (electric vehicle
charging at home), and second, an electricity supply which has much more uncer-
tainty due to the dependence on less predictable and intermittent weather behaviour.

1 Other applications, especially industrial applications, may move to utilising hydrogen.

© The Author(s) 2023
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Fig. 1.1 Proportion of electricity produced per year broken down by source. Plot by Our World in
Data licensed under CC BY 4.0

These changes will effect the security of the electricity supply since it increases
the chances the energy generated may not match the demand of the end consumers,
which in turn could result in blackouts or damage to the electricity networks. These
are going to present significant challenges for governments to “ensure access to
affordable, reliable, sustainable and modern energy for all” which is one of the
17 Sustainable Development Goals established by the United Nations General
Assembly in 2015.2 To mitigate the effects of electrification several solutions are
being developed including:

1. Control of Storage: storage devices can “shift” and “smooth” demand by charg-
ing during times of low demand, and discharging during periods of high demand.
This can help reduce the effects of increasing demand but can also ensure optimal
utilisation of renewable energy at time periods when they are needed most. Most
renewable generation is dependent on weather conditions which means energy
from renewable sources may be generated when it is least needed. Storing this
generation can ensure that clean energy is used to meet the high demand instead
of energy with higher carbon intensity from the grid.

2. Demand Side Response: If there is insufficient generation to match the demand,
devices can be turned off to balance the network. For example, heat pumps could

2 See https://sdgs.un.org/goals/goal7.

https://creativecommons.org/licenses/by/4.0/
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be turned off for a short period, reducing demand whilst ensuring heating comfort
is retained. Similarly if there is too much generation demand can be turned on.

3. Co-ordinated EV Charging: If Electric Vehicle (EV) uptake is sufficiently high
then there is a likelihood that local networks will be under excessive strain since
households will choose to charge at similar periods (for example, plugging them
in after arriving home from work, or charging over night so the vehicle is ready
for use in the morning). One way to alleviate this effect is to co-ordinate their
charging so that fewer vehicles are drawing energy from the grid simultaneously.

4. Local Electricity Markets: With more and more distributed generation, and an
increase in controllable assets with two-way communications it creates opportu-
nities for smart grids and localised energy markets where demand and generation
can be traded. Energy can be utilised close to where it is generated and this also
reduces the losses through transmitting energy over large distances.

All of these applications require varying degrees of foresight of the demand or
generation in order to operate optimally and ensure minimal disruption and costs to
consumers. For example, consider a storage device with the objective to maximally
charge using energy generated from renewables, and to use the stored energy to
reduce the peak energy usage. This requires accurate estimates of both the future
demand and generation to schedule the appropriate charging and discharging of the
device. These estimates are produced by so-called load forecasts, the topic of this
book!

1.2 Demand Forecasting for LV Systems

As described above accurate forecasting is a vital tool for a whole range of appli-
cations including optimising energy management systems (such as storage devices),
redistributing demand, peak demand reduction and electrical infrastructure develop-
ment (i.e. determining where and what assets to install). Unfortunately, load fore-
casting at the LV level is a complex task compared to forecasting at the national level
or system level. The small number of consumers connected to the LV substations
mean that the demand is relatively irregular and volatile. Feeders on low voltage sub-
stations often consist of between 1 and 100 consumers and they may be residential,
commercial, or a mix of both. Further to this there is street furniture such as lighting
which can have a non-trivial effect on the overall demand at the LV level.

This volatility is apparent when comparing the half hourly demand over aweek for
different aggregations of households. This is shown in Fig. 1.2 for a single consumer,
an aggregation of 40 consumers (the size of a typical LV secondary feeder) andfinally,
540 consumers. At the highest aggregation the profiles are relatively smooth with
the demand very similar from one day to the next. In contrast the single household is
very volatile and irregular from day to day. LV feeders will typically be connected to
around 40 consumers, and it is clear that although they are more regular than a single
household, they still have significant levels of volatility and uncertainty. This book
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Fig. 1.2 Examples of half hourly demand profiles for a week for a a single household, b the
aggregation of 40 households, c the aggregation of 540 households. Constructed using data from
the CER Smart Metering Project—Electricity Customer Behaviour Trial, 2009–2010 [1]

will present a case study in Chap. 14 comparing forecasts on feeders of a range of
sizes, showing how aggregation links to accuracy. This variety in demand behaviour
also means there is no one-size-fits-all forecast model which will forecast accurately
across all LV substations, unlike systems-level or national-level forecasting.

In this book, forecast models will be used to predict the demand as both point
estimates and probabilistic estimates. The latter is essential to deal with the uncer-
tainty inherent in LV level demand and ensure the optimal performance is obtained
for the applications mentioned above and in this book.

1.3 Why Do We Need This Book

As outlined above, forecasting is an essential requirement to support the changing
dynamics of the electricity network, and the emerging applications and opportunities.
However, the unique challenges associated to low voltage demand, in particular, the
increased volatility and irregularity, will require knowledge of advanced techniques
and models which are not necessarily required for the more regular demand at the
system or national level.

Unfortunately knowledge and experience in these areas are relatively sparse due
to the lack of available data, and the recency of the area itself. Monitoring of demand
is generally reserved for higher voltage levels of the network and smart meters have
only been rolled out from the 2010s onwards. There is therefore a urgent requirement
for these indispensable skills to enable the growing needs of a low carbon economy.
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Forecasts are the fundamental component to a vast array of applications in the
smart grid and low voltage level. This book will therefore enable researchers in a
vast array of fields from optimisation, control theory, power systems engineering,
and uncertainty quantification. Due to the array of techniques presented, it will also
be useful as a reference to more experienced forecasters who may wish to utilise
further approaches and models.

Several applications are illustrated in both the case study (Chap. 14) and the further
examples (Chap. 15). These are based upon the authors’ research experience using
real world data to demonstrated the techniques presented. The case study in particular
shows all the difficulties that can be foundwith processing, analysing and interpreting
of real measured data, and utilising themwithin state-of-the-art forecast models. This
is in contrast to other bookswhich often use toy examples,which although illustrative,
perhaps do not demonstrate the sometimes subtle complications which are prevalent
in real systems and data.

1.4 Aims and Overview of This Book

This book aims to present a comprehensive guide to all the components necessary
to develop accurate and effective load forecasts for low voltage electricity networks.
The behaviour of electricity demand has changed with new energy sources such as
energy storage and renewable energies sources which aim to supply the increase in
energy demand. New energy control technologies have been shown to reduce energy
costs, emissions, and peak demand, and load forecasting characteristics provide the
opportunity to investigate the benefits of optimal control strategies. While not pro-
viding exhaustive details on all approaches, this book’s aim is to provide a unique
overview of themost commonly applied techniques andmethods for load forecasting
at the LV level. It covers the basic time series forecasting concepts and introduces
both, common statistical and machine learning methods. The reader is referred to
more detailed literature on each of the methods in the Appendix.

Before developing precise forecast techniques and models, a practitioner will
require understanding fundamental concepts in energy systems, statistics andmachine
learning. For these reasons, Chaps. 2, 3 and 4 serve as knowledge foundation for the
rest of the book and any topic which requires more information will be elaborated on
in later chapters. Chapter2 briefly describes the important features of a electricity dis-
tribution network, including those attributes which make LV level forecasting much
more challenging than system level. Chapter3 introduces core concepts in proba-
bility and statistics. Many of the models and theory for time series forecasting are
framed within a statistical framework, in particular when the variables’ underlying
uncertainty needs to be utilised, this is especially true when implementing proba-
bilistic forecasts for probabilistic forecasting (Chap.11). The final primer is Chap.4
and describes the main definitions and concepts in machine learning, of which pre-
dictive analytics is a major subset. Many chapters in this book are on different areas
of machine learning and build on this primer.
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Chapter5 focuses on the core definitions, descriptions and concepts of time series,
and time series forecasting. From this chapter the reader should be able to under-
stand the required components in order to frame a well-defined time series forecast
problem. Note that while we motivate this book for load forecasting, the concepts
presented are not necessarily limited to be applied in forecasting electric load. Most
of the concepts introduced are applicable also in other similar time series forecasting
tasks.

The next three chapters develop the tools and techniques required to develop these
forecast models. This begins with Chap.6 which shows how to analyse and under-
stand the relationships within and related to the load data time series. This includes
preparation techniques, such as identifying anomalous values, and feature engineer-
ing techniques which can help you understand what variables are the main drivers of
the load. These relationships will determine the types of models the forecaster will
eventually choose as well as the main input variables.

An accurate forecast model is not possible without having a proper evaluation
method. This is the topic of Chap.7 which introduces a whole host of error measures
and skill scores for both point and probabilistic forecast models. It also introduces
some simple checks which can be performed to help improve the accuracy of the
model. The next chapter (Chap.8) describes how to appropriately train and select
forecast models. Here one of the most important concepts in machine learning is
introduced, namely “bias-variance trade-off”. This is vital to ensure models can
generalise to new, unseen data and hence capture the true behavioural patterns in
the load time series. The chapter considers a number of techniques, in particular
regularisation, which helps enable this generalisation.

With the main tools and techniques introduced, the next three chapters describe
a plethora of forecasting methodologies which have been developed for producing
successful point and probabilistic load forecasts.Most of thesemodels utilise the pat-
terns found in the historical demand data since most LV demand has regular features
in past behaviour. Chapters 9 and 10 focus on point forecasts using statistical and
machine learning based models respectively. These separate categories have differ-
ent advantages and disadvantages but are both useful to enable methods which have
the full potential of descriptive power and high performance. Chapter11 introduces
a range of probabilistic forecasts. These are essential for many distribution level
applications because of the relatively high uncertainty in the demand behaviour. In
LV systems in particular, the demand is typically quite volatile, hence it is likely
that probabilistic methods are going to be increasingly required for future smart
grid applications. Since probabilistic forecasts can be defined in several ways, this
chapter gives many different methods for doing this. By the end of the three main
model chapters, the reader should have a solid understanding of the best methods in
time series forecasting, and when to apply them. An overview of themodels explored
in this book are given in Fig. 1.3. The whole forecasting process, from data analy-
sis to evaluation, as well as tips on how to choose the most appropriate model, are
described in Chap.12.

Time series forecasting is a vibrant area of development and research. Many of
these techniques are likely to be appliedmore andmore in realworld applications. For
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Fig. 1.3 Some of the main models explored in this book for both point and probabilistic forecasts.
Also represented are additional techniques which are applied in LV load forecasting

this reason, someof themore advanced topics are described (briefly) inChap. 13. This
includes improving accuracy through combining models, and how to test whether
two forecasts are statistically different in accuracy from one another.

Given the model, techniques and tools, the final two chapters of this book are
devoted to applying these techniques in forecast experiments and real LV level appli-
cations. Chapter14 gives a full forecasting case study applied to the demand data
of 100 real-world low voltage level feeders. In this chapter, it is demonstrated how
to analyse the demand data, develop several forecast models and test them. These
forecasts illustrate some of the challenges and difficulties that comewith real demand
data. Chapter15 then considers a number of applications where these forecasts can
be applied, most prominently featured is a battery storage scheduling problem.

It is worth noting, that this book also serves as a relatively thorough introduction to
data science ingeneral, albeit focusingona specificdomain. It includes all the features
and good practice in machine learning, or more generally artificial intelligence, such
as cross-validation, model evaluation, benchmarking etc. as well as a whole host of
different techniques including decision trees, neural networks, linear regression and
generalised additive models. Hence by studying this book you can become highly
knowledgeable in generating machine learning models, in particular for time-series
forecasting based applications.

The primary use case of this book is as an introduction to the short term load
forecasting for undergraduate or graduate students. However, this book can also
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serve as an introduction for interested readers from industry, such as data scientists,
statisticians or analysts working in utilities, system operators, or other companies in
the energy industry. The main case study presented in this book comes from peer-
reviewed papers published by the authors, and highlight the heavily applied focus of
this topic, hence we hope this book can be a useful reference to those interested in
applying the methods in real-world applications.

1.5 How to Read This Book

The best way to read this book mainly depends on the experience of the reader. If
you are a statistician, data scientist or probabilist with experience in modelling, then
the reader may want to focus on the applications and the case study and only refer
back to the technical chapters when needed. In contrast, if the reader is an engineer
or an expert in energy systems, but with minimal knowledge of data science then the
focus should be on the earlier chapters, specifically the Chaps. 3–7. In either case,
the reader should familiarise themselves with the notation and can skim through
parts of these chapters based on their background. Figure1.4 shows the links and
dependencies between the chapters.

Themodels described in the threemainChaps. 9–11 focus on point and probabilis-
tic forecast models. Those with a statistics background will feel most comfortable
with Chap.9 which looks at many traditional time series forecast models such as
linear regression and ARIMA, but also has more recent popular techniques such as
generalised additive models. These are highly interpretable models and can be useful
when trying to evaluate the performance of the forecast.

Those with a computer science or more traditional machine learning background
will better understand the techniques in Chap.10 which considers many methods
such as deep learning, random forest and support vector regression. These models
are not so interpretable but are often high performing. The more complicated and
computational intensive probabilistic forecasts are introduced inChap.11 and include
a mix of both more statistical and machine learning models. The statistical primer
(Chap. 3) and the probabilistic error measures section of Chap.7 are essential for this
topic.

There are a lot of methods in Chaps. 9–11. The reader of course could read the
entire chapter and get a solid overview of the wide variety of methods available
for load forecasting. However, the reader may also wish to focus on point forecasts
(traditional or more modern machine learning) or probabilistic, or may wish to mix-
and-match a fewmethods fromeach. For a semester course then the choice ofmethods
would ideally be based on those which are utilised in the case study from Chap.14.
This ensures a full forecast experiment can be demonstrated. The next section below
outlines one possible delivery of a single semester course.

Machine learning can only be grasped by doing. For this reason each chapter
finishes with a few questions on the contents and in the appendix there is also
a full walkthrough which can guide the reader through the entire process from
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1. Introduction
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5. Time Series Core Concepts
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9. Statistical Point Forecasts

Fig. 1.4 Figure illustrates direct dependencies between the various chapters in the book. Note that
Chap.12 summarises the load forecasting process and therefore integrates most of the method and
technical sections

data collection, data cleaning, model selection and evaluation. Also linked is a
notebook (https://github.com/low-voltage-loadforecasting/book-case-study) which
demonstrates some of the techniques applied within a python environment. This will
hopefully illustrate how to apply the analysis and modelling described in this book
and is outlined in the Case Study, Sect. 14.3.

1.6 Note for a Semester Delivery Course

There are a few prerequisites for learning the material presented in this book. Stu-
dents should be familiar with basic calculus, and properties of basic statistic and
probabilities. It is not recommended to cover the whole book in one semester course
unless students already have knowledge of probability theory and the main concepts
in machine learning.

https://github.com/low-voltage-loadforecasting/book-case-study
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This book introduces one full case study in Chap.14 on point and probabilis-
tic forecasts for low voltage residential feeders. For this reason, the most suitable
focus for a semester course will be to introduce the main concepts and models
which can demonstrate the case study. To gain hands on experience, students should
develop and test their own models and for these reason lists of open data are given
in the appendix. To assist with this, the authors have developed a python notebook
which steps through some of the concepts and is available at https://github.com/low-
voltage-loadforecasting/book-case-study. The context is described in Sect. 14.3 but
the reader should try and develop their own models in addition to those illustrated in
the notebook.

To cover the case study, a semester course will require covering the main concepts
in data analysis, model selection and evaluation, but will only require a selection of
models from Chaps. 9 and 11. In other words the semester will only focus on some
statistical and probabilistic forecast models. The following sections would therefore
make for a coherent introductory course:

Chapter 2: The main LV network context and motivation for the case study is
presented in this chapter. If these concepts are not taught in other courses then a
brief overview of this chapter should be included. At the very least the section on
“features of distribution networks”.

Chapter 3: This is a primer on essential statistical and probabilistic principles and
it is recommended that it is presented in full if not covered in other modules.

Chapter 4: This has useful core concepts for machine learning and the sections on
supervised learning and optimisation are useful if there is available time.

Chapter 5: This section introduces the main definitions and descriptions of time
series forecast and hence is necessary to present in full. It also introduces the
notation throughout the rest of the book.

Chapter 6: This chapter should be taught in full as it introduces the main data
analysis techniques used in the case study. A reduced version of this chapter can
be taught if there is other modules which teach time series data analysis.

Chapter 7: The point errormeasures should be taught, as should theCRPS from the
probabilistic error measures. The residual checks section should also be included
if time.

Chapter 8: Section8.1 on general principles should be taught in full but only the
sections on least squares and information criteria are required from Sect. 8.2.

Chapter 9: Only particular methods are required to be covered in this section,
this includes the benchmarks (Sect. 9.1), exponential smoothing (Sect. 9.2), and
multiple linear regression (Sect. 9.3).

Chapter 11: From this chapter teach Sect. 11.4 on quantile regression and the
section on ensemble methods (Sect. 11.6).

Chapter 14: The case study should be worked through in full, but can be split into
the different components and introduced with the relevant parts from each of the
previous chapters.

https://github.com/low-voltage-loadforecasting/book-case-study
https://github.com/low-voltage-loadforecasting/book-case-study
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Assessment There are some questions at the end of each chapter. These can be
worked through to support the teaching of the material. There is also a guided
walkthrough in the AppendixC, Instead of presenting the case study this could be
worked through or set as a coursework challenge. A list of open data is also given
in AppendixD.4 which students could use to develop and test their own methods.
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Chapter 2
Primer on Distribution Electricity
Networks

This chapter gives a brief overviewof the electricity distribution network. This knowl-
edge is important to understand some of the core features of the network and the cor-
responding data, what are the main of applications, and how to create an appropriate
forecast model.

2.1 The Electricity Distribution Network and Core
Concepts

In the traditional electricity network, electricity is generated at the transmission
level via conventional fossil fuel generators such as coal, and gas, and also nuclear
fission. This is then supplied to consumers by first transporting the electricity over
long distances at high voltage via the transmission network, and then stepping the
voltage down and transferring more locally via the distribution network.

The distribution network typically starts at the so-called grid supply point where
power is transferred from the transmission to the distribution network, and then is
stepped down through various substations until it reaches the consumer. Larger con-
sumers will be connected at higher voltages whereas residential consumers will be
connected at the lowest voltage. The objective for the transmission network operator
(TSO) is to match supply and demand by either increasing or decreasing the genera-
tion supplied, or the demand consumed. The focus of the traditional network is very
much on the generation side.

With the transition towards a low carbon economy, the electricity networks have
become much less centralised and much more diverse. There are two main develop-
ments. Firstly there has been an increase in renewable energy generation including
wind, solar and even tidal. Rather than generating energy at the highest level of
the transmission network renewable sources often operate at lower voltage levels
and more locally to where electricity is used. For example, for rooftop solar photo-
voltaics, the energy generated may be directly used by the occupants of the building.

© The Author(s) 2023
S. Haben et al., Core Concepts and Methods in Load Forecasting,
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Fig. 2.1 Illustration of the electricity grid as well as the low voltage area, the focus of this book.
Reprinted from [1] with permission from Elsevier

The second major development is the increase in low carbon technologies (LCTs)
such as heat pumps and electric vehicles (EVs). These are promoted in order to
decarbonise both heating and transport which has traditionally been fuelled by high
carbon technologies such as gas, and petrol respectively. An illustration of a more
modern electricity network is shown in Fig. 2.1.

The effect of the transition to a Net Zero energy system is to create a electricity
grid which has

1. Increasing demand (due to the increased number of high demand LCTs).
2. Much more localised, weather-dependent energy generation.

These make the network muchmore complicated to operate andmaintain security
of energy supply. For one, more LCTs increase the stress on the networks which have
not been designed to copewithmany heat pumps or electric vehicles being connected.
Secondly, the generation in a local area of a network may be much higher (or lower)
than the local demand. Further to this, wind turbines do not generate energy when the
wind isn’t blowing, and solar panels do not generate when the sun isn’t shining. This
weather dependence makes renewable generation less reliable, being much more
volatile and intermittent. Some ways to solve for this are to utilise storage devices
(e.g. see Sect. 15.1 for an example with batteries) so that energy can be “moved” to
times it is needed by storing the energy when generation is high but demand is low
and then releasing the energy when generation is low and demand is high.

The lowest voltage level of the network is the step down from the secondary
substations to the final consumers. From the secondary substation, the demand will
be split into individual feeders (up to around six) which usually follow the roads
and streets and then feed electricity to the individual consumers. These feeders can
connect to a range of different consumers, from a single larger consumer (say a
supermarket) or to about a hundred smaller consumers (usually residential), and
every combination inbetween. In addition, feeders also supply electricity to other
street furniture such as lighting, traffic cameras, elevators etc.

Although this book will focus on the distribution networks in general, the most
challenging area is the low voltage network. This can be roughly defined as the
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area from the Primary substation (about 11kV) down to the final household (see
Fig. 2.1). This has many more unique challenges as will be described in the next
section.

2.2 Low Voltage Networks

The low number and variety of connections to the low voltage (LV) network means
there are two main challenges which are intensified compared to the higher voltage
or national levels of the network.

The first problem is that demand is relatively volatile. Since on the lowest level
of the network there is only on average around 40 or 50 consumers (but can be as
few as a single larger consumer), the demand is much spikier and less regular than
the aggregation of 100s or 1000s of consumers as is true at the next step up in the
distribution network. Thus it is much more difficult to predict or model the demand.
This makes things complicated for distribution network operators (DNOs) who
are in charge of the cables and are required to maintain a supply of electricity to
consumers. It is much harder to optimally plan and manage the network when the
demand is less predictable with varying degrees of uncertainty. Further to this the
demand is likely to change much more as increasing numbers of households and
businesses install EV charging, PV solar and heat pumps.

The second problem is that low voltage networks are much more sensitive to
individual demands. For example, a few LCTs (say heat pumps) will have a much
bigger relative impact on the LV network than at the higher voltage levels. It only
takes a few large devices to completely change the demand patterns. Many current
networks have been designed without LCTs in mind which means they do not have
the head room necessary to allow excessive numbers of high demand appliances or
renewable generation sources. For the LV network to operate properly and protect
against damage, the network should operate within particular constraints. The cables
are built to be able to take a certain size of demand, and if this is exceeded it can
break the network and cause outages. There are several ways that the network can
be broken and we briefly discuss them below.

The first is thermal constraints. Usually the demand can exceed the specified
headroom for a short period (an hour or two) but if the demand is higher than the
thermal capacity of the cables for too long thenoverheatingwill occur and the network
may be damaged. The demand should be lowered by either reducing the demand, e.g.
through demand side response, or by utilising battery storage devices. The chance
of exceeding the thermal constraints has been increasing due to the increase in low
carbon technologies like electric vehicles which often have high power ratings (7kW
even for the slower chargers) and will also be utilised at similar times (when people
come home from work they may all plug in their EVs).

The second potential problem is voltage constraints. The voltage must operate
within particular limits. In theUK, the last mile of the network is a nominal 230V and
should be no less than 216.2V (i.e.−10%) and no more than 253.0 (+6%). This can
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be different depending on the country of course.Voltage decreaseswhen there ismore
demand on the network, and increases if there is generation on the network. As power
flows down a cable to consumers and more demand is applied the voltage drops. If
the demand is too high, then the voltage may drop outside the lower constraint. If
there is excess generation on the network (from solar photovoltaic generation from
numerous consumers) then the voltage may increase beyond the upper constraint. In
both cases this can cause network failure and damage to electrical components.

The final main problem is phase imbalance. The electricity in a feeder is often
split into three phases through individual wires and the current and voltage are 120
degrees out of phase with each other. The details here are not required for this book,
but the importance is that demand should be roughly equal across the three phases. If
not then this can generate power losses, reduce the lifetimeof appliances, and increase
the heat within the cables, causing damage and possible failures. Connections to a
feeder in the last mile of the LV network will split across consumers but it is unlikely
to be evenly distributed. One phase may have many more consumers than another,
hence LV networks are likely to be particularly unbalanced. The uptake of EVs and
heat pumps will likely lead to further imbalances.

2.3 Some Features of Distribution Networks

Compared to system or national level demand, there is much less known about low
voltage demand since it has not been monitored or analysed as extensively. One
example, which will be demonstrated in the case study in Chap. 14, is the effect of
temperature. This is generally considered a strong driver of national demand in the
UK because a lower temperatures should mean more electrical heating appliances
and hence greater demand. In hotter countries with air conditioning there may also
be an increased demand when the temperature is higher. However, this may not
necessarily be the case at the low voltage. Much of the heating in the UK at the time
of writing (although this should change as the country moves towards lower carbon
alternatives) is fuelled by gas. Thus if a network has only a few consumers which use
electricity, there may be a small, or zero relationships with the temperature values.
In any case, weather is a potential driver of demand on an LV network, and should
be considered as a potential input for any forecast model.

Since electricity networks are radial it means that they are arranged in trees.
Electricity is stepped down fromhigher voltages down to lower voltages and therefore
energy typically flows in one direction. This suggests the following question: Is the
demand at a substation simply an aggregation of the connected loads down stream?
The answer is no, and for the following main reasons:

1. Losses: There are losses of energy as it travels through the cables. In other words,
not all electricity makes it to its final destination. The total energy of all loads
on a substation will therefore be lower than the energy recorded at the substation
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itself which needs to supply more energy to account for that which is lost. These
are typically small, around 5% in some instances.

2. Switching: Often electricity has to be rerouted to entirely different nearby net-
works. This could, for example, be because there was a shortage in the other
network and therefore another substation has to temporarily supply the electricity
(through some linking box).

3. Unknownconnections/demands: In practice it is unlikely that all the downstream
connections on a substation are known, and evenwhen the roll-out of smartmeters
is complete, it is unlikely that all households will have half hourly electricity
readings.1 So in many cases the substation load cannot be fully estimated using
the known downstream loads.

To add to the above complications, it cannot be assumed that the substation elec-
tricity flows in only one direction. With the increasing numbers of distributed gen-
eration, electricity flows are now reversing direction in some networks, something
they were not originally designed to do. These complications must be taken into
account when developing forecasts at low voltage level. If the effect of each of the
above is significant then they must be integrated into the modelling. Switching is
one of the more difficult to deal with as it requires taking into account a temporary
shift in the demand behaviour which will then shift back at a later date. For this
reason adaptive methods which quickly learn the new demand behaviour may be
preferable and regime switching models may also be useful (Sect. 13.6.3). To deal
with the misalignment in load between the substation and aggregated downstream
loads (either through unknown connections or losses) the difference itself could also
be included in the modelling, since this will either be a scaling (losses) and/or be
itself an aggregate of the few unmonitored consumers.

So what does distribution, or even individual consumer load look like? For sim-
plicity, complications such as losses and street furniture (theywill be relatively small)
are ignored, and it is assumed there is no switching behaviour. Examples of residen-
tial demand are shown in Fig. 2.2. These are very diverse and no two are the same,
although there are some similar features. For example, since occupants are often at
work during the day and more active in the morning and evening, the corresponding
demand usually has peaks at similar times. Further, most households have weekly
and daily seasonality, with Saturdays and Sundays having different patterns than
typical weekdays. This is not obviously true for households which may be occupied
by shift workers etc. There are also some technologies which produce particularly
strong demand features, such as electric vehicles and overnight storage heaters which
can create large overnight demand.

The difference in household demand is worth highlighting further. Even when
the homes are very similar (e.g. 1920s Semi-detached), and the occupants have
similar socio-demographics, their residential demand may be very heterogeneous,
with different regularities and distributions of daily demand. Figure2.3 shows the
half-hourly demand of four randomly selected households on a Monday. The top

1 For example, some households will not have a suitable location for installing a smart meter, or
there may not be sufficiently available signal to transmit the information.
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Fig. 2.2 Three examples of residential smart meter demand over a week at half hourly resolution.
Constructed using data from the CER Smart Metering Project—Electricity Customer Behaviour
Trial, 2009–2010 [2]
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households. Constructed using data from the CER Smart Metering Project—Electricity Customer
Behaviour Trial, 2009–2010 [2]



2.3 Some Features of Distribution Networks 19

two in this case have higher demands around midnight than the bottom two, whereas
the bottom two have much more distinct morning and evening peaks. This suggests
the bottom two have more regular “9 to 5” jobs outside the home, with peaks in
the morning due to switching on say kettles or electric showers, and then evening
peaks due to returning home, and perhaps cooking or switching on the TV etc. In
contrast, the top two profiles seem to suggest a least some of the occupants within the
house most hours of the day as there is peaks throughout the day. This could be from
someone performing their job from home, or could be other household chores etc.
Identifying what appliances may be in operation by analysing the household profile
is another entirely separate branch of energy analytics (outside of the scope of this
book!) called Non-Intrusive Load Monitoring or NILM.

Small to medium enterprises (SMEs), such as hairdressers, churches, schools,
shops etc. are also very different even within the same categories (pubs for example)
although they will be more similar than across categories. The demand magnitude
and its distribution is often based on the operational hours and the type of appliances
that are used within the SME. For example, offices will be determined by computing
equipment, heating and lighting, usually during the day. In contrast a pub will be
based on heating and lighting, but also hand dryers, pumps, cooking appliances, and
refrigeration. The demand will also be mainly within the evening. Some real profiles
of SME demand are shown in Fig. 2.4. The clear daily regularity of the first two
SMEs is very apparent as is the fact that they are both closed on Sunday (in fact the
first SME is also closed on Saturday). The other consumer has much more volatile
behaviour and there is some demand on all days of the week.

Since distribution network demand is mostly made up of the aggregation of differ-
ent residential and commercial consumers their demand distributionwill be as diverse
as the possible combinations of consumers. However, distribution, and especially
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Fig. 2.4 Three examples of smart meter demand for SMEs over a week at half hourly resolution.
Constructed using data from the CER Smart Metering Project—Electricity Customer Behaviour
Trial, 2009–2010 [2]
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Fig. 2.5 Examples of half hourly demand profiles over a single Monday for a a single household, b
the aggregation of 50 households, c the aggregation of 250 households, and d the aggregation of 500
households. Constructed using data from the CER Smart Metering Project—Electricity Customer
Behaviour Trial, 2009–2010 [2]

LV, networks are very diverse in terms of the numbers and mixture of consumers.
Figure2.5 shows the aggregation of different numbers of individual (residential)
smart meters for a single Monday (Another example for a full week is shown in
Sect. 1.2, Fig. 1.2). LV feeders with larger numbers of consumers (all residential in
this case) have much less relative volatility and are more regular. Further to this,
it must be remembered that real LV feeders are not connected to purely residential
consumers, but also supply energy to different street furniture and can also include
commercial consumers. A single commercial consumer can change the dynamics of
a network significantly since they often have larger demand and they may use energy
at very different times: e.g. a hairdresser will have higher demand during the day,
but households typically have evening peaks. The data analysis for the case study
in Sect. 14.2.2 includes some examples of real feeders (Fig. 14.1) and shows that
even when they have similar numbers of residential connections they can produce
very different demand over the year and on special days such as Christmas. If the
feeders are purely residential then their demand profiles look like smoothed versions
of individual residential demands (see Fig. 2.5). The effect of a single commercial
connection is demonstrated in Sect. 14.2.2, Fig. 14.3.
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2.4 Managing the Distribution Network

So what tools and solutions are required for the distribution networks to ensure they
work properly and consumers can be supplied with the energy they need?

As discussed in Sect. 2.2 some of the major issues to be managed are phase
imbalances, voltage constraint violations and thermal constraint violations. These
were relatively well managed in the last few decades and the worse case scenario
usually required digging up the road to install larger cables to handle the increased
demand. With increased uptake of LCTs and more distributed renewables, new solu-
tions may be required since the traditional network reinforcement upgrades will be
quite expensive and disruptive.

Instead, what is envisioned is the move towards a distribution system operator
(DSO) who will control the supply and demand on the distribution network much
like the electricity system operator matches the supply and demand at the national
level. TheDSOwould do this by procuring various flexibility services from across the
network, for example this could be demandmanagement where demand is controlled
via a storage device (Sect. 15.1), or consumers can be required to change the demand
of particular appliances by responding to signals from system operators via so-called
demand side response (Sect. 15.2).

There are also ways to persuade consumers to change demand by offering new
incentives such as smarter tariffs to consumers. Instead of the current practice of a
simple flat unit-rate for use of electricity, the charges can change over the day to
identify periods of high or low use, or can be dynamic to respond to the current
conditions of the network. They can also be tied to renewable generation to try and
utilise cleaner energy.

With these consumer focused initiatives, local communities may also be more
involved in the managing of the network. The aggregation of hundreds or thousands
of controllable assets such as EVs, heat pumps and battery devices can produce sig-
nificant aggregated effects on the network and save consumers money. For example,
EV charging could be co-ordinated to ensure there isn’t a large charging peak when
all consumers plug in their devices. Alternatively, the collective battery power of
hundreds of EVs could be used to reduce network peaks and utilise more local solar
PV generation. This integration of thousands to millions of controllable devices with
the ability for two-way communication is often referred to as the smart grid and
could lead to a much more decentralised energy system where power is generated
and utilised locally via the smart control of the assets.

There are also emerging energy markets which are offering participants ways to
make savings through their own devices to offer additional capacity, balancing ser-
vices, or other ancillary services, such as frequency control. The interesting aspect of
many of these applications is that for them to optimally operate their behaviours must
be accurately anticipated. This book therefore, and many of the models presented,
can be used to help, and indeed are necessary, to support the future energy network.
A selection of applications will be presented in Chap. 15.
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2.5 Questions

1. Think about your electricity usage throughout the day. What would your usage
profile look like? How would it change on a weekend versus the weekday?

2. Which of your electricity usage behaviours are the most flexible? I.e. which ones
could be easily moved to a different time of day? Which ones could move the
most? Which ones would it be difficult to move?

3. Download a set of smart meter datasets (some are listed in AppendixD.4). Plot
(using any of your favourite plotting software) a few weekly profiles from some
households. Try and think about what appliances may contribute to the major
demands you see. Plot the demand over a year. What is the shape? Is there any
annual seasonalities or does it stay consistent over the year? What is the largest
demands you see? Can you guess what they may be? Is there any unusual or
anomalous values you see? Very large ones, or periods of missing data?

4. If you have an EV what would the typical charging profile look like? If you don’t
have an EV think about where you would charge it, would it be at home or at the
workplace? Think about what some other typical charging profiles would look
like. Do they have a lot of diverse load or are they going to generate a large peak
from charging at the same time?

5. Reflecting on how you use heating within your home. What would the energy
profile look like over a period in winter? What about the average daily demand
over a year?
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Chapter 3
Primer on Statistics and Probability

Throughout this book, various concepts from statistics and probability will be used
which are essential for understanding and constructing forecasts. In this section some
of the fundamental tools and definitions will be presented. It is assumed that the
reader knows some basic probability and statistical concepts, and this chapter is only
intended as a refresher of themain ideas which will be used in other parts of the book.
This chapter will go over basic definitions of distributions, methods for estimating
them aswell as introduce some important concepts such as autocorrelation and cross-
correlation. For a more detailed description of basic statistics the authors recommend
an introductory text such as [1] (In addition see the further reading material listed in
AppendixD).

3.1 Univariate Distributions

Real world data typically has some degree of uncertainty with the values it takes dis-
tributed over some (potentially infinite) range of points. Amajor part of probabilistic
forecasts is trying to accurately describe, or model, the distribution of the values of
interest. For the purposes of this book, distributions will be used to describe prob-
abilistic forecasts and hence understand the uncertainty associated to the estimates
they produce. Note that the focus will be on demand data and hence the methods
will typically apply to real continuous variables (as opposed to discrete/categorical
variables). In this section only univariate distributions will be considered, i.e., those
which describe a single real variable. We define a continuous variable, whose values
depend on a random process and has a continuous distribution, as a random vari-
able. Notice in the following, the random variable will be denoted with a capital
letter, e.g. X , whereas lower case variables, e.g. x , will refer to particular realisa-
tions/observation of that random variable.
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One of the most common ways to describe the distribution of a random variable
X is through its probability density function or PDF, fX (x), over some (possibly
infinite) interval x ∈ (a, b) ⊆ R. The PDF is a non-negative functionwhich describes
the relative likelihood that any value x ∈ (a, b) will be observed and can be used
to calculate the probability of the variable taking some value within an interval
(a1, b1) ⊆ (a, b) as follows

P{a1 ≤ X ≤ b1} =
∫ b1

a1

fX (x)dx . (3.1)

Note that the integral of the PDF is bounded above by one by definition.
An alternative but equally important representation of the distribution is the cumu-

lative distribution function or CDF. Again assume the CDF is defined over some
(possibly infinite) interval x ∈ (a, b) ⊆ R. The CDF represents the probability that
the random variable X will take a value less than or equal to some specified value x ,
and is often written as a function FX (x) = P{X ≤ x}. It is related to the PDF via

FX (x) =
∫ x

a
fX (t)dt. (3.2)

I.e. an integration of fX (t) for t over the interval (a, x). Notice that the CDF is
a monotonically increasing function, which means that if x1 ≤ x2 then FX (x1) ≤
FX (x2). Also it satisfes the limits, limx−→a FX (x) = 0 and limx−→b FX (x) = 1.

The expected value and variance are two important derived values associated to
a PDF/CDF. The expected value is defined as

E(X) =
∫ b

a
t fX (t)dt, (3.3)

and the variance as

Var(X) =
∫ b

a
(t − μ)2 fX (t)dt, (3.4)

where μ = E(X). The expectation (or mean) essentially represents a weighted aver-
age of the values of the random variable X with values weighted by the probability
density fX . It acts as a typical, or expected, value of the random variable.

The variance is the expected value for the squared deviation from the mean. It is
often used to represent the spread of the data from the mean and hence is a simple
measure for the uncertainty of the random variable. The square root of the variance
is known as the standard deviation (often denoted σ = √

Var(X)).
One of the most commonly studied, and important, distributions is the one dimen-

sional Gaussian (also known as the Normal) distribution which has a PDF defined
by

f (x) = 1√
2πσ

exp

(
− (x − μ)2

σ2

)
. (3.5)
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Fig. 3.1 Examples of the PDF (left) and theCDF (right) for theGaussian distributionswith different
means and standard deviations

Thus the Gaussian is defined entirely by two parameters, namely the mean μ and the
variance σ2. When μ = 0 and σ = 1 then (3.5) is known as the standard normal
distribution.

An example of theGaussian distribution for variousmeans and standard deviations
is shown in Fig. 3.1. Notice that the Gaussian distribution is always bell-shaped and
is symmetric around the mean value. Also the bigger the variance the wider the
distribution, as expected. In the plot for the corresponding cumulative distribution,
smaller variances translate to steeper gradients.

Not all variables are Gaussian distributed, or even symmetric. There are a whole
host of other parametric families of distributions. The lognormal distribution is
suitable for variables which are positively skewed distributions with long tails to the
right and has PDF defined by

f (x) = 1

x
√
2πσ

exp

(−(ln(x) − μ)2

σ2

)
, (3.6)

for parameters μ and σ. Notice that this is simply a Gaussian distribution (3.5) but
for the logarithm of the variable. There are also more general distributions such as
the gamma distributionswhich can represent a whole range of different distribution
shapes. The gamma CDF has the relatively complicated form

Gamma(X,α,β) = 1

βα�(α)

∫ X

0
tα−1e−t/βdt, (3.7)

for parameters α,β often called the shape and scale parameters respectively and
�(x) = ∫ ∞

0 t x−1e−t dt is the so-called gamma function. The PDFs for the lognormal
and gamma distribution for various values of their parameters are shown in Fig. 3.2.
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Fig. 3.2 Examples of PDFs for a the lognormal and b the gamma distirbution for various values
of their parameters

The Gaussian, gamma and lognormal distribution are examples of parametric
distribution functions because they are defined completely in terms of their input
parameters. There are alsononparametric distributionswhich do not assume that the
data come fromany specific parametric family of functions.Kernel density estimation
is a popular method for non-parametrically estimating a distribution and will be
described in Sect. 3.4. In this book, the main focus will be on nonparametric models,
but the Gaussian distribution will also be commonly used especially when modelling
the distribution of errors.

How is this translated to short term load forecasts?

Point forecasts are most often estimates of the expected values of a distri-
bution and hence are a central concept within the context of this book. The
standard deviation of the forecast errors can also produce an indication of the
uncertainty in the prediction and the spread in the potential values. Methods
for producing point forecasts will be described in detail in Chaps. 9 and 10.

3.2 Quantiles and Percentiles

The continuous CDF admits an inverse function F−1
X which can take any q ∈ [0, 1]

and give a unique value xq = F−1
X (q). This value is the qth quantile, or q-quantile,

also known as the 100q percentile [2]. The most well known values are the median
which is the 0.5-quantile or 50 percentile and the lower and upper quartile which are
the 25th and 75th percentiles, or the 0.25- and 0.75-quantiles respectively. Essentially
the q-quantile defines the value in the domain, less than which a q proportion of the
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Fig. 3.3 Illustration of the
0.5- and 0.9 quantiles on the
CDF for the standard normal
distribution.
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data lies. In other words, the proportion of the random variables X which are less
than xq is q.1

Example of the 50 and 90 percentiles for the standard Normal distribution are
shown in Fig. 3.3. Notice that q-quantile is simply the domain value corresponding to
where the horizontal line at y = q intersects the CDF, as illustrated in Fig. 3.3. Often
the complete CDF is unknown but a finite number of quantiles can be estimated.
When enough quantiles are calculated an accurate estimate can be formed of the
overall distribution. A technique for estimating the quantiles from observations is
given in Sect. 3.4.

Quantiles are important tools for estimating distributions when only samples of
the overall population are available and can be used to create probabilistic forecasts
as will be demonstrated in Sect. 11.4.

3.3 Multivariate Distributions

Multivariate distributions are an extension of the univariate distributions introduced
in Sect. 3.1 to distributions of more than one variable. This time consider N random
variables X1, X2, . . . , XN . Analogous to the PDF for the univariate distribution, is
the joint probability distribution

fX1,X2,...,XN (x1, x2, . . . , xN ) (3.8)

1 Note that some authors refer to the n-quantiles where the quantiles are defined in terms of dividing
the domain into n ∈ N sets. Hence the 2-quantile would be the median, the 4-quantile would consist
of the median, the lower quartile and the upper quartile etc.
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which, like the PDF describes the relative probability that the set of values
(X1, X2, . . . , XN )will be observed.TheCDF for amultivariate distribution is defined
as

FX1,...,XN (x1, . . . , xN ) = P{X1 ≤ x1, . . . , XN ≤ xN }, (3.9)

and can be written in terms of the joint probability distribution

FX1,...,XN (x1, . . . , xN ) =
∫ xN

−∞
. . .

∫ x1

−∞
fX1,X2,...,XN (t1, t2, . . . , tN )dt1dt2 . . . dtN .

(3.10)
If N = 2 then themultivariate distribution is known as a bivariate distribution. One of
the simplest multivariate distributions is the multivariate Gaussian joint distribution
defined by

fX1,...,XN (x1, . . . , xN ) = 1

(2π)N/2det (�)1/2
exp

(
(x − µ)T�−1(x − µ)

)
, (3.11)

were x = (x1, . . . , xN )T ∈ R
N , µ = (μ1, . . . ,μN )T ∈ R

N where μk is the expected
value for the random variable Xk and � ∈ R

N×N is the covariance matrix and
describes the covariance between the variables. The diagonal elements of this matrix
describe the variance of the random variables, i.e. (�)k,k = Var(Xk), and the off
diagonal elements describe the variation of one random variable in relation to another
random variable. Consider two random variables Xk and Xm , then the covariance
between these two variables can be written in terms of the expectation as

Cov(Xk, Xm) = E[(Xk − E[Xk])(Xm − E[Xm])]. (3.12)

Notice that the covariance matrix is symmetric and positive semi-definite.2 The
(Pearson) correlation is defined to be

Corr(Xk, Xm) = Cov(Xk, Xm)/σkσm, (3.13)

and is bounded by [−1, 1] and is a measure of the linear dependence between two
variables. In other words, the correlation between two variables is the covariance
scaled by the standard deviation of the variables. If two variables are independent
(i.e. the change in one variable doesn’t effect the change in the other) then they
are uncorrelated and their covariance is equal to zero. For the special case of two
variables, the bivariate covariance matrix can be written as

Cov =
[

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

]

2 A symmetric real-valued matrix A ∈ R
N×N is said to be positive-definite if xTAx > 0 for all

non-zero x ∈ R
N .
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Fig. 3.4 Examples of a bivariate normal PDF (a) and CDF (b)

where ρ ∈ [−1, 1] is the correlation Corr(X1, X2) and σ1,σ2 are the standard devi-
ation of the random variables X1 and X2. An example of a bivariate Gaussian dis-
tribution is shown in Fig. 3.4 for ρ = 0.6, σ2

1 = 0.6 and σ2
2 = 1. Here (a) is the joint

density and (b) is the joint CDF. The correlation ρ is relatively large and hence the
variables are somewhat correlated with each other.

To simplify the discussion on multivariate distributions, the focus of the rest of
this chapter will be on bivariate distributions, but the results extrapolate to more
general multivariate distributions.

One of the most important sub-structures of a multivariate distribution is the
marginal distribution. Given a joint bivariate distribution, fX1,X2(x1, x2), the
marginal distribution of X1 describes the distribution of X1 given no knowledge
of X2 and is found by integrating over X2

fX1(x1) =
∫ ∞

−∞
fX1,X2(x1, x2)dx2. (3.14)

Similarly the marginal distribution of X2 can be defined

fX2(x2) =
∫ ∞

−∞
fX1,X2(x1, x2)dx1. (3.15)

The joint and marginal distributions for a bivariate Gaussian (the same joint as given
in Fig. 3.4) are illustrated in Fig. 3.5. Notice that if the random variables X1 and
X2 are independent then the joint density is simply a product of the marginals for
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Fig. 3.5 Illustration of the joint and marginal of a bivariate Gaussian distribution. The contours
show equal values from the joint distribution. Samples from the joint distribution are shown as
the scatter plot whereas estimates of the marginal distributions for each variable are drawn on the
corresponding axes

each variable fX1,X2(x1, x2) = fX1(x1) fX2(x2). The marginals can often be easier
to estimate since they only require estimating each individual variable rather than
needing to model any interdependencies between them.

If one of the values, say X2 is observed so its value x2 is known for certain, then
the distribution of X1 given this particular value is known as theConditional density
and is written fX1|X2(x1|x2).

The joint, marginal and conditional distributions are related by the following
formula

fX1|X2(x1|x2) = fX1,X2(x1, x2)

fX2(x2)
. (3.16)

As a simple illustrative example, consider randomly sampling from a bag con-
taining ten identical-looking balls, each with a unique number, one to ten, written on
them. Since each ball has an equal chance of being sampled then the probability of
drawing any of the balls is the same, 1/10. However the conditional probability of
drawing a three given that we know that the ball has an odd value written on it is
1/5.
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How is this translated to short term load forecasts?

The joint, marginal and conditional densities are all useful when consid-
ering probabilistic forecasts. In this book, the focus will be on day ahead,
often hourly, demand forecasts. This means that the aim is to estimate a 24-
dimensional joint distribution fX1,X2,...,X24(x1, x2, . . . , x24), where Xk is the
demand for the kth hour of the following day. It is oftenmuch easier to estimate
the univariate distribution of each Xk . These are marginal distributions of the
full joint distribution. Now consider a day ahead forecast with hourly updates.
I.e. the probabilistic forecast is updated as new observations aremade. In other
words, after the kth hour of the day the aim is to estimate the conditional den-
sity fXk+1,...X24|X1,...,Xk (xk+1, . . . x24|x1, . . . , xk), where 0 ≤ k < 23. Methods
for producing probabilistic forecasts will be described in detail in Chap.11.
In particular this chapter introduces Copulas, a very popular method for pro-
ducing joint density forecasts, and heavily depends on combining marginal
density estimates with a copula function that models the interdependencies
between the random variables (Sect. 11.7).

3.4 Nonparametric Distribution Estimates

In this section basic nonparametric methods for estimating and understanding the
distributions from available observations are introduced. Some of these, such as
kernel density estimation methods, will be used as building blocks for some of the
probabilistic forecasts in Chap. 11. These type of methods are useful when the data is
known not to come from a specific parametric family of distributions, e.g. Gaussian,
or Gamma (see Sect. 3.1).

One of themost commonmethods for estimating the PDF is through a histogram.
A histogram is simply a count of the number of observations within some prede-
fined discrete partitions (called bins) of a variable. Bins are defined by dividing
the space into discrete groups. For a univariate random variables these are just
intervals [a, b], for multivariate data these are regions defined by intervals, e.g.
[a1, b1] × [a2, b2],× · · · × [aN , bN ]. Often the histograms are restricted to univari-
ate and bivariate data due to the difficulty of visualising higher dimensions. Each bin
is usually of equal size but this is not necessarily required. An example of a histogram
using 20 equally spaced bins is shown in Fig. 3.6a.

A limitation of the histogram approach is the dependence on the position and size
of the bins and small adjustments to them can change the shape of the plot signif-
icantly. Further, the histogram is a discrete representation of a continuous variable
which means some information is lost when binning. A preferable, but slightly more
complicated estimator is kernel density estimation (KDE). KDEs are summations
of small smooth functions K , called kernels, which are defined around each obser-
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Fig. 3.6 Examples of estimating a distribution from 200 observations using a a histogram with 20
equally spaced bins and b a kernel density estimate with two different bandwidths

vation xk of the random variable X to contribute to the overall PDF and are can be
written as:

g(X) = 1

Nh

N∑
k=1

K

(
X − xk

h

)
, (3.17)

where h is the bandwidth hyperparameter. There are a variety of kernels but one of
the most common is the Gaussian kernel defined as

K (x) = 1√
2π

exp

(
−1

2
x

)
. (3.18)

The most important parameter is the bandwidth h which determines the smoothness
of the final distribution. The larger the h the smoother the final estimate. The optimal
value of this parameter is often found through cross-validationmethods (see Sect. 8.2)
although there are sometimes rules of thumb used when there is assumptions about
the underlying shape of the distribution. A representation of a KDE for two different
bandwidths is shown in Fig. 3.6b (for the same data as in Fig. 3.6a). Notice that if
the bandwidth is too small then the KDE will overfit to individual observations (see
Sect. 8.1.3). In contrast, a bandwidth which is too large will mean features are lost
due to underfitting to the observations. Extensions to KDEs to generate probabilistic
forecasts will be explored in Sect. 11.5.

Now consider estimation of the CDF for a univariate distribution with samples
x1, x2, . . . , xN . The CDF can be easily estimated using the empirical cumulative
distribution function (ECDF) defined by
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Ĝ X (x) = number observations less than x

N
= 1

N

N∑
k=1

1xk<x , (3.19)

where 1S is the indicator function which takes the value 1 if the statement S is true
and 0 otherwise. In this case the statement is whether the observation is less than
x . In other words, the empirical CDF simply counts the proportion of observations
less than a particular value. An example of the CDF for the standard Normal and the
corresponding empirical CDF (for 20 randomly sampled points) is shown in Fig. 3.7.
Notice the Empirical CDF jumps at every point observed and the more observations
available the closer the approximation is to the true CDF.

The quantiles (Sect. 3.2) can also be estimated from a finite sample of points.
Suppose the observations are ordered, i.e. the samples x1, x2, . . . , xN are such that
xk < xk+1 for k = 1, . . . , N − 1 (These are also known as order statistics). Then the
q-sample quantile, for q ∈ (0, 1) is defined as the closest xk where k rounds to qN .

Of course the PDF estimate created from the KDE can also be easily turned into a
CDF estimate using the definition of the CDF itself (Sect. 3.1). However, since often
the kernels are distributions themselves (as with the Gaussian) means that the CDF
is simply the sum of the CDFs of each kernel.

Sometimes it is not necessary to visualise the entire distribution of points and a
good general impression of the distribution can be understood from a few points.
A boxplot gives a visualisation of a few summary statistics of a distribution. An
example of a box plot for two data sets is shown in Fig. 3.8 where the first data set is
the same as that shown in Fig. 3.6, whilst data set 2 is a simple Gaussian distribution
with mean and standard deviation equal to 0.5. What is included in a box plot can
vary but they all typically show the following things:

Fig. 3.7 Example of
empirical CDF with true
CDF for the standard normal
distribution. The ECDF was
generated using 20 randomly
drawn points from the true
CDF
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Fig. 3.8 Example of a box
plot for two data sets. Data
set 1 is the same as that used
in Fig. 3.6. Data set two is
just a simple Gaussian with
mean and standard deviation
equal to 0.5
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• A centralised value which is given by a line within the main box. In the boxplot
in Fig. 3.8 this is the median and is given by the red line.

• The first and third quartile which are given by the bottom and the top of a box.
• Whiskers which show the span of the points to the smallest and largest values
(often this does not include points considered outliers). These are the dotted lines
in Fig. 3.8.

• Outlier values defined as those which are more than 1.5 times the interquartile
range from the top or bottom of the box. These are given by red crosses in the plot.

The box plot, although relatively simple can be used to generate some insight
to the data. Firstly it gives a very basic representation of the spread of the data,
including where the middle 50% of the data lies. The comparison of the box plot
for the two data sets can also indicate whether there is significant overlap between
the data. Finally, if the median line is not in the centre of the box then this indicates
skewness in the data.

How is this translated to short term load forecasts?

Nonparametric methods provide a data-driven way to develop estimates of
uncertainty with few assumptions about the data. Although there are hyper-
parameters (such as the bandwidth for the kernel density estimates), unlike
parametric models there is minimal input required from the modeller and
therefore this allows for more automation and scaling. Nonparameteric fore-
casts models will be considered in more detail in Chap.11.
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3.5 Sample Statistics and Correlation

The expected value and variance are important values associated to distributions and
are often used as estimates of ‘typical’ values and uncertainty respectively. However,
in practice the distribution is not known and important features of a distribution can
only be estimated from the available observations. Suppose x1, . . . , xN is a sample of
observations of a univariate continuous random variable X , and each of the samples
is independent (i.e. none of the samples are dependent on each other). A population
estimate for the mean is the sample mean, defined as

μ̂ = 1

N

N∑
k=1

xk . (3.20)

Similarly there is the sample variance

σ̂2 = 1

N − 1

N∑
k=1

(xk − μ̂)2, (3.21)

which is divided by N − 1 rather than N , this is to ensure the estimator is unbiased.3

As in Sect. 3.1 the sample standard deviation is the square root of the variance σ.
Other important measures of central tendency include themedian (the 0.5-quantile)
and the inter-quartile range (the difference between the 0.75 and 0.25 quantiles).
These values also tend to be more robust (i.e. are less sensitive) to outliers than the
mean and variance.

In Sect. 3.3 the concept of covariance and correlation between random variables
was introduced for continuous randomvariables forwhen the distributions are known.
Consider observations (xk,1, xk,2), k = 1, . . . , N for the bivariate random variables
(X1, X2), then the sample Pearson correlation can be defined as

ρ =
∑N

k=1(xk,1 − x̄1)(xk,2 − x̄2)√∑N
k=1(xk,1 − x̄1)2

√∑N
k=1(xk,2 − x̄2)2

, (3.22)

where x̄1, x̄2 are the sample means for random variables X1 and X2 respectively.
In addition to the Pearson’s correlation, another common measure of correlation

is Spearmans rank correlation coefficient. This is defined as simply the Pearson
correlation of the rank of the values in the two random variables. In other words, take
the observations x1,1, x2,1, . . . ,N ,1 for random variable X1 and assign them based
on their rank, i.e. value 1 for the largest value, 2 for the second largest and so on.
Similarly do the same for the second random variable, X2. Then simply calculate the
Pearson correlation of these rankings using Eq. (3.22).

3 Which essentially means the difference between the expected value of the estimator and the true
value is zero.
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The concept of correlation can be expanded to a univariate time series (Sect. 5.1),
i.e. (L1, L2, . . . , LN )T where Lt is a single value at time t and the points are ordered
consecutively in time. First consider the autocovariance and the autocorrelation—
i.e. the (Pearson) correlation between values in the time series and its lagged values.
The sample autocovariance function at lag k is defined as

R(k) = 1

N

N−k∑
t=1

(Lt − μ̂)(Lt+k − μ̂), (3.23)

where μ̂ is the sample mean of the time series (L1, L2, . . . , LN )T . Similarly the
autocorrelation function (ACF) at lag k is defined as

ρ(k) = 1

N σ̂2

N−k∑
t=1

(Li − μ̂)(Lt+k − μ̂) = R(k)

R(0)
= R(k)

σ̂2
, (3.24)

where σ̂2 is the sample variance.
A plot of the autocorrelation at several consecutive lags ρ(0), ρ(1), . . . is a com-

mon way to better identify interdependencies of a time series to its lagged values as
well as to identify important features such as seasonalities. They are commonly used
to identify the correct orders for the ARIMA models (see Sect. 9.4). The autocorre-
lation is bounded −1 ≤ ρ(k) ≤ 1 for k ∈ N with ρ = 1 indicating a perfect positive
correlation and ρ = −1 a perfect negative correlation. No correlation whatsoever is
indicated by ρ = 0.

The Partial autocorrelation function (PACF) evaluated at lag k describes the
autocorrelation between the series Lt and the lagged series Lt+k conditional on the
in between values Lt+1, . . . , Lt+k−1. In other words it describes the autocorrelation
after removing the effects at shorter lags.

An example of an autocorrelation and partial autocorrelation plot for 30 lags
is shown in Fig. 3.9. Typically such plots also include two horizontal lines which
indicate the level at which significant correlations exist. Values outside of the area
defined by these lines indicate significant correlation values (although of course
sometimes values can be outside these lines by chance alone).

The ACF plot shows some strong autocorrelations at lags 6, 12, 18, 24 but also
other lags in between. The PACF plot also shows the same strong lags at periods of
6 however, many of the other correlations are much smaller (for example at lags 3, 4
and 5) in the PACF plot compared to the ACF plot, which indicates that the influence
of the other lags may have suggested a stronger autocorrelation than truly existed in
the time series.

The cross-correlation is an extension of autocorrelation except between two dif-
ferent time series. To illustrate this, consider a second time series M1, M2, . . . , MN ,
defined at the same time steps as (L1, L2, . . . , LN )T . The cross-correlation between
L and M at lag k ≥ 0 can be defined as
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Fig. 3.9 Example of autocorrelation (top) and partial autocorrelation (bottom) plots for the same
time series

XR(k) = 1

N

N−k∑
t=1

(Lt − μ̂1)(Mt+k − μ̂2), (3.25)

and for k ≤ 0 as

XR(k) = 1

N

N−k∑
t=1

(Mt − μ̂2)(Lt+k − μ̂1), (3.26)

where μ̂1 and μ̂2 are the sample means of the time series for Lt and Mt respectively.
The value at k = 0 represents the correlation between the two series without any
lags. The function not only identifies which lags are the most important but also the
temporal direction. For example, the temperature could be a strong indicator of the
demand used, however, if the nearest weather station is in the next town over then
this recorded value may be related to the temperature in the town of interest but with
a delay. In that case there will be a strong cross-correlation between the demand and
the observed lagged temperature at the next town over.
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How is this translated to short term load forecasts?

Sample statistics are essential for load forecasting as the time series is not
measured continuously but only at regular intervals, usually half hourly or
hourly. Therefore to derive and estimate features of the load forecast will
require the use of sample statistics.

Further to this the autocorrelation and cross-correlation are useful tools for
identifying the important explanatory variables in the model, as well as the
lags of the variables to include asmodel inputs. It should be noted, even though
correlation doesn’t mean causation, correlation can still be a very important
indicator of what will be useful for a forecast model. These statistical mea-
sures will be used throughout the book but in particular for the data analysis
(Sect. 6.2) and the statistical point forecast models in Chap. 9.

3.6 Questions

1. Generate different size samples from a normal distribution with a mean and
standard deviation of your choice. Plot these values against samples of different
sizes. Do the values start to converge to the true values? At how many samples
does this convergence begin? This is demonstrating the central limit theorem.
How much does the mean change for small samples? Now plot the median?
How much does this change for small samples? Does one seem more robust to
additions of new data than the other?

2. For the standard normal distribution, how much data lies between (a) one stan-
dard deviation, σ, (b) two standard deviations, (c) three standard deviations,
from the centre?

3. For a standard normal distribution, which quantiles most closely approximate
the values one standard deviation from the centre?

4. If a distribution is not symmetric what does the difference between the mean
and median tell you about the skewness of the distribution?

5. Sample from a univariate distribution of your choice and plot the histogram
(using the default bin size). Change the bin sizes and number of samples and
compare them to the original distribution. What appears to be a good bin size
for one of your sampling sets (assuming the sample size is big enough)?

6. Sample from the same univariate distribution as in the previous question. Plot
a kernel density estimate with different bandwidths and different sample sizes.
Observe the effects, what appears to be a good choice of bandwidth for one of
your sample sets (make sure the number of samples is big enough)?

7. Plot the box plots for three datasets, with each data set generated from 1000 sam-
ples from three different univariate distributions (perhaps use the Gamma, log-
normal and Gaussian distributions described in the chapter). Adjust the param-
eters of each model so the plots can all be seen clearly on the figure. Compare
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these plots to the original distributions: How does the central value vary across
the box plots? What about the whiskers and the box sizes?

8. Plot a bivariate Gaussian distribution with unit variance on both variables.
Change the correlation between the plots and see how they change. How does
themarginal distribution change for each variable as you change the correlation?

9. For the same bivariate distribution as the previous question. Consider the con-
ditional distribution for one of the variables by binning samples of the data
contained within a small interval of the other variable. Plot the histogram of
these points. How does this change as you change the position of the interval?

10. Download some energy time series data (See Sect.D.4). Plot the autocorrelation
and partial autocorrelations for a few of these time series (only consider lags for
up to a couple of weeks). Where are the major correlation values? What is the
difference between the autocorrelation plots and the partial autocorrelation plots?
Compare these values to plots of the time series. Are there obvious seasonal
patterns, and how do they relate to the autocorrelation plots?

11. Download the GEFCOM 2014 data or alternatively download any other demand
time series data which also has some temperature data (See Sect.D.4 for a list
of data sets). Plot one of the demand series against the temperature data in
a scatter plot. What does the relationship look like? Is there a clear affect of
temperature on this data? Calculate the cross-correlation plot for the demand
and temperature data. Where are the major correlations. Is there some strong
correlations at lagged values?
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Chapter 4
Primer on Machine Learning

The previous chapter introduced various concepts from statistics and probability rel-
evant to forecasting. As many state-of-the-art approaches rely on machine learning,
this chapter will introduce some fundamental definitions and concepts. It does not
intend to provide an in-depth understanding but instead plans to overview the main
concepts as they are relevant to this book. It provides an overview of practically rel-
evant concepts when using software packages to fit and configure machine learning
models. It does not introduce specific algorithms as those machine learning algo-
rithms that are typically used in load forecasting are discussed in detail in Chap.10.
More in-depth overviews of the approaches can be found in the list of further reading
in AppendixD.2.

4.1 Definitions and Related Concepts

A common definition of machine learning is that it includes algorithms that enable
computers to learn from data and improve performancewithin a specific taskwith-
out being explicitly programmed. A typical such task is to describe the relationship
between a set of input variables that are typically measured or preset and have some
influence on one or several outputs (see the next section for other machine learning
tasks).

With this definition, machine learning can be distinguished from classic
algorithms and programs studied in computer science, i.e., a finite sequence of
well-defined instructions. A traditional algorithm performs a task deterministically
following the steps that have been implemented by the programmer at design time,
resulting in a specific performance. In contrast, a machine learning algorithm uses
experience/observations, i.e. data, to improve the performance within the task, pos-
sibly even when in operation. This allows the algorithm to tackle tasks that are too
difficult to solve with classical algorithms and programs written and designed by
human beings. A second way of distinguishing machine learning from classical pro-
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gramming is that for classical programming, one provides the input and a function
(the algorithm) to compute an output. In machine learning, one provides some exam-
ple inputs and outputs to find a function which can then be used with new inputs to
compute outputs.

The above definition can also be used to distinguish machine learning from statis-
tics (see the introduction to some basic concepts in Chap. 3). One notion of distin-
guishing the two is that statistical models are designed for inference about the rela-
tionships between variables, and machine learning models are developed to make
the most accurate predictions, i.e. to maximise performance. A common purpose
of statistical models is to make inferences about the relationships between variables,
i.e., creating a mathematical model of the process by which data was generated to
formalise understanding or test a hypothesis about the system behaviour.

While statistical models can also make predictions, this is often achieved by mak-
ing parametric assumptions, like assuming that data follows a specific distribution
(see Chap.3). While this improves model understanding and interpretability, it
introduces model bias that for complex data may hinder achieving accurate pre-
dictions. Similarly, as too many input variables hinder the interpretability of the
process, statisticians may want to avoid situations where p >> n, i.e., the number of
input variables is much larger than the number of samples. Hence, a statistician may
want to attempt to avoid over-parameterisation by performing a variable selection,
removing terms that do not contribute significantly to the inference. This generally
improves model understanding but may inhibit prediction accuracy, as even small
contributions can improve predictions.

In contrast, a machine learning model aims to learn from experience (past data)
with the main goal of improving a prediction, in other words it typically sacrifices
understanding of the underlying mechanisms for performance. Machine learning
models are mostly non-parametric methods (e.g. see Sect. 3.4) and are typically
capable of handling many input variables without extensive manual preprocessing
or feature selection. Utilising complex models and removing restrictive assump-
tions, machine learning applies optimisation techniques to find approximate algo-
rithmic solutions (see Sect. 4.3). In contrast statistical models can sometimes find
exact closed-form solutions. Alongside optimisation, machine learning methods are
often concerned with developing methods to avoid overfitting, i.e., finding models
and methods that are capable of generalising well to new data points that they have
not been trained on. This includes different regularisationmethods (see Sect. 8.2.5).
All this is done to improve prediction performance at the cost of interpretability com-
pared to statistical methods.

While the previous paragraphs highlighted some main differences between
machine learning to classic computer algorithms and statistics, they are not com-
pletely distinct. There are considerable overlaps between the concepts, and machine
learning heavily relies on classical computer science and statistics techniques and
approaches. For instance, knowing the data-generating process typically provides
insights into what makes a good predictor and is often an essential step in the applied
modelling process. Machine learning also relies on several areas of computer science
and algorithms, for instance, when datasets become too large to fit into the memory
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of a single computer (or its GPU). Much of practical machine learning is concerned
with developing strategies to manage millions, billions and even trillions of param-
eters using computer science methods like distributed computing (this aspect is not
addressed in this book). Beyond those, machine learning also heavily relies on other
mathematical concepts such as optimisation, matrix algebra and calculus.

How is this translated to short term load forecasts?

As in many domains in recent years, machine learning models have increas-
ingly been applied to forecasting problems. In contrast to many other disci-
plines like image recognition or natural language processing, for time series
forecasting they have not yet dominated over other approaches in the field,
like simple benchmarks and more sophisticated statistical approaches, as dis-
cussed in Chap.9. This is because many time-series problems have limited
data availability, and many machine learning algorithms are often unnecessar-
ily complex. Only in recent years have machine learning models, for instance,
recurrent neural networks or gradient boosting, started to outperform other
methods consistently (see, for example, the discussion of the M5 time series
forecasting competition [1]). With the advent of specialised deep learning
approaches like DeepAR [2] and N-BEATS [3], there is a likely trend that
more advanced specialised machine learning models may improve in many
time series problems. However, as statistical models allow for a better under-
standing of the relationships between the available data and the forecast, an
accurate statistical model should always be used as a benchmark in the load
forecasting process (see Chap.9). The M5 competition showed [1], that com-
binations of statistical and machine learning models can reach state-of-the-art
results with the advantage of remaining at least partly interpretable, combin-
ing the benefits of both approaches. This makes them particularly interesting
for real-world applications.

4.2 Machine Learning Taxonomy and Terms

The former section introduced machine learning as algorithms that enable com-
puters to improve the performance within a specific task by learning from data.
The most common machine learning task is to describe the relationship between a
set of input and output variables. This task is called supervised learning. Besides
supervised learning, there are other sub-types of machine learning, most importantly
unsupervised learning and reinforcement learning.
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4.2.1 Supervised Learning

Supervised learning is the task of learning the relationship between a set of input
and output variables from data, i.e., to learn some function f to be able to make pre-
dictions. These inputs are often referred to as instances or examples. An instance
is a collection of values that can be measured or obtained in some way (e.g. through
sensors). It is often denoted as X ∈ R

n . In statistical terms, an instance is a reali-
sation vector of the n random variables X1, X2, . . . , Xn , so that one can also write
X = (X1, X2, . . . , Xn) (Sect. 3.1). These inputs are often called predictors or inde-
pendent variables in the statistical literature. In the machine learning literature (and
the remainder of this Chapter), the term features is more commonly used. Through-
out this book, both terms will be used.

A statisticianmay refer to the outputs as the response or the dependent variables.
Depending on if the task is to predict a numeric variable or a qualitative variable
(like the membership to a class), in machine learning, the output is referred to as
target or label in the machine learning literature. If the supervised learning task is
to predict a numeric variable, the task is referred to as regression. To solve this, the
machine learning algorithm aims to model a function f : Rn → R, or f : Rn → R

k

in the case of multiple target variables. In the latter case, the regression problem
may be referred to as multi-target or multi-output regression. Note this is not to
be confused with multiple regression or multivariate regression, which refers to the
dimensionality of the inputs, i.e., n > 1. Note that the term regression is sometimes
used to denote linear regression (see Sect. 9.3). However, linear regression is only
one specific regressionmethod, and the regression task can be performed usingmany
different algorithms, as will be discussed in this book.

A common machine learning task is to predict the assignment of an instance to
one of k categories, or classes. Here, the machine learning algorithm is equivalent
to modelling a function f : Rn → {1, . . . , k}, with each class assigned an integer.
This output can be a numeric code representing a specific class, but more commonly,
machine learning algorithms produce a probability distribution over the classes. This
task is referred to as classification. Depending on whether the output is univariate
or multivariate, the output is denoted as Y ∈ R or Y ∈ R

k (for the sake of simplicity
in the following the univariate case is presented as a special case of the multivariate
case for k = 1).

