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Preface  

This thesis includes one published manuscript (chapter Two). 

Watson, J., Hyder, K., Boyd, R., Thorpe, R., Weltersbach, M.S., Ferter, K., Cooke, S.J., Roy, S., Sibly, R., 

2020. Assessing the sublethal impacts of anthropogenic stressors on fish: An energy‐budget 

approach. Fish and Fisheries. 21, 1034–1045. https://doi.org/10.1111/faf.12487 

Chapter three has been prepared for submission as a journal article (currently prepared for 

submission to Ecological modelling). 

Chapter four has been prepared for submission as a journal article and chapter five has been 

prepared as a TRACE article in support of the individual based model presented in chapter four 

(currently the MS is prepared for submission to Plos One and the TRACE as supplementary material). 
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Abstract  

Capture fisheries provide nutrition, jobs, and recreation across the world. However, the aquatic 

ecosystems in which they operate are under increasing pressures from climate change, fishing 

pressure and other anthropogenic stressors. It is the difficult role of fisheries management to 

consider all the needs of fisheries and threats to these aquatic resources and find an appropriate 

balance. In this thesis, I focus on what happens to individuals in capture fisheries and build a series 

of models to analyse both the fish and the fishers that catch them. I have specifically focused on the 

northern stock of the important commercially and recreationally targeted European sea bass 

(Dicentrachus labrax). By focusing on the individuals, I obtain mechanistic insights into different 

aspects of this fishery and make suggestions on how this could be used in future management.  

Following the theme of the individual, I start by considering sublethal impacts of anthropogenic 

stressors on individual fish. Stressors caused by human activities can cause a range of sublethal 

impacts such as detrimental behavioural changes or injury that could result in reduced growth and 

reproduction. In chapter two I develop an energy budget approach to investigate how these 

sublethal stressors can influence life processes of fish. The method developed partitions impact into 

the initial energetic cost of attempts to escape from the stressor, followed by the energetic impacts 

of any injury or behavioural change, and their consequent effects on life processes. As a case study, I 

assess the sublethal effects of catch and release angling for the European sea bass. Chapter three 

moves on from fish and focuses on the fishing pressure caused by the fishers, where I analyse fisher 

decisions with the aim of gaining a mechanistic insight into fishing pressure. As in chapter two the 

study focuses on the northern UK stock of sea bass, specifically the under 10m fleet that target 

them. This study makes use of a vessel logbook scheme alongside environmental and economic data 

sets to investigate daily decisions made by commercial sea bass fishers. The primary result is the 

important effect of wave height on fisher behaviour, where I found that fewer vessels left UK ports 

during rough weather to go fishing and vessels that did were less successful. The findings from this 

study have implications for management as increases of extreme weather events during the key 

fishing seasons may impact on the ability of the small inshore vessels to land catch limits within 

allowed time periods, which may affect their profitability. In chapters four and five, consistent with 

the individual theme, I present a spatially explicit individual based model (IBM) of the northern stock 

of European sea bass. The IBM is developed from an existing IBM published by Walker et al., 2020. 

The key updates are the addition of a realistic energy budget driven by dynamic maps of 

phytoplankton density and the inclusion of all life stages. The energy budget additions now link 

population dynamics to environmental drivers which ultimately produce emergent population 

dynamics, including key fisheries management metrics. I present some encouraging fits to the ICES 

stock assessment data and suggest the IBM could be an additional tool in stock assessment.  

This research can be used to inform future management of the northern stock of sea bass, especially 

in the context of spatial management. Future works should focus on using the IBM to test a range of 

management scenarios and responses to environmental change and has additional scope to add the 

findings from chapters two and three as sub models related to fisher behaviour and sublethal 

stressors. The approach developed for sea bass could be applied to other species and fisheries, 

which would allow spatial management measures to be tested more effectively.  
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1 General introduction  

This chapter begins by highlighting the general importance of capture fisheries and goes on to 

describe some of the diverse, direct and indirect threats, that global capture fisheries face. The 

highlighted threats include lethal effects, which add to fishing mortality, but also the more nuanced 

sublethal effects that reduce fish growth or reproduction resulting in a population level change. The 

importance of capture fisheries and the threats to it are complex and this chapter introduces the 

role of fisheries management whose task is to make sure fisheries are operating sustainably. After a 

brief overview of stock assessment methods, I outline some of their complexities and indicate where 

there may be room for improvement. In particular, stock assessment methods generally omit wider 

ecosystem drivers of important fisheries metrics, and typical single species stock assessment models 

do not consider spatial-temporal distribution of fish. Some assessments may benefit from 

considering the effects of fisher behaviour, and the impact of other anthropogenic stressors not 

directly related to fishing. The chapter then goes on to discuss how a focus on individuals, as is done 

throughout the thesis, may help complement current assessment models and overcome some 

identified shortfalls. The northern stock of sea bass is then introduced as a worthwhile case study 

that is used throughout the thesis, where I indicate its popularity as a commercial and recreational 

target and show how the declining stock has led to stringent harvest restrictions. The chapter then 

ends with a statement of aims and objectives and an outline of the thesis contents.   

1.1 Value of capture fisheries  

Fisheries around the world are endlessly diverse in both species targeted and the methods used. 

Initially global fisheries can be split into aquaculture and capture fisheries. In this thesis I focus on 

capture fisheries but it is important to note the increasing importance of the aquaculture sector 

which is estimated to equal capture fisheries by 2030 (Brander, 2007; Jennings et al., 2016). We can 

further split capture fisheries into marine and fresh water which represent 87.4 % and 12.6 % of 

captures respectively (estimated for 2017-2019 [FAO, 2020]1). The range and variety of capture 

methods for both marine and freshwater fisheries are highly diverse, ranging from small scale fish 

traps to technologically advanced factory trawlers. Many fishing methods involve a dedicated fishing 

vessel and there is estimated to be 4.56 million globally with ~82% of these motorised vessels 

measuring less than 12 meters in length (estimates for 2018, [FAO, 2020]1). The fisheries industry is a 

major producer of food and employer, estimated to account for 17% of global animal protein 

consumption and employing around 40 million people including many woman especially in fish 

processing sector (estimates for protein 2017 and employment 2018 [FAO, 2020]1). As well as 

providing food and employment, recreational fishing is also mass participatory sport with economic 

value and social benefits globally (Hyder et al., 2018). Many of these benefits to capture fisheries 

(i.e., food, employment, and social benefits) are currently at risk from human activities such as 

overfishing, pollution and global warming. It is crucial that capture fisheries are managed 

successfully to preserve the benefits they currently provide.  

1.2 Threats to fisheries  

A rising human population is creating an ever-mounting pressure on the aquatic environment where 

more people need more food, and their activities create more disturbance. Climate change is 

arguably the biggest threat for marine and freshwater fisheries and is associated with a complex 

 
1 Statistics in Section 1.1 are from FAO, 2020, FAO statistics rely on national reports, many of which are 
incomplete or have a significant amount of uncertainty. 
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combination of lethal and sublethal, direct and indirect consequences. Direct effects of climate 

change can act on fish physiology and behaviour which, in turn, can alter growth, reproductive 

capacity, mortality and distribution (Brander, 2007; Denechaud et al., 2020) but these effects are 

often found alongside other indirect impacts. Climate change can cause indirect changes to the 

structure and composition of important fisheries ecosystems where altered temperatures, currents 

and salinity can cause shifting of aquatic organisms at different trophic levels. These changes can 

alter the ecosystem balance and consequently fishing opportunities (Brander, 2007; Pinsky, Selden 

and Kitchel, 2020). Alongside climate change, the activities associated with global development can 

have major consequences for fisheries. Like climate change, human activities can also be split into 

stressors that have direct and indirect, lethal and sublethal impacts on fisheries. The anthropogenic 

pressures that cause lethal consequences (e.g., pollution fish kills) are often easier to study than 

subtle but also important sublethal effects (e.g., effects on behaviour of noise pollution) for many of 

which the population level consequences are still unknown (Popper and Hastings, 2009; Slabbekoorn 

et al., 2010; Hamilton et al., 2016). 

An obvious and serious threat to fisheries is overfishing, where advancements in fishing methods 

and technology have led to estimates of 34.2 % of marine fisheries being categorised as overfished 

(estimates for 2017 [FAO, 2020]1). Fisheries are often size and species selective where fishers apply 

pressure and reduce the biomass of their target species, but also change their population age and 

size structure, with potential knock on effects through an ecosystems such as removal of key prey or 

predator species (Jennings and Kaiser, 1998; Brander, 2007). Different fishing methods have a range 

of unique unintended pressures on fisheries and the environment where more selective methods 

(e.g., hook and line) reduce levels of bycatch, discard and damage as other potentially less selective 

and more destructive methods such as trawls and seins (Dammannagoda, 2018). In addition to 

commercial fishing, recreational fishing can also have a significant contribution to fishing mortality 

(Radford et al., 2018), and can inflict numerous sublethal impacts such as an injury or behaviour 

change as a result of catch and release angling (Bartholomew and Bohnsack, 2005; Lewin et al., 

2019). It is important to note that these threats to fisheries rarely appear in isolation and it is often 

the combination that makes fisheries vulnerable. For example a heavily fished population that is 

already under pressure will be more vulnerable to new anthropogenic stressors and climate change 

(Brander, 2007). The stresses that fisheries are under are recognised by global leaders, as is 

demonstrated by commitments to sustainable development goal 14.4; to end overfishing of marine 

fisheries (UN, 2020). However, the reality of enforcement of well-meaning mitigating legislation is 

extremely challenging especially as threats to fisheries continue to evolve, for example the effects of 

the COVID-19 pandemic on fisheries is still mostly unknown at the time of writing. 