The relationship f is learned from a dataset. While formally, the order should
not matter, a dataset can be seen as a set of N tuples of instances with the respective
labels or targets, i.e.,X = {

(X1,Y1), (X2,Y2), . . . , (X j ,Y j ), (XN ,YN )
}
. However,

as many algorithms make use of linear algebra, it is also common to denote the set
of inputs of the dataset as a matrix X and the set of output as a vector or matrix Y.
Note that the inputs have been introduced as n-dimensional vectors for simplicity,
but for different machine learning tasks, they may be of higher dimensionality, e.g.
for images or videos. Hence, they may be considered more generally as tensors.
However, for convenience and clarity, the focus will be on matrices and vectors,
which will be the most common form for load forecasting.
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4.2.2 Unsupervised Learning

Unsupervised learning typically refers to algorithms that learn and identify pat-
terns within the data without labels. Denote the dataset as set X with N members
X1, . . . ,Xi , . . . ,XN with each Xi = (X1, . . . , X j , . . . , Xn)

T consisting of n fea-
tures. Unsupervised learning tasks can be used to either model a pattern within the
set of data X , model within each of the instances Xi , or both.

The type of problem that ismost commonly associatedwith finding patternswithin
the dataset is the task of finding partitionings or groupings of a dataset, i.e. clustering
a dataset. The goal is to find k groupingsX ′

1, . . . ,X ′
i ,X ′

k such that∪k
i=1X ′

i = X . The
most common algorithms are the centroid-based k-means clustering, distance-based
hierarchical clustering and the density-based models DBSCAN and OPTICS. A
discussion of those algorithms is not part of this book, but see [4] for k-means
and hierarchical clustering and [5] for a discussion on DBSCAN and OPTICS. An
example of another approach which can be used for clustering, called finite mixture
models is given in Sect. 11.3.2, except in this case it is used to model complex
distributions.

The most common reason for finding patterns within each of the individual
instancesXi is dimensionality reduction and the related problem of finding embed-
dings, i.e., meaningful latent representations of the data. Dimensionality reduction
methods aim to address the curse of dimensionality1 by finding lower-dimensional
representations of the data. This lower-dimensional representation of the data can
be used as features, for instance, in supervised learning or forecasting. A model that
uses lower-dimensional data as input to make the predictions may be referred to as a
down-stream model. It can also be useful for visualising high-dimensional data in
2D or 3D representations. Popular methods are principal component analysis (PCA)
and t-Distributed Stochastic Neighbor Embedding (t-SNE). Figure4.1 shows the
result of using PCA to reduce the time series of three households from 96 values per
day (15-min data) into two dimensions. On the left, there are some example samples
of three households in 15-min resolution. One can see that the behaviour is generally
quite different with load at different times of the day. On the right is a scatter plot of
the two-dimensional data after applying PCAwith the goal of finding two descriptive
features of the data. The colour highlighting of the specific households is added to
illustrate how even though the dimensionality has been drastically reduced, the data
of the different households generally stay together, indicating that some differences
between them are preserved in this low dimensional representation.

Adetailed discussion of thesemethods is notwithin the scope of this book. Finding
a suitable latent representation of raw inputs is essential in working with image or
text data. For instance, many machine learning models need fixed-length numerical
input sequences and cannot handle sentences of different lengths. It is commonly

1 In short, the curse of dimensionality is the rapid increase in observations that are required for
accurately estimating relationships as the number/dimension of features in the inputs increases.
To illustrate this note how points in 2-dimensional space are much less isolated than points in
3-dimensions.
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Fig. 4.1 Samples of a dataset of household-data in 15-min resolutions (left) and the resulting
two-dimensional representation after applying PCA (right)

associated with neural networks (Sect. 10.4). The goal is to find a lower-dimensional
representation of a fixed width, also for different length inputs (e.g., of different
sentence lengths) in a latent space where similar instances are closer together.

Density estimation can also be considered an unsupervised learning task and
learns patterns within both the dataset and the instances. Section3.4 introduces some
more classical approaches to density estimation from the statistics domain. However,
more recently, for complex distributions like text, images and video, generative
machine learningmethods like variational auto-encoders (VAE), normalising flows,
generative adversarial networks (GAN), and diffusion models have been introduced.
Some of these concepts are sometimes applied to time series, including load data,
but are not well established yet in this domain and are hence not further discussed in
this book. The goal of the model is to estimate a distribution (see Sect. 3.1), e.g., to
make inferences about uncertainties in the forecast estimate, or it can also be used
to sample new data (or realisations) from the distribution of the dataset.

More recently, additionally semi-supervised and self-supervised learningmethods
have emerged, for instance, as part of large languagemodels.Here, either labels partly
exist to train embedding models, or they are created by partially obscuring parts of
the data. Latent representations are also the core of generative models. However,
those are not well established yet in this domain and are hence not further discussed
in this book.

4.2.3 Reinforcement Learning

The third common machine learning sub-category is reinforcement learning. In con-
trast to unsupervised and supervised learning algorithms, it contains algorithms that
do not learn from a fixed dataset but interact with the environment, i.e., a feedback
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loop between the learning system and data from the environment. The reinforcement
learning task is typically modelled as a Markov decision process (MDP), where
the learning system is denoted as an agent that interacts with an environment. First,
it observes the current state of the environment and chooses an appropriate action
based on a learned policy. The action results in a reward as feedback from the envi-
ronment. Then the environment is in a new state, and the process continues in an
iterative manner. The policy is adjusted based on the rewards so that the agent learns.
Depending on the algorithms, the agent chooses actions that are known to work well
(exploitation), or it may explore new actions (exploration). As the policy maps
state/action pairs to rewards, this mapping can be supported by supervised learning
algorithms and, more recently, deep learning algorithms (Sect. 10.5).

However, often real-world applications suffer fromdifferent challenges.Oneprob-
lem is the credit assignment problem, where often the reward signal is delayed and
only available after a sequence of actions, making it difficult to attribute the influ-
ence of individual actions to the reward. A second problem is reward hacking,
where misformulated objective functions can lead to unexpected results. Lastly, the
exploitation of new actions may often not be desirable in an application where the
cost of ineffective actions is high. Here, simulations (often referred to as gyms)
can support learning an optimal policy. Reinforcement learning concepts have also
been partially applied to the time series forecasting problem, but they are not well
established yet and are not further discussed in this book.

How is this translated to short term load forecasts?

Time series forecasting can be formulated as a multivariate regression prob-
lem. Therefore supervised machine learning models can generally be applied
to time series forecasting problems.While supervised approaches are themost
common, unsupervised and reinforcement learning methods can be used in
forecasting, either on their own or, more commonly, in combination with
supervised approaches. For instance, when forecasting an aggregated time
series, clustering techniques can be used to partition the data of the time
series that make up the signal. Models are then trained on the resulting clus-
ters before combining the predictions. This can produce improved accuracy
compared to directly forecasting the aggregated time series since individual
series may have similar features which can be used to design an accurate
forecast model of the cluster. Further, dimensionality reduction can improve
forecasting models and be applied in exploratory data analysis to identify
important patterns and/or develop new inputs.
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4.3 Introduction to Optimisation with Gradient Descent

As described above, when using machine learning, the optimal parameters have
to be determined based on the prediction errors on a training set. For instance, in
neural network models (Sect. 10.4), the weights of the networks must be trained.
However, besides the prediction error, other components affected by the model must
be optimised at the same time, for instance, the range (or constraints) of the chosen
parameters (see Sect. 8.2.4 on regularisation). Overall, this function to be optimised
is called the loss or cost function.

Whereas optimisation problems in many of the statistical methods can be solved
using an analytical closed-form solution, most optimisation problems in machine
learning (like finding the weights of a neural network) are rather complex, e.g.,
having non-convex cost functions, i.e., they are having multiple local optima or
saddle points. Figure4.2 gives an example of such a loss function of a 56-layer pre-
trained convolutional neural network. For simple cost functions, a global optimum
can often be found, but for more complex cost functions, the solution will often
be only a local optimum. Hence optimisation is often not deterministic, in other
words running the same procedure (e.g. the training of a neural network) can result
in different solutions, i.e., models that perform better or worse.

Most state-of-the-art machine learning models, especially neural networks, use
some form of gradient descent. The parameters, i.e., the weights β, are adjusted

Fig. 4.2 Example loss function along two random normalised directions of pretrained 56-layer
convolutional neural network ResNET-56 for image recognition, created with Loss Landscape tool
described in [6]
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Fig. 4.3 Illustration of
gradient descent for a basic
cost function. The value w is
updated based on the
direction in which the
gradient descends. The
length the update moves is
based on the learning rate.
Two different learning rates
are illustrated here
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according to the gradient of the loss function (see the introduction on artificial neu-
ral networks in Sect. 10.4). Hence, if the gradient of the cost function is positive
with respect to some current weight, it means the cost will decrease if the weight
decreases. Similarly, if the gradient is negative then the cost function will decrease
if the weight increases. It should be noted that many statistical approaches also use
gradient methods, especially for problems with large numbers of parameters and
observations where finding the optimal directly in a closed-form is difficult.

To demonstrate this process consider a basic cost function (defined by (w − 4)2)
as shown in Fig. 4.3. Initially, the weight is w = 7.9, and the cost function has a
positive gradient at this point. This shows that local to this weight, increasing the
weight will increase the cost function. Hence, the weight should be reduced to reduce
the value of the cost function and find a value closer to the optimal (zero in this case
withw = 4). The process is then repeated at the new value. The question remains of
how much to reduce the value. This is determined by the so-called learning rate or
step-size. Two different learning rates are shown in Fig. 4.3 where one gets closer to
the true minimum (at w = 4) for a single step compared to the other rate after one
iteration. Clearly, the learning rate is an important hyper-parameter for the algorithm
(see Sect. 8.2.3 on tuning hyper-parameters). Too small, and the convergence will
take too long (and potentially be stopped too early) to reach the minimum. Too big,
and the solution will be too unstable and potentially not converge at all.

In this simple example, the gradient was determined for the full training data.
This is called batch gradient descent. It calculates the error for each instance using
efficient matrix operations and takes an average over the whole dataset to determine
the gradient. This averaging provides a stable learning path and hence leads to quick
convergence. This is only feasible for simple problems and small datasets. For larger
neural networks, for instance, convolutional neural networks and large datasets (e.g.
images), this is not feasible as the gradient calculation becomes too computationally
complex and the matrices will not fit into your computer’s memory (although even



50 4 Primer on Machine Learning

Gradient Descent Stochastic Gradient
Descent

Mini-batch Gradient
Descent

Fig. 4.4 Illustration of the convergence path of gradient descent (smoothly), stochastic gradient
descent (unstable) and mini-batch gradient descent (compromise)

if you had large amounts of memory this is perhaps an inefficient use of resources).
Instead, on large datasets, using samples from the dataset can often be enough to
produce a good approximation of the current iteration’s gradient.

When only one instance is considered at each step, this is called stochastic gra-
dient descent. The advantage of stochastic gradient descent is that the algorithm
is much faster at every iteration. However, the algorithm results in a less regular
and stable learning path compared to batch gradient descent. Instead of decreasing
smoothly, the cost function will “zig-zag” and may even temporarily move “back up
the hill”, as individual samples do not accurately approximate the entire dataset’s
gradient. While this may seem like an undesirable property, this is helpful in training
complex neural networks as it introduces a randomness to the optimisation procedure
that can help the estimate escape local minima or saddle points. Hence, most current
deep learning models use a variant of mini-batch gradient descent that combines
the concepts of batch and stochastic gradient descent. Figure4.4 illustrates the paths
of these three gradient descent algorithms.

In mini-batch gradient descent, the algorithm computes the gradient based on
a subset of the training set at each step instead of the complete dataset or only
individual instances. This provides a trade-off, as it takes advantage of efficientmatrix
operations during the gradient calculation, resulting in a smoother and more stable
convergence than stochastic gradient descent. One downside is that this introduces
additionalhyperparameters to the training process, as besides the step-size, a batch-
size also has to be provided. Themini-batch size is chosen to ensure enough diversity
to escape local minima while providing some stability and enough computational
efficiency from fast matrix calculations.

Besides the way the training set is split up to calculate the gradient, there are
many other ways that the vanilla gradient descent can be improved. One popular
modification is to add momentum. Regular stochastic gradient descent may have
trouble in areas of the loss function where the surface gradient is much steeper in
one dimension than in another. Here, a momentum term is added that increases
for dimensions where the gradients point in the same directions and decreases for
dimensions where gradients change directions. This results in faster convergence
and fewer oscillations when moving towards a local optimum (see Fig. 4.5 for an
illustration).
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SGD without
Momentum

SGD with
Momentum

Fig. 4.5 Illustration of the convergence path of stochastic gradient descent without momentum and
with momentum

Many optimisation algorithms introduce some form of adaptive learning rate
that changes the step size value according to some rule. Simple schedules may decay
(reduce) the step size over time to produce larger changes at the beginning of the
training process and then fine-tune towards the end when moving towards a local
optimum. A variant is a cycling learning rate where the learning rate iteratively
becomes larger and smaller according to a rule to improve the chances of escaping
local optima. An overview of the many existing optimisation algorithms is out of
the scope of this book. An overview of some popular optimisers is given in [7].
One effective and popular optimisation algorithm is Adaptive Moment Estimation
(Adam), which uses an adaptive learning rate and the ideas behind momentum. It
will usually converge faster to a local minimum than using vanilla stochastic gradient
descent without momentum with a simple learning rate decay schedule. Further, it
is less prone to get stuck in saddle points and relies less on initialisation parameters
like step size and decaying schedule. Hence, Adam with default hyper-parameters is
a decent method to use in practice for training deep neural networks.

4.4 Questions

For the questions which require using real demand data, try using some of the data
as listed in AppendixD.4.

1. Select the time series of an individual household or building and arrange your
dataset in a matrix so that each row represents one day. Resample it to hourly
data so that the matrix has 24 columns. Apply principle component analysis
(PCA) using a library of your preference, for instance, Scikit-Learn2 to reduce the
dimensions. Then also, apply t-SNE for comparison. Visualise the results for two
dimensions and three dimensions using scatter plots. Do you see clusters of data
points? Find explanations for what could cause different groupings. Verify your
hypothesis by using different colouring in the plot. Next, repeat the application
of each of the algorithms. Do you see variation in the results?

2 https://scikit-learn.org/stable/index.html.

https://scikit-learn.org/stable/index.html
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2. Use a load dataset that contains data from several households. Create a matrix
X1 by rearranging the data so that each row of the matrix represents one day of
one household. Run k-means clustering with the objective of finding 10 clusters.
Visualise members of each of the clusters and compare them. Do you see distinct
clusters or are their clusters with very similar patterns that could be merged? Try
less target clusters. Does this result in “better” groupings? In the absence of a
“ground truth”, what could generally be ways to assess and compare the results
in clustering?

3. Clustering can be done using the raw load data or by modelling features from the
load data. X1 contains the raw data already. Next, create a matrix X2 by applying
PCA to reduce the dimensionality of the data to 6 components (i.e., the matrix has
6 columns). Create a thirdmatrixX3 where you derive somemanual features, such
as the mean and max of certain times of the day. Repeat the k-means clustering
in the previous question with the target of 10 clusters. Visualise cluster members
of each cluster again and compare the results across the 3 representations (raw,
manual feature and automated features from PCA). Do the results vary much?
Does one method result in more distinct clusters?
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Chapter 5
Time Series Forecasting: Core Concepts
and Definitions

This chapter will present the main definitions and concepts for time series forecast-
ing. It begins by introducing time series before leading into the general form and
definitions of a time series forecast. The following sections will lay the foundations
for much of the tools, models and concepts in the later chapters. This chapter will rely
on a basic understanding of statistical concepts which will be assumed. Chapter 3
contains a crash course in some of the important elements of statistics and probability
and will be referred to throughout.

5.1 Time Series: Basic Definitions and Properties

Time series data will be the core object of study for this book. Time Series data are
simply a sequence of data points, measured at discrete time points, that are ordered in
termsof an increasing time index, i.e. chronologically. Typically, the points are spaced
equally in time and the majority of timeseries analysis and methods will assume this
is the case. Monitoring equipment used for recording demand, for example smart
meters, are designed to collect data at regular intervals, usually half hourly, so this
is not an unrealistic assumption and it also simplifies the analysis.1

Throughout this book it is assumed that the time series is sampled at uniform
(regularly spaced) time steps. A time series will often be denoted by a sequence of
letters X1, X2, X3, . . . XN where the subscript denotes the time step, with a larger
index indicating a chronologically later point. Alternatively, the time series can be
written as Xk with time steps k ∈ K = {1, 2, . . . N }. If the series continues forever
into the future then N = ∞ and K = N = {1, 2 . . .}, the set of natural numbers.

1 In some cases monitoring equipment may record at less regular intervals. For example, if high
resolution monitoring (say second resolution) is required, some equipment may record in a com-
pressed form to save storage space. One way to do this is to only record values when there is a
change. However if the data has sufficient resolution it can be accurately interpolated to regular
time steps.
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The values a time series can take are very diverse and can be discrete values, real
numbers, sets of values, or even letters. In the case of this book, since the data are
typically energy demand then Xk is a single real-valued random variable (a more
detailed explanation of random variables can be found in Sect. 3.1) denoting either
power (which will have units watts, W, or kilowatts, kW), or energy (which will have
units watt-hours, Wh, or kilowatt-hours, kWh). If the values at each time step consist
of only a single variable the series is said to be univariate. However, if the series
consists of more than one variable per time step, for example say Xk = (Lk, Tk) at
each time step, where Lk is the load and Tk is the temperature, then the time series
is called multivariate. The special case (Lk, Tk), of only two variables, is referred
to as bivariate.

An important feature of a time series is whether it is Stationary or not. A time
series of random variables Xt is stationary if the joint distribution over any fixed
segment of the data, Xk, Xk+1, . . . , Xk+M (for some positive integer M), is the same
whatever the temporal shift in the data, i.e. the same as the joint distribution of
Xk+m, Xk+1+m, . . . , Xk+M+m whatever the choice of m ∈ Z (See Sect. 3.3 for the
definition of joint distribution). In particular it means the expected value and the
variance at each time step is fixed.2 Time series that are not stationary are called,
unsurprisingly, non-stationary. Examples of basic stationary and non-stationary time
series are shown in Fig. 5.1. Plot (a) is a stationary time series, with each point coming
from the same distribution with fixed mean and variance. Plot (b) is non-stationary
with values coming from a distribution whose mean and variance increase as time
increases. Finally, plot (c) shows a time serieswith a fixed variance butwith a seasonal
mean. Stationarity is an important property for many time series forecasting models,
for example ARIMA models which will be introduced in Sect. 9.4. They are also
easier to model since they have fixed properties in time. It is not trivial to prove that a
time series is stationary. Plotting the time series is a typical first check for stationarity,
and there are also statistical tests which are briefly discussed in AppendixA.

Two important features that occur often in non-stationary data are trends and
seasonality. Trend in a time series is the general macroscopic (i.e. the low frequency)
changes in the data, with the most common being a linear trend, where there is a
gradual, linear growth in the time series. Figure5.1b is as an example with positive
linear trend. In energy based applications, an increasing trend in energy demand could
be due to, for example, the gradual uptake of less energy efficient technologies, or
perhaps simply the uptake of more devices.

Seasonality is defined to be changes in the time series that occur at fixed regular
intervals or fixed periods. Often demand behaviour is driven by human behaviour
hence there are often strong periodicities at the daily, weekly and annual levels
corresponding to typical behavioural patterns. Seasonal time series can often also be
called periodic time series. Not all oscillations in behaviour will be of fixed period.
For example, shift workers such as doctors and nurses will likely not have standard

2 In fact, for the purpose of this book often a time series only needs to be weakly stationary, which
means the mean of Xt and the covariance between Xt and Xt+l are constant and only depend on
l ∈ Z.
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Fig. 5.1 Examples of different time series which are a stationary, b non-stationary with linear
trend, c non-stationary with periodic behaviour

daily or weekly patterns (working different days of the week, and perhaps doing a
mix of day shifts, long days or night shifts). These are often called cyclic patterns.
The focus in this book will be on seasonalities with regular periods. An example of a
seasonal time series is shown in Fig. 5.1c which has a seasonal period which repeats
after every interval of length five.

Finally, another important property of a time series is its autocorrelation, which
describes how the changes in the time series at one point relate to the time series
at lagged (or older) points in the time series. A more detailed definition of auto-
correlation is given in Sect. 3.5 and is investigated in more detail in Sect. 6.2.4. For
now the general principle is described since they are often very important measures
for producing accurate forecasts. As a simple example, take a person who gets to
work regularly at 8AM every day. One day they may be late to work due to their
alarm not going off or their car breaking down, in which case they may decide to
work later than usual. In this case their later behaviour is correlated to their earlier
behaviour. Notice that a seasonal time series with period P will have relatively high
autocorrelation with itself for lags which are multiples of P . Finding correlations in
the data is an important part of identifying which historical values may be important
for estimating future points (see Sect. 6.2.4 for more details).

So far, only properties of the time series itself have been considered. However,
often energy usage is influenced by other external drivers. For example, heating
and air-conditioning are obviously related to how cold the occupants feel within
a household. Further, the use of lighting will be related to how dark it is outside,
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which will in turn also depends on the time of year. Hence the energy demand
will strongly depend on external explanatory variables. Choosing which external
variables to include in a time series model (and its corresponding forecast model) is
called feature selection and will be described in more detail in Sect. 6.2.

5.2 Time Series Forecasting: Definitions

In its simplest form, a forecast for a time series is an individual, or collection of,
estimates for future values using currently available information. For the purposes of
this book, the aim will almost always be to accurately forecast the future electricity
demand on a low voltage network or application. How we define the accuracy of a
forecast will be defined in Chap.7.

For simplicity, the majority of the following arguments will be in terms of a uni-
variate time series (see Sect. 5.1) but the definitions will easily extend to multivariate
time series as well. For the following discussion consider a real-valued, univariate
time series L1, L2, . . . , defined at uniformly spaced time steps t1, t2, . . . , where the
current time point is tn and the aim is to produce a forecast at the next h time steps
hn+1, hn+2, . . . , hn+h . Given this scenario a few terms can be defined

• The data L1, L2, . . . , Ln , up to the current time tn , is often referred to as the
historical data and is a core component of any forecast, especially those with
regular seasonal patterns (see Sect. 5.1).

• The current time period tn is often called the forecast origin as it is the starting
point for the forecast.

• The value h is referred to as the forecast horizon and defines howmany time steps
beyond the forecast origin are to be estimated by the forecast. These forecasts are
referred to as h-step ahead forecasts.

These definitions are illustrated in Fig. 5.2 which demonstrates a time series on
a uniform, hourly time step grid, with a forecast origin at time step t6 = 6 and a
forecast horizon of h = 4 time steps. Note that although lines have been drawn
between markers (observations) for clarity, there are no observations between the
time steps.

Often forecasts are written using the same lettering as the original time series but
with a hat, e.g. L̂n+k . To signify the starting (or origin) point of the forecast this can
also be written as L̂n+k|n for a forecast which indicates both the forecast origin, tn ,
and the time step being estimated, tn+k . In this book both forms will be used and the
origin and horizon should be clear from the context.

A special case of forecasts are 1-step ahead forecasts, and these are often used
to compare the accuracy of different methods. They can be applied iteratively to
produce h-step ahead forecasts by applying the 1-step ahead forecast h times where
each new forecast value is fed back into the model for the next time-step forecast.
Unsurprisingly, these are referred to as iterative forecasts. Alternatively, the entire
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Fig. 5.2 An Illustration of a
4-step ahead forecast with
historical data, and forecast
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forecast horizon can be achieved in one go, in which case such forecasts are called
direct. Both types of forecasts will be considered in this book.

In many applications, including the core application of storage control presented
in this book (Sect. 15.1), forecasts can be updated as new observations become
available. This has the advantage of using the most recent data and thus improving
the future estimates, especially those at shortest horizons. These are called rolling
forecasts. Consider a h-step ahead forecast with forecast origin tn , with estimates
L̂n+1|n, L̂n+2|n, . . . , L̂n+h|n . When a new observation becomes available at tn+1 the
forecast model can be retrained on the updated dataset to produce a new estimate
L̂n+2|n+1, L̂n+3|n+1, . . . , L̂n+h+1|n+1. Since more recent information is now incor-
porated into the model, the forecasts at tn+2, . . . , tn+h should be more accurately
estimated than the previous forecast. The forecast horizon is a moving window of
width h. An example of a rolling forecast for the same situation presented in Fig. 5.2
in shown in Fig. 5.3. A forecast is originally made at the initial forecast origin at
t = 6 for the next four time steps (t = 7, . . . 10). When a new observation is made
at time t = 7 a new forecast can be produced at this new forecast origin for the next
four time steps (t = 8, . . . 11). Notice that the new forecast trajectory has now been
updated given the new observation.

As suggested in Sect. 5.1, a time series is actually a function of several other factors
such as weather variables, time of day, seasonalities and other, perhaps unseen, fac-
tors. The aim of the forecast is to try and approximate the function which ‘accurately’
describes the future behaviour of this time series. Accuracy can be a difficult term to
define but is often based on error measures (these will be introduced in Chap. 7) or
how much they optimises the application of interest. The forecast can be written in
a functional form. The following is a general form for a 1-step ahead forecast

Ln+1 = f (L1, . . . , Ln, Z1, . . . , Zk,β) + εn+1, (5.27)
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Fig. 5.3 Example of a
rolling forecast updated as a
new observation becomes
available. A new observation
is made at time step 7 at
which point an updated
forecast is produced with a
rolling window of size h = 4

2 4 6 8 10 12
Time (Hour)

4

5

6

7

8

9

D
em

an
d 

(k
W

h)

Forecast Origin 1
Forecast Origin 2
Forecast 1
Forecast 2
Historical Data
New Observation

for some function f which generates the forecast L̂n+1|n and is dependent on the
historical data L1, . . . , Ln and k explanatory variables Z1, . . . , Zk (Methods for
selecting these variables will be considered in Sect. 6.2). For example, in electricity
demand forecasting these explanatory variables could beweather or electricity prices.
If one of the explanatory variables is a forecast, e.g. a temperature forecast, then
estimates for future time steps tN+1, . . . , tN+k can be included in themodel (although
note they are still only generated prior to the current time step). It is important to note
that the larger the horizon (the bigger the k), the less accurate a forecasted explanatory
variable will be and hence may be less effective as a model input. This should be
tested as part of the model development. Similarly one can describe a h-step ahead
forecast

L̂n+h|n = f (L1, . . . , Ln, Z1, . . . , Zk,β), (5.28)

for forecast origin n. Since a h-step ahead forecast can be produced from repeated
application of a 1-step ahead forecast the inputs in many of these steps may include
forecast values of L as inputs.

Every forecastmodel has parameters or hyperparameters (Sect. 8.2.3)which deter-
mines the response to the inputs. The parameters are represented by β in Eq. (5.27),
and must be appropriately trained in order to produce an accurate forecast (see
Sect. 8.2 for an introduction to how to train these models). As a basic example, con-
sider a simple linear regression ax + b (Sect. 9.3). In this case, the parameters are
the coefficients for the model, β = (a, b), i.e. the trend and intercept.

There are many terms to describe the inputs, outputs and other elements of a
forecast model as represented in Eq. (5.27):

• The variables within the function f , L1, . . . , Ln and Z1, . . . , Zk are often known
as the predictor or independent variables.
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• The variable to be estimated/predicted is often called the dependent or predicted
variable. For this book this almost always will be electricity demand.

• When the independent inputs are historical versions of the dependent variable, e.g.
L1, . . . , Ln , then these are often referred to as autoregressive features.

• εn+1 = Ln+1 − f (L1, . . . , Ln, Z1, . . . , Zk,β) are the errors between the actual
observations and the forecast estimate. Since no forecast is ever perfect these
will rarely, if ever, be zero. In time series forecasting, errors are also often called
residuals, although sometimes this term is used to represent what is left over after
fitting a model on the training set (see Sect. 8.1.3). This will be the convention
typically used throughout this book.

Given any of the models which will be introduced in Chaps. 9–11 (also assume
for simplicity that the hyperparameters, Sect. 8.2.3, have already been selected), the
role of the forecaster is to find the ‘best’ version of the model (i.e. the optimal choice
of function f ()) and this will require optimising the parameters, β, which define that
model. As will be seen in Chap.7, ‘best’ is often defined in terms of generalisation
which is measured by minimising the errors on a test set (Sect. 8.1.3). If the forecast
is used for a specific application then an appropriate error measures must be carefully
chosen in order to optimise the overall performance.

As will be shown in Chaps. 9–11, there are a wide variety of forecast models
each with their own advantages and disadvantages which are suited to different
applications. A good forecast model will have zero mean errors because otherwise
the forecast can be improved by simply shifting the current forecast model, e.g.
f̂ (L1, . . . , Ln, Z1, . . . , Zk,β) = f (L1, . . . , Ln, Z1, . . . , Zk,β) − b where E(ε) =
b �= 0 is the mean value of the errors (see Sect. 3.1 for definition of mean).

The above mainly describes forecasts in the context of point forecasts which
only provide a single estimate for each time step tn+1, tn+2, . . . , tn+h in the forecast
horizon. This is usually in terms of some measure of centrality such as the mean or
median. A more descriptive alternative is a probabilistic forecasts which provides
multiple value for each time step and better describes the uncertainty of the future
values.Methods for generating such estimateswill be given inChap. 11. Probabilistic
forecasts typically take one of the following three forms:

1. Quantile Forecast: Here several quantiles (see Sect. 3.2 for more details on quan-
tiles) of the future values are estimated. If two quantiles are used (a high and low)
then the area between the two values is often called the prediction interval or
forecast interval. The 10% and 90% quantiles are common choices. An example
is shown in the top right of Fig. 5.4).

2. Density Forecast: For a density forecast the full continuous distribution (see
Sect. 3.1) is estimated for each time step. This is illustrated in the bottom left of
Fig. 5.4).
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Fig. 5.4 Example of the different types of forecasts, including the three different types of proba-
bilistic forecasts. The blue crosses are historical observations and the forecasts are in red starting
at time step t = 31. Top left is the point forecast. Top right is a quantile forecast, showing the 0.1,
0.5 (median) and 0.9 quantiles. Bottom left is the density forecast and bottom right is the ensemble
forecast

3. Ensemble Forecast3: The quantile and density forecasts only estimate a distri-
bution at each time step tn+1, tn+2, . . . , tn+h in the forecast horizon. In reality
the time steps are often interdependent with the values at earlier time periods
influencing the values at later time periods. Ensemble forecasts estimate realisa-
tions from the full joint multivariate distribution for the set of random variables
L̂n+1, L̂n+2, . . . , L̂n+h (See Sect. 3.3 for more details on multivariate distribu-
tions). This is illustrated in the bottom right of Fig. 5.4) for 30 ensembles.

A drawback to probabilistic forecasts is the extra computational costs and the
requirements for muchmore training data in order to generate an accurate estimate. If
there is sufficient computational resource and data then probabilistic models provide

3 Note that sometimes these types of forecasts are also called scenario forecasts as ensemble
forecasts can be confused with ensemble methods such as Random Forest (Sect. 10.3.2). However,
scenario forecasts is often used in energy systems to denote different future scenarios, e.g. high
electric vehicle uptakes. We will tend to use the term ensemble forecasts to refer to realisations
from a multivariate probabilistic forecasts. We will clarify when this is not clear.
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a much more descriptive and informative estimation of the uncertainty in the future
values.

How is this translated to short term load forecasts?

Load on an electrical circuit is often measured at regular intervals using a
meter for billing and other purposes. This includes smart meters in homes and
businesses. Hence energy and load is a time series and load forecasting is a
specific application of time series forecasting but focused on power or energy
values. Due to the seasonal nature of energy usage, applications (as will be
illustrated in Chap. 15) typically have specific horizons and forecast origins.
Short term forecasts, the primary topic of this book will involve horizons of
a day up to a couple of weeks ahead. Similarly forecast origins are usually at
the start of each day although there are many exceptions. Another particular
feature of short term load forecasts are the independent variables. Energy
demand in households and businesses is often driven by weather variables
due to their impact on heating and ventilation. However time of day is also an
important input and is often included in various ways. Probabilistic forecasts
are very useful to estimate the uncertainty of load forecasting, especially at
the lower voltage or household level where the demand is relatively volatile
compared to the load over a nation.

5.3 Types of Forecasts

As briefly introduced in Sect. 5.2 forecasts can be classified according to whether
they are iterative or direct, or as point forecasts or various forms of probabilistic fore-
casts. Different types and families of forecasts are desirable for different situations,
applications and scenarios. Some of the most common groupings of forecasts and
their features are listed below.

• Rolling Forecast Frequency: Rolling forecasts are updated at regular time steps
(it could be every time step) and produce estimates over a horizon of fixed length.
So for load forecasts this could be a day-ahead forecast which is updated at every
half hour, utilising newobservations as they are recorded.Alternatively the updates
may only be once a day, say at midnight. The latter is still technically a rolling
forecast but much less frequently updated. Those more frequently updated will
give much better prediction at very short time horizons as they utilise the most
recent information. However, the drawback is that they will require infrastructure
in place to collect, transmit and integrate the most up-to-date information.

• Point or Probabilistic forecasts: Awide variety of point and probabilistic forecast
models will be introduced in the following chapters. As introduced in the previous
section, in contrast to a point forecast, a probabilistic forecast provides multiple
values per time step to describe an estimate of the spread of the future values. Point
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forecasts are quicker to generate as they have fewer parameters to learn, and require
less training data. Further, they are often easier to integrate into applications, e.g.
storage control models (See Sect. 15.1) since it is easy to utilise a single value
per time point rather than a range of values. For volatile data, point forecasts
do not describe the uncertainty in demand and hence applications utilising more
volatile demand may require probabilistic forecasts. A drawback to probabilistic
methods is they are much more computationally expensive to produce and require
more storage. In this book, methods for creating both types of forecasts will be
considered.

• Statistical and Machine Learning Methods: Traditionally time series forecasts
have been implemented using statistical models such as ARIMA and exponential
smoothing (see Sects. 9.4 and 9.2) and are easy to implement, computationally
inexpensive and easy to interpret. More recently, machine learning techniques
such as neural networks and random forests have become popular (see Chap.10).
Despite being more computationally expensive, they can engineer unseen features
and learn complex nonlinear relationships. Statistical models can be preferable
when there are clear, well understood relationships in the data, e.g. daily/weekly
seasonality, or clear links to external influences such as weather. They can also be
preferable when there is a relatively small amount of data sincemodel assumptions
are used to replace learning the relationships directly from the data (although of
course if the model assumptions are wrong then the model will be inaccurate).
Machine learning methods generally excel for complicated data with nonlinear
and possibly unclear relationships (less manual feature engineering is possible).
They are also preferable when learning across a large number of time series or
for hierarchical time series (see below). The question of which type of model
is better is ongoing. The most popular time series forecasting competition, the
M-Competitions,4 have shown in some cases that either type is preferable. More
recently combinations of both types of models has shown to have the best accuracy
(see Sect. 13.1 for more information on model combination).

• Hierarchical Forecasts: Often data are arranged in hierarchies. In power systems,
as shown in Chap.2 the distribution network is a hierarchy with electricity stepped
down at substations as it is distributed to consumers. The demand increases from
the individual customers up the hierarchy to the substations, all the way up to the
transmission and national level. The objective of hierarchical time series forecast-
ing is ensure that forecasts are coherent across the hierarchy, i.e. that forecasts at
one level of the hierarchy should be coherent with the forecast at the next level
of the hierarchy. Another way of saying this is that the aggregate of the forecasts
should match the forecast of the aggregate. This will be discussed in more detail
in Sect. 13.2.

• Local versus Global Forecasts: When forecasting multiple time series there are
two main approaches that can be taken. You can take a local approach where you
train a model on each time series, or you can take a global approach in which you
fit the same model to all time series. The global approach can be preferable when

4 See https://mofc.unic.ac.cy/the-m6-competition/.

https://mofc.unic.ac.cy/the-m6-competition/
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there is a lot of time series and it would be prohibitive to produce a model for each
of them. This is particularly relevant when considering smart meter forecasting.
If every home in a country is to have a smart meter this is a large number of time
series and therefore a global forecasting approach is preferable to a local approach.
This is described in more detail in Sect. 13.4.

• Peak Forecasts: The above approaches have been written in the context of fore-
casts for an entire period of a time series (e.g. each half hour of a day or week). In
fact, in many cases it is only specific features that are of interest. One of the most
important aims of forecast models is to predict the peak of a demand time series
over a period (typically a day). The advantages of peak forecasts is that only a
single value needs to be estimated for each period although the timing may also
be important. However it should be noted that there are less historical examples
of peaks and since they are, by definition, extreme values they may be trickier to
accurately predict than baseload demand. Furthermore, for volatile demand, such
as household smart meter data (see Sect. 13.3), the timing of peaks may be very
irregular.

5.4 Notation

Some basic notation of time series and time series forecasts were introduced in
Sects. 5.1 and 5.2. Here some of the most important notation used throughout this
book are reiterated and expanded on in the context of load forecasting:

• The actual monitored electricity demand will be modelled as a time series,
L1, L2, . . ., of real numbers with Ln representing the demand at the nth time
step tn . L1 represents the oldest data point in the data set. Unless otherwise stated
the time steps are uniformly spaced, i.e. have the same time difference between one
time step and the next, tn+1 − tn = �t ∀n . For load data, if not stated otherwise,
we report the average load over the respective interval in kilowatts, denoted kW.

• Forecasts are denoted as another time series, L̂n , with a hat indicating that this is
an estimate of the true demand at time step tn .

• The notation L̂ N+k|N will often be used to indicate that the forecast is for the time
step N + k and has been generated starting from the forecast origin at time N ,
for forecast horizon of length k time steps. However, this notation can be a bit
cumbersome and hence is omitted and simply written L̂ N+k when the forecast
origin is obvious.

• Explanatory time series, for example temperature, will be denoted by another
capital letters, e.g. Xt . If there are more than one explanatory variable, for example
if using multiple weather variables, then another index will be used to indicate
the different variables. For example, given M explanatory variables they can be
denoted, X1,t , X2,t . . . , XM,t for their value at time t . Alternatively different letters
may also be used for each individual time series.
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5.5 Questions

Some of the following questions will require using some demand data. A list of
possible resources is listed in the AppendixD.4.

1. List some other types of time series that you can think of. This can be anything
not necessarily energy demand related. What is the range of values that the series
can take?

2. Download a demand time series. Is there any trends or seasonality in the data?
If you have several time series compare them, do some have different types of
seasonality? How many different seasonalities can you see? Is there a difference
between the weekday demand and the weekend demand? Are there any other
patterns you can see in the data?

3. From the data listed in AppendixD.4. Take some aggregated state level demand
(GEFCOM2014) and household level demand (e.g. the LowCarbon London data
set). Plot the data. Compare some of the features: What is the average size of the
demand, when are the peaks in the demand? Are there several peaks in a day?
When do they typically occur? Do the daily peaks vary much from one day to the
next?

4. Generate simple rolling forecasts. Consider a half hourly time series. Create a
simple day ahead forecast for the following day by using the previous day as the
forecast for the following day (i.e. a 48 half hour shift). For example, to predict
Tuesday, use the previous Monday’s values. Consider the difference between the
actuals and the forecast (see Sect. 7.1). Now create a basic half hour ahead rolling
forecast for each half hour of the day by using the previous half hour as a forecast
(i.e. a half hour shift of the data). Try this with some of the time series from the
GEFCOM2014 data and some household data (say from the LowCarbon London
dataset). Are the errors smaller or bigger than the day ahead forecast? How do the
absolute errors compare between the GEFCOM and household data? What about
the relative errors?

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
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included in the chapter’s Creative Commons license and your intended use is not permitted by
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Chapter 6
Load Data: Preparation, Analysis
and Feature Generation

Chapter5 introduced the general definition of a forecast andmany of the concepts and
categorisation of the different types and features of time series forecasts. To develop
an appropriate model requires identifying genuine patterns and relationships in the
time series data. This requires a detailed investigation and analysis of the data, since
selecting the correct input features is, arguably, at least as important as selecting the
most appropriate forecastmodel. This data analysis and feature generation is themain
focus of this chapter. However, prior to this it is important to understand whether the
data is of sufficient quality to allow the training of a good forecast model. The next
section begins by considering important features of high quality data and potential
preprocessing which may be required. This is followed by methods for analysing the
load data and identifying features which may be useful inputs to a forecast model.

6.1 Preparation and Pre-processing

Before training the models, the data must be assessed and cleaned, otherwise the
forecasts will be trained on flawed data and the outputs will be inaccurate, mislead-
ing, or meaningless. As the machine learning mantra succinctly puts it ‘garbage in,
garbage out’. Unlike contrived data often used in textbook examples to demonstrate
techniques, real data is messy, has little-to-no formatting, and is rarely error free.

Some of the most common data issues are:

1. Missing values—Due to errors in communications or faults in the monitoring
equipment, recorded data is rarely complete.

2. Extreme values—These can be excessively large, or excessively small values.
This is particularly tricky to determine, especially for highly volatile data like
the low voltage energy demand analysed in this book. Some extreme values can
be identified since they are outside the parameters of the system, e.g. exceeding
the circuit breaker limits of a house and therefore technically not possible (unless
something is wrongwith the circuit breaker of course!). However, for themajority
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Fig. 6.1 Examples of time series plots with a a change in the level of demand, bwith missing data,
and c with a section of constant values

of the time, identification is tricky since it is often not possible to confirmwhether
a value is valid or has been recorded incorrectly.

3. Anomalous values—Dependingon the application, somevalues are clearly incor-
rect. For example on an LV network feeder with no generation all the demand
should be positive, with no values smaller than zero. Hence negative demand is
clearly impossible and, on feeders with large demand, recorded values of zero
should be treated with suspicion.

Examples of some time series with possible anomalous and erroneous data is
shown in Fig. 6.1 for difference situations. Plot (a) shows a demand level increase at
a particular point in the time series. This could be a fix to the monitoring equipment,
or could be a genuine change caused by, say, the occupants installing a new high
demand appliance (like a heat pump or electric vehicle) which causes an overall
increase in the baseline demand (also referred to as concept shift, Sect. 13.6.3). Plot
(b) shows an example of when data is missing from the time series data. Sometimes
data is missing for only occasional points, or like in this example it can be over a long
period of time. The latter can occur when monitoring equipment experiences a fault.
Finally plot (c) shows a section of constant values. Again these can be caused by
sensor equipment faults, however they are much harder to detect, especially if they
only occur over short periods, since they may not be obvious from basic analysis or
simple time series plots.

The impact of these erroneous values can have a detrimental effect on the quality
of the models and the accuracy of the corresponding forecasts. For this reason it
is important that their effect is mitigated or removed which is typically done by
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deleting them from the data set. However, removing values that are not erroneous
could reduce the accuracy of the forecasts. This is especially true when the aim
is to accurately forecast extreme values such as peaks. Further, when producing
probabilistic forecasts it could mean that the tails of the distribution are not properly
calibrated.

The topic of data pre-processing is a complex area in its own right and much
of it is beyond the scope of this book. Some extra references are included to more
advanced techniques in AppendixD.1. For this book, it is sufficient to concentrate on
some simple but common methods for identifying and cleaning up time series data.

6.1.1 Outlier Identification

Missing values are obviously easy to identify and anomalous values will also be
simple to check for. For that reason the focus is on identifying outliers which in our
case will be those values which are unusually large or small. Visual methods are a
common way to determine which points are outliers, but this can be considered a
little subjective and hence could lead to biases. For stationary time series a more
systematic identification is to identify those points which are further from the central
value of the data than would be expected given the spread of the sample of the data.
One of the most common ways of doing this is to identify those points which are
a few sample standard deviations from the sample mean (see Sect. 3.5). Recall for
normally distributed data, 95%of values arewithin 2 standard deviations of themean,
and 99% of values are withing 3 standard deviations. However, often the assumption
of data following a normal distribution is not valid and hence the true distribution
of the data is unknown. Despite this, the standard deviation approach can often be
a useful measure to understanding which points may be outliers but care should be
taken if the data is skewed and not symmetrical. For data which is not normally
distributed a more robust, but less commonly used way, is to consider how many
interquartile ranges the data is from the sample median (Sect. 3.2). More generally
estimating which quantiles the data lies in can also identify outliers. The quantiles
are often more robust to outliers than the standard deviation approach and therefore
can be preferable for defining thresholds in the data.

An illustration of using two standard deviations from the mean to detect large
values is shown in Fig. 6.2. In this relatively contrived example, three points are
clearly outliers and these have been successfully identified by using the standard
deviation criteria.

The process is much more complicated when the data is not stationary. When
there are simple and obvious trends in the time series, but the variance is fixed over
time, then the standard deviation can be calculated from the detrended series. The
detrended series is simply the difference between the observations and a model fit,
i.e. the model residuals (Sect. 5.2). Two examples are shown in Fig. 6.3 for one series
with linearly increasing trend and one with a simply single periodic behaviour. Also
included are the lines of best fit aswell as the lines indicating distances of two standard
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Fig. 6.2 Example of a
stationary time series (black
markers) with three outliers
(red circles). Also included
is the average value (solid
red line) and the average plus
two standard deviations of
the points. Any points further
than two standard deviations
from the mean are labelled as
outliers
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Fig. 6.3 Examples of
non-stationary time series
(black markers) with outliers
(red circles) for a time series
with linear trend (top) and
one with seasonality
(bottom). Also included are
the lines of best fit for the
data
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deviations of the residual series from the line of best fit. Without the detrending it
would not be clear that some of these points are outliers since they are within the
range of the full data set. A complication with this approach is that the trend fit may
be poor because of training on data with outliers/anomalous values, especially if
there are a lot of them relative to the full dataset. In that case the extreme values may
not register as outliers.

For more general time series it is not possible to easily detrend in order to identify
outliers and may not be advisable as it requires making assumption about the under-
lying process. Hence the forecaster may include some of their biases in the model
assumptions and incorrectly label some normal values as outliers. One approach is
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to develop a forecast model and compare the performance with, and without, the
assumed outliers and analyse their effect on the accuracy. There are other more
sophisticated models for identifying outliers beyond the scope of this book, some of
which can be found in the further reading in AppendixD.1.

6.1.2 Imputation

After identifying anomalous and outlier data a decision must be made as to whether
to remove the values or not. If the values are known to be incorrect then they should
definitely be removed from the data set. Otherwise if it cannot be confirmed whether
a value is truly an outlier or incorrect value then it is recommended to keep the value
in. One possibility is to run themodels both with andwithout the anomalous values to
see if the forecast is sensitive to the changes. If there are only a few anomalous values
then their inclusion may have little effect on the overall model accuracy anyway. In
some cases there may be a large amount of missing data, in which case it may
be impossible to produce any good model with decent accuracy. What constitutes
“enough” data depends on the type of data, the application and other design elements
such as forecast horizon. For short term forecasts (say one day ahead), sometimes
a reasonable benchmark forecast can be produced using only four to five weeks of
data (See the Case Study in Chap.14).

When data is missing, or has been removed due to cleaning actions, there will be
gaps in the dataset. This causes a number of issues. Firstly, it makes data handling
more complicated as techniques must be considered which ignore missing instances,
and secondly, it produces potential biases in the data since certain features may be
more prominent in the reduced dataset then they otherwise would be. If the missing
data is relatively random then there is very little bias introduced and the forecasts
can be trained on the reduced data without concern that the models will be skewed
by any biases.

An alternative method for dealing with missing values is to insert or impute other
values. The process is known as imputation. This simplifies analysis and model
training on the data and there are several different ways to choose the values to
insert:

• Simple Average—this maintains the sample mean of the data but ignores any
trends or seasonalities. A moving average (over a moving window around the
data) can be used to better fit any trends.

• Last value—this retains the trends in the data and means that the missing values
are filled with recent values. However, this ignores any other patterns which may
be in the data. It is worth noting that many data acquisition systems used to collect
power data often forward fill at regular intervals if they stop receiving data.

• Seasonal Average—if the data has seasonality then this retains those features. For
example, if the data has daily seasonality then a missing value at 4pm could be
filled by using an average of the values at 4pm from the previous days.
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• Regression—Regression is considered in Chap.9 but essentially this means using
a weighted average of surrounding values to fill the missing data. This allowsmore
complex relationships to be included to impute missing values.

• Interpolation—More generally a curve could be fitted (e.g. a polynomial) to the
surrounding values of the missing data point and the value on the curve at the
missing point can be used to impute the value (See an example of interpolation in
Sect. 9.6).

6.1.3 Normalisation and Transformations

Even after cleaning the data, in it’s raw form, the data may not be suitable for using
directly within a model. For example, for a linear regression model (Sect. 9.3) there
are assumptions that the errors follow a Gaussian distribution. This is unlikely to be
always true, especially for smart meter data which in some cases has been shown to
follow a lognormal distribution (see Sect. 3.1). Further, notice that unless there are
reverse power flows at the meter, say due to solar PV generation, then smart meter
demand should always be nonnegative (i.e. positive or zero) which is not true for
Gaussian distributed data, but will be for a lognormal distribution. Recall (Sect. 3.1)
a random variable z has a lognormal distribution if it has PDF of the form

f (z) = 1

z
√
2πσ

exp

(−(ln(z) − μ)2

σ2

)
. (6.29)

By definition this just means that the transformed variable e.g.

x = (ln(z) − μ)/σ (6.30)

has a Gaussian/Normal distribution. In other words if data is nonnegative, has one
long positively skewed tail, applying a lognormal transformation may produce nor-
mally distributed data. This in turn may be easier to manipulate and utilise. After
training a model on this data an inverse transform can be applied to the forecasts to
obtain physically representative data. An example of lognormally distributed data
(μ = 0,σ = 0.5) is shown in the histogram in Fig. 6.4 (left), together with the same
data but log-transformed (right). Notice the lognormal transformed data is now sym-
metric and bell-shaped as expected and now allows negative values.

Another common transformation applied to raw data is normalisation, where the
data is scaled prior to visualisation and/or modelling development. This can have
two main advantages. Firstly, consider a situation where more than one variables
is being modelled, but they have very different ranges of values, say one is bound
between 0 and 10 and another is between 0 and 1000. In this case, it can be very
difficult to visualise or understand the relationships between them due to the extreme
difference in their relative variations. Scaling these values can better highlight these
relationships.
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Fig. 6.4 Example of the distribution of a sample of data a with a lognormal distribution and then
b the same data but transformed using the log function
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Fig. 6.5 Examples of two variables from a bivariate distribution (a) original variables (b) the same
data but each variable has been scaled to be between 0 and 1

The second major reason for scaling is to help with training the parameters of a
model (see Chap. 8 on training). The scale of the data may effect the scale of the
parameters. By normalising the data, this restricts the range of the data, and reduces
the search space for the optimal parameters. A simple two variable example is shown
in Fig. 6.5 where the scatter plot of the original variables is shown in (a) and the
rescaled variables are in (b). The scaling has been performed so that each variable is
between 0 and1. In the original data the spread of X1 is between−2 and10, in contrast
the X2 variable is between 400 and 500, hence has bigger magnitude and spread.
If we were training a linear model, e.g. y = aX1 + bX2 on this data we would see
that b would be relatively small compared to a otherwise the responses to changes
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in the dependent variables (within their respective ranges) would produce wildly
different responses y. It also means that the coefficients therefore have different
search ranges. In contrast the normalised variables would reduce the search space
for the linear coefficients a, b. Note that the relationships between the variables will
still be preserved by the normalisation albeit scaled.

As will be shown below, there are several ways to normalise the data, but an
important requirement is that the data can be rescaled back to its original size. One
of the most common forms is the Min-Max Scaler which transforms the variables
into the interval [0, 1]. Assuming that the time series has a maximum and minimum
value given by xmax and xmin respectively, then the scaled version of any data point
x is given by

x̂ = x − xmin

xmax − xmin
, (6.31)

and thus the series transforms to one which has the maximum value of one, and the
minimumof zero. Note if you have an extreme outlier then xmax and xmin may produce
an unsuitable normalisation. In this case it may be worth cleaning/preprocessing the
data before performing the scaling (see Sect. 6.1.1). To recover the original values
you simply rearrange the calculation:

x = xmin + x̂(xmax − xmin). (6.32)

Another common methods is the Standard Scaler which subtracts the mean of
the series, μ, and divides by the standard deviation, σ,

x̂ = x − μ

σ
. (6.33)

The new series has mean zero and a unit variance and the values are no longer
constrained within [0, 1]. Note that the mean may be strongly effected by outliers
so as with the Min-max scaler it may be worth removing them (Sect. 6.1.1) before
proceeding with the normalisation.

To avoid the effect of outliers there are other normalisations such as the Robust
Scaler which uses the median x50, and the interquartile range x75 − x25 which is the
difference between the 25th and 75th percentile (See Sect. 3.2 for further details on
percentiles/quantiles). The scaled variables are given by

x̂ = x − x50
x75 − x25

. (6.34)

This has median zero but note that there may still be outliers in the transformed
series.

Now consider how to fit a model to scaled data in a simple example. Consider the
linear model

y = ax + b, (6.35)
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for variables x, y and coefficients a, b ∈ R. Suppose we scale the variables x , y to
x̂ , and ŷ respectively. The parameters â, b̂ are found for the scaled model

ŷ = â x̂ + b̂, (6.36)

and by substituting the rescaling (e.g. Eq. (6.32)) you can estimate the original simple
model. This case is much simpler than others as the relationships are all linear. The
transformation may not be possible for other more complicated cases.

6.1.4 Other Pre-processing

As well as dealing with missing and anomalous data there is also some standard
pre-processing procedures which also should be considered.

Firstly, many time series forecasting methods depend on the values being spaced
equally in time. This is often the case as much monitoring equipment is calibrated to
record at uniform intervals. However, if the data is not at uniform intervals the data
can be estimated at these time steps by interpolating to the time steps of interest. This
obviously creates extra errors (in this case errors from the estimation) but they will
be smaller the higher the resolution of the original data, and the smaller the volatility
of the data. Unfortunately, there is few techniques and packages for dealing directly
with time series data which is not recorded at uniformly spaced intervals. However,
since most energy monitoring is either high resolution or is designed for regular
intervals the rest of the book will assume the data is equally spaced in time with
negligible interpolation errors.

Another common issue is the fact that different input data is defined at different
temporal resolutions. For example the load data may be recorded at half hourly
intervals but the corresponding temperature data may be at hourly resolution. If the
temperature variables are important explanatory input variables for a load forecast
then it may be worth resolving both data sets to the common resolution of hourly
data.1 For energy data (kWh) this essentially means summing the data over the two
half hours, whereas for average Power (kW) data this would require averaging over
the two half hour points. The latter (Power) is the more common representation of
load data.

6.2 Feature Selection and Engineering

One of the most important factors for creating an accurate forecast is choosing
the most appropriate features to include in the model. In many cases the features
are more important than the forecast model used. One option is to include all the

1 Alternatively the temperature data could be interpolated to half hourly.
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available features and fit a model which penalises the number of parameters used
in the model, such as information criteria and regularisation techniques (Sects. 8.2.2
and 8.2.4). These methods can be used to select variables and create a parsimonious
model. In this section several methods will be considered for identifying potentially
important relationships between the dependent and independent variables.

As will be discussed in Sect. 8.1 the aim for choosing features is to achieve a
bias-variance trade-off. In other words, to try and include all the important features
that describe the data, but not too many that the model will end up overfitting. If the
number of potential features to include in the model is large then it may be worth
considering the information criteria and regularisation techniques mentioned above
to reduce the features to the most important ones.

6.2.1 Domain Knowledge

Some variables can be automatically selected based on the domain of interest. For
example, if trying to forecast ice-cream sales it would be reasonable to suspect that
the outside temperature is a strong determining factor. Similarly when considering
residential households energy usage it would be sensible to assume that the demand
would be related to time of day and day of the week due to typical behavioural
patterns (However, note it is also easy to find households, such as shift workers, who
probably won’t neatly fit this assumption). In each application there are some strong
candidates which, if available, could be included as features in the forecast model.
At the very least, further investigation should be applied, e.g. using the visualisation
techniques presented in Sect. 6.2.2.

If the obvious candidates are not readily available or cannot be measured, then
proxy values could also be considered. These are values which are closely correlated
to the value considered. For example, the weather data may not be available in the
exact location of interest but may be available from an adjacent town. Another real
life example of proxy values is where scientists use ice core and tree ring data as a
proxy for the past climate.

6.2.2 Visual Analysis

Visualisation is essential for better understanding the data and determining potential
features to include in your models. They can also be used to confirm (or deny)
relationships that the forecaster anticipates would be useful, or discover entirely new
relationships.

The most obvious visualisation for time series data is to simply plot the data
against time, unsurprisingly this is called a time series plot. Many examples have
already been shown including Fig. 5.1. These examples show some simple features
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Fig. 6.6 Example of hourly time series of a electricity demand in kW, and b temperature in
Fahrenheit for the whole year of 2004 in the GEFCOM 2012 data set [1]

which are readily identified from a plot including whether the data is stationary (does
the distribution of data change in time), and any seasonal or linear trends.

Figure6.6 shows an example of real, hourly, electricity demand (for one zone for
an American Utility) using one year of the Global Energy Forecasting Competition
2012 data (GEFCOM 2012)2 and the temperature from a nearby weather station (for
the data and more details on GEFCOM 2012 see [1]). Instantly evident is the annual
seasonalities in both the demand and the temperature values. The demand has high
values at the start, middle and end of the year, likely due to the use of increased
heating in the winter periods and increased use of air-conditioning in the summer
months. It is clear then that the temperature and the demand time series are correlated
with each other.

The relationship between temperature and demand is more easily visualised
through a scatter plot which plots one variable against the other, with each point
corresponding to each hourly period. This is shown in Fig. 6.7. In this form the rela-
tionship between the variables is much clearer and other characteristics are evident.
For example, it can now be seen that, for temperatures less than 50 ◦F, the demand
increases as the temperature decreases but at a much slower rate than the increase
in demands with increases in temperatures above 50 ◦F. Using the extra informa-
tion which the scatter plot has revealed, the shape of the relationship can be used to
develop more accurate forecast models.

2 Available from http://blog.drhongtao.com/2016/07/gefcom2012-load-forecasting-data.html.

http://blog.drhongtao.com/2016/07/gefcom2012-load-forecasting-data.html
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Fig. 6.7 Scatter plot of the hourly load versus the hourly temperature for 2004 in the GEFCOM
2012 data [1]

If there are several variables then it can be cumbersome to produce scatter plots
for all the different relationships between the different variables. A more concise
representation is a pair plot (also known as a scatter plot matrix). This is just amatrix
of scatter plots which compares the relationship between each pair of variables. An
example of a scatter plot is shown for simulated data in Fig. 6.8 for three variables.
Row k ∈ {1, 2, 3}, column j ∈ {1, 2, 3} represents the scatter plot for kth variable
against j th variable. Notice that row j and column k displays the same information,
just reflected, since the plots are reflected across the diagonal of the scatter matrix.
Often, as in this example, the kth diagonal contains a histogram of the kth variable.
In other words it shows an estimate of the marginal distribution of this variable (see
Sect. 3.3 for the definition of a marginal distribution).

It is worth bearing in mind throughout this section and Sect. 6.2.4 that although
variables are correlated this does not mean there is a causal link between them (the
adage “correlation doesn’t imply causation”) but this also doesn’t mean that features
are not useful for the purposes of forecasting, this is known as Granger causality.

6.2.3 Assessing Linear Relationships

The scatter plots in Sect. 6.2.2 can suggest different relationships between variables.
The Pearson correlation Corr(X, Y ) for two random variables X and Y is defined
as
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Corr(X, Y ) = E(X − E(X))(Y − E(Y ))

σXσY
, (6.37)

and is a usefulmeasure of the linear correlation between them.HereσX andσY are the
standard deviations of X and Y respectively, and E(X), E(Y ) are the corresponding
expected values (see Sect. 3.3) for more details). The value ranges from −1 to 1. A
value of 1 means the values are perfectly linearly align and positively correlated,
i.e. the increase in X will correspond to a linear increase in Y . For a value of −1
the values are again perfectly linearly aligned but this time negatively correlated, so
the increase in one variable will simultaneously correspond to a linear decrease in
the other variable, and vice versa. Values inbetween indicate less correlation, with
Corr(X,Y ) = 0 indicating no correlation at all.

The lines of best fit and the correlation coefficients are shown for each pair of
variables in Fig. 6.8. In this case it is clear that variables X1 and X2 have very little
correlation (0.05), as do variables X1 and X3 (0.01). In contrast variables X2 and
X3 are strongly positively correlated (0.85).

If several predictors are highly correlated with each other then there can be dif-
ficulty in understanding their individual effects on the dependent variable. It may
mean that the model is splitting the importance of each variable (e.g. via its trained
coefficient) in a way which would be very different if only one of the variables was
included in the forecast model. The importance of a variable could be underesti-
mated when included in a model with a variable for which it is highly correlated
as its influence may appear minimal. In theses cases it may be worthwhile testing
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Fig. 6.8 Scatter plot matrix example for three variables. Also included is the line of best fit and
their pearson correlation coefficient (see Sect. 6.2.3)
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models with different combinations of the correlated inputs to see their effect on the
forecast accuracy. The effect of collinearity is discussed further in Sect. 13.6.1.

The Pearson correlation is limited to linear relationships and therefore is not useful
for measuring the potential of nonlinear models for the relationships between two
variables. For example, it is clear that the relationship between load and temperature
is not linear in Fig. 6.7. A common way to test the descriptive quality of a model
between variables is the so-called coefficient of determination or R2 value (R
squared), which describes howmuch a model (for example a line) describes the data,
and is defined by:

R2 = 1 − SSres
SStot

= 1 −
∑N

k=1 r
2
k∑N

k=1(Yk − Ȳ )2
, (6.38)

where Ȳ = (1/N )(
∑N

k=1 Yk) is the mean of the observations, rk are the residuals
between the model and the observations, SStot = ∑N

k=1(Yk − Ȳ )2 is the total sum
of squares difference between the observations and the mean, and SSres = ∑N

k=1 r
2
k

is the sum of square residuals. R2 typically takes values between zero and one
(but can take negative values when the model is worse than the mean estimate),
with the best case R2 = 1 since the model would perfectly fit the observations and
hence SSres = 0. Explanatory variables with larger R2 value can be considered more
important for describing the dependent variables than those with smaller values.
The value of the coefficient of determination can be interpreted as how much of
the variation in the dependent variable is captured by the model, so for example,
an R2 = 0.75 indicates 75% of the variation is explained by the model. Care must
be taken when comparing different models. Better fits (and thus larger R2 values
can usually be achieved by increasing the number of parameters, hence models
with different numbers of inputs cannot be compared with the traditional R2 values.
Instead an adjusted R-squared is often used which still compares how much of the
variation is captured by themodels but also controls for their complexity (the different
numbers of parameters). The adjusted coefficient of determination is defined as

Ad j R2 = 1 − (1 − R2)
N − 1

N − p − 1
, (6.39)

where p is the number of independent variables in the model (excluding any constant
term in the model). The adjusted R2 value is always less than or equal to the R2

value, Suppose a new parameter is added to the model, then the adjusted coefficient
of determination increases if the improvement in R2 is more than would be expected
by chance. Note, that a good R-squared may be achieved by simply overfitting the
data but this doesn’t mean the forecasts will be accurate (Recall Sect. 8.1.2), and the
adjusted R2 helps to mitigate against this.
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6.2.4 Temporal Correlation Analysis

The previous sections have compared at least one variable against another variable.
However, in time series, the future values frequently depend on their historical values.
The autocorrelation function (ACF) can be used to assess these temporal inter-
dependencies. The autocorrelation simply calculates the correlation between the time
series and a shifted (or lagged) version of itself. For a time series (L1, L2, . . . , LN )

T

the ACF at lag k is defined as

ρ(k) = 1

Nσ2

N−k∑
i=1

(Li − μ)(Li+k − μ) = R(k)

R(0)
= R(k)

σ2
, (6.40)

where μ is the sample mean and σ2 is the sample variance for the time series (see
Sect. 3.5 for more details). The important lags can be found by examining an auto-
correlation plot, which plots the autocorrelation as a function of the number of lags.
The autocorrelation plot for the GEFCOM 2014 hourly demand data is shown in
Fig. 6.9. It is clear that there is strong daily seasonalities in the data given the cyclical
nature of the ACF and the bigger peaks at lags of multiples of 24h.

A drawback of the autocorrelation function is that values at shorter lags contribute
to the value of the autocorrelation function at longer lags. The partial autocorrelation
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Fig. 6.9 Example of autocorrelation (top) and partial autocorrelation (bottom) for the hourly load
data from GEFCOM 2014 [1]
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function (PACF) at lag k can reduce this effect by removing the effects of the lags
at 1, . . . , k − 1 (see Sect. 3.5 for the formal definition). In Fig. 6.9 the partial auto-
correlation for the GEFCOM load series is also shown in the bottom plot. Notice
now, that the sizes of the PACF values are much lower at the daily lags of 48, 72, . . .
but the value increases slightly at lag 168, which corresponds to a full week and
indicates weekly correlations in the time series. This means that the lag at hour 24 is
still significant, as is the weekly lag, but other daily lags i.e. at two, three, four days
previous etc. are perhaps less significant since the correlation shown in the PACF is
much weaker.

Large autocorrelations or partial autocorrelations at particular lags can inform
which historical data to include in a forecast model. For example, if, as above,
there is some relatively strong correlations at weekly lags it is worth considering
including the data from previous weeks from the same time period of day, in the
forecast model. Historical inputs from the same time series to a model are often
called autoregressive components. As will be shown in Sect. 9.4, the ACF and
PACF plots play an important role in the parameter selection of ARIMA models.

As shown in Sect. 3.5 we can also consider the cross-correlation between two
separate time series. This not only shows the correlation between them, but also the
correlation between lags of the two series. For example, although heating demand
may be driven by cold temperature, there may be a delayed response (especially in
homeswith good insulation) and hence itmay be important to include the temperature
as input together with the values from a few time steps previously. Consideration of
the cross-correlation (Sect. 3.5) can be used like the autocorrelation plots to identify
significant lags to include within your model. An example between the temperature
and load data for the GEFCOM data is shown in Fig. 6.10. The x-axis shows the lags
(up to a 24h either way) between the series. Notice they are allowed to be negative
here since either series can be lagged, the negative lag means the correlation is
between lagged (historical) values of the temperature against the load without lag.
First notice the cross correlation is negative but not too strong. in fact it would be
much more negative if comparisons had been made between the series inWinter, and
similarly been positive in Summer, due to the heating versus air-conditioning patterns
as shown in Fig. 6.7. However, since the cross correlation measure linear correlation
the coefficient values are much weaker due to conflating the positive and negative
correlations. Another thing to notice is that the values are not symmetric around zero
lag. This is because there is likely a delay between the effect of temperature on the
overall load.

6.2.5 Basic Functions as Features

The feature selection methods above have largely required manual investigation and
visual analysis. This can be quite time consuming and impractical for forecasting
large numbers of time series. A more automatic way to train a model is to build it
from individual components, whichwill be called basis functions. This is particularly
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Fig. 6.10 Cross correlation coefficients between hourly temperature and hourly load for 2004 in
the GEFCOM 2012 data [1]

useful for time series exhibiting periodic behaviour as is the casewith energy demand
time series. In other words a time series (or segment of a time series) Yt can bewritten
as a linear combination of simple functions/vectors φk(t),

Yt =
∞∑
k=1

αkφk(t). (6.41)

Where αk are the coefficients that must be found. The most common example of
this is the Fourier Series which has periodic basis functions of the form sin

(
2πkt
K

)
and cos

(
2πkt
K

)
for t ∈ [−K , K ].

Using basis functions as features means that each time series can be trained whilst
reducing the development of bespoke features for each time series. Instead of the
infinite sum in Eq. (6.41), in practice a finite sum is chosen, however as mentioned
in the previous section, this could cause overfitting of the time series to the training
data and thus must be carefully chosen.Methods for choosing an appropriate number
of terms, are given in Sect. 8.2.2. A special case of basis features, using splines is
described for generalised additive models in Sect. 9.6.
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6.2.6 Common Features in Load Forecasting

Load is comprised of several different types of consumers, from residential, to small-
to-medium enterprises (also called SMEs) such as hairdressers, small shops, etc.
There is also larger commercial consumers (larger supermarkets, schools, etc.), and
finally industrial consumers which usual comprise of larger demands such as steel
production and other heavy industries. Forecasts may be required for the demand
of these individual customers or for the load at the substations, or over larger areas
and therefore consist of aggregations of these individuals consumers and other con-
nections. These other connections may be anything from street-lighting, but also
distributed generation (e.g. solar farms or wind turbines). Therefore there is no sim-
ple set of features which model all types of demand. However, there may be some
featureswhich are common, or at the very least, worth testing to identifywhether they
would make useful explanatory variables. This section will discuss some common
ones.

First, it is worth mentioning that even the same type of consumer (domestic,
SME, etc.) may still have very different demand behaviours from each other with
very different drivers. For example, a house that uses electric heating will likely have
electricity demand driven by temperature, in contrast one that is gas heated may have
electricity demand which has little-to-no influence from the weather. Secondly, the
demand of aggregations of consumers will likely becomes more regular the larger
the aggregation although the main drivers may be less clear, or alternatively some
features could become more pronounced. As shown in both Fig. 1.2 (Sect. 1.2) and
Fig. 2.5 (Sect. 2.3), the weekly regularity is improved with larger aggregations.

We have already discussed weather quite a lot in this Sect. 6.2 but as in the gas
versus electric heating example mentioned above it may not be obvious if weather
will have an effect on the demand without further investigation. Further, as discussed
in Sect. 6.2.4 it is also worth checking cross-correlation and the lagged variables as
there may be delays in the effect. If a relationship is observed it is unlikely to be
completely linear, as illustrated in Fig. 6.7. In this plot of temperature versus demand,
demand increases below 50 ◦F demand due to heating but there is also an increase
for temperatures above 60◦ due to air conditioning. In this case it may be worth
modelling the relationship as a piecewise linear model, a polynomial, splines, or
other basis functions (Sect. 6.2.5).