1.3 Stock assessment and fisheries management.   

Capture fisheries are globally important but are under multiple threats (see sections 1.1 and 1.2) and 

it is the difficult task of fisheries management to balance the needs of consumers, fishers, and the 

environment. Fisheries managers use stock assessment models to assess the current stock state and 

the impacts of fishing mortality that it is subjected to. As with any model, there is some uncertainty 

with any estimations made, and a critical component of fisheries management is to understand and 

communicate this clearly to governments and regulators (Dankel, Vølstad and Aanes, 2016). Once 

the stock state is established and uncertainty is understood, then advice is provided to governments 

to set harvest limits using a range of regulatory methods (e.g., limiting total allowable catch, time 

and spatial catch limits, fishing gear restrictions).  
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To give complete advice for a stock assessment, fisheries management need four pieces of 

information. For a predetermined stock, mangers need to know how many fish are entering a fishery 

(recruitment), how fast they are growing (growth), how many die of natural causes (natural 

mortality) and how many are killed by fishers (fishing mortality). Fisheries scientists rarely have 

complete, long term data of these rates so use a variety of mathematical models fitted to available 

data to estimate missing information (Cadrin and Dickey-Collas, 2014). The data to which models are 

fitted can vary in availability, quality, and quantity, thus the type of models used depend on the 

circumstances with a bespoke solution developed for each stock. Basic catch data is taken from 

fishers targeting the stock, termed fisher dependent data and in some cases can be supplemented 

with more detailed data obtained from fisheries observers onboard fishing vessels or from fisher 

independent data from specific fisheries surveys. In data poor stocks, where the only data available 

is a time-series of catch records, fisheries managers are limited to using a catch only model upon 

which only crude advice can be given (ICES, 2012b). In stocks with more data available, such as age 

and size composition, it is possible to use more sophisticated statistical age structured models, and 

this is also possible in some data weak stocks with stock synthesis models (Methot and Wetzel, 

2013). More sophisticated models can predict metrics such as age structure and population 

dynamics, and by estimating stock size and how it is being impacted by fishing mortality, managers 

can provide more complete advice (ICES, 2012b).  

Fisheries management typically provide advice to governments on harvest for the following year for 

each fish stock, and in a single species stock assessment, each species is considered in isolation and 

species with multiple stocks are assumed to not interact (e.g., the Northern and Mediterranean Sea 

bass stocks). However, some species life history makes them more likely to be caught alongside 

other species and fisheries managers must consider these stocks as a mixed fishery (e.g., Mixed 

Fisheries Advice for the North Sea [WGMIXFISH-NS]2). Mixed fishery stock assessments must 

consider the ecological interactions of species (e.g., predator prey interactions) and the technical 

interactions that lead to the fish ending up in the same net. An additional complication to stock 

assessments is when the species for assessment have a large spatial range and/or migrations that 

span international borders. These fisheries require international collaboration and decision-making 

to negotiate and advise on the allocation of harvest (e.g., The International Commission for the 

Conservation of Atlantic Tunas [ICCAT]3).  

1.4 Limitations to Stock assessment and fisheries management.  

The majority of stock assessments are carried out with single species stock assessment models which 

are designed to use a range of fisheries dependent and independent data to assess the state of a 

fishery (see section 1.3). There are however some limitations to many single stock assessment 

models, namely a lack of spatial components, the omission of wider ecosystem effects and exclusion 

of fisher behaviour and/or any anthropogenic stressors beyond fishing.   

It is well acknowledged that a combination of biological and physical ecosystem drivers influences 

fish populations and the key life processes of recruitment, growth, and natural mortality which stock 

assessments use to underpin harvest advice (Pepin, 1991; Mcbride et al., 2015; Sibly et al., 2015). 

The incorporation of wider ecosystem effects into fisheries management is acknowledged in 

increasing efforts towards ecosystem approach fisheries management (EAFM) and is mostly carried 

out through the use of ecosystem models to provide ecosystem context of single species 

assessments (Collie et al., 2016). Examples include food web based models (e.g., OSMOSE [Shin and 

 
2 https://www.ices.dk/community/groups/Pages/WGMIXFISH.aspx  
3 https://www.iccat.int/en/assess.html  

https://www.ices.dk/community/groups/Pages/WGMIXFISH.aspx
https://www.iccat.int/en/assess.html
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Cury, 2001, 2004] and Ecopath with Ecosim [Polovina, 1984]) and multispecies oceanographic 

models (e.g., Atlantis [Fulton et al., 2004]). Despite the efforts to include ecosystem models in 

management (Collie et al., 2016), a recent worldwide review found that only 24 out of 1200 stocks 

reviewed incorporated ecosystem effects into their assessment (Skern‐Mauritzen et al., 2016). A 

further criticism of most stock assessments is the lack of consideration of any anthropogenic 

stressors other than commercial fishing pressure. In reality, fisheries are exposed to a raft of 

anthropogenic stressors (e.g., noise/chemical pollution and recreational fishing, for more details see 

section 1.2) many of which have the potential to influence population level effects on recruitment, 

growth, and mortality. These combined effects are becoming increasingly recognised as important 

with efforts towards Cumulative Effects Assessments (CEAs), however these are rarely incorporated 

into real-world management processes (Stelzenmüller et al., 2018).   

Single species stock assessments typically provide outputs of stock biomass, but most do not 

attempt to assess how the stock is distributed through both space and time within the year 

(Goethel, Quinn and Cadrin, 2011; Punt, 2019a). Stock assessments that are not spatially explicit are 

limited in their ability to assess the impacts of any spatial management measures such as where to 

place marine protected areas or in their ability to manage stocks of species that travel/migrate 

across international borders (Bailey et al., 2013; Punt, 2019b). In addition to the spatial distribution 

of fish, single species models do not account for the spatial and temporal distribution of fishing 

pressure. To build models to account for this typically requires an understanding fisher behaviour 

defined as how fishers make decisions and react to bio-physical and socio-economic drivers 

(Andrews, Pittman and Armitage, 2020) and has been included in some ecosystem models (e.g., 

Atlantis [Fulton et al., 2014]). It is important to note that the construction, parametrisation and 

validation of the complex ecosystem models that include the criticisms of single species assessment 

(i.e., spatially explicit fish and fisher distribution and the inclusion of wider ecosystem drivers) 

require a large amount of data and can create large uncertainties that are problematic with tactical 

management decisions (Hyder et al., 2015; Collie et al., 2016; Johnston et al., 2019). Despite the 

data limitations of ecosystem models, attempts to understand how ecosystem drivers, fisher 

behaviour and anthropogenic stressors impact fish populations should where possible be included in 

fisheries assessments leading to potentially more complete advice.  

1.5 The potential contributions of the individual approach  

Fisheries are generally managed through single species stock assessment models (see section 1.3) 

many of which are limited by the lack of spatial components, the omission of wider ecosystem 

effects and non-incorporation of fisher behaviour and/or any anthropogenic stressors beyond fishing 

(see section 1.4). As mentioned in section 1.4, there are examples of ecosystem models that 

incorporate many of these omissions and are then used to provide ecosystem context to single 

species stock assessments (Collie et al., 2016; Ward et al., 2016). Ecosystem models populations can 

be split into species-based models, where populations are grouped by species that play a similar role 

within the ecosystem and size based models where species are grouped together by size regardless 

of species (Pethybridge et al., 2019). In some ecosystem models populations are then further split 

into life stages and or age group where each subset is assumed to have the same characteristics i.e., 

all age 1 fish of the same species will have the same body length and mass (Christensen, Walters and 

Pauly, 2005; Hyder et al., 2015). However, the cases described above do not resolve the population 

to the individual and do not include intra cohort or life stage heterogeneity, which can limit the 

mechanistic capability of models in their support of fisheries management (Ward et al., 2016). To 

include heterogeneous responses of individuals within groups, models must include traits that are 

adaptive to drivers of the fishery such as differing intra cohort growth rates that are influenced by 
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local food availability and/or sea temperatures. Models that include these adaptive traits can be 

considered more mechanistic with the potential to reveal emergent population dynamics that may 

otherwise be missed by models that are not resolved to the individual. Models that do this and split 

populations into discrete individuals are termed individual or agent-based models (IBM/ABM).  

IBMs use a bottom-up approach and simulate a population of discrete individuals where a 

combination of individual state and environmental variables determine the behaviour of each 

individual (DeAngelis and Grimm, 2014). IBMs have been widely used in fisheries to study both the 

fish and the fishers of a fishery, and allow for heterogeneity of intracohort individuals such as fishers 

within the same fleet or fish within the same age class. By modelling the individuals mechanistically, 

the outputs from the model are emergent with realistic links to their original drivers. To provide a 

mechanistic link between environmental drivers and fish population, one widely accepted approach 

is to use energy budgets (Sibly et al., 2013; Boyd, Walker, et al., 2020). Here agents that represent 

fish ingest energy from the model environment (which can be inputted from remote sensing data 

[Boult et al., 2018; Boyd et al., 2020]), and then spend it on life processes including maintenance, 

growth, and reproduction. When conditions are suboptimal such as low abundance or high 

competition for resources in the model environment, individuals will differ in their vital rates. For 

example, individuals frequenting areas of reduced food abundance and cooler temperatures would 

grow and reproduce relatively slowly. In this way, the collective individual circumstances are all 

added together and the population dynamics that result are emergent from the drivers that caused 

the changes. Similarly when modelling fisher behaviour as part of an IBM (Jules Dreyfus-León, 1999; 

Millischer and Gascuel, 2006; Bastardie et al., 2010) agents can represent fishing vessels and react 

individually to drivers of fisher behaviour such as weather, fuel price, or fish price, and the emergent 

total fleet response will have consequent impacts on fishing pressure.  

The emergent outputs from the mechanistic process within an IBM make them a particularly useful 

approach to investigate fisheries response to novel environments such as climate change or new 

fisheries management measures. In reality, to construct, parametrise and validate IBMs requires 

huge amounts of data, and this complexity can lead to uncertainty which can make IBMs unsuitable 

tools for making tactical management decisions (Collie et al., 2016; Johnston et al., 2019). Here it is 

not suggested that IBMs will replace the current stock assessment models, but they may be useful as 

complementary tools allowing fishers management to provide more complete advice.  

1.6 Northern stock of Sea bass  

Sea bass are a generalist predator with a large geographical range and can be found from southern 

Norway to Northern Africa (Child, 1992; Pickett and Pawson, 1994). The sea bass in the northern 

stock on which we focus (North Sea, English Channel, Celtic Sea and Irish Sea) are relatively slow 

growing and long lived only maturing between 4-6 years (35-49cm) and  have a maximum age of 30 

years (Pickett and Pawson, 1994; Froese and Pauly, 2017). Sea bass are both highly eurythermic and 

euryhaline, these traits facilitate the complex life cycle and migratory behaviour seen in this stock 

(Pickett and Pawson, 1994). The life cycle begins with a pelagic larval stage lasting between 2 and 4 

months as eggs, larvae and yolk-sac larvae drift from offshore spawning grounds to the UK coastline 

(Jennings and Ellis, 2015). During these younger life stages the youngest 0-groups remain in 

estuarine nursery areas and then move into deeper water as they grow (Pickett and Pawson, 1994). 

Young fish from 0-4 then tend to inhabit nursery areas in estuarine and nearshore environments 

before joining the mature population (Kelley, 1988). Once juvenile sea bass reach maturity they 

begin to undergo seasonal migrations between inshore summer feeding areas and offshore 

spawning grounds in the winter months (Pawson et al., 2007). Seasonal migrations are triggered by 
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sea surface temperature (SST) changes (Pawson and Pickett, 1987) and sea bass move rapidly from 

costal feeding areas to offshore spawning grounds between October and December and begin 

returning around April - May to feed at the coast again (Pawson and Pickett, 1987; Pawson et al., 

2007). The timings of migrations vary interannually and between populations around the UK 

(Waldman, 1995) depending on annual SST. There is strong evidence that feeding areas are specific 

to local populations (Pawson et al., 2008; Doyle et al., 2017) and spawning generally occurs in the 

Celtic and southern North Seas between February and June. The geographic extent of spawning is 

thought to be bounded by a minimum temperature of 9°C meaning it can expand as the season 

progresses and in warmer years (Pickett and Pawson, 1994).  

The UK commercial sea bass fishery has emerged in the last 50 years and was of little importance 

before 1970 (Pickett and Pawson, 1994). Growth through the 1970’s and 1980’s saw sea bass 

landings valued at £3-4 million by 1986, which accounted for a high proportion of the earnings of 

many inshore fishermen (Pawson, Pickett and Smith, 2005). Even from this short period of increased 

popularity, the increased exploitation was already contributing declining sea bass stocks (Pawson, 

Pickett and Smith, 2005). In 1990 the UK government responded to increasing evidence of the 

decline and implemented regulations to protect immature sea bass; a minimum landing size of 

38cm, minimum mesh size and protected designated nursery areas from fishing pressure (Pawson, 

Kupschus and Pickett, 2007). The northern sea bass stock did then recover, attributed in part to the 

new implemented measures but also due to climate warming, known to be associated with good 

recruitment (Pawson, Pickett and Smith, 2005). Despite the new regulations the number of the 

vessels exploiting sea bass continued to increase (Pawson, Pickett and Smith, 2005) until 2010 when 

a drastic change saw stocks fall into a rapid decline (ICES, 2021). The decline continued for eight 

years and has since been attributed to a combination of weak year classes and fishing mortality 

(ICES, 2021). The decline led to the implication of emergency management measures in 2015 (ICES, 

2021). The management measures included; a ban on pelagic trawling during spawning season; an 

increase in minimum landing size (increase from 36 to 42 cm), monthly quotas by gear type, 

recreational bag limits, closed fishing areas and a closed season February to March (Ares, 2016). The 

majority of vessels that now target sea bass in 2020 are under 10m, likely as a consequence of 

increased legislation. These vessels are limited to targeting sea bass with hook and line and landing a 

small amount of regulated bycatch from fixed gill nets, seins and trawls (GOV.UK, 2020). As well as 

an important commercial fishery, sea bass are a popular target for recreational anglers, who were 

responsible for around one quarter of total sea bass removals in 2012 (Radford et al., 2018). Similar 

to commercial fishing, recreational targeting of sea bass has undergone changing restrictive 

legislation including: mandatory catch and release for periods of the year, minimum landing sizes 

(MLS), and bag limits that force anglers to release fish once there limit is achieved (GOV.UK, 2016, 

2017, 2018, 2019, 2020). 

The northern sea bass stock is assessed by the International Council for the Exploration of the Sea 

(ICES) using Stock Synthesis 3; an analytical Age- and length-based assessment model (ICES, 2019). 

SS3 includes: 1) a population dynamics model, which simulates growth, mortality, and recruitment; 

2) an observation model which relates the population dynamics to available data; and 3) a statistical 

model which estimates parameters to maximise the goodness of fit between population model and 

data. To define the status of the stock, the assessment compares outputs from SS3 to maximum 

sustainable yield reference points (MSY, the largest long-term yield that can be taken without 

causing the stock to collapse) and keeping the stock within safe biological limits (termed 

precautionary reference points). Once the state of the stock is assessed, outputs from SS3 are used 

as a starting point to explore population effects of catch scenarios. From these, management can 

determine the catch advice for the following year (ICES, 2021). SS3 includes a “multi-area” 
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configuration, where a stock can be sub-divided into multiple geographical units (Methot and 

Wetzel, 2013) but this can be considered limited in its ability to model the outcome of any spatially 

explicit management measures (e.g., Sea bass fishery spatial closures in key of spawning areas 

[GOV.UK, 2020]). 

1.7 Aims and objectives.  

In this thesis, I focus on individuals in the hope of obtaining mechanistic insights into the fish and 

fishers of the northern stock of sea bass. This stock is a worthwhile and interesting case study 

because: 1) European sea bass (Dicentrarchus Labrax) is an important recreational and commercial 

target species in the UK; 2) The fishery has been in decline since 2010 and has been subject to a high 

level of regulation; and 3) The majority of commercial vessels that target sea bass in this stock are 

under 10m with potential vulnerability to environmental, economic, and legislative changes. 

Specifically, I aim to: 

1. Investigate the sublethal impacts of anthropogenic stressors on fish.  

2. Assess fisher decisions and how these impact sea bass fishing pressure in the northern stock.  

3. Develop an existing individual based model of the northern stock of sea bass to provide 

emergent spatially explicit population dynamics driven by remote-sensed data of 

phytoplankton abundance and sea surface temperature.  

1.8 Thesis outline  

Chapter one has outlined and introduced; capture fisheries, the role of fisheries management, some 

of the limitations to stock assessment methods and how an individual approach may be of benefit to 

addressing some of these limitations. This introductory chapter then introduced the northern stock 

of sea bass as a case study and stated the aims and objectives of this thesis, which is to use an 

individual approach to gain mechanistic understanding of the fish and the fishers of the northern sea 

bass fishery. From here I will outline and introduce the content of the remaining chapters two to six.  

Chapter two uses an energy budget model to investigate the energetic impact of anthropogenic 
stressors on fish. Here I present a general method for using the population consequences of 
disturbance framework (PCoD) to investigate how stressors influence ecologically relevant life 
processes of fish. The developed method partitions impact into the initial energetic cost of attempts 
to escape from the stressor, followed by the energetic impacts of any injury or behavioural change, 
and their consequent effects on life processes. As a case study, the study assesses the sublethal 
effects of catch and release angling for the European sea bass. The energy budget model described is 
not intended to replace existing experimental approaches but does provide a simple way to account 
for sublethal impacts in assessment of the impact of a range of stressors and aid development of 
robust management approaches.  