In addition to temperature, other weather variables can also be important for
demand forecasts:

1. Wind Speed: higher wind speeds can increase the effect of experienced tempera-
ture, e.g. colder temperatures will feel colder the faster the wind speed. This may
have a knock on effect that the heating is turned on sooner. This variable is known
as wind chill and is engineered by combining the temperature and wind speed.

2. Humidity: Similarly higher humidity’s can increase the felt temperature. One way
to describe this is thehumidity index, a combination of humidity and temperature.
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3. Solar Radiance and visibility: the sun radiates on the earth and increases the
temperature of the earth. If there is a lot of cloud then less radiation reaches the
surface and the temperature will be lower than on a clear day.

Daily andweekly periodicity is often common in electricity loads. Residential and
commercial demands are driven by human behaviour and needs and hence follow
daily and weekly patterns. However, of course there are exceptions such as doctors
and nurses who may have different daily patterns in their behaviour due to the differ-
ent shifts they work. Including autoregressive effects at daily and weekly lags (e.g. a
lag of 24 and 168 respectively for hourly timeseries) is one way to include the period-
icity in the model. However, this doesn’t model the general day of the week effects.
To include an effect for “Monday”, “Tuesday”, etc. means including the effect of
seven categorical variables into a model of electricity demand which is a continuous
variables. This requires adding an update, or change, to the demandwhich is different
depending on the day. A common way to do this is via so-called dummy variables.
Dummy variables can take values of zero or one depending on the falsity or truth of
the presence of a variable. For example, say W (k) is a variable which is one if the
time step k occurs on a day which is a weekday (Monday, Tuesday,…, Friday), and
zero if not, i.e.

W (k) =
{
1, if time step k occurs on weekday

0, otherwise
.

This is called the dummy variable for a weekday. If instead the model requires the
effect of each weekday to be represented, it is required to include a corresponding
dummy variable for each day. In this case, define the dummy variables Dj (k), for
j = 1, . . . , 7 to be

Dj (k) =
{
1, if time step k occurs on day j of the week

0, otherwise
.

It is often not desirable to define N dummy variables to represent the entire set of N
possible values. For example, there is only seven days of the week, which means the
seventh day is simply defined as not being any of the other six days. Only six variables
are needed since they can be added as a correction to the default seventh day. Since
one variable can be modelled by the other six if all seven variables are included in
the modelling this creates colinear variables (Sect. 13.6.1) which can cause issues
with the training of parameters in the final model. This is also known as the dummy
variable trap. Note that, the term “dummy variables” is often used in statistical
modelling whereas in machine learning, it is often called one-hot encoding.

We’ve already seen in Sects. 5.1 and 6.1.1 there is often long term changes in
the demand time series signal. This could be large scale annual seasonality or linear
trends for example. Demand series is often changing, there is new technologies, or
more efficient versions of the same appliances, or there may be changes in which
customers are connected to the network (a hairdressers turning into a convenience
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store). If these differences are clearly observed in the time series then it may be
worth including them as explicit variables within your model. A linear trend in the
series could be included by simply including the time step indicator in the model.
In a simple linear model (Sect. 9.3) a trend is included by adding a term such as bt
where t is the time step and b ∈ R is a parameter to be trained.

Another common feature of demand time series is annual seasonal trend. Energy
demand often increases in the winter due to increased demand, and in the summer
may be at its lowest level since the temperature may be warm enough so no heating is
required (in hotter counties there is often an increase in demanddue to air conditioning
appliances). These patterns represent periodic patterns and hence should be included
in the models. One option would be to simply add the day or time period of the year,
by, for example generating a large number of dummy variables. However, in this case
there wouldn’t be many historical examples to train the parameters and the model
may not generalise very well. It is often preferable to use periodic variables which
can estimate the seasonality with fewer parameters. One very basic example is to
use basis functions (Sect. 6.2.5). Trigonometric functions such as sin at and cos bt
are one option. The parameters a, b ∈ R can be chosen (or preferably trained) to
ensure that the period is appropriately chosen to match the pattern within the signal.
Multiple trigonometric functions (with different periods) can be chosen to improve
the fit and generate complicated patterns, see Fig. 6.11. There are more complicated
choices as well such as wavelet functions, which are not explored here. We give an
example of using trigonometric functions within a linear model in the Case Study in
Sect. 14.2.
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Fig. 6.11 Demonstration of how to model seasonal patterns with trigonometric functions. Two
seasonal functions (top and middle) have been combined to generate a more complicated seasonal
pattern (bottom)
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6.3 Questions

For the questions which require using real demand data, try using some of the data
as listed in AppendixD.4.

1. Consider different methods for imputing missing values. Select a demand time
series. Simulate missing values by removing them from the time series (save them
for comparison later). Now consider filling them in using some of the techniques
given in Sect. 6.1.2. Comparing to the real values.Whatmethods seems to perform
the best? Why do you think this may be?

2. Select a demand time series, and select four weeks worth of data. Calculate the
sample mean and standard deviation. Which values are more than two standard
deviations from the mean?What about three standard deviations? Do these values
look unrealistic or too large? Now calculate the median and interquartile range.
How many interquartile ranges from the median are the largest values?

3. Take a time series with average kW or kWh values at half hourly resolution.
Convert the data into hourly by averaging the data over each pair of consecutive
half hours. Reconvert the data back to half hourly by linear interpolation. What is
the difference in the reconstructed half hourly data compared to the original data?
Where is the error largest, why is this? Try using a higher order polynomial (e.g.
cubic) for the interpolation. Is this more accurate? How does it compare using
household smart meter data versus system level data (e.g. GEFCOM 2014)?

4. Other than temperature what may be some other important weather variables
which may affect the electricity demand within a home, or more general for
the national demand? What about non-weather data, what else would be good
indicators of demand?

5. Consider the London Smart meter data.3 Plot a scatter plot of the different weather
values against demand. Which variables have the strongest relationship with
demand? Are the weather variables related to each other? What is the correla-
tion between them? Which has the largest correlation value.

6. Take a demand time series. Plot the autocorrelation and partial autocorrelation
of the series. At what lags is the correlation strongest? Plot a scatter plot of the
demand against lags of the demand series. Include a lag of one time step, and also
the lagswhich gave the largest autocorrelation values.Are the relationships linear?
If they are linear calculate the adjusted coefficients of determination. Which lags
give the biggest values?

3 https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london?select=weather_hourly_
darksky.csv.

https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london?select=weather_hourly_darksky.csv
https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london?select=weather_hourly_darksky.csv
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Chapter 7
Verification and Evaluation of Load
Forecast Models

Whatmakes a good forecast?This section aims to introduce someof themain tools for
evaluating the quality of time series forecasts. It is worth noting that this is still a very
active research area, especially in the developing area of probabilistic load forecasts.
Obviously error measures can only be calculated after the actual observations have
become available, although in practice forecasts are evaluated on the historical data
by splitting it into training and testing periods (see Sect. 8.1.3).

Of course, when a forecast is required for a particular application why is it not
more appropriate to simply evaluate the forecast based on its performance for that
application? One of the reason’s is that the performance of an application (See exam-
ples of applications in Chap. 15) is not usually defined in a simple way and may be
computationally infeasible, especially if multiple evaluations are required. Instead
simpler, easier to calculate measures, such as those introduced in this chapter are
used. However, it still does not mean that any measure can be used and it is always
preferable that one is chosen which aligns to the application as closely as possible.

This section will begin by introducing error measures which are used for both
evaluating the accuracy of the forecasts but are also to compare and select between
various models (Sect. 8.2). Before looking at specific error metrics and measures
it is worth noting that the measures have to be different depending on whether we
are considering point, or probabilistic forecasts (Sect. 5.2) with the latter having
several different forms which may require different measures. The next section con-
siders point forecast measures, and then probabilistic error measures are discussed in
Sect. 7.2. These measures can be used to define skill scores, an important evaluation
method for forecast skill, and are considered in Sect. 7.4. The chapter then finishes
by illustrating ways to improve a forecast based on residual checks and other forecast
correction methods.
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7.1 Point Forecast Error Measures

To define the error measures, consider two h-step-ahead point forecasts

L̂(1) = (L̂(1)
n+1, L̂

(1)
n+2, . . . , L̂

(1)
n+h)

and
L̂(2) = (L̂(2)

n+1, L̂
(2)
n+2, . . . , L̂

(2)
n+h)

for a time series with actual values given byL = (Ln+1, Ln+2, . . . , Ln+h). The errors
between the forecasts are defined by

e(k) = L − L̂(k) = (Ln+1 − L̂(k)
n+1, Ln+2 − L̂(k)

n+2, . . . , Ln+h − L̂(k)
n+h) = (e(k)1 , e(k)2 , . . . , e(k)h ),

(7.42)
where k is 1 or 2. How can these forecasts be scored and these errors summarised
in order to compare which one is ‘closer’ to the actual values and hence which is
more accurate? The answer is not obvious as there are several ways to choose how
to measure this (unless e(k) = 0 of course, in which case you’ve achieved a perfect
forecast!).

As an initial choice, consider norm functions, a common way of measuring the
distance between vectors. Given any real-valued vector x = (x1, x2, . . . , xN ), the
p-norm of x is defined to be

||x||p =
(

N∑
k=1

x p
k

)1/p

= (x p
1 + x p

2 + · · · + x p
N )

1/p, (7.43)

where p ≥ 1. The most common norms are the 1-norm (i.e. the absolute sum),

||x||1 = |x |1 + |x |2 + · · · + |x |N , (7.44)

the 2-norm (known as the standard Euclidean norm),

||x||2 =
√
x21 + x22 + · · · + x2N , (7.45)

and also the ∞-norm which is defined as ||x||∞ = maxk∈{1,...,N } |xk |. The p-norms
are metric functions which have the following useful properties which make them
well-defined and intuitive for measuring the difference between two vectors:

1. Positive Definite: ||x||p ≥ 0 and ||x||p = 0 if and only if x = 0 = (0, 0, . . . , 0).
In other words the sizes are always positive and only zero if all the elements of
the vector have no size.

2. Triangle Inequality: For two vectors x, y ∈ R
N then ||x + y||p ≤ ||x||p + ||y||p.

This has the intuitive interpretation that the distance from A to B and then B to
C will always be longer than the distance directly from A to C .
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Table 7.1 A comparison of different p-norm values applied to two vectors as described in the main
text (values to the nearest 2 decimal places)

p-norm e(1) e(2)

1 1.2 1.2

2 1.01 0.69

∞ 1 0.4

The choice of p determines the emphasis of the p-norm on different compo-
nents of the error, with larger p values meaning that the norm more strongly rep-
resents the larger error components. To illustrate this consider two error vectors
e(1) = (1, 0.1, 0.1) and e(2) = (0.4, 0.4, 0.4), produced by two different 3-step ahead
forecast models. The first model has a relatively large peak error whilst the second
has no such large errors and has constant errors at each time step. The errors scores
for each forecast for three p-norms with different values of p are shown in Table7.1.
First, notice that the sum of the absolute errors are equal for both forecasts and hence
||e(k)||1 = 1.2 for k = 1, 2. Thus the 1-norm evaluates both forecasts as having the
same errors. In contrast the ∞-norm only focuses on the largest value and hence
gives values of 1 and 0.4 for forecast model 1 and 2 respectively, but doesn’t take
into account any information about the other errors. Choosing a value of p between
these extremeswill produce an error valuewhich includes contributions from all error
values but with stronger influences from the larger values the larger the p value. In
this example it can be seen that the 2-norm produces a similar value for e(1) as the
∞-norm but has a value for e(2) which is between both the 1-norm and ∞-norm.
Hence the 2-norm includes a contribution from all components of the error but the
larger errors contribute slightly more than the 1-norm. The point of this example
is that the choice of error measure is an important aspect of the application being
considered.

Despite the potential subjectivity in the choice of error measure there are some
commonmethods which are applied in time series, and in particular load forecasting.
On their own norms are not usually appropriate as error measures as they don’t scale
with the problem. The size of the errors will grow with the length of the series which
inhibits the comparison of different forecast horizons. For this reason they are often
combined with normalisations. One of the most common error measures is the mean
absolute error (MAE), defined using the 1-norm as

MAE(L, L̂) = 1

h
||L − L̂||1 = 1

h

h∑
k=1

|Ln+k − L̂n+k |. (7.46)

The MAE gives an average absolute error for all time points in the forecast horizon,
n + 1, . . . , n + h. A useful property of absolute error measures is that the units of the
error are often the same as the data being considered which simplifies interpretations.
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Since in much of the examples considered in this section the data will be in energy
units (e.g. kWh), the errors will be in the same units as well.

Another common error measure, which also preserves the units, is the root-mean-
square error (RMSE) which is defined in terms of the 2-norm as

RMSE(L, L̂) = 1√
h

||L − L̂||2 =
√∑h

k=1(Ln+k − L̂n+k)2

h
. (7.47)

As seen earlier in this section, the power on the error measure can play an important
role in what type of errors the measure focuses on. The higher the power the more
focus the measure has on larger errors. Hence for RMSE, the larger errors will
contribute relatively more to the overall score than with the MAE. This can be
important if you are interested in assessing which forecast may be more suitable in
accurately estimating extreme values, such as peaks in demand.

A drawback of absolute-type error measures such as MAE and RMSE is the
difficulty in making comparisons of accuracy when time series have different mag-
nitudes. For example, an error of 1kWh in a day ahead forecast is quite significant
when the daily demand is only 2kWh but negligible for substation feeders which
regularly have daily demands of 100kWh or more. A more accurate comparison of
these errors may be to present the percentage errors relative to the size of values
in the time series. In this case the 1kWh error is 50% of the overall demand for
the substation with 2kWh daily demand but only 1% for the substation feeder with
100kWh daily demand.

One of the most commonly used scores for evaluating the relative accuracy of a
point forecasts is the mean absolute percentage error (MAPE) defined by

MAPE(L, L̂) = 100

h

h∑
k=1

|Ln+k − L̂n+k |
|Ln+k | . (7.48)

The individual error at each time step, |Ln+k − L̂n+k |, is divided by the absolute
demand |Ln+k | and averaged to give a relative score. The score is often multipled
by 100 in order to provide a percentage score. The MAPE is not appropriate for
series which have zero or very small values, for example, household level electricity
demand, or on a feeder with a lot of localised generation. Small Lk values will inflate
the size of the errors at time tk , masking the true accuracy of the forecast. TheMAPE
is not even defined when the true value is zero, Lk = 0. One alternative employed
in this book is to instead replace the denominator with the average value 1

N

∑
Lk .

This is known as the weighted absolute percentage error (WAPE). The same scaling
can also be applied to the RMSE and MAE to create relative error measures. Above
are some of the most common error measures used in load forecasting but of course
there are several other measures which could be used, including those which avoid
the issue of dividing by zero.
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Directly comparing error measures between forecasts can help compare forecast
accuracy but they can be complicated if the underlying time series has varying levels
of predictability. In Sect. 7.4 skill scores are discussed which are very useful for
comparing forecast models by utilising a common benchmark to help with interpre-
tation.

It is important to carefully select the error measure that suits the application or
purposes of the forecast. A special case will demonstrate this in Sect. 13.3, which
presents household level load forecasts. Many standard error measures (including
the ones presented here) may be inappropriate for providing an objective score for
evaluating the accuracy of a forecast. Instead a novel approach is considered showing
that there is no need to restrict your evaluation methods to the most popular or
common ones such as RMSE or MAPE.

7.2 Probabilistic Forecast Error Measures

The above scores are only applicable to point forecasts and are not appropriate for
assessing probabilistic forecasts. These forecasts are less straightforward to evaluate
due to the increased complexity and the various forms that probabilistic forecasts can
take (quantile, density, ensembles, etc.) as described in Sect. 5.2. In this section, the
focus will be on scores for univariate1 probabilistic forecasts. Multivariate scoring
functions are only discussed in passing but suggestions for further reading can be
found in Appendix D.2.

The aim with a probabilistic forecast is to accurately represent the distribution
of the variable. Since there is only usually one observation per time step, to assess
a probabilistic forecast usually means comparing the single observation against the
estimate of the distribution. This makes the situation much more complicated com-
pared to point forecasts, which can compare the single observation to the single
point estimate value. Ideally the aim is to use a scoring function for which the mini-
mum score is only achieved by the true distribution, these are called proper scoring
functions.

One of the more popular proper scoring functions is the pinball loss score or
quantile scorewhich measures the accuracy of a quantile forecast (Sect. 5.2). Recall
that the quantile τ ∈ [0, 1] of a CDF, F , is simply the value zτ such that F(zτ ) = τ ,
or in other words, for a univariate distribution the probability of a random variable
being less than zτ is τ (see also Sect. 3.2 for more details on quantiles). Given an
estimate of the τ quantile, zτ , and an actual observation L from the distribution being
estimated, the pinball loss function is given by

Lτ (L , zτ ) =
{

τ (L − zτ ) L ≥ zτ

(1 − τ )(zτ − L) L < zτ

1 Recall univariate means a single variable whereas multivariate is more than one.
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Fig. 7.1 Example of the
weighting given by the
pinball loss function for
τ = 0.2. If the input is
positive then the weighting is
τ , if negative, then the
weighting is 1 − τ
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The pinball function is an asymmetric function which takes the difference between
the observation and the quantile and then weights the difference differently depend-
ing on whether the value is positive or negative. This asymmetry is important since
an accurately estimated quantile will have, on average, a proportion, τ , of the obser-
vations below zτ . The pinball function and its weighting is illustrate in Fig. 7.1.
Typically quantile forecasts are estimated for a series of quantiles zτk , for each time
step k = 1, . . . , N in the forecast horizon and these quantiles split the range of the
distribution into evenly spaced points τ1, . . . , τN (for example popular values are
the deciles 0.1, 0.2, . . . , 0.9, or ventiles, 0.05, 0.1, . . . , 0.9, 0.95). The pinball loss
score (PLS) is simply the average over each individual loss over each quantile

PLS = 1

N

N∑
k=1

Lτk (L , zτk ). (7.49)

Another common proper scoring function is the continuous ranked probability
score (CRPS). Consider a cumulative distribution F̂(z), which is an estimate of the
distribution at some time for which there is an observation, defined as L . The CRPS
is defined as

CRPS(L , F̂) =
∫ ∞

−∞
(F̂(z) − 1(z − L))2dz = E(|Z − L|) − 1

2
E(|Z − Z̃ |),

(7.50)
where 1 is the Heaviside step function

1(x) =
{
0 for x < 0

1 for x ≥ 0
. (7.51)
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Fig. 7.2 Example of the
CRPS which is the area
between the CDF and the
empirical distribution formed
from a single observation
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The first, integral form, measures the difference between the estimated distribution
F̂(z) and the empirical cumulative distribution function for a single observation,
given by 1(z − L). The CRPS for a single observation and the estimated CDF is
illustrated in Fig. 7.2, and is equal to the shaded area between the CDF and the
empirical distribution (see Sect. 3.4) for the observation. The aim is to minimise this
shaded area, and this is achieved by accurately estimating the true distribution.

Notice that the two terms in the second formof theCRPSdescribe two components
of the error. The first term, E(|Z − L|) is the (expected) absolute difference between
the observations and the forecasts. The second term, E(|Z − Z̃ |), is a measure of
the spread, i.e. the sharpness, of the probabilistic forecast. For a point forecast the
CRPS reduces down to the first term only, i.e. the Mean absolute error. This second
equivalent form of the CRPS in Eq. (7.50), E(|Z − L|) − 1

2E(|Z − Z̃ |) suggests
another way of estimating the CRPS using sample means calculated by generating
random draws, Z̃ and Z , from the estimated distribution F̂ . For multiple observations
the final CRPS is simply the average of the individual CRPS values.

The CRPS and pinball score are only suitable for univariate densities. For ensem-
ble/scenario forecasts the second form of the CRPS given in Eq. (7.50) can be
adapted to cope with ensemble forecasts which estimate a multivariate distribu-
tion. Consider a multivariate probability distribution FZ which is defined for a N-
dimensional random variable X = (X1, X2, . . . , XN )

T . Given a single observation
vector L = (L1, L2, . . . , LN )

T then the energy score is defined as

ES(L,F) = E(||Z − L||2) − 1

2
E(||Z − Z̃||2), (7.52)

whereZ and Z̃ are independent copies of randomdraws/samples from themultivariate
distribution. To calculate this in practice the samples, Z and Z̃, are taken from the
generated forecast ensembles and the samplemeans are used to estimate the expected
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Fig. 7.3 Example of the histograms for the PIT from applying (left) the true Gaussian CDF ofmean
2 and standard deviation 0.25, (middle) from applying a Gaussian CDF of mean 2 and standard
deviation of 0.4 and (right) from applying a Gaussian CDF of mean 2 and standard deviation equal
to 0.15

values. For the pinball score, CRPS and energy score, a smaller value implies a more
accurate probabilistic forecast.

Probabilistic forecasts can also be assessed visually. Consider a CDF, F , for a
continuous random variable X , then the probability integral transform (PIT) of the
data, is defined by the application of the CDF to the observations pt = F(Xt ). The
histogram of the PIT should be uniformly distributed if the correct CDF has been
chosen. To understand this consider a quantile forecast which estimates the demi-
deciles, i.e. the q quantiles where q = 0.05, 0.1, 0.15, . . . , 0.9, 0.95 of a continuous
cumulative density function F(x). If the forecast was correctly calibrated 5% of the
observations should fall between any consecutive quantiles, F−1(q), and F−1(q +
0.05). In other words, the histogram of the PIT defined by this quantile estimate
should be uniform with 5% of observations within each bin.

An example of the PIT histogram is shown in Fig. 7.3 for three different Gaussian
CDFs (with different standard deviations) applied to random samples from one of the
distributions. When the true CDF is applied (left in the Figure) then the histogram is
uniform as expected. When a Gaussian CDF is applied which has a larger standard
deviation than the true data then the PIT has toomany observations in the centre of the
histogram, and the distribution is called overdispersed (middle plot). Alternatively,
if a PIT is applied using a Gaussian CDF with a smaller spread (smaller standard
deviation) then there is too many observations at the edges of the histogram and
the distribution is called underdispersed. Other shapes of the PIT can suggest other
biases or inaccuracies in the probabilistic estimate.

An equivalent method for visualising the quality of a probabilistic forecast is a
reliability plot (or reliability diagram). For this the quantiles of the probabilistic
forecast are plotted against the observed relative frequency. In other words, take the
τ th quantile F−1(τ ), for a probabilistic forecast with CDF, F , and suppose there
are observations y1, y2, . . . , yN . These points can be used to define an empirical
distribution function FE (y) which is a step function defined by
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Fig. 7.4 Reliability diagram
for the three different
estimates for the distribution
for the same data as in
Fig. 7.3
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F̂E (y) = number observations less than X

N
= 1

N

N∑
k=1

1yk<y, (7.53)

where 1S is the indicator function which takes the value 1 if the statement S is true
and 0 otherwise (also see Sect. 3.4). A reliability diagram is simply a comparison
of the quantiles of the estimated distribution, F , with the empirical distribution, FE .
The quantiles should be similar (for the same probability value τ ) if the estimate F is
an accurate representation of the distribution of the observations (as estimated by the
empirical CDF, FE ). The reliability diagram for the same distributions as in Fig. 7.3
are shown in Fig. 7.4. This is for 1000 observations from the true normal distribution
with mean 2 and standard deviation 0.25. Notice that in the reliability diagram if
the observations are from the true distribution they should be close to the diagonal
y = x . In contrast the line for the overdispersed distribution has a small gradient
for the under-represented tail quantiles but high gradient in the middle for the over-
represented quantiles. The opposite is true for the underdispersed distribution which
has high gradients at the tail quantiles and a lower gradient in the central quantiles.

It is worth noting, that a uniform PIT (or equivalently a reliability plot lying on
the y = x line) is only a necessary condition and not a sufficient condition for the
distribution to be the true underlying distribution for the data. In other words, uniform
PITs can still occur even if the estimated distribution is not a true representation of
the underlying distribution.
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7.3 Causes of Forecast Error

There will always be some error in the forecasts no matter the sophistication of the
model. However, there are some common causes of forecast error it is worth briefly
mentioning to prevent jumping to conclusions and assist in interpreting the models
and their errors.

Even when an accurate model has been generated with both low-bias and low-
variance the forecasts errors are likely to increase with the forecast horizon, this is
illustrated in Fig. 7.5. This is because there is usually a interdependency between
values which are close in time. This is particularly true in energy demand behaviour
where appliances are used over several hours (heaters), or similar actions are per-
formed together (a morning shower followed by boiling a kettle for a cup of tea).
Hence if comparing the errors for forecasting tomorrow, versus forecasts for the fol-
lowing day and so on, there would be an expected upward trajectory in the forecast
errors/scores.

However, things may not be as simple as this. In the Case study in Chap. 14, the
forecast errors vary within a day (see Fig. 14.7 in particular). This is because there is
more variation in demand (and hence larger errors on average) during certain periods
of the day compared to others. However, even in this case the average daily errors
do seem to be increasing. This highlights another source of forecast error which is
the volatility of particular periods.

Another source of forecast error may be due to their dependence on the input
variables. Many load forecasts are strongly related to weather (e.g. see Sect. 6.7) and
therefore weather forecasts are utilised within the load forecast models. However,
if these inputs are inaccurate (for example through measurement, forecasts or even
calibration errors) then the load forecast will also be inaccurate. In other words, for
surprising or unusual errors in the data, the input variables should also be considered
as possible causes.

Fig. 7.5 Expected forecast
error as a function of forecast
horizon
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Benchmarks also serve a useful function of determining the causes of forecast
errors. Since they may include different inputs than the main models they can con-
firm which variables may be sources of large errors. Benchmarks are also useful
for comparing models and understanding improvements over time, even when the
underlying data changes. This is explored in the next section.

7.4 Skill Scores

Even if an error measure is appropriate to the application, it may not be easy to
compare or evaluate forecasts, especially if comparing on multiple datasets. For
example, consider two forecast models where one model produces an estimate for
one dataset and the other model produces an estimate for another, dataset. If these
datasets have different volatilities (for example it could be that the data is for different
seasons, where say heating appliances may make Winter demand behaviour more
volatile) then it will not be clear how to compare the accuracy of these forecasts.
Similarly, how do you keep track of the improvement (or degradation) in the same
forecast over time, which will be using more and/or newer data?

Oneway to help discriminate between forecasts in cases like the above and others,
is to use a skill score. A skill score measures the accuracy of a forecast relative to
some benchmark score. They are very common in numerical weather prediction
applications, where they are used to show the improvement of forecast models over
time.

Skill scores can take many forms but a common format is

SS(L̂,Lb) = E f − Eb

Ep − Eb
, (7.54)

where E f , Eb, Ep represent the error scores for the main forecast, the benchmark
forecast and the perfect forecast respectively. The error measure could be any of
those presented above, such as RMSE, or MAE for point forecasts, or CRPS for
probabilistic forecasts.

Often the error should be zero for a perfect forecast, and in this case the skill score
reduces to

SS(L̂,Lb) = 1 − E f

Eb
. (7.55)

The skill score can obtain amaximumvalue of 1 if the forecast is perfect (E f = 0),
but is equal to zero if is only as good as the benchmark, and of course the score can
be negative if the forecast is worse than the benchmark.

The benchmark here is often called a standard, or reference, forecast, but the
important point is that this method is kept constant to allow more appropriate com-
parisons. Since the benchmark methodology stays the same then this allows a com-
parative analysis of the forecast across different datasets as well as over different
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periods in the same dataset. If two datasets have very different “predictabilities” then
you can compare the performance on them better via a skill score since the forecast
error on the less predictable dataset will be scaled according to the common bench-
mark, which will also perform more poorly on this data set relatively to the other. As
a consequence, the relative performance on the datasets can bemore easily compared
and will not simply be based on bad luck due to the features of the test dataset that
is used.

The main question when creating a skill score then, is what is an appropriate
benchmark to use? The following is some suggested criteria:

1. It should be quite simple and not require too much data or additional data sets to
produce. This enables the model to be used in most circumstances.

2. It should be easy to implement so that other forecasters can easily replicate it.
3. It should be easy to interpret to help with model evaluation and improvement.
4. It should not be too sophisticated, or state-of-the-art. It is only needed for com-

parison and hence there is no need for a complicated or “difficult to beat” model.

For many applications, the simple benchmark models described in Chap. 9 will
be sufficient. The persistence model is quite common. Other considerations about
choosing appropriate benchmarks are given in Sect. 8.1.1.

7.5 Residual Checks and Forecast Corrections

Ideally a forecast is a good estimator of the true load but for various reasons may
require some corrections. Common in climate modelling is a model bias where the
mean (or expected) value of the prediction is consistently shifted from the actual
values. Analysing the residuals of the final forecast model is a common way to both
evaluate your model and identify possible improvements for future implementations.

Whatever models are created for time series forecasting there may still be some
structure remaining in the residuals which could be exploited to further improve the
accuracy of the forecast. Suppose a forecast model is generated for the time series
Lt over the time steps in the training data t = 1, . . . N . Let L̂ t represent a forecast
estimate fitted to the training data and recall fromSect. 5.2 that the residual time series
can be defined as rt = Lt − L̂ t for t = 1, . . . N . A desirable feature for a forecast
model is that this residual series is essentially random noise, since any remaining
patterns/relationships could be used to improve the forecast.

The first check should be to plot the residual time series and look for any remaining
patterns or features. If the model has correctly explained the data, then the residual
series should be random noise,2 in other words, their values are independent and
identically distributed with zero mean.

2 The noise can follow a particular distribution even if it is random. White noise, is noise which is
distributed according to a Gaussian function.
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Fig. 7.6 Examples of three time series: white noise (top), white noise plus trend (middle), and a
periodic time series based on the first white noise series (bottom)

If two random variables X and Y are independent it means, unsurprisingly, that
the value of one is unrelated to the value of the other. In the language of probability
this means for all x, y the events X ≤ x and Y ≤ y are independent. In other words
the joint distribution, FX,Y (x, y), of X,Y is related to the individual distributions via

FX,Y (x, y) = FX (x)FY (y), (7.56)

where FX and FY are the cumulative distribution functions for X and Y respectively
(see Sect. 3.3). For an independent variable the correlation between the values is
zero. However, note that the reverse is not necessarily true, zero correlation does not
imply they are independent. However, it can be used as evidence for independence,
or at least increase the plausibility that they are independent.

It is usually quite easy to tell if the data is not white noise but not trivial to test if
it is. A plot of the time series should give an initial indication of which case may be
true. Examples of a few residual time series are shown in Fig. 7.6. In this example,
the values at all time steps have the same variance, hence the only thing to check is
whether they have zero mean and are independent.

In this Fig. 7.6 there are two that look like white noise and one that is quite clearly
not white noise. The top plot is white noise, the middle plot is the original white
noise series but augmented with an increasing trend. The bottom series looks like it
is white noise but however is formed by repeating a chunk of 100 data points from the
top series. Therefore in fact it has strong autocorrelation despite not being directly
obvious.

The autoregressive features in this series can be confirmed by looking at the
autocorrelation plot (As when creating the ARIMA model in Sect. 9.4). In this case
the periodic time series does not have components which are independent as seen by
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Fig. 7.7 ACF’s of the three “white noise” time series: white noise (top), white noise plus trend
(middle), and a periodic time series based on the white noise series (bottom)

the spike at lag 100 in Fig. 7.7. The ACF plot shows that the true white noise series
has no autocorrelation as expected, but the noise with trend in the middle does show
up via the slow decay in the ACF as a function of lag.

Any autocorrelation which remains in the residuals can be removed by including
extra autoregressive components to the residual series (alternatively can be added to
the original model) via

rk =
pmax∑
k=1

φkrt−k + εt (7.57)

for some assumed Gaussian error εt and optimal autoregressive order p found by
minimising theAkaike information criterion (AIC) or Bayesian information criterion
(BIC) (see Sect. 8.2.2) over p ∈ {0, . . . , pmax}, for somemaximum order pmax. After
training the coefficients φ1, . . . ,φmax, a forecast for the residual can be produced via
r̂k = ∑pmax

k=1 φkrt−k and the original forecast can be updated to achieve a new forecast
for the load series via L̂ t + r̂t . If sufficient lags have been included in the updated
model, the new residual series r̃t = Lt − L̂ t − r̂t should now have no significant
autocorrelations. Additionally it is hoped that the new models will have improved
forecast accuracy. Of course another autocorrelation check of the residuals can be
performed on the new forecast and the process repeated if not all of the autoregressive
features have been accounted for.

Another form of bias in a time series forecast is whether the residuals are centred
around zero. The random noise with trend is one such example. The simplest form
of bias is where the noise is centred around a non-zero constant. This suggests a
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simple bias correction can be applied to reduce the mean error to zero by shifting

by the sampled mean of the residual. I.e. set r̂t = rt + b where b = −
∑N

t=1 rt
N ∈ R.

Alternatively one can directly update the forecast itself, i.e.

ˆ̂Lt = L̂ t + b. (7.58)

Thus by definition the new residual series has sample mean equal to zero. The resid-
ual time series with linear trend can also be corrected in a similar way except by
detrending with the line of best fit through the points (similarly as seen for the out-
lier detection in Sect. 6.1.1). More generally, where the trend is obvious, similar
detrending approaches can be applied.

Theremay also be assumptions concerning the distribution of the residuals for par-
ticular models. For example linear regression and ARIMAmodels assume Gaussian
distributions. If the residuals are not distributed symmetrically then a transforma-
tions of the data may be required (Sect. 6.1.3). Further non-constant variance of the
residuals suggests that methods which assume fixed variancemay not be appropriate.
Instead, alternative approaches such as the GARCH type models introduced in Sect.
11.6.2 may be required.

In general applying forecast correction and checking for independence is not
straight forward. As shown above, time series plots of the residuals should be the
first consideration and then checks for constant mean and variances can be performed
by calculating them on fixed intervals of the residual time series and comparing them
to the full sample mean and variance. Finally, the autocorrelation and partial autocor-
relation functions should be plotted to check for moving average and autoregressive
components and identify dependence between points in the time series.

The above methods are primarily focused on point estimates. However, for prob-
abilistic forecasts there are also corrections which can be applied, but they are often
more complicated than point forecast corrections. For a simple case recall in Sect. 7.2
that a probabilistic forecasts should have a uniformprobability integral transform, but
if this is not the case, then the PIT can also suggest ways to inform possible correc-
tions. For example, as seen in Sect. 7.2, overdispersed (alternatively underdispersed)
forecasts produce a wider (or narrower for underdispersed) PIT distribution than is
desired, which means the model could be improved by squashing (or stretching for
underdispersed estimates) the distribution. More generally we can look at the PIT
to see which areas of the distribution are over or under represented. There are more
sophisticated calibration methods such as quantile mapping which have traditionally
been applied in climate and weather modelling, further reading in these areas are
given in the Appendix D.
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7.6 Questions

For the questions which require using real demand data, try using some of the data
as listed in Appendix D.4.

1. Take a few days from a real demand time series and create basic forecasts by
shifting the profile by full day. Calculate the MAPE, MAE and RMSE. Compare
them. Take a hundred smart meter time series and calculate the errors based on
the same seasonal persistence forecast model. Produce a scatter plot of the errors
against the size of the demand (e.g. the average half hourly or daily demand). Is
there a pattern you notice in the plots? If you plot the time series of the profile
against the forecasts can you identify the sources of error for those with the best
and worst accuracy?

2. Take a half hourly household demand profile with a peak in the evening. Take a
day and shift the profile by an hour in one direction (add the shifted points that
fall off the end to the other side). Now calculate the RMSE error between them.
Next produce a flat profile by taking the average half hourly value and setting
all half hours of the day to this value. Calculate the RMSE between this and the
original profile. Compare the two error values. Which is smaller? Try this with
several other forecasts. Is the flat profile producing smaller errors than the shifted
in some cases? This is explored more in Sect. 13.3.

3. Sample 5000 points from a univariate Gaussian distribution. Select quantiles at
0.05, 0.1, 0.15, . . . , 0.95 and plot the PIT. How many points should be in each
quantile range? Now delete 5–10 points from the middle five quantiles of the
distribution. Plot the PIT again, how has the shape changed? Is it underdispersed
or overdispersed? Repeat the experiment but remove values from the tails of the
distribution. Replot the PIT and check whether the shape is underdispersed or
overdispersed. Now plot the reliability diagrams for all three samples (this will
require calculating the empirical quantiles for each sample).

4. Sample 1000 points from a univariate distribution of your choice. Create three
empirical distributions from these samples by deleting the same number of points
(say 10%) (a) randomly, (b) from the centre of the distribution, and (c) from
the tails of the sample. Use the samples to calculate quantiles which will now
define your probabilistic estimates. Calculate the pinball loss score for these three
distributions on the original sample of points. Repeat the calculation for theCRPS.
Which has the best (lowest) score?

5. Consider forecast errors with horizon. Take some half hourly or hourly demand
data. Create a simple forecast of the next two weeks by repeating the daily profile
for one day, for the next fourteen days. Calculate the RMSE error for each day.
How does it change with horizon? Repeat this with other time series and observe
the change with horizon. Does it change smoothly with how many days ahead?
Or is there a change depending on the day of the week?
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6. Take the forecast used in the last question. Produce the residual time series. Plot the
autocorrelation and partial autocorrelation plots. Which lags produce the biggest
coefficient values? How many lags would you therefore expect to need to correct
for this in an autoregressive update to this model? If you know how to apply
linear regression try adding these terms to your model and repeat the forecast
again. How have the errors changed? If you don’t know how to apply this, you
can wait until you’ve read Chap. 9 and come back to this part of the question!
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Chapter 8
Load Forecasting Model Training
and Selection

Chapters5 and 6 have shown how to define a time series forecast, how to prepare
the data, and how to generate inputs for the models. Chapters9 to 11 will show
several methods for forecasting the demand. However, although Chap.7 provided us
the tools for measuring the accuracy of a forecast, the following questions remain
largely unanswered: How do we train and select a model which will consistently
produce accurate forecasts?

This chapterwill investigate this question by looking at someof themost important
aspects for creating a good forecast including proper utilisation of benchmarking, and
how to use cross-validation to properly train yourmodel. Underlying cross-validation
is one of the most important aspects of a creating a good forecast, the so-called bias-
variance trade-off principle, discussed in Sect. 8.1.2. This ensures that the model is
not over (or under-) trained and allows the model to better generalise to new, unseen
data. Next, in Sect. 8.2, methods for training the models are considered, including
ways to select the best model from a selection of models. One important set of
techniques covered in Sects. 8.2.4 and 8.2.5 is regularisation, which helps to reduce
overfitting, but also how to find the appropriate hyperparameters within a family of
models.

8.1 General Principles for Forecasts Trials

In the previous sections the general form of a forecasting problem was introduced
as well as methods for scoring the forecast accuracy through error measures. This
section introduces some general principles with the aim to aid the practitioner to
properly design and develop a forecast trial. This includes considerations on why
choosing appropriate benchmarks is important to better understand the accuracy of
your model; why it is important to avoid over/under-fitting your model to the data;
and how to split the data in order to properly train and test your models.

© The Author(s) 2023
S. Haben et al., Core Concepts and Methods in Load Forecasting,
https://doi.org/10.1007/978-3-031-27852-5_8

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27852-5_8&domain=pdf
https://doi.org/10.1007/978-3-031-27852-5_8


108 8 Load Forecasting Model Training and Selection

8.1.1 Benchmarking

An error score (see Chap.7) for a model is not very informative on its own. The
accuracy of a forecast can only be understood in the context of other, well-designed
forecasts. Benchmark models are a vital component for creating useful and accu-
rate forecasts. They enable informative comparisons and help to better understand
important (and unimportant) features and relationships in the data. Often simple
benchmarks can be quite effective as their strong performance can suggest impor-
tant features or drivers for the forecast accuracy. How much your model(s) improve
compared to the benchmarks can also be used as performance indicators (See skill
scores in Sect. 7.4).

Most benchmarks fit into the following categories:

1. Simple or Naïve benchmarks. These are very basic benchmarks models which
have minimal features and parameters. They serve as the lowest bar for which
your main forecast model should outperform. If they don’t, then, due to their
simple form, these benchmarks should be able to suggest improvements to the
current model or indicate flaws in the chosen model. A selection of several of
these simple benchmarks can also highlight some of the most important features
in the underlying data. At least one of the benchmarks in a forecast trial should
be simple.

2. Common benchmarks. Different applications will have some models which are
commonly used as benchmarks. For example, this could be ARIMAX or simple
linear regression models (Forecast models will be introduced in detail in Chap.9).
This can be helpful since it allows some degree of comparison between different
models across different experiments even though the underlying data or situation
is completely different.

3. State-of-the-art benchmarks. Often it will be desirable to compare to the cur-
rent best methods available and implement a version of the state-of-the-art in the
selection of different models. Even if the model doesn’t quite outperform the best
in the business, confidence can be given to a model which performs similarly to
models which been tried-and-tested and shown to work well over several experi-
ments and data sets. In many cases it may be difficult to identify any single model
which performs well in general and instead at least one, well-known, competitive
model should be chosen for comparison in your experiment.

In addition to choosing a naïve or common model, a simple way to choose a bench-
mark is to base themon at least one feature/relationshipwhich appears to be important
for the dependent variable of interest. In load forecasting, there is often weekly or
daily seasonalities, and therefore it is common to pick a benchmark model which
includes these features. Several common benchmark methods for load forecasting
will be introduced in Sect. 9.1.

It should be highlighted that just because a model has the smallest error there
is no guarantee it will achieve the best performance when used within the chosen
application. However, it is often not computationally viable to assess the model
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by testing each forecast model in the chosen application (e.g. storage control as
introduced in Sect. 15.1). That is why it is important to carefully select the forecast
error metric which reflects the aims of the forecast (see Chap. 7).

8.1.2 Bias-Variance Tradeoff

The bias-variance tradeoff is one of the single most important concepts in creating
an accurate forecast. As seen in Sect. 5.2 and Eq. (5.27), a time series forecast is
essentially a function which takes various inputs to give the desired outputs. The
nature of the function is determined by a number of parameters which must be
trained on historical data. How to properly choose and train the parameters can have
a large impact on the overall accuracy of the forecast.

As introduced in Chap.4 machine learning was defined as algorithms that learn
from data to improve prediction performance. However, there is no practical value if
a machine learning model is only capable of predicting accurately based on instances
from the data it was trained on. Here, a model that simply memorised all the training
data can, in theory, achieve perfect performance. However, this is meaningless for all
practical problems, as it is typically infeasible that all possible inputs can bemeasured
(e.g. if the variables are real-valued). Therefore, the central challenge is to train a
machine learning model that performs well on new, previously unseen inputs. The
ability to perform well on previously unobserved inputs is called generalisation.

At the one extreme it may be desirable to choose a model with a large number of
parameters and train it so it fits very closely to the training data. However, the more
parameters, the more likely the model is to fit to spurious noise in the time series
signal and hence cannot be extrapolated very well to new data. This is often called
overfitting the model to the data. In this case, small changes in the input to the model
will produce large errors and hence the model is said to have high variance. A high
variance model does not generalise well to new data. In contrast a model with very
few parameters will miss some of the core features of the time series and underfit
the data. It means that on average the errors will be quite large and the model is said
to have high bias.

The bias and variance can be expressed in more precise mathematical terms.
Consider a model which relates the true relationship between a dependent value L
(e.g. Load), and an independent variable Z (say temperature), via a function f

L̂ = f (Z) + ε, (8.1)

with noise ε (with assumed zero mean). The aim is to develop a model f̂ (Z ,β) that
estimates the true function f (Z), by learning the parameters β over some training
data of observed values. Now suppose this estimate is produced by minimising the
mean squared error, a common error measure for time series forecasts (see Chap.7),

MSE( f (Z), f̂ (Z ,β)) = E[( f (Z) − f̂ (Z ,β))2]. (8.2)
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It turns out that this can be broken down as follows

E[( f (Z) − f̂ (Z ,β))2)] = (E[ f̂ (Z ,β)] − f (Z))2 + E[( f̂ (Z ,β) − E[ f̂ (Z ,β)])2] + σ2,
(8.3)

where σ2 is the variance of ε. The first term is the square of the bias (E[ f̂ (Z ,β)] −
f (Z))2 and describes the difference between the model output and the output from
the true function. The bias term will be large if the model is too simple to capture the
pattern in the data. The second term E[( f̂ (Z ,β) − E[ f̂ (Z ,β)])2] is the variance,
and describe the dispersion of the model outputs around the mean. In practical terms
this measures how spread out the errors are around the mean. Finally there is the
irreducible error defined by σ2. This is the error that can never be reduced which
limits howmuch theMSE can be reduced. The key to producing consistently accurate
forecasts is to get low bias and low variance, i.e. a model which captures the main
features in the data but also generalises well to new data.

As an example consider a simple model y = x3 − 15x2 + 66x − 60 + ε, with
irreducible errors, ε, which is chosen to be Gaussian with mean zero and variance
σ2 = 20. This function takes as input x , and gives the observed outputs, y. Points are
generated from the true model x3 − 15x2 + 66x − 60 to give pairs of input-outputs
(xk, yk) for k = 1, . . . , 50. To replicate a real system, random error samples from
the Gaussian distribution, εk , are added to each true dependent variable, yk , to give
observed points ŷk = yk + εk , for k = 1, . . . , 50.Hence the true outputs are unknown
to the modeller who only sees the inputs with the noisy outputs, i.e. (xk, ŷk). This
means it will be impossible to create a perfect match between any model and the
original observations.

Now consider fitting polynomials of different orders to these noisy points. The
first model is a simple linear one of the form, a1x + a0, this is an underparameterised
model and is expected to have high bias but low variance. The second model is a
cubic polynomial of the form a3x3 + a2x2 + a1x + a0, and should be a good balance
betweenmatching the general shape of the datawithout overfitting the noise. Thefinal
model is a polynomial of the order 20, i.e. of the form a20x20 + a19x19 + · · · a2x2 +
a1x + a0 which would be expected to overfit to the data and thus have high variance.
In each case the coefficients (The a′

i s) are trained to find the best fit to the points for
that model (how to train the fit will be covered in Sect. 8.2).

The results are shown in Fig. 8.1 for the three different models. As expected the
best fitting model is the cubic model which is very close to the original curve and the
noisy observations (red circles). The highly parameterised polynomial of degree 20
clearly overfits to the noise and will not generalise (i.e. will not estimate the correct
output) very well to new inputs, it has high variance. In contrast the linear polynomial
on the left does not fit the data very well but gets the general level. It has high bias
and clearly underfits the data.

There are several strategies for avoiding over- or under-fitting the data. Sev-
eral techniques will be introduced in this chapter, including cross-validation in
the following section, regularisation methods (Sect. 8.2.4) and information criterion
(Sect. 8.2.2).
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Fig. 8.1 Example of bias-variance trade-off by fitting different polynomials (thick black curve) to
the observations (red circles). The true polynomial which generated the data is also shown as a thin
black line. The left hand plot shows the fitting using a polynomial of degree 1, the middle plot using
a polynomial model of degree 3 and the right plot using a polynomial of degree 20. Full details are
in the main text

8.1.3 Cross-Validation Methods

In order to understand how a forecast model will perform in practice the available
training datamust be split into appropriate components. Time series data, the focus of
this book, adds an extra potential restriction due to the chronological order of the data.
This section will discuss some of the motivations and principles of cross-validation.

Forecast models must be tested on unseen data to ensure that the forecaster is not
unrealistically tailoring (subconsciously or otherwise) the model to score higher than
would be possible in practice. In real applications the future data is not available and
forecasters would not have the advantages of knowing the actual values in advance.
Hence designing a forecasting trial is very much like designing a blind experiment in
medicine in order to test a particular hypothesis for whether a treatment is effective
or not.

Another, related, reason for splitting the data is to choose a model with a good
bias-variance trade-off (see Sect. 8.1.2). Cross-validation, the topic of this section,
is one way to select a model so that it is not over- or under-fitted to the data, i.e. that
it generalises well to unseen data.

For these reasons the data in machine learning trials is split into a unseen part,
called the test set, or hold-out set, and a part for training the parameters and hyper-
parameters of your model, often called the training set. For time series, the ordering
of the data is often relevant and hence the test set typically follows chronologi-
cally from the training set. We will call this a time-series split (other approaches
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will be discussed shortly). For example, consider a time series L1, L2, . . . LN+k , for
N , k > 1 and suppose the aim is to produce 1-step ahead forecasts for the test set
consisting of data at the time steps N + 1, N + 2, . . . , N + k. Any data (including
any other explanatory variables, see Sect. 5.2) prior to the start of the test set is part
of the training data. The following steps are then implemented:

1. The first forecast value L̂ N+1 is produced by training a model (see Eq. (5.27)) on
the current training data L1, L2, . . . LN (as well as any other explanatory data).

2. The next step ahead forecast L̂ N+2 is then produced by retraining1 the data on
L1, L2, . . . LN+1 (i.e. the last observation at N + 1 is now included in the new
training data).

3. This continues until the kth time step of the test period has been reached.

Note if a multistep ahead point forecast is being produced from a one-step ahead
forecast then instead forecasts from the previous time steps are used as inputs to the
model rather than the actual observations, e.g. for the mth step ahead the forecast
would use as inputs L1, L2, . . . , LN , L̂ N+1, . . . , L̂ N+m−1.

Tofind themost accurate forecast, a large number ofmodels could be trained on the
training set and the the errors on their predictions could be compared. However, this
is often computationally infeasible. Further, the trialing of a large number of models
increases the possibility that one particular forecast will have high performance
by chance alone rather than due to its particular suitability for predicting the data
behaviour. Hence, it is more practical and reliable to test a relatively small number of
models. Recall in Sect. 8.1.2, that a core goal when creating a forecast is to balance
the bias and variance, and find a model which accurately generalises to new data.
This means not overfitting to the training data set by using a very complicated model,
but also not using a very simple model which under-fits the data.

One of the most common ways to do this is to split another set, called the vali-
dation set off the end of the training set, and use this to help select a well-trained
model and to select appropriatehyperparameters (Sect. 8.2.3).Hyperparameters are
parameters of the algorithm which have to be chosen before the remaining parame-
ters such as weights are determined in training and influence the training. Examples
are the regularisation parameter used in regularisation methods in Sect. 8.2.4, and the
number of layers and nodes in artificial neural networks (Sect. 10.4). The original
shortened data set is now simply renamed the training data.

To use the validation data set for model selection, a family of models, are fit on the
training data with different hyperparameter values (for example for neural networks,
the number of nodes in each layer, number of layers, see Sect. 10.4) are used to
generate a forecast for the data in the validation dataset (i.e. in a similar way as
they are generated for a test set). The performance of the models are then compared,
e.g. using the error measures introduced in Chap. 7, and the best performing models
are selected to produce forecasts on the test set, often after being retrained on the
combined training and validation set. The additional testing of the models introduced

1 The model may not have to be retrained at every new time step, especially if it retains the same
accuracy and if it is too expensive to retrain.
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Fig. 8.2 Example
illustrating a timeseries split
into Training, Validation and
Test set in a 3:1:1 ratio
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by using a validation set improves the bias-variance tradeoff by eliminating models
which over- or under-train. In addition, good performance on both the validation
and test set increases confidence with using these models. Further hyperparameter
selection methods are considered in Sect. 8.2.3.

A common split of the data is about 60%, 20%, 20% for the training, validation
and testing set respectively, although this can be adjusted depending on the problem.
As mentioned, more testing data increases the confidence in the performance of a
model but sufficient training data is required to improve the chances that the models
generalise as much as possible. An illustration of splitting the data into a training,
validation and testing set is shown in Fig. 8.2.2

Given the above split of the data the following is a typical procedure to generate
forecasts:

1. Given a family (or families) of forecast models, and suitable benchmarks
(Sect. 8.1.1), train the model parameters on the training data.

2. Produce a forecasts over the validation set and compare the models (using the
appropriate error measures as will be introduced in Chap. 7) within the same
family to select a set of optimal values for the hyperparameters.

3. On the selectedmodels (whichmay include one or two choices of hyperparameters
for each family of models), re-train the models on the combined training and
validation set.

4. Produce a forecast for the test set.

To illustrate the process consider a simple example. Take the model y = sin(x) +
0.2 sin(2x) + 0.4 sin(4x) which is used to generate values yk at xk = 0.2(k − 1) for
k = 1, 2, . . . , 100 to give 100 points (xk, yk). To make the data more realistic add
random samples from a Gaussian distribution with mean 0 and variance 0.4 to the y

2 Note there are ways to train models without using a validation set, for example, automatic model
selection using information criteria (see Sect. 8.2.2) and this can be preferable if the amount of data
available for training is quite low.
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Fig. 8.3 Illustration of
validation and testing for a
simple example as described
in the text. a Shows the
forecasts of model M1 and
M4 for the validation set
(shaded), b Shows the same
models for the test set.
c Summarises the RMSE
errors for the models MN for
N = 1, . . . , 10 (Eq.8.4) for
both the validation and the
test set
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values to produce the updated input-output pairs (xk, ŷk). Next, consider fitting a set
of models to the noisy observations, of the form

MN (x) =
N∑

n=1

an sin(nx), (8.4)

for N = 1, 2, . . . , 10 which for larger values includes more higher frequency terms
to the model. Note that N is a hyperparameter for this family of models. Let the first
60% of the points be the training set (defined at x = 0, 0.2, . . . , 11.8), the next 20%
as the validation set (x = 12, 12.2, . . . , 15.8) and the final 20% as the test set (points
x = 16, 16.2, . . . , 19.8). The models are trained for each N on the training data set.

Figure8.3a shows the models M1 and M4 trained on the training set including its
prediction on the validation set (shaded box). The noisy observations are shown as
red circles. It’s clear from this plot that the simplest model M1 captures the main
periodic behaviour butmisses the higher frequency oscillations. In contrast themodel
M4 (which matches the order of the true model) is much more accurate, as would
be expected. Similarly Fig. 8.3b shows the prediction on the test set for the same
models. This prediction has now been formed by training on the original training
data set together with the validation set.

The RMSE errors (Chap.7) for the ten models are shown in Fig. 8.3c for both the
validation and test set. The accuracy drops down for N = 4 for both validation and
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Fig. 8.4 Comparison of various cross-validation schemes. Figure from From Tutorial 1: Building
Load Forecasting with ML licensed under CC BY 4.0

test set. This is because the complexity of the models required a periodic term of at
least sin(4x). In addition, for these models the a1, a2, a4 coefficients have the largest
magnitude, as would be expected since they coincide with the terms in the actual
underlying model, y = sin(x) + 0.2 sin(2x) + 0.4 sin(4x). Notice that the errors on
the test set are smaller than on the validation set which could be because there is
more training data available to better refine the coefficients. Although all models
have been applied to the validation and test set, in practice only the best performing
models may be carried forward to forecast on the test set, especially if the models
are computationally expensive to train.

There is several other cross-validation methods which split the data in different
ways. These are illustrated in Fig. 8.4. In the middle is the Time-Series split as
illustrated in detail above but also shown are the blocked split (left) and shuffled
split (right). The blocked approach splits the data into test blocks (typically of the
same size) however, unlike the Time-Series split, this split uses data before and after
the test block to train the data. The shuffled split, uses random samples to generate
the test and training sets.

The blocked and shuffled splits have the advantage of utilising more data with
which to train the models but for time series problems this may be less realistic since
data is not typically available after the period of interest. Hence these approachesmay
be more appropriate when considering cross-sectional models or for a time-series
model when data availability is quite limited and it is difficult to properly train using
the time-series split.

Finally it is worth noting, that if there is insufficient data available, it may be that
no choice of splits will be appropriate to create an accurate forecast. For example
consider day or week ahead forecasts for hourly time series data which is known to
have annual seasonality (e.g. as is usually the case with electricity demand). If there
is only one year of data available it will be unlikely you could train a model which
will be able to accurately capture the annual seasonality. Even if there is two years of
data this could still be difficult since one of those years could have been a particularly
unusual year and may not be representative of a typical year which the forecaster
is trying to model (for example, consider the ‘Beast from the East’ an unusual cold
wave occurring in Great Britain in 2018). However, it obviously may not be known
ahead of time whether there is insufficient data for an accurate forecast and may only
become apparent as more testing is performed and more data becomes available.

https://creativecommons.org/licenses/by/4.0/
https://colab.research.google.com/drive/1ZWpJY03xLIsUrlOzgTNHemKyLatMgKrp?usp=sharing
https://colab.research.google.com/drive/1ZWpJY03xLIsUrlOzgTNHemKyLatMgKrp?usp=sharing
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8.2 Training and Selecting Models

Once the data has been pre-processed (Sect. 6.1), features to include have been
decided (Sect. 6.2.2) and the initial forecast model(s) are chosen (See Chap. 9), the
parameters/coefficients of the models must be trained and the final models selected.
This is often done via cross-validation (see Sect. 8.1.3). This section dives deeper
into how to train a forecast model as well as further techniques for selecting accurate
models.

The performance of the predictions on the instances in the training set are called the
training error. Reducing this training error is typically one part of the optimisation
task usually solved by gradient descent-type methods (Sect. 4.3). However, what
separates machine learning from simple optimisation is that a generalisation error
should be minimised as well. The generalisation error is defined as the expected
value of the error on new input, ideally from the distribution of inputs we expect the
algorithm to encounter in practice. To simulate this, in the process of training amodel
and tuning its hyperparameters, the generalisation error is estimated by assessing its
performance on a test set of examples that were collected separately from the training
set. When creating a test set (or several test sets as in cross validation as discussed
in more detail in Sect. 8.1.3) the following so called i.i.d. assumptions are made:

• the examples in each dataset are independent from each other,
• the training set and test set are identically distributed.

Under these assumptions one can expect, that the expected training error is equal to
the expected test error for a randommodel. However, in practice since the parameters
of amodel are chosen tominimise the training set error, the expected test error is larger
than (or equal to) the expected value of the training error. Thus in order to achieve an
accurate model that generalises well, a model should minimise the training error, but
at the same time minimise the gap between the training and test set error. Figure8.5
illustrates the typical relationship between training and generalisation error against
model capacities (i.e. model complexity).

This suggests another way to understand the bias-variance trade-off alluded to
in Sect. 8.1.2. If a model is not able to sufficiently minimise the training error then
this corresponds to a model which underfits the data/observations. Alternatively, if
the gap between test and training error is too large, it is overfitting the data. These
situations are illustrated in Fig. 8.5. Generally, one can control over- and underfitting
by trading off variance and bias and this can be determined using cross-validation
methods as described in Sect. 8.1.3 but also regularisation methods as described in
Sect. 8.2.4.

There are severalways a particularmodel can be trained but somemodels typically
use specific approaches. For example, linear regression models (Sect. 9.3) will often
use least-squares estimation, whereas artificial neural networks (Sect. 10.4)will often
be solved via back-propagation techniques. When implementing a particular fore-
cast model in a standard programming package they will be trained based on those
techniques which have been shown to be most suitable or typical for that method. To
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Fig. 8.5 Typical relationship between model capacity (e.g. complexity, or number of parameters)
and train and generalisation error

illustrate some of the principles of training a forecast model the following sections
consider some common techniques such as least-squares estimation and, maximum
likelihood estimation, but also describes some more principles and strategies to con-
trol the generalisation error of machine learning models, in particular regularisation
techniques. Regularisation refers to strategies and model modifications that intend
to reduce the generalisation error (but not the training error). In practice multiple
strategies are combined.

8.2.1 Least-Squares and Maximum Likelihood Model Fitting

The general aim of training will be to find a good fit between the model and the
observations. However, as noted in the previous sections if too many parameters are
chosen then the model may overfit on the training set and not generalise very well to
the test set (or any other unseen data). A model with features that have been selected
appropriatelywill have a good trade-off between bias and variance and performbetter
on the test set (see Sect. 8.1.2).

What is a deemed a ‘good’ fit is relatively subjective but requires a consistent
measure of the difference between the observation and models. The best choice is
often a balance between practical considerations and what is most appropriate for
the application being considered (for example the control of storage devices, as in
Sect. 15.1), and therefore models should be evaluated and tested accordingly. Good
candidates for such measures are the p-norms introduced in Chap.7.

As discussed in the corresponding evaluation section (Chap. 7), the choice of p
can change the focus of the errors, with larger p values meaning the final error score
is more representative of the larger errors compared to p-norms with smaller p.
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Further, some norms, such as the 1-norm are not differentiable, which make it more
difficult to train the optimal parameters compared to differentiable functions which
can be optimised by gradient methods (see Sect. 4.3). The 2-norm is differentiable
and is therefore often used as the basis of parameter estimation, in particular it is the
core measure used in so-called least-squares estimation.

Least-squares estimation (LSE) is one of the most common methods for training
parameters, especially for linear regressionmodels. The aim is tominimise the square
of the residuals. Recall the residuals are the difference between the real observation,
say Yk , and the model estimate, say Ŷk = fk(Z ,β) where Z represents the input
variables and β are the set of parameters for the model being estimated. The least
squares problem can be written

β̂ = argminβ∈B
N∑

k=1

(Yk − fk(Z ,β))
2, (8.5)

where rk = Yk − fk(Z ,β) are the residuals. The term argmin simply means finding
the arguments (parameters) over some feasible set of values (in this case represented
by B and defines the space of reasonable values that β could take) which minimises
the equation

∑N
k=1(Yn+k − fn+k(Z ,β))2. The process is illustrated in Fig. 8.6 which

shows the best fitting line to a set of observations. The vertical distance between
the observations and the line shown on the plot are the residuals for the model
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Fig. 8.6 Illustration of least squares estimation for fitting a one variable linear model (dotted red
line) to four data points (blue dots). The least squares fit minimises the sum of the squares of the
vertical residuals
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and the aim in least squares estimation is to minimise the sum of the square of
these residuals. An advantage of the least squares method is that it is relatively easy
to solve, especially for linear models (i.e. those which are linear combinations of
parameters—

∑N
k=1 αkφk(x) where the αk’s are constant coefficients/parameters to

be found), this is because the least squares problem in Eq. (8.5) is differentiable and
hence can be solved by differentiating with respect to each element in the set of
parameters β and setting to zero.

One of the most important statistical methods for training model parameters is
by maximum likelihood estimation (MLE). This involves setting the model errors
within a probabilistic frameworkwhich allows further statistical analysis and applica-
tion of further methods (for example, in Sect. 8.2.2 it will be shown how this enables
a method for model selection). The aim of MLE is to create a likelihood function,
based on a density function describing the distribution of errors of the model fit.
Hence maximising this function finds the most likely parameters which minimises
the error given the assumed distribution of values. The resultant parameters are called
maximum likelihood estimates.

The following discussion will require some basics on univariate probability dis-
tributions. To illustrate MLE consider a basic case where the errors follow a nor-
mal distribution (See Sect. 3.1), with mean zero and fixed standard deviation σ.
Assume finite observation data given by Y1, . . . ,YN and a model fk(Z ,β) which
aims to approximate these observations. The errors are given by the residuals
rk = Yk − fk(Z ,β) as before and the probability model can be written as

P(rk,β) = 1√
2πσ

exp

(−(rk − 0)2

σ2

)
, (8.6)

where the zero is written explicitly to illustrate the standard Gaussian distribution
format. The β (which in this case simply is the standard deviation σ) is also included
to show the dependence of the value on the parameters in the model. The likelihood
function is in fact the probability of the model with all observations, in other words

L(β; Y1, . . . ,YN ) =
N∏

k=1

P(rk,β) = 1

(
√
2πσ)N

N∏

k=1

exp

(−(rk)2

σ2

)
. (8.7)

Often it is difficult to solve the likelihood directly, so instead the loglikelihood is
solved, which is just the log of the likelihood

log(L(β; Y1, . . . ,YN )) = −N

2
log(2πσ2) − 1

2σ2

N∑

k=1

r2k . (8.8)

Since the log function is a strictly increasing function, maximising the likelihood is
equivalent to maximising the loglikelihood. Further since in this case the first term
N
2 log(2πσ2) is constant then this is equivalent to minimising the term

∑N
k=1 r

2
k , in
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other words, solving the least squares problem in Eq. (8.5). Of course this is just for
a very specific situation where the distribution is assumed to be Gaussian but more
complicated distributions can also be considered but they are more difficult to solve
analytically.

Both the least squares and maximum likelihood function are examples of cost
functions which provides a cost between the observed data Yk and the model esti-
mates fk(Z ,β). Standard p-norms type errors such as RMSE and MAPE (See
Chap.7) can also be used to define basic cost functions. The cost functions can be
very general with different weightings and/or structures which can force themodel to
fit to different features of the data. For example, as shown in Chap.7 the pinball loss
score can be used as a cost function to produce a quantile estimate whereas using the
least squares can produce an estimate of the expected value. The aim, as with the least
squares andMLE is to optimise the parametersβ of the model to achieve the optimal
value of the cost function. A common way to find the optimal fit is through gradient
methods which were introduced in Sect. 4.3 and these are commonly deployed when
fitting machine learning models.

As discussed in Sect. 8.1.2, overfitting the model to the data will produce large
generalisation errors. One way to avoid this is to use cross-validation and use a
validation set to choose models which don’t overfit (Sect. 8.1.3). However, in some
cases alternative techniques are often employed to reduce the effect of overfitting a
forecast model. These are explored in the following sections.

8.2.2 Information Criterion

The likelihood framework introduced above facilitates the use of information cri-
terion for model selection and is particularly useful for selecting the model orders
for ARIMA methods (Sect. 9.4) and for selecting amongst linear regression models.
Consider the likelihood function, L , e.g. such as that as in Eq. (8.7) when the resid-
uals are assumed to be Gaussian distributed, evaluated at the maximum likelihood
estimated parameters β̂ which in turn provides the maximum likelihood value L̂ . In
this case the best fit can be framed in terms of the information they provide through
the so-called Information Criterion, the most famous examples are the Bayesian
Information Criterion (BIC) defined as

BIC = M. ln(N ) − 2 ln(L̂) (8.9)

and the Akaike Information Criterion (AIC) defined as

AIC = 2M − 2 ln(L̂), (8.10)

where M is the number of parameters in the model, and N is the number of obser-
vations. Both of these create a cost function which is a mix of the loglikelihood (a
measure of the fit between the data and themodel) and a penalty termwhich penalises



8.2 Training and Selecting Models 121

the number of parameters in the model. Hence by optimising the information crite-
rion a balance is made between a good fit and the number of inputs in the model,
and reduces the chance of overfitting the model to the data. Such a model is called
parsimonious. As can be seen from the equations the AIC penalises the likelihood
more than the BIC and therefore typically optimises models with lower number of
parameters. For predictive modelling the AIC has been suggested to be more appro-
priate than the BIC [1]. Note there are several other information criterions but the
BIC and AIC are the most common.

For models which can be set within a likelihood framework, information criterion
methods are often used instead of a validation set (Sect. 8.1.3), especially where there
is insufficient training data available. However, if there is sufficient amount of data,
and a test can be created which sufficiently represents a reasonable sample of real
observations, then cross-validation may be preferable.

8.2.3 Hyper-Parameter Tuning

The main objective of optimising a machine learning model is to find an optimal
set of parameters, like the weights of a neural network, or the coefficients in a
linear regression. However, some parameters have to be chosen that influence the
optimisation itself, like the different parameters that have been introduced in other
sections like step size, batch size, activations functions and regularisation parameters
(Sects. 8.2.4 and 8.2.5). Additionally, models may introduce even more parameters
like the architecture of a neural network (number of layers and number of neurons per
layer), or the order of the polynomials in a polynomial regression. Such parameters
are called hyperparameters.

In Sect. 8.2.2 information criterion was shown to be a way to select the optimal
order for linear models. For example, by selecting the model with the minimum AIC
(or BIC) a more parsimonious model can be chosen which does not sacrifice the
model fit. However, information criteria models are not applicable to other types of
models such as neural networks or tree-based models.

For simpler models with few hyperparameters, a common approach is to exhaus-
tively search the best configuration among a grid of sensible parameters within each
dimension. Real-valued parameters are typically sampled linearly or logarithmically
across the feasible values. However, parameters can also be categorical or binary.
This approach is referred to as grid search. However, this approach is impractical
when tuningmany hyperparameters of a large neural network, where it may take sev-
eral hours or even days and weeks to train. Here, one can randomly sample from each
dimension of the hyperparameters. This approach is called random search, which
has been shown to be superior to grid search, especially when only a small number
of hyperparameters affect the model performance, i.e., the optimisation problem has
a low intrinsic dimensionality. Random search has a further advantage that it is an
any-time algorithm, as one can stop the algorithm after a specific calculation budget
(i.e., a specific number of draws or computation time) is reached. The best solution
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(a) Grid Search (b) Random Search (c) Bayesian optimisation

Fig. 8.7 The exemplary performance of a model based on two hyperparameters. For each hyper-
parameter, ten different values are evaluated and compared. Blue contours indicate regions with
strong results, whereas red ones show poor results. Source Alexander Elvers, CC BY-SA 4.0

found during the search is then selected. It is also straightforward to parallelise. By
choosing a specific distribution, one can also include prior knowledge to help focus
the search.

Since hyperparameter selection is an optimisation problem, different general
optimisation methods, including meta-heuristic methods, such as evolutionary algo-
rithms and other population-based algorithms, can be used. A popular and successful
class of such algorithms are Bayesian optimisation approaches. Bayesian optimi-
sation builds a probabilistic model of how hyperparameter values map to model
performance determined over a validation set. The probabilistic assumptions are
iteratively updated to include more and more information about the search space
as it becomes available. Algorithms differ in how they balance the exploration of
hyperparameters for which the outcome is uncertain and exploitation is increased by
sampling hyperparameters that are expected to be close to the optimum. Figure8.7
shows examples of how grid search, random search and Bayesian optimisation sam-
ple the search space. Here one can see that Bayesian optimisation does explore the
search space more effectively. There is a denser cluster of observations close to the
true optimum, while fewer points are sampled in regions that perform poorly. This
can generally lead to better or similar results than grid and random search but in
quicker time.