Chapter three moves on from fish and focuses on fishers to analyse fisher decisions and aims to gain 
a mechanistic understanding of fishing pressure. This chapter presents a methodology with which to 
identify the factors affecting fisher decisions and success as well as quantifying their effects. The 
method splits fisher behaviour into the decision of when to leave port, and the success of the fishing 
trip. To illustrate the method, I describe its application to the under 10-meter fleet targeting sea 
bass in the UK. The study documents the effects of wave height and shows with increasing wave 
height fewer vessels left port to go fishing. The study also reports on the effects of other factors and 
discusses the results in the context of management of sea bass and other small-scale inshore 
fisheries. 
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Chapters four and five maintain the theme of the individual and present a spatially explicit individual 

based model (IBM) which models population dynamics and simulates spatial distribution of the 

northern stock of European sea bass. In chapter four I present the model as a prepared manuscript 

and chapter five is a TRACE document which gives full technical model details. The model presented 

in chapters four and five is a major enhancement to an existing IBM of the northern stock of sea bass 

published by Walker et al., 2020. The key updates are: 1) addition of a realistic energy budget driven 

by dynamic maps of phytoplankton density; and 2) inclusion of all life stages (i.e., pelagic stages, 

juvenile and mature fish). The new model retains the original model purpose of being spatially 

explicit and, with the energy budget additions, link population dynamics to the environmental 

drivers (sea surface temperature and phytoplankton density) which ultimately produce emergent 

fisheries management metrics: spawning stock biomass and both number and mass at age. The 

model is calibrated against data from the current stock assessment.   

Chapter six discusses findings from the thesis, starting with a summary of findings obtained by my 

focus on individuals. Finally, the thesis ends with a discussion of some caveats and suggestions of 

how the work I have completed could be built upon.  
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2 Assessing the sublethal impacts of anthropogenic 

stressors on fish: An energy‐budget approach. 

2.1 Abstract  

Fish are increasingly exposed to anthropogenic stressors from human developments and activities 
such as agriculture, urbanization, pollution and fishing. Lethal impacts of these stressors have been 
studied but the potential sublethal impacts, such as behavioural changes or reduced growth and 
reproduction, have often been overlooked. Unlike mortality, sublethal impacts are broad and 
difficult to quantify experimentally. As a result, sublethal impacts are often ignored in regulatory 
frameworks and management decisions. Building on established fish bioenergetic models we 
present a general method for using the population consequences of disturbance framework (PCoD) 
to investigate how stressors influence ecologically-relevant life processes of individual fish. We 
partition impact into the initial energetic cost of attempts to escape from the stressor, followed by 
the energetic impacts of any injury or behavioural change, and their consequent effects on life 
processes. As a case study, we assess the sublethal effects of catch and release angling for the 
European sea bass (Dicentrachus labrax, Moronidae), a popular target species for recreational 
fishers. The energy budget model described is not intended to replace existing experimental 
approaches but does provide a simple way to account for sublethal impacts in assessment of the 
impact of recreational fisheries and aid development of robust management approaches. There is 
potential to apply our energy budget approach to investigate a broad range of stressors and 
cumulative impacts for many fish species while also using individual-based models to estimate 
population level impacts.  

2.2 Introduction 

With a rising human population and increasing global development, there is a worldwide 

intensification in the production of food, energy and resources with manifold effects on biodiversity 

and the environment (Vitousek et al., 1997). Aquatic ecosystems and their fish populations are 

under increasing pressure from stressors associated with these human activities (Gordon et al., 

2018; Reid et al., 2019). The stressors that affect fish can be direct (e.g., exploitation via commercial 

and recreational fishing) and/or indirect (e.g., chemical pollution and anthropogenic noise), and 

consequences for fish range from mortality to more subtle sublethal effects on physiology or 

behaviour that impact fitness (Gordon et al., 2018; Lewin et al., 2019). Stressors can also interact in 

unpredictable and complex ways and may cause impacts that are greater than the sum of the 

individual stressors (Crain, Kroeker and Halpern, 2008).  

Where possible, sublethal effects should be documented experimentally. Experimental studies 

investigating the effects of stressors on fish include: anthropogenic noise (Popper and Hastings, 

2009); pollution (Hamilton et al., 2016); climate (Cheung et al., 2012; Heath et al., 2012); commercial 

fishing (Cook et al., 2019); and recreational fishing (Bartholomew and Bohnsack, 2005; Lewin et al., 

2019). Experimental approaches to investigate sublethal effects are mostly divided into 

containment, telemetry or mark-recapture studies (Ferter et al., 2015). Containment experiments 

keep live fish in a container, expose them to stressors, and observe their impacts. Containment gives 

direct access to all the study fish, but many species are not suited to be kept in cages (e.g., large or 

highly mobile and migratory species [Braun, Kaplan, Horodysky, & Llopiz, 2015; Horodysky, Cooke, 

Graves, & Brill, 2016]) and the effects of containment can obscure effects of the experimental 

stressor (Pollock and Pine, 2007). In telemetry studies, captured fish are tagged to record data on 

their behaviour after release (Pollock and Pine, 2007; Donaldson et al., 2008) and often only fish in 
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good condition are tagged due to the cost of tags and ethics (Graves, Luckhurst and Prince, 2002; 

Brattey and Cadigan, 2004). Mark-recapture experiments are similar to telemetry but only use 

identification tags, requiring that the fish be recaptured, when its condition can be compared with 

the last time it was caught (Pollock and Pine, 2007). Both telemetry and mark-recapture have the 

advantage of taking place in the fish’s natural environment but are often limited by difficulties 

tagging and following sufficient numbers of fish. In addition, stressor responses can be difficult to 

distinguish from the impacts of the surgery or tagging event (Pollock and Pine, 2007; Ferter et al., 

2015). So while experimental studies have made important contributions to our understanding of 

stressors, there are often major logistical limitations to what can be achieved, especially considering 

the broad range of sublethal impacts, in contrast to mortality effects where the individual either 

survives or dies. Despite the challenges, it is important to understand all stress effects including 

sublethal effects if we are to recognise and mitigate our impact on global fish populations.  

A complementary approach to investigate sublethal effects from human stressors is to use 

modelling. One important approach is the population consequences of disturbance framework 

(PCoD) (National Research Council, 2005). This framework was originally developed for marine 

mammals, but is broadly applicable and appropriate for most fish species (National Research 

Council, 2005). The effects of stressors are first quantified on individuals, where effects depend on 

the severity and duration of exposure which generally varies between individuals within a 

population. Effects of exposure eventually affect fitness traits – survival, fecundity, and growth – and 

these in turn lead to effects on population dynamics. The success of this approach for marine 

mammals has been evaluated by Pirotta et al., 2018, who reviewed cases where the PCoD 

framework was used and the modelling methods that were available at each step from individual 

effects of stressor exposure through to population level impacts. Here we focus on the first stage of 

the PCoD framework, evaluating the sublethal effects of stressors on individual fish. Building on 

previous established bioenergetics modelling approaches (Beyers, Rice, & Clements, 1999; Beyers, 

Rice, Clements, & Henry, 1999; Beyers & Rice, 2002; Rice, 1990) we introduce a novel modelling 

approach that considers energy losses from both the initial escape and response to the stressors, not 

analysed in previous studies, and longer-term reduction in energy intake due to injuries or 

behavioural change. To do this, we employ widely-used fish energy budgets to calculate the effects 

of stressors on the fitness traits of growth and reproduction. The success of the energy budget 

approach derives from the similarities among fish in rates at which they can acquire energy from 

food and allocate it to vital processes. The same functional forms often well describe rates of energy 

uptake, maintenance (metabolism), growth and reproduction, and how they scale with body size 

and temperature (Peters, 1986; Clarke and Johnston, 1999; Sibly et al., 2013). If information is 

known, or can be assumed, about behavioural responses to stressors, this can be incorporated into 

an energy budget model. For example, if an individual exhibits avoidance behaviour such that it does 

not feed, the resultant effects on growth and reproduction can be modelled using an energy budget. 

In this way, certain physiological and behavioural responses to stressors can be evaluated 

simultaneously. This is useful because it is nearly impossible to separate behaviour and physiology 

when studying wild fish in the field (Cooke et al., 2014). 

One example of a stressor with potentially appreciable sub-lethal effects is marine recreational 

fishing. Marine recreational fisheries are a high participation activity with large economic and social 

benefits, but can also have significant impact on fish stocks (Cooke and Cowx, 2004; Hyder et al., 

2018; Radford et al., 2018). As a result, recreational fisheries need to be incorporated into fisheries 

assessment and management (Hyder et al., 2018; Arlinghaus et al., 2019). Catch and release (C&R) 

fishing is the process of capturing a fish with a hook and line, and then releasing the live fish back 

into the water assuming that the fish will survive (Arlinghaus et al., 2007). C&R is an important tool 
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for the management of recreational fisheries (Policansky, 2002; Arlinghaus et al., 2007). Global 

release rates have been estimated to be 60% in recreational fisheries, corresponding to about 30 

billion released fish annually (Cooke and Cowx, 2004; Horodysky, Cooke and Brill, 2015). Release 

rates have also been shown to be high in the European marine recreational fishery and are driven by 

regulatory (e.g., bag limits) and voluntary (e.g., conservation ethic) processes (Ferter et al., 2013). 

Hence, understanding the sublethal impacts of marine recreational fisheries is important for 

effective fisheries management. One good example is the European sea bass (Dicentrachus labrax, 

Moronidae). Sea bass are a valuable and important target species for commercial and recreational 

fisheries in Europe (Herfaut et al., 2013; Vázquez et al., 2014; Radford et al., 2018) and assessments 

have shown a rapid decline in one important stock (northern sea bass) over the past decade 

attributed to a combination of poor recruitment and fishing mortality (ICES, 2018a). This has led to 

management measures since 2015 for both recreational and commercial fishers, including closed 

areas and seasons, an increase in the minimum landing size, and monthly bag and boat limits that all 

increase the numbers of fish being released (ICES, 2018a). Post-release mortality of recreationally 

caught sea bass is low (Lewin et al., 2018) and has been included in the assessment of northern sea 

bass (ICES, 2018b). However, no attempt has been made to assess the sublethal effects of C&R as the 

impacts on reproduction and growth are difficult to measure, despite the large numbers of fish that 

are being released.  

The challenges with assessing sublethal effects of stressors experimentally, the lack of 

comprehensive modelling approaches, the increasing number and magnitude of stressors, and 

management decisions increasing the number of fish released, all mean that new approaches are 

needed to ensure sustainable exploitation of fish stocks. Here we focus on the first stage of the PCoD 

framework, evaluating the sublethal effects of stressors on individuals. We introduce a modelling 

approach that uses energy budgets to calculate the effects of acute stressors on the fitness traits of 

growth and reproduction. We build on previous approaches and model the energetic costs of: 1) 

escaping the stressors effects and 2) longer-term reduction in energy intake due to injuries or 

behavioural change. Reduced feeding results in reduced energy available for growth and 

reproduction, and so reduced fitness which is estimated using the model. We illustrate the potential 

use of this general model through an application to C&R fishing for sea bass in the UK.  

2.3 Methods 

2.3.1 The energy budget model 

An energy budget model was used to investigate the sublethal effects of anthropogenic stressors on 
individual fish. The energy budget model was implemented in R (version 3.4.3) (R Core Team, 2012).  
The total energetic cost of exposure to the stressor (𝐶𝑇) is the sum of the energy required to escape 
from the stressor (𝐶𝐸), for fish that attempt escape, and the energetic cost of injury or behavioural 
change caused by the stressor (𝐶𝐼) (all units of energy are kJ): 

  𝐶𝑇 = 𝐶𝐸 + 𝐶𝐼         (1) 

The energy used to escape the stressor (𝐶𝐸) is dependent on the extent of swimming in excess of 
normal, the incurred oxygen debt, and the duration of escape. Assuming a fish swims at maximum 
speed to escape the stressor (see Discussion for further discussion of this assumption), then:  

  𝐶𝐸 = 𝐴𝑇(𝛿𝑅∞ + 𝑂∞)        (2) 

where 𝛿 is duration of escape (seconds), 𝑅∞ is the metabolic rate of the fish swimming at maximum 
speed (watts), and 𝑂∞ is the cost of repaying the maximum post exercise oxygen debt (kJ). 𝐴𝑇  

adjusts for temperature using the Arrhenius function of absolute temperature 𝑇: 
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where 𝐸𝑎 is activation energy (0.5eV [Gillooly et al., 2006]), 𝐾 is the Boltzmann constant (8.62*10-5 
eV T-1), and 𝑇𝑟 is an arbitrary reference temperature. For background and justification of equations 3 
and 5-8 see Sibly et al. (2013). 

Injury or behavioural change due to exposure to the stressor will impact on energy uptake by 
reducing preference and/or ability to feed, causing changes to rate or quality of food acquisition, 
and a subsequent reduction in energy available for life processes. If ∆ is the percentage loss in 
energy uptake due to injury or feeding impediment and 𝐸𝑖  is the annual energy uptake by each fish, 
then: 

  𝐶𝐼 = ∆𝐸𝑖/100         (4) 

We define the sublethal impact of the stressor as the percentage reduction in maximum annual rate 
of growth or reproduction caused by the stressor. This is achieved by modelling the allocation of 
energy to different vital processes (i.e., maintenance, growth, and reproduction) and assessing the 
consequences for annual growth or reproduction relative to what can be achieved by a fish attaining 
maximum rates. After calculating the energy needed to cover maintenance, growth and 
reproduction (Eqn 5-8), the allocation of energy between different processes is complex (Sibly et al., 
2013). For simplicity, we take a worst-case approach, assuming the stressor acts solely on either 
growth or fecundity. So, when considering effects on growth, we assume fecundity has been 
prioritised and fecundity costs are the same as in an unstressed fish. But when considering effects on 
fecundity we assume growth is prioritised and growth costs are the same as in an unstressed fish. 
This allows computation of maximum sublethal effects on growth or reproduction without 
introducing assumptions about how energy is partitioned among the processes. 

Maximum rates of ingestion, maintenance, growth and fecundity all depend on the size of the fish 
(Sibly et al., 2013), taken here as size at the start of the year. The annual amount of energy that can 
be ingested each year (𝐸𝑖) is: 

  𝐸𝑖 = 𝛼𝑀
2

3𝐸𝑓𝜎𝐴𝑇         (5) 

where 𝛼 is the mean voluntary food ingestion (g day‐1 g‐2/3), 𝑀 is the mass of the fish (g), 𝐸𝑓 is the 

energy content of one gram of food (J) and 𝜎 is the feeding season length. The energy ingested is 
used to fuel maintenance, growth and reproduction, but may be reduced by anthropogenic 
stressors. 

The annual cost of maintenance (𝐶𝑀) is:  

  𝐶𝑀 = 2𝐴𝑇𝑆𝑎𝑀0.79 × 365       (6) 

where Sa is a normalizing constant and is calculated from standard metabolic rate (SMR) data from 
respirometer experiments and a scaling factor of 0.79 is applied to mass for marine fish (Peters, 
1986). FMR is obtained from SMR by multiplying by two (Peters, 1986) and the daily cost is 
multiplied by 365 to give the annual cost of maintenance. When the cost of maintenance has been 
paid then any remaining energy assimilated is allocated to growth and/or reproduction. 

The maximum annual cost of growth (𝐶𝐺∞
, kJ y-1) is:  

  𝐶𝐺∞
=  3𝐾𝑦𝐴𝑇(𝑀∞

1 3⁄
𝑀2 3⁄ −  𝑀) * 10.6       (7) 

where 𝐾𝑦 is the annual growth constant and 𝑀∞ is maximum mass. Growth is modelled using the 
von Bertalanffy equation and the annual energy cost of growth is calculated by multiplying 
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maximum annual growth rate by the energetic cost of producing one gram of new flesh (10.6 kJg-1; 
general value from Sibly et al., (2013).  

The cost of producing a maximum amount of eggs for mature females (𝐶𝐹∞) is: 

  𝐶𝐹∞ = 𝐸𝑖 − 𝐶𝐺∞
 +  𝐶𝑀)       (8) 

where we assume that all energy left over, after covering the cost of maintenance 𝐶𝑀  and growth 
(𝐶𝐺∞

), is available for fecundity.  
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Table 2-1.  Parameter values used in equations 2-6 (see methods for details) and experimental details of the studies from which values are obtained for 
the European sea bass catch and release fishing case study. Experimental details; L= length (cm), M= mass (g), Θ = experimental temperature (oC), µ= 
mean, R= range. References: 1= Lanari, D’Agaro, & Ballestrazzi (2002), 2= Froese & Pauly (2018), 3= Pickett & Pawson (1994), 4 = Claireaux (2006), 5= 
Luna-Acosta, Lefrançois, Millot, Chatain, & Bégout (2011), 6= Jourdan‐Pineau, Dupont‐Prinet, Claireaux, & McKenzie (2010) 7=  Zupa, Carbonara, 
Spedicato, & Lembo (2015), 8=  Peixoto et al. (2016), 9= Pawson & Pickett (1987), 10= Sibly et al. (2013), 11= Cerdá, Carrillo, Zanuy, Ramos, & de la 
Higuera (1994), 12= Peters (1983), 13= CEFAS (2018) , 14= Wright, Metcalfe, Hetherington, & Wilson (2014), 15= Herskin & Steffensen (1998), 16= 
Chatelier, McKenzie, & Claireaux (2005), 17= Ozolina, Shiels, Ollivier, & Claireaux (2016), 18= YouTube videos. 