8.2.4 Weight Regularisation

Much like the information criterion presented in Sect. 8.2.2, regularisation also uses
a penalty based on the number of parameters to try and reduce overfitting and, as
will be seen with LASSO, can also be used for feature selection. The regularisation
methods presented here are typically applied to linear regression and artificial neural
networks (Sect. 10.4) models, although the principles can be generalised to any cost
function.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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The principle is best demonstrated with an example. Consider a linear model
for n ≥ 1 input/dependent variables X1,t , X2,t , . . . , Xn,t which are assumed to be
linearly related to the load Lt at time t . This can be written

LN+1 =
n∑

k=1

βk Xk,N+1. (8.11)

For compactness, the linear model
∑n

k=1 βk Xk,N+1 can be written as the matrix-
vector multiplication Xβ where X ∈ R

N×n is the matrix where the i th row and j th
column corresponds to the i th time step for the j th variable, i.e. X j,i . Finally, β =
(β1, . . . ,βn)

T ∈ R
n is the vector of parameters.Given a vector of dependent variables

L = (L1, L2, . . . , Ln)
T , a regularised least squares regression can be written as

min
β

(||L − Xβ||2 + λ||β||p) (8.12)

for some hyperparameter λ ≥ 0 (also known as a Lagrangian). Recall from Sect. 7.1
that ||.||p represents the p-norm. This hyperparameter must be found via the valida-
tion set as defined in Sect. 8.1.3 and controls the size of the penalty on the coefficients.
If λ = 0 then the problem reduces to the standard least-squares estimation, Eq. (8.5).
For large values of λ the parameters become small. Themost common forms used are
either p = 1, 2 the so-called LASSO (least absolute shrinkage and selection opera-
tor) or ridge regression respectively. LASSO is particularly popular at it can reduce
the number of inputs as it will often set many of the coefficients in a linear regression
to zero due to the 1-norm penalty. In this case a large number of unimportant inputs
can be eliminated. Hence LASSO can be used for both training a model and feature
selection.

To understand why LASSO can be used for feature selection consider the illus-
tration in Fig. 8.8. The figure compares the ridge regression with the LASSO regres-
sion. Both plots show the contours (lines of the same value) of the least squares cost
function within the parameter space β = (β1,β2)

T (assuming only 2 dimensional
problem). In the centre of these contours is the least squares estimate β̂, i.e. the
parameter values which gives the smallest values of the least squares cost function.

In LASSO or ridge regression, there is effectively a penalty on the size of the
parameters and this penalty changes based on the size of the λ hyperparameter.
The larger the λ the smaller the values of the parameters. Thus the parameters are
constrained within a bounded area of size 0 < C ∈ R given

||β||p = (|β1|p + |β1|p)1/p ≤ C, (8.13)

where p = 1 or 2 depending on whether LASSO or Ridge regression is being con-
sidered. These constrained regions are shown as the shaded areas in Fig. 8.8. Notice
that due to the different norm values used the shapes are very different. The con-
strained region in the 2-norm (Ridge regression) is a spherical ball, but with the
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Fig. 8.8 Demonstration of how LASSO regularisation (right) can be used to select features. This is
compared to ridge regression (left). The chosen parameters are represented by the red dot showing
the smallest value of the least-squares cost function with respect to the feasible parameters (the
shaded shape). The figure is explained in the main text

1-norm (LASSO) is a square. The minimum value for the regularised cost function
is therefore given by the β within the shaded feasible region closest to the optimal
least squares estimate β̂, shown as the red dot in the figure.

Due to the shape of the constrained region for LASSO regression this will often
lie on the ‘corners’ of this region, which means that often many of the parameters
will be equal to zero, effectively selecting the parameters in the process.

8.2.5 Other Regularisation Methods

Reducing Model Capacity For many algorithms one can control with hyperparam-
eters whether a model is more likely to over- or underfit by altering its capacity, i.e.,
its complexity or more generally its available degrees of freedom. By choosing cer-
tain hyperparameters (see Sect. 8.2.3) the hypothesis space, i.e., the set of functions
that the algorithm is capable of selecting as a solution, is affected. For instance, for
neural network models, the number of trainable parameters determines the ability
to fit a wide variety of functions. Similarly, in random forests, the number of trees
determines its complexity. Models with low capacity may not be able to properly fit
the training set (they have high bias). Models with high capacity will overtrain on
the training data set and don’t generalise to the actual underlying process (hence are
not represented in the test set).

Data Augmentation Overfitting can generally be avoided by training a model on
more data. In practice the amount of data may be small or data collection can be
expensive. Instead, one way to improve model performance is to create synthetic
data samples in the training set. For image data this can often easily be achieved
by adding transformations to images like mirroring, rotating, shifting, as problems
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Fig. 8.9 Exemplary learning curve to show relationship of training and evaluation loss over time
in training process for a model with high capacity

such as object detection are expected to be invariant to such operations. This is not
trivial for many machine learning tasks, in particular time series forecast where the
real patterns and interdependencies in the data need to be preserved. However, where
possible, data augmenting strategies should be explored.

Early Stopping Training neural network models with large capacity on tasks which
are too simple can lead to overfitting. One popular diagnostic tool to prevent this are
learning curves, i.e., the calculation of the error on the training set at regular intervals
in the training process (e.g., after each training epoch). If the hyperparameters are
chosen reasonably well the training error should decrease. To monitor generalisation
in the training process, one can create a validation dataset and calculate the errors. If
the validation error increases, while the training error decreases this is an indication
of the model starting to overfit. Figure8.9 gives an exemplary learning curve of a
model with high capacity. Thus one popular regularisation strategy is to stop training
if the validation error does not improve beyond a specific number of iterations. At the
end of the process, the model that has the smallest validation error is returned rather
than the finalmodel configuration. This requires the algorithm to store checkpoints of
the model configurations during the training process (e.g., the values of the weights
in a neural networks).

Batch NormalisationAnother popular improvement to the training process of neural
networks is batch normalisation, or batch norm. It was introduced as a method to
speed up the training of neural networks andmake it more stable by normalising each
of the layers’ inputs by re-centering and re-scaling (standardising). However, besides
providing faster and more stable training, batch normalisation also has a regularising
effect. Further, the training becomes more robust to different initialisation schemes
and the choice of the learning rates (i.e., a larger learning rate can be chosen).

Dropout In dropout a certain share of artificial neurons and its weights are ran-
domly omitted during the training process of a neural network (Sect. 10.4). This
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process effectively creates an ensemble of simpler neural network architectures.
This is related to ensemble methods such as random forests that combine the predic-
tions of simple decision trees (see Sect. 10.3.2 on random forests). Dropout has the
effect of adding noise to the training process. It has been shown that a reasonable
default for a wide range of tasks is to use a dropout of 0.5 for each layer. Dropout
can be used and configured for each layer of the neural network, and works with
different kinds of layers such as dense fully connected layers, but also convolutional
and recurrent layers (see Sects. 10.5 and 10.4). However, it should not be used in the
output layer. When adding dropout only to the input layer, this is related to the idea
of adding noise as it has been used in denoising autoencoders. It is computationally
cheap and an effective regularisation method to reduce overfitting and improve the
generalisation error in many kinds of deep neural networks.

8.3 Questions

1. Create your own bias variance experiment. You could repeat the polynomial fit in
Fig. 8.1. Alternatively choose another polynomial of a different degree. Generate
100 samples from the polynomial and add noise (saywith aGaussian distribution).
Nowfit polynomials of a variety of degrees, say from1 to 20.Calculate the training
errors. Plot the training errors for each polynomial as a function of degree. How
does the error change? Is the smallest error at the correct polynomial degree? For
higher degrees does the error increase? Now resample the polynomial (and add
noise with the same distribution as before). Measure the error between the fitted
polynomials and this new data? This is the generalisation error. Plot the errors
against degree again. What is the optimal degree? Compare this plot with the
original one with the training errors. What is the difference between them?

2. Repeat the above experiment but sample just 15 points this time. How do the
training and generalisation errors change? What about reducing the number of
sampled points to 5?

3. Performyour owngrid search.Generate points froma simplemodel, say a line y =
ax + b, with known coefficients a, b. Add a small amount of noise to the points.
Select a rectangle around the coefficients, i.e. (a, b) ∈ [A1, A2] × [B1, B2]. Gen-
erate a grid of N1 × N2 points (say N1 = N2 = 10) within this rectangle by sim-
ply choosing uniformly spaced values on each side of the rectangle, i.e. the
kth a value ak = A1 + (k − 1) (A2−A1)

N1−1 , similarly bl = A2 + (l − 1) (A2−B2)

N2−1 for
k = 1, . . . , N1, and l = 1, . . . , N2. For each pair of coefficients in the rectan-
gle calculate the errors between the sampled data and the associated line. Which
pair of coefficients give the lowest errors? How close are they to the true values?
In addition, sample random pairs from within the rectangle. How many samples
did you need to produce smaller errors than the grid search.

4. Show that themean squared error for amodel can be broken down in bias, variance
and irreducible error as in Eq.8.3.
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Chapter 9
Benchmark and Statistical Point Forecast
Methods

The previous sections have described in detail the steps required to develop a time
series forecast including: how to generate useful explanatory variables; how to train
the model; how to avoid overfitting; and how to evaluate the accuracy of the model.
What has not been investigated is the models themselves. This chapter will be the
first of three chapters looking at a wide range of models and some of their properties.

This chapter and the next will look at point forecast methods, and then in Chap.
11, probabilistic forecasts will be examined which provide models for handling
highly uncertain data, something which is often required for low voltage feeders and
substations (Chap. 2).

Of the point forecasting chapters, this chapter looks at traditional statistical meth-
ods,whereasChap. 10will look atwhat are sometimes referred to asmachine learning
models. Each type of models has advantages and disadvantages, some of which have
already been described in Sect. 5.3, but further criteria will be described in Sect.
12.2. In short, statistical models are typically more transparent and easier to interpret
and understand. That makes them not only useful for investigating some of the core
features of the data, but also makes them good benchmark candidates.

The majority of the models presented in this chapter are easily implemented
through packages in open source programming languages for scientific computing
such as Python and R as well in popular proprietary software such as MATLAB.
However they can be easily derived and trained from scratch (since they are often
linear functions and hence can be easily trained using e.g. linear least squares, see
Sect. 8.2), which may be preferable when you want to extend the models or make
bespoke adjustments.

This chapter starts by considering some simple models and then introduces pro-
gressively more complicated ones (in terms of more parameters and computational
expense) starting with exponential smoothing (Sect. 9.2), multiple linear regression
models (Sect. 9.3), ARIMA and SARIMA models (Sects. 9.4 and 9.5 respectively),
and then finally generalised additive models (Sect. 9.6).

Before diving into the models it is worth highlighting the context for these fore-
casts: short term load forecasts (STLF). A common way to categorise a load fore-
casts is in terms of the forecast horizon. Short term forecasts estimate the demand
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between a day and a week ahead (sometimes two weeks). In contrast, those from
1week up to a year are referred to asmedium term load forecasts, and those beyond
a year, long-term load forecasts. Note these definitions can vary slightly depending
on the context but are typically in the ranges specified. Models which are good for
STLF may not be suitable for medium and long term load forecasts, and vice-versa.
Hence the models presented here are specifically chosen for their use in shorter
term load forecasts which will usually heavily rely on the most recently observed
information.

9.1 Benchmarks Methods

This section will begin with considering basic and commonly used benchmark meth-
ods. As discussed in Sect. 8.1.1 developing appropriate benchmarks is essential for
anywell-designed forecast experiment. As usual throughout this chapter a time series
of the form L1, L2, . . . ,will be considered and the aim is to produce estimates L̂ N+k

for the time steps N + k where N ∈ N is the forecast origin and k ∈ N the forecast
horizon (See Sect. 5.2 for further details on these terms).

One of the simplest benchmarks is the persistence model, which can be described
as

Persistence: L̂ N+1 = LN

This model assumes that the demand of the next time step is simply the current
load. Additional future time steps can be estimated by simply repeating this value.

This can be an effective model if the data has a single strong autocorrelation
at lag one (see Sect. 6.2.2). However for most applications, with more variable
demand, the method will provide very little accuracy. Instead, energy demand often
has strong daily,weekly and annual seasonal components (Sect. 5.1).Hence, effective
adjustments can be made to the simple persistence model to produce a much more
accurate forecast model which presumes that the behaviour at the current step is the
same as that at exactly one seasonal cycle away. These are called seasonal persistence
models and have the following form:

Seasonal persistence: L̂ N+k = LN+k−s1

where L̂ N+k is the k-step ahead prediction, N is the forecast origin, while s1 denotes
the seasonal period (note it is assumed the last seasonal point is observed, i.e. occurs
before the forecast origin, so N + k − s1 ≤ N ). As an example, consider the case of
half hourly data, seasonal persistencemodels for daily, weekly and yearly seasonality
can be produced by setting s1 to 48, 336 or 52 × 336 respectively. These seasonal
persistence forecasts are very easy to implement and require no training data what-
soever. An example of day ahead persistence and seasonal persistence models are
shown in Fig. 9.1, were the seasonal persistence model uses daily seasonality (i.e.
yesterday is the same as today).
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Fig. 9.1 The plot shows a simple persistence forecast (grey flat line) and a daily seasonal persistence
(red line) for the fourth day of the half hourly data. The observations are shown as a black line.
The data in this example has daily seasonality and hence the seasonal persistence model picks up
important features of the data

For seasonal data, an extension (and usually an improvement) to these methods
is to include several historical observations at the same period and take a simple
seasonal moving average. In other words:

Seasonal Moving Average (SMA): L̂ N+k = 1
p

∑p
i=1 LN+k−is1 .

As with the seasonal persistence, often a weekly period (s1 = 336 for half hourly
data) is used. The weekly simple averages often perform much better than the equiv-
alent seasonal persistence models since it smooths out the random week-to-week
aberrations around the expected value and therefore better replicates the typical
weekly behaviour. An example is illustrated in Fig. 9.2 for daily seasonal data. Day
3 had unusually large demand, hence a daily seasonal persistence model would not
be as accurate as when it was used in the previous example in Fig. 9.1. Instead the
simple average over the Days 1–3 reduces the effect of the unusual day 3 and hence
provides a better estimate of day 4. For the simple average method, slightly more
training data is required than the persistence models, and in addition a validation
period is required to choose the most appropriate value of the hyperparameter p
(Sect. 8.1.3). However, the model is very quick to calculate and in practice typically
only requires setting p = 4 or 5 weeks to optimise the model and offer significant
improvements over the persistence models.
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Fig. 9.2 Plot shows a daily seasonal moving average forecast (blue line) over three historic days
to generate a forecast for the fourth day of the half hourly data. The observations are shown as a
black line. The data in this example has daily seasonality but more volatile data on the third day of
the data. Hence in this case the daily seasonal persistence would not produce an accurate forecast
for the fourth day compared to the simple moving average which smooths out the errors over the
three days

9.2 Exponential Smoothing

Despite their simplicity, the benchmarks introduced in Sect. 9.1, especially the sea-
sonal moving average, can be surprisingly accurate. However, one of their disad-
vantages is that each historical week they utilise is given equal weighting whereas
it would be expected that older data is less relevant to the current forecast period.
In other words, older data should contribute less than more recent data to the final
forecast. This is particularly relevant for load data as it is strongly driven by season-
alities and trends. For example, it would be expected that data from a few months
ago in, say summertime, is less relevant to the winter period.

Exponential smoothing methods take weighted averages of past observations but
where the weights decay for older observations. To illustrate this, consider the sim-
plest form of exponential smoothing which creates a smoothed 1-step ahead output
L̂ N+1 which is updated at each step using the latest observation, LN , in the following
way

L̂ N+1 = αLN + (1 − α)L̂ N = L̂ N + α(LN − L̂ N ), (9.1)

where α ∈ (0, 1) is a smoothing constant to be optimised in the validation period
(see Sect. 8.1.3). The estimate, L̂ N+1, of the next observation LN+1 is a weighted
average of the current estimate L̂ N and the most recent observation LN . Similarly,
the previous estimate is also a weighted average of the previous observation LN−1
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and the estimate L̂ N−1 before that, and so on. In other words Eq. (9.1) can be written
in the expanded form

L̂ N+1 = α(LN + (1 − α)LN−1 + (1 − α)2LN−2 + . . . (1 − α)N−1L2) + (1 − α)N L1,
(9.2)

a geometric sum. Since α and hence 1 − α ∈ (0, 1) then older observations are
given less weight and thus contributes less to the final estimate. In the special case of
α = 1 then the forecast is simply the last observation and is equivalent to the simple
persistence model as given in Sect. 9.1. This method is a 1-step ahead forecast and
hence if multiple steps are required the forecasts are fed back into the model in place
of the unobserved values. The optimal parameter can be found by a minimisation
the sum of square errors for the 1-step ahead forecasts (over the validation period)
but in addition to α an initial estimate must also be produced. This can be generated
as a simple average over previous values. The sum of square errors is a nonlinear
equation due to the nested application of the smoothing constant and therefore has
to be optimised using numerical methods rather than being solved directly.

To illustrate the exponential smoothing method consider a basic example given
in Fig. 9.3. Two exponential models are applied using two different values of α to
produce a 1-step ahead forecast. The model that uses α = 0.7 is less smooth and
is driven mainly by the most recent points. The model that uses α = 0.2 is the
smoothest and takes a weighted average which has more contributions from older
historical values. In this case less smoothing (higher α value) is more useful for
prediction since the data has a decreasing trend and hence older points are much less
relevant to the recent data.

In this basic form, exponential smoothing is relatively limited since it ignores
trends or seasonalitieswhich are important components of demand.Amore advanced
exponential smoothing algorithm that does take seasonalities into account is the
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Holt-Winters-Taylor (HWT) exponential smoothing method and models two levels
of seasonality. This method estimates the load L̂ N+1 at time t using the following set
of equations:

L̂ N+1 = lN + dN+1−s1 + wN+1−s2 + φeN

eN+1 = L̂ N+1 − (lN + dN+1−s1 + wN+1−s2)

lN+1 = lN + λeN+1

dN+1 = dN+1−s1 + δeN+1

wN+1 = wN+1−s2 + ωeN+1, (9.3)

where the parameters φ,λ, δ,ω must be trained on the historical data. The load is
broken down into three core components, a level lt which corresponds to the first
order correlation, and two seasonal terms, dt andwt , which in load forecasting often
correspond to intraday and intraweek seasonality respectively (although of course
different periods can be used depending on the data). The intraday seasonality period
s1 and intraweek period s2 are the number of time steps covering one day or week,
and for hourly data would be 24 and 168 respectively. Notice that each of the level
and seasonal terms has their own simple exponential smoothing equation as in Eq.
(9.1). The error terms εN+1 = LN+1 − L̂ N+1 are assumed to be normally distributed
with zero mean. At each time step N + 1, a forecast, L̂ N+1, is made using the current
values for the level and seasonal terms lN , dN , wN as well as the first order error term
eN . Given this new estimates the other terms values can be then updated using their
respective smoothing equations as described in Eq. (9.3). Due to the recursive nature
of the algorithm the older values contribute less to the updates and the amount of
contribution is determined by the size of their respective parameters, φ,λ, δ, and ω.

Training the model parameters can be achieved by numerical optimisation of the
one-step ahead, sum of squared errors (i.e. Eq. (8.5)) over the training data (Sect.
8.2) as before. However, note that there must be an initial estimate for the level and
seasonal components before the parameters can be trained. There a few ways to do
this but a simple method is to take an average over the oldest observations to ensure
that there is initial data to train the algorithm. An example of the double seasonal
exponential smoothing model will be given in the case study in Sect. 14.2.

9.3 Multiple Linear Regression

Standard regression is a statistical process for estimating the relationship between
single or multiple variables. One of the simplest and most common of such models is
multiple linear regression as it is easy to explain, fast to compute and very versatile.
Suppose there is n ≥ 1 input variables X1,t , X2,t , . . . , Xn,t which are assumed to be
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linearly related to the load Lt at time t , in other words the following forecast model
is constructed

L̂ N+1 =
n∑

k=1

βk Xk,N+1. (9.4)

The coefficients (or regression parameters), φk , describe the explanatory power of
each of the variables in modelling the load Lt (although this does depend on each
variable having similar magnitude). The independent variables are assumed to be
uncorrelated with each other,1 as are the 1-step ahead errors εt = LN+1 − L̂ N+1

which are often assumed to be distributed as a Gaussian (see Eq. (3.5) Chap. 3)
with mean zero and constant variance (the constant variance means the errors are
homoskedastic—see Sect. 11.6.1). These assumptions simplify the training of the
coefficients andmodelling of the prediction intervals. However, as always it is a good
idea to check these assumptions by plotting the residuals as well as their ACF (see
Sect. 7.5 for further details).

If there is only one explanatory variable then the model is simply called linear
regression, whereas with more than one it is called multiple linear regression.
Multiple linear regression can often be written in a more succinct vectorised form

L̂ N+1 = βTXN+1, (9.5)

where Xt = (X1,t , X2,t , . . . , Xn,t )
T and β = (β1, . . . ,βn)

T are the vectors of inde-
pendent variables and regression parameters respectively.

Although Eqs. (9.4) and (9.5) only show independent variables Xk,t at the same
time step t as the independent variable, L̂ t , the equations can of course include lagged
time points and autoregressive variables.

As an example, consider the situation in Fig. 9.4 where the best regression fit
for the observations (in red) is the curve Y = (X − 2)2 + 1.2 = X2 − 4X + 5.4.
Notice, that although the function contains a quadratic term X2, it is still clearly linear
in the coefficients with independent variables X = (X2, X, 1)T and corresponding
regression parameters β = (1,−4, 5.4)T . Hence it is important to understand that
nonlinear relationships can still bemodelledwithin linear regression. For an example
in demand forecasting, notice that the nonlinear relationship between demand and
temperature in Fig. 6.7 in Sect. 6.2.2 could be modelled by a linear regression using
a polynomial (if chosen with sufficient order).

Linear regression is also well suited to model the impact of categorical/discrete
variables through the use of dummy variables (see Sect. 6.2.6). This is particularly
useful in load forecasting which often require day-of-the-week or time-of-the-year
effect. For example, often different days of the week are likely to have different
demand characteristics, in which case the model should include the effect of the

1 If the errors are correlated this makes fitting this model much more complicated and the least-
squares estimator for estimating the coefficients may not converge to the correct values. This is
beyond the scope of this book, but there are other books such as [1] which dive into this in more
detail.
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Fig. 9.4 Linear regression lineY = (X − 2)2 + 1.2 = X2 − 4X + 5.4 (black) and noisy,Gaussian
observations (red crosses) around the line

different days. In multiple linear regression this is done by including the dummy
variables Dj (k) for j = 1, . . . , 7 (one for each day of the week—with Monday
represented by j = 1 and Sunday by j = 7 etc.) which indicate the day of the week,
defined by

Dj (k) =
{
1, if time step k occurs on day j of the week

0, otherwise

In a linear regression model we often use six of the dummy variables as inputs to
avoid the dummyvariable trap (see Sect. 6.2.6) since in fact we canmodel the effect
of one of the days by the other six (the seventh day is modelled by simply setting the
other six to zero, presuming there is at least another term such as a constant which
will ensure that its effect can be modelled).

Another useful feature of linear regression is that we can include interaction terms.
This is where wemodel the effect of two or more variables on the dependent variable.
For example, it may be that temperature Tk has an effect on demand, but only for
a particular hour of the day, say 2–3pm. In this case we can include a term for the
temperature variable but multiplied by a dummy variable which indicates the time
of day and is zero at all times except the hour 2–3pm. In the linear regression the
interaction term is often denoted as multiplication of the two terms, e.g. TkD j (k)
or Tk ∗ Dj (k). The case is similar if the simultaneous effect from more than two
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variables are modelled. An example of interaction terms in a linear regression model
will be given in the case study in Sect. 14.2.

Given the assumptions on the errors, the coefficients of a linear regression model
are often found by minimising the least squares estimate (see Sect. 8.2) and are
therefore quite easy, and quick, to train. Recall, that since the errors are assumed to be
Gaussian with constant variance, the least squares estimate of the model are also the
maximum likelihood estimate as shown in Sect. 8.2. This is particularly convenient
since the loglikelihood (see Eq. (8.8)), and hence the Bayesian information criteria
(BIC) and Akaike information criteria (AIC), are both easy to calculate. Recall from
Sect. 8.2.2, that identifying the models with the smallest values of AIC or BIC is one
way to choose the best models on the training data, which have a tradeoff between
accuracy and model complexity helping to limit the potential for overtraining the
models.

As described in Sect. 8.2.2, linear models can be easily adapted to regularisation
frameworks such as LASSO and ridge regression. Much like the AIC and BIC these
techniques penalise the number and/or size of the coefficients by including a penalty
term on the normal least squares regression. In particular LASSO can be used as
a model selection technique as it tends to set the coefficients of irrelevant (or less
influential) explanatory variables to zero. Finally, of course, as with all the methods,
themodels can also be selected through cross-validation and finding themodel which
minimises the error on the validation set. This can be quite inefficient if there is a lot
of independent variables being considered.

Given the final trained model, the simple linear structure the coefficients provide
a useful way to interpret the effect of each variable (assuming they are independent).
Essentially they tell you how much the expected value of the dependent variable
will change given a unit change in the independent variable assuming all the other
independent variables are fixed. The interpretation becomes a little more complex
when there are interaction terms as the effect size will now be dependent on the value
of the other variable(s). In these cases inserting a range of reasonable values for these
other variables may help to show the range of effects.

9.4 ARIMA and ARIMAXMethods

The autoregressive moving average (ARMA) technique is a traditional linear time
series model which has been extensively used in time series forecasting. An ARMA
(p, q) model for a time series is a linear model described by

L̂ N = C +
p∑

i=1

ψi LN−i +
q∑

j=1

ϕ jεN− j , (9.6)

where εt is a time series of error terms and C is a constant. ARMA models depend
on the time series Lt to be stationary (see Sect. 5.1) however this may not always be
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the case. When the series is not stationary, differencing can be applied to time series
until the final series is stationary. If d differences are applied this can be written

L(d)
N = L(d−1)

N − L(d−1)
N−1 , (9.7)

where the differences are applied iteratively d times. When differencing is used, the
ARMA(p, q) model is now referred to as a ARIMA(p, d, q) model (autoregressive
integrated moving average, with the integrated part meaning the differencing) and
can be written

L̂(d)
N = C +

p∑

i=1

ψi L
(d)
N−i +

q∑

j=1

ϕ jεN− j + εN . (9.8)

A convenient and concise way to write ARIMA models is in terms of the Backshift
operator B (also known as the lag operator), where B is defined on elements of a
time series by BLt = Lt−1. By definition the lag operator can therefore be written
BkLt = Lt−k . Thus the ARMA(p, q) model can be written as follows

(

1 −
p∑

i=1

ψi B
i

)

LN =
⎛

⎝1 +
q∑

j=1

ϕ j B
i

⎞

⎠ εN + C, (9.9)

and an ARIMA(p, d, q) model can be written as

(

1 −
p∑

i=1

ψi B
i

)

(1 − B)d LN =
⎛

⎝1 +
q∑

j=1

ϕ j B
i

⎞

⎠ εN + C, (9.10)

where (1 − B)d LN is the dth order difference.
ARIMA models are quite versatile, being able to estimate a wide range of time

series. They consistent of three main components: the difference d, an autoregressive
(AR(p)) component,

∑p
i=1 ψi L

(d)
t−i , of order p, and a moving average, MA(q), term,∑q

j=1 ϕ jεt− j , of historical white noise error terms of order q. As with multiple linear
regression, the error terms are generally assumed to beGaussian distributed (although
other distributions can be used), with mean zero and uncorrelated with each other.

Autoregressive models, AR(p), and moving average models, MA(q), are special
cases ofARMAmodels (actuallyARMA(p, 0) andARMA(0, q)models respectively)
and they are worth considering in a bit more detail before looking at the full ARMA
model. Autoregressive models are ARMA processes but with ϕ j = 0 for all j and
hence these are simple models in which the p past values of the time series influence
the current values. An AR(p) can be written

L̂ N = C +
p∑

i=1

ψi LN−i . (9.11)
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Fig. 9.5 Example of autocorrelation (top) and partial autocorrelation (bottom) for a simple AR(4)
model

Recall from Sect. 3.5 the partial autocorrelation is a measure of autocorrelation
between the time series and its lagged values but with the influence from the inbe-
tween lags removed. This means the PACF is an natural way to identify the order,
p, of an AR process since the PACF should be zero for lags k > p. In practice, the
order can be detected by considering the sample PACF plot from the available time
series and identifying when the lagged values are effectively zero, i.e. are consistently
within the 95% confidence bounds which are often plotted with the PACF. Further,
the ACF should also exponentially decay to zero for an AR(p) process. An example
for a simple AR(4) model is shown in Fig. 9.5. Notice that in the PACF there are no
correlations which are outside the confidence bounds beyond lag 4 as expected.

In contrast, moving average models are influenced by past values of the error
values, so large past deviations can have an influence on the current time series
values.One of the useful properties of a pureMA(q) process is that the autocorrelation
function should be zero from lag q + 1 onwards. So the ACF plot can be used to
identify aMA time series and its order. It should be noted that, although the ACF and
PACF can be used to identify AR and MA models and their orders, in practice the
sample version of these functions are used, applied to real observed data, and hence
the results may deviate from the more clear-cut theoretical solutions. In other words
the autocorrelations may exceed the confidence bounds but these may be spurious
and simply occur due to random chance.

Now consider an ARIMA model, where the optimal orders, p, q and d must be
found in order to train the coefficients ψi , ϕ j of the final model. Typically this done
by comparing the AIC values (see Sect. 8.2.2) from a range of different choices for
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p, q and d. It is impractical to compare all possible values and hence typically a
search is only performed around a good approximation to the orders. A common
method for finding the best orders for an ARIMA model to historical time series
data is the Box-Jenkins method which utilises the ACF and PACF to identify the
autoregressive and moving average orders as discussed above. The process typically
consists of the following steps:

1. Check if the time series is stationary. If it isn’t perform differencing until the
final series is stationary. Stationarity can be checked in many ways. In addition
to a time series plot, another indication of non-stationary time series is a slowly
decaying auto-correlation function as a function of lags (see Chap. 3). However,
there are also stationarity tests as outlined in Appendix A.

2. Identify the orders of the autoregressive (AR) and moving average (MA) terms.
This can be estimated by examining the autocorrelation function (ACF) and partial
autocorrelation function (PACF) plots (see Chap. 3 and Sect. 6.2.4). In particular,
if the model has an AR component of order p then the PACF should be effectively
zero from lag p + 1 and above. Similarly for an MA model of order q, the ACF
should effectively be zero from lag q + 1 and higher. In practice these orders
can be found by looking at the respective plots and considering whether they are
above the 95% confidence interval (which are usually included on the plot, see
Sect. 6.2.4).

3. Using the ACF and PACF as an approximation for the correct orders, check the
AIC (or BIC) values for a selection of ARIMA models with different p, d, q
values (around the approximate values). The final orders are those that give the
smallest AIC (BIC) values.

It should be emphasised that the ACF and PACF do not often give a definitive answer
on the correct orders, and hence in practice they are used to approximate the correct
orders which are then tested in step 3 using the AIC/BIC.

The Box-Jenkins methodology is illustrated here for a specific example using an
ARIMA(3, 0, 1) (or equivalently an ARMA(3, 1)) model given by yt = 0.14 +
0.609yt−1 − 0.5yt−2 + 0.214yt−3 + 0.624et−1 + et . The time series is shown in
Fig. 9.6 and was generated using the Matlab simulate function.2 The et is the error
series which are distributed according to the standard normal distribution. In this
case the series is stationary so there is no differencing required. To check the autore-
gressive and moving-average orders the ACF and PACF plots are considered, these
are shown in Fig. 9.7, together with the confidence bounds for the 95% significance
level. The ACF (the top plot) indicates theMA order and shows that the largest corre-
lation is at lag 1, which is as expected, however there are also significant correlations
(significant in terms of being clearly outside of the confidence interval) at lags 16 and
17. Notice that the ACF doesn’t gradually decrease as a function of lag, this supports
the conclusion that the time series is stationary. The PACF indicates the AR order
and in this example shows there are significant peaks at lags 1–4 which suggest a
slightly larger order than expected. In addition there are smaller peaks outside the

2 https://uk.mathworks.com/help/econ/arima.simulate.html.

https://uk.mathworks.com/help/econ/arima.simulate.html
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Fig. 9.7 ACF (top) and PACF (bottom) plot for the time series yt = 0.14 + 0.609yt−1 − 0.5yt−2 +
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Table 9.1 Akaike Information Criterion results for different AR (p) and MA (q) values for the
ARIMA example given in the text

q value

1 2 3 4

p value 1 67.90 56.03 56.67 54.83

2 53.95 53.39 52.00 52.04

3 50.45 52.34 52.13 53.19

4 52.34 53.72 54.90 56.25

confidence interval at larger lags as well. This analysis indicates that ACF and PACF
analysis is limited in terms of giving a complete answer to the exact order. In fact,
the plots have limitations as it would be expected that 5% of autocorrelations to be
outside of the confidence interval by random chance anyway. This means that the
ACF and PACF must be interpreted with caution and in conjunction with the AIC.

Using the correlation analysis helps to locate the approximate area of the correct
orders. In this example the ACF and PACF have suggested orders of around q = 1
and p = 4, and a test of the AIC for a variety of combinations of autoregressive and
moving-average orders close to these values should be performed. Since the number
of parameters for anARIMA(p, 0, q)model is p + q + 1 (theone is due to the constant
term) then the Akaike Information Citerion (AIC) has a particularly simple form

AIC = 2(p + q + 1) − 2 ln(L), (9.12)

where L is the likelihood function of the ARIMA model. The AIC is checked for
all combinations of orders with p = 1, 2, 3, 4 and q = 1, 2, 3, 4.3 The result for
each combination of p and q are shown in Table9.1 which shows that a mini-
mum AIC value of 50.45 is achieved for p = 3 and q = 1, correctly identifying the
ARIMA(3, 0, 1) model.

It should be noted that any MA model can be estimated by an AR model with a
sufficiently large number of lags (p value). Since the coefficients of an AR model
can be calculated much more quickly than a full ARIMAmodel, it can be preferable
to replace any ARIMA model with an AR (with differencing if not stationary) with
large enough degree. This can also simplify the analysis and interpretation of the
models. However, this may also require a relatively large order and thus many more
parameters in theARmodel compared to a simpleARMAmodel, reducingparsimony
and interpretation.

There are a number of useful extensions to the ARIMA models. One of the most
important for load forecasting purposes is to extend the model to include other
explanatory variables. This model is then called an Autoregressive Integrated Mov-
ing Average with Explanatory Variable (ARIMAX) model. An ARIMAX (p, d, q)
model includes extra external variables and is described by Eq. (9.13)

3 We also test the larger ACF correlations at q = 16, 17 but these do not reduce the AIC score and
are thus likely spurious.
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L̂(d)
N = C +

h∑

i=0

μi XN−i +
p∑

i=1

ψi L
(d)
N−i +

q∑

i=1

ϕiεN−i (9.13)

with the differencing in (9.7) as before. The
∑h

i=0 μi Xt−i is the explanatory variables
term. The model can be analysed by first considering an ARIMA model without
exogenous inputs to isolate the orders of the equations, and then fitting the full
model with the exogenous variables. Note, when finalising the AR and MA orders,
the AIC should be applied to the full ARIMAX equation.

9.5 SARIMA and SARIMAXModels

An important extension to ARIMA models is to include seasonality. Sea-
sonal ARIMA (SARIMA) includes an extra set of hyperparameters, denoted
P, D, Q, which extends the model to include autoregressive, differencing and
moving average terms at a specified seasonal level. These models are written
ARIMA(p, d, q)(P, D, Q)S where the S indicates the seasonality. For example,
for hourly data with daily seasonality, the SARIMA model would be written
ARIMA(p, d, q)(P, D, Q)24. The ACF and PACF are interpreted differently for
seasonal ARIMA models. Consider a simple case where d = D = q = Q = 0
but p = 2 and P = 1. This means the time series would have autoregressive
lags at 1, 2, 24, 25, 26. Notice the combination of p and P terms means intra-
seasonal lags (1, 2) are applied onto the seasonal lag 24. An example of an
ARIMA(2, 0, 0)(1, 0, 0)10 is shown in Fig. 9.8 together with the partial autocor-
relation function. Notice the significant spikes on the PACF at lag at the periodic
intervals 10, 20, and also 11, 12, 21, and 22.
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Fig. 9.8 Example of a ARIMA(2, 0, 0)(1, 0, 0)10 series (top), and the corresponding PACF
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The backshift operator is particular useful for representing SARIMAmodels. For
example, an ARIMA(p, d, q)(P, D, Q)24, for hourly seasonal data, can be repre-
sented as (Note no constant included here for clarity)

(

1 −
p∑

i=1

ψi B
i

)⎛

⎝1 −
P∑

j=1

ζ j B
24 j

⎞

⎠ (1 − B)d(1 − B24)DLN =
(

1 +
q∑

i=1

ϕi B
i

) ⎛

⎝1 +
Q∑

j=1

θ j B24 j

⎞

⎠ εN , (9.14)

where ψi are the coefficients for the nonseasonal AR components, ζ j are the coeffi-
cients for the seasonal AR components, ϕi are the coefficients for the nonseasonal
MA components, and θ j are the coefficients for the seasonal MA components. Note
that (1 − B24) represents a seasonal difference, i.e. (1 − B24)LN = LN − LN−24. A
seasonal difference of D = 1 is often sufficient.

For more details on ARIMA and SARIMA models check out [2] as well as other
literature listed in Appendix D.

9.6 Generalised Additive Models

The linear models specified in Sect. 9.3 have various limitations. The two strongest
and most common assumptions are that the errors follow a Gaussian distribution and
that the model is a simple linear combination of various input variables.

Generalised linear models (GLM) are an extension to simple multiple linear
models which include a link function which can allow for more diverse types of
relationships. Using the notation as in Sect. 9.3 a dependent variable Lt at time t
follows a GLM if for n ≥ 1 input variables X1,t , X2,t , . . . , Xn,t , then

g(E(L̂ N+1)) =
n∑

k=1

βk Xk,N+1, (9.15)

for some (possibly nonlinear) link function g(.), and such that the response variables
are from a probability distribution from the exponential family (for example Gaus-
sian, binomial or Gamma distributions—see Sect. 3.1). In other words, for a GLM,
a transformation (via g) of the expected value of the dependent variable is a linear
model. Notice, like the linear model all the linear coefficients, βk’s must be estimated
but, in addition, the link function and a probability distribution model for the errors
must also be chosen. When the link function is simply the identity (g(x) = x), and
the dependent variables are assumed to be Gaussian, then Eq. (9.15) reverts to the
simple multiple linear regression model as introduced in Sect. 9.3. The choice of link
function and distribution you require depends on the problem being considered. For
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example, if a dependent variable is non-negative then a log link function could be
valid.

In this work general GLMs are not investigated. Instead the focus is on a very
specific, and powerful, form ofGLMs calledGeneralisedAdditiveModels (GAMs)
which have been very successful in load forecasting.4 A GAM has the general form
of

g(E(L̂ N+1)) =
n∑

k=1

fk(Xk,N+1), (9.16)

for some (possibly nonlinear) smooth functions fk .
GAMs have several advantages over GLMs, firstly the functions fk allow the

modelling of a much more diverse set of, possibly nonlinear, relationships whereas
GLMs are only of the form fk(Xk, N + 1) = βXk,N+1. In addition, these functions
are often modelled nonparametrically, whereas the GLMs often assume parametric
transforms and distributions (GAMs can also utilise common parametric forms as
well, e.g. log functions, or polynomials for each fk). Note that GAMs still use a
link function g which can be used to transform the dependent variable into a more
suitable form for training.

A nonparametric approach for each of the functions ( fk) in the additive model
allows the algorithm to learn the relationship between each input variable Xk,N+1

from the observed data. A most common way to do this is to model each function
using basis functions (See Sect. 6.2.5). Hence each function fk is modelled

fk(Xk,N+1) =
m∑

i=1

αk,iφk,i (Xk,N+1), (9.17)

for basis functions φk,i (X). Notice that this form transforms the GAM (9.16) into a
GLM since the sum of the additive functions are now sums of linear functions in the
bases.

For GAMs, it is common to choose splines for these basis functions. A spline is
a piece-wise continuous function which is composed of other simpler polynomial
functions. One of the simplest examples of a spline is a piecewise linear combination.
Examples of a linear and a cubic spline is shown in Fig. 9.9. Note since a spline is
continuous, the end of one polynomial must join on the start of the next polynomial.
The knots specify where the polynomials join to each other. The cubic version is
regressed on the observations (red points) between the knots to determine the other
two coefficients in each cubic polynomial (two of the coefficients are already found
by the interpolation constraints).

In more precise terms, consider the one dimensional case where the aim is to
approximate a function f : [a, b] −→ R defined on an interval [a, b] ⊂ R. For m
knots at a = z1 < z2 < · · · < zm−1 < zm = b a spline is fitted to some data by a

4 For example, GAMs were part of the wining method for the Global Energy Forecasting Compe-
tition 2014 [3].
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Fig. 9.9 Example of linear spline (top) and cubic spline (bottom). The squared markers are the
knots which the polynomials interpolate

Fig. 9.10 Example of a
smooth cubic spline
interpolated through the
same points as in Fig. 9.9
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polynomial si (z) on each subinterval [zi , zi+1]. Further, si (zi+1) = si+1(zi+1) since
the spline should be continuous at the knots.

Other constraints can be applied to the spline to either make it easier to train
or to satisfy other criteria. One of the most common requirements for a GAM is
to ensure that the spline has a particular level of smoothness. As can be seen the
cubic interpolation in Fig. 9.9 is smooth between the knots but not across the knots
themselves. Constraining the cubic spline to be smooth whilst interpolating across
the knots means all coefficients can be determined uniquely. Another way of saying
the spline is smooth is to say that the derivative (up to a sufficient order) is continuous
at the knot points. An example of a cubic spline which is smooth across the knots is
shown in Fig. 9.10.
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Note that the aim in forecasting is to regress on the data, and therefore it is not
necessary (or desirable) to strictly interpolate through the observations. However,
the principle is still the same and the final spline should be continuous through-
out, including at the knots.5 This is achieved by regressing the basis version of the
relationship on the observations (See Eq. (9.17) above).

Certain basis functions, such as B-splines have very desirable properties such as
providing smoothness at the knots. Further, although the number and type of the
basis functions should be sufficiently flexible to fit the data, without any additional
constraints or regularisation (Sect. 8.2.4) large numbers of knots and high polynomial
degrees will increase the chance of overfitting to the noise. In addition, this will mean
the polynomials will be very “wiggly”. To prevent this, one approach is to include an
extra termwhich is often added to penalise the lack of smoothness in thefinal solution.
Recall this is much like the LASSO (Sect. 8.2.4) method and other regularisation
techniques used to preventing overfitting.

A trivial example is where the link function is the identify. Since the GAM is
linear in the basis functions then a least squares fit (see Sect. 8.2.4) to N observed
dependent values L = (L1, . . . , LN )

T can be considered. In other words, the aim is
to minimise

N∑

l=1

(

Ll −
n∑

k=1

m∑

i=1

αk,iφk,i (Xk,l)

)2

(9.18)

by training the parametersαk,i for k = 1, . . . , n and i = 1, . . . ,m. For a large number
of basis functions this model is likely to overfit the data. To prevent this a penalty
can be applied, i.e.

⎛

⎝
N∑

l=1

(

Ll −
n∑

k=1

m∑

i=1

αk,iφk,i (Xk,l)

)2
⎞

⎠ + K ( f1, . . . , fn). (9.19)

The function K ( f1, . . . , fn) is a penalty based on the individual functions fk . In
order to penalise deviation from smoothness the following penalty is commonly
considered given by

K ( f1, . . . , fn) =
n∑

k=1

λk

∫

f ′′
k (xk)

2dxk, (9.20)

where the size of the penalty for each variable is controlled by the smoothing parame-
ter,λk . Theminimisation of the sum of second derivative of each function reduces the
wiggliness of the function, i.e. encourages more smoothness depending on the value
of the lambda’s. These smoothing parameters are, as usual, often found by cross-
validation (see Sect. 8.1.3) or by optimising information criterion (Sect. 8.2.2).

5 The knots here do not have a specific y-value since they have to be determined by the regression.
However, the x-values of the knots will usually be fixed at particular uniformly-spaced time steps.
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(a) Weekday Term (b) Hour and Temp Interaction.

Fig. 9.11 Example of partial contributions for single weekday term (Left) and interaction between
hour-of-day and outside temperature. Reprinted from [4] under CC 4.0

Due to the basis function representation in (9.17) it can be shown that the penalty
takes a particularly convenient quadratic form

∫

f ′′
k (xk)

2dxk = αT
k Skαk, (9.21)

where αk = (αk,1, . . . ,αk,m)
T and Sk ∈ R

m×m is a matrix formed from derivatives
of the basis functions evaluated at the input values for Xk,l .

As in multiple linear regression models, GLMs and GAMs can be used to model
the interaction of two or more features, for example

g(E(L̂ N+1)) = f1(X1,N+1) + f2(X2,N+1) + f3(X1,N+1, X3,N+1) (9.22)

In this case the first two functions f1(X1,N+1), f2(X2,N+1) model a single variable
each, but the third function models the effect of the interaction of X1,N+1, X3,N+1.
In these cases multi-dimensional versions of spline functions can be used.

The additive nature of the GAMs model makes the model interpretable since
the contributions of individual features and interactions can be analysed and visu-
alised, even if complex nonlinear functions are used. Figure9.11a and b show exem-
plary visualisations of the contribution of individual terms to the final prediction.
Figure9.11a shows the weekday (Wk) contribution to the demand, indicating that for
the specific model, the load is much lower on weekends and is highest on Thursdays.
Figure9.11b shows the combined effect of the interaction of the hour of the day
(Hk) and outside temperature (T out

k ), for example, influence is lowest over night and
for cold temperatures and highest around noon for high temperatures. Plots of the
smaller subsets (typically one or two) of the full input variables are called partial
dependence plots and allow us to examine, and better interpret, the overall effects
of the different components.

https://creativecommons.org/licenses/by/4.0/
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There are awhole host of different approaches and parameters to choose andmany
GAM programming packages, such as gam or mgcv in R and pygam in python,6

work for a selection of splines, smoothing parameter selection methods, and link
functions. Often these packages will have their own default settings but in many
cases these can be tweaked to ensure a more accurate fit and better performance.
In particular if it is known that the errors are not Gaussian, or that a particular
independent variable only has a linear relationship to the dependent variable, then
these can be specified when implemented. Other parameters or data assumptions
should also be checked, but if you are uncertain then several values can be checked
via cross-validationmethods. Since regularisation is employedwithinmost packages
it is better to have more degrees of freedom specified by the splines than too few. As
usual residual checks (Sect. 7.5) can be used to evaluate the final models and identify
incorrect assumptions or areas of improvement.

Note that there may be additional constraints applied to the basis/spline functions
to better model the features in the demand data. In particular, since there is often
periodicity in many of the dependent variables (e.g. hour of the day or week), basis
functions can be chosen to include these features, e.g. periodic B-splines which are
available for some of the aforementioned packages.

The above is a basic introduction to GAMs and a more detailed description for
a very complicated area is beyond the scope of this book. Some further reading is
included in Appendix D.2.

9.7 Questions

For the questions which require using real demand data, try using some of the data
as listed in Appendix D.4. Preferably choose data with at least a year of hourly or
half hourly data. In all the cases using this data, split it into training, validation and
testing with a 3 : 1 : 1 ratio (Sect. 8.1.3).
1. Select a demand time series. Analyse the seasonalities, (see Sect. 6.2). Gener-

ate some simple benchmark forecasts for the test set, including the persistence
forecast, and seasonal persistence forecasts, one for each seasonality you found.
Calculate the RMSE errors. Which one is lower? How does this compare with the
seasonalities you observed? Compare these results to the ACF and PACF plots
for the time series.

2. Continuing the experiment from the previous section generate seasonal moving
averages using the identified seasonalities. Using a validation set (Sect. 8.1.3)
identify the optimal value of seasonal terms, p, to include in the average. If there
is multiple seasonalities which one has the smallest errors overall? How does the
RMSE error on a test set for the optimal seasonal average forecasts compare to
the persistence forecasts in the previous question?

6 See for example https://cran.r-project.org/web/packages/mgcv/mgcv.pdf and https://pygam.
readthedocs.io/en/latest/.

https://cran.r-project.org/web/packages/mgcv/mgcv.pdf
https://pygam.readthedocs.io/en/latest/
https://pygam.readthedocs.io/en/latest/
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3. Generate a simple 1-step ahead exponential smoothing forecasts (Sect. 9.2) for a
load forecast time series (preferably one which has double seasonal patterns, usu-
ally daily andweekly).Manual select different values of the smoothing parameter,
α. Plot the RMSE errors against the smoothing parameters. Do a grid search to
find the optimal smoothing parameter (Sect. 8.2.3). How does the optimal forecast
compare to a simple persistence forecast? Now consider the Holt-Winters-Taylor
forecast and perform a grid search for the four parameters φ,λ, δ,ω.

4. Investigate a LASSO fit for a linear model. Set the coefficients of a model with
a few Sine terms, e.g.

∑N
k=0 αk sin kx , for N about 5, and x ∈ [0, 4π]. Sample

20 points from this data (and add a small amount of Gaussian noise). Now fit a
multiple linear equation of the form

∑50
k=0 γk sin kx using least squares regression

to find the coefficientsγ. Nowplot the trainedmodel on 20 new x ∈ [0, 4π] values.
Is it a good fit? Now try and minimise the LASSO function using different values
of the regularisation parameter λ (See Sect. 8.2.4). How does the fit change as
you change the parameter? Howmany coefficients γ are zero (or very small). Use
inbuilt functions to do the LASSO fit such as sklearn7 in Python, or glmnet8 in R.

5. Show for the basis representation for GAMs, that the second order penalty term
(9.20) takes the form αT

k Skαk

6. Try and generate a linear model that fits a demand profile. Consider what features
to use, if time of day is important considering using dummy variables. If weather
data is available check if there is a relationship with the demand (see Chap. 14).
In the case study in Sect. 14.2 a linear model will be generated for modelling
the low voltage demand. Come back to this question once you’ve reached that
part of the book and see what similarities there are. What have you done differ-
ently? What would you like to change in the model? Fit the linear model using
standard packages in Python and R such as sklearn9 and lm10 respectively. Now
using the same features implement a GAM. Again these forecasts can be trained
using standard Python and R packages such as pygam11 and mgcv12 respectively.
These packages often have similar syntax to the linear models. Now compare the
forecasts and the errors. For the GAM look at the partial dependency plots. What
is the relationship for each variable chosen.

7 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html.
8 https://cran.r-project.org/web/packages/glmnet/index.html.
9 See https://scikit-learn.org/stable/modules/linear_model.html.
10 See https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/lm.
11 See https://pygam.readthedocs.io/en/latest/.
12 See https://cran.r-project.org/web/packages/mgcv/mgcv.pdf.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://scikit-learn.org/stable/modules/linear_model.html
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/lm
https://pygam.readthedocs.io/en/latest/
https://cran.r-project.org/web/packages/mgcv/mgcv.pdf
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Chapter 10
Machine Learning Point Forecasts
Methods

The traditional statistical and benchmarkmethods presented in Sect. 9.1 often assume
some relatively simple relationship between the dependent and independent vari-
ables, be that linear trends, particular seasonalities or autoregressive behaviours.
They have performed quite successfully for load forecasting, being quite accurate,
even with low amounts of data, and can easily be interpreted by practitioners. How-
ever, the methods described in Sect. 9.1 may be less suitable for modelling more
complex and highly nonlinear relationships. As data has become more ubiquitous
due to increased monitoring,machine learning methods are becoming increasingly
common as they can find complicated and subtle patterns in the data.

Recall from Eqs. 5.27 and 5.28 that defined the functional forms of the 1-step
and m-step ahead forecasting problem. It describes the relationship of the load for
m steps ahead, Ln+m , for forecast origin at time step n, with autoregressive fea-
tures L1, . . . , Ln , explanatory features Z1, . . . , Zk and function f . As explained in
Sect. 4.2, this function f can be learned from training data, i.e., the load forecasting
task can be modelled as a supervised learning task, where a machine learning model
is trained to learn the possibly complex relationship of the load with some features.
As the load forecasting task is typically expressed as a numeric value, it is in most
cases a regression problem.

The following sections introduce a few popular machine learning methods that
can be used for time series forecasting. Section10.1 introduces k-nearest neighbour
regression (k-NN), a relatively simple model that can, together with multiple linear
regression, function as a good benchmark model for datasets which are not too large.
Support vector regression (Sect. 10.2) has been a popular model in the early 2000s
as it can provide accurate forecasts with nonlinear relationships, but only on data
sets which are relatively small. Tree-based ensemble models like random forest
regression and gradient-boosted regression trees (Sect. 10.3) are powerful, robust
models that often perform very good on structured data and are therefore strong
contenders for many practical time series problems, even with complex relation-
ships of independent variables with many variables. They also scale well to many
observations.

© The Author(s) 2023
S. Haben et al., Core Concepts and Methods in Load Forecasting,
https://doi.org/10.1007/978-3-031-27852-5_10
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However, as in many other domains, artificial neural networks have become
increasingly popular including for time series tasks and, in particular, load fore-
casting. While regular feed-forward neural networks are relatively capable, recur-
rent neural networks and their more sophisticated deep variants like the long-short
termmemory (LSTM) and gated recurrent unit (GRU) have also been successful
for time series tasks since they are able to model the autoregressive relationships
(Sect. 10.5). More recently, convolutional neural networks (CNN) have also pro-
vided state-of-the-art results and been used in favour of recurrent architectures as
they can be trained more efficiently. This creates interesting architectures, especially
for large time series data sets when training on smart meter data for many consumers
and distribution level networks.

This book will only briefly give an overview of more recent developments like
transformer networks and specifically designed neural network architectures that
have shown promising results. However, as those are most relevant in research, we
omit the details and refer the interested reader to some of the core literature.

We note that the machine learning models mentioned above can be used for
regression and classification tasks. However, most typically, load forecasting is a
regression task, and therefore their functionality is explained within the regression
context, which may differ from other explanations. For instance, in k-nearest neigh-
bours or random forests, their predictions are averaged for the regression case, but
they may use majority voting for the classification case. In artificial neural net-
works, the difference is the usage of different loss functions (i.e., mean square error
in regression vs cross entropy loss in classifications) and the activation function of
the final layers (i.e., linear activation in regression vs softmax function as activation
in classification).

10.1 k-Nearest Neighbour Regression

k-nearest neighbourregression (k-NN) andmultiple linear regression (seeSect. 9.3)
are often considered the two most simple supervised learning methods. Linear
regression can be considered a high bias model as it places strong assumptions
on the linear relationship of the variables and the distributions of residuals. In con-
trast, k-NNmakes no parametric assumptions and is therefore considered a low bias
model. However, it is worth noting that the level of bias depends on the data, the
choice of parameters (and hyperparameters), and how well a model captures the
underlying relationships.

The basic algorithm makes a prediction by finding the k instances in the training
data set that are most similar to the instance for which the prediction is made. So
consider a training data set X = {

(x1, y1), (x2, y2), . . . , (x j , y j ), (xN , yN )
}
and a

new instance x′ for which a prediction should be made. Then k-NN looks of the k
instances (x′′

1, y
′′
1), (x

′′
2, y

′′
2), (x

′′
i , y

′′
i ), . . . , (x

′′
k , y

′′
k ) ∈ X , where the x′′

i are most simi-
lar to x′ according to some distance measure. In a regression problem, the prediction
x̂ is the average of y′′

1, y
′′
2, y

′′
i , . . . , y

′′
k ) and the majority vote in classification. The
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Fig. 10.1 A simple illustration of k-Nearest Neighbours. The k closest points defined by the red
crosses are averaged to produce the prediction (black cross)

fact that the choice of distance measure and the aggregation function can be chosen
quite flexibly and depending on the circumstances and the application, makes k-NN
an extremely versatile method.

In a naïve implementation, a prediction is made by calculating the distance
between the test data and all the training points. Then it selects the k number of
training points closest to the test data according to the similarity measure. However,
in practice, efficient data structures like ball trees make it unnecessary to compare
the test data to all training data. Note, that some of these techniques require certain
properties of the distance measure, like some of the metric properties (see discussion
below). A simple example of a k-NN for an energy profile is shown in Fig. 10.1. The
similarity is how close the points are within the day with the k points used to estimate
one period (black cross) bounded within the vertical blue lines.

The parameter k is the most important hyperparameter to tune and it controls the
under- and over-fitting of themodel. Choosing k too smallmay cause overfitting since
the prediction is made based on only a few data points. A k is too large, the estimate
is based on too many observations and, therefore, may underfit. An illustration of
the effect of the hyperparameter is shown in Fig. 10.2 for different values of k. The
larger the k, the smoother the fit but also, the higher the bias, and also notice the
peaks are less well approximated.

As the algorithm relies on a distance metric, it is important to normalise the data,
as otherwise, the results may depend on the scale of the features (e.g. cause different
predictions if the temperature is in ◦C or ◦F or load in W or kW). Therefore, the
choice of the normalising procedure is, especially for k-NN, an important design
choice. For a discussion on normalisation techniques, see Sect. 6.1.3).
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Fig. 10.2 Effect of the value of k on the k-nearest neighbour estimate

As discussed above, there are two main steps of k-nearest neighbour regression:
determining the most similar instances and combining the corresponding targets.
Both steps can be seen as design decisions of the algorithm and varied for specific
applications. For the first step, it is often useful to explore the usage of different
distance measures. As a default, k-NN uses the Euclidean distance and combines
the selected targets using the arithmetic mean. The Euclidean distance is defined
as the squared difference of the elements, i.e., the 2-norm introduced in Sect. 7.1.
The arithmetic mean is a natural choice for the Euclidean distance since, for a finite
sample, it minimizes the sum of squared distances (Sect. 8.2.1). However, in certain
applications, the choice of the medoid, a representative from the sample which has
a minimal squared distance to all the other points, can be a reasonable choice.

The Euclidean distance is a lockstep or “point-wise” distance measure since it
measures the distance between individual elements of the input sequences before
aggregating them. In time series, this means that the evaluation is performed by
matching values at the same time step. In contrast, the group of so-called elastic
distance measures works by first optimally aligning the time series in the temporal
domain so that the overall cost in terms of a cost function of this alignment isminimal.
This property can be useful when working with load profiles in the low-voltage grid
that exhibit high volatility, to avoid the double-penalty effect (see Sect. 13.3 for a
special elastic distance measure).

k-NN allows the use of arbitrary distance measures for finding the most similar
neighbours. However, if the distance is not a metric, this search may need to resort to
brute force and hence may not scale well with larger datasets. In order for a distance
measure to be a metric, it must have the following properties:
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• Non-negativity: D(X,Y) ≥ 0
• Identity of indiscernibles: D(X,X) = 0
• Symmetry: D(X,Y) = D(Y,X)

• Triangle inequality: D(X,Y) ≤ D(X,Z) + D(Z,Y)

Recall that the p-norms in Sect. 7.1 are all metrics.
Many algorithmic improvements to speed up similarity search rely on metric

properties, most importantly the triangle inequality. Computing a sample mean for
an arbitrarymetric is often intractable.Hence, approaches resort to using approximate
solutions or use the medoid instead of the sample mean. For large datasets, subsets
of the training set may be used to reduce computational costs.

The most popular elastic distance measure is dynamic time warping (DTW). It
was first introduced for the application of speech recognition and has been shown
to perform well on many datasets.1 It is considered an elastic measure, as it finds
an optimal alignment between two time series by stretching or “warping” them,
minimizing the Euclidean norm between the aligned points. Figure10.4 shows such
an optimal alignment of two time series X and Y. It maps the first peak of the top
profile to the peak of the same height in the bottom profile. Then the second smaller
peak is aligned with the peak of the same height occurring later. In contrast, Fig. 10.3
shows the “point-wise” Euclidean distance.

DTW can be recursively defined by:

DTW(X :i , X : j ) = D(Xi ,Y j ) + min

⎧
⎨

⎩

DTW
(
X :i−1,Y: j−1

)
,

DTW
(
X :i ,Y: j−1

)
,

DTW
(
X :i−1,Y: j

)

⎫
⎬

⎭
(10.1)

Then the DTW distance between time series X and Y is

DTW(X,Y) = DTW(X :T ,Y:T ). (10.2)

As mentioned above, D can be any distance function but is generally the Euclidean
distance. A naive recursive implementation would lead to exponential run time. The
most popular deterministic approach is an algorithm based on dynamic programming
that leads to quadratic run time, i.e., scales quadratically with the length of the input.
The optimal solution of the DTW algorithm can be represented by the warping
path, the path along the cost matrix that contains the cost for each individual aligned
points Xi and Y j (i.e. the i th row and j th column of the matrix is the distance between
the elements Xi and Y j :). Figure10.6 (left) shows the cost matrix of aligning each
element of the above vectors X and Y shown in Figs. 10.3, 10.4 and 10.5. The black
line shows the warping path.

1 DTW is useful for speech applications since vocal patterns may stretch or shrink depending on
whether someone speaks slower or faster. DTW allows different time series to be compared despite
these scalings, which means the focus is on comparing the arrangement and ordering of features
rather than when they occur or if they are stretched (or shrunk).
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Fig. 10.3 Euclidean distance, no alignment, ED(X,Y) = 7.68

Fig. 10.4 Optimal alignment for DTW distance, DTW(X,Y) = 3.00

Fig. 10.5 Optimal alignment for cDTW distance with c = 3, cDTW(X,Y; 3) = 3.32
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Fig. 10.6 Cost matrix for aligningX andYwith the optimal warping path (left), and the cost matrix
constrained by the Sakoe-Chuba Band with its warping path (right)

As DTW is popular, many adjustments have been proposed. The most common
adaption is the introduction of a constraint that limits the values in the cost matrix to
be within some radius r , which is often referred to as the Sakoe-Chiba Band. This
version is referred to as constrained DTW, or cDTW. Figure10.6 (right) shows the
constrained costmatrixwith r = 3with the resultingwarping path. Figure10.5 shows
the associated optimal constrained DTW-alignment of the constrained DTW. In this
case, the early peaks are aligned instead of the smaller peak being aligned to the later
one of the same height. This results in a slightly larger distance (cDTW(X,Y) = 3.32
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versusDTW(X,Y) = 3.0.) in the example given. Due to its popularity and consistent
effectiveness, DTW is often a default choice of benchmark for many problems. In
particular, DTWmay be one choice for household level forecasts as will be illustrated
in more detail in Sect. 13.3.

10.2 Support Vector Regression

Support Vector Regression (SVR) is a popular machine learning method used for
time-series prediction. To begin, consider a time series L1, L2, . . . and n explanatory
time series variables X1,t , X2,t , . . . , Xn,t at each time step t which are related to the
load, Lt , via a simple multiple linear model, as introduced in Sect. 9.3, described by

L̂ N+1 =
n∑

k=1

βk Xk,N+1 + b, (10.3)

for some constant b. For simplifying the notation write this in the matrix-vector form

L̂ N+1 = βTXN+1 + b, (10.4)

where Xt = (X1,t , X2,t , . . . , Xn,t )
T and β = (β1, . . . ,βn)

T are the vectors of
explanatory variables and regression parameters respectively.

A standard way to find the relevant parameters, β, is to minimise the least squares
difference, between the model and the observations i.e.

β̂ = argminβ∈B
N∑

t=1

(Lt − βTXt − b)2. (10.5)

This can be extended to a regularised form such as LASSO or ridge regression as
shown in Sect. 8.2.4 where an additional terms ||β||p is added tominimise the overall
size of the coefficients.

In contrast, support vector regression (SVR) fits the linear models for all obser-
vations whose errors are within a certain threshold, ε ≥ 0. This can be expressed
as

− ε ≤ Lt −
n∑

k=1

βk Xk,t − b ≤ ε. (10.6)

The aim of SVR is to minimise the parameter size

1

2
||β||22, (10.7)
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Fig. 10.7 Example of ε threshold region for model (black line), threshold bounds (dashed line) and
observations (red crosses)

subject to the constraint (10.6). So in SVR the different sizes of the errors don’tmatter
as long as they are within a certain threshold. The optimisation in Eq. (10.7) max-
imises the ‘flatness’ or complexity of the model and is comparable to the approach
of ridge regularisation for linear least squares models (see Sect. 8.2.4).

To illustrate support vector regression, consider a simple 1-dimensional example
for a particular ε-precision value as shown in Fig. 10.7. In some cases it may be that
there are no points which can be approximated with ε precision, or an allowance for
larger errors may be desired, in this case slack variables, ξ can be added to make the
problem feasible and accept larger errors. In this updated form the aim is to minimise
the cost function:

1

2
||β||22 + C

N∑

t=1

(ξt + ξ∗
t ), (10.8)

with respect to β,

Subject to

⎧
⎪⎨

⎪⎩

Lt − ∑n
k=1 βk Xk,t − b ≤ ε + ξt ,∑n

k=1 βk Xk,t + b − Lt ≤ ε + +ξ∗
t

ξt , ξ
∗
t ≥ 0.

(10.9)
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The constant C > 0 is a trade-off between maximising the flatness and minimising
the allowable deviation beyond ε. BothC and εmust be found to implement SVR for
a linear model. The optimal parameters can be found via cross-validation by testing
a variety of values over the validation set (Sect. 8.1.3).

Often the linear SVR problem is solved more easily in its dual form, in which
case the forecast model can be shown to be of the form

L̂ N+1 = f (X) =
N∑

t=1

αt < Xt ,X > +b, (10.10)

where <,> represents an inner-product function (for example dot product) and αt

are coefficients derived from the Lagrange multipliers of the optimisation (see [1]
for more details).

An advantage of SVR is that it can also be extended to nonlinear regressions.
This is achieved by mapping the input features to a higher dimensional space using a
transformation function,�. In the nonlinear case, the following transformedmultiple
linear equation is considered

L̂ N+1 = βT�(XN+1) + b. (10.11)

To solve this problem in practice only requires knowing the kernel function
K (Xi ,X j ) =< �(Xi ),�(X j ) > where <,> represents an inner product as before
(see references in Appendix D for more details). As with the linear form the final
forecast model can be written in the dual form

L̂ N+1 = f (X) =
N∑

t=1

αt K (Xt ,X) + b. (10.12)

There are several kernels that can be chosen. Some of the most popular are the
Gaussian Radial Basis Function (RBF) given by

K (Xi ,X j ) = exp
(−γ||Xi − X j ||2

)
, (10.13)

and the polynomial given by

K (Xi ,X j ) = (1+ < Xi ,X j >)p, (10.14)

where p is the order of the polynomial. The larger the order the more flexibility in
the regression fit. As usual, to choose the best model and parameters is achieved by
comparison on the validation set. The power of the kernel method is that a nonlinear
problemhas essentially been transformed to a linear problem, simply by transforming
the original variables.
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10.3 Tree-Based Regression Methods

10.3.1 Decision Tree Regression

Usedon their own, decision trees are not particularly accurate andhave limited useful-
ness for forecasting. However, when multiple decision trees are taken together they
produce some of the most powerful and accurate machine learning models. This
includes random forest (see Sect. 10.3.2), bagging methods and gradient boosted
decision trees (see Sect. 10.3.3). Regression trees can be used to either classify dis-
crete/categorical data, or to regress on continuous data. The latter will be of most
interest for load forecasting and are discussed in this and the next couple of sections.

As in Sect. 10.4, the aim is to learn a function f : X −→ R based on M inputs
(X1,t , X2,t , . . . , XM,t )

T ∈ X at time t which predicts the load LN+1 at time t =
N + 1,

L̂ N+1 N = f ({X1,t , . . . , XM,t },β), (10.15)

where β is the parameters necessary for defining the decision tree. As in previous
sections, the inputs X1,t , X2,t , . . . , XM,t are quite general and can include, for exam-
ple, historical loads Lt for t ≤ N , or other explanatory variables such as temperature
forecasts.

A decision tree defines a function by splitting the training observations in the
domain,X, into disjoint subsets which are distinct and non-overlapping. The function
is simply the average values of the historical observations of the dependent variable
(in this case the load Lt ) within each disjoint subset. A disjoint partition of a 2D
variable space into four disjoint sets is illustrated in Fig. 10.8 which presents the
types of splits that decision trees can produce. The algorithm starts with the full
domain, in this case the square area [−1, 1] × [0, 2], shown in the plot with the
black boundary. A split of one of the variables is made which optimises the split
of the domain according to some criteria (This will be investigated in detail later,
but for example, for regression this could be the split which maximally reduces the
mean squared error (RMSE) (see Chap.7) between the observations and the model).
In this illustrative example the best split is to cut when x = 0 (represented by the
red line). In the next iteration, the process is repeated and tries to find the next best
split on the two sections just produced in the last iteration. This turns out to be the
horizontal line y = 0.5 shown by the yellow line. In the next iteration a final cut at
x = 0.6 is then chosen which is given by the purple line. The splitting can be written
as a tree with each split of the tree representing another partition in the domain. The
corresponding decision tree representing the domain partitions in Fig. 10.8 is shown
in Fig. 10.9. The final nodes, labelled with C1, . . . ,C4 are the end, or leaf, nodes
and represent the final partitions of the domain.