Parameter  Value for sea bass Reference Experimental details  

𝜶 Mean voluntary food ingestion 0.54 g day‐1 g‐2/3 1 N= 8, L: µ= 37, R= 14-34; M: µ= 1023, R= 144-2749; Θ: R= 6-20 

𝑲𝒚 Annual growth constant 0.09y-1 2 N/A 

𝑴∞  Maximum mass 10 kg 3 N/A 

Sa      Metabolic rate normalisation  0.12 4-8 N= 7, L: µ= 26, R= 14-34; M: µ= 217, R= 26-420; Θ: R= 7-20 

𝝋 Potential fecundity for mature female fish 0.3x106 eggs per kg of fish 9 N/A 

𝑬𝒆 Energy to produce one gram of eggs 10.6 kJ 10 N/A 

𝑴𝒆 Weight of one egg 0.96x10-3 grams 11 N/A 

𝑬𝒇 Energy content of one gram of food 3.5*0.5 kJ* 12  N/A 

Fs Number of feeding days 213 days (UK)  3, 13 N/A  

𝑹∞ Metabolic rate swimming at max speed 17.8 - 21.6 watts ⱡ 4,5,14-16 N= 8, L: µ= 37, R= 14-34; M: µ= 1023, R= 144-2749; Θ: R= 6-20 

SMR Standard metabolic rate 2.1 -21.7 watts ⱡ 4-8 N= 7, L: µ= 26, R= 14-34; M; µ= 217, R= 26-420; Θ: R= 7-20 

𝑶∞ Cost of repaying the max EPOC** kJ 17 N = 30, L: µ= 32 ± 1, R= 31–35; M; µ= = 520 ± 64 , R= 419–643; Θ: R= 11 ± 0.5°C 

𝜹 Duration of escape 10-289 seconds 18 N = 74 (videos available Nov/2017), L: R= 15-75 (estimated) 

* assuming 50% of prey mass is flesh.  ⱡ Value range due to range of fish size. ** Excess post-exercise oxygen consumption.  
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2.3.2 Application to C&R angling for European sea bass 

To investigate the sublethal impact of C&R angling on sea bass, the model was parameterised using 

data from the literature (Table 2-1). To ascertain the energetic demands of sea bass, data were 

compiled from studies in respirometers (for details see Table 2-1). Respirometer experiments 

recorded oxygen consumption which we convert in to watts (assuming O2 = 20 Jml-1 [Peters, 1986]), 

the rates of energy use are then corrected from the experimental temperatures (Table 2-1) to the 

model reference temperature using the Arrhenius function (Eqn. 3). Sea bass are reported to feed 

less avidly in water below 10oC (Pickett and Pawson, 1994) so, for simplicity in the model, we assume 

individuals only feed and grow when sea surface temperature (SST) is 10oC or above. For UK waters 

this occurs for 213 days a year on average based on monthly SST from sites around the UK coast line 

from 1966-2012 (CEFAS, 2018) and the overall average SST for these days was 14oC. To show how 

the energy-budget approach can be applied to other locations we ran the model with the same sea 

bass parameters but with the ability to feed all year round and a mean SST of 20oC, representing 

recreational fishing of European sea bass in the Mediterranean.  

In our case study, the escape from the stressor is the period during which a fish attempts to escape 

from the fishing rod, which is termed a fish fight. Fight durations are not generally recorded by 

recreational sea bass anglers, but videos of fights are placed on YouTube 

(https://www.youtube.com). We watched all videos (n = 74) publicly available in November 2017 

and recorded the duration of fight (10-289 seconds) and the fish length (15-75 cm), estimated by 

comparison with length of the angler’s forearm. For our case study, we use a range of fight durations 

of 0-300 seconds and the previously described method using equations 2-6 with the sea bass specific 

parameters (Table 2-1). It was not possible to distinguish from videos if the fish was fighting 

maximally for the whole fight duration, so we assume fighting for the total duration as a worst case 

scenario.   

2.4 Results  

Our results are presented for the case of C&R angling for European sea bass parameterised as in 

Table 2-1. To assess the sublethal effects of angling, we calculated the losses in energy, growth and 

fecundity that arise from an individual fish’s efforts while fighting and from reduction in energy 

ingestion while feeding as a result of disturbance including injury. Losses are shown relative to the 

baseline of energy assimilated by an undisturbed fish which achieved maximum ingestion rate, and 

had sufficient energy to fulfil maximum growth (juvenile and mature fish) and fecundity (mature fish 

only) (see Methods for calculation details).  

2.4.1 Local sensitivity analysis 

The sensitivities of energy, growth and fecundity loss are shown in Table 2-2 as percentage change in 
output for a 10% change in the model parameters. These sensitivities are for a medium sized fish 
subject to intermediate levels of disturbance. Sensitivity differs between vital rates, the most 
sensitive parameters being associated with energy ingestion, which is expected as changes in energy 
inputs have direct effect on energy available for growth and reproduction. Sensitivities to 10% 
changes in the model parameters are generally less than or equal to 10% except for the sensitivity of 
fecundity loss, which is very high as a result of the way energy is allocated when calculating 
maximum rates: assimilated energy is allocated first to cover maintenance (𝐶𝑀), and then growth 
(𝐶𝐺∞

), only when these costs are paid is energy allocated to reproduction (Eqn 7 & 8). To see how 

sensitivities vary with fish size and levels of disturbance we ran the model with a large mature fish 
(Length = 70 cm) and a small immature fish (Length = 20 cm), in both severe (300 second fight, 45% 
reduction in feeding for 45 days) and minimal stress (30 second fight, 10% reduction in feeding for 
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10 days) scenarios (Supplementary Tables 2-3 & 2-4). Fecundity losses were higher for the large fish 
but lower for the small fish compared to the values shown in Table 2-2 for the medium fish scenario. 
Conversely, growth losses were higher for the small but lower for large fish compared to the values 
shown in Table 2-2 for medium fish scenario. The severity of stress had generally little effect on the 
small fish, but fecundity was negatively affected in the large fish scenario  (Supplementary Tables 2-3 
& 2-4). 

Table 2-2. Sensitivities of energy, growth and fecundity loss of recreationally caught and released 
European sea bass to 10% changes in parameter values, presented as the % change in output 
averaged over an increase and decrease in the parameter value. Results are for a fish of middle 
size and a middle disturbance scenario (fish length = 42cm, escape duration = 200 seconds and a 
disturbance of 50% reduction of feeding for 20 days, see Supplementary Tables 3-3 and 3-4 for 
analyses of other cases).  

      1Disturbance 

 

2.4.2 Effects on energy, growth, and fecundity loss 

The effects of fight duration on individual energy, growth and fecundity losses are shown in Fig. 2-1 
in relation to fish length. Losses increase with fight duration, as expected, but the effects of fish 
length are more nuanced. The energy cost of fish fights as a percentage of total annual ingested 
energy are very small. Smaller fish that are involved in a longer fight experience the most severe 
energy loss, but this only equates to a maximum of 1% loss of annual energy (Fig. 2-1A). Growth 
losses, shown in Fig. 2-1B, are calculated for juvenile and mature sea bass; in the latter we assume 
spawning occurs at its maximum rate. Growth losses are at most 3.5%, when a 60 cm fish is involved 
in a 300 second fish fight (Fig. 2-1B). For immature fish, growth loss reduces as the fish grow, but 
then increases after maturity at 42 cm as the fish is then assumed to produce eggs at maximum rate, 
and larger fish become increasingly affected (Fig. 2-1B). By contrast fecundity losses vary very little 
with fish length (Fig. 2-1C). The results in Fig. 2-1 relate to the worst-case scenario that a fish caught 
by an angler attempts to escape by burst swimming. We assume the fish is swimming away at 
maximum speed for the whole fight (see Discussion for justification of this assumption), though in 
reality a fish can only maintain maximum speed for a very short period due to physiological 
limitations (Horodysky, Cooke and Brill, 2015). 

After the initial fight, injury or behavioural change may affect an individual fish’s ability or 
preference to feed as a result of physical damage from fishing gear and/or air exposure whilst being 
caught (Siepker, Ostrand and Wahl, 2006). Losses in energy ingested, growth and fecundity are 
affected by both the duration and the level of reduction in feeding, as shown in Figs. 2-2 & 2-3 for 
mature female and juvenile sea bass, respectively. Over the parameter ranges investigated, energy 
losses for a mature bass could be as high as 60%, with consequent growth and fecundity losses up to 
100% and 60%, respectively (Fig. 2). Individual juvenile sea bass show smaller energy and growth 
losses than adults, up to 30% and 50%, respectively (Fig. 2-3). Scenarios resulting in larger/longer 
reductions in feeding have as expected greater losses of energy, growth, and fecundity (Figs. 2-2 & 
2-3). 

Parameter Energy Growth Fecundity  
Escape Dist1 Escape Dist1 Escape Dist1 

Mean voluntary food ingestion (𝛼) 10 10 0 7 49 59 

Energy content of one gram of food (𝐸𝑓) 10 10 0 67 49 59 

Metabolic rate normalisation (Sa ) - - 0 0 49 42 

Maximum mass (𝑀∞) - - 6 10 3 4 

Feeding season length (𝜎) 10 10 0 0 49 62 

Annual growth constant (𝐾𝑦) - - 10 17 6 7 
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The effects shown above are for fish living in UK waters, which are assumed to be able to feed for 
213 days a year when the sea surface temperature is assumed to be 14oC. Fish in other areas may 
experience different conditions, but their effects can be readily calculated using our energy-budget 
analysis. Although the individual rates of ingestion, maintenance and growth increase with 
temperature, the relative effects of escape and disturbance (those shown in Figs, 2-1 – 2-3) would 
not change with temperature if the number of feeding days were kept constant. However number of 
feed days is likely to increase with average temperature. Sea bass in the Mediterranean, for 
example, are able to feed year round. If we assume sea surface temperatures there are 20oC and 
update the annual growth constant appropriate for Mediterranean temperatures (Ky = 0.03 [Froese 
& Pauly, 2018]), we find that all losses are reduced. Both growth and fecundity losses are less than 
for individuals in UK waters; fecundity losses 8 % as opposed to 28 % and growth losses 14 % as 
opposed to 48%. These figures are for a particular scenario of a 50 cm sea bass fighting for 150 
seconds and experiencing injury that reduces its ability to feed by 50 % for 20 days, but we expect 
that losses will generally be lower where feeding conditions are better.  

 

 

Figure 2-1. Effects of fish fights on growth and fecundity of recreationally caught and released 
European sea bass in relation to fish length and fight duration. Effects are shown as % loss of 
annual rates of A) Ingested energy B) growth and C) fecundity, relative to fish achieving maximum 
growth or fecundity, respectively. The scale of % loss is shown on the right. 

 

 

Figure 2-2. The effects of the duration and severity of capture/release effects, measured as % 
reduction in feeding, on energy intake, growth and fecundity of mature female European sea bass 
(42 cm). Effects are shown as % loss of annual rates of A) Ingested energy, B) growth and C) 
fecundity, relative to fish achieving maximum energy intake, growth or fecundity, respectively. 
The scale of % loss is shown on the right. 
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Figure 2-3.The effects of the duration and severity of capture/release effects on food intake, 
growth and fecundity of juvenile European sea bass (20 cm). Effects are shown as % loss of annual 
rates of A) Ingested energy and B) growth, relative to fish achieving maximum food intake and 
growth respectively. The scale of % loss is shown on the right. 

2.5 Discussion 

With increasing human populations, the impact of anthropogenic disturbances on the aquatic 
environment is growing (Vitousek et al., 1997). Stressors to fish such as anthropogenic noise 
(Slabbekoorn et al., 2010), fishing and pollutants (Kappel, 2005) can cause both lethal and sublethal 
impacts. The method introduced here uses energy budget models to investigate the often under-
reported sublethal effects of stressors on growth, reproduction and ultimately fitness of fish. The 
models are not intended to replace existing experimental approaches, which are the method of 
choice, but to be used alongside when logistic constraints limit what can be achieved experimentally. 
For example, our method can be used as an initial step and can help identify needs for further 
analysis and experiments. 

Unique to our method, over other bioenergetics stressor models (Beyers, Rice, & Clements, 1999; 
Beyers, Rice, Clements, et al., 1999;Beyers & Rice, 2002; Rice, 1990), is splitting the impact of the 
stressor into two parts. Firstly, assuming an escapable acute stressor, the fish may attempt to flee; 
this could include dodging an oil spill, avoiding anthropogenic noises or trying to break free from 
commercial or recreational fishing gear. The period for which fish swim to escape depends on many 
factors specific to individual stressors. For example, it may depend on the proximity of the fish to an 
oil spill, construction project or, in a fishing situation, how long gear is being pulled. In these 
situations, the fish is swimming at speed away from somewhere it does not want to be and is forced 
to spend energy that is subsequently unavailable for life processes. Some fish, however, freeze 
instead of attempting to escape, the metabolic implications of this would require similar analysis 
(Rupia et al., 2016) but is not covered here. As well as escaping, the fish may suffer an injury or 
endure a change in behaviour due to the stressor. This could be an injury from commercial or 
recreational fishing gear (e.g., mouth damage from a hook), changed behaviour because of 
chemicals in the water, disturbance from marine construction or shipping noise. Such effects may 
impact an individual fish’s ability and preference to feed, resulting in reduced ingested energy 
available for life processes. To show a broad range of possible impacts we display our results on heat 
maps that allow the simultaneous display of many individual scenarios shown as combinations of 
reduced ingestion rates and durations of effect (Figs. 2-1 – 2-3). Each combination of these is unique 
and equates to a loss of energy. When this loss is compared with the energy needed to achieve life 
processes it is possible to investigate the impact of the stressor in question. 

To demonstrate the method in practice, we chose as a case study the European sea bass subject to 
the stress of recreational C&R fishing in the UK. In our worked example, the initial escape is the fish 
fight attempting to escape from recreational fishing gear. We show how the combination of fight 
duration and the size of fish affect the energetic cost of the fight and the subsequent impact on 
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growth and reproduction (Fig. 2-1). As described in methods, our analysis is worst case: when 
considering effects on growth, we assume fecundity has been prioritised and fecundity costs are the 
same as in an unstressed fish, but when considering effects on fecundity we assume growth is 
prioritised and growth costs are the same as in an unstressed fish.  

The initial energetic cost of the fish fight is very small when compared to annual ingested energy, 
however this small amount of energy does show knock-on effects on both growth and fecundity (Fig. 
2-1). In immature sea bass (< 42 cm) the pattern of growth loss mirrors that of energy loss and 
smaller immature sea bass are worse affected (Fig. 2-1B). This pattern switches at maturity, and 
larger sea bass are then more affected, because they pay the same fecundity costs as unstressed 
fish. Fecundity costs are greater in larger fish, leaving less energy available to fuel growth.  

After the initial fight, the released fish may suffer injury or changed behaviour due to the capture 
event. This is analysed in Figs. 2-2 and 2-3 by looking at how injury or behavioural change can reduce 
ingestion and cause knock-on effects on individual growth and reproduction. Here the patterns of 
loss of growth/reproduction reflect those of energy loss. Effects on growth are greater than those on 
reproduction, and Fig. 2-2B shows that in extreme cases growth may cease altogether during the 
study year. Growth losses are more severe in adults than in immature fish (compare Figs. 2-2B and 
2-3B) because adults are assumed to pay fecundity costs. We show how the energy-budget 
approach can be used to assess the effects of changing location by applying it to the Mediterranean, 
where we predict smaller losses for individual fish living in the warmer Mediterranean temperatures. 
As expected physiologically, ingestion, metabolic and growth rates all increase in warmer waters, but 
the number of feeding days increases too. More feeding days result in more energy being ingested, 
and because losses are calculated per annum, the net effect of the warmer temperatures is that 
losses are reduced. The model could be used in a similar way to test inter-annual temperature 
fluctuations or climate change driven sea temperature changes.  

Our energy budget approach enables initial investigation of stressor effects on individual fish, but for 
many applications it will be important to consider how a stressor affects entire fish populations (with 
a notable exception of animal welfare studies where the focus is on individuals [Cooke & Sneddon, 
2007; Davie & Kopf, 2006]). In our case study, a population analysis would require data on numbers 
and size distribution of sea bass being caught. Currently there is limited data on recreational fishing 
pressure, but relevant estimations may become possible as recreational fisheries become 
increasingly included in fisheries management (Radford et al., 2018). More broadly for 
anthropogenic stressors, Pirotta et al., (2018) suggest that one way to approach population impacts 
is using individual based models (IBMs). IBMs use a bottom-up approach and simulate a population 
of discreet individuals where a combination of individual state and environmental variables change 
individual behaviour (DeAngelis and Grimm, 2014). In an IBM, each individual reacts to stressors 
uniquely depending on, among many other things, its energy reserves, life stage, size, and proximity 
to the stressor. The proportion of individuals within a population that are affected and the severity 
of these impacts on their life process determine the population level impacts of the stressor (Grimm 
and Railsback, 2005). The estimated effect of a stressor would be relevant in many cases of fisheries 
management. For example, stressor effects could change depending if in/out of a spawning season, 
or they may impact size-at-age with potential knock-on effects on time to reach maturity and 
fecundity. An IBM could also be used to test food-limited scenarios (Boyd et al., 2018) when even 
mild impacts of the stressor may impact on the ingestion rate enough to show previously unforeseen 
emergent population-level effects. Gordon et al. (2018) identify scenarios in which individual fish 
may simultaneously experience combination of stressors. The use of an appropriate IBM in 
combination with our energy budget approach could be used to quantify the population impacts of 
multiple stressors varying in time and space.  
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2.5.1 Limitations and further research 

Our method is broad and could, with appropriate consideration, be applied to a wide range of 
anthropogenic stressors and fish species. As in other bioenergetics models (e.g., Beyers & Rice, 
2002), to apply this method to different stressors or species it is necessary to collect relevant values 
for duration of escape, if any, and re-parametrise equations 2-8 for the intended species (Table 2-1). 
If the ultimate aim is a predictive model then validation must be given thought, here we discuss 
some important considerations that would need to be addressed and some suggested experimental 
approaches that could provide validation data.  

We are currently limited to investigating effects within one year and our method does not cover 
injuries or behaviour that extend beyond this. The model also does not allow for multiple stressor 
events within one year (i.e., if the same fish is caught and released multiple times) which has the 
potential to add up to substantial impact upon the individual. In addition, within the current model, 
catch-up growth is not considered where some species may be able to make up lost growth after 
one or more stressor events (i.e., compensatory growth; see example with largemouth bass 
(Micropterus salmoides, Centrarchidae) in Cline, Weidel, Kitchell, & Hodgson, 2012. However once 
embedded in a suitable IBM, heterogeneous responses to multiple events within one year or effects 
that extend beyond one year, including compensatory growth, could be studied.  

For escape duration, our analysis assumes fish are swimming away from the stressor at maximum 
speed for the entire duration of escape and we assume that they incur a maximal oxygen debt. In 
reality there are physiological limitations which limit fish to short burst of maximum effort 
(Horodysky, Cooke and Brill, 2015). Furthermore for stressors that require fish to swim for long 
durations this may be an excessive estimation of used energy, so ours is a worst-case and a 
precautionary approach. One way to extend our precautionary approach and cover a non-escape 
response is to use burst swimming as an approximation of any increased metabolic rate due to the 
stressor stimuli. To better predict energetic costs and consequences beyond simple worst case 
scenarios, would require detailed information on swimming behaviour during stressor escape and/or 
any other metabolic changes. Data for this could be from tagging experiments to measure how long 
and fast fish swim (Graves, Horodysky and Latour, 2009; Brownscombe et al., 2013; Horodysky, 
Cooke and Brill, 2015) and respirometer experiments for changes in metabolic rate (Rupia et al., 
2016). 