Now consider a series of pairs (Lt+1,Xt ) (t = 1, . . . , N ) of dependent and inde-
pendent variables with Xt = (X1,t , X2,t , . . . , XM,t ) a set of M attributes at time t ,
and Lt+1 an observation at the next timestep, t + 1. Note the assumption here is that
the observation are continuous real-valued variables (discrete/categorical dependent
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variables are not usually considered in load forecasting applications but also can
be included, e.g. see the dummy variables in Sect. 6.2.6). Given a partition of the
domain of X into P disjoint sets, denoted by C1,C2, . . . ,CP each of which contain
N1, N2, . . . , NP points respectively, define a piecewise function fP() (where the P
is to indicate the dependence on the partition P) which is constant on each disjoint
set and can be written as

fP(X) =
P∑

p=1

αpχp(X), (10.16)
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where χp() is a characteristic (or indicator) function defined by

χp(X) =
{
1, if X is in set Cp

0, otherwise
.

and

αp = 1

Np

N∑

t=1

Ltχp(Xt ), (10.17)

is the average of the dependent variables where the corresponding independent vari-
ables are within the partition set Cp. Hence for each partition defined by the decision
tree a corresponding piecewise function can be defined. This is known as a decision
tree regression. The cost function used to define the split in a decision tree regression
is often the mean square errors between the estimate, defined by Eq. (10.16), and the
observations and is given by

MSE = 1

N

N∑

t=1

(Lt − fP(Xt ))
2. (10.18)

Of course the decision tree can continue splitting into smaller partitions and reduce
the MSE until each set only contains a single observation. However, this would
likely lead to overfitting (Sect. 8.1.2) of the regression tree and hence poor forecast
estimates. Instead the fit can be controlled by calibrating a number of parameters of
the decision tree or defining a stopping criteria. There are several different parame-
ters or combinations of parameters which could be chosen in order to optimise the
generalisability of the regression tree, some of the most common are

• Fixing a minimum number of observations minp∈1,...,P Np in each leaf node.
• Stoppingwhen theMSE decreases less than some threshold, τ , when an additional
split is added.

• Fixing a maximum number of branch nodes (i.e. maximum value of partitions P).
• Maximum depth of the tree (i.e. maximum number of splits).

The value for these parameters are typically chosen using cross validation (see
Sect. 8.1.3) where a variety of different models are trained with different param-
eters on the training set and the best models are chosen based on how they perform
on a validation set.

To illustrate the process for generating a regression tree, consider a simple 1D case
as shown in Fig. 10.10. Observations are generated by sampling 40 points from the
curve and adding a small amount of noise. Twodifferent regression trees are generated
using different choices for the minimum number of observations, minp∈1,...,P Np, in
each leaf node, in this case 10 and 2. These are trained to the noisy observations to
produce two functions given by Eq. (10.16). The graphs for the final functions for
these two regression trees are shown in Fig. 10.11 together with the original curve.
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Fig. 10.10 A set of noisy observations are generated from the curve used to illustrate the decision
tree regression
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Fig. 10.11 Two regression trees fit to the noisy observations together with the original curve. The
regression trees use a different minimum number of observations in the leaf nodes. In this case 10
(grey curve) and 2 (red dashed curve)
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Notice the regression trees have finer resolution and the regressions have better
matching when the observations are more densely packed. In particular, it should be
noted that the ends of the function (at x < 2 and x > 8) are not accurately estimated.
Likemanymachine learning techniques, the estimatesmay not accurately extrapolate
to points outside the domain of the observations. This canmake suchmethods difficult
to estimate outside of the training data in forecast applications.

10.3.2 Random Forest Regression

As mentioned in Sect. 10.3.1, decision trees are often not useful as time series fore-
casting models and typically produce a models with high variance (see Sect. 8.1.2).
However, their power comes from being used as building blocks for other, more
powerful methods. One of the most common of such methods is random forest
regression (RFR) described in this section.

The basic premise of RFR is to generate many regression trees but only applied
to a random sample (usually sampled with replacement) of the observations. Fur-
ther, unlike normal regression trees, each tree only splits on a subset of the vari-
ables/features. The final RFR is then an average of the regression functions across
all trees generated. By only using a sample of the features in each split, the algorithm
prevents the regression from being overtrained on strong predictions and causing cor-
related trees. Thus each of the regression trees (also called weak learners) focuses on
different input features. Random forest is an ensemble technique because it considers
an ‘ensemble’ of weak learners to produce a single strong learner.

Now consider the example from Sect. 10.3.1, with the observations used to train
the regression trees given in Fig. 10.10. A random forest regression applied to this
data using 100 regression trees is shown in Fig. 10.12. Notice in comparison to the
individual regression tree as shown in Fig. 10.11 the RFR fit is much more accu-
rate as well as much more continuous than the regression trees. This is because by
randomly sampling the training data and also the variables used in each split, the
RFR finds a balance between generalising the function and not overfitting, in other
words regression trees often produce a model with a good bias-variance trade-off
(See Sect. 8.1.2). This fit would be even smoother if more trees where used on more
data.

There are many different parameters in the random forest that can be optimised
via cross-validation (see Sect. 8.1.3) with some of the most important being:

1. Number of trees. The more trees the more accurate the model. However, this
effects how long it takes to generate the estimates.

2. Howmany variables/features to select at each node split. For regression a common
approach is to select a third of the attributes at each node split. It is best to not
use too many variables to avoid overfitting.

3. Minimum number of observations in the terminal/leaf nodes.
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Fig. 10.12 Random forest regression fit to the data from the example in Sect. 10.3.1 generated from
100 regression trees. Also shown in black is the original data from which the observations were
generated

The idea for cross validation is to try a large number of regression trees with different
selections of the above parameters and choose the mix of parameters which gives
the minimum MSE (10.18) on the validation set.

A useful property of random forests is the feature importance tool which can look
across all trees to assess the importance of each feature. This can be achieved because
not all trees use all variables. Hence a comparison can be made which compares the
improvement produced when a feature is included in a model versus when it is not
used. For regression, ameasure ismade of howmuch the feature reduces the variance.
This average across trees gives the final importance of each feature and also helps to
interpret the strongest drivers for accurately predicting the outputs.

Random forest is popular because it is easy to implement while maintaining a
good bias-variance trade-off. They also have a number of other advantages. They
can handle thousands of input variables without overfitting and can be used together
with the feature importance to perform feature selection. However, their main dis-
advantage for use in time series forecasting is that they are not very effective at
predictions for out-of-sample data. To illustrate, consider the example in Fig. 10.12.
Any estimates outside of the observed domain [1, 10] have the same fixed constant
values and are unlikely to be accurate.
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10.3.3 Gradient-Boosted Regression Trees

The former section introduced random forest regression, a powerful predictionmodel
that uses an ensemble of simpleDecision treemodels to produce an accurate forecast.
Gradient-boostedRegressionTrees (GBRT) are also an ensemble technique, using
the similar basic idea of combiningweak learners to create an accurate strong learner.

There are several relatedmodels, butmost are variations of theGradientBoosting
Machine (GBM) introduced in [2], also referred to as Multiple Additive Regression
Trees (MART) and the Generalised Boosting Model. Within random forests, simple
decision tree regression models are trained in parallel, and their predictions are
combined, e.g., through averaging. In contrast, with GBRT, the base learners are
trained in sequence, each trained to reduce the remaining errors in the residual series
of the prior iterations. In other words, the main idea of gradient-boosting models is
to iteratively improve the model by training new learners that explicitly improve on
the current predictions according to some loss function. The optimisation process is
guided by the loss function’s gradient. In a regression problem, like load forecasting,
the loss is typically defined as the mean squared error (Eq. (10.18) in Sect. 10.3.1),
while in classification tasks, it is the cross entropy. However, gradient boosting is
general enough to minimise arbitrary differentiable loss functions. This makes it
applicable also for more complicated tasks like predicting quantiles by minimising
the quantile loss (see Sect. 7.2).

More precisely, the main objective of gradient boosting is to find the prediction
via a weighted sum of weak prediction models which can be represented as

f (X) =
M∑

i=1

γi hi (X).

Finding the optimal weights γi and weak learner functions hi is a computationally
infeasible optimisation problem in general. Hence, gradient-boosting finds a solution
iteratively with the aim of improving the model over M stages. After each stage i in
stages 1, 2, . . . , i, . . . , M the aim is to find a model fi that produces an improvement
compared to the model of the previous iteration fi−1 by adding a new estimator hi ,
i.e.,

fi (X) = fi−1(X) + αγi hi (X).

Here, α is a constant step-size or learning rate (Sect. 4.3). The gradient-boosting
process is guided by the direction of the steepest descent of the loss function (also
Sect. 4.3). So let’s consider as an example the aim to minimise the mean square error
of the ground truth and the last iterations prediction fi−1,

LMSE = 1

2
(L − fi−1(X))2
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Note, the constant factor 1
2 is introduced for convenience (and without losing gener-

ality) to express the loss function’s derivative as:

∂LMSE

∂ fi−1(X)
= L − fi−1(X)

Define hi (X) as this derivative of the loss function:

hi (X) = L − fi−1(X)

In the case of GBRT, regression trees are used to model function hi . Observe that
in the case of the mean square loss, this means the regression tree hi is being fit to
the residuals of the last iterations forecast. The weight γi is determined by solving
the optimisation problem of plugging the last iterations forecast fi−1 and the current
iterations residual-fitted model hi into the mean square error loss function:

argmin
γ

= 1

2
(L − ( fi−1(X) + γhi (X)))2

The details of solving this optimisation are not part of this book but additional
reading is referenced inAppendixD.Generally, the optimisation implementedwithin
gradient-boosting is related to gradient descent (recall Sect. 4.3). The process can
be derived similarly for loss functions other than the mean square error, but this
discussion is not explored in this book.

GBRT and its variants typically have two types of hyperparameters: ones related
to the above-mentioned iterative gradient boosting optimisation process and ones
related to the regression trees. One of the most important hyperparameters is the
number of regression trees. Similarly to random forests, the depth of each individual
tree (sometimes indirectly controlled by a parameter enforcing a lower bound on
the number of samples in a leaf) is also relevant. In terms of the gradient boosting
optimisation process, themost important hyperparameter is the learning rateα or, in
the case of gradient-boosting, also referred to as shrinkage. It determines howmuch
each newly added tree contributes to the model. So smaller values make the model
more robust against influences of specific individual trees, i.e., allow the model to
generalise better and avoid overfitting. But a small learning rate requires a larger
number of trees to converge to the optimal value and hence is more computationally
expensive.

As introduced in Sect. 8.2.5, an important diagnostic tool to evaluate these hyper-
parameters is the so-called deviance plot that shows the training and testing error as a
function of the number of trees. Figure10.13 shows such a plot. The error on the train-
ing set decreases rapidly and then gradually slows down but continues to decrease
as further trees are added. In contrast, the error on the test set also decreases but
after slowing down and reaching a minimum the loss begins to increase again. This
increasing gap between training and test error indicates overfitting of the model and
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Fig. 10.13 Deviance plot of the relationship of the number of trees and the train and generalisation
error as a diagnostic tool

the ideal point is determined by the learning rate and the number of trees. Compare
this plot to the more general version of the plot, Fig. 8.5, introduced in Sect. 8.2.

Gradient boosting has a high model capacity and is hence prone to overfit-
ting. Therefore other regularisation parameters may need to be tuned using cross-
validation. Similar to Random Forests regression regularisation can be implicitly
introduced by fitting models only on a subset of the features and instances, i.e.,
through subsampling. This can be controlled through parameters that limit the num-
ber of features and the share of instances used. Different gradient boosting imple-
mentations may provide additional explicit mechanisms to prevent overfitting that
usually introduce more hyperparameters. Popular choices are, for instance, L1 and
L2 regularisation on the weights (see Sect. 8.2.4 on regularisation) and early stopping
that stops training if the loss is not improved above a certain threshold after a certain
number of iterations (Sect. 8.2.5).

Note that gradient boosting is a general approach that can also be used with other
base learners. However, it has become most popular to use decision and regression
trees because they are relatively simple and efficient to train, hence not prone to
overfit as a base learner, but can still already model non-linear relationships with
interactions between the features. Due to the good performance of the approach
for tabular data, many different related versions and implementations of the general
GBM algorithm [2] have been introduced. See Appendix D for additional reading
and the most popular implementations of the gradient-boosting framework. While it
may seem discouraging to use gradient boosting methods due to the large number of
hyperparameters, they are among some of the most powerful methods for accurate
predictions on tabular data and, therefore, also in load forecasting. Unfortunately,
the forecast accuracy comes at the cost of limited model transparency. As will be
discussed in Sect. 10.6, tree-basedmethods like random forests and gradient boosting
provide scores to assess feature importance. However, this should be seen merely as
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an indicator, and the methods don’t provide any understanding of the actual effect
size of specific variables or their significance, in contrast to methods such as linear
regression (cf. Sect. 9.3).

10.4 Artificial Neural Networks

This section introduces artificial neural networks (ANN), amachine learning tech-
nique loosely inspired by biological neural networks, the building blocks of animal
and human brains. ANNs consist of a collection of connected artificial neurons, and
like the synapses in the brain, each artificial neuron can send a signal to neighbouring,
connected neurons via dendrites. As in biological neuronal networks, “learning” is
achieved by adjusting the connection between the neurons. However, the detailed
mechanisms, such as the learning mechanism itself (i.e., backpropagation) or the
representation as real numbers, are quite different from the biological role model
(which is not yet fully understood). Nevertheless, ANNs are a powerful machine
learning method which are being applied in numerous applications, from forecasting
to image recognition, and many advancements are rapidly being developed. This
section introduces the standard form, the feed-forward network, and an adaption
designed to handle sequential data called recurrent neural networks.

10.4.1 Feed-Forward Neural Networks

The simplest building block of ANNs is the artificial neuron. It is often referred to
as a node, a unit or a cell of an ANN. A neural network with one artificial neuron and
no hidden layers is called a perceptron. The perceptron can be used as a supervised
learning algorithm that can learn nonlinear decision boundaries (classification) or
functions (regression). Figure10.14 illustrates how the perceptron, a single artificial
neuron, can be used to forecast the load Lt at time t based on n input variables

Fig. 10.14 A simple
artificial neuron or cell
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X1,t , . . . , Xn,t which also correspond to the same time t . The collective n inputs can
be denoted as the vector Xt.

The artificial neuron must train the function h(Xt) so that when it operates on
the inputs, Xt, it produces an accurate estimate of the final output. The output of an
artificial neuron is called an activation. To compute the activation, the inputs are
linearly combined and passed into an activation function g to produce the output
signal (the activation):

L̂ N+1 = h(X) = g

(
n∑

k=1

βk Xk,N+1

)

= g
(
βTXN+1

)
(10.19)

Note that technically a constant bias term is also added, but this is omitted here
to improve readability. This can be achieved by concatenating a variable X0,t = 1 to
the input vector Xt.

In a perceptron, if the activation function, g, is ignored, this is just a multiple
linear regression (compare the Eq. (10.19) with Eqs. (9.4) and (9.5)). However, the
activation function introduces nonlinearity and increases the flexibility of the model
compared to a simple linear regression. There are many choices for the activation
function. Popular choices are the sigmoid function, hyperbolic tangent (tanh) and,
more recently, versions of the ReLU function. Figure10.15 shows some popular
activation functions and their corresponding derivatives.

Fig. 10.15 Comparison of popular activation functions (black) with their respective derivatives
(red)
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The sigmoid function is a nonlinear transformation function that maps values
to the unit interval [0, 1]. This makes it a popular choice in neural networks since
it can be directly used in the output layer of binary classifiers, as its output can be
interpreted as a probability of being a member of one of the categories (Sect. 3.1).
The sigmoid function is defined as:

σ(z) = 1

1 + e−z
, (10.20)

However, it is comparatively computationally expensive and can cause training sta-
bility issueswhen usedwithin a neural networkmodel. This function is nowgenerally
only used for binary classification problems.Amore generalised form of the sigmoid,
the softmax function, is used in multi-class classification.

The hyperbolic tangent (tanh) is another popular choice as a neural network
activation function defined as

tanh(z) = (ez − e−z)

(ez + e−z)
. (10.21)

It is of a similar S-shape as the sigmoid function but is defined between -1 and 1 and
maps negative values to negative outputs and zero inputs to zero. However, it has
similar stability issues as the sigmoid function and is hence seldom used in modern
network architectures.

The rectified linear unit (ReLU) is very efficient to compute and does not lead
to the same stability issues as the sigmoid and tanh functions, namely the vanishing
gradient problem (see Sect. 10.4.2). This has made it the default activation function
in many deep neural networks. It maps values below zero to zero but is equal to the
input itself when it is greater or equal to zero, i.e. a linear activation, and is defined
as:

ReLU(z) = max(0, z). (10.22)

The function and its derivative are both monotonic.
The fact that ReLU maps values below zero to zero and does not map larger

activations to smaller numbers leads to different stability issues, namely the dying
ReLU where many activations are zero, or exploding activations when repeated
activation leads to increasingly larger values. An adjusted version, the leaky ReLU,
attempts to solve the dying ReLU problem and can pose as an alternative when ReLU
produces stability issues in model training. It introduces a positive parameter α as a
multiplier for negative values and is defined as:

Leaky ReLUα(z) = max(α · z, z). (10.23)

In the case of the perceptron, the activation of the neuron represents the final
prediction L̂ t . However, the true power of neural networks comes from stacking
several layers of neurons, where the activation of one layer can then be passed to the
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Fig. 10.16 The directed graph structure of a feed-forward neural network

next layer in the network, enabling later layers to use the prediction of earlier layers as
a feature. This is how neural networks can learn increasingly abstract representations
of simpler features.

Feed-forward networks are the simplest form of multi-layer neural networks. In
a feed-forward neural network, each node in a layer is connected to all the nodes in
the previous and successive layers (therefore also referred to as a fully-connected
neural network). They are also referred to asmulti-layer perceptrons or as vanilla
neural networks, as in “vanilla” being the plainest and standard kind of ice cream.2

The input layer has one node per feature in the dataset. The output layer has one
node per target variable (in multivariate regression) or class (in classification). The
layers in between are referred to ashidden layerswith l hidden neurons. Figure10.16
shows this basic structure with one hidden layer.

In the context of load forecasting, the ANN is used to forecast future load. In
the example shown, the output consists of m values, which in the application of this
book would normally be an estimate of the demand for m steps ahead, i.e., the load
LN+1, . . . , LN+m . To achieve this prediction, it takes several features as input. In the
case of load forecasting, this could, for instance, be past values of the time series
itself as well as some past (and possible forecasted) explanatory variables, e.g., the
outside temperature.

To understand how ANNs work, consider trying to accurately predict the load Lt

at time t = N + 1 using n inputs X1,N+1, X2,N+1, Xk,N+1, . . . , Xn,N+1 by training
a model f using the ANN framework.

2 Whoever came up with that term has not tried the vanilla ice cream in the authors street.
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In other words, the aim is to model the following relationship

L̂ N+1 N = f ({X1,N+1, . . . , Xn,N+1},β), (10.24)

whereβ are the weights of the ANN (which will be described below). As in previous
cases, the inputs can be historical loads or other explanatory variables. In the context
of time series forecasting, the input Xk,N+1 typically include the prior values of the
target LN , LN−1, LN−2, . . . , LN−W to model the autocorrelation with past values
of the time series. In the context of ANN the amount of historical values up to
W is sometimes referred to as perceptive field to mirror the biological analogue.
Additionally, the features typically include also some other external features related
to time step t = N + 1 (cf. Sect. 6.2 for more on typical features). ANNs that include
past values of the load L and the external values X are sometimes referred to as a
nonlinear autoregressive exogenous model (NARX).

For simplicity, the following discussion considers only one hidden layer with l
nodes as in Fig. 10.16, the extension of the algorithm to further layers is analogous.
The activations of the hidden layer can be calculated similarly to the activation of the
individual perceptron (see Eq. (10.19)) but extended to each neuron i of the layer:

hi (X) = g

(
n∑

k=1

β(1)
k,i Xk,N+1

)

(10.25)

Then we can write the definition of the full neural network as:

L̂ N+ j = go

(
l∑

i=1

β(2)
i, j hi (X)

)

, (10.26)

where go is the activation function applied to the linear summation of the outputs
from the hidden layer.

A neural network with a single hidden layer with a large number of units has the
ability to approximate very complex functions. Touse a neural network for prediction,
one needs to determine the optimal values for the weights in the graph, here the ones
connecting the input to the hidden layer β(1)

k,i and from the hidden layer to the outputs

β(2)
i, j . As with supervised learning more generally (see Sect. 4.2.1), the aim is to find

the parameters of the model which minimise a loss function, often denoted as J . In
regression tasks, as encountered in load forecasting, this is most typically the mean
squared error (MSE), as defined in Eq.10.18 for decision trees. For ANN the MSE
loss function can be written as a function of the current weights of the neural network
β with Equation (10.15) and some known ground truth L:

JMSE (L,β) = 1

N

N∑

t=1

(Lt − f (Xt ,β))2. (10.27)
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In the process of finding the optimal weights, this ground truth is the training
data. This process of training the neural network is done by initially starting with
random values. Then batches of instances of the training set are passed into the
neural network and all the layers’ activations are calculated. The loss function and
its gradient are computed. The weights are updated in the direction of the gradient in
order to minimise the loss. Since the updates are calculated layer-wise, propagating
backwards from the output layer to the input layer, this process is sometimes called
back-propagation.

Whereas in linear regression this optimisation can be done in closed form based
on the whole dataset, or through a simple least squares regression (Sect. 8.2.1), the
task of finding the optimal weights in neural networks is more complex. Recall from
Sect. 4.3 that this loss function is typically non-convex, i.e., it can have multiple local
optima and saddle points. The weights are therefore adjusted using an optimiser as
described in Sect. 4.3.

From the description above, there are a number of different choices in designing
the ANN, i.e., choosing its hyperparameters, including

• The number of nodes per hidden layer,
• The number of hidden layers,
• The choice of activation function,
• The choice of optimiser and its hyperparameters.

Increasing the number of layers and nodes increases the number of parameters in
the system and increases the chances of overtraining the model. This can be avoided
by the same techniques as discussed in Sects. 8.1.3 and 8.2. One option is to choose
the correct parameters and functions via cross-validation techniques, as discussed in
Sect. 8.1.3, in which several models are trained with different combinations of the
number of nodes and layers. The trained models can then be compared to each other
based on their performance on the validation set. This process could be expensive,
especially if training lots of models. An alternative method is to use regularisation
as demonstrated in Sect. 8.2.4. These methods involve adding a penalty to the cost
function proportional to the weights’ size, which encourages the parameters to stay
small (hence reducing the complexity of the ANN). Another method to prevent
overtraining is to use early stopping (Sect. 8.2.5), which stops the algorithm early
to prevent the ANN from training too close to the noise in the data set. The choice
of iteration to stop can also be decided by using cross-validation.

The activation functions depend on the application. For hidden layers, as dis-
cussed, common functions are the sigmoid or the tanh function. In deep neural
networks the rectifier linear unit (ReLU) is the most popular choice. For the output
layer the choice is determined by the type of problem. In binary classification the
sigmoid function is used and in multi-class classification the softmax function. Then
the loss function is the cross entropy loss. In regression the last layer is linear (i.e.,
no activation) and the loss is the mean squared function. For the optimiser and their
hyperparameters see Sect. 4.3 for popular choices.
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10.4.2 Recurrent Neural Networks

The machine learning models in the last sections have mainly concentrated on
fixed-length input data. When including past observations to compute the functional
form as in Eq. (10.15), a window length W or receptive field must be specified to
determine howmany past values to include. This is the case because all the regression
models considered are designed to handle tabular data, i.e., datasets of fixed-size
input vectors. Further, the algorithms generally do not assume any structure over the
columns, i.e., in a structured dataset, the order should not matter.3 Given the fixed
length, one cannot efficiently model dependencies that require a specific order of the
columns, which often is the case for sequential data due to autocorrelation. Further,
if one chooses a large W , one needs a lot of data to be able to model dependencies
that exist at very different time scales.

However, when dealing with time series and other sequential data, e.g., DNA
sequences, video analysis, sound patterns and language, it may make sense to be
less restrictive on the length of input values to model both long and short-term
dependencies. Instead of specifying the length of the input, i.e., the receptive field
that should be considered, the model needs to learn the relevant length.4

Recall the architecture of a feed-forward neural network (cf. Fig. 10.16). The
network consists of fully-connected layers, and every node is connected to every
node of the next layer. The structure of the network can be represented by a directed
acyclic graph. Recall that in NARX sequential data is added in the form of the lagged
values of the load L and some external features X. Despite inputs potentially being
sequences of arbitrary length, the input X1, . . . , XN is required to be sequential of
a fixed dimension n. As discussed before, this is because the fully-connected neural
network can only compute the function f (X1, X2, . . . , XN ) on these fixed-length
inputs. However how could a more flexible f (X1, X2, . . . , XN ) be calculated for
variable values of N?

For that the inputs can be calculated recurrently by feeding the vector sequentially
and passing in each step, not only the current value of X , Xk but also the value of
the activation of the prior step, Zt−1, i.e.:

Zt = h(Zt−1, Xt ), for t = 1, 2, . . . , N (10.28)

The final prediction is then the output of the final calculation:

f (X1, X2, . . . , XN ) = ZN (10.29)

Here, Xt can be a vector {Lt , X1,t , . . . , Xn,t } of the load L and n features, e.g.,
weather or calendar variables that belong to the time step t considered.

3 Hence, the set in dataset.
4 Note learning about lengths of input was partially seen with the exponential smoothing method
described in Sect. 9.2 which discounted older observations by determining a decay factors which
needed to be learnt.
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Fig. 10.17 A graph structure with recurrent connections of a recurrent neural network

Fig. 10.18 An unfolded recurrent neural network

Recall, that h is an artificial neuron that applies an activation function introducing
nonlinearities. Then Z is the activation, sometimes referred to as the intermediate
hidden state.

Neural networks that consist of such recurrent connections are called recurrent
neural networks (RNN) and they are designed to capture the dynamics of sequences
more appropriately than regular feed-forward neural networks. Figure10.17 shows
the structure of such an RNN with the recurrent connection shown as a loop.

This activation over time can be thought of as multiple copies of the same net-
work, each passing an activation to a successor. This makes RNNs “deep” neural
networks, even if technically only one layer is modeled.5 RNNs can be thought of
as feed-forward neural networks where each layer’s parameters (both conventional
and recurrent) are shared across time steps. While the standard connections in a
feed-forward neural network are applied synchronously to propagate each layer’s
activations to the subsequent layer at the same time step, the recurrent connections
are propagating the activation also to the nodes in the same layer but over time. This
can be visualised as in Fig. 10.18 by providing an unfolded view of the activations
over time.

To understand how the RNN neuron, henceforth referred to as a cell, computes the
new activation based on the old activation and a newvalue, see Fig. 10.19. It visualises
this activation within the cell by showing that the input Xt and the activation of the

5 However, note more layers can also be explicitly modelled in an RNN.



10.4 Artificial Neural Networks 179

Fig. 10.19 A visualisation of the internals of an RNN cell with the tanh activation function

prior time step Zt−1 are concatenated and then passed to the activation activation
function g, which in the context of standard RNN is often the tanh function. So the
activation can be written as:

Zt = g
(
βT [Xt ,Zt−1]

) = tanh
(
βT [Xt ,Zt−1]

)
(10.30)

Againβ denotes aweight vector, g the activation function andwe use [•] to denote
the concatenation of the vectors Xt, the feature vector, and Zt−1 the activation of the
prior step t .

One can see from Eq. (10.30), that the recursive call of the activation function can
lead to vanishing and exploding activations and more importantly their gradients
when computing the loss function and its gradients in model training, i.e., finding
the optimal weights of the network. For instance, consider only the first three steps,
this leads to

Z3 = g
(
βT [

X3, g
(
βT [

X2, g
(
βT [X1,Z0]

)])])
(10.31)

Here, repeated multiplication with the weights can lead to very small or very
large values.While this can be alleviated by tricks such as gradient clipping, standard
RNN tends to be unstable to train when longer dependencies are modelled. RNNs are
typically only successful in modelling short-term dependencies. Hence, they have
not proven practical for load forecasting where longer dependencies like weekly or
even yearly seasonal patterns are typical. Therefore, in this section hyperparameters
of the standard RNN model are not further discussed, and the introduction to RNN
serves only as the background for more modern variants such as LSTM and GRU,
which have been popular for sequence modelling and have proved successful for
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load forecasting. In particular, their training is more stable than the standard RNN.
These more modern techniques will be explored in more detail in Sect. 10.5.

10.5 Deep Learning

The algorithms so far in this chapter are considered classical machine learning algo-
rithms. This section introduces neural network architectures that are considered deep
neural networks or as part of the subfield of machine learning called deep learning.
While the notion of “deep” neural networks has been touched upon in the context
of RNNs, where “deep” meant deep in time, it has been found that RNNs in their
standard form are not able to model long-term dependencies in time. In this way
they are more similar to a standard feed-forward neural network. This chapter intro-
duces adaptations to RNNs that make them capable of modelling more long-term
dependencies, hence can be considered neural networks with many layers, i.e., deep.

It should be noted that there is no clear definition of when an artificial neural
network is considered “deep”. Recall the architectural graph fromANN in Fig. 10.16.
The number of weights increases exponentially with the number of new layers. One
way to distinguish standard feed-forward networks from deep neural networks is
that deep neural networks often have so many layers that fully connected layers are
infeasible.

But why add many layers in the first place? This is due to a second way of
distinguishing classical machine learning from deep learning. In classical machine
learning, the modelling flow is to first hand-design features and then fit a model that
maps from the features to the target. As discussed in Chap. 4, in classical statistical
modelling the goal is to avoid the curse of dimensionality and only include variables
that help to understand the process. However, in machine learning, we care about
making the best possible prediction and in deep learning, the objective is to find suit-
able feature embeddings or representations automatically that can be used by a
predictive model. When stacking several layers, lower layers learn more straightfor-
ward representations that are passed to subsequent layers that can use these simple
features to model more abstract features to be used in the final prediction model.
This process is often also referred to as representation learning.

While this novel modelling flow of automated representation learning is now
the default in disciplines such as computer vision and language modelling, where
manual feature engineering has been predominantly displaced, for time series and
load forecasting, often manual features are still a suitable approach, especially in
settings where one does not have an abundance of data available.
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10.5.1 Modern Recurrent Neural Networks

Recall from the last section that RNNs have issues due to numerical instability, lead-
ing to them only being capable of modelling short-term dependencies. This section
introduces the two most popular extensions of RNNs, namely gated recurrent units
(GRUs) and long short-term memory (LSTM). Recall from Sect. 10.4.2, in con-
trast to layers in feedforward networks, a layer in recurrent neural networks receives
the input of the input layer Xt , as well as the activation signal from the last time step
of itself Zt−1, which was referred to as a hidden state.

LSTMs introduce a second hidden state, the cell state. Now the current state of a
cell depends on the current value Xt , as well as on the previous activation Zt−1 and
the previous cell state Ct−1. This cell state functions as a memory of the cell where
the training determines how long- and short-term values should be memorised. To
control how much of the input to forget, LSTMs introduce the forget gate, the input
gate and the output gate. Figure10.20 gives an overview of these parts of the LSTM.
Note how the gates are essentially made up of ANN layers, i.e., weights and different
activation functions.

Figure10.21 gives an overview of each of these gates. Figure10.21a shows the
forget gate that governs how much to keep from the previous cell state and how
much to add from the current input of the previous activation. The last activation and
the input are concatenated and passed through the sigmoid function that brings it to
between 0 and 1. With the pointwise multiplication, this means the closer values are
to 0, the more the cell state “forgets”. The closer the value is to 1, the more is kept.
It’s hence computed as:

Fig. 10.20 An overview of an LSTM cell unrolled in time



182 10 Machine Learning Point Forecasts Methods

Fig. 10.21 The LSTM cell with the cell state and different gates highlighted

Ft = σ
(
βT

F [Xt ,Zt−1]
)

(10.32)

Note that there is a weight vector βF that is specific to this gate.
The next part, as shown in Fig. 10.21b, is called the input gate. It adds or subtracts

from the current state. It computes input value It and a candidate value C̃t as:

It = σ
(
βT

I [Xt ,Zt−1]
)

C̃t = tanh
(
βT
C [Xt ,Zt−1]

)

Then the updated cell state Ct is computed by:

Ct = FtCt−1 + ItC̃t (10.33)

Again, note the weight vectors β I and βC that must be determined in the training
process. Note, that by adding the activation to the values prior in time before feeding
it into the tanh activation to compute the next activation, this is related to residual skip
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connections described in Sect. 10.5.3, as the network can learn if there is something
useful that should be added from the current input, or if the old cell state should be
kept.

The final part is called the output gate that learns what to output from the cell state
as well as the former hidden state and the current input as the next hidden state:

Ot = σ
(
βT

O [Xt ,Zt−1]
)

Zt = Ot ∗ tanh (Ct )

With these gates, LSTMs can be trained to be more stable than standard RNNs and
havebeenpopular in sequencemodelling and also for time series and load forecasting.
Over time, several variants have been proposed, like peephole connections that give
each of the gates access to the current cell state and coupled forget and input gates
that, instead of separately deciding what to forget and keep, make those decisions
jointly. A full discussion of what parts are necessary or the most effective is not part
of this book. For more information see [3, Chap. 10].

The most popular related architecture is the Gated Recurrent Unit (GRU) cell.
The main idea is similar to that of LSTMs, as it similarly introduces gates to control
how much to remember from previous states. However, it is a little bit simpler and
has fewer parameters. It does not have a dedicated cell state and introduces the reset
and update gates. Figure10.22 gives an overview of the GRU cell. We omit a detailed
walkthrough from this book as it is simar to the LSTM. Generally, it is simpler than
the LSTM and is hence faster to train and less prone to overfitting (e.g., when used
with time series). See [3, Chap. 10] for a description of GRU.

So far, only a single hidden layer has been discussed. In practice, multiple LSTM
or GRU layers can be stacked on top of each other. However, this increases the

Fig. 10.22 An overview of a GRU cell unrolled in time
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number of parameters drastically and may lead to overfitting. Several layers should
be explored, when there is a lot of data available, e.g., when fitting a global model
trained on the data of several households, buildings or other metered instances. So
in terms of hyperparameters, the design decisions are similar to feedforward neural
networks, namely the number of layers and the number of hidden units per layer.
The activation functions are as introduced in the descriptions before. Further, an
optimiser and its hyperparameters need to be chosen.

While more stable than RNN, LSTM and GRU remain difficult to train and may
lead to overfitting for time series. For longer relationships, up to, e.g. hundreds of
steps back—not uncommon, for instance, with weekly seasonality—both LSTM and
GRU can get quite deep for practical applications. One hundred steps back in time
can be interpreted as a standard feedforward network with 100 layers. Generally,
LSTM and GRU are still slow to train, as they are not easy to parallelise as the states
have to be computed sequentially.

10.5.2 Convolutional Neural Networks

The beginning of this section has motivated the idea that stacking many layers can
enable learning of increasingly complex representations of the input data. Consider
modelling a high-resolution time series, for instance, 1-minute load data, with a long
receptive field. This leads to a large number of lagged values that need to be included
in the model to capture both the short-term local patterns and long-term trends.
With a regular fully-connected neural network, this would require connecting each
input neuron with a large number of neurons in the next hidden layer. Each node
in the hidden layer is, in turn, connected to each neuron in the next hidden layer
(and so forth). In particular, where there is multi-dimensional input, for instance, in
other domains like images or even videos, then even a few hidden fully-connected
layers would be infeasible as the neural network would have an excessive number of
parameters.

One of the main drivers of the recent surge of machine learning has been the
success of convolutional neural networks (CNN) that cope with a large number
of parameters by using a different architecture. For instance, to decide if an image
contains a rabbit, a CNN canmake use of the fact that it does not need to view the full
image at once, but can instead view successively smaller parts of the image, as it does
not matter where in the image the rabbit is. The architecture makes use of so-called
invariances, namely locality and translational invariance. Standard CNNs make
use of the successive stacking of convolutional layers and pooling layers, which
will be explained below.

Convolutions can identify patterns in data points that are close together. In images,
for instance, adjacent pixels are close as they are also close in the physical world that
the image represents. Similarly, for many time series, neighbouring data points are
also near, as certain behavioursmay occur close in time. This locality can be exploited
by convolutions. A convolution is a mathematical operation defined through two
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functions (in the continuous case) or matrices and sequences (in the discrete case).
This section will henceforth only consider the discrete case due to the inherent
discrete time steps of the load data which is analysed in this book. Note also, that
only 1-dimensional convolutions will be considered in this book due to the focus on
univariate time series data.

Consider two sequences X = (X0, X1, . . . , Xn−1) and K = (K−p, K−p+1, . . . ,

K0, . . . , Kp) of length n and 2p + 1 respectively. The notation for index of K starting
at −p is because this simplifies the later calculations as will be shown.

The convolution (X ∗ K)n is calculated by reversing the order of one of the vectors
(which notice will be easier to do withK due to the notation used above!) and taking
a sliding dot product with the other sequence, X. In other words the convolution
creates a new sequence Z = (Z0, Z1, . . . , Zn−1) defined as

Zn = (X ∗ K)n =
p∑

m=−p

Xn−m · Km . (10.34)

Notice that in this summation it may require values which are outside the index of
the defined sequences. In this case those values are simply set to zero (this is referred
to as zero padding). For example

Z0 = X0K0 + X1K−1 + · · · + X p−1K−p (10.35)

While generally there is no constraint on the length of either sequences, i.e.,
both can be of the same length, in the context of neural networks, one is typically
longer (here the input sequence X) and one shorter (the so-called filter or kernel,6

K). Figure10.23 shows schematically how the convolution function can be used to
calculate a target sequence Z. In summary, the steps to compute a convolution are as
follows:

1. Reverse the kernel sequence K, then
2. shift the kernel along the input sequence X one point at a time, and
3. at each step, calculate the dot product of the twoaligned sequences, i.e.multiplying

the aligned values and adding these products.

The resulting sequenceZ is the convolution of the kernel and the input sequence. In
the context of convolutional neural networks, the result may be referred to as feature
map, or more generally, it is a representation of the input data in the context of
representation learning.

Note that formally a convolution is defined over indices from negative infinity to
positive infinity. In practice, one adds padding of zeros on both sides as illustrated

6 Note, as this book combines topics fromstatistics, classicalmachine learning anddeep learning, the
term kernel has appeared in this book already in the context of kernel density estimation in Sect. 3.3
and in the context of support vector machines in Sect. 10.2. While in each of those contexts, it
is related to the notion of a function, unfortunately, in each context the term kernel has different
distinct meanings.
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Fig. 10.23 Schematic of the
convolution operation

above in equation (10.35). Then one can choose to keep only the part of the con-
volution that is non-zero or limit the results to just those values where the kernel
completely overlaps with the input sequence.

To understand the effect of the convolution operation on typical input sequences,
consider the example in Fig. 10.24. It shows a load profile at the household level
as input X and the resulting feature map Z. Figure10.24a considers the effect
of the application of a filter K = [0.2, 0.2, 0.2, 0.2, 0.2]. Given that the weights
add up to 1 and with the Definition (10.34), it becomes clear that this is sim-
ply a moving average of the values before and after the current value. It’s essen-
tially smoothing the profile. A related operation is shown in Fig. 10.24b. The kernel
K = [0.05, 0.24, 0.40, 0.24, 0.05] represents a Gaussian distribution, i.e., the centre
point is weighted more than the edges. This also leads to an average, but the shape
of the original load profile is more strongly preserved. In image processing, this
operation is often called a Gaussian blur and is considered a more natural average
filter than simply using the equally weighted filter. Finally, Fig. 10.24c shows the
result of a kernel designed to highlight variation between neighbouring data points.
In the context of images, this would detect edges. In the context of load profiles, it
highlights the sudden increases and decreases in load.

These filters are not defined manually in a convolutional neural network. Simi-
larly to weights in a feed-forward neural network, the filters’ values are determined
by the optimiser in the training process. The output, i.e., the feature map, is then
passed through an activation function so that it can be thought of as analogous to
the activation in feed-forward neural networks. It can be regarded as the learned
representation passed to subsequent layers. There are as many feature maps as filters
after each layer. The filter can be thought of as a feature extractor as the optimisation
process will enforce filters that specialise in finding specific recurring features, like
the above-mentioned averaged profile or the highlighted edges, that are helpful for
downstream layers. Filters in the first layers could learn basic shapes, such as edges
or corners, while later layers can detect more complex compositional patterns.

The second operation commonly used in convolutional neural networks is pool-
ing. 1Dpooling is effectively down-sampling the input sequence using an aggregation
function. This aggregation function can be the mean or, more commonly, the max
function. Figures10.25 and 10.26 show this schematically. In Fig. 10.25 the pooling
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Fig. 10.25 Max pooling
operation with pool size 2
and stride 2

Fig. 10.26 Max pooling
operation with pool size 3
and stride 1

factor or pool size is 2, i.e., two values are averaged. Hence, the final sequence is half
the length of the input sequence. In Fig. 10.26, the pooling factor is 3, but instead
of shifting the pooling operation by the pool size, it is only shifted by one step, the
so-called stride.

Similar to above, consider the example in Fig. 10.27. It shows the same load profile
as before as inputX and the result of applying the pooling operation with both a pool
size and stride of 4. On the left, it shows mean pooling. This operation is typically
done when downsampling a load profile, here from a 15min to 1h resolution. Each
point is the average of the current and prior 3 values. For a profile at the household
level, this smoothes the profile and the distinct peaks that are related to high-power
appliances that are only used briefly, like a kettle or hair drier. The right figure
shows the max pooling operation. It more strongly preserves the peaks of each of
the considered intervals compared to the averaging pooling. Note, that each of the
sequences is now one-fourth of the length of the original sequence.

A convolutional layer consists of passing the resulting feature maps through an
activation function. These building blocks, convolutional layers and max pooling
layers are the essential parts of CNNs. Figure10.28 shows how they can be stacked
for sequences as input, in the same manner as in more common 2D, 3D and 4D
architectures, as they are used, for instance, in image and object recognition. After
stacking several convolutional and max pooling layers, a CNN typically flattens and
concatenates the last layer’s activation and feeds it into a fully-connected neural
network that makes the final prediction as described in Sect. 10.4.1 using the feature
representations extracted by the convolution and pooling layers.
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Fig. 10.27 The effects of applying different pooling functions to a load profile at the household
level (here with pooling size 4 and stride 4)

The trainable parameters of CNNs are, therefore, the filters of the convolutional
network layers and the weights of the fully connected layer. Note that the pooling
layers are having no trainable parameters but are merely downsampling the output of
the convolution layers. As the convolutional layers essentially function as a feature
extractor for the fully connected network, it is possible that filters trained on one
dataset are used for a completely new dataset without retraining but only training
the fully connected layers. This is referred to as transfer learning or fine tuning
(see also discussion in Sect. 13.4). The flattened output of the convolutional layers
can further be concatenated with additional features denoted as X to condition the
forecast on more external covariates where convolutional operations are not useful.
For instance, [4] show that for residential load forecasting, it can improve the forecast
to condition it in this way on calendar-based variables and the weather forecast.

CNNs have several hyperparameters and architectural choices. First of all, the
number of convolutional and pooling layers. For convolutional layers, the number of
filters and the filter size, i.e., the length of the kernel, are the important hyperparam-
eters. It is common practice to choose odd filter sizes, as this makes implementation
easier. Often 3 or 5 are reasonable choices. ReLU is most commonly used as an acti-
vation function in the convolution layers. For the pooling layers, the max function
is the most common choice. Here, only the pool size needs to be chosen. In 2D, a
pooling size of 2 reduces feature maps in both dimensions, e.g., to a quarter of the
input size, which is, therefore, a reasonable choice. Similarly, for 1D time series,
a size of 4 can also be a suitable initial choice. Then, finally, the structure of fully
connected layers, the number of nodes per layer and their activation functions need
to be chosen analogously to fully-connected neural networks. However, ReLU is a
reasonable default. Again, as in other neural network models, an optimiser and its
hyperparameters need to be chosen (see discussion in Sect. 4.3) as well as other
parameters affecting training like the batch size and the maximum number of epochs
to train.
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CNNs, in general, have several strengths over recurrent neural networks. They can
model long-term dependencies better than LSTM, as 100 steps back do not make the
model “deeper” and thus they avoid the numerical issues discussed earlier. Further,
they are much faster to train, as the calculation of filters is trivially parallelisable
since one filter does not depend on the others. Also, as discussed, in CNN, parts of
the architecture can be reused for new, but similar tasks. This process of transfer
learning never really worked as well for LSTM and GRU. However, the transfer of
a pre-trained model to a new task has proven an effective strategy in practice, that
can improve generalisation and drastically decrease training time for a new task, i.e.,
effectively saving energy and, therefore costs and even CO2 emissions (cf. discussion
on sustainable AI [5]).

However, in this standard form,CNNs have several problems in the context of time
series. First, with many filters and several layers, a model can still be comparatively
large and have many parameters that can overfit with time series, especially for large
receptive fields. Hence, some more modern building blocks that made the training
of very large CNN architectures possible have also been introduced to time series
and will be discussed in the next section. Another problem with time series is the
convolution operation itself. As one can see from the definition and Fig. 10.23, the
convolution operation includes future values when calculating the dot product of the
filter. For time series forecasting, this means that future values can leak from the test
period into the training data, whereas this data is supposed to be unknown at the time
of the forecast, and can produce an overly optimisatic prediction. For these reasons,
it is therefore recommended to use adjusted versions of CNNs for load forecasting,
as will be introduced in the next chapter.

10.5.3 Temporal Convolutional Networks

This section discusses adjustments to convolutional neural networks that have proven
effective for working with time series, namely causal convolutions, dilated con-
volutions, residual skip connections and 1× 1 convolutions. While those have
been features of the WaveNet architecture [6] that has been introduced as a gen-
erative model for handling raw audio data, neural network architectures based on
these features for more general time series tasks have since been referred to as tem-
poral convolutional networks (TCN) [7]. In the following, we describe the most
important building blocks.

The most important adjustment is made to avoid the possibility of leaking future
data into the training data (see Sect. 13.6.4 on data leakage). While one could add
zeros as padding instead of future values, there is a better solution: causal con-
volutions. For that, the convolution operation is simply shifted to only consider
prior values when calculating the sliding dot product with the flipped kernel (cf.
Sect. 10.5.2). Figure10.29 shows this schematically (compare it to regular convo-
lutions in Fig. 10.23). To formally define the operation, consider input sequence
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Fig. 10.29 Causal
convolution operation

X = (X0, X1, . . . , Xn−1) and kernel K = (K0, K1, . . . , Kk−1) of length n and k
respectively. Then, we can then define causal convolution as:

Zn = (X ∗c K)n =
k−1∑

m=0

Xn−m · Km . (10.36)

A second problem that was discussed before is that a large receptive field, i.e., a
large window of past values to include in the model, may lead to unnecessary many
parameters as it requires too many filters, and it may be unnecessarily slow, as many
convolutions may need to be computed. In traditional modelling, one addresses this
by manually deciding to feed only relevant past values, e.g., only of the last day, the
same day of a week ago, the same day two weeks ago, or similar. However, in deep
learning,wewould stillwant to pass a considerable amount of past values andhave the
model learn relevant features, i.e., internal representations, automatically. To achieve
that, TCNsmake use of dilated convolutions that solve this by introducing a dilation
factor d that essentially adds steps between calculations of convolution operations.
With this, it is still possible to cover a large receptive field by stacking several layers
of dilated causal convolutions. Figure10.30 compares regular causal convolutions
with dilated convolutions, highlighting the operations that are necessary to cover the
same receptive field with full causal convolutions (left, with filter size k = 4) and
causal dilated convolutions (right, filter size k = 2 and dilations d = [1, 2, 4]). The
same receptive field can be covered with a smaller filter size (i.e., fewer parameters)
andmuch fewer operations (i.e., much faster training). The dilated causal convolution
operation is then defined for the same input sequence X = (X0, X1, . . . , Xn−1) and
kernel K = (K0, K1, . . . , Kk−1) as:

Zn = (X ∗d K)n =
k−1∑

m=0

Xn−d·m · Km . (10.37)

One important idea to improve CNNs that is common in TCNs are residual skip
connections that were popularised with ResNet [8]. Prior to these, there were limits
to stacking more layers since training becomes unstable and accuracy reduces as
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Fig. 10.30 Comparison of standard and dilated causal convolutions

more layers are added. However, in theory, adding more layers should not degrade
performance, as ideally, if more layers would lead to worse performance, it would
be preferable for the layer to simply learn the identity mapping, hence, not change
performance. Skip connections allow for layers to essentially be set to the identity
mapping, i.e., skipped, by adding the activation of previous layers with activations
of successive layers. For dense layers, this can be achieved by concatenating those
activations. More commonly, this is achieved by addition. So essentially, skip con-
nections allow the model to choose whether layers add value to the outcome or not,
thus improving results in large neural network architectures. Recall that this is similar
to how the input gate works together with the cell state of prior time steps in LSTM
(see Sect. 10.5.1).

Another idea that is common in modern TCNs is 1× 1 convolutions that were
popularised with the Inception model [9]. A 1× 1 convolution helps reduce the
dimensionality along the filters. When applied to only one feature map (or input),
it simply scales each pixel by a constant weight. This would by itself not be useful.
However, when applied to several filters, it essentially learns a linear projection of
the filter maps, thus reducing the number of filters. This reduces the number of
parameters, whilst retaining some feature-related information through the learned
weights.

TCNs have similar hyperparameters to CNNs generally (see Sect. 10.5.2). How-
ever, when using dilated convolutions, two possible hyperparameters can be used
to increase the receptive field: the dilation factor d and the filter size s. The most
important decision is the architecture, i.e., how the building blocks are connected.
Figure10.31 shows the TCN architecture as introduced in [7]. One TCN residual
block contains two dilated causal convolution blocks, each followed by weight nor-
malisation, a ReLU activation and a dropout layer (see Sect. 8.2 on these regularisa-
tion techniques). These two blocks are bypassed by a residual skip connection with a
1 × 1 convolution. If the block is in the first layer, it receives the input sequence, else
it receives the activation of the prior block i − 1, Zi−1, and passes its activation Zi

to the next block. Note, that in the literature and in libraries, details in the implemen-
tation of what is referred to as TCN may vary. An architecture based on WaveNet
has been used for residential load forecasting in [10]. In [11], TCNs are used for
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Fig. 10.31 The structure of
a TCN residual block as
introduced in [7]

load forecasting at the system scale. [12] use only the causal dilated convolutions as
part of a CNN architecture for fitting the parameters of different probabilistic models
for residential load forecasting. Note, that modern TCNs don’t make use of pooling
layers that are popular in image and object recognitions. Instead, dilation and 1× 1
convolutions are used to decrease the number of parameters.

Compared to LSTMs and GRUs, TCNs are more efficient to train (see discussion
in the last section on CNNs). Compared to standard CNNs, TCNs solve, most impor-
tantly, the issue of causality. But several ideas like dilation, residual skip connections
and 1× 1 convolutions have been shown to improve regular CNNs empirically, as
they make training more stable, enable more efficient training and require fewer
parameters. This can be beneficial for time series, where deep machine learning
models are generally prone to overfit in settings without a lot of training data.

10.5.4 Outlook

As the last section has shown, with more modern deep architectures, it becomes less
and less clear what is working in what situations. The field of deep learning is moving
very rapidly with the successes in image and language modelling and some of these
models are being utilised within the field of time series using more and more specific
architectures. Many of the building blocks for such models have been introduced in
the previous sections.
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One example, N-BEATS [13], is a model based on fully connected residual net-
works, and has been successful as part of the M5 time series forecasting competi-
tion,7 placing second. It includes an interpretable version that enforces individual
stacks to learn the trend and seasonality independently. Another popular time series
model is DeepAR [14], an RNN architecture that has been introduced for probabilis-
tic intermittent demand forecasting. It fits a global model across different products
and predicts one step ahead based on previous step values and some covariates (e.g.,
weather). It uses a Gaussian or Negative Binomial likelihood function, and its param-
eters are predicted by the neural network.

A whole different approach, not using the aforementioned blocks, is transformer
models [15]. They have surpassed all other approaches in text processing in most
tasks and have had initial successes working with image tasks. They may be well
suited for time series as well, as compared to CNNs they are truly sequential, i.e., no
perceptive field needs to be determined. This allows them to handle different length
inputs, which is only possible with CNNs and TCNs using zero padding. Like RNNs,
transformers are designed to process sequential input data. Some consider them to be
a version of recurrent neural networks, however, unlike RNNs, transformers process
the entire input data all at once. They use the so-called self-attention mechanism
to provide context for any position in the input sequence. By not having to process
one step at a time, it allows for much better parallelisation than RNNs and therefore
reduces training times considerably. However, as transformers have not made it into
the load forecasting literature (yet), they are not covered in more detail in this book.

This leads to a more general question. Given the many possibilities with deep
models, it is unclear where to start. Time series forecasting has for a long time
been approached by only statistical methods, as discussed in Chap. 9. Only recently,
machine learningmodels have shown to be successful in certain situations (see theM4
and M5 forecasting competitions [16, 17]). As discussed in more detail in Chap. 12,
start simple first! Compared to images and text, many time-series forecasting prob-
lems, have lower data availability. So whenmaking predictions for only one instance,
like one building, household or substation, and only with the data of that instance
(see discussion of local and global modelling in Sect. 13.4), statistical and tradi-
tional time series models perform well. They also perform well, when the data is of
low resolution (e.g., daily, weekly, or yearly time series), and when covariates like
seasonalities and other external influences are well understood. Machine learning
and deep learning models tend to perform better when fitting models across multi-
ple time series, like one model for multiple buildings or households or hierarchical
models (see Sect. 13.4 on this topic). In probabilistic forecasting, they perform well
when densities are complex (e.g., multi-modal). Further, they can be useful when
fitting models to processes with complex, non-linear external influences. However,
one important finding of the M5 competition was that combinations of statistical
and machine learning models can reach state-of-the-art results with the advantage of
remaining at least partly interpretable, combining the advantages of both and hence
are particularly useful for real-world applications.

7 https://mofc.unic.ac.cy/history-of-competitions/.

https://mofc.unic.ac.cy/history-of-competitions/
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10.6 Feature Importance and Explainable Machine
Learning

This chapter introduced several machine-learning models for load forecasting. As
discussed, in machine learning the objective is to learn representations for input data
to improve the forecast automatically. This comes, however, at the cost of under-
standing the relationship between the input data and the prediction. As explainable
machine learning is a research domain that has many different approaches, and none
have shown to be dominant in the load forecasting practice, it will not be covered in
depth in this book.

However, this section will briefly discuss the following methods:

• Feature importance of tree-based methods (model specific),
• permutation importance (model agnostic),
• SHAP Values (model agnostic).

As introduced in Sect. 10.3, tree-based forecasting models have feature impor-
tancemethods built in. Thesemodels attempt to determine themost relevant features
for the internal representation of the data, i.e., fitting the model. Different measures
can be used to assess the feature importance, most commonly, Gini importance or
the mean decrease in impurity (MDI). These can be output with the model to give
some indicator for the feature importance and to explain the model. Note, however,
that these are biased towards high cardinality features. Also, they are computed on
the training set in the model fitting phase, and may, therefore, not reflect the ability
of the feature to be useful to make predictions that generalise to the test set and to
the application. So they should merely be seen as an indicator. They work because
with tree-based models only a sample of the variables are used to construct each tree
(Sect. 10.3). That means a sample of trees do not utilise one of the input variables.
This means the performance of using a particular variable can be compared to not
utilising that variable. In short, the importance of that feature can be assessed.

Another popular method is permutation importance. It was introduced by
Breiman in the context of random forests [18] (See Sect. 10.3.2 for more details
on random forests). The idea is to randomly permute each feature’s values to analyse
how it affects the final prediction outcome. This idea is simple and computationally
cheap to implement. It can be applied to any fitted model and is not restricted to tree-
based methods. While being popular due to the above reasons, they are generally not
advised when the dataset contains strongly correlated features, as it may otherwise
be biased in favour of correlated features.

Permutation importance and feature importance can be combined to help identify
all relevant variables in a input dataset. The Boruta algorithm [19] adds duplications
of some of the input variables for a random forest model but permutes them. Hence
these permuted variables should have no relevance to the dependent variables and its
feature importance can be compared to the other (non-permuted) variables to identify
which ones have an importance lower than the random inputs. Those with a higher
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importance can be viewed as therefore beingmore relevant to the supervised learning
model performance.

Finally, there are SHAP values (SHAP stands for SHapley Additive exPlanation).
The theory is based on cooperative game theory. A detailed discussion of how they
work is not part of this book but see [20] for a more detailed discussion on SHAP
values. The output is also a feature importance score. They work well for correlated
features, as interactions of variables are also analysed. However, they are expensive
to calculate as one step includes building combinations of each of the features.
This is, therefore, infeasible for a large number of inputs and hence, often only
approximations are calculated.

10.7 Questions

As in the last chapter, for the questions which require using real demand data, try
using some of the data as listed in AppendixD.4. Again, ideally choose data with
at least a year of hourly or half hourly data and split it into training, validation and
testing with a 3 : 1 : 1 ratio.
1. Explain the difference between the activation functions and the loss function in a

neural network. How do they relate? Explain how each of them is chosen in the
process of modelling a feed-forward neural network for a specific task.

2. The Exponential Linear Unit (ELU) is another activation function that is a strong
alternative to ReLU. It is defined as:

ELU(z) =
{
z, for z < 0

α(ez − 1), for z ≤ 0

Plot the function and its derivative. Discuss possible strengths and weaknesses
compared to other activation functions discussed in this chapter.

3. Take an example load profile for a day that has some variation over the day, i.e.,
some distinct peaks. Use a convolution implementation of a library such as scipy
or numpy in Python to compute somemoremanually selected kernels as was done
in Fig. 10.24 and observe their resulting influence on the feature map. Try a kernel
K = [−1.0, 2.0,−1.0]. Before implementing, try to predict what the result will
look like.

4. Using a neural network library such as Tensorflow8 or PyTorch9 implement a
simple NARX, i.e., a fully-connected neural network that accepts the last two
weeks of a half-hourly load profile as input and outputs a prediction for the next
day. How many neurons does the input layer have? How many the output layer?
Add one fully-connected hidden layer with ReLU activation. Use the appropriate

8 See https://www.tensorflow.org/.
9 See https://pytorch.org/.

https://www.tensorflow.org/
https://pytorch.org/
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activation function for the output layer. Use the library to output the number of
weights (or trainable parameters) each network architecture has and visualise it as
a function of the number of layers. How does the number of parameters scale with
the number of layers? Train your network with different hidden layers (e.g. one
and five) and visualise the train and validation error over the number of epochs
trained. Observe the different training times needed. Do you observe overfitting
for the deeper network compared to the more shallow one? Add dropout of 10%,
20% and 50% to the hidden layers and observe if that changes the progress of the
training and validation loss. Try another regularisation method from the ones that
have been discussed in Sect. 8.2.
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Chapter 11
Probabilistic Forecast Methods

The previous two chapters were concerned with point forecasts which only produce
a single estimate for each time step in the forecast horizon, i.e. one value Lt for each
of the time periods t = N + 1, N + 2, . . . , N + k (assuming a forecast horizon of
length k steps ahead starting at forecast origin N ). Point estimates are limited in their
description of the future demand, especially when the underlying data has a large
degree of uncertainty. A more detailed picture of the possible values of the demand
can be produced by estimating the distribution of the demand for each period in the
forecast horizon. Forecasts which estimate the spread of the distribution are often
called probabilistic forecasts. That is the subject of this chapter.

11.1 The Different Forms of Probabilistic Forecasts

As introduced in Sect. 5.2 and Fig. 5.4, there are three core forms of probabilistic
forecasts which will be explored in this book: quantile forecasts, density forecasts
and ensemble forecasts (not to be confused with ensemble machine learning models
such as random forest in Sect. 10.3.2). These can be grouped into two core categories:
univariate (quantile and density) and multivariate (the ensemble forecasts). To
understand these types, consider the scenario of trying to estimate the distribution of
the data for the time steps t = N + 1, N + 2, . . . , N + k.

For a univariate forecast, the aim is to estimate the distribution of the demand at
each time step. In otherwords, estimate a total of k univariate distributions. The distri-
butions at different time steps are independent of each other, meaning that the spread
of the variable at one time step is not influenced by information about the demand at
other time steps. Another way to say this is there are no inter-dependenciesmodelled.
The univariate Gaussian, as introduced in Sect. 3.1 is the most famous example of a
univariate distribution function. There are twomain forms for estimates of univariate
distributions, either a full continuous density function, or discrete values (quantiles)
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Fig. 11.1 Example of both
Gaussian distribution as
described by its density
function (solid line) and
20-quantiles (red dotted
lines)
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defininguniformly spaced levels of equal probability.1 These two forms are illustrated
in Fig. 11.1 for a standard Gaussian distribution. The density estimate is often prefer-
able, as it describes the entire distribution, but requires either knowing/assuming that
the distribution is from a particular parametric family (e.g. Gaussian in this case),
or requires training relatively expensive methods, such as Kernel Density Estimates
whichwill be described in Sect. 11.5. The quantile estimates (described inmore detail
in Sect. 3.2) in Fig. 11.1, show the 5, 10, . . . , 95% quantiles for the Gaussian density,
and are clearly less descriptive of the distribution, however they are a lot less expen-
sive to compute and don’t rely on assuming a specific distribution of the data. Since a
univariate distribution has to be estimated for each of the k time steps in the forecast
horizon this reduction in computational cost can be particularly advantageous.

For multivariate forecasts the task is instead to estimate a single multivariate
distribution for all k demand variables in the forecast horizon (see Sect. 3.3 for more
onmultivariate distributions). The advantage of multivariate distributions is that they
take into account the inter-dependencies over the entire forecast time horizon. To
illustrate this, consider the example of household demand. This is mainly determined
by the occupants behaviour. If a person gets into work late then they will likely get
back from work later, hence their demand shift in the morning will correspond to
a shift in the evening. In other words, there is an interdependency between the
demand in the morning and the demand in the evening due to the link between
these two activities. A multivariate forecast can therefore be sampled to produce
demand profile scenarios which include these correlations. Thus more complicated
and realistic interdependent behaviours can be simulated and utilised to optimise
applications such as storage control (Sect. 15.1).

Similar to the univariate case, the full multivariate density can be estimated but
it is typically more complicated and difficult to model accurately. The methods are
often more computationally expensive, there is fewer packages/resources for fitting
them, and there are very few standard parametric multivariate distribution functions
which can be used to fit to the data. Instead finite samples from the distribution are

1 Actually the quantiles do not have to be uniformly spaced but it can often be simpler and more
useful to do this.
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Fig. 11.2 A bivariate Gaussian (left) and 30 ensembles from the distribution (right)

often estimated instead. These ensembles are realisations or ‘representatives’ from
the distribution. To illustrate this consider a basic casewith k = 2where the estimates
at two consecutive time steps t = 1, 2 are jointly described by a bivariate Gaussian
distribution, shown in the left of Fig. 11.2. Drawing 30 random samples from this
distribution gives the time-dependent correlated bivariate ensembles on the right.
Notice in the language of distributions introduced in Sect. 3.3 that the multivariate
probabilistic forecast is a joint distribution and the univariate probabilistic forecasts
are marginal distributions of the full joint distribution.

11.2 Estimating Future Distributions

As discussed in the previous section, the aim of a probabilistic forecast is to estimate
the future distribution of the demand whether at a single time step (univariate) or
multiple (multivariate). To estimate the uncertainty requires accurately modelling
the variation. There are a few standard practical approaches, which will be outlined
in the section, and are the basis for many of the techniques in the following sections.

The first approach tries to model the distribution directly by training on the obser-
vations. As with most point forecasts these models use the historical data to capture
the variation and will typically make assumption about how the past distribution will
relate to the future demand. The parameteric models (Sect. 11.3), kernel density esti-
mation (Sect. 11.5 ) and the quantile regression (Sect. 11.4 ) all model the distribution
in this way.

The aim is to train the parameters or hyperparameters of a distribution model
directly (e.g. the Gaussian model) or use a model which will estimate the distribution
(e.g. quantiles). The advantage of these approaches is that as long as the rightmodel is
used, and they are trained on sufficient data from the target distribution, then they can
accurately capture the uncertainty. For example, if we are modeling demand for 2pm
and we know that the historic 2pm data all come from the same distribution then this
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data can be used to estimate the true distribution. Unfortunately, it is often not known
for certain which data comes from the same distribution and so certain assumptions
will need to be made based on the analysis of the data. Another drawback of this
approach is that its accuracy is correlated with the amount of available data. Small
amounts of data will mean a potentially inaccurate estimate.

The second type of model doesn’t model the variation directly but instead inserts
variation into the model either through adjusting the input variables and/or the model
parameters. For example, assume there is a demand model which is dependent on
temperature alone. Then the variation in the demand can be modelled by inserting
different values of the temperature into the model. Usually these are formed by
tweaks on an individual estimate of the temperature and simulates the sensitivity of
the demand to the temperature.

This approach is used in numerical weather prediction to produce forecast ensem-
bles/scenarios. Small deviations are applied to themost likely state of the atmosphere
and the numerical weather prediction models are reapplied to the adjusted states to
produce a range of weather scenarios. Analysis of closeness of the final ensembles
can indicate confidence in the future weather states, and widely ranging ensembles
may mean there the future weather is highly uncertain.

Alternatively small adjustments can be applied to the model parameters. This
accounts for mis-specifications in the model and can generate other likely future
states. Multiple adjustments can therefore produce a range of outputs allowing for
an estimate of the future distribution. The difficultly with both of these adjustment
approaches is that the correct deviations have to be applied to the inputs/parameters
in order to produce an accurate distribution estimate. This can be aided in the input
case by randomly sampling from the historical observations, or from estimating a
distribution from which you can sample.

Another drawback of this model is that the demand variation is not being simu-
lated directly but instead is estimating the sensitivity of the model to the inputs or
parameters. Consider the temperature example above. The demand may change with
the temperature but in fact it is the variation in the demand for a fixed temperature
which is of primary interest (assuming the temperature can be accurately forecast).
The key is to add adjustments to the temperature so that it captures this variation.
Once again cross-validation is one approach which can be used to determine an
appropriate adjustment to the inputs/parameters.

The following sections will mainly focus on the first approach for producing
probabilistic forecasts and train the models directly on the historical observations.

11.2.1 Notation

In the following subsections a few probabilistic forecast methodologies are intro-
duced for at least one of each of the three types introduced in Sect. 11.1: quantile,
density and ensemble forecast. For the next sections it is worth considering the fol-
lowing notation and conditions.
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1. As before consider the demand is represented by the time series L1, L2, . . ., where
Lt is the demand at time step t .

2. Without loss of generality suppose the aim is to forecast the demand k-steps ahead
for the time stamps t = N + 1, N + 2, . . . , N + k.

3. For univariate probabilistic forecasts: denote the true distributions as CDFs,
F1(LN+1|Z), F2(LN+2|Z), . . . , Fk(LN+k |Z), one function for each time step in
the forecast horizon, i.e. Ft is the univariate distribution of the demand at time
step t . Each forecast is conditional on prior information Z which represents the
set of all required dependent variables such as weather, historical demand etc.
which determine the future demand. The corresponding CDF forecasts, for each
time step t ∈ {1, 2, . . . , k}, are denoted F̂t (LN+t |Z). For simplicity theZmay not
be included in the notation.

4. For themultivariate probabilistic forecasts the true distribution can be represented
by a single CDF, Ft=1,...,k(L|Z) describing the distribution of the multivariate ran-
dom variable L = (LN+1, LN+2, . . . , LN+k)

T . The prior information Z contains
all dependent variables and the historical loads up to time step N . Often the Z
will not be included for clarity.

5. The mth ensemble of an ensemble forecast will often be denote as L̂(m) =
(L̂(m)

N+1, L̂
(m)
N+2, . . . , L̂

(m)
N+k)

T .

11.3 Parametric Models

Parametric distribution models are desirable as they can give a full description of
the spread of the data usually using only a few parameters. This section begins
by discussing parametric models via a simple example of a univariate distribution
(Sect. 11.3.1). Individual univariate parametric models are usually too inflexible to
model the distributions accurately, but families of simple univariate distributions
can be “mixed” to estimate much more general shapes and will be introduced in
Sect. 11.3.2.

11.3.1 Simple Univariate Distributions

Some simple univariate distributions have already been introduced in Sect. 3.1. The
most common being the Gaussian (or Normal) distribution, but the lognormal, and
the gamma distributionwere also presented. A range of distributions can bemodelled
using these functions in addition to other similar ones. The advantage of such models
is that they only require training a small number of parameters to fully estimate the
distribution. However, the restriction to a specific functional form means simple
parametric models cannot estimate more complex distributions. For example, the
distribution functions mentioned above are all unimodalwhich means they describe
distributions with a single modal (maximum) value. It would be impossible to model
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Fig. 11.3 Examples of unimodal (top), bimodal (middle) and trimodal (bottom) univariate distri-
butions

multimodal distributions (distributions with multiple distinct maximum values). An
example of a unimodal, bimodal and trimodal distribution are shown in Fig. 11.3.

Although univariate models are unlikely to produce the most accurate univari-
ate probabilistic forecasts they can be useful as benchmark models to compare to
more sophisticated approaches described later in this chapter. Further since they
are described by relatively few parameters they may be easier to train than non-
parametric models. Training parametric models requires estimating each individual
parameter which describes the chosen distribution family. For example, a Gaussian
will require estimates for themean and standard deviation, whereas the gamma distri-
bution requires estimating the shape and scale parameters. In the case of the Gaussian
distribution the mean and standard deviation can be found by maximum likelihood
estimation (Sect. 8.2.1) and these values turn out to simply be the sample mean and
sample standard deviation (Sect. 3.5) respectively. To ensure the best possible esti-
mate is produced requires carefully selecting the most appropriate input data to train
the parameters (in contrast to data driven machine learning techniques which will
learn from all the data). The data can be identified by the analysis methods outlined
in Chap.6. For example, suppose some hourly data is discovered to have strong daily
periodicity then it may be appropriate to train 24 different models, each one using
only the data from a specific hour of the day.

Parametric models also exist for multivariate models. In particular there is a mul-
tivariate version of the Gaussian distribution. As mentioned in Sect. 11.1 these para-
metric models can be used to produce ensemble probabilistic forecasts over the
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h-steps ahead (by estimating a h-dimensional parametric multivariate distribution).
Unfortunately, there are much fewer well defined multivariate distributions which
can accurately capture awide variety of probabilistic forecast behaviours. Thismakes
them less suitable compared to more versatile methods which will be introduced in
Sects. 11.6 and 11.7 which can also capture interdependencies across time steps in
the forecast horizon.

11.3.2 Mixture Models

More versatile univariate distribution can be modelled by combining mixtures of the
simple parametric distributions discussed in Sect. 11.3.1. The general form of a PDF
for a finite mixture model of a random variable x ∈ R

p is

f (x) =
K∑

k=1

πkgk(x, θk), (11.131)

where gk(x) are PDF’s usually from a single family (e.g. Gaussian’s) with their own
corresponding parameter’s θk (e.g. mean and standard deviation for a Gaussian). The
πk areweightswhich satisfy

∑K
k=1 πk = 1, and are often calledmixingprobabilities.

Mixture models are often used for clustering, and in this case each PDF defines a
distribution of points fromone of the clusters, and theweights signifywhat proportion
of the observations are in each cluster.

The most common mixture models for continuous variables use Gaussian com-
ponents, i.e.

gk(x) = 1

(2π)N/2det (�k)1/2
exp

(
(x − μk)

T�−1
k (x − μk)

)
, (11.132)

with covariance �k ∈ R
p×p, and mean vector μk ∈ R

p. This is called a Gaussian
mixture model (GMM). A simple example of a GMM (p = 1) with three clusters is
shown in Fig. 11.4 with mixture probabilities of 0.5, 0.25 and 0.25, means of 1, 3, 6
and all the same standard deviation of 1. It is easy to see that more complicated
distributions can be estimated by adding more groups/clusters.

AlthoughGMMs have a lot more parameters to fit to the observations then a single
Gaussianmodel they can be solved relatively efficiently via an iterative process called
the expectation-maximisation algorithm (EM) which finds an optimal estimate2

for the maximum likelihood function (See Sect. 8.2.1).
Consider observations, x1, x2, . . . , xN ∈ R

p. Without going into the details of
the EM-algorithm, the process iterates between an expectation step (E-step), which

2 Note this is more than likely a locally optimal rather than a globally optimal estimate.
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Fig. 11.4 Example of a three component Gaussian mixture model. Also shown are scaled version
of the individual Gaussian components (in red) to show their positions and how they contribute to
the overall distribution of the GMM

calculates the expectation of the log-likelihood function with current estimates of
the parameters, and the maximisation (M-step) which updates the parameters which
maximises the current expected log-likelihood function. For a GMM this translates
to the following steps (calculated for each iteration):

1. Calculate the posterior probability τik that each observations xi belongs to each
group k = 1, . . . , K ,

τik = πkgk(xi , θk)∑K
k=1 πkgk(xi , θk)

. (11.133)

This is the E-step.
2. Update the mixing probabilities πnew

k = ∑N
i=1 τk,i , for each component k =

1, . . . , K .
3. Update the mean for each component k = 1, . . . , K ,

μk =
∑N

i=1 τk,ixi∑N
i=1 τk,i

. (11.134)

Note this is a weighted average, weighted based on the membership probabilities.
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4. Update the Covariance matrix for each component k = 1, . . . , K ,

�k =
∑N

i=1 τk,i (xi − μk)(xi − μk)
T

∑N
i=1 τk,i

. (11.135)

I.e. a weighted version of the sample covariance.

The number of groups, K , is a hyperparameter that must be chosen. Although
this could be picked during cross-validation, a likelihood function framing means
that information criteria (as introduced in Sect. 8.2.2) can also be used to find the
most appropriate number of clusters. For different sized clusters calculate the BIC
(or AIC). Plotting the BIC against the number of clusters can be used to find the
point where increasing the number of clusters shows diminishing returns in terms
of the drop in the BIC. This point is the “elbow” point of the plot (and hence why
this heuristic is called the“elbow method”) and indicates one choice for a suitable
number of clusters. “Suitable” here is a relatively subjective term since there may be
several other reasons why different numbers may be more appropriate or useful.

An example of the method is illustrated in Fig. 11.5. Here, the optimal number of
clusters is around four since the tangential lines intersect around this value. Tangential
lines are often used to make it easier to identify the elbow and hence the number of
clusters.
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Fig. 11.5 Example of Bayesian information criteria for different numbers of clusters in a GMM.
Also shown are tangents to the curves to demonstrate the ‘elbow plot’ method for determining the
‘optimal’ number of clusters
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Fitting a GMM is an easy way to estimate a distribution if all the data comes from
the same distribution. For a time series this means that the data used for training
forms a stationary series. Unfortunately this is unlikely to be the case in general.
Different hours of the day may have different distributions and the time series may
be dependent on weather, time of year, or a whole host of other variables. Hence,
even though the EM-algorithm allows for relatively quick training of the GMM, there
may be insufficient data to train several mixture models accurately.

11.4 Quantile Regression and Estimation

Themajority of models used for probabilistic load forecasting are nonparametric and
are popular because they allow more flexibility in what distributions are being mod-
elled. One of the simplest andmost commonways to generate univariate probabilistic
forecasts is quantile regression, the subject of this section. One of the advantages of
the method is that it is a simple adaption of standard least squares regression.

Consider estimating the q quantiles (See Sect. 3.2 for introduction to quantiles)
for the time steps t = N + 1, N + 2, . . . , N + k. Popular choices are deciles (10-
quantiles) or demi-deciles (20-quartiles) so that the distribution is split into 10 or 20
areas of equal probability respectively.

Consider the historical time series L1, L2, . . . , LN . Recall from Sect. 9.3, the aim
in standard linear regression is to find the parameters β of some forecast model
ft (Z,β) by minimising the least squares difference with the observations. In math-
ematical terms this can be written

β̂ = argmin
β∈B

(
N∑

t=1

(Lt − ft (Z,β))2

)
. (11.136)

Here B represents the set of feasible values the parameters can take, this is often
the multi-dimensional real space Rp, where p is the number of parameters for the
chosen forecast model. Once the parameters are found the model can then be used
to produce forecast values using new inputs.

For quantile regression the principle is identical, except now instead ofminimising
a least squares cost function, for each quantile τ ∈ {1, 2, . . . , q} a set of parameters,
β̂τ must be found which minimise the difference between the model and the obser-
vations according to the quantile loss function, i.e.

β̂τ = argmin
β∈B

(
min

N∑

t=1

cτ (Lt , ft (Z,β))

)
, (11.137)

where the cost function cτ (x, y) is defined by
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cτ (x, y) =
{

τ (x − y) x ≥ y

(1 − τ )(y − x) x < y
,

This is repeated for all quantiles. Recall this is the same pinball loss score intro-
duced in Chap.7. The process of quantile regression is slightly more complicated
than for least squares regression as the cost function isn’t differentiable. However the
problem is easily reformulated as a linear programming problem and can be solved
very quickly. Quantile regression is only applicable for models, ft (Z,β), which are
linear combination of the parameters. This still allows a lot of versatility in the types
of relationships that can be modelled.

To illustrate the process consider a very simple example. Generate 400 points
from a Gaussian distribution (See Sect. 3.1) with mean μ = 2 and standard deviation
σ = 3 to represent a time series of 400 points. Here the y-axis values are the random
points and the order in time is simply the order in which they were sampled. The time
series is shown in black in Fig. 11.6. Now consider a simple linear model of the form
ft (β) = at + b, (i.e. the parameters β = (a, b)T ) where there is no other inputs Z
since there is no dependencies in this particular model. A quantile regression for
this linear model is applied to the time series as in Eq. (11.137) for each deciles (or
10-quantiles). These are shown in Fig. 11.6 as the red dashed lines. Notice in theory,
in the limit of increasing numbers of samples, the final quantiles should be flat
horizontal lines, and should describe quantiles for a Gaussian distribution with mean
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Fig. 11.6 Random time series (black) and the 10-quantiles generated from a quantile regression
applied to the simple linear model a + bt
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Fig. 11.7 Plot of the probability integral transform for the example in the text. This shows the
count of observations in each decile as defined by the quantile regression on the linear model to the
data

μ = 2 and standard deviation σ = 3. However, in this case there is a slight gradient
since there is only a relatively small amount of data and skews in the sampling can
have a large effect on the model fit.

Recall in Chap.7 that the Probability Integral Transform (PIT) can be used to
assess the calibration of a probabilistic forecast. The quantile regression lines should
split the data into equal probabilities of observations which would mean 40 (400/10)
observations are expected between each of the consecutive deciles. This is shown to
be the case in the PIT in Fig. 11.7. Notice in some quantiles there is actually 39 or 41
observations due to the relatively small number of samples. Having a uniform PIT
on the training set should be expected when an appropriate model is chosen. The true
assessment of the model is, as always, determined by evaluating it on an unseen test
set rather than the training set. In addition, for a probabilistic forecast both calibration
and sharpness are important properties and therefore the proper scoring functions
introduced in Sect. 7.2 should be used to evaluate forecasts rather than the PIT alone.

Finally, it should be noted that since each quantile is trained independently, some-
times the quantiles may cross over with each other which would obviously be incon-
sistent since say the 5% quantile may end up higher than the 10% quantile. To prevent
this, it is valid to reorder each quantile at each time step to ensure the p percentile is
lower than the q percentile, when p < q.
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11.5 Kernel Density Estimation Methods

As shown in Sect. 3.4 kernel density estimation (KDE) could be viewed as a smooth
version of a histogram. However, instead of adding discrete counts in different buck-
ets, a continuous distribution can be estimated by adding kernel functions at the
positions where observations are made. Consider observations X j , for j = 1, . . . , N
of a random variable X , then the KDE for the probability density function is defined
as

F̂(X) = 1

Nh

N∑

j=1

K

(
X − X j

h

)
, (11.138)

where h is the bandwidth, a smoothing parameter for the estimate, and K () is some
kernel function. A popular example of the kernel function is the so-called Gaussian
kernel defined as

K (x) = 1√
2π

exp

(
−1

2
x

)
. (11.139)

The chosen kernel is often less important than the proper training of the bandwidth.
Also note that the choice of kernel function has no relationship to the true distribu-
tion, i.e. a Gaussian kernel does not mean the data is distributed as a Gaussian. The
importance of the bandwidth is illustrated in Fig. 11.8. The plot shows a comparison
between the histogram of the 200 observations (left) versus the KDE of the same
observations but for three different bandwidths (right). Selecting a bandwidth too
small and the KDE will overfit the observations, too large and the KDE will under-
fit and have a higher bias (recall Sect. 8.1.2 on bias-variance tradeoff). Although
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20 equally spaced bins and b a kernel density estimate with different bandwidths
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there are rules of thumb for choosing the bandwidth, these are often based on strong
assumptions of the underlying distribution (such as being Gaussian) and hence are
too restrictive for the purposes of load forecasting. Instead the bandwidth can be
chosen using cross validation by minimising the fit (often defined according to min-
imising a probabilistic scoring function such as the CRPS, see Chap.7) between the
estimate and the observations in the validation set. This could be through a search
of the hyperparameter space e.g. grid search (Sect. 8.2.3). Although there is only
one parameter for the simplest form of KDE, it can be a computationally expensive
process.

The KDE can be easily adapted to probabilistic time series forecasts. Consider
again historical observations Lt for t = 1, . . . , N for some random variable which
are assumed to come from the same distribution with the aim being to generate k-
step ahead density forecasts for each time step t = N + 1, . . . , N + k in the forecast
horizon. In this simplified case the most basic kernel density estimate can be defined
as

F̂i (LN+i ) = 1

Nh

N∑

t=1

K

(
L − Lt

h

)
, (11.140)

for each time step in the horizon i = 1, . . . , k, and bandwidth h. In other words, the
distribution is assumed to be the same at each time step. This is clearly unrealistic for
several reasons. For one, it is likely that older data is less relevant than more recent
information. In addition, the KDE estimate in Eq. (11.140) is also independent of any
other inputs, e.g. temperature or time of the day/week. To rectify these shortcomings
modified versions of the simple KDE estimate are available.

To reduce the influenceof older points a simple decay factor,λwith0 < λ ≤ 1, can
be introduced. This reduces the contribution of older data to the overall distribution
function. One possible implementation is

F̂i (LN+i ) =
N∑

t=1

wt K

(
L − Lt

h

)
, (11.141)

where the exponential decay weight wt = λN−t

h
∑N

l=1 λN−l
. In this case both the decay

factor λ and the bandwidth must be optimised (again, often by cross-validation).
Other weightings are of course possible, as will be seen with the conditional KDE
form below. If more historical data is likely to be relevant then a slower decay, e.g
linear, may be of interest. The only restriction is that the weights should sum to one
to ensure the final function is still a well-defined probability distribution.

Another simple modification is to train only on specific historical points. For
example, load data often has simple seasonalities (such as daily or weekly) of integer
period s. In this case, the density can be estimated using

F̂i (LN+i ) = 1

Nsh

∑

t∈Ii

K

(
L − Lt

h

)
, (11.142)
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where Ns is the number of elements of the set Ii = { j |N + i − j = sk for some
integer k}. Ii is every index which is a constant multiple of the period s, so in the
case of hourly data with daily seasonality, to predict the i = 2 time period (e.g.
2AM if the forecast origin is at midnight) the historical data used to construct the
KDE estimate would only use the data from the 2AM on each of the historical days.
Recall the periodicities and seasonalities can be found using the methods presented
in Chap.5.

Another popular update to the simple KDE is conditional kernel density estima-
tion. This estimates the distribution of the variable Li , conditional on somedependent
variables, say T, S. We can now utilise the pairs of independent-dependent observa-
tions as (Tt , St , Lt ) and define the conditional distribution of F̂i (Li |T, S) as

F̂i (LN+i |T, S) =
N∑

t=1

K ((Tt − T )/hT )K ((St − S)/hS)∑n
l=1 K ((Tl − T )/hT )K ((Sl − S)/hS)

K

(
L − Lt

h

)
,

(11.143)
were hT , hS are the bandwidths for the distributions representing T and S respectively
and now must be found together with the dependent series bandwidth h. This is,
as before, simply a weighted sum like in Eq. (11.141), but where the weights are
kernel based functions of the dependent variables. As usual, popular choices of the
independent variables are weather variables, but also period of the week. This can
also be extended or simplified to take into account less ormore variables respectively.
However each bandwidth significantly increases the computational cost of training
the models which can be impractical beyond two conditional independent variables.

Often to help accelerate the optimisation, the variables are normalised (e.g. to
[0, 1]) in order to reduce the search space (see Sect. 6.1.3). The forecast can be
rescaled after the training is complete. As mentioned in Sect. 3.4 there are options
for the different kernels, and different ones can be tested, although often the choice
has minimal impact on the accuracy of the forecasts [1].

The different modifications presented here can obviously be combined to create
other models. For example the conditional kernel density form shown in Eq. (11.143)
can be extended to include a decay factor like in Eq. (11.141) or restrictions can be
applied on the inputs like in Eq. (11.142). As with manyKDEmethods, the drawback
is that each modification often increases the training complexity and computational
cost.

11.6 Ensemble Methods

This section introduces ensemble forecasts, by which we mean a set of point fore-
casts from the same forecast origin, estimating each time step with the same forecast
horizon (of length h time steps). The point forecasts are samples of equal probability
froma h-dimensionalmultivariate distribution representing the joint distribution over
the forecast horizon (see Sect. 3.3 for more on joint distributions). In other words,
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each ensemble represents an equally likely load trajectory. The methods described
in this section produce these ensembles without needing to produce the full joint
distribution.

11.6.1 Residual Bootstrap Ensembles (Homoscedasticity)

This section describes a method for generating ensemble forecast which can be
viewed as realisations from a full multivariate probabilistic forecast in the case where
the time series is assumed to have fixed variance. To begin consider a 1-step ahead
point forecast model, for example, this could be the exponential smoothing model in
Sect. 9.2 or the ARIMA models in Sect. 9.4. Denote this as f (Lt |Z,β) which may
use previous historical data as well as any explanatory inputs (all described by the
set of variables Z) to create an estimate, L̂ t+1|t , for the true value, Lt+1, at t + 1.
The β are the parameters for the model. The next time step ahead can be forecast
by iteratively applying the model and including the forecast from the previous time
step as a pseudo-historical input to the model. Hence for the next time step

L̂ t+2|t = f (L̂ t+1|t |Lt ,Z,β) = f ( f (Lt |Z,β)|Lt ,Z,β). (11.144)

The process can obviously be repeated to produce k-step ahead forecasts. Now, recall
that there is an error process describing the difference between the observations
and the 1-step ahead forecasts described by the residual εt+1 = Lt+1 − L̂ t+1|t . By
including the small deviations, described by the residual series, into the forecast,
different trajectories can be created which represent different, but equally likely
outcomes.

To describe the algorithm in more detail, consider a k-step ahead forecast gen-
erated from a one step ahead model, e.g. L̂ t+1 = f (Lt |Z,β). Assume the forecast
origin is at time step t = N . Hence the aim is to produce ensemble forecasts which
cover the period N + 1, . . . , N + k. The residual series, εt = Lt+1 − L̂ t+1 (which is
calculated for the entire training set), is assumed to have a fixed variance (the series
is said to have homoscedasticity) and are uncorrelated with each other. Using this
residual series the process of generating a new ensemble for a k-step ahead forecast,
using a 1-step ahead forecast model f , is relatively simple. For each ensemble, b,
the procedure is as follows:

1. Randomly sample with replacement (this is called a bootstrap sample) a residual,
ê(b)
1 , from the set of all residuals, {ε1, ε2, . . . , εN }.

2. Add this residual to the current 1-step ahead forecast value L̃ N+1|N to produce a
new value L̂(b)

N+1|N = L̃ N+1|N + ê(b)
1 .

3. Include L̂(b)
N+1|N in the forecast model to generate an estimate for the next time

step, L̃(b)
N+2|N+1 = f (L̂(b)

N+1|N |LN ,Z,β).
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Fig. 11.9 Example of a simple periodic time series with homoscedasticity (top) and heteroskedas-
ticity (bottom)

4. Update this value using another bootstrap sample from the residual series to give
L̂(b)
N+2|N+1 = L̃(b)

N+2|N+1 + ê(b)
2 .

5. Continue this procedure until the kth step is reached.
6. The final series, L̂(b)

N+1|N , L̂(b)
N+2|N+1, . . . , L̂

(b)
N+k|N+k−1 is the bth bootstrap ensem-

ble.

This is also known as a residual bootstrap forecast. The process can be repeated to
produce asmany ensembles as desired. Themore ensembles generated, themore load
diversity is captured. Generating more samples increases the computational cost, but
since each ensemble is independent of the others they can be generated in parallel.
Notice that this method strongly assumes that the 1-step ahead errors in the future
will be similar to the past 1-step ahead errors. An example of a simple periodic series
with homoscedasticity is shown in Fig. 11.9a.

If instead of sampling from the actual residuals you sample from an assumed or
fitted distribution then the method can be referred to as a Monte Carlo forecast. For
example, it is often assumed that residuals are Gaussian distributed with zero mean
and therefore instead of sampling from the set of residuals, the values can be sampled
from a Gaussian distribution trained on the residuals. An example of an ensemble
forecast generated from the Monte Carlo simulations, for 100 ensembles is shown
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Fig. 11.10 Example of an Monte Carlo derived ensemble 50-step ahead forecast with 100 ensem-
bles for a simple ARIMA model

in Fig. 11.10 for a simple ARIMA(4, 1, 1) model. Notice that the errors get wider
(have larger variation) with forecast horizon length. This is due to the accumulation
of the errors from one step to the next. This intuitively makes sense as the uncertainty
should increase the further ahead the prediction.

Notice that the forecasts at each time step can be used to estimate a univariate
estimate. This can be done by either fitting quantiles or a density estimate to the
collection of ensemble points at each time step.

11.6.2 Residual Bootstrap Ensembles (Heteroskedasticity)

An advantage of the bootstrap method described in Sect. 11.6.1, is that a multivariate
forecast can be generated with minimal computational cost since only the original
point forecastmodel needs to be trained. Further, if themodel contains autoregressive
features (as ARIMA and exponential smoothing do) then the ensembles also retain
the interdependencies of the time series. A drawback to the method is the strong
assumption of homoscedasticity for the series of residuals. In fact, it is likely that
periods of high demand will also have larger variability. A time series where the
variance changes in time is said to have heteroskedasticity.

An example of a simple periodic series with heteroskedasticity is shown in
Fig. 11.9b in which the largest variation in the demand coincides with the largest
amplitude of the periods. When time series are heteroscedastic the variability can be
incorporated using so-called GARCH-type models which can extend the bootstrap-
ping method described in Sect. 11.6.1. An outline of these methods are given here,
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but since they are relatively complicated, the details are ommited. The interested
reader is referred to some further reading given in AppendixD.

Consider a model for the load time series with some mean process (e.g. any of
the point forecasts presented in Chaps. 9 and 10) and as before let εt be the 1-step
ahead error/residual terms. Now assume that the standard deviation σt also varies
with time t . It is helpful to write the residual in the form

εt = σt Zt , (11.145)

where σt > 0 is a time-dependent conditional standard deviation, and the (Zt )t∈Z is
a random variable which is stationary, independent in time and has the conditions
E(Zt ) = 0 with Var(Zt ) = 1. Splitting the data into the standard deviation this way
helps to simplify the actual variation into the magnitude of variation, represented by
the standard deviation, and the random component which is now stationary due to the
scaling. Once the components of Eq. (11.145) are found it is easy to apply an adapted
form of the bootstrap method by taking random samples from the distribution of Zt ,
and then rescale with the modelled standard deviation σN+k at the time step being
forecast.

To do this, first a model must be chosen for the standard deviation. In economic
models standard choices are ARCH and GARCH models. The ARCH and GARCH
models are essentially variance counterparts to the AR and ARMA models of the
point forecasts introduced in Sect. 9.4. The GARCH(p, q) model is of the form

σ2
t = α0 +

q∑

i=1

αiε
2
t−i +

p∑

j=1

β jσ
2
t− j , (11.146)

where the q is the lag residual terms (called the ARCH term) and p is the lag variance
terms (this is called theGARCH term). TheARCHmodel only has the q lags with the
residual terms and no variance terms. These are often coupledwith the corresponding
AR, orARIMAmodel for themean process and are solvedwith ordinary least squares
or maximum likelihood methods.

ARCH and GARCH are specific forms of the variance which are often suitable
for financial time series applications. In fact standard deviation can be modelled
much more generally and these will be referred to as GARCH-type methods. In load
forecasting, the variation in the demand is often larger for time periods when the
demand is typically higher (however, of course, for each new time series the patterns
in the variance should be analysed before choosing a model). For this reason it is
often suitable to choose a standard deviation model which is similar to the point
forecast model chosen.

For ARCH and GARCH problems the procedures are relatively well established
and hence there are many packages for automatically selecting the order and coef-
ficients for the model. In the more general case a simple procedure can be followed
which is adapted from [2]:
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1. Since the components of the residuals as given in Eq. (11.145) are not known,
instead consider the absolute or squared residuals |εt | or ε2t . The former will be
the focus as it better captures the heavy tails of energy demand. However, the
same procedure is applicable for both forms.

2. Since E(|εt |) = σtE(|Zt |)), fitting a model to |εt | is equivalent to fitting a model
to a scaled version of the standard deviation, Cσt , for some constant C > 0 since
Zt is a stationary variable (and hence has constant expectation). The fit is usually
achieved using ordinary least squares (Sect. 8.2).

3. The constant C must now be estimated by considering the normalised residuals,
εt/|εt | = εt/Cσt = Zt/C , i.e. a scaled version of Zt . Since Zt has variance equal
to one, the scaling, C , can be be estimated by calculating the sample standard
deviation, α, of the normalised residuals which tells us that C = 1/

√
α.

For this method notice that there is no assumption on the underlying distribution
(only on its variance). An updated version of the bootstrap forecast in Sect. 11.6.1
now updates the 1-step ahead forecast by adding a sample from the distribution of Z
(sample from the empirical distribution for Z formed from the standardized residuals
εt/σt ) which has then been scaled by the σt model at the current time. Note it is
assumed that the errors εt and standardised residuals are uncorrelated in time to allow
them to be randomly sampled for the bootstrap. As usual residuals should be checked
(in this case the standardised residuals) to ensure that they satisfy the assumptions
about correlation, fixed variance and have zero mean. If these assumptions do not
hold then further updates can be applied (as in Sect. 7.5). A specific example of the
above GARCH-type model will be given in the LV case study in Sect. 14.2.

11.7 Copula Models for Multivariate Forecasts

This section introducesCopulas, another popular method for generatingmultivariate
probabilistic forecasts, widely used in quantitative finance, but now used extensively
in energy forecasts. Here only the basics will be described. Suggested further reading
can be found in AppendixD.

A copula is simply a function, C , from an N -dimensional unit box to a 1-
dimensional unit box, i.e. C : [0, 1]N −→ [0, 1], and describes a cumulative distri-
bution function on variablesU1, . . . ,UN where each variableUi is uniformly distri-
bution over [0, 1], i.e. C(u1, u2, . . . , uN ) = P(U1 ≤ u1,U2 ≤ u2, . . . ,UN ≤ uN ).
In other words a copula models the joint distribution on variables U1, . . . ,UN with
uniform marginal distributions (See Sect. 3.3 for more details on joint and marginal
distributions). A copula is focused on the correlation/inter-dependence structure of
the variables. An advantage of these methods is the wide range of different possible
copula functions which can be used to model the inter-dependence.

The power of copulas lie in the fact that, due to Sklar’s theorem, any multivariate
distributions can be modelled using only the marginal distributions and a copula.
Consider a random variable X = (X1, X2, . . . , XN )T ∈ R

N with joint distribution
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FX1,...,XN (x1, . . . , xN ) and marginal CDFs denoted by F1(x1), . . . , FN (xN ), then by
Sklar’s theorem, there exists a copula C such that

FX1,...,XN (x1, . . . , xN ) = C(F1(x1), . . . , Fn(xN )). (11.147)

Note that for any random variable X with CDF F , is uniformly distributed when
transformed by its CDF, i.e. FX (X) is uniformly distributed. Recall this is just the
probability integral transform (PIT) described in Chap. 7.

The process in Eq. (11.147) is reversible which means once a copula model has
been trained on observations then multivariate samples can be easily produced with
the relevant dependency structure. First samples u1, u2, . . . , uN are generated from
the copula distribution and then each variable is transformed into the original random
variable space using the inverse CDF of themarginal F−1

i (ui ) for each corresponding
component of the sample point.

Suppose that X = (X1, X2, . . . , XN )T ∈ R
N has a multivariate Gaussian distri-

bution, then the corresponding copula is defined purely by the correlation matrix
since this explains the entire dependency structure. This also means that each corre-
lationmatrix defines a specificGaussian copula. Of course just because amultivariate
random variable has a Gaussian copula doesn’t mean that it follows a multivariate
Gaussian distribution since the marginals need not be Gaussian. If the correlation
matrix is the identity then the copula is called the independence copula defined by

C0(u1, u2, . . . , uN ) = u1 . . . uN , (11.148)

where each component is independent of the other components. In general, there is
no simple analytic form for a Gaussian copula but it can be expressed as

CGauss
R (u1, u2, . . . , uN ) = �R(�−1(u1), . . . , �

−1(uN )), (11.149)

where � is the univariate CDF of the standard Gaussian (mean zero and unit stan-
dard deviation) and �R is the multivariate Gaussian with zero mean and correlation
matrix R.

Another family of popular copula’s are the Archimedean copulas, which have
explicit formula’s and can represent multivariate distributions using only one param-
eter, θ. They have the general form

C(u1, . . . , uN ; θ) = ψ−1 (ψ(u1; θ) + · · · + ψ(uN ; θ); θ) (11.150)

whereψ : [0, 1] × � → [0,∞) is a continuous, strictly decreasing, convex function
such that ψ(1; θ) = 0. For example one popular Archimedean copula is the Gumbel
Copula, which is defined by

CGum(u1, u2, . . . , uN |θ) = exp
[
− (

(− log(u1))
θ + · · · + (− log(uN ))θ

)1/θ]
.

(11.151)
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Fig. 11.11 Example of samples from Gumbel copulas with different values of θ

Notice that this becomes the independence copula when θ = 1. Examples of samples
from a bivariate Gumbel copula with different values of θ are shown in Fig. 11.11.
Note that the Gumbel can never represent negative correlation.

It is clear that different copula’s are useful for different dependency structures and
that not all copulas are useful for all types of data. For example, Gumbel copula’s
shouldn’t be usedwith data with negative correlations. How to choose and fit a copula
will be briefly considered later in this section.

The value of the Pearson’s correlation coefficient depends on the marginals and
the copula, which means random variables will have different Pearson values when
transformed using themarginal CDFs.Amore convenientmeasure for the correlation
structure for a copula are Rank correlation coefficientswhich only depend on the rank
of the data (see Sect. 3.5). Since the rank of data is unchanged by the application of a
monotonically increasing function, it means the rank correlation coefficients won’t
change when the marginal CDFs are applied. An example of a rank correlation
coefficient was given in Sect. 3.5: the Spearman’s rank correlation coefficient.

To better understand how copula’s work and how they can be used to generate new
samples, consider a simple bivariate distribution for the random variables (X1, X2),
whose dependency structure is described by a Gaussian copula with covariance

R =
[
1 0.8
0.8 1

]
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Fig. 11.12 Observations from a bivariate distribution with Gaussian Copula, with Gamma (X1)
and Gaussian (X2) marginal distributions (shown as the histograms)

i.e. it has linear Pearson correlation ρ = 0.8. Also suppose that the marginal of the
first variable, X1, has a distribution described by a Gamma distribution, where

Gamma(X,α,β) = 1

βα�(α)

∫ X

0
tα−1e−t/βdt (11.152)

where α = 2 is the shape parameter (determines the shape of the distribution), and
β = 1 is the scale parameter (determines how spread the distribution is). �(.) is the
so-called gamma function. The second variable, X2, is described by the standard
Gaussian distribution (mean zero and unit standard deviation). An example of 1000
observations from this distribution is shown in Fig. 11.12. On the horizontal and
vertical of the plots are marginal histograms of each variable, which shows the
Gamma and Gaussian distributions respectively.

The distribution after applying the CDF of each marginal to its respective variable
is shown in Fig. 11.13. The marginals are now described by uniform distributions,
as expected. Notice in this example the sample pearson correlation between X1 and
X2 is ρ = 0.767 but between U1 and U2 is ρ = 0.785 and is not preserved by the
transformation (although they are close in this example). In contrast the Spearman’s
correlation between X1 and X2, and between U1 and U2 are both r = 0.787 as
expected. In practice the objective would be to fit a copula to this transformed data.
In this case assume it is known that the copula is a Gaussian and therefore the aim
is to find the Pearson correlation coefficient ρ. In fact in the [3] bivariate case the
Spearman’s coefficient r is related to the linear correlation via
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Fig. 11.13 Distribution of transformed observations where the marginals of their respective com-
ponents have been applied. The marginals are now uniform as shown by the histograms

ρ = 2 sin
(
r
π

6

)
, (11.153)

and hence the invariant value of the Spearman’s correlation can be used to estimate
the Pearson correlation and gives ρ = 0.801 (note it isn’t exactly the 0.8 used to
generate the data due to numerical deviations in the sample, the larger the sample
the closer we would expect the sample value to be to the original parameter).

Given the copula, new samples can be generated and then transformed to the origi-
nal space (with the same linear correlation) by using the inverseCDFof themarginals.
An example of 1000 new points generated using the copula (and transformed using
the inverse CDFs) is shown in Fig. 11.14. Notice how the final distribution success-
fully resembles the original distribution in Fig. 11.12.

A similar process can be used to generate ensemble demand forecasts. In this
case, consider a demand time series L1, L2, . . . , where the aim is to generate a
day-ahead multivariate forecast with, say, forecast origin t = N . Further for sim-
plicity, suppose the data is hourly and hence a 24-step ahead forecast is being con-
sidered. The aim here will be to generate a multivariate distribution for the day,
FN+1,...,N+24(LN+1, . . . , LN+24), and hence model the inter-dependencies between
different times of the day. It is assumed that CDFs for the marginals at different times
of the day are already known, i.e. F1(LN+1), . . . , F24(LN+24) are known. These
could be estimated, e.g. by the univariate probabilistic models described earlier in
this chapter. In this case a copula can be used to model the intra-day dependency
structure by training on the daily profiles transformed by the marginals.

There is a range of different copula models, only some of which are mentioned
above. The questions remain on how to train and choose the copulas on the data.
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Fig. 11.14 Samples from the copula model fitted to the observations

In theory, for parametric models for the copulas and marginals, maximum likeli-
hood estimation (see Sect. 8.2) could be used to fit a copula, however this can be
complicated for high dimensional problems as there are lots of parameters to train.
Instead the models can be estimated using a two step process called the Pseudo-
Maximum Likelihood, where first the marginals are estimated and a reduced form of
the maximum likelihood, given by

n∑

k=1

log
[
c{F̂1(X1,k), . . . , F̂N (XN ,k)|θC })

]
, (11.154)

is maximised. Here c is the copula density corresponding to the Copula CDF, C ,
and θC represents the parameters for the copula model. The maximisation above can
still be complicated especially for higher dimensional problems, depending on the
copula model considered. One approach has already been suggested for the simple
Gaussian copula example given above. The correlation matrix can be estimated by
using the Spearman’s correlation coefficients for each pair of variables and this can
either be used as final correlationmatrix or as an initial guess in the pseudo-maximum
likelihood optimisation in Eq. (11.154).

Choosing the correct copula’s depends onmany factors and adetailed investigation
is beyond the scope of this book. Further reading is suggested in AppendixD. In
summary, the choice depends on the type of correlation being modelled as well as the
dependencies within the tails/extremes of the distribution. One possible approach for
choosing an appropriate copula(s) model can be based on comparison on a validation
set as described in Sect. 8.1.3.
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11.8 Questions

For the questions which require using real demand data, try using some of the data as
listed in AppendixD.4. Preferably choose data with at least a year of hourly or half
hourly data. In all the cases using this data, split into training, validation and testing
in a 60, 20, 20% split (Sect. 8.1.3).

1. Sample 20 points from a 5-dimensional Gaussian distribution. Make sure that
some of the variables are more correlated than others by manipulating the corre-
lation between them in the covariance matrix. You can fix the variance of all the
variables to one to make the model simpler. Now consider that each dimension
of the Gaussian is a different time step in a time series of five points. Plot each
sample to create samples like in Fig. 11.2. What can you see between the vari-
ables which are highly correlated? What if you change the variance for different
variables, how does this change the ensemble plot?

2. Generate a quantile regression. Take your linear forecast model you generated
in Sect. 9.7. Now fit to the training data a quantile regression for percentiles of
10, 20, 30, . . . , 90 using inbuilt packages such as quantreg in R.3 Apply to the
test set, and count how many values lie between each set of quantiles. Plot the
probability integral transform. What shape is it? Is there a bias in the model? Is it
under or over dispersed? What adjustments to the quantiles could help produce a
uniform PIT?

3. To demand data with daily or weekly periodicity fit a kernel density estimate for
each time step from each period in the seasonal cycle. For example, if the data
is half hourly with daily seasonality then train 48 models for each half hour of
the day. Fit the model by performing a grid search for the bandwidth. With the
final model, apply it to the test set. Generate quantiles for the estimate, and thus
calculate the PIT for the same percentiles as the previous question. Is the PIT
uniform, overdispersed or underdispersed?
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Chapter 12
Load Forecast Process

The previous chapters have discussed all of the aspects of developing and testing a
short term load forecast. This includes

• How to analyse data to identify patterns and relationships.
• How to identify, extract and select features to include in the forecast model.
• How to split data for training, validation and testing.
• The different types of forecasts and their features.
• Popular statistical and machine learning models for point and probabilistic fore-
casting.

• How to select error measures and scores to assess your forecast accuracy.

However, what are the steps required for actually producing a forecast? In
Sect. 12.1 the general steps in developing a forecast experiment are discussed, and
in Sect. 12.2 some of the criteria for choosing among the plethora of forecast models
introduced in Chaps. 9–11 are given.

12.1 Core-Steps for Forecast Development

The following are the main steps in developing a forecast model for your chosen
application. They are written in the approximate order they should be applied but
many steps can be repeated or ignored depending on the circumstances. For example,
sometimes further data analysismay be required if new data becomes available, or the
initial model reveals other relationships to be checked. The process can be repeated
when looking to refine the forecasts but ideally this should only be tested on data that
has not been seen or used previously to ensure no bias or cheating (even unconscious)
is included in the experiment.

1. Understand the problem: Presumably you are creating the forecasts for a spe-
cific application or purpose (such as those in Chap. 15). In which case it is worth
fully understanding what the objectives are and what would be a good measure
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of success. Without solid aims it is easy to lose focus, and produce sub optimal
results. Often the objectives will be determined by business objectives, in which
case it is essential to translate these aims into a well-defined problem where you
will know that a suitable result has been achieved. Proper development of the
problem framing early on can influence or determine the choice of errormeasure,
model, or even the data analysis later in the modelling process.

2. Access the Core Data: Although it’s likely the data is available in some format
(otherwise the project itself may not be possible in the first place), it is important
to perform some form of data audit early in the study to ensure you have the
minimum required data to tackle the problem. Your understanding of what data
may be needed will likely change as you investigate the data further but a quick
check of what and how much data is available is essential to prevent wasting
time on an impossible task and allows time to collect data you discover may be
vitally needed.

3. Initial Data Checks: Now you have the data, a deeper check of the quality and
usability is required. You can start to understand some of the relationships and
features of the data at this point but themain objective is to understand the amount
of cleaning and preprocessing that is required, and whether you have sufficient
data to continue. This is a good point to check for missing data, anomalous
values, outliers etc. (Sect. 6.1).

4. Data Splitting: Once you understand the complexity, quality and quantity of
the data, you can determine the split of the dataset into Training, Validation
and Testing data (Sect. 8.1.3). This may be determined by the length of any
seasonalities, or the number of parameters (more parameters need more training
data). This choice is important to determine the right bias-variance trade-off
(Sect. 8.1.2) so your models don’t over and under fit the data. The split also
prevents the researcher utilising information which would not be available at
the time of producing the prediction (also known as data leakage). This would
be unrealistic and create unscientific results since in real-world scenarios you
would be testing on unseen data.

5. Data Cleaning: Here anomalous values and outliers should be removed or
replaced with other values. If there is sufficient data then it may be better to
remove the values so as not to introduce biases from any imputation methods
used (Sect. 6.1.2). If the missing or removed values are not imputed you must
make sure to adjust your model so it can handle missing cases or you should
reduce the data so no missing instances are included (although this reduces the
amount of data available for training/testing). If time permits it may be worth
including tests of models with and without cleaning to see if it affects the model
performance.

6. Visualisation and Data Analysis: Next is the deep dive into the data, arguably
the most important aspect of developing forecasting models. This will help you
understand the relationships and patterns in the data, the types of relationships,
the important exogenous variables, perhaps even the models which may be most
suitable. This step will likely iterate with the data cleaning step since you won’t
necessarily knowwhat an outlier is without doing some preliminary analysis, and
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similarly you can’t complete your analysis until the data is cleaned. Visualisation
techniques and feature identification methods are discussed in Sect. 6.2.

7. Further Pre-processing: Given the data analysis further preprocessing may be
required. For example, perhaps the data must be normalised or scaled to help
with training the data. Alternatively a transformation may have to be applied
to change the data distribution to one which is more appropriate for the model
being used, e.g. to be Normally distributed so that a linear regression model can
be used (Sect. 6.1.3).

8. Initial Model and Error Choices: Given the analysis, choose and derive some
models. You can always add further models later on, in particular once you’ve
finally tested the models on the test set and discovered limitations or possible
improvements. It is also important at this stage to choose an appropriate bench-
mark (or benchmarks) with which to compare your model (Sect. 8.1.1). Further
criteria for choosing the initial models are given in Sect. 12.2. In addition, at
this stage a suitable error measure must be chosen. When tackling a specific
application, the performance within the actual application is the true test of the
usefulness/effectiveness of the forecast model. However it may not be practical
to test all models (and their adaptions) within the application due to high com-
putational costs. In these cases a computationally cheaper error measure which
correlates with the application performance is more appropriate. Different error
measures for point and probabilistic forecasts are discussed in Chap. 7.

9. Training and Model Selection: Using the data split (determined in a previous
step) train the data on the training dataset (Sect. 8.2). Utilise the validation set
to compare accuracy of the models and determine the optimal hyperparameters
within each family of models (Sect. 8.2.3), including any weights for regularisa-
tion methods (Sects. 8.2.4 and 8.2.5). For some models such as ARIMA (Sect.
9.4) a model can be chosen without using the validation as a hold-out set. In
these cases you can use Information Criteria (Sect. 8.2.2) to choose the hyperpa-
rameters on the combined training and validation set. These final chosen models
(including the benchmarks) are taken through to the testing phase.
Note if you are considering rolling forecasts (Sect. 5.2) or forecasts that are
updated at regular intervals then you will have to apply a rolling window over
the validation set.

10. Apply themodels to the test set: Retrain the models on the combined validation
and training datasets (This should improve the fit of the data, see Data augmen-
tation in Sect. 8.2.5). Again, if you are considering rolling forecasts (Sect. 5.2)
or forecasts that are updated at regular intervals then you will have to apply a
rolling window over the test set.

11. Evaluation: Now you must evaluate the final models in a variety of ways to
understand where they under (or over) perform. The most basic assessment is
to ask which model performs best according to the chosen metric or measure?
Are there different periods of the day or week which have different accuracy
for different models? How does the accuracy change with horizon? How do
the models rank compared to the chosen benchmark(s)? What were the common



232 12 Load Forecast Process

features of themodels that performbest?Orworst? Finally, consider the residuals
and their distributions. Are there any remaining features or biases? (Sect. 7.5).

12. Model Corrections and Extensions: Forecast corrections (Sect. 7.5) should be
considered (with the correction ideally trained on the validation set, not the test
set) where possible. However, a simple improvement is to combine the models
that you’ve already produced (Sect. 13.1). This has been shown to be a very
effective way to utilise the diversity across the models to improve the overall
accuracy.

13. Evaluation with the Application: If the forecasts are used within an application
then a true test of their usefulness is within the application or an in silico model
for the application (for example for controlling a storage device, Sect. 15.1) rather
than the error measure. If an error measure has been appropriately chosen the
application performance will correlate with scores for the accuracy. This should
be confirmed and if there is inconsistencies they should be further investigated.

14. Next Steps: Looking at your analysis of the results there could be new inputs
which could be appropriate (e.g. different weather variables), or different ways of
using the same inputs (e.g. more lagged values from the temperature time series
or combining different inputs to create a new variable). The process should now
be repeated (ideally on new, unseen data) to test further updates or adaptions.
This process can be repeated until a sufficient forecasting accuracy or application
performance has been achieved.

The steps in producing a forecast are outlined in the diagram in Fig. 12.1. The
procedure can be seen in terms of two components. The data collection and analysis
is the first part which describe how the data is mined, analysed and wrangled to get
it ready for testing. It also is used to understand the features to use in the models.
The second stage is the model selection, training and testing.

12.2 Which Forecast Model to Choose?

In the last few chapters a wide variety of methods were introduced from the different
types listed in Sect. 5.3. There are point and probabilistic forecasts, those suitedmore
to direct forecasts than rolling, and amix of statistical andmachine learningmethods.
There are no hard and fast rules to determine which are the most appropriate models
to use, and the choices will depend on the application and context. However, there
are some general principles which can be followed to help narrow down the model
choice:

1. Computational costs: short term load forecasts require at least daily updating.
For this reasons, models which are computationally quick to train, but are less
accurate, may be preferable tomore accurate but computationally expensivemod-
els. If the model is taking too long to run then it may be worth trying one which
uses less processing power, memory, or time to run.
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Fig. 12.1 Forecasting
procedure as outlined in this
section

2. The type of relationshipbelieved to exist between the predictor and the dependent
variable: if the relationships are not clear, or appear to be relatively complex,
then machine learning techniques may be preferable (see Chap. 10). Are the
relationships between explanatory variables linear or nonlinear? If linear then
simple statistical models such as linear regression and ARIMA may be suitable
(Sects. 9.3 and 9.4). If nonlinear then perhaps GAMs (Sect. 9.6) or neural network
models (Sect. 10.4) should be considered.

3. The type of features (Sect. 6.2): For example, if lagged components of the data
are important then an autoregressive model may be the most appropriate (see
Sect. 9.4). If only exogenous variables like weather or econometric variables are
important, maybe a cross-sectional forecast model is more appropriate than a time
series one. In these cases, tree-based models (Sect. 10.3) and simple feed-forward
neural networks (Sect. 10.4) could be applied.
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4. Number of features: If a lot of features are required to train an accurate model
then you risk overtraining. Not only are regularisation techniques likely to be
required (Sect. 8.2.5), but the larger number of model inputs will mean more
computational cost. Simpler models like linear regression can be quickly trained
and they can be utilised within weighted regularisation methods such as LASSO
(Sect. 8.2.4) to help with variable selection.

5. The amount of data available for training: many machine learning techniques
require large amounts of data to create accurate forecast models, whereas some
simpler statistical models can be trained with relatively little data.

6. Number of time series: If you are forecasting many time series (e.g. forecasts
for smart meters from thousands of households) then it may not be practical to
generate a forecast model for each time series. Instead you can train a single
model over all (or a selection) of the time series. This is called global modelling,
in contrast to the individual training (local modelling). This is discussed in a little
more detail in Sect. 13.4.

7. Interpretability: many models, including support vector regression and most
statistical methods, are easier to understand than others, such as neural networks,
in terms of relating the outputs to the original inputs. This means sources of
forecast errors can be more easily detected and fixed, and relationships more
easily understood. This also means that further development of the method can
also be applied, since weakness in the model are more easily identified. The
trade-off is that more interpretable models can often have lower performance.

8. Forecast judgment: As a forecaster gains more experience they may come to
better understand whichmethods tend to work well and which ones do not. Unfor-
tunately, this can only come with time and practice.

In the long run the only true test of a methods accuracy is to implement it. When
creating forecasts a good adage to remember, attributed to statistician George Box
(co-creator of the Box-Jenkins method for ARIMAX models, Sect. 9.4), is “All
models are wrong, but some are useful”.

However, at first, try models of different classes first to see what works well. For
instance, if LASSO regression does not work well as the variables have highly non-
linear relationships, ridge regression is also likely to not perform well. Similarly, if
the data is insufficient to train a complex LSTM model, suffers from overfitting and
needs a lot effort to tune the regularisation parameters in order to outperform much
simpler models, a CNNwill likely be similarly hard to train for the specific problem.
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Chapter 13
Advanced and Additional Topics

This chapter will give brief introduction to a range of more advanced topics which
are beyond the primary aims of this book. The further reading section in Appendix D
will give some references to other texts which will investigate some of them in more
depth.

13.1 Combining Forecasts

In Sect. 10.3.2 it was shown that by combining severalweakermodels a strongermore
accurate model could be produced. This principle can be extended to any selection
of forecast models, even ones considered to be quite inaccurate. For example, an
average could be taken of the outputs from a linear regression model, an ARIMAX
model, and a random forest model to produce a new forecast. Each individual model
will have its own strengths and weakness’s. By combining them, the idea is to mol-
lify the weakness’s of the different models to produce an overall more accurate
model. Although this may seem surprising (it could be reasoned that errors would
accumulate), combining models has been shown time and time again to be an easy,
but effective, way to produce a forecast which is more accurate then any individual
model.

Ideally the aim should be to combine models, which are as different to each other
as possible to capture different features of the forecast (i.e. models with autoregres-
sive components vs. those with few autoregressive components). Differences can be
achieved by having models with different assumptions (e.g., combining a machine
learning and a statistical model), models that have different features (e.g., combining
a model that uses weather information and one that does not) or different data (e.g.,
models that are trained on different parts of the available data).

Even when the amount of diversity is limited the combined forecast is often an
improvement. Further, it may even be beneficial to retain the least accurate models in
any combination as they may model different features of the system that other, more
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accurate, models, may not. For example, one model could better capture weather
features, another time of day effects, and another may better estimate the peaks in
the demand. The time series forecasting competitions, the M competitions,1 have
consistently shown that even compared to high performing singular methods, some
of the most accurate models are those which combine traditional machine learning
algorithms and statistical models.

The optimal way to combine forecasts is still an active research area but below
some simple methods for combining multiple forecasts are introduced for both point
and probabilistic forecasts.

There are a number of different ways to combine different point forecast models
f1, f2, . . . , fn but one of the simplest and most popular is to take a linear weighted
average

f̂ (x) =
n∑

i=1

wi fi (x). (13.1)

with
∑n

i=1 wi = 1. Unless there is good reason, often a good initial combination
forecast is to use equal weights for the forecasts, i.e. wi = 1

n for i = 1, . . . , n. How-
ever, if there is sufficient data for testing the different combinations, and/or there
is good evidence that a particular forecast may be more accurate on average than
the others, then it may be worthwhile to train or create weights which are tailored
towards the most accurate forecast. The optimial weights can be found by testing a
range of values over a validation set, however this becomes more complex for larger
sets of methods and requires enough data to properly train and validate the weight-
ings. Alternatively, the accuracy of the model (e.g. assessed via the RMSE) could be
used to give relative weights to the different forecasts with higher weights for more
accurate forecasts. Some other methods are listed in the further reading section in
AppendixD.2.

As with point forecasts, individual probabilistic forecasts can be combined
together. The evidence is increasing that these combined forecasts are better than
the individual methods. This topic is very much an active research area (e.g. see [1])
and therefore much of it is beyond the scope of this book but there are some simple,
easy-to-apply techniques that have shown to be effective in certain situations.

Analogous to theweighted averaging presented for point forecasts above, a similar
method can be applied to quantile forecasts by averaging the same quantiles from
each method. For example, consider forecast models f τ

1 , f
τ
2 , . . . , f

τ
n for the same

quantile τ , then create a combined quantile forecast given by

f̂ τ =
n∑

i=1

wi f
τ
i , (13.2)

1 https://mofc.unic.ac.cy/history-of-competitions/.

https://mofc.unic.ac.cy/history-of-competitions/
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The same weights should be used for each quantile and are found by minimising a
probabilistic scoring function such as CRPS via cross validation (See Chap.7). As
with point forecast model combination the weights should sum to one.

Further literature on combining forecasts is given in AppendixD.

13.2 Hierarchical Forecasting

Electricity networks are naturally hierarchical since traditionally electricity is gen-
erated and then transmitted to lower levels of the network. The network is becoming
more complicated especially due to the increased installation of distributed genera-
tion sources like wind turbine and solar photovoltaic farms.

Matching supply and demandmust be achieved throughout the network rather than
simply at the aggregate level.Hierarchical forecasting refers to generating forecasts at
different levels of the hierarchy. This is demonstrated in Fig. 13.1. In load forecasting
this could include forecasting the demand for an individual household, the aggregated
demand at the secondary or primary substation, and also at the national level. Of
course you can also include all the intermediate levels inbetween.

A useful property of hierarchical forecasts is to ensure that they are coherent.
In other words aggregations of forecasts at lower levels equal the forecasts of the
aggregated level. This is useful to anticipate or co-ordinatemultiple applications (e.g.
flexibility services such as batteries) at different levels of the hierarchy.

Note, that the aggregation of the demand monitored at the lower level is unlikely
to match the demand at the higher level because not all loads are monitored (for
example street furniture). Further, there is often switching on the network where
demand is rerouted to other networks. Switching on a substation is illustrated in
Fig. 13.2. Demand from a nearby network can be rerouted to another substation
when there is, for example, a temporary fault. Hence the demand on a network may
have a shift to a different regime of behaviour (see Sect. 13.6). Finally, there are
electrical losses on a network since some energy is lost in the distribution process.
This is another reason the aggregation of demand at a substation is unlikely to match
the aggregation of the downstream connected loads. By extension, the forecasts of
the demand at the substation are unlikely to match the aggregation of the forecasts
of the individual loads (even in the unlikely situation of a perfect forecast!).

To simplify the following discussion lets assume that there is no switching, there
is minimal loses and we happen to have access to all the major downstream loads
connected to the substation. Tomake this more precise, let Dt be the demand at time t
for a substation and let L(k)

t be the downstream load from connection k ∈ {1, . . . , K }
at the same time. In this scenario the following holds

Dt =
K∑

k=1

L(k)
t . (13.3)
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Fig. 13.1 Electricity network hierarchy showing multiple levels from Transmission level down to
individual households and buildings. Dotted lines show potential linking between load points at the
same levels, i.e. between bulk supply points

Now assume that a forecast is produced for each time series, which we denote by
using a hat, e.g. D̂t is the forecast estimate at time t for the substation demand, and
similarly L̂(k)

t is the forecasts for the downstream demands. However, in general, due
to forecast errors and biases it is unlikely that the forecasts match, i.e. the following

D̂t �=
K∑

k=1

L̂(k)
t . (13.4)
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Fig. 13.2 Illustration of the effect of demand switching on the total demand on a distribution
substation

A simpleway to produce coherent forecastswould be to only produce the forecasts
for the downstream levels L̂(k)

t and estimate the other levels through aggregation. The
issue with this approach is that the aggregate forecast is likely to be less accurate than
a direct forecast of Dt . This is because the lower aggregate series are more volatile
and therefore less easy to accurately forecast. Further if errors are correlated in the
downstream forecasts, they may accumulate when aggregated. An alternative is to
forecast the substation and then split the demand at the lower levels. However, given
the complex behaviour across the downstream demands it is likely these forecasts
will be inaccurate since it is not obvious how to disaggregate the demand, especially
if it changes depending on time of day, time of year and on special days (Christmas,
New Year etc.).

In fact let L̂t = (D̂t , L̂
(1)
t , . . . , L̂(K )

t )T be the vector of forecasts for each time
series in the hierarchy. A coherent forecast, L̃t can be written generally as

L̃t = SGL̂t (13.5)

where S ∈ R
5×4 is sum matrix which sums lower levels up to the higher levels of the

hierarchy andG ∈ R
4×5 for M > 0 is a matrix that maps the forecasts to the bottom

level of the hierarchy, and depends on the method deployed.
In the special case of the simple coherent approach which simply sums the lowest

level forecasts this gives the matrices
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S =

⎡

⎢⎢⎢⎢⎣

1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎦

and

G =

⎡

⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎦

G drives the different approaches, but a manual choice is likely to be suboptimal,
i.e. not produce the most accurate set of coherent forecasts. There are many ways to
define optimal but one such method was given by the authors in [2] which minimises
the total variance of the forecasts. The details are beyond the scope of this book (see
[2] or [3] for complete details) but the final choice is given by

G = (STW−1S)−1STW−1, (13.6)

where W = Var(L̂t − Lt ) is the covariance of the baseline forecast errors.
This example has only shown one level in a hierarchy but of course this can be

extended to have multiple levels. For example in distribution networks this could
consist of residential smart meters at the lowest level, which aggregate up to the sec-
ondary substations, several of which aggregate to primary substations (see Fig. 13.1).

Coherency can also be applied to probabilistic forecasts but this is much more
complicated and beyond the scope of this book. This area has a lot of interest, and
more new and novel results can be expected. Further reading on this topic is cited in
the AppendixD.2.

13.3 Household Level Forecasts

Forecasts at the household level (or aggregations of only a few households) have
specific features and challenges. In this section the focus is on the specific problem
of trying to measure the errors for point forecasts of household data.

The unique problems occur because data at this level is particularly spikey and
hence very sensitive to small changes of the occupants within the household. To
illustrate this consider a household with a single occupant who, every weekday,
wakes up, leaves, and returns homes at roughly the same time each day. When the
occupant comes home they turn on various appliances, lights, heating, TV, cooker
etc. Although there are often similarities from week-to-week, there is still significant
irregularity. Figure13.3 shows daily demand for three consecutive Monday’s for a
real household overlayed over each other. This example shows volatility, especially
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Fig. 13.3 Overlay of three consecutive Monday’s demand profiles from the same household. Con-
structed using data from the CER Smart Metering Project—Electricity Customer Behaviour Trial,
2009–2010 [4]

in the evenings (in fact the demand is actually much more regular than many other
households, and highlights how irregular such demand can be).

Due to natural variation in behaviour, and other unexpected events, demand pro-
files are likely to change even for the most regular consumers. For example, unex-
pected traffic in the morning, or a missed alarm will result in the occupant arriving
late to work. In turn, the late start may mean the occupant now decides to work late
and thus arrive home later than usual. An illustration of such a profile is shown in
Fig. 13.4, for this the original “typical” profile is shifted slightly.

This unique feature does not typically occur at aggregations of over 10 households.
The individual demands and their irregularities smooth out and the data is no longer
spikey (This is shown in Fig. 1.2 in Sect. 1.2). This relationship is emphasised in the
case study in Sect. 14.2,which shows the power law relationship between aggregation
size (size of feeder equating to more households) and relative error (Fig. 14.8). The
scaling law shows it becomes increasingly difficult to forecast accurately at low
aggregations relative to higher aggregations.

The “spikeyness” of household level forecasts also produces a specific problem in
terms of measuring the errors of household level forecasts. Consider comparing the
two forecasts as illustrated in Fig. 13.5. One forecast is a simple flat forecast (made
say from taking the average half hourly demand from the actual daily demand), the
second forecast is a simple shift on the actuals (this could be viewed as a seasonal
persistence forecast (Sect. 9.1) where the profile is relatively regular but with small
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Fig. 13.4 Daily demand for one profile, together with the shifted profile. Constructed using data
from the CER Smart Metering Project—Electricity Customer Behaviour Trial, 2009–2010 [4]
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Fig. 13.5 Demonstration of the double-penalty effect. The actual demand (bold line) is compared
to a shifted version (dashed line), and a flat estimate (grey line) which is just the uniform profile
formed from the average of the actual
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shifts in demand). The second forecast is subjectively quite good, and potentially
useful. It correctly estimates the peak magnitude and is only slightly misaligned
with the peak timing. For an application like storage control for peak reduction
(Sect. 15.1), this second forecast can help inform the appropriate charging schedule
for a storage device since the peak is correctly anticipated albeit at a adjusted time.
This means a battery can be prepared with a full charge and ready to discharge when
the peak does finally appear (this presumes there is some sort of monitoring of the
demand which identifies the appearance of the peak of course).

However, in the situation described in Fig. 13.5, despite being a useless forecast
providing no information about the peaks, the RMSE error for the flat estimate (0.71)
is smaller than that for the peaky forecast (0.91). The reason for this is the so-called
double-penalty effect. For any pointwise error metric like RMSE the peaky forecast
will be penalised twice: once for estimating a peak that didn’t occur, and a second
time for missing the peak that did occur. In contrast, the flat forecast is only penalised
once.

There are two main options to deal with this situation:

1. Develop new error measures that reduce the double penalty effect and produce
a more representative and smaller score for forecasts that more closely describe
the peak magnitude and timing differences.

2. Consider probabilistic forecasts. Since the estimates now estimate the spread of
data, variable timing of peaks will be more accurately captured. In particular,
multivariate probabilistic forecasts (Sect. 11.6) will capture the uncertainty and
the interdependencies in the data, and if properly calibratedwill include ensembles
which represent the wide range of possible household profiles.

Probabilistic methods are the most desirable since they have proper scoring func-
tions (Sect. 7.2) with consistent interpretation. This means they can be assessed in an
objective way. The drawback is the computational costs, and the large amount of data
required to train a probabilistic forecast. Techniques for probabilistic forecasts have
already been introduced in Chap.11 so the rest of this section discusses alternative
error measures for point forecasts.

One set of options are so-called time series matching algorithms. These are
popular techniques used in areas such as speech recognition to show how close
individual signals are. One such technique, dynamic time warping, has already been
introduced in Sect. 10.1. This creates two new time series by stretching them to find
the closest match. Then the original point wise forecast error measures can be used
to measure the difference.

There is a number of drawbacks with this technique. Firstly in the standard DTW
approach there is no penalty or limit on how much a time series can be stretched to
enable a match of the features. Secondly, the ordering is fixed. If there are multiple
peaks at similar periods but in a different order then dynamic timewarpingwill match
one peak but not the other. Since energy demand will likely allow different orders of
appliances being used (TV on then the Oven, or Oven on then the TV) this may be
too restrictive for household demand forecasts.
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Fig. 13.6 Illustration of the
matching between two time
series performed by the
adjustment error approach

An alternative method, as developed by the authors is the so-called adjusted
error measure [5]. This allows a restricted permutation of the time series around
each point. This can be solved relatively efficiently for small numbers of time series
using an assignment algorithm called the Hungarian method. A basic illustration of
the matching is shown in Fig. 13.6. The adjusted error measure matches a time series
like dynamic time warping but allows reordering of peaks (within a limited area).
The drawback to the adjusted error measure is that there is no penalty on permuting
the time series within the limited area and the size of this permutation length must
be chosen before hand.

In summary, no matter measure, point forecasts for households will require some
subjective choices in order to deal with the spikey nature of the demand.

13.4 Global Verses Local Modeling

Traditionally in time series forecasting, a model’s parameters are fitted based on
historical data from the same instance one wants to forecast. As discussed in Chap.2
in the context of load forecasting this instance can, for example, be a building, a
household, a substation or another point of interest in the grid. So, if one trains a
model for a specific building, the forecast model parameters are estimated using this
building’s available historical data. This was the same initial approach that was taken
with the advent of machine learning models.

However, as discussed in Chap.10, machine learning models, especially deep
models such as LSTMs and CNNs tend to overfit when there is insufficient data. To
mitigate against this a new possible strategy was developed for when implementing
more complex machine learning models referred to as global modelling. In this
approach the model is trained on data of multiple diverse instances, e.g. different
buildings, simultaneously. Note that the instance that the forecast is made for, may
or may not be part of the training data. The global modelling approach makes use
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Fig. 13.7 Traditional local
modelling process

Fig. 13.8 A global
modelling process for deep
learning models

of the fact that deep machine learning models can learn general enough feature
representations, which often generalise also to other instances.

The main benefit of global modelling is that having more data is often advanta-
geous to deep learning models and avoids overfitting. Further, learning a model for
each instance can be highly impractical. For example, the aim in many countries is
to ensure most homes have smart meters and, if the intention is to provide smart
services, such as storage control or home management systems, it may be impracti-
cal to train an individual model on each home. Instead global models may be more
feasible. The traditional approach of fitting the model on the same instance is now
referred to as local modelling. Figures13.7 and 13.8 illustrate these two approaches
to load forecasting.

However, if there are too many different instances in the data, there are typically
diminishing returns, i.e., adding more data to the dataset does not lead to improve-
ments. In fact, performance can even degrade as more data is added. This could
especially be the case if many load profiles are added that are too diverse and if the
amount of data is too large relative to the capacity of the model used. To mitigate this
problem, alternative hybrid strategies have been proposed. A typical approach is to
initially cluster the data to find groups of similar instances and then to train a global
model on each cluster. At inference time for a particular instance, one needs to deter-
mine what cluster a specific new instance would belong, e.g. in k-means this would
be through comparing the profile to each clusters representative profile, for finite
mixture models (Sect. 11.3.2) this would be via calculating its membership posterior
probability and then assigning to the cluster with the highest value. The prediction is
then made by applying the trained model from this cluster to the particular instance.
Figure13.9 illustrates this process. The process is sometimes referred to as pooling.
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Fig. 13.9 A “pooling” approach to global modelling

Fig. 13.10 Process of fine-tuning a pre-trained model

As briefly discussed with CNNs in Sect. 10.5.2, the lower layers of an ANN or the
filters in a CNN have usually learned feature representations that are often general
enough to also work as a feature extractor for other similar tasks. In other words,
one can re-use these pre-trained parts of the neural network and use it for another
related task. This general idea of reusing parts of an already trained ANN is called
transfer learning. Figure13.10 illustrates this approach to forecasting. This is the
common procedure when working with state-of-the-art image or language models,
where such models are pre-trained on very large image or text datasets to learn
first some general features of images or text before being trained on the dataset for
a specific task.

Local modelling is often not an effective strategy for deep machine learning mod-
els unless there is a lot of data available for the instance, or unless the resolution is
sufficiently high. Hence, any of the global strategies or variations thereof should be
explored. This has the benefit of improving generalisation and avoiding overfitting,
but is also, in practice, a much more computationally effective strategy, as typically
training a global neural network onmultiple instances is more computationally effec-
tive than training multiple local models individually. This saves cost for computing,
energy and hence unnecessary CO2 emissions from the compute (see, for instance,
[6] on the carbon emissions of machine learning training). Even if the model is trans-
ferred to a local computer (e.g. a building energy management system), there are no
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real data privacy concerns in the context of models trained on smart meters. When
the model was trained on multiple instances, no method is known to re-create the
instances used to train the model.

13.5 Forecast Evaluation: Statistical Significance

It is often the case that several methods are performing very similarly but in fact
there is no statistical significance between them. This can be a desirable situation as
it means youmay be able to choose a forecast model with other useful properties (say
it has high interpretability, or low computational cost) without sacrificing accuracy.
It is also important to rule out that a forecast is performing well by chance alone.

To tell if two time series forecasts are significantly different requires a statistical
test. One of the most popular methods is the Diebold-Mariano Test. As with many
statistical test, it begins with a null hypothesis, denoted H0, which in the case of load
forecasting states that “the two time series forecasts are equally accurate on average”.
The aim of the test is to see if the null hypothesis can be rejected, i.e. trying to show
that the forecasts are in fact not equally accurate.

Suppose one forecast produces one-step ahead forecast errors e1, e2, . . . , eN , and
the second forecast produces errors denoted by ε1, ε2, . . . , εN . Consider the loss
differential series given by

dt = g(et ) − g(εt ), (13.7)

where g is a loss function, usually defined as g(x) = x2, or g(x) = |x |. Note that two
forecasts have the same accuracy if the expected value of the differential loss is zero.
Hence the null hypothesis can be reframed as E(dt ) = 0 ∀t . The main assumption
for the Diebold-Mariano test is that the loss series is stationary.

To perform the test requires producing a test statistic, i.e. a value derived from
the observations. This statistic should follow a particular distribution under the null
hypothesis. If the actual calculated value is found to be very unlikely it is evidence
for rejecting the original hypothesis. “Unlikeliness” is determined by a significance
level α and a p-value. The p-value is the probability of obtaining a value as extreme
as the observed value, assuming the null hypothesis holds. The significance level is a
value determined by the user before the experiment/test-statistic is derived and sets
the threshold for rejecting the null hypothesis.

An example for a hypothesis test shown in Fig. 13.11 for a standard normal dis-
tribution, i.e. Pr(x < X |H0) ∼ N (0, 1) which represents the distribution of points
assuming the null hypothesis is true. Suppose in this example, it is undesirable for
the test statistic, T , to lie in the extremes of the distribution. If it does occur in the
extremes, the null hypothesis can be rejected. This is a two-tail test.2 Note then that
this means the p-value is given by p = 2min{Pr(x > T |H0), Pr(x < T |Ho)}. Sup-
pose the significance level is chosen as α = 5%, which is represented as the shaded

2 A one tail test will naturally only consider one of the tails.
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Fig. 13.11 Illustration of hypothesis testing with assumed standard Gaussian distribution. Shaded
are the areas which represent the 5% extreme values which determine a rejection of the null
hypothesis

part in Fig. 13.11 with a probability of 0.025 in each tail (i.e. total of α = 0.05).
In other words, if the statistic lies in the shaded area (i.e. the quantiles zα/2, z1−α/2

determined by α/2 and 1 − α/2) the null hypothesis is rejected, i.e. if |T | > zα/2.
If it is not in the tails, then the null hypothesis is not rejected. Note that since we
are considering a standard normal distribution z1−α/2 = 1.96 and zα/2 = −1.96 as it
corresponds to the 97.5th percentile value.

Returning to our example of comparing time series forecasts. The Diebold-
Mariano statistic [7] is defined as

DM = d̄
√(∑h−1

n=−(h−1) γn)/N
) , (13.8)

where d̄ = 1
N

∑N
n=1 dn is the sample mean of the loss differentials and γn is the

autocorrelation of the loss differentials at lag n (Sect. 3.5). The h used in the denom-
inator should be large enough to include any significant lags in the autocovariance
and can be checked through the autocorrelation plots (Sect. 3.5). Assuming the loss
differential time series is stationary then the DM statistic follows a standard nor-
mal distribution (Sect. 3.1).3 A two-tailed test can thus be performed using the same

3 The derivation of this result is beyond the scope of this book, but is a result of the central
limit theorem, a powerful theorem which essentially says that the distribution of sample means is
Gaussian.
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distribution as shown in Fig. 13.11. Rejecting the null hypothesis in this case means
that the two forecasts are not of similar accuracy.

For small samples the DM statistic can result in the null hypothesis being rejected
too often. To account for this there is adjustments which can be applied such as the
Harvey, Leybourne and Newbold test [8]. This adjusted statistic is as follows

HLN = DM

(
(N + 1 − 2h + (h(h − 1)/N ))

N

)1/2

. (13.9)

Instead of the standard normal, this corrected statistic must be compared to a
Student-t distributionwithN-1 degrees of freedom.AStudent-t distribution is similar
to a Gaussian/normal distribution (Sect. 3.1) but with heavier tails, i.e. the extremes
of the distribution converge to zero slower than a Gaussian distribution. Thus for this
type of distribution very large/small values are more likely to occur.

It should be noted that the DM tests can be applied to more general error func-
tions, including multivariate forecasts, [9]. Further reading in this area in provided
in AppendixD.2.

13.6 Other Pitfalls and Challenges

There are other common difficulties that can be encountered when developing short
term forecasts. A few of them are outlined here.

13.6.1 Collinearity and Confounding Variables

Correlation is an extremely useful property when producing forecast models, but it
can also create complications. As it is commonly known “correlation doesn’t equal
causation”. However, this does not mean the variable can not be used to produce
accurate forecasts. It doesmean care should be takenwhen assuming and interpreting
the relationship between these variables. A variable with a spurious correlation may
not be initially useful for the model but since the relationship is not causal it may not
generalise well, and can create inaccuracies in your model at a later point.