There are also aspects of injury and behavioural changes after escape that are not accounted for in 
our model. Firstly, it may be important to consider the disease status of the study species/stock, as 
infected fish may suffer additional complications from anthropogenic stressors. For example striped 
bass in the USA that suffer from chronic diseases associated with Mycobacterium spp. (Gauthier et 
al., 2008) have been shown to suffer reduced reproductive success (Gervasi et al., 2019), growth 
rates (Latour et al., 2012) and aerobic scope when exposed to hypoxic and warmer temperatures 
(Lapointe et al., 2014). Furthermore, fish may suffer parasite or bacterial infections as a result of 
injuries or stress which could affect growth independently of feeding rate (Steeger et al., 1994). 
Account must also be taken of variation in fish life histories. For example our model would 
underestimate the effect of disturbance on brood protecting species such as smallmouth and 
largemouth bass (Micropterus dolomieu and Micropterus salmoides) (Hanson et al., 2007). When 
brood protecting species are subjected to C&R or other disturbances they are less able to defend 
their eggs (Suski et al., 2003; Pinder et al., 2017), and the increased risk of brood predation leaves a 
reproductive sublethal impact on top of the energy lost during disturbance. Finally, fish species may 
differ in their stress responses, from complete inhibition to increase of reproduction (Schreck, 
Contreras-Sanchez and Fitzpatrick, 2001; Lowerre-Barbieri, Vose and Whittington, 2003; Hall et al., 
2009). Such factors may vary the sub-lethal impacts of stress from those calculated using our 
exclusively energetics based approach.  
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2.6 Conclusions 

We show a broadly applicable, complementary approach to field investigations that can be used to 
investigate sublethal impacts of a broad range of anthropogenic stressors on life processes of 
individual fish. Our approach builds on established bioenergetics approaches and provides a 
comprehensive energetics overview through from initial escape to longer term injury/behavioural 
changes. We demonstrate its application to C&R fishing of European sea bass and show impacts 
ranging from zero to losses of up to 100% growth and 62% fecundity. Validation of the model is out 
of the scope of this study but we suggest experimental approaches that could be used to gain 
potential data and parameters and extend the model utility. We further suggest using individual-
based models to investigate combinations of multiple anthropogenic stressors that vary over time 
and space for more detailed analysis of population-level effects. Our comprehensive energy budget 
approach, embedded within an IBM, could indicate emergent population level effects for a broad 
range of anthropogenic stressors and cumulative impacts for many species and hence contribute to 
understanding and mitigating sublethal anthropogenic impacts on fish.  
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2.8 Supplementary tables 

 

Table 2-3. Sensitivities of energy, growth and fecundity loss of recreationally caught and released 
European sea bass to 10% changes in parameter values, presented as the % change in output 
averaged over an increase and decrease in the parameter value. Results are for fish length = 70 cm 
in a severe (S) (300 second escape, 85% reduction in feeding for 45 days) and minimal (M) stress 
(30 second escape, 10% reduction in feeding for 10 days) scenario.  

1Disturbance 

 

Table 2-4. Sensitivities of energy, growth and fecundity loss of recreationally caught and released 
European sea bass to 10% changes in parameter values, presented as the % change in output 
averaged over an increase and decrease in the parameter value. Results are for fish length = 20 cm 
in a severe (S) (300 second escape, 85% reduction in feeding for 45 days) and minimal (M) stress 
(30 second escape, 10% reduction in feeding for 10 days) scenario.  
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Parameter  Energy Growth Fecundity  
Escape Dist1 Escape Dist1 Escape Dist1 

 M S M S M S M S M S M S 

Mean voluntary food ingestion (𝛼) 10 10 10 10 0 0 1 15 82 83 84 150 

Energy content of one gram of food (𝐸𝑓) 10 10 10 10 0 0 1 15 82 83 84 150 

Metabolic rate normalisation (Sa ) - - - - 0 0 0 0 67 68 69 150 

Maximum mass (𝑀∞) - - - - 12 13 13 6 6 6 6 12 

Feeding season length (𝜎) 10 10 10 12 0 0 0 0 82 83 84 183 

Annual growth constant (𝐾𝑦) - - - - 10 10 11 5 6 5 5 10 

Parameter  Energy Growth  
Escape Dist1 Escape Dist1 

 M S M S M S M S 

Mean voluntary food ingestion (𝛼) 10 10 10 10 20 21 20 26 

Energy content of one gram of food (𝐸𝑓) 10 10 10 10 20 21 20 26 

Metabolic rate normalisation (Sa ) - - - - 10 11 10 16 

Maximum mass (𝑀∞) - - - - 0 0 0 0 

Feeding season length (𝜎) 10 10 10 12 20 21 21 32 

Annual growth constant (𝐾𝑦) - - - - 0 0 0 0 
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3 Factors affecting fisher decisions: the case of the inshore 

fishery for European Sea bass (Dicentrarchus labrax) 

3.1 Abstract  

Fishery management relies on forecasts of fish abundance over time and space, on scales of months 

and kilometres. While much research has focussed on the drivers of fish populations, there has been 

less investigation of the decisions made day-to-day by fishers and their subsequent impact on fishing 

pressure. Studies that focus on the fisher decisions of smaller vessels may be particularly important 

due to the prevalence of smaller vessels in many fisheries and their potential vulnerability to bad 

weather and economic change. Here we outline a methodology with which to identify the factors 

affecting fisher decisions and success as well as quantifying their effects. We analyse first the 

decision of when to leave port, and then the success of the fishing trip. Fisher behaviour is here 

analysed in terms of the decisions taken by fishers in response to bio-physical and socio-economic 

changes and to illustrate our method, we describe its application to the under 10-meter fleet 

targeting sea bass in the UK. We document the effects of wave height and show with increasing 

wave height fewer vessels left port to go fishing. The decision to leave port was only substantially 

affected by time of high tide at one of the four ports investigated. We measured the success of 

fishing trips by the landings of sea bass (kg) per metre of vessel length. Fishing success was lower 

when wave height was greater and when fish price had increased relative to the previous trip. Fuel 

price was unimportant, but a large proportion of the variation in success was explained by variation 

between individual vessels, presumably due to variation in skipper ability or technical restrictions 

due to vessel characteristics. The results are discussed in the context of management of sea bass and 

other small-scale inshore fisheries. 

 

3.2 Introduction 

The global state of fish stocks is a cause for concern, and there is a need for increasingly effective 

fisheries management (Hilborn et al., 2020). An area of management that has received less research 

attention is the human element of fisher behaviour (Wijermans et al., 2020). As it is ultimately the 

fishers and not the fish that managers can directly influence, it is critical for successful management 

that fisher behaviour is taken into consideration (Branch et al., 2006; Hilborn, 2007).  

Fisher behaviour is analysed here in terms of the decisions taken by fishers in response to bio-

physical and socio-economic changes, as recently reviewed by Andrews, Pittman and Armitage, 

2020. Many of the studies (e.g., Wilen et al., 2002; Salas and Gaertner, 2004; Branch et al., 2006; 

Hilborn, 2007; Valcic, 2009) have sought to establish how management decisions affect the 

dynamics and distribution of fisher decisions and the subsequent pressure on the fishery. The drivers 

of fisher decisions are often complex and interlinked but can be coarsely categorised into 

environmental, economic, and legislative. Economic factors include fluctuations in fuel or fish price 

and their interaction through the market can have profound impacts on fisheries (Abernethy et al., 

2010), as can be seen for example in the changes of demand and supply during the COVID-19 

pandemic (Bennett et al., 2020). Profitability is often a balance of both environment and economic 

factors, but is also affected by legislation. Legislation can be broad and applied in a variety of ways, 

including restrictions on quota or fishing gears in addition to spatial or temporal closures, all of 

which can have major influence on fisher decisions (Fulton et al., 2011; Abbott and Haynie, 2012). 
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Environmental drivers, such as weather and climate change including increasing storminess, have 

already been shown to affect fishing decisions and subsequent fishing pressure in some cases (Henry 

and Johnson, 2015; Shepperson et al., 2016; Sainsbury et al., 2018). Fisheries are likely to be 

exposed to a combination of pressures and the relevance and magnitude of fisher decisions may 

vary between different fisheries. Understanding of these relationships is increasingly recognised as 

an important component of fisheries management (Wijermans et al., 2020).  

The fishing method used to target catch is one obvious aspect of a fishery that will affect how 

different environmental, economic, and legislative pressures impact fisher decisions. Globally, 

fishing methods are extremely diverse, but often involve the use of a dedicated fishing vessel. These 

fishing vessels can range from small canoes up to factory trawler ships, and the decisions of fishers 

operating on vessels of different sizes may be affected by different predictors (Dorn, 2001; Thoya 

and Daw, 2019). Research into fisher behaviour is necessarily dependant on the data available. To 

gain detailed insight into spatial fishing pressure, studies that focus on European vessels longer than 

12-meters can make use of data from Vessel Monitoring Systems (VMS) or Automatic Identification 

System (AIS) for vessels over 300 gross tonnes engaged in international voyages. However, for 

smaller vessels AIS is limited