The challenges extend beyond the independent and dependent variables. When
two of the independent/predictor variables are highly (linearly) correlated they are
called collinear and can create difficulties in interpreting their effect on the depen-
dent variable. It can also increase the chances of overfitting. Adding a collinear
variable may not add much accuracy to the forecast since much of the effect has
already been captured by the correlated variable already included in the model. As
an example, consider ambient temperature and wind chill. Wind chill is a combi-
nation of temperature and wind speed and estimates how the temperature feels to



252 13 Advanced and Additional Topics

Fig. 13.12 Causal diagram showing the relationship between temperature, demand and wind chill

a human. Thus these two variables are often strongly correlated to each other. The
causal relationships between them are shown in Fig. 13.12.

Collinearity can also effect the sensitivity of the model coefficients to whether
those variables are in the model or not [10]. For a linear regression it therefore effects
the precision of the associated coefficients. There are tests to help identify collinearity
effects, one of which is the variance inflation factor (VIF) (see, for example, the
book by Ruppert and Matteson [10]). This measures how much the variance of an
independent variable changes when the effects of the other independent variables are
compared. In addition correlation functions can be used to identify which variables
are highly correlated.

Ideally, it should be checked whether the collinear variables improve the forecast
model accuracy when they are included versus when one, or both are removed. If
interpretation and stability is not important then the most accurate forecast should
be retained. However, note that if both are retained and there is a concept drift
(Sect. 13.6.3) in only one of the variables this can reduce the accuracy on new unseen
data. Regular model retraining can reduce the likelihood of this.

There are a few approaches which may be able to reduce the collinearity effects.
The most obvious is to prune the variables amongst those which have the strongest
correlation andor highestVIF, possibly keeping thosewhich have the strongest causal
link with the dependent variable (causality not a particularly easy task to prove of
course). Model selection techniques, such as the information criteria, as presented
in Sect. 8.2.2, are another possibility for finding an accurate model with the lowest
required variables.

Of course this collinearity can extend across multiple variables, in which case it
is referred to as multicollinearity.
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A related concept is that of confounding variables. If a variable causally effects
both the dependent and an independent variable it is a confounder for them both. In
Fig. 13.12 temperature is a confounding variable since it causes changes in demand
but also is a major determinant of the wind chill values. Not taking into account con-
founders canmake it difficult to understand the causal relationship between variables,
and may mean an effect or correlation is overestimated. As an example, consider a
model of the net demand linked to the wind chill values. Suppose wind chill has no
effect on demand, but temperature does. Since temperature is also related to wind
chill (Sect. 6.2.6) then it could be perceived that a change in wind chill is correlated
to the change in demand, whereas in fact this is spurious since it is the temperature
which are driving the related changes. Regardless, there may still be some influence
of the wind chill on the demand which can improve the accuracy of the forecast
model, but this may not clear because it is confounded by the temperature variable.
If you are interested in the effect of wind chill you need to isolate it by controlling
for the temperature. One way to do this is to control for the temperature by learning
the relationship for fixed (or binned) values of the temperature.4 This is not easy as
you have to reduced the overall data from which to train the model since you need to
learn on subsamples of the overall data. For linear relationships, linear regression can
also be used to identify confounding variables and the size of the effect. This is done
by comparing the effect (i.e. the associated coefficient) on regressing two models for
the independent variable against the dependent variable, but including the suspected
confounding variable in one of the models. Large changes in the coefficient can sug-
gest a confounding variable with the magnitude of this change indicating the size of
the effect.5

If the confounding variables are not included in the models then there could be a
loss of accuracy. However, including them means that interpreting the results can be
difficult, as shown above. Again, this may not be a major concern if the focus is on
performance rather than interpretation. However spurious correlations may decrease
generalisability of a model. Cross validation methods can help with model and input
selection (Sect. 8.1.3) and thus ensure that the model is still generalisable.

Ideally all confounding variables and those which have causal effects on the
dependent variable will be included in a model, but this may be very difficult. One
issue caused by not identifying confounding variables is that the assumed relationship
between the independent and dependent variables may be tenuous, and thus sudden
changes in the independent variable maymean themodel no longer holds or becomes
very inaccurate. For example, suppose a model has been created for the total demand
at a local substation connected to five unmonitored households. If it is found that the
monitored demand behaviour of another household (but on a different network) is
very similar it could be included in the model to help increase the accuracy. However

4 This is also known as stratification.
5 This may not be straightforward. An interesting example of the complications in trying to interpret
the effects fromvarious variableswithmany, and possibly unknown, confounding variables is shown
via the so-called ‘Table2 fallacy’, see [11]. The example shows that even variables that are not
confounded can still create difficulties with interpreting the associated effects.
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if, unknown to the modellers, one of the five households moves house the correlation
with the demand no longer holds and may produce very inaccurate results.

The case study inSect. 14.2 suggests a real examplewhere it is possible seasonality
effects may be a confounding variable for the temperature.

13.6.2 Special Days and Events

The forecast models described throughout this book typically assume that the future
load will look similar to the historical load. To do this, data analysis and visualisation
methods are deployed to look for common patterns in the data. Therefore a forecast
model which uses these features will, on average, be very accurate for typical days.
Unfortunately it may not do well for less common days or events.

More often than not these untypical days will be holidays such as New Years,
Bank Holidays, etc. I.e. special days where businesses may be closed, houses may
be occupied in different ways, and there may be different behaviours than usual.
These special days will vary depending on the country and culture, for instance
predominantly Christian countries will include Christmas, predominantly Muslim
countries will include Ramadan, and North American countries will have Thanks-
giving, etc. On days like these, workplaces may be closed, and there may be other
behavioural changes (e.g. extra home cooking).

Another cause for less typical energy usage daysmay be because of special events.
This could be a World Cup final, the Olympics, or a Royal Wedding which causes
many more households to watch TV in their own homes, or perhaps go to public
areas to watch communally. Other special days can be created due to highly atypical
weather events. For example, a heat wave, a storm or an usual cold snap.6

Each of these types of events can cause energy demand to be very different than
from what regularly occurs in the homes, or over an aggregate of homes. If they are
not taken into account then the forecast models are likely to be inaccurate on these
special days.

Ideally, these special days should be treated within the model. This can be through
dummy variables (Sect. 6.2.6), or a separate model could be created for them. The
problemwith these approaches is that these special events are often very rare. In other
words, there is not usuallymuch data to train themodels to accurately forecast special
day demand. Take for example Christmas day which occurs on 24th December each
year. There is only one day per year in which to train on and further to this, each
year Christmas will fall on a different day of the week. It could be Monday one year,
and Tuesday on another etc. This means that each Christmas day may be slightly
different depending on which day of the week it falls on. This further reduces the
relevance of the data for training.

6 For example, the ‘Beast From the East’ cold wave which occurred in February and March of 2018
in the UK.
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There is not many robust ways to alleviate these problems. With so few examples
it is difficult to learn the regular patterns which means heuristics or educated guesses
must be made about what data can be used to inform the models. A common way to
do this is to use other data as proxies for the demand on the special day. For example,
it is reasonable to assume holiday dates (like Bank Holidays) are very similar to
weekend dates, with occupants acting similar on both. In these models the special
days can be assigned the dummy variables for the weekend (or say Sunday).

13.6.3 Concept Drift

Concept drift in machine learning refers to the change in the statistical properties of
a dataset over time. Often these changes can occur without the modeller being aware,
as they can be subtle and/or take place very quickly. This creates a lot of problems
for forecasts since the distribution of the random variable is changing and may mean
the distribution in the test set is not going to be the same as the training set.

There are many reasons that energy demand may change over time, including:

• Churn of customers: If the occupants of many households or businesses connected
to a LV network change then the demand behaviours will likely change.

• Uptake of new technologies: Disruptive technologies such as heat pumps, electric
vehicles and photovoltaics can have major effects on the demand and change the
aggregated loads on the distribution networks.

• Atypical Events: Special events (See Sect. 13.6.2) can create unusual demand. This
includes unusual weather and special sporting events (Olympics, World Cup etc.).

• Improving Energy Efficiency: New technologies can mean reductions in demand.
For example, new LED lights and TVs are much more efficient then their prede-
cessors.

• Change in Energy Prices: Volatile energy prices can mean households and busi-
nesses have to change their behaviours or appliances to better reduce their costs.

Many of the concept drifts in electricity time series will be temporary. Efficient
versions of appliancesmay change the demand behaviourwhen they are first installed
but the future demand will then be stable until another major change. This suggests
a way to reduce the effects of permanent changes in time series: adaptive methods
or tracking methods. These methods use a limited window of the most recent obser-
vations to ensure that models can react to changes in the demand. When a change
in the distribution occurs, the model will eventually train to this new distribution.
Of course, it may require an certain period of time to pass until model accuracy is
restored since the training data may consist of a mix of data from before and after
the distribution change.

The change in demand can be detected by so-called change-point analysis, which
aims to identify the time point where the data before and after the change-point has
different statistical properties.A related time series property to concept drift is regime
switching. This is where the time series has finite number of states or “regimes”,
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which the time seriesmay switch between. To generate forecasts in these casesmeans
generating a forecast model for each regime. This has the challenge of predicting
which regime the time series will be in as well as the demand within that regime. An
example in energy demand may be a commercial building which has different uses
across the year. For example, University halls of residence may be empty over the
summer whereas the rest of the year they are occupied by students.

13.6.4 Unrealistic Modelling and Data Leakage

Another pitfall in forecast experiments is the unrealistic assumptions and modelling
which are often deployed. Ideally, forecasts should be designed to replicate the real-
world scenario for which they are being generated. However, in many cases, to
simplify the analysis, or due to lack of resources, a forecast model used in a desktop
study may be non-replicable or impractical to apply in reality.

Themost commonmistake is the use of data whichwould not actually be available
in practice. For demand forecasting this is usuallyweather data.Weather is considered
a strong driver of electricity demand due to heating or cooling needs. Therefore
weather forecasts can be useful inputs for accurate load forecasts. Unfortunately,
weather data, in particular weather forecast data, can be difficult to source. Instead
many experiments resort to using weather observation data which of course would
not be known in advance. However, it is often easier to collect observed data. Any
forecast that uses data which would only be available after the forecast is generated
is known as an ex-post forecast. Those which only use data which is available at the
time the forecast is generated, are known as ex-ante forecasts. This can be viewed as a
form of data leakage. This term refers to using data inmachine learning experiments
when they would not be available in practice. This is often the case when test data
is inadvertently included in the training leading to an unrealistic performance on the
test set. In time series forecasting, other forms of data leakage may occur if non-
time series splits are utilised in the cross-validation, such as the shuffled split (see
Sect. 8.1.3).

Another practical consideration when developing load forecasts is understanding
what load data would be available for use in the forecasts. For example, household
smart meter data is often only transmitted to the data platforms/exchanges, at most
once a day. Any model waiting for such data to train a model, for example a storage
control scheduling algorithm (Sect. 15.1),may not have timely access for training and
transmission. In addition to the data not being available due to collection restrictions,
the speed of an algorithm to train or generate a forecast may be insufficient to be
able to use the new data in time for the required application.

There may also be external constraints that limit what data is available. For exam-
ple, if you are utilising weather forecasts, most numerical weather prediction cen-
tres only reveal the updated weather forecasts at particular times of the day, e.g.
midnight, 6AM, noon, and 6PM since it is often computationally infeasible to do
global predictions more frequently. Therefore the weather inputs used for a rolling
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load forecasts may not be the most recent depending on the time of day. In summary,
communications limitations, regulatory restrictions, commercial considerations, and
computational expenses can all have implications for what data should or could be
used when training or developing a forecast. The main point is that as many realistic
assumptions should be embedded in a forecast trial or experiment to ensure they
mimic the real-world conditions of the application they will be applied in.

13.6.5 Forecast Feedback

In some cases the forecasts can effect the demand itself, which will now mean that
the forecast itself is incorrect. This feedback is especially true if linked to electricity
costs. For example, suppose that a commercial business sees a load forecast which
identifies that a large peak will occur during a period when electricity prices are high.
The business then may decide to make plans to change their behaviour, e.g. turning
off non-essential equipment, or shifting their demand. This will reduce the predicted
peak and hence reduce their costs. This means that the forecast is now technically
incorrect a condition created by the forecast itself. This is completely valid, after all
forecasts are there to try and support many applications (Chap. 15) with the objective
in many cases to reduce the demand and costs for consumers.

The feedback effect not only reduces the accuracy of the forecast but it also
changes the training data itself. Where the forecast has influenced the observed
demand this datamay not describe the normal behaviour or features of the time series.
As another example, consider the battery storage device example in Sect. 15.1. The
forecast is used to help plan the charging and discharging of the battery on a feeder,
however this also changes the demand on the feeder. What was originally going to
occur is now unknown unless the charging of the battery is also recorded. These
adjustments therefore effectively change the regime of the data during those periods
(See Sect. 13.6.3) and should therefore not be used in the training for the ‘typical’
behaviour of the time series.

The question is how to deal with such feedback for future training? In the case of a
storage device, if the changes are known and recorded then the uninfluenced demand
can be recovered. However, in the cases where the original underlying demand is
not known (such as with demand side response, see Sect. 15.2) then one solution is
to not train the normal demand on those periods where there has been interventions.
This is only practical if there is sufficient data where no interventions have occurred,
otherwise the final models may be inaccurate. Alternatively, it may be possible to
learn the intervention effect itself by incorporating it into the model, possibly even
as a dummy variable, (Sect. 6.2.6), that way more of the training data can be utilised.
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13.7 Questions

For the questions which require using real demand data, try using some of the data as
listed in AppendixD.4. Preferably choose data with at least a year of hourly or half
hourly data. In all the cases using this data, split into training, validation and testing
in a 60, 20, 20% split (Sect. 8.1.3).

1. Generate some day ahead point forecasts for some demand time series. Preferably
a few benchmark models, a few statistical methods and a few machine learning
models. On the test set compare the RMSE errors of the individual models. Now
combine all the models and calculate the RMSE, does it improve compared to any
or all of the individual models? Try different averages of the models, for example
in one case sample the two best, or the two worst. Try mixing some of the best
and worse. See if some of them give smaller RMSE than the other combinations?
Take the two best forecasts and see if they are statistically significant using the
Diebold-Mariano test.

2. Take a collection of at least 100 smart meter demand time series. Partition them
into ten sets of ten and aggregate each set. Now create a forecast for each aggregate
over the test set. Now aggregate all set of ten (so they are now an aggregate of
100 smart meters) and using the same forecast model (trained on the aggregated
demand series of 100 smartmeters) generate a forecast on the test period.Calculate
the RMSE error for this forecast. Now aggregate the forecast of the ten sets and
calculate the RMSE error there too. Compare these two values, which is more
accurate? Which would you expect to be more accurate?

3. Can you think of some other forms of data leakage?
4. What else may cause concept drift? Can you think of changes in your homewhich

would cause reasonably large changes in your usually demand behaviour? Can
you think of other buildings which may have some dramatic changes in their
behaviour?

5. Think of some special days where the energy demand in your house may be
different? What are some other reasons for changes in typical behaviour? Which
of these days may be similar to each other?
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Chapter 14
Case Study: Low Voltage Demand
Forecasts

This chapter demonstrates the practical implementation of short term (day-ahead)
forecasts for the application of residential low voltage networks. It is split into two
main parts: An in-depth examination of a short term forecasting case study of resi-
dential low voltage networks (Sect. 14.2); and a example python code demonstrating
how to implement some of the methods and techniques in practice (Sect. 14.3).

The case studies serve to demonstrate how to:

• identify the main challenges when implementing short term forecasts.
• use the techniques fromChap.6 to analyse the data, and identify important features.
• use the analysis to choose several forecastmodels (from those presented inChaps. 9
and 11). This includes both point and probabilistic models.

• test, compare and evaluate the forecasts.

The chapter begins by a short discussion of how to design a forecast trial which
will frame the case study that follows later.

14.1 Designing Forecast Trials

It is worth reiterating some of the core elements which should be considered prior to,
and while, developing the forecasts. These elements are important to ensure that the
model is designed appropriatelywithminimal bias inmethodology, and to ensure that
the results are properly tested. The full forecasting procedure is outlined in Chap.12
and will be followed implicitly throughout. This chapter will focus on the following
main considerations.

1. Initial Experimental Design: Before plotting the data it is worth sketching out
an initial experimental design and audit the available data used to produce and
test the forecasts. What type of data is being considered? Is it expected to have
seasonalities? What is the resolution of the data, half hourly, every ten minutes?
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Is there sufficient data to produce a informative result? If there is, what is an
appropriate split of the data into training, validation and testing sets (see Sect. 8.2)?
It is important to think about these questions before analysing the data to prevent
introducing bias into the test. Further, once the data has been split, it is advisable
to avoid analysing the test set prior to generating forecasts to avoid ‘cheating’ and
seeing the true values before submitting the forecast. A final consideration is to
decide on what error measure to use (see Chap.7). An incorrectly chosen error
metric can skew the results, and makes it difficult to evaluate and interpret the
results.

2. Visualisation and Data Analysis: It is essential to try and learn as much as
possible about the underlying features and relationships in the data. In Chap. 5 a
number of tools were presented showing how to achieve a better understanding of
the data. Simple time series plots can highlight large scale behaviours, scatter plots
can identify strong relationships between variables, and autocorrelation plots can
highlight periodicities and autoregressive behaviours in the data.

3. Pre-processing: A necessary component to the data analysis is data cleansing and
pre-processing. Poor quality data can make for misleading analysis and meaning-
less results. To use a common phrase in machine learning: ‘garbage-in garbage
out’. Before applying anymodels, check for anomalous data andmissing values as
shown in Sect. 6.1.2, and then either replace or remove them from the dataset. The
analysis in the previous step can be used to choose the appropriate replacement
values.

4. Model Selection and Training: As shown in Chaps. 9 and 10 there are a wide
range of possible forecastmethodologies and choosing the correctmodels requires
utilising the learning from the data analysis, considering the specific requirements
for the application, as well as learning from the forecasters own experience. The
validation set can be an essential tool for narrowing down the choice of models. It
is also vital that appropriate benchmarks (see Sect. 9.1) are selected to help assess
the accuracy of the core models. Section 12.2 presents Further criteria which can
be considered to help select the initial methods.

5. Testing and Evaluation: The trainedmodelsmust be applied to the unseen testing
set. By scoring and comparing the forecast methods with the error measures (See
Chap.7) a better understanding can be forged about what makes some methods
more accurate and what are the important (or unimportant) features. This step
will allow the forecaster to develop further improvements in future iterations of
the models.

Each of the above steps will be illustrated in the following case study.
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14.2 Residential Low Voltage Networks

This application considers short term (in this example up to four days ahead) load
forecasting for residential low voltage demand on substation feeders and will be used
to demonstrate probabilistic (Chap. 11) as well as point forecast methods (Chaps. 9
and 10). The entire section will be based upon the authors research presented in [1].

Here, the term residential low voltage (LV) network demand (or just residential
networks) is used to describe the network connected to the secondary substations
of the electricity distribution network within a residential area (Sect. 2.1). Although
the connected customers will usually be residential they may also consist of small
commercial customers such as offices, hairdressers, etc. The demand time series
represents the aggregated demand of consumers fed electricity directly from the sub-
station (ignoring any electrical losses in the cables of course). This typically consists
of around 40–50 consumers. Furthermore, since these consumers are typically res-
idential, human behaviour tends to be a strong determinant of the demand patterns
and hence daily and weekly periodicites are expected. The data considered here will
be for 100 residential feeders in the area of Bracknell, a medium sized town in the
southeast of England.

At the low voltage, demand is much more volatile than higher voltage due to the
low aggregation of consumers (Sect. 2.3) which means probabilistic forecasts can be
quite useful for quantifying the uncertainty in the demand.

14.2.1 Initial Experimental Design

The data consists of half-hourly load data for 100 residential low voltage feeders
beginning on 20th March 2014 up to the 22nd November 2015 inclusive, a total of
612 days. Typically there are 4–6 feeders which come from a residential low voltage
substation and on average there are around 45 consumers per feeder with the largest
having 109 residential consumers. A further seven had no available connectivity
information due to missing information in the database, so it is not known who is
connected. The feeders typically feed residential consumers and 83 of the 100 are
purely residential, the others are typically mixes except for one which is known to
feed only the landlord lighting of a large office block. The average daily demand
across the feeders is approximately 602kWh and a maximum and minimum daily
demand of around 1871kWh and 107kWh respectively.

The first decision to be made is how to split the data into testing and training
data sets. The data set is reasonably sized, although more data would of course
be preferable, especially for residential feeder demand which is expected to have
annual seasonality. Ideally, to accurately model annual seasonality several years of
data would be available so that the typical year-to-year behaviour could be captured.
However, for the purposes of short term forecasts the length of data is sufficient. The
final two months were kept over as the out of sample testing set. This consists of 53
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days from 1st October 2015 to 22nd November 2015 inclusive. Notice this is just
under 9% of the data and is less than the common split of training and testing into
a 4:1 ratio (i.e. 20% testing data) as discussed in Sect. 8.1.3. There is a number of
reasons for this, firstly this increases the amount of training data whist retaining a
reasonable sized testing set and secondly it ensures that the forecasts are made for
some of the colder months of the year, which are typically higher in demand and
of particular interest to network operators who are concerned about excessive peak
demand.

It should be kept in mind, that since the training is 559 days and only 1.5years
long there may be some limitations in capturing annual seasonalities and therefore
the methods here cannot be reliably extended to medium term (one month to a year
ahead) or longer term (over 1year ahead) forecasts.

Hourly temperature forecast data and observed temperature data are also available
for the same time period. The forecasts all begin at 7AM each day and then produce
hourly forecasts up to a horizon of 4 days ahead (96h ahead). Thismeans temperature
effects can also be studied but since the forecast origin (where the forecast starts from)
is limited to 7AM each day, they must be treated with caution when using them as
inputs to the forecastmodels. In particular, it would be expected that forecasts become
slightly less accurate the further ahead they forecast which means that, e.g. the four
hour ahead temperature forecasts (i.e. the ones at 11AM) will be more accurate than
the forecasts five or more hours ahead (i.e. those from noon onwards).

With these datasets several situations can be tested

1. Case 1: How does the accuracy of a forecast model change with horizon from 1h
ahead to 96h (four days) ahead?

2. Case 2: Are all residential LV feeders forecast with similar accuracy? If not what
are some of the distinguishing factors between them?

3. Case 3: What is the effect of including temperature within a forecast model for
residential LV network demand?

To allow comparison between models with and without temperature forecast inputs,
all forecasts will generate hourly four day ahead forecasts starting at the forecast
origin of 7AM of each day of the testing set. This requires aggregating the half-
hourly demand time series up to the hourly resolution (see Sect. 6.1.4) to facilitate
using temperature data as an input to the models.

To allow comparisons between the different forecasts, some forecast error mea-
sures need to be chosen as presented in Chap.7. To allow comparison between dif-
ferent size feeders, relative measures which don’t depend on the size of the feeder
(i.e. typically demandmagnitude) are required.MAPE is a common relative measure
used for demand forecast but since it can be conflated by small values, a modified
version of the MAE (see Eq. (7.46) in Chap. 7) is also used which takes the usual
MAE but is scaled by the average hourly load of each feeder over the final year of
the training data. This will be referred to as the Relative MAE or RMAE. Since the
experiment will also include probabilistic forecasts, probabilistic scoring functions
will also be required. In this experiment the continuous ranked probability score
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(CRPS) is used (see Eq. (7.50) in Chap.7). The CRPS error for each feeder is also
divided by the average hourly demand for that feeder to produce the Relative CRPS
or RCRPS.

14.2.2 Data Analysis

As defined here, residential LV feeders are predominantly connected to residential
households but may also connect to a small number of shops, offices, churches,
schools and other small-to-medium enterprises. For these reasons it would be
expected that demand patterns are largely driven by human behaviour and hence
contain strong daily, weekly and annual seasonalities. An example of the demand for
a few of the feeders is shown in Fig. 14.1 for different numbers of consumers con-
nected (labelled with the variable NumMpans) and different numbers of residential
consumers (labelled NumRes). The time series plots identify several features. Firstly
that there is a wide variety of behaviours, even between the two purely residential
feeders (Labelled Feeder 4 and 15 in the plot) with similar numbers of connected
consumers (44 and 42). Although they both exhibit annual seasonality with larger
demands over the Winter period, there is large periods of low demand during the
Christmas and Easter holidays for Feeder 15 but not for Feeder 4. Although this
won’t be considered in this work, it does suggest holiday periods should be treated
as special inputs to the model and this could be an important extension to the more
general models presented here (see Sect. 13.6.2). Another important distinction is
between the largely residential Feeders (4, 10 and 15) and Feeder 23 which is con-
nected to a single commercial consumer. The commercial consumer doesn’t have
strong annual seasonalities, and in contrast to the purely residential feeders, has rel-
atively low demand during the Winter period. These time series have identified two
important properties of these time series, firstly annual seasonality is an important
feature to include in the models, and secondly there is a wide difference between
different feeders which suggests there may not be a one-size-fits-all model which
will be accurate for all feeders.

The time series plots have identified annual seasonality as an important feature to
include in the forecast models. Other inter-annual seasonalities can be identified by
considering the autocorrelation function (ACF) plots (see Sect. 6.2.2). In fact, in each
of the ACF plots there are relatively large spikes at lags of a day (a lag of 24h) and a
week (lags of 196) and multiples of these. Of these, the weekly periodicities are the
strongest autocorrelations as expected. Since there are 100 feeders it is difficult to
consider all of their respective autocorrelation plots, instead particularly important
lags can be given special focus. The weekly seasonality information is considered in
Fig. 14.2, by showing the autocorrelations at lag 196 as a function of the size of each
feeder (average daily demand in kilowatthours (kWh)). This shows that the strongest
weekly autocorrelations are associated to the largest feeders. One explanation for
this is that feeders with larger demands consist of aggregations of larger numbers of
residential consumers, increasing the prominent regularities in weekly behaviour.
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Fig. 14.2 Autocorrelation at lag 168 (weekly seasonal correlation) for all 100 feeders against the
mean daily demand. Reprinted from [1] with permission from Elsevier

Given these weekly periodicities what does the average weekly demand look
like for an LV feeder? Figure14.3 shows an example of the normalised average
weekly demand for three feeders each with forty consumers connected, two of which
are purely residential whilst one consists of a single commercial consumer and 39
residential consumers. The data has been normalised (i.e. divided by the average
weekly demand) so that the distribution of demand over theweek for different feeders
can be compared without being obscured by the magnitude of the demand. The plot
indicates some important features:

• Daily and weekly seasonalities are quite prominent.
• Often weekdays (Monday to Friday) are very similar but Saturday and Sunday
may be different from weekdays and from each other. This important observations
suggests that different days of the week should be treated differently in the models
(see later in Sect. 14.2.3).

• The feeder with the single commercial consumer has different patterns and dis-
tribution of demand compared to the purely residential feeders. During the week
the mixed feeder has its peak demand during the day which indicates that the
commercial consumer is likely dominating the demand. In contrast at the week-
end, the demand more closely resembles a residential feeder with the peak in the
evening which indicates the commercial consumer is no longer dominant and is
likely non-operational or has reduced operation during the weekend.

The final observation suggests that there may not be a strong connection between
one feeder and another and therefore there is less scope for transferring learning
(Sect. 13.4) over low voltage feeders. This will not be tested. Although there is not
many anomalous values in the hourly data there are still some missing values due to
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Fig. 14.3 The average normalised weekly demand for three feeders with forty consumers. The
shaded profile represents a residential feeder which includes a single commercial consumers,
whereas the other profiles (lines) represent feeders with only residential consumers. The profiles
start on Monday

communication and sensor faults. Recall from Sect. 6.1 that anomalous/missing val-
ues can either be retained and then ignored by the model in the training phase or they
can be replacedwith informed estimates. The latter simplifies the training process and
hence was the chosen option here. The above analysis shows there is strong evidence
of weekly periodicities and autocorrelations, and this can be exploited to produce
sensible values from which to impute missing data as described in Sect. 6.1.2. Each
missing value is replaced with an average of the adjacent hourly demand and the
value at the same hour of the previous two weeks. This ensures a final value which
is weighted between the magnitude of the weekly seasonality and the locally recent
demand.

Having now identified important autoregressive and time period effects in the data
it is also worth considering external or exogenous variables. Temperature is often
associated with load, for example, in colder temperatures more heating is required
and therefore more energy is used [2, 3]. Fortunately for this trial, weather data is
readily available from a nearby weather station approximately 16km from the centre
of Bracknell.

The relationship between the demand (in kWh) versus temperature (day ahead)
forecasts (in degrees C) is shown in Fig. 14.4, for one of the feeders (which happens
to have a particularly strong correlation with temperature) for four different time
periods of the day. Also included are the lines of best fit (see Sect. 9.3) and the
adjusted coefficient of determination (see Eq. (6.39) in Sect. 8.2.2) which describes
how strongly the line explains the relationship. There are a few main observations
from this plot
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Fig. 14.4 Load versus temperature for a particular feeder for four different hours of the day. Linear
fits (red lines) and adjusted R2 values are also shown

• There is often a negative correlation between demand and temperature. The colder
the temperature the more demand required. This is likely due to more electric
heating and lighting being required.

• Different hours of the day have different correlations and have different adjusted
coefficients of determination. Since heating behaviour is likely driven by whether
the house is occupied this explains why some hours are more strongly related to
temperature than others.

• Although this feeder has one of the strongest linear correlations with temperature
it still isn’t particularly strong (R2 < 0.56).

As would be expected, the accuracy of the temperature forecasts reduce with
increasing horizon. For the period 31st March 2014 to 28th Nov 2015 the day ahead
temperature forecasts have a MAPE of 11.85% this reduces for every subsequent
daily horizon up to 23.80% MAPE for four days ahead (i.e. between 73 and 96h
ahead) forecasts. If temperature is one of the most important factors for demand then
one would expect that the accuracy of the models would decrease with increasing
forecast horizons.

This section has highlighted some features which may be important and will be
tested within the forecast models introduced in the next section. Of course, further
analysis and techniques could be applied, such as those introduced in Sect. 6.2, to
find further features (for example the possible holiday effects as suggested by the



270 14 Case Study: Low Voltage Demand Forecasts

time series plots in Fig. 14.1). However for the purpose of generating forecasts which
capture the main features of the demand, the current features should suffice.

14.2.3 Model Selection

The features identified in the data analysis are not only important as inputs to the
forecasts models but can be used to inform the choice of models themselves. The
forecast models described here are all based on those presented in Chap.9. Recall
the aim is to generate accurate point and probabilistic, four day-ahead forecasts. By
comparing the forecast models, insights can be gained on which models are most
accurate, but also identify some of the more important features for describing LV
level demand. Throughout the section L1, L2, . . . ,will denote the demand time series
with Lt the demand at time step t . For the probabilistic forecasts 99 quantiles will
be generated for each time step in the forecast horizon.

To begin, four basic benchmarks will be defined in order to properly assess the
inputs and compare to the main forecast models. As described in Sect. 8.1.1 there are
several categories of benchmark models. Since there is no state-of-the-art available
the focus will be on simple and common benchmarks.

Benchmark 1: Naïve Seasonal Persistence (LW)
As described in Sect. 9.1, for time series with seasonalities, a simple seasonal per-
sistance model can be an effective choice of benchmark. For a series which has a
seasonal period of s1 this is defined as

L̂ t+k = Lt+k−s1 . (14.1)

Given that a weekly period is one of strongest auto-correlations in the LV demand
time series (Recall Fig. 14.2) s1 = 168 is chosen. This model will be called LW to
indicate that it is the Last-Week-as-this-week persistence forecast.

Benchmark 2: Simple Moving Average (SMA)
The seasonal persistence forecast captures some of the seasonality in the demand
time series but as shown in Sect. 9.1 it suffers from the natural variations in the
demand from week-to-week. In order to smooth out these deviations the simple
moving average was proposed. This simply takes the average over the same period
of the week for the previous p weeks. It is defined as

L̂ t+k = 1

p

p∑

i=1

Lt+k−i×s1 (14.2)

where s1 = 168 is again the weekly period for hourly data. The main parameter p
is to be found over the training period and p = 5 is found to be the optimal. This



14.2 Residential Low Voltage Networks 271

model retains the seasonality of the LW method but does not suffer from the random
weekly variations. This model is denoted SMA or SMA-pW to indicate the p weeks
of data used in the average.

Benchmark 3: Empirical CDF
A simple probabilistic model can be generated by estimating the distribution of the
historical load data. For each period of the week define an empirical distribution
function (see Sect. 3.4) using all the load data from the same time period over the
final year (using only one year reduces any potential seasonal biases, i.e. selecting
one month more than others) of the historical data. In other words to estimate the dis-
tribution of points for 2PM on aMonday, for a particular feeder select all load values
from 2pm on a Monday. From the resultant empirical distribution, quantiles can the
be selected. The median of this distribution can also be chosen as the corresponding
point estimate. For more details on an empirical distribution see Sect. 3.4.

Benchmark 4: Linear Seasonal Trend Model (ST)
The previous benchmarks focus on the weekly seasonal behaviour. A multiple linear
model as described in Sect. 9.3 is a relatively simple benchmark which nevertheless
can model more sophisticated relationships. Motivated by the analysis in Sect. 14.2.2
a linear model is constructed to produce day ahead forecasts (three other equivalent
models are developed to achieve two, three and four day ahead forecasts respectively)
which takes into account the annual, weekly and daily effects. One of the easiest ways
to include seasonal behaviours is to use sine and cosine functions as basis function
(see Sect. 6.2.5), e.g.

H∑

k=1

⎛

⎝ak + bkη(t) +
P∑

p=1

(ck,p) sin

(
2π pη(t)

365

)
+ (dk,p) cos

(
2π pη(t)

365

)⎞

⎠ ,

(14.3)
where, H is the number of time steps in a day (24 for the hourly data here), η(t) =⌊

t
H

⌋ + 1, is an identifier for the day of the trial (with day 1 the first day of the trial
set: 20th March 2014). The function �x� here is the floor function and rounds down
the number to the largest integer less than or equal to x , so for example, �2.1� = 2,
�−5.4� = −6, and �12� = 12. This simple model is a good start for describing the
annual seasonality but it does not take into account the daily seasonality which was
observed in the data analysis. The model can therefore be updated using dummy
variables (see Sect. 9.3), e.g.

H∑

k=1

Dk(t)

⎛

⎝ak + bkη(t) +
P∑

p=1

(ck,p) sin

(
2π pη(t)

365

)
+ (dk,p) cos

(
2π pη(t)

365

)⎞

⎠ ,

(14.4)
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where Dk(t) is the daily effects dummy variable and is defined by

D j (t) =
{
1, if j = t + Hk, for some integer k

0, otherwise,

This new model captures annual seasonality by effectively producing 24 models,
one model for each hour of the day. The data analysis also showed that there is strong
weekly periodicities in the LV demand time series, hence one more adjustment can
be applied to give the final model

L̂ t =
H∑

k=1

Dk(t)

⎛

⎝ak + bkη(t) +
P∑

p=1

(ck,p) sin

(
2π pη(t)

365

)
+ (dk,p) cos

(
2π pη(t)

365

)⎞

⎠

+
7H∑

l=1

flWl (t), (14.5)

where Wl(t) a weekly dummy variable defined by

W j (t) =
{
1, if j = t + 7Hk, for some integer k

0, otherwise,

The
∑7H

l=1 flWl(t) term adjusts each daily hour model depending on the hour of the
week and this allows the modelling of different behaviours on the weekends and the
weekdays and can capture the features which were observed in Fig. 14.3. One of the
hyperparameters to choose is the number of seasonal terms P . For simplicity and to
avoid overfitting (see Sect. 8.1.2) this is set to P = 3 (Although a validation set as
described in Sect. 8.1.3 could be used to properly choose this).

Although the formula looks relatively complicated the model is actually quite
simple and is still a multiple linear model. Due to the presence of the dummy vari-
ables, there is in fact 168 separate models for each hour of the week for the day ahead
forecasts.

The model can be easily extended to include further inputs. In this case the non-
linear relationship between temperature, Tt , at time t can be included by adding a
simple polynomial of the temperature. In this case, since the relationship between
demand and temperature is not too strongly nonlinear a simple cubic is considered:
α1Tt + α2T 2

t + α3T 3
t , whereα1,α2,α3 are the coefficients for the temperature com-

ponents of the multiple linear model.
Any linear model can be easily extended to a univariate probabilistic model

by using the model within a quantile regression for each quantile as described in
Sect. 11.4. An example of a quantile regression fit on the 6PM data in the training set
for a specific feeder is shown in Fig. 14.5 for the 10, 50 and 90 percentiles. Notice the
main annual seasonality captured by the model and the small increases in demand
that occur on weekends. The variation in the demand may not appear to be smooth
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Fig. 14.5 Quantile regression fit of the simple linear model for the demand at 6PM on a specific
feeder for the 10, 50 and 90 percentiles

and it may be tempting to try and force the data to have amore simple annual seasonal
shape, however it is important to not try and second-guess the patterns in the data as
the only true assessment of the model will be on the test set. Besides, since this is a
benchmark model it is not necessary to try andmake the model perfect. The variation
in the annual seasonality could also be due to the small numbers of complete years
in the training set. It is likely to be smoother if several years of data were available.

The above benchmarks include a number of important properties that have been
discovered by the data analysis, including weather variables, and daily, weekly and
annual periodicities. However, they do not include any autoregressive effects. The
benchmarks will therefore be compared to a number of slightly more sophisticated
models of demand which will include this feature.

Main Model 1: Seasonal Exponential Smoothing (HWT)
The double seasonal exponential smoothing method (or Holt-Winter-Taylor (HWT)
method after its creators) described in Sect. 9.2 is well suited for LV demand forecast-
ing due to its ability to incorporate two levels of seasonality and incorporate localised
autoregressive behaviour. In this case the two periods parameters used are s1 = 24,
and s2 = 168, since daily and weekly seasonalities respectively have been shown by
the data analysis to be two of the most important components of the demand time
series. In the HWT model, recent data contributes more to the final forecast than
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older data, this means that it also implicitly models the seasonal component since
the overall level of the forecast is based on locally recent information.

Once the parameters are trained for this model, a probabilistic forecast can be
generated by bootstrapping the 1-step ahead residuals as described in Sect. 11.6.1.
As with the other models, the median is used as the point forecast model.

Main Model 2: Auto-Regressive Models (ARWD, ARWDY)
Another way to incorporate autoregressive information is to generate an AR model
on the residuals of a sensible forecast model. This is the same process as described in
Sect. 7.5 which describes autoregressive correction for improving forecast models.
More generally, any forecast model μt which estimates a time series Lt can be
improved using this method if there is autocorrelation structure remaining in the
residual time series rt = Lt − μt . In this case an autoregressive model is applied to
the residual time series

rk =
p∑

k=1

φkrt−k + εt , (14.6)

where εt is the error, and the most appropriate order p can be found by, e.g. calcu-
lating the Akaike Information Criterion (AIC), or other information criterion (see
Sect. 8.2.2) for a range of different values p = 1, . . . , pmax.

The choice of underlying forecast model μt is very general. As the focus is on
testing the autoregressive effects, the baseline models will be kept relatively simple.

The analysis showed the importance of weekly seasonality, hence the first choice
of forecast model is a simple linear model

μt =
7H∑

j=1

β jW j (t). (14.7)

where, H = 24h and W j (t) is the period of the week dummy variable

W j (t) =
{
1, if j = t + 7Hk, for some integer k

0, otherwise,

as used in the ST benchmark forecast. The parameters to train are the coefficients β j

and these are estimated by simple ordinary least squares (OLS) (see Sect. 8.2) over
the initial prior year of historical loads. From this model the residuals are calculated
and the estimates from the residual model, r̂t is added to μt to give the final forecast

L̂ t = μt + r̂t . (14.8)

This model will be denoted ARWD to signify autoregressive model with weekday
mean.
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A second forecast model is also consider which adds onto the ARWDmeanmodel
by including a term for annual seasonality seen in the data analysis, this is given by

μt =
7H∑

j=1

β jW j (t) +
K∑

k=1

α1,k sin(2πtk/A) + α2,k cos(2πtk/A) (14.9)

with parameters β j and α j,k , and A = 365H as annual seasonality. The annual sea-
sonality is modelled by a Fourier approximation of order K which is fixed to K = 2
to reduce the complexity. The dummy variableW j (t) is as in Eq. (14.7). As with the
ARWD model the μk is estimated by OLS between the model and the training data.
This model is used to calculate a new residual time series which is then also trained
by OLS and is added to the mean model in Eq. (14.9) to give the final forecast L̂ t

given by
L̂ t = μt + r̂t . (14.10)

as with the ARWD model. This model is denoted ARWDY with the Y signify-
ing the yearly periodicities included through the Fourier terms. Note that separate
ARWD/ARWDY models are used depending on whether the forecasts are one, two,
three or four days ahead.

Notice the subtle differences between the modelling of the seasonalities in this
model versus the STmodel. In the ARWDYmodel the periodicities are not separated
for different periods of the day. If there is significant differences in how seasonalities
effect different times of day then perhaps the ST will perform slightly better. How-
ever, the ARWDY also includes autoregressive effects which now incorporates more
interdependencies between hours of the day. As with the ST methods the weather
effects are included by adding linear terms to the mean equations.

These regression models will serve as point forecasts. To extend them to prob-
abilistic forecasts the slightly more sophisticate GARCH type model, described in
Sect. 11.6.2 will be considered. In this the variance itself will be modelled by con-
sidering the final model residuals εt = L̂ t − Lt which are assumed to have the form
εt = σt Zt where σt is the conditional standard deviation of εt and (Zt )t∈Z is an inde-
pendent identically distributed random variable with E(Zt ) = 0 with Var(Zt ) = 1.
Themethod is described in detail in Sect. 11.6.2 and requires amodel for the standard
deviation. Since the variation in demand is likely to be correlated with the size of the
demand (larger demands have more variation) the same mean model for the point
forecast will be used for the standard deviation. For example in the case of ARWDY
the model will be

σt =
7H∑

j=1

β̃ jW j (t) +
K∑

k=1

α̃1,k sin(2πtk/A) + α̃2,k cos(2πtk/A). (14.11)

where the coefficients β̃ j , α̃1,k, α̃2,k are to be found and the tilde over the parameters
is used to distinguish them from the coefficients from the mean model. Once the
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standard deviation σt and mean L̂ t are found the bootstrap procedure (as introduced
in Sect. 11.6.2) can be employed to generate an empirical distribution (see Sect. 3.4)
for each time step in the forecast horizon. To do this perform the following operation,
for the forecast starting at time step t = N + 1

1. Draw a sample Ẑ , from empirical distribution of the random variables Zt .
2. Scale the variable with the standard deviation to give a residual εN+1 = σN+1 Ẑ .
3. Add this to the mean forecast L̃ N+1 = L̂ N+1 + εN+1.
4. Use this current value within the forecast inputs to generate the forecast for the

next time step L̂ N+2.
5. Repeat this process until forecasts have been generated for all time steps in the

forecast horizon.

The bootstraps generate a multivariate probabilistic forecast, but these can be trans-
formed into a univariate probabilistic forecasts for each time step by fitting a dis-
tribution or calculating the empirical quantiles at each time step from the generated
points (Sect. 3.4).

14.2.4 Testing and Evaluation

A diverse selection of models have been described in Sect. 14.2.3. Since they all have
slightly different structures and use different features as inputs they can be used to
test a variety of hypothesis and assumptions. As discussed in Sect. 14.2.1 there are
the following main questions that can be analysed via the errors on the test set:

1. What is the effect of temperature?
2. How does accuracy change with forecast horizon?
3. How does accuracy change for different feeders?
4. Which features are the most important for an accurate forecast?

Themodels are all trained on a training setwhich covers the dates from20thMarch
2014 to the 30th September 2015 inclusive and rolling four day-ahead forecasts have
been generated for the 53 day testing set starting 1st October 2015. Notice that no
validation set has been used in this case (Sect. 8.1.3) this is for two reasons, firstly all
the models use a relatively small number of parameters and hence have low chance
of being over fitted to the data, hence the model selection step on the validation set
has been skipped for this trial. Secondly, although there is around a year and a half
of data this is not particularly large for a data set with annual seasonality, hence a
validation set would require splitting the data further and would potential reduce the
reliability of the results on the test set. Hence the larger training set increases the
chance of properly training the model parameters.

To begin consider a comparison of the forecast models generated in Sect. 14.2.3.
Table14.1 shows the average score over all four day-ahead forecasts for the entire 53
day test period for all 100 feeders using the MAPE, RMAE and RCRPS measures
(Sect. 14.2).
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First consider the point forecasts (MAPE and RMAE scores). The main observa-
tions from the results are as follows:

• Of the benchmark models the simple persistence model (LW) is the least accurate
whereas the moving average using 5weeks (SMA-5W) and the simple seasonal
regression (ST) are the best performing. This suggests averaging the weekly his-
torical data is useful for producing more accurate models than using a simple
last-week-as-this-week value.

• Of the two best benchmarks the ST forecast is slighlty more accurate than SMA-
5W (only 2% lower MAPE), which suggest including annual seasonality can be
beneficial but only slightly.

• The main models (ARWD, ARWDY and HWT) are more accurate than the bench-
marks. These models all have autoregressive features and hence suggests there are
important temporal interdependencies in the demand time series.

• The ARWD and ARWDYmethods are slightly better than the HWT method. One
of the main differences between these models is that HWT only explicitly uses
the previous lag (although the previous lags are included implicitly as smoothed
historical terms) and thus suggests whilst the most recent previous demand is an
important indicator of the demand, older lags are also important for determining
the current demand.

• There is very little difference between the ARWD and ARWDY forecast mod-
els, with the ARWD performing slightly better, on average, across all measures.
Thus an explicit seasonality term has limited importance in the forecast accuracy
compared to the autoregressive term.

The probabilistic forecasts in fact show the same ranking of the methods as the
MAPE and RMAE, with ARWD ranked as the most accurate method, followed by
ARWDY, then HWT, then ST and then the Empirical method. This is an encouraging
result since it suggests that the accuracy of the point forecasts may be indicative
of the accuracy of the probabilistic forecasts. Probabilistic methods are typically
more expensive to train and therefore if the point forecasts can be used to rank the
probabilistic forecasts this significantly reduces computational cost of identifying
and training these methods. However caution must be exercised as this is only an
empirical observation and hasn’t been established theoretically.

Temperature Effect
Table14.1 does not consider the influence on temperature on the forecast accuracy
of residential LV network demand. As shown in Sect. 14.2.2, there seems to be a
relatively low correlation between temperature and the demand despite the fact that
the temperature is often seen as strongly connected to electricity demand due to its
obvious connection to heating and cooling behaviours. The MAPEs for particular
point forecasts that use and don’t use temperature forecasts are shown in Table14.2.
The table suggests that the weather is not a strong driver of the demand. The bench-
mark method, ST, does improve slightly, however the most accurate models, ARWD
and ARWDY, both become less accurate when temperature is included. Why would
this be the case?



278 14 Case Study: Low Voltage Demand Forecasts

Table 14.1 MAPEs, RMAEs and RCRPSs for all forecast methods over all 4day-ahead horizons
for the entire 53day test period for all 100 feeders. The lowest errors for each score are highlighted
in bold. Reprinted from [1] with permission from Elsevier

Method Error scores %

MAPE RMAE RCRPS

LW 18.67 18.93 –

SMA-5W 15.73 16.77 –

Empirical 16.19 16.96 12.62

ST 15.42 15.42 10.97

HWT 14.84 15.01 11.06

ARWD 14.65 14.67 10.32

ARWDY 14.64 14.80 10.44

Table 14.2 MAPEs for the methods showing the effect of including temperature forecast data in
a selection of methods. Reprinted from [1] with permission from Elsevier

Method None Temperature

ARWD 14.65 16.94

ARWDY 14.6 15.16

ST 15.42 15.16

To further investigate the effect of including temperature as an input, consider
what happens when the MAPE scores are split according to forecast horizon (at
the daily resolution) as shown in Table14.3. For comparison, the MAPEs of the
temperature forecasts themselves are included. The temperature forecast drops in
accuracy by more than 80% from one day-ahead to four days-ahead. Thus if there
is a strong dependence on temperature it would be expected that the models trained
using the temperature would also drop off in accuracy at a comparable rate. In fact
the ST demand forecast accuracy changes very slightly and the ARWDY and ARWD
demand forecasts drop in accuracy only by 4.3% and 5.6%. Further experiments can
be included, for example including lagged temperature values in the demand forecast
models. However, in all cases the results are the same: temperature doesn’t appear to
have a strong effect on the demand forecast accuracy. If we examine the individual
feeders the temperature is only shown to improve the forecasts of 19 out of 100
feeders, and in all cases the MAPEs do not improve by more than 4%.

The inclusion of the temperature also doesn’t improve the probabilistic forecasts.
In Fig. 14.6 shows the reliability plot (See Chap.7) for the probabilistic forecasts
generated using the ARWDY model using no temperature (solid dots), using actual
temperature (unfilled dots) and using the forecast of the temperature (crosses). The
diagonal line shows the expected line if the quantiles generated from the model (i.e.
the predicted spread of the data) matched the empirical quantiles. It is clear that the
model not using any temperature is closest to this line hence showing that including
the temperature (whether forecast or actual) does not in fact improve the forecast.
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Table 14.3 MAPE Scores for different day ahead horizons for a selection of methods which use the
forecast temperature values as inputs. Also for comparison is the averageMAPE for the temperature
forecast themselves. Reprinted from [1] with permission from Elsevier

Method MAPE

Day 1 Day 2 Day 3 Day 4

ARWD 16.51 17.26 17.12 16.89

ARWDY 14.75 15.11 15.31 15.46

ST 15.12 15.21 15.16 15.16

Temperature 8.98 10.57 13.46 16.47
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Fig. 14.6 Reliability plot for the ARWDY forecast for different temperature inputs. Reprinted
from [1] with permission from Elsevier

There could bemany explanations for the lack of influence of the temperature data,
for example, the seasonality could be the main driver of demand and the perceived
correlation between demand and temperature is actual only due to the collinearity
between seasonality and temperature. In fact seasonality may be a confounding vari-
able in this situation (Sect. 13.6.1). In addition, it could be that much of the heating
for the consumers on these feeders use gas instead of electrical boilers and hence
temperature will only have a minimal effect. However, regardless of the reason, for
a forecaster the results for this particular data and test set indicate that temperature
is not a particularly important input for these forecast models. This result also high-
lights an important lesson: even if there is strong intuitive reasons for a explanatory
feature to be important, it does not necessarily translate to importance for the forecast
model. Going forward with the analysis the temperature is not going to be considered
any further.
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Forecast Accuracy and Horizon
Most forecasts become less accurate the further ahead they predict (Sect. 7.3). One
reason for this is that often recent values can be strong indicators of the near future
demand. Further into the future, the most recent observations are much older and
hence not as useful atmaking accurate predictions. If a forecast can retain its accuracy
for longer time horizons into the future then they can be useful for more longer term
planning. For storage applications this means longer term plans can be made for
when to charge and discharge the device.

Table14.4 shows the forecast accuracy (MAPE) for selectedmethods as a function
of days ahead. In other words the ‘Day 1’ column means the average error from
forecasting between 1 and 24h ahead, the ‘Day 2’ column indicates the average
error from forecasting between 25 and 48h ahead etc. For ARWDY the MAPE
errors only increase from 14.34% to 14.87%, i.e. a 3.7% increase. In fact there is
only a small drop in the accuracy for any of these models and this indicates that the
models can offer similar accuracy for estimating tomorrows demand as they do for
four days time. Computationally speaking, this can be quite advantageous as it can
reduce the cost of model retraining with minimal impact on the forecast accuracy.

How does the accuracy change at the hourly level? This time consider the prob-
abilistic forecasts (recall the results are qualitatively similar whether the point or
probabilistic forecasts are considered). Figure14.7 shows the relative CRPS errors
as a function of hourly horizon for selected methods. Recall, the forecasts all begin
at 7AM of each day and hence the first horizon point corresponds to the period
8−9AM. The following observations can be made

• The intraday shape of the errors are similar. Hence the period of the day is a
major indicator of the accuracy of the forecasts. Notice that the areas of highest
errors (largest CRPS) correspond to periods typically associated to high demand
(and hence high volatility), e.g. around the evening period. The overnight periods
(around 10PM until 5AM) have the lowest errors. These are typically periods
of low activity. This supports using a GARCH type model where the volatility
(standard deviation) is correlated with the average demand.

• Although the shapes are similar, there is a small trend of increasing error from one
day to the next.

• Different forecasts are more accurate for different periods of the day. For example,
although ARWD is generally the most accurate model, for some evening periods

Table 14.4 MAPE Scores for each method over each day ahead horizon. Reprinted from [1] with
permission from Elsevier

Method MAPE

Day 1 Day 2 Day 3 Day 4

HWT 14.56 14.83 14.95 15.04

ARWDY 14.34 14.59 14.75 14.87

ST 15.36 15.41 15.44 15.49
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Fig. 14.7 Plot of average Normalised CRPS for selected methods for horizons from 1h to 96.
Reprinted from [1] with permission from Elsevier

the STbenchmark is actuallymore accurate.Hence one potentialway of generating
a more accurate forecast could be to take a combination of several models (see
Sect. 13.1).

Forecast Accuracy and Feeder Size
The final piece of analysis concerns comparing the accuracy across different feeders.
As previously mentioned the feeders come in all shapes and sizes. Some have up to
109 customers connectedwhereas somehave as fewas one. Further there is a diversity
of the types of customers. Some are commercial, but most are domestic and even
amongst the domestic customers there is a wide diversity in their behaviours. Are
you like your neighbour? In addition, there are other loads that are not monitored:
street lights, elevators, cameras, landlord lighting etc. which all contribute to the load
shape and diversity.

Figure14.8 shows the MAPEs for the ARWDY model for each individual feeder
as a function of the average daily demand. Each point represents a different feeder
and some of them have been given different icons to signify different categories of
feeders. An instant observation is that 88 of the feeders closely fit a power law curve
(the bold curve in the plot). The smaller feeders tend to bemore volatile and therefore
have larger relative error values. In contrast the larger feeders have smaller errors.
This can be explained largely by the law of large numbers. The increased size of the
feeder corresponds to larger numbers of customers connected to the feeders, which
result in smoother and more regular demands that are easier to forecast.
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Fig. 14.8 Scatter plot of the relationship betweenMAPE and mean daily demand for two different
forecastingmethods. Feeders which apparently have overnight storage heaters or have usually larger
errors have been labelled separately as OSH and anomalous respectively. Also shown is a power
law fit to the non-OSH/anomalous feeders. Reprinted from [1] with permission from Elsevier

There are twelve feeders which don’t fit the power law relationship. This unusual
behaviour should prompt the investigator to try and better understand why these
feeders don’t fit the general trend. By looking at the average profile of seven feeders
an immediate observation is that the feeders have unusually large overnight demand.
This prompted a consideration of what type of consumers were on these feeders.
In fact it was found that 75−85% of customers on each of these seven feeders had
large numbers of overnight storage heaters (OSH). Overnight storage heaters are
heaters which use energy during the night to store up heat and then release this
energy during the day. These are labelled “Large OSH Feeders” in the plot. Further
to this, two other feeders had smaller overnight demands, their feeders had 62% and
75% of their customers with OSHs, these are labelled “Small OSH Feeders”. This
in itself isn’t enough to explain these feeders not obeying the power law. It also must
be confirmed that none of the other 88 feeders also have large proportions (greater
than 60%) of OSH or profiles which have large overnight demands. In fact this was
found to be the case with these feeders and hence strongly suggests the presence
of a high proportion of OSH effects the accuracy of the chosen forecast models in
unexpected ways. What about the other three anomalous feeders? At least one of
them was further found to be unique. In fact the largest feeder was found to be a
landlord lighting connection for a large office block. The final two are inconclusive
as the connectivity information is incomplete.
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These results are important on a number of levels:

1. The power law relationship suggests that forecasts are more accurate for larger
feeders than smaller feeders. For storage applications this can helpmake decisions
on where to use a storage device. For example, on larger feeders an accurate
forecast can be generated which means a storage device is more likely to be
optimally controlled. In contrast a storage device may be unsuitable for a smaller
feeder since the demand is too volatile.

2. It suggests more bespoke methods are required for those feeders which have
unusually large errors (those with large deviations from the power law relation-
ship). Identifying these feeders creates opportunities for developing improved
forecasts which will increase the opportunities for applications such as storage
control to a wider class of substations and cases.

14.3 Example Code

To demonstrate some of the methods and techniques described in this book, and to
show how they are implemented in real code, a python notebook has been shared to
show some of the steps in analysing data and developing a model. The code can be
found at the following repository: https://github.com/low-voltage-loadforecasting/
book-case-study.

The notebook will briefly demonstrate topics including:

1. Exploratory data analysis using common Python plotting libraries matplotlib1

and Seaborn,2

2. Feature modelling using common Python data library Pandas,3

3. Cross-validation using machine learning library Scikit-learn,4

4. Model fitting and selection (including simple benchmarks) in Python. In contrast
to the previous section the code will focus more on machine learning models
(Chap. 10). In particular, common machine learning packages/libraries such as
Scikit-learn,5 and TensorFlow6 will be presented.

5. Model evaluation and diagnosis.

1 See https://matplotlib.org/stable/index.html.
2 See https://seaborn.pydata.org/index.html.
3 See https://pandas.pydata.org/.
4 Found at https://scikit-learn.org/stable/.
5 Found at https://scikit-learn.org/stable/.
6 See https://www.tensorflow.org/.

https://github.com/low-voltage-loadforecasting/book-case-study
https://github.com/low-voltage-loadforecasting/book-case-study
https://matplotlib.org/stable/index.html
https://seaborn.pydata.org/index.html
https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://www.tensorflow.org/
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14.4 Summary

This chapter has highlighted the major components to creating and analysing a suc-
cessful demand forecast. The chapter has shown, through a residential LV network
application, how to apply the techniques andmethods described in the previous chap-
ters in order to properly design a forecast trial given the available data. Basic plots
such as ACFs and scatter plots have been used to identify key relationships, and these
have been supported through various statistical summaries. Point and probabilistic
forecasts have been considered and compared using a range of error measures. The
comparison of these models was used to identify some of the important features and
key relationships.

The chapter has also highlighted the importance of benchmarks for better under-
standing the forecasts, the role data analysis plays in creating the models but most
importantly the chapter has shown the importance of questioning basic assumptions
about data and explanatory variables. For example, for load forecasting of residen-
tial demand, temperature is often included in all models as it is assumed to be a
driving factor for the demand. However, at least in this specific example, including
temperature could reduce the forecast accuracy.

A code has been shared with this book and described in Sect. 14.3. This helps to
demonstrate how to implement some of the methods and techniques in practice. The
reader is encouraged to experiment with generating their own forecasts. A guided
walk-through is given in AppendixCwhich can be used to go through the main steps,
from data cleaning to testing.

14.5 Questions

For this section, the ask is to run your own forecast trial. You can follow the same
procedure as in Sect. 14.2, or follow the more extensive steps given in Chap.12.
You can also follow the step-by-step walk-through in AppendixC. To perform the
experiment select a demand time series from one of those shared in AppendixD.4.

It is also recommend running the code linked to in Sect. 14.3 to get some ideas
for practical analysis and implementation.
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Chapter 15
Selected Applications and Examples

Forecasts are very rarely produced for their own sake, and are vital for the optimal
performance of a number of applications. This chapter summarises a few such appli-
cations as well as some adjacent areas which will use some of the similar techniques
andmethods presented in this book. Themain focuswill be for battery storage control
which is presented in detail in the following section.

15.1 Battery Storage Control

In a low carbon economy, storage devices are going to be essential for maximum
utilisation of renewable generation. Most renewable energy, such as solar and wind,
are dependent on weather conditions and may not generate at times when the energy
is most needed. Storage devices can be used to ‘shift’ renewable energy by charging
when generation is high and then discharging when demand is high but renewable
generation is low.

One popular form of storage are battery energy storage systems (BESS). Although
BESS have traditionally been an expensive solution, the rapid reduction in cost in
recent years is beginning to make them competitive with traditional reinforcement
such as replacing existing assets or demand side response (Sect. 15.2). BESS can
be deployed for a wide variety of network solutions including, demand smoothing,
voltage control, and phase balancing. In this chapter, the primary focus will be on
the application of peak demand reduction for the purposes of increasing the network
headroom and maintaining the thermal capacity of the network (Sect. 2.2).

Forecasts are used to estimate the distribution of demand throughout the day, in
particular the magnitude and timing of the peaks and troughs (the maximums and
minimums). This can be utilised into a control algorithm so that the storage device
knows the most appropriate times to discharge (at the peaks) and charge (during the
troughs). An illustration of the charging and discharging of a storage device is shown
in Fig. 15.1. The ‘Final demand’ in the plot is the resulting demand on the grid and
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Fig. 15.1 Illustration of how forecasts (black line) are used in storage control. The final demand
on the network (shaded) is created by charging the battery when the forecast estimates low demand
and discharging when the forecast estimates high demand

is a supposition of the original demand and the charging/discharing of the device at
periods of relatively low/high demand.

This process is not as easy as it appears. The demand being considered here is at
the low voltage which is much more volatile than higher voltage (HV) and system
level (e.g. country wide) demand. Low voltage feeders typically consist of around
40 households and hence have higher degrees of uncertainty than HV systems (see
the Case Study in Chap.14 for a detailed analysis of 100 LV feeders). In particular,
an inaccurate forecast may cause a storage device to charge during a high demand
period causing an increasing in the peak.

In this section, the peak demand application is based on the results from a pre-
vious publication by one of the authors and can be found in [1]. Note that some
elements have been simplified to maintain the focus on the impact of forecasts rather
than diving into the details of control theory! In the following sections several fore-
casting methods are developed and then incorporated into a control algorithm which
simulates a BESS.

Although a basic controlmethod is considered in this book,more advanced control
methods such as Optimal Control, Model Predictive Control (MPC), and Stochastic
Model Predictive Control (SMPC) could also be considered which can more opti-
mally solve the peak reduction problem.
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15.1.1 Data

This section will be focusing on a few of the same low voltage feeders as used in
Chap.14 and will use a selection of nine feeders to demonstrate how they can be used
to support the storage control of a BESS. The feeders have been selected essentially
randomly but to include a range of different average demands and volatilities (defined
by standard deviation). A few of the attributes of the chosen feeders are shown in
Table15.1. The chosen feeders are labelled according to their approximate size with
smaller feeders labelled S1, S2, S3, the medium sized feeders, M1, M2, M3, and L1,
L2, L3 the larger feeders.

The monitored data for the selected feeders consists of half hourly energy demand
(kWh) for the period from 10th March 2014 to 15th November 2015. The two-week
period, from 1st to 14th of November 2015, is used as a test period for assessing the
storage control algorithms with the remaining data used for parameter selection (via
cross-validation) and training of the forecast models.

15.1.2 Forecast Methods

This section describes several methods used for the load forecasts made up of a mix
of machine learning (Chap.10) and statistical methods (Chap. 9). Throughout this
application L1, L2, . . . , will denote the monitored demand time series with Lt the
demand at time step t , with the predicted value at the same time step denoted L̂ t .
Let t = N be the last observed time step, and hence the forecast value at the forecast
horizon h will be given by L̂ N+h .

Table 15.1 Summary features for the feeders considered for the analysis in this chapter. This
includes average half hourly demand, standard deviation of demand, and the maximum recorded
half-hourly demand (measured over a year). All values are in kWh. Reprinted from [1] with per-
mission from Springer

Feeder Mean demand STD Max demand

S1 7.57 3.32 36.20

S2 5.42 2.89 30.00

S3 11.15 5.86 42.14

M1 11.11 6.05 64.65

M2 16.43 11.14 63.60

M3 21.58 9.40 111.50

L1 30.97 14.43 204.00

L2 37.13 18.04 205.15

L3 24.26 9.74 110.00
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The forecasts will generate half hourly forecasts for the next two days starting
at midnight prior to the first day. Since the data is the same as in the Case Study in
Chap.14 the same data analysis is relevant here and some of the same models are
included. This also helps identify some of the inputs to include in the models such
as daily and weekly seasonalities, and autoregressive features.

Method 1: Linear Seasonal Trend Model (ST) The first forecast method is based
on the simple seasonal model (ST) presented in Sect. 14.2.3 consisting of annual
seasonal terms, and linear trend for different half hours of the day. This generates a
mean model forecast, μt . This method is labelled ST.

Method 2: ST with Autoregressive Correction (STAR) The ST method does not
utilise the most recent available information. As mentioned in Sect. 7.5, a standard
method for improving these forecasts is to include autoregressive terms. Once the
mean equations are found for the ST model a residual time series can be created
defined by

rt =
Mmax∑

m=1

φmrt−k + εt (15.1)

where rt = Lt − μt and εt is the error term, and μt is the estimate from the ST
method. The optimal order Mmax is found by minimising the Akaike information
criterion (AIC) searched over a maximum order of m = 15H (i.e. an optimal order
of up to 15days is used). The autoregressive terms defines an additional model
labelled as STAR.

Method 3:RandomForest RegressionAs presented in Sect. 10.3.2, RandomForest
regression RFR, is a popular machine learning method, based on combining an
ensemble of decision trees. To forecast the load at time N + h the following features
are used as input:

• Load from the past day. The past H = 48 available demand values (a day)
LN , LN−1, . . . , LN−47. This means that for further ahead forecasts the historical
input data is less recent than for those for shorter horizons.

• Load from past weeks. The load at the same time of the week for the past four
weeks, i.e. the inputs LN+h−nw

, LN+h−2nw
, LN+h−3nw

, LN+h−4nw
where nw = 336,

the number of timesteps in a week for half-hourly resolution data.
• Time of the day. This is defined as an integer between 1 and H . I.e. the half hour
period of the day.

In total there are therefore 48 + 4 + 1 = 53 input features per half hour in the horizon.
Note that this means there is a different forecast model for each period in the horizon
and a different model for each feeder to be trained. That equates to 96 ∗ 9 = 864
models to train for a two day ahead forecast for nine feeders. Thus it would be
desirable to keep the computational cost low if possible.

The number of trees in the ensemble is an important parameter and must be
tuned to its optimal value via cross-validation. To select the optimal number of trees
in the random forest, a validation period of one week prior to the test period is
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used. Ensembles with varying number of trees from 5 to 100 in increments of 5 are
considered. A value of 30 trees in the ensemble of a Random Forest was found to
be sufficient trade-off between forecasting accuracy and performance, since smaller
trees are less computationally expensive.

To train the final forecasts, the Random Forest is trained using the one year prior
to the test period, 1st November 2014 to 31st October 2015.

Method 4: Support Vector Regression Recall from Sect. 10.2 that a Support Vector
Regression (SVR) can solve a nonlinear regression of the form

L̂ N+h = βT�(XN+1) + b. (15.2)

for inputs e.g. Xt = (X1,t , X2,t , ...., Xn,t )
T . This is solved by using kernel functions

K (Xi ,X j ) =< �(Xi ),�(X j ) > where <,> represents an inner product and can
be written in the dual form

L̂ N+h = f (X) =
N∑

t=1

αt K (Xt ,X) + b. (15.3)

The optimal fit for the weights α and the intercept b can be found by minimising a
regularised cost function.

As shown in Sect. 10.2, SVR has two hyperparameters, C and ε, that require
tuning. The regularisation constant C controls the flatness (or complexity) of the
model, a trade-off between empirical error and model flatness, and ε determines the
amount of error allowed by the model (values far from the model expectation line).
In addition, the choice of kernel φ() is also important for the final model. The hyper
parameters can be found via many different methods but in this example, grid search
is considered (see Sect. 8.2.3). To simplify the task the error allowance term is set to
ε = 0.1, and three kernels are considered for the regression: a linear, a radial basis
function (RBF) and a polynomial (Sect. 10.2). As an example, the Gaussian Radial
Basis Function (RBF) given by

K (Xi ,X j ) = exp
(−γ||Xi − X j ||2

)
, (15.4)

The regularisation constant C is restricted to vary from 0.1 to 100. The RBF kernel
has an extra free parameter, γ, which controls the width of the kernel, and varies
from 0.01 to 100. Finally, the degree of the polynomial kernel requires tuning too,
changing from 2 to 5.

As with the RFR model, hyperparameter selection is performed using the week
prior to the test-period as a validation period. The linear kernel is chosen since
it outperforms both the RBF and the polynomial kernels for all values of the C
parameters. With the linear kernel, large values of C > 20 seem to reduce the model
accuracy (in terms of MAPE) and so the regularisation constant is fixed at C = 1 for
all feeders.
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Since the Support Vector Regression forecast is more computationally intensive
than the Random Forest Regression, a shorter training period of eight weeks prior to
the test period, i.e. 5th September 2015 to 31st October 2015, is used.

BenchmarkMethods Informative benchmarks are also included to comparewith the
more sophisticated models (Sect. 9.1). They can also help to understand the factors
which best drive the forecast accuracy and the storage control performance. Further,
because they are computationally inexpensive, if they perform well, they will scale
up well and there is no need to implement more intensive methods.

The first simple model is the simple seasonal average model given as

L̂ N+h = 1

p

p∑

k=1

LN+h−knw
(15.5)

where nw = 336 is the number of time steps in a weekly period. Testing shows that
using p = 5 weeks of data is the optimal hyperparameter. The model is denoted
7SAV5. This model is mainly motivated by the fact that the recent past is usually
important for the actual behaviour.

The other benchmark considered is the seasonal persistence model, which is
technically a special case of the average model but simply uses the last week as the
current week estimate

L̂ N+h = LN+h−nw
(15.6)

This special case is denoted SALW.

15.1.3 Analysis of Forecasts

In this section the accuracy of the forecasts is analysed. A standard error measure,
the mean absolute percentage error (MAPE), is used given by

MAPE (a, f ) = 1

n

n∑

k=1

|ak − fk |
ak

(15.7)

where a = (a1, . . . , an)T ∈ R
n is the actual/observation and f = ( f1, . . . ,

fn)T ∈ R
n is the estimate/forecast. MAPE isn’t ideal or advisable for low voltage

feeders, however this work is replicating a previous piece of work and in fact the
MAPE is strongly correlated with other relative errors such as rMAE (see Sect. 14.2).
However, theMAPE does gives a simple way of comparing and combining the errors
of feeders of different sizes, since the differences are normalised by the size of the
demand. The results presented here are for the entire two-week test period.

The Table15.2 shows the MAPE scores for day ahead forecasts for each method
and each feeder considered in this trial. The best methods tend to be the STAR
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Table 15.2 MAPE for day ahead forecasts for each of the methods described in the main text. The
best score for each feeder is highlighted in bold. Also shown is the average score for each method.
Reprinted [1] with permission from Springer

Feeder Methods

SALW 7SAV ST STAR RFR SVR

S1 20.20 15.54 15.29 14.98 17.41 16.53

S2 34.72 26.81 29.15 28.28 38.86 26.75

S3 24.49 18.97 17.49 17.57 25.20 21.06

M1 21.11 14.78 15.94 13.69 16.73 14.98

M2 27.92 25.69 29.02 24.33 33.03 38.43

M3 17.77 13.58 13.98 12.76 16.32 13.87

L1 15.04 11.30 10.71 10.13 14.81 12.18

L2 30.86 10.76 13.75 11.22 12.83 11.33

L3 18.63 15.37 17.48 14.62 22.79 19.33

Average 23.42 16.98 18.09 16.40 22.01 19.38
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Fig. 15.2 Plot of Forecast errors for each feeder against a Average daily demand on for STAR and
ST methods, and b scaled standard deviation for the STAR method. Also highlighted is feeder M2
(red square) and the S2 feeder (blue square)

methods with a MAPE of 16.40%, although the ST, SVR and 7SAV all produce the
best forecast for a feeder each. This is consistent with the results in Sect. 14.2 where
the best methods utilised autoregressive components.

The inclusion of the autoregressive component in STAR produces, on average, a
10% improvement over the seasonal trend model, ST. Although this improvement
varies depending on the feeder. This is highlighted in Fig. 15.2a which shows the
average error vs the average daily demand of each feeder, for both ST and STAR
methods. This plot shows that there is a negative correlation between size of feeder
and the accuracy of the forecast. This make sense since larger feeders are generally
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Fig. 15.3 Day Ahead forecasts (orange) using STAR method for the Small feeders for first four
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smoother andmore regular and can therefore bemore accurately estimated. However,
there are two feeders S2, andM2,which are estimated quite inaccurately compared to
the others. One explanation for this is suggested in Fig. 15.2b which shows the errors
for the STAR method against the standard deviation (STD) scaled by the average
daily demand. This gives a measure of the relative volatility of a feeder and shows
that these feeders seem to have also high variability, especially M2.

To better understand the errors (and how easy it will be for a storage device to
reduce the peak) a few plots for each feeder are shown for the STAR day ahead
forecasts for the first four days of the test set. Figure15.3 shows the forecasts and the
actuals for the small feeders. These feeders seem to have been forecast accurately in
all cases although S2 is has much more volatility around the forecast value as already
suggested by the high scaled STD value. S1 and S2 seems to have larger demands
in the morning and evening periods compared to S3 which generally only has a
peak demand in the evening. This means that to reduce the daily peak may be more
difficult for S1 and S2 as the battery will have to charge and discharge appropriately
in both periods to reduce the peak (and also avoiding overcharging too early prior
to the main peak and risk creating a larger morning peak). Hence it is expected the
greatest peak reduction for the smaller feeders will be for S3.

Figure15.4 shows the same data but for the medium sized feeders. The forecasts
again seem to do a good job of estimating the general shape of the daily profiles.
As with S2, the high standard deviation in M2 is clear. This suggests that it may be
difficult to maximally reduce the peaks for this feeder. It also appears that it will be
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Fig. 15.4 Day Ahead forecasts (orange) using STAR method for the Medium feeders for first four
days of test data. Also shown are the actuals (black)

difficult to reduce the peaks on M1 by a large percentage. The demand is relatively
large throughout the day suggesting that the feeder is connected to businesses which
operate during this period. Since the storage device will have to reduce demand over
several time steps there will not be enough capacity in the battery to produce large
reductions. Storage applied to M3 will probably produce the largest peak reduction
because the main peak is in the evening and it appears to be accurately forecast.

Finally, Fig. 15.5 shows the day ahead STAR forecasts and actual demand for
the largest feeders. The forecasts once again seem to produce good estimates of the
daily demand of the feeders. Feeder L2 looks like it is a feeder connected to many
or one large business. In addition to the large daily demand (and no demand during
morning or evenings) the first day (a Sunday) has zero demand suggesting this is a
single commercial consumer with no operation on the weekend. This large demand
will mean that the storage device will likely not be able to significantly reduce the
peak. L1 looks very accurately estimated and in fact has the smallest MAPE on
average (Table15.2). This feeder has a major singular peak which seems to regularly
occur in the evening, and therefore there could be significant peak reduction on this
feeder. Finally, L3 has not got a prominent peak on most days and but seems to have
two peaks on most days, one in the morning and one in the evening. A relatively
large peak reduction may not be possible for this feeder if the battery cannot recharge
quick enough to reduce the second peak after reducing the first peak.
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15.1.4 Application of Forecasts in Energy Storage Control

The effectiveness of a storage device at reducing daily peak demands depends on
the specifications of the battery, namely it’s capacity (how much energy it can store),
its ratings (how fast it can charge and discharge), and its age (batteries become less
effective the more they are used, but also how they are used, e.g. performing many
cycles of charging to full and emptying completely). For other applications other
criteria such as location on a feeder, whether there is real-time control etc. can also
be important. TheBESSwill be sized so that theoretically a peak demand reduction of
20% can be achieved. The aim is to see what the effect of future demand uncertainty
has on the performance, and what part forecast accuracy plays. The ratings and
capacity ranges used in this experiment will change for each day in the test set, but
obviously in a real world example it would be fixed and could be sized by analysing
historical behaviour. The required rating will depend on how high the peak is over
any half hour, the higher it is the faster a battery would need to discharge to be able
to reduce it. The relative capacity is also related to the size of the peak, but if there
are large demands during periods adjacent to the peak then these will also have to
be reduced in order to decrease the overall daily peak (This is the case with feeders
M1 and L2 as seen in Figs. 15.5 and 15.4 respectively). This will require a larger
capacity to reach a particular percentage peak reduction. In general the bigger the
demand on a feeder the bigger the capacity required.
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Forecasts are used as estimates of the future demand, and the battery control
algorithm will assume these are true estimates in order to develop a schedule which
maximises the peak reduction. The schedule will be developed at midnight prior to
the day of interest. Further another aim is to have the BESSwith 50% state-of-charge
at the midnight so it is prepared for any early peaks the following day.

Assume that pt is the power outputs (in kW) from the battery then the following
constraints can be defined. First, the ratings are bounded by a maximum charging
rate, Pmax > 0 and a minimum Pmin < 0, i.e.

Pmin ≤ p (t) ≤ Pmax . (15.8)

Next it is assumed that the capacity ct of the battery (in kWh) is also constrained
between a maximum Cmax > 0 and a minimum Cmin > 0, i.e.

Cmin ≤ ct ≤ Cmax , (15.9)

The absolute bound on the capacity is obviously zero (empty battery) but this can
cause deterioration of the battery and so it may be desirable to set the minimum to
be some strictly positive value. Obviously there is also a constraint in terms of how
the capacity and the charging/discharging relate from one time step to the next, with
the capacity changing depending on how much energy was added/removed from the
battery, i.e.

ct+1 = ct + 0.5(ptμ − λ) (15.10)

with

μ =
{

μ if p (t) ≥ 0
1
μ
, if p (t) < 0

}
, (15.11)

where, μ is the efficiency (96% in each direction), λ is the continuous losses within
the BESS (assumed to be 100W). I.e. not all of the energy will be transferred due
to natural battery limitations. Note that the 0.5 in Eq. (15.10) converts the average
power (in kW) into average energy (in kWh) because the data being considered is
half hourly.

The control method presented here uses fixed day-ahead scheduling. As input it
uses the forecasts to decide on the periods of charging and discharging subject to
the constraints above. Let P = (P1, P2, . . . , P48)T be the charging schedule and let
L̂ = (L̂ N+1, L̂ N+2, . . . , L̂ N+48)

T be the predicted demand (both in kW) for the day
ahead.

To create the schedule the following cost function1 is minimised with respect to
P and subject to the forecast, L̂ and the battery constraints (15.8)–(15.11)

F
(
P, L̂

)
= ξp

(
P, L̂

)
+ ξcd (P) (15.12)

1 Note that this is slightly different from the one in the original publication. This simplifies the
presentation and allows focus on the forecast component and its effect.
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The first component represent the new peak size and is the Peak-to-Average cost
component for peak reduction, self-normalised to the initial conditions, defined

ξp(P, L̂) = 1

R

(
maxt=1,...,48(Pt + Lk)

1
48

∑48
k=1(Pt + Lk)

,

)2

(15.13)

where R is the final peak size given an initial schedule Pini tial

R =
(
maxt=1,...,48(Pinitial

t + Lk)

1
48

∑48
k=1(P

initial
t + Lk)

.

)2

(15.14)

The second component aims to achieve a 50% State-of-Charge (SoC) at the end of
the day and is defined as:

ξcd (P) = (c48 − 0.5Cmax )
2

(cinitial48 − 0.5Cmax )2
, (15.15)

where ct is the charge in the battery at time t . The initial end charge based on the
initial schedule is given by cinitial48 .

15.1.5 Results

Average peak reduction performance for each feeder for each day-ahead forecasts
is given in Table15.3. The best possible values assuming perfect foresight are also
shown. This almost gets the maximum possible peak reduction of 20% for all feeders

Table 15.3 The overall peak reduction by applying a storage control to each feeder for each day-
ahead forecast. The best results for each feeder are highlighted in bold. Reprinted from [1] with
permission from Springer

Feeder Best SALW 7SAV5 ST STAR RFR SVR Av

S1 19.36 0.75 0.83 2 2 1.86 1.56 1.5

S2 18.83 0.44 2.41 5.09 4.84 2.63 3.34 3.13

S3 19.91 3.03 5.39 7.86 7.92 4.65 7.34 6.03

M1 18.75 2.42 2.03 4.28 3.76 4.15 2.36 3.17

M2 19.41 2.35 4.56 1.8 3.95 1.37 4.24 3.05

M3 19.76 7.57 10.14 10.56 10.43 6.8 10.5 9.33

L1 19.12 7.91 7.74 12.23 11.16 11.37 9.7 10.02

L2 13.68 1.94 1.12 1.12 2.75 3.22 0.25 1.73

L3 19.49 6.02 7.89 8.36 9.1 6.04 8.97 7.73

Ave. 18.7 3.60 4.68 5.92 6.21 4.68 5.36 5.08
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except L2. The question that could be asked is, why isn’t it exactly 20% since the
future is exactly known? To answer this, recall that the cost function Eq. (15.12) isn’t
just focused on peak reduction, it also has to ensure the battery is charged to about
50% at the end of the day. The closer the peak is to the end of the day the more
this criteria will effect the final peak reduction. Further, if there are multiple peaks
in close proximity to each other then the battery may not have sufficient time to
recharge between peaks and reduce the subsequent peaks.

The table shows that the STAR method produces the largest percentage peak
reduction on average, 4.5% larger than the next biggest (ST). However, it only pro-
duces the biggest peak reduction for three feeders, the simpler model ST actually
has the biggest peak reduction for five feeders (tying STAR for feeder S1). Recall
that STAR was the best forecasting method for most feeders and this highlights an
important point: the accuracy of the forecast doesn’t necessarily mean it will produce
the greatest performance in the application. This can be an easy point to miss. Fore-
cast error measures are usually simple and easy to calculate, in contrast to training
directly via the cost function. However, it would be impractical to assess the forecasts
using this cost functions due to computational costs and so a compromise is to utilise
a related more but simple measure which hopefully still indicates the application
performance.

The last column of the table shows the average peak reduction across all forecasts
(and doesn’t include the “Best”). It shows that although there is a trend of better peak
reduction for larger feeders it isn’t straight forward. This is despite the correlation
between accuracy and feeder size (see Fig. 15.2). Figure15.6a shows the percentage
peak reduction against feeder size for the ST and STAR methods. In this case there
is a trend, with lower peak reduction with larger feeder size, but there is at least
one outlier with large demand but small peak reduction. This is feeder L2, which
as shown in Fig. 15.5, appears to be a single commercial load with no operation on
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Fig. 15.6 Plot of percentage peak reduction for each feeder against a Average daily demand on
for STAR and ST methods, and b MAPE for STAR method. Also highlighted is feeder S2 (blue
square) and M2 (red square)
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Saturday and Sunday. Not only does this mean peak reduction is not possible on the
two weekend days each week, but the other five days have large continuous daytime
demands which mean peak reductions are difficult. To reduce the daily peak demand
on this network requires a much larger storage device which can discharge a lot of
demand over a larger portion of the day.

Figure15.6b shows the peak reduction for each feeder against the MAPE for the
STAR method. In general the more accurate the forecast (the smaller the MAPE)
the bigger the percentage peak reduction. However there are three feeders which do
not fit the trend. One of these is L2 which has already been discussed. The others
are S1 and M1. In fact M1 (Fig. 15.4) has lower peak reduction due to some of the
similar demand features as L2. Again the demand is relatively large throughout the
day, possibly due to several commercial consumers connected to this feeder. The
low peak reduction for S1 is more difficult to explain but there is large demands in
the morning on some days (Fig. 15.3) which may reduce the energy available in the
battery for reducing the evening peak.

Highlighted in Fig. 15.6b is the feeders S2 and M2 which you may recall have
relatively large standard deviation (Fig. 15.2). These have relatively largeMAPE and
also have small peak reduction. The volatility of these forecasts mean that the data is
relatively spikey and thus makes it difficult to provide an accurate forecast. A storage
control schedule based on the forecast may inadvertently charge during higher charge
periods or discharge in relatively lower periods. Therefore these feeders only have
small peak reductions.

It should be noted that there are only nine points in these plots. Thus there should
be some caution with being over interpreting the results and they may not generalise
more widely.

A take homemessage from these results is that there is no one-size-fits all method.
A next step may be to consider taking simple averages of the forecasts to see if this
improves things (Sect. 13.1). In addition, since the data is quite volatile, probabilistic
forecasts may also be a good option (Chap. 11). They may help to improve the results
for the more volatile feeders. In addition, there are more advanced control techniques
out there such as model predictive control which could also be considered.

15.2 Estimating Effects of Interventions and Demand Side
Response

Demand side response (DSR) is deployed by turning on or off demands to react to
possible strains on the network or to ensure energy supply matches energy demand.
DSR could be as simple as turning on a load to increase the demand or, more com-
monly, turning off devices to reduce the demand on the network. For example, heat
pumps could be turned off to reduce the demand during peak hours. Over a short
period of time such interventions may not have a significant impact on the heating
comfort within a home since, unless the home is not well-insulated, the temperature
should not drop too rapidly.
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Fig. 15.7 Illustration ofDSR turn down. Themeasured demand (shaded) is compared to an estimate
without intervention (bold line). The comparison can be used to estimate the energy saved by turning
off devices

An important question for these applications is howmuch energywas saved by the
demand side response implementation? This is also known as “turn-down”. Forecasts
can help answer this question.

Figure15.7 shows both the actual demand after demand side response (shaded),
and what the demand would have been had no intervention been applied (bold line).
The shaded area is the adjusted demand created by the ‘turn-down’ event, for example
by turning off the controllable appliance. The energy saved at 6PM is the difference
in the area between the shaded part and the line. Of course, there is no way to
know what the demand would have been had there been no DSR which means the
consumer has no way of knowing how much energy they saved. In particular, if
they are participating in any energy market schemes, they will not know how much
payback they may have received.

Forecasting is an effective way to estimate the amount of turn-down since a model
trained on “typical” demand can estimate what the demand would have been in the
absense of an intervention (as long as the historical data used for training does not
include interventions either). Thus the turn-down is simply the difference between
the recorded demand (where the intervention has been applied) and the estimated
demand from the forecast model.

The estimate in Fig. 15.7 could be estimated using the time series methods intro-
duced in this book. Of course there will be natural variation in the demand but if the
forecast is reasonably accurate (and this should be tested of course) then accurate
estimates of average turn-down can be produced. Notice that the example in the



302 15 Selected Applications and Examples

figure has a much larger demand than expected after the turn down period. This can
occur in some applications, and is known as a ‘rebound’ effect caused by adjusted
behaviour, or extra demand in order to recover from the turn down. For example, this
could be extra heating applied by the occupants to recover the comfort levels in the
home after the DSR event.

Notice that the model can be trained using demand data from after the DSR event
since the application is in fact a backcast rather than a forecast and the aim is to
estimate, not predict, the demand. This means the estimates may in fact be more
accurate than a normal forecast since more information is available.

15.3 Anomaly Detection

Chapter 6 already discussed ways to identify anomalous data. However, similar
techniques can be used to identify anomalous behaviour rather than errors in the
recorded data. This is important to identify things like energy theft, or whether the
security of supply to vulnerable customers, with for example medical needs, are at
risk (although privacy concerns would have to be considered for such applications).

Such anomalies can be detected if they deviate from the expected demand, and
of course models used to create forecasts can be used to estimate typical demand, or
model the uncertainty. One example would be to develop point forecast models to
estimate the daily demand which can be used to identify unusually large demands
or appliances. Load forecasts can also be used to identify unusually small demand.
This could indicate the monitoring is broken, or that someone is rerouting their
usage to artificially lower their bills! Another example would be to use probabilistic
forecasts (Chap.11), e.g. Quantile forecasts, to identify observations which lie in the
extreme outliers. Large numbers of these variables can suggest something unusual
is occurring.

Sudden large increases in the forecast errors also may suggest sudden changes
in behaviour. This could suggest new occupants, new technologies, or simply large
behavioural changes (for example the covid pandemic has led to many individuals
working fromhome). This information could, in turn, lead to new solutions to support
the network or help network operators plan their infrastructure upgrades.

15.4 Other Applications

There are many other topics which haven’t been explored in the use cases above,
but forecasting has many other applications it can support which are briefly outlined
below
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• Further Battery Applications: Forecasts can also be used to optimise solar PV
connectedbatteries,minimise curtailment loss, controlmultiple batteries in electric
vehicles, and regulate voltage.

• NetworkDesignandPlanning: Forecasts can be used to size assets on the network
(capacitors, substations etc.), and also plan the networks themselves (topology,
location of batteries, sectionalising switches, etc.).

• Electricity Price Forecasts: Energy markets rely on the estimated future demand,
and therefore can be valuable inputs to price forecasting algorithms.

• Simulating Inputs and Missing Data: Instead of the simple imputation mod-
els given in Sect. 6.1.2, more sophisticated load forecast models could be used.
Forecasts can also be used to simulate inputs for other applications, for example
power-flow analysis.

There are many other low voltage applications for load forecasts and these can be
found in the review paper [2].

15.5 How to Use Forecasts in Applications

Below are a few guidelines for experimenting with utilising forecasts in real world
applications:

1. Try to understand what features may be most important for the performance of
the application and try to design the error measure so it represents or aligns with
this.

2. Remember: whatever error measure is used it will not exactly correlate with the
the performance of the application (unless you use the associated application cost
function for the assessment—which is not often practical).

3. Design the forecasts with the application and practicality in mind. If there is
high levels of volatility then perhaps probabilistic forecasts are more appropriate.
However, if there is limited data, or limited computational resources, this may not
be possible and point forecasts may be more appropriate.

4. In the case were probabilistic forecasts seem appropriate, it may be worth consid-
ering point forecasts anyway since the performance difference may be minimal
and the savings in resources may be worth the drop in optimality.

5. Use at least one benchmark forecast but preferably several to help investigate the
performance of the main models.

6. Try to understand how forecast accuracy relates to performance within the appli-
cation. If there is a trend, is it dramatic or small? Possibly drops in accuracy do not
correspond to a large drop in performance. In which case simpler methods may
be appropriate, and there is not much point in spending time perfecting the fore-
cast models. In contrast, if small improvements in forecast accuracy create large
performance changes (or large monetary savings) then perhaps a focus on small
improvements to the forecast is worth the effort (at least until there is diminishing
returns to this effort).
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7. It isworth remembering that in-silico tests are limited as therewill often be awhole
host of other complications and challengeswhen applying themethods in practice.
For example, to control a storage device will require reliable communications
equipment, properly functioning power-electronics, and may involve lags and
delays in processing etc. Ideally many of these considerations should be included
in the design of the algorithms but there will always be some simplifications.
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Appendix A
Stationary Tests for Time Series

Stationarity as introduced in Sect. 5.1, is an important property for time series analysis
and forecasts, especially for applying ARIMA models (Sect. 9.4). Since it is not
obvious that a time series is stationary from the time series plots alone, statistical
test are often applied to provide further supporting evidence. This section briefly
discusses a specific family of stationarity tests: unit root tests.

The Augmented Dickey-Fuller (ADF) and Phillips-Perron unit root tests are two
of the most popular tests for stationarity. Consider a simple ARMA model

L̂ N =
p∑

i=1

ψi L N−i +
q∑

j=1

ϕ jεN− j , (A.1)

then the series L1, L2, . . . , is stationary if the absolute value of all the roots of the
polynomial

1−
p∑

i=1

ψi x
i , (A.2)

are greater than 1 (see [1]). The method tests whether the null hypothesis ‘there is a
unit root’ holds. It center around the concept that a stationary series (i.e. with no unit
roots) should revert to the mean and hence the lagged values should indicate relevant
information for predicting the change in the series. The details are beyond the scope of
this book but the test themselves are often included in the various software packages
and hence are relatively simple to apply. These packages typically give significance
levels at which the null hypothesis can be rejected. For further information on basics
of hypothesis testing see an introduction text such as [2].
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Appendix B
Weather Data for Energy Forecasting

Weather is considered one of the most important variables for forecasting energy
loads. This is becausemany household behaviours and appliances are tied to weather,
e.g.

• When it is too cold then heating is turned on.
• In warm countries, when it is too cold, air-conditioning is switched on.
• How cloudy it is determines how much generation is produced from solar photo-
voltaics.

Combination of weather variables can change the effects. For example, temperature
effects can be intensified when the humidity is high. The temperature therefore
feels higher to people and thus cooling appliances may be turned on at lower actual
temperatures. However, as shown in the case study in Sect. 14.2 the effect can be
unexpected. The case study showed that utilising temperature as an input did not
produce more accurate low voltage level forecasts, suggesting that temperature is not
a large determinant of electricity used. Possible explanationswere given, in particular
that most heating in the UK (the location of the data) are gas heated at this moment
and therefore less likely to be influenced by temperature changes than homes which
are electrically heated. However, behaviours are always changing (Sect. 13.6.3), and
with the increased uptake of heat pumps, electrical load is likely to become more
and more linked to weather effects, especially temperature.

This chapter is a short overview of some of the concepts in weather and weather
forecasts because of its potentially strong links with load. Some of the main variables
are discussed and the different forms they can take. For weather forecasts this section
briefly discusses how they are generated so that the reader can understand potential
sources of error and uncertainty.
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B.1 Weather Variables and Types

Section 6.2.6 has already briefly introduced some of the main variables used in
load forecasting. They include temperature, wind speed, humidity, solar radiance,
visibility. However, other variables such as precipitation and pressure may also be
useful as there are interdependencies between different weather variables which can
create various effects. It should be noted that meteorology is a very complicated
discipline in its own right and most data scientists will have limited knowledge of
weather and climate science. For these reasons if a forecaster wishes to include
more complicated weather variables, or derivations from them, it may be a good
idea to consult with someone who is much more knowledgeable in this area. Having
said that, the standard observed variables listed above are usually sufficient for the
purposes of short term load forecasting, and additional features may only bring
minimal improvements in accuracy. This section will discuss a few features to be
aware of when using weather variables in your models.

One of the first things to understand is the units of your data. Although numerical
weather centres typically use standard units1 for their variables there are common
variations which are not always clear. The most obvious is whether the temperature
is in Celsius or Fahrenheit (or maybe even Kelvin!) which may be more common
depending onwhich country you are from. Pressure data is particularly confusing and
can be written in pascals (the SI units), atmospheres, bars, PSI (pounds per square
inch) or Newtons per square meter.

Each variable often has variations and some of them may be more useful than
others depending on the application and context. For example, the European Centre
for Medium-Range Weather forecasts (ECMWF) has a whole host of variants for
each variable.2 Even an “obvious” variable like temperature has a whole host of
options from which to choose from. Further, variables like radiation has variations
such as longwave radiation, incident shortwave, global horizontal irradiance, direct
normal irradiance etc. Although there is guidance shared by the major numerical
weather prediction centres the task can still be daunting for a novice. It is usually
easier to utilise observation data as it is recorded directly at a particular site. For load
forecasting surface temperature and wind speed (usually split into two orthogonal
components) are usually of particular interest. However, even using these there are
several considerations in how to use and preprocess them (see below and Sect.B.2.2).

Although the forecast data is usually at hourly resolution (observational data may
be more frequent) the form that weather variables are reported can also vary. Some
values are measured instantaneously at each hour, but other variables are averaged
over the entire hour. Care must be taken with the averaged values as it needs to be
clear which hour interval is used to produce the final average. Is it the hour prior to the
timestamped value, or the hour after, or is it formed from values from half hour either
side of the value? This can have implications for how you use this variable in your

1 The so called International System of Units, or SI units.
2 See https://apps.ecmwf.int/codes/grib/param-db/ and try searching for various variables: radia-
tion, temperature.

https://apps.ecmwf.int/codes/grib/param-db/
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model such as, for example, utilising lagged values. The instantaneous variables can
also be problematic since the data may be relatively unusual at the time it is recorded
compared to the rest of the hour.

It should be noted that there are many different weather products but they often
come in three main forms:

1. Observations: As the name suggests these are observed values according to
various sensors. This data couldbe fromweather stations, driftingbuoys, satellites,
or aircraft.

2. Forecasts: These are developed by combining observations with a forecast model
of the atmosphere. These will be described in more detail in Sect.B.2.

3. Reanalysis: After the forecast horizon has passed, the forecast models can be
re-optimised using the actual observations. This effectively gives an estimate of
the past weather states.

Unlike forecasts, which are defined on a predefined grid, observations locations
may be focused in particular areas and hence not near to the site of interest. This
means, even if weather variables are strongly related to demand, the distance from
the site may mean the observed variables are not useful for the model.

If there are several observation sites then it may be that one site improves the
model more than the other, or an improvement could be produced by combining
them (Sect. 13.1). Alternatively, all the variables could be included and amethod such
as LASSO could be used to select the most appropriate variable inputs (Sect. 8.2.4).
Also note that lagged values of theweather time series could be useful for the forecast
models due to lagged effects (especially if the weather variables are not colocated
with the demand site).

B.2 Numerical Weather Forecasts

The production of weather forecasts is known as numerical weather prediction
(NWP). There are many centres around the world which create weather predictions
but many are at least part funded through governments.3 NWP is an computational
expensive process as it requires the optimisation of cost function requiring many
variables. This section dives further into the weather prediction process and how to
understand it.

3 One of the most accurate NWP centres is the European Centre for Medium-Range Weather Fore-
casts (ECMWF). An independent intergovernmental weather prediction centre which is funded
by several European countries. It produces many different forecasting products including a 15day
ahead forecast, and an ensemble forecast.
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B.2.1 How Weather Forecasts Are Produced

Weather prediction combines models of the atmosphere with observations, and a
prior guess on the current state of the atmosphere to find a optimal estimate for the
current state of the atmosphere. This current state is then evolved forward using the
forecast equations to estimate the future states of the atmosphere. The process of
finding the optimal state of the atmosphere is known as data assimilation, and will
be described below.

The models of the atmosphere are essentially a collection of partial differential
equations which includes fluid dynamics, thermodynamics and ocean-atmosphere
interactions. These equations must be trained on the observed data so that they can
produce forecasts for several weather variables, for the next few days (usually at
hourly resolution) for every grid point in the area of interest. Many NWP centres
have to generate forecast for the entire Earth. In fact the grid points are not just at
latitude and longitudinal points but also go several levels above the surface. This
means the forecast models must solve for a state space with an order of at least 108.
The problem is the number of observations is often an order or two smaller than this
(say 106). Therefore the problem is underdetermined. For this reason a prior guess
is required to provide estimates for the full state space.

Onemain form of data assimilation is 4-dimensional variational data assimilation.
It is essentially a least squares estimation (Sect. 8.2.1) with a regularisation term and
can be written as

J (x0) = 1

2
(x0 − xb

0)
T B−1(x0 − xb

0)+
1

2

N∑

k=0

(Hk(x0)− yk)
T R−1

k (Hk(x0)− yk)

(B.1)
Here the aim is to find the initial state, x0, that optimises the cost function above,
where:

• xb
0 is an initial prior estimate of the initial state, also known as the background.
This is usually the previous forecast value or can be a climatological estimate.

• yk are the observations at time step k in the forecast horizon.
• Hk() is a combination of the weather forecast model and an observation operator.
This evolves the current estimate x0 to time step k and then transforms the state to
the same location and type as the observed variable.

• B is the error covariance (Sect. 3.3) for background errors.
• Rk is the error covariance for the observations.

Thus data assimilation is a nonlinear optimisation problem where one component
measure the difference between the observations and themodel forecast of the current
guess and the other component measures the difference between the prior guess and
the current estimate. The background term acts as a regularisation term (Sect. 8.2.4)
and fills in the missing values from the observations. The covariance matrices act as
weights for the optimisation so that the model/estimates fit closer to more precise
values.
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Fig. B.1 Illustration of data assimilation. The final estimate (black) is found by minimising the
difference between the observations (red) and the background estimate (blue). This can then be
used to generate future forecasts (dotted arrow)

The observation operator Hk() is worth considering in a little more detail. Note
that observations are not at grid points and usually observations are not even of the
values of interest (temperature, pressure etc.). Many observations are from satellites
which record information across several levels of the atmosphere. This means the
observation operator must interpolate to the same location amd also transform into
variables which can be compared to the state variables of interest.

An illustration of the data assimilation process is shown for one variable at one
grid point in Fig.B.1. The final estimate is found so that its evolved state is closest
to accurate observations as well as the prior estimate (the background). The future
states are generated by evolving the model even further into the future. The weather
prediction models are usually assessed by considering a skill score (Sect. 7.4).

It is worth noting that weather forecasts are not usually updated at every hour.
Numerical weather forecast computations are relatively expensive and hence are
usually updated once ever six hours. Hence, forecasts at one hour may come from a
different model run than another hour.

Reanalysis data is essentially a forecast model equivalent of the observations.
This is where the data assimilation process is retrained on the historical observations
to create a best estimate of the values of the states at all the grid points. If forecast
data is not available then reanalysis data can be useful as an alternative input to a
load forecast model, although it should be noted that in a real world application only
forecast data would be available.
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B.2.2 Preprocessing

Weather data should be subject to preprocessing like most data. Since weather fore-
casts are defined on a grid this also invites other preprocessing approacheswhichmay
not be possible with most time series data. Below we list some ways preprocessing
of weather data can be used to improve load forecasts using weather data:

• Bias correction: As with any forecasts, weather prediction models may still retain
some biases. These should be corrected before utilisation in a load forecast model
to reduce the errors in the final model. The calibration of probabilistic weather
forecasts can be much more complicated. This topic is investigated in detail in the
book [3] which presents several methods for calibrating probabilistic forecasts.

• Grid point selection: Since weather forecasts are defined on a grid then feature
selection such as LASSO (Sect. 8.2.4) can be used to select which grid point
produces the best forecasts.

• Grid combination: Just as individual forecast models can be improved by com-
bining them (Sect. 13.1), weather forecasts could potentially be improved by com-
bining across the nearby grid points.

• Feature engineering within an individual time series: Exponential smoothing
is a useful feature engineering technique since it can take into account the delay
effects of temperature on load when used within load forecasts. For building load
forecasts this creates a variable that also take into account the thermal inertia. An
example of using exponential smoothing for temperature is given in [4].

• Feature engineering with several different weather variables: Weather vari-
ables can be combined to produce new variables which may be useful for load
forecasting. Two common derived values are wind chill and humidity index which
can better represent the perceived cold and heat better than temperature alone. For
example, wind chill takes into account the combined effect of wind speed and tem-
perature. In cold weather a faster wind speed can make the temperature feel a lot
colder than with a slower speed. This higher wind chill may potentially translate
to more homes turning on heating and hence higher low voltage demands. Sim-
ilarly high humidity can translate to high temperatures feeling hotter than when
humidity is lower.

• Feature engineering across the grid: The grid of data points around a location
containmuchmore information than simply taking an average. Thevariation across
the grid provides further information as well as describes some of the dynamics
within the area. Browell and Fasiolo use a feature extraction technique to produce
probabilistic net load forecasts in [5]. They derived features such as max, min and
standard deviations from the gridded data as inputs to their load forecast models.



Appendix C
Load Forecasting: Guided Walk-Through

This section will consider a forecasting trial and how to select inputs to the models,
test some of the different forecasts presented in this book, as well as evaluate their
accuracy. The context of this walk-through will be to generate day ahead forecasts
(with the forecast origin starting at the beginning of the day). In an ideal situation the
forecast models will be retrained at the start of each new day on the extra available
data, but for this task only train the data once on the training data (for use on the
validation set) and once again on the combined training and validation set (for use on
the test set), to reduce the computational cost of constant retraining. Consider other
training approaches in future experiments. The steps here will largely follow those
presented in Chap.12.

To run through the assessment select an open dataset. There is a list of data
available from here https://low-voltage-loadforecasting.github.io/ but the following
are also possible choices:

• IrishSmartMeter data, available fromhttps://www.ucd.ie/issda/data/commission-
forenergyregulationcer/. This is one of the most commonly used smart meter data
sets.

• London Smart Meter data consisting of half hourly demand data from over 5,500
smart meters in London and is readily downloadable from the kaggle website
https://www.kaggle.com/jeanmidev/smart-meters-in-london. It also consists of
London weather data for several variables including temperature

• The Global Energy Forecasting Competition (GEFCOM) 2014 data [6]. This data
set is at a higher voltage level than smart meter data but does consist of several
years of demand including temperature data. Hence although it is smoother and
more regular than LV level demand, there is a lot of data for training and testing.

To recreate the analysis in this book, individual smartmeter data can be aggregated
to simulate LV feeder level data. Thiswill obviously be smoother than the smartmeter
data but may make the demand easier to predict. Once the data has been collected,
first start by exploring patterns and relationships in the data. This is often one of the
most important parts of the model development.
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1. Quick checks: Before doing anything perform a quick check that there isn’t too
many missing values in the data (Sect. 6.1). If the data has too many gaps then
cut the data down to a shorter dataset with less than 5% missing values. If using
the smart meter data, then choose a few hundred which have at least 95% of their
values. The GEFCOM data should be relatively clean.

2. Split the data: As shown in Sect. 8.1.3 the data needs to be partitioned into
training, validation and test sets. Split the time series into the oldest 60% set of
data as the training data, the next 20% as the validation and the final 20% as the
test set. Other split ratios can be tested but this is sufficient for this initial study.

3. Plot the time series: Plot the training data time series (Sect. 6.2.2), or in the case
of the smart meter data, plot several of them to get a better understand of the
structures in the data. Notice any patterns, is there annual seasonality? If there is,
when is the demand highest and lowest? What about any trends, is the demand
increasing or decreasing over time? Zoom in on a few weeks of data, is their
daily or weekly seasonality? Are the differences obvious for different days of the
week? If there is no obvious seasonality then does it look stationary? In this case,
you may want to consider applying a unit root test (see Appendix A).

4. Seasonal correlations: For the data with suspected seasonality, plot the autocor-
relation and partial autocorrelation plots (see Sect. 3.5). If considering a lot of
smart meter data then it won’t be practical to check each ACF and PACF plot so
instead consider ways of aggregating the information. As was given in the Case
Study (Fig. 14.2, Sect. 14.2), you could draw a scatter plot of the ACF and PACF
for different lags on the x and y axis which may be significant, e.g. the daily and
weekly lags (48 and 336 if considering half-hourly data). Thiswill show a range of
different seasonalities. Focus on particular smart meters which have the strongest
and weakest correlations and plot their ACF and PACF and compare this to their
actual smart meter time series. It may reveal unusual behaviour not previously
expected. Alternatively, consider the autocorrelation and partial autocorrelation
of the average smart meter profile. When considering the ACF and PACF where
are the lags strongest? Is the correlation at lag 336 (a week) larger than the daily
lags (48)?

5. Idenifying anomalous values: In addition to the missing values (point 1), what
are some other anomalous values you can find (Sect. 6.1)? These may have been
visible from the time series plot (point 3), showing very large values, or negative
values (which perhaps should not be in demand data—unless there is some solar
generation connected to the household and the smart meters are showing net
demand). You may want to create a simple seasonal model to identify outliers.
For example, if there is annual seasonality then for half hourly data, fit a simple
seasonal model of the form

a + b +
P∑

p=1

cp sin

(
2π pt

24× 365

)
+ dp cos

(
2π pt

24× 365

)
, (C.1)
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where P = 2 or 3. Taking the difference between the model and the data should
remove the annual seasonality. If there is a linear trend in the series then update
(C.1) with additional linear terms. With the resultant residual series, check which
points are more than three standard deviations from the mean and select these
to be replaced. Of course a more sophisticated model could be chosen using
other features discovered in the analysis (for example by including weekly and
daily components like the ST model in Sect. 14.2.3) but for now just consider this
approach.

6. Pre-processing: For the missing and anomalous values identified in point 1 and
5 they should be replaced with appropriate values. For the data with daily/weekly
seasonality impute (Sect. 6.1.2) the anomalous and missing values in the training
and validation set with averages of the weekly values at the same time period
before and after this value. In other words for a missing value at 2PM on a
Tuesday, take the 2PM on the Tuesday before and the 2PM the Tuesday after.
If there are bigger gaps so that these values are also missing, several runs of the
imputation may be required. Since the data chosen is relatively clean this should
be sufficient.

The above procedure should produce a relatively clean data set with no missing
values which will makes extra analysis much simpler and facilitate creating the
forecast models. In addition, the basic analysis above will have highlighted some of
the core features of the data, in particular whether the data is stationary and different
types of seasonality. The next step is to start a more detailed analysis of other features
of the data and walk through choosing a few models to train and test on the hold-out
test set. These are described by the following points.

• Visualisation of explanatory variables: Start to explore the other relationships in
the training set data. The autocorrelations and large patterns and trends in the data
have already been considered. If there are other explanatory variables available
with the main demand data, such as temperature, then consider some scatter plots,
or if there is lots of potential explanatory variables then consider a pair plot (see
Sect. 6.2.2). What do the relationships look like? Are they linear, or nonlinear.
If they look nonlinear would a simple quadratic or cubic relationship describe
it accurately? Do different hours of the day have different levels of seasonality,
or stronger correlations with the explanatory variables? Try plotting the cross
correlation (Sect. 6.2.3), when do the largest values occur? This will show if some
of the lagged values are also important to include in the models. Also consider the
difference in the days of the week. Plot an average profile for the different days
and see if there is similarities or differences which indicate they should potentially
be treated specifically within the models, e.g. through dummy variables (as seen
with multiple linear regression in Sects. 9.3 and 14.2.3).Whenmodelling potential
relationships consider the adjusted R2 (Sect. 6.2.3),which variables give the largest
value?

• Initial model selection: Choose a selection ofmodelswhichmay be suitable based
on the data analysis. If the data has strong autocorrelations and linear relationships
with explanatory variables then perhaps generate a linear model or ARIMAX type
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model (Sect. 9.4). Consider a number of different choices for the explanatory vari-
ables: perhaps linear, quadratic and cubic versions. If there are strong seasonalities
in the data, then consider the seasonal exponential smoothing models (Sect. 9.2).
If there is strong explanatory variables but no seasonal relationship then consider
a deep neural networks as in Sect. 10.5 or support vector regression (Sect. 10.2).

• Benchmark models: Pick some simple benchmark models based on the features
observed in the analysis (see Sect. 9.1 for common benchmarks). If there is sea-
sonalities in the data then consider a seasonal persistence model, or take a seasonal
moving average model. If there isn’t any seasonality then consider just a simple
persistencemodel. Some of the simplermodels chosen in the previous step can also
be considered benchmarks. Alternatively base some of the benchmarks on a single
explanatory variable. The importance of the benchmarks is to understand some of
the main features which are important to the forecast accuracy and suggest poten-
tial improvements. Hence simpler benchmarks can bemore informative themmore
sophisticated comparisons. On the other hand comparison to the state-of-the-art
can be an extremely useful litmus test for the quality of your forecast.

• Error measures: Choose at least one error measure which will best represent the
accuracy of your forecast (Chap. 7). If dealing with smart meter data, or data which
has many small values then MAPE is unsuitable as the errors will be inflated for
smaller values (or not defined!). If youwish to compare the accuracy across several
time series then choose relative error measures (such as normalised versions of
RMSE or MAE, or even MAPE as long as the values are not small).

• Training: Train the selected models (and benchmarks) on the observations in
the training data (Sect. 8.2), this will also mean training a range of the same
type of models (Neural Networks, multiple linear regressions, etc.) with differ-
ent parameters (for example for neural networks this will mean trying different
numbers of nodes and layers, for multiple linear regression using different input
variables, possibly including transformations of those variables). There are ways
of automatically selecting the inputs or reducing possible overtraining, notably
by using regularisation (Sect. 8.2.4) and in the case of likelihood based models,
using information criteria (Sect. 8.2.2). However, in this walk-through just con-
sider cross-validation (Sect. 8.1.3) for choosing the hyper-parameters and selecting
the final models to test. Most standard packages will train the models according to
standard measures/loss functions (for example, multiple linear regression will use
least squares—(Sect. 8.2)) however perhaps change the target measure to better fit
the error measure chosen in the last part.

• Model/Hyper-parameter selection: Use the trained models to forecast on the
validation set (Sect. 8.1.3) and compare the errors. Select a couple of models
from each family which perform the best (have the smallest errors). Keep all the
benchmarks, but use this opportunity to see which models appear to have the
smallest forecast errors. Which ones are more accurate than the benchmarks, and
by howmuch?Thiswill be interesting to see if there is any changewhen comparing
with the test set. There is usually many models, and variants of the same model,
tested on the validation set and therefore there is a possibility a model is the most
accurate simply by chance alone.
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• Forecasting: Retrain the data on the combined training and validation set. Now
produce the day ahead forecasts over the test set!

• Evaluate the results: Calculate the errors for each method. Now is the time to
start to evaluate the results and better understand what are the differences, the
similarities, and what are the core features which make one model better than
another. Of the most accurate methods what are the common features, are any
of these features in the least accurate methods? What features are missing in the
worst performing methods? Does the inclusion of particular explanatory variables
improve a method? Do different models have different accuracies for different
times of the day?

You’ve now completed a full forecasting trial! However there are several ways to
improve the accuracy and quality of your models. Here are some further things to
try:

• Improvements based on the error analysis: Based on your evaluation of the
results is there obvious ways to improve the results? Do any explanatory variables
show any improvementwhen included versus not included? If they are not included
in the most accurate model then see if they improve them when added. Is there a
feature of the best model that is not in the other models? Perhaps if this feature is
included in other models they will have greater accuracy compared to the current
best model?

• Residual analysis: Plot the residual time series, is there any prominent features
in the series, seasonalities or trend? If so then update the model to include this.
The residual series should be stationary, check with a unit test (Appendix A). Is
there any correlation remaining in the residuals of the most accurate models. If so
then, as shown in Sect. 7.5, there is a simple way to improve a forecast by adding
further autoregressive components to the models.

• Combining models: A common way to improve any individual forecast model
is to combine several forecast models together as shown in Sect. 13.1. Generate a
new forecast by taking a simple average over some (or all) of the models used in
the test set.

• Feature extraction: In the above study features were only chosen by comparing
different models in the validation set. Now consider more automated methods
for selecting the features. Select an ARIMA model, using the Akaike Informa-
tion Criteria (Sect. 8.2.2). Also consider a Linear Model which uses all available
features (and derivations of them) and choose the final variables via a LASSO
model (Sect. 8.2.4). Also consider creating models using other methods but with
the selected variables from the LASSO.

• Probabilistic models: If considering a dataset with lots of historical data, then
probabilistic forecasts are valid ways to improve the estimates of the future
demand.Ahost ofmethodswere introduced inChap.11.Take the linearmodel used
for the point forecast and use it within a quantile regression for 0.05, 0.1, . . . , 0.95
quantiles as described in Sect. 11.4. Residual bootstrapped forecasts are also rel-
atively simple to implement for 1-step ahead forecasts (Sect. 11.6.1). Using the
residual errors add adjustments to each forecast at each time step to create a
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new realisation of the future demand. Repeat this several hundreds (or preferably
thousands) of times to produce a ensemble of forecasts. Now generate empiri-
cal quantiles (Sect. 3.4) at each time step of the day to generate another quantile
forecast (Sect. 5.2). Probabilistic forecasts require a probabilistic forecast measure
such as the Pinball loss score and the continuous ranked probability score (CRPS)
as introduced in Chap.7.

• Your own investigation: Outside of this book there is a wealth of models and
methods which haven’t been covered. To get you startedmoremodels andmethods
can be found from the further reading in Appendix D.1 and D.2.



Appendix D
Further Reading

This book has covered a large number of topics and is an introductory text to fore-
casting for low voltage electrical demand series. It should provide the reader with
sufficient information to design your own trials and implement your own forecasts
methods. Whatever your level of knowledge hopefully there is enough methods and
techniques to teach you something new, but of course there is so much more research
and insightful material out there. This section outlines some further reading which
may be useful for expanding on many of the topics in this book as well as other
methods which were not discussed.

Note that in some cases, especially concerning energy data, the sources are web-
sites which may be subject to change.

D.1 Time Series Analysis and Tools

Chapters 5–7 covered a wide range of techniques for measuring forecast errors,
analysing relationships and extracting features from the data, and methods for model
selection. As a general resource, https://robjhyndman.com/hyndsight/ is a highly
recommended blog by one of the leading experts in time series forecasting, Prof
Rob J Hyndman, which features lots of information on forecasting methodologies
and some of the latest research for time series. In addition he has published a free
e-book [7]4 which presents further details on times series forecasting principles and
techniques, as well as examples of their implementations in R. There are plenty
of books out there on time series analysis but the authors have found the book by
Ruppert and Matteson [1] to be an excellent resource.

For the interested reader the following is some further reading on some of the
specific topics covered in Chaps. 5–7.

4 Available at https://otexts.com/fpp2/.
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• Detection of outliers is a vast topic but a sophisticated algorithm for detecting
outliers can be found [8] which has an accompanying R package called stray.5

• Probabilistic scoring functions is a rapidly developing field. A detailed and
advanced look at these can be found in [9]. A more accessible introduction on
the concepts of calibration and sharpness can be found in [10]. A interesting study
comparing various probabilistic scoring functions for multivariate data can be
found in [11]. An example of using Energy Scores for ensemble forecast evalua-
tion is given in [12] for an offshore wind forecasting application.

• Bias-variance trade-off is one of the most important topics in machine learning
and forecasting. A popular book on machine learning with a very readable and
accessible introduction is [13] which has been made freely available online.6 This
book also has a good overview of many other topics in data science.

D.2 Methods: Time Series and Load Forecasting

Chapters 9–11 has only given a broad overview of forecasting models for time series,
especially with regard to probabilistic methods. For the interested readers there is
extensive resources available for learning more about time series forecasting, in
particular for energy systems. This sectionwill outline some of them. Further reading
for forecasting specifically for LV systems will be given in Appendix D.3.

In addition to Rob Hyndman’s blog as mentioned in the Appendix D.1, some of
the latest research in energy forecasting can be found on TaoHong’s blog, http://blog.
drhongtao.com/, in which he posts regularly about topics in energy forecasting as
well as about the Global Energy Forecasting Competition (GEFCom)7 which he co-
organises. TaoHong is also the co-author on a useful introduction toProbabilistic load
forecasting [14]. Reference [15] is a great text for implementing machine learning
models in python, including accessible introductions to random forest, support vector
machines, artificial neural networks, boosting and reinforcement learning. Although
not specifically focused on energy, the large open access compendiumbyPetropoulos
et al. [16] provides descriptions of a whole array of topics, and further links to
additional literature.

Probabilistic forecast are becoming more common and as a result more packages
are becoming available which are specialised to this. For example, ProbCast is an
R package which provides a number of probabilistic forecasting methods as well
as visualisation and evaluation functionality [17]. This includes implementations of
parametric and nonparametric methods and Gaussian copulas.

In the following references there are further details, examples and theory on some
of the forecast methods and techniques covered in this book.

5 https://cran.r-project.org/web//packages/stray/index.html.
6 See https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-
learning/.
7 See http://www.drhongtao.com/gefcom for more details.

http://blog.drhongtao.com/
http://blog.drhongtao.com/
https://cran.r-project.org/web//packages/stray/index.html
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
http://www.drhongtao.com/gefcom
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• Exponential smoothing: An excellent chapter on exponential smoothing can be
found in [7]. Holt-Winters-Taylor double seasonal exponential smoothing was
first introduced in [18] where it was also applied to short term electricity demand
forecasting.

• ARIMAX methods: Reference [7] also has an overview of ARIMAX models
including the seasonal variants, SARIMA. A detailed investigation into ARIMAX
models can also be found in [1].

• ANN: Reference [13] provides an detailed introduction to neural networks, includ-
ing the technique of back-propagation for training them.

• Classic machine learning methods: An in-depth overview of classic approaches
(though note, not focused on time series forecasting specifically) like additivemod-
els, boosting and random forests, support vector machines, and nearest neighbour
methods, see the book by Hastie, Tibshirani and Friedman [19].

• Random forest: Readersmay be interested in reading papers by one of the origina-
tors of Random Forests [20]. Examples of them used in short term load forecasting
can be found in [21].

• Support vector regression: Reference [22] serves as a good introduction and
overview to support vector regression.

• LASSO: Reference [23] is an excellent example of appling LASSO models to
energy forecasting in the GEFCom2014 competition.

• Generalised Additive Models: Generalised additive models were the major com-
ponents of the two winning models in the Probabilistic load forecasting track of
the GEFCom2014 competition. The winning paper [24] is definitely worth a look
and considers a quantile regression form for the forecast. For the reader interested
into diving deeper in GAMs, the introductory book by Simon N. Wood is invalu-
able [25] who also developed the mgcv (Mixed GAM Computation Vehicle with
Automatic Smoothness Estimation) package in R. We also recommend the free
online resource by Christoph Molnar on “Interpretable Machine Learning” [26]
which has an excellent breakdown of GLMs and GAMs and their pros and cons.

• k-nearest neighbours: An application for short term load forecasting is given in
[27] More specific to the topic of this book this paper gives an example for low
voltage demand forecasting [28, 29].

• Gradient-boosted regression trees: The tutorial in [30] gives an overview of the
basicGradient BoostingMachine and itsmost important hyper-parameters. See the
documentation of XGBoost8 and LightGBM9 for the documentation of the most
popular implementations, their interfaces for different programming languages
and their respective hyperparameters.

• Quantile regression and kernel density estimation: An example of each of these
methods including an example of how to combine them to produce an improved
forecast is given in [31] for medium term probabilistic load forecasts applied in
the GEFCom2014 competition.

8 https://xgboost.readthedocs.io/en/stable/tutorials/model.html.
9 https://lightgbm.readthedocs.io/.

https://xgboost.readthedocs.io/en/stable/tutorials/model.html
https://lightgbm.readthedocs.io/
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• Copula’s and GARCH models are common in financial applications hence [1]
provides an excellent and accessible overview into both techniques and gives
many examples of implementations of the methods in R. A comprehensive look
at copula’s is given in [32].

• Deep learning approaches: A more in-depth overview of deep learning models
(not focused on time series), is available in the free book by Goodfellow, Bendio
and Courville [33]. For more specialised deep learning approaches to time series
forecast see the papers on DeepAR [34] and N-BEATS [35] as well as [36, 37].

Therewas additional techniques and topics discussed inChap.13, includingmodel
combination and hierarchical forecasting. Below is some additional reading on these
topics:

• Combining Forecasts: This topic was introduced in Sect. 13.1. Armstrong [38]
gives several insights into combining forecasts. An advanced method using cop-
ula’s to combine forecasts is outlined in [39]. For the application of load forecasting
an example of combining probabilistic load forecasts is given in [40]. Rob Hynd-
man has recently written a review of forecast combination over the last 50 years
for those interested in the variety of techniques which are available [41].

• Statistical Significance Tests. The Diebold-Mariano test was introduced in
Sect. 13.5. A detailed example of using the Diebold-Mariano test for probabilistic
forecasts is given in [11]. The paper by Harvey, Leybourne, and Whitehouse [42]
dives into significance tests in more detail, including some of the drawbacks and
alternative methods available.

• Hierarchical Forecasting: An area which has gained increasing interest is hierar-
chical forecasting.Asverybriefly introduced inSect. 13.2, this involves forecasting
at different levels whilst considering coherence between them. This topic is con-
sidered in [43] for smart meter data. The GEFCom201710 included a hierarchical
component where the aim was to produce forecasts of zones and then the total
load of ISO New England [44]. A brilliant introduction is also available in [7].

• Special Days: As discussed in Sect. 13.6.2 special days can have very different
behaviour than expected. The authors in [45] presentmethodologies for forecasting
the load on Special days in France.

• Calibrating Probabilistic Forecasts: Processing of probabilistic forecasts was
only briefly mentioned in Sect. 7.5. These techniques are also important for pre-
processing weather forecasts before they are used in load forecasting (Sect.B.2.2).
The book [3] presents several methods for calibrating probabilistic forecasts.

• Other Pitfalls: The authors of Hewamalagea et al. [46] present common pitfalls
and best practice with time series forecast evaluation. This includes benchmarks,
error measures, statistical significance, and issues caused by trends, heteroscedas-
ticity, concept shift/drift, outliers and many others.

10 See http://www.drhongtao.com/gefcom/2017.

http://www.drhongtao.com/gefcom/2017
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D.3 Low Voltage Forecasting Examples

The case study introduced in Chap.14 has highlighted a real forecast example for
low voltage applications. There is numerous other examples of forecasting at the low
voltage level, most of it for individual smart meter (household) level demand. Smart
meter rollouts means there aremanymore forecast papers examining household level
demand and some of these are listed below. The following review paper by two of the
authors of this book investigate the methods, explanatory variables, and applications
in LV forecasting [47]. This will help any readers get up to speedwith the vast amount
of techniques and methods being applied in this area, many of which are described
in this book.

The forecast case study Chap.14 is largely based on a piece of research by one of
the authors and the interested readers is encouraged to read the original papers for
further details and extra analysis. The low voltage feeder forecast work is based on
the paper [48] that also includes the application of various kernel density estimation
methods, which were not presented in the Chap.14.

The literature for low voltage level demand is quite sparse and is mainly focused
on aggregations of smart meter data. An interesting implementation of hierarchi-
cal probabilistic forecasts is presented in [49, 50] which considers several levels
of aggregations of the smart meters. The methods are applied whilst also making
the forecasts coherent with each other (ensuring the sum of the forecasts equal the
forecast of the aggregation). The example of support vector regression (Sect. 10.2)
and random forest regression (Sect. 10.3.2) shared in the storage control in Sect. 15
is based on the paper in [51]. An example of k-nearest neighbours for forecasting
low voltage demand is given in [28].

The majority of smart meter forecasting has been for point forecasts but since
household demand is quite volatile it can be quite difficult to model accurately. An
interesting example of additive models applied to creating probabilistic household
forecasts is given in [52], which also includes applications to household batteries.
In [53] the authors use partially linear additive models (PLAMs) with an exten-
sion to ensure that volatile components of the demand can be modelled. PLAMs
are extensions to generalised additive models (Sect. 9.6). Since GAMs are usually
restricted to smooth components they aren’t necessarily appropriate for household
level demand, and is why extensions may be appropriate and necessary. The authors
in [54] apply a convolutional neural network (Sect. 10.5) approach to forecasting
residential demand.

Due to the volatility of smart meter data, probabilistic forecasting is becoming
increasingly common. An excellent example of short term probabilistic smart meter
load forecasting for kernel density estimation and probabilistic Holt-Taylor-Winters
forecasts is given in [55]. The authors in [56] present an example of producing
probabilistic forecasts for smart meters via a form of quantile regression (Sect. 11.4)
using a gradient boosted method.

Since peaks are often one of the main interesting features in low voltage demand,
an important area of focus is on peak demand forecasting which falls naturally within
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the sphere of Extreme Value Theory. An excellent introduction to these methods and
their application to low voltage level demand are given in the book by Jacob et al.
[57].

Finally for something a little more esoteric the reader is pointed in the direction
of [29, 58, 59]. As shown briefly in Sect. 13.3, due to the volatile and spiky nature
of smart meter data, peaks may shift in position (someone getting home later from
work or university will shift their behaviour accordingly). This means that traditional
pointwise methods for measuring errors (like MAPE, MAE and RMSE introduced
in Chap.7 of this book) may not be appropriate due to the ‘double penalty effect’.
For a peak which is missed slightly (e.g. half an hour too early) will be penalised
twice: once for missing the real peak and secondly for the forecast of a peak which
didn’t occur. The above papers dive further into the adjusted error measure given in
Sect. 13.3 and also consider other updates and variants.

D.4 Data and Competitions

The best way to develop a deep understanding about forecasting and applying various
techniques is to start coding up and practicing with real data. This section will outline
a few publicly available datasets.

One way data is made available is through competitions. In recent years websites
such as Kaggle (https://www.kaggle.com/) have hosted competitions for machine
learning based problems. Competitions provide opportunities to compete against
other participants, trial new methods and learn more about what makes a good fore-
cast. The paper [60] gives a brilliant overview of their history and some of the major
learnings from forecasting competitions. Some of the major time series forecasting
competitions are

• The M-Competitions, one of thefirst time series forecasting competitions, starting
with M1 in 1982. Each competition often has increasing numbers of competitors,
complexity and the number of time series. The M4 competition in 2018 consisted
of 100, 00 time series to forecast [61].

• The Global Energy Forecasting Competition. A forecasting competition started
in 2012 focused on energy demand forecasting, the second in 2014 focused on
probabilistic energy forecasting [6]. The 2017 competition focused on hierarchical
aspects of energy forecasting.

The Global Energy Forecasting Competition review papers are a brilliant resource
for learning about some of the state-of-the-art methods in energy forecasting [6, 62].
See also specific papers on some of the methods, particularly in the probabilistic
tracks [24, 31]. The data has also been made available for the reader to try their own
forecasting methodology (see Tao Hongs blog for this data and others: http://blog.
drhongtao.com/2016/07/datasets-for-energy-forecasting.html).

Unfortunately the GEFCom data is typically of a higher voltage than the topic
discussed in this book. Hence, although they are good for developing your first load

https://www.kaggle.com/
http://blog.drhongtao.com/2016/07/datasets-for-energy-forecasting.html
http://blog.drhongtao.com/2016/07/datasets-for-energy-forecasting.html
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forecasting methods, the demand is typically much smoother than that which is of
interest in this book. Low voltage data is actually much sparser and due to this,
publicly available data sets have often been overanalysed, increasing the possibility
of them being subject to biases and unrealistic foreknowledge about the dataset.

The authors have compiled a list of LV data sets which may be useful for the
readers own investigations.11 However, below is a specific set of publicly available
data contained on that list which may be of use for designing your own models:

1. Irish Smart Meter Data: This is one of the first publicly available sets of smart
meter data. It consists of data from about 4000 smart meters. https://www.ucd.ie/
issda/data/commissionforenergyregulationcer/.

2. London Smart meter data. Contains half hourly demand data for over 5500
smart meters in London as well as local weather data. https://www.kaggle.com/
jeanmidev/smart-meters-in-london.

3. REFIT: High resolution (8 s) electrical load data set for 20 households including
appliances. https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-mea-
surements-cleaned.

4. Open Power System Data Platform: Has data on households data at various res-
olutions including solar data. Also an important resource for other power system
data such as price, weather and demand. https://data.open-power-system-data.
org/.

5. UK-DALE: high resolution (6 s) data for five households including individual
appliance data. https://jack-kelly.com/data/.

6. GREEND: 1s resolution data from8households. https://sourceforge.net/projects/
greend/.

7. Behavioural Energy Efficiency—15min resolution data for 200 households.
https://zenodo.org/record/3855575.

Notice that the majority of this data is smart meter/household level since unfortu-
nately there is very little low voltage data. However a estimate of a LV network can
be simulated via aggregations of smart meters although it should be noted that these
are slightly different and therefore the equivalence isn’t exact [48].

References

1. D. Ruppert, D.S. Matteson, Statistics and Data Analysis for Financial Engineering: With R
Examples. Springer Texts in Statistics (2015)

2. F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester, A Modern Introduction to Proba-
bility and Statistics: Understanding Why and How (Springer, London, 2005)

3. S. Vannitsem,D.S.Wilks, J.W.Messner (eds.) Statistical Postprocessing of Ensemble Forecasts
(Elsevier, 2018)

11 See https://low-voltage-loadforecasting.github.io/, where you can also suggest new or missing
datasets.

https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://www.kaggle.com/jeanmidev/smart-meters-in-london
https://www.kaggle.com/jeanmidev/smart-meters-in-london
https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-mea-surements-cleaned
https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-mea-surements-cleaned
https://data.open-power-system-data.org/
https://data.open-power-system-data.org/
https://jack-kelly.com/data/
https://sourceforge.net/projects/greend/
https://sourceforge.net/projects/greend/
https://zenodo.org/record/3855575
https://low-voltage-loadforecasting.github.io/


326 Appendix D: Further Reading

4. T-H.Dang-Ha, F.M.Bianchi, R.Olsson, Local short term electricity load forecasting: automatic
approaches, in 2017 International Joint Conference on Neural Networks (IJCNN) (2017), pp.
4267–4274

5. J. Browell, M. Fasiolo, Probabilistic forecasting of regional net-load with conditional extremes
and gridded NWP. IEEE Trans. Smart Grid 12(6), 5011–5019 (2021)

6. T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, R.J. Hyndman, Probabilistic energy
forecasting: global energy forecasting competition 2014 and beyond. Int. J. Forecast. 32, 896–
913 (2016)

7. R.J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice, 2nd edn. (OTexts,
Melbourne, Australia, 2018). https://Otexts.com/fpp2. Accessed on July 2020

8. P.D. Talagala, R.J. Hyndman, K. Smith-Miles, Anomaly detection in high-dimensional data
(2019)

9. T. Gneiting, A.E. Raftery, Strictly proper scoring rules, prediction, and estimation. J. Am. Stat.
Assoc. 102, 359–378 (2007)

10. T. Gneiting, F. Balabdaoui, A.E. Raftery, Probabilistic forecasts, calibration and sharpness. J.
Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 69(2), 243–268 (2007)

11. F. Ziel, K. Berk, Multivariate forecasting evaluation: on sensitive and strictly proper scoring
rules (2019)

12. C. Gilbert, J. Browell, D. McMillan, Probabilistic access forecasting for improved offshore
operations. Int. J. Forecast. 37(1), 134–150 (2021)

13. C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics)
(Springer, Berlin, Heidelberg, 2006)

14. T. Hong, S. Fan, Probabilistic electric load forecasting: a tutorial review. Int. J. Forecast. 32(3),
914–938 (2016)

15. A. Gron, Hands-On Machine Learning with Scikit-Learn and Tensor Flow: Concepts, Tools,
and Techniques to Build Intelligent Systems, 1st edn. (O’Reilly Media, Inc., 2017)

16. F. Petropoulos, D. Apiletti, V. Assimakopoulos, M.Z. Babai, D.K. Barrow, S. Ben Taieb, C.
Bergmeir, R.J. Bessa, J. Bijak, J.E. Boylan, J. Browell, C. Carnevale, J.L. Castle, P. Cirillo,
M.P. Clements, C. Cordeiro, F. Luiz Cyrino Oliveira, S. De Baets, A. Dokumentov, J. Ellison,
P. Fiszeder, P.H. Franses, D.T. Frazier, M. Gilliland, M.S. Gönül, P. Goodwin, L. Grossi, Y.
Grushka-Cockayne, M. Guidolin, M. Guidolin, U. Gunter, X. Guo, R. Guseo, N. Harvey,
D.F. Hendry, R. Hollyman, T. Januschowski, J. Jeon, V.R.R. Jose, Y. Kang, A.B. Koehler, S.
Kolassa, N. Kourentzes, S. Leva, F. Li, K. Litsiou, S. Makridakis, G.M. Martin, A.B. Martinez,
S.Meeran, T.Modis,K.Nikolopoulos,D.Önkal,A. Paccagnini,A. Panagiotelis, I. Panapakidis,
J.M. Pavía, M. Pedio, D.J. Pedregal, P. Pinson, P. Ramos, D.E. Rapach, J.J. Reade, B. Rostami-
Tabar, M. Rubaszek, G. Sermpinis, H.L. Shang, E. Spiliotis, A.A. Syntetos, P.D. Talagala, T.S.
Talagala, L. Tashman, D. Thomakos, T. Thorarinsdottir, E. Todini, J.R. Trapero Arenas, X.
Wang, R.L. Winkler, A. Yusupova, F. Ziel, Forecasting: theory and practice. Int. J. Forecasting
38(3), 705–871 (2022)

17. J. Browell, C. Gilbert, Probcast: open-source production, evaluation and visualisation of prob-
abilistic forecasts. 5 (2020)

18. J.W. Taylor, Short-term electricity demand forecasting using double seasonal exponential
smoothing. J. Oper. Res. Soc. 54, 799–805 (2003)

19. T. Hastie, R. Tibshirani, J. Friedman Data Mining, Inference, and Prediction. The Elements of
Statistical Learning. Springer Series in Statistics (2009)

20. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)
21. G. Dudek, Intelligent Systems’2014. Advances in Intelligent Systems and Computing. Short-

Term Load Forecasting Using Random Forests, vol. 323 (Springer, Cham, 2015), , pp. 821–828
22. A.J. Smola, B. Schölkopf, A tutorial on support vector regression. Stat. Comput. 14, 199–222

(2004)
23. F. Ziel, B. Liu, Lasso estimation for gefcom2014 probabilistic electric load forecasting. Int. J.

Forecast. 32(3), 1029–1037 (2016)
24. P. Gaillard, Y. Goude, R. Nedellec, Additive models and robust aggregation for gefcom2014

probabilistic electric load and electricity price forecasting. Int. J. Forecast. 32(3), 1038–1050
(2016)

https://Otexts.com/fpp2


Appendix D: Further Reading 327

25. S.N. Wood, Generalized Additive Models: An Introduction with R, 2nd edn. (Chapman and
Hall/CRC, 2017)

26. C. Molnar, Interpretable Machine Learning: A Guide For Making Black Box Models Explain-
able (Independently published, 2022)

27. A.T. Lora, J.M. Riquelme Santos, J. Cristóbal Riquelme, A. Gómez Expósito, J. Luís
Martínez Ramos, Time-series prediction: application to the short-term electric energy demand,
in Current Topics in Artificial Intelligence ed. by R. Conejo, M. Urretavizcaya, J-L. Pérez-de-la
Cruz (Springer, Berlin, Heidelberg, 2004) pp. 577–586

28. O. Valgaev, F. Kupzog, H. Schmeck, Low-voltage power demand forecasting using k-nearest
neighbors approach, in 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia)
(2016), pp. 1019–1024

29. M. Voß, A. Haja, S. Albayrak, Adjusted feature-aware k-nearest neighbors: utilizing local
permutation-based error for short-term residential building load forecasting, in 2018 IEEE
International Conference on Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm) (IEEE, 2018), pp. 1–6

30. A. Natekin, A. Knoll, Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013)
31. S. Haben, G. Giasemidis, A hybrid model of kernel density estimation and quantile regression

for gefcom2014 probabilistic load forecasting. Int. J. Forecast. 32, 1017–1022 (2016)
32. D. Kurowicka, R. Cooke, High-Dimensional Dependence Modelling, Chap. 4 (Wiley, 2006),

pp. 81–130
33. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016). http://www.

deeplearningbook.org
34. D. Salinas, V. Flunkert, J. Gasthaus, T. Januschowski, Deepar: probabilistic forecasting with

autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020)
35. B.N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-beats: Neural basis expansion analysis

for interpretable time series forecasting (2019). arXiv:1905.10437
36. A. vandenOord, S.Dieleman,H.Zen,K. Simonyan,O.Vinyals,A.Graves,N.Kalchbrenner,A.

Senior, K. Kavukcuoglu,Wavenet: a generative model for raw audio (2016). arXiv:1609.03499
37. S. Bai, J. ZicoKolter, V. Koltun, An empirical evaluation of generic convolutional and recurrent

networks for sequence modeling (2018). arXiv:1803.01271
38. J. Scott Armstrong, Principles of Forecasting: A Handbook for Researchers and Practitioners

(Springer, 2001)
39. Copulas-based time series combined forecasters, Inf. Sci. 376, 110–124 (2017)
40. Y. Wang, N. Zhang, Y. Tan, T. Hong, D.S. Kirschen, C. Kang, Combining probabilistic load

forecasts. IEEE Trans. Smart Grid 10, 3664–3674 (2019)
41. X.Wang, R.J. Hyndman, F. Li, Y. Kang, Forecast combinations: an over 50-year review (2022)
42. D.I. Harvey, S.J. Leybourne, E.J. Whitehouse, Forecast evaluation tests and negative long-run

variance estimates in small samples. Int. J. Forecast. 33(4), 833–847 (2017)
43. S. Ben Taieb, J.W. Taylor, R.J. Hyndman, Hierarchical probabilistic forecasting of electricity

demand with smart meter data. J. Am. Stat. Assoc. 0(0), 1–17 (2020)
44. Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting. Int.

J. Forecast. 35(4), 1389 – 1399 (2019)
45. S. Arora, J. Taylor, Rule-based autoregressive moving average models for forecasting load on

special days: a case study for France. Eur. J. Oper. Res. 266, 259–268 (2017)
46. H. Hewamalage, K. Ackermann, C. Bergmeir, Common Pitfalls and Best Practices, Forecast

Evaluation for Data Scientists (2022)
47. S. Haben, S. Arora, G. Giasemidis, M. Voss, D. Vukadinović Greetham, Review of low voltage
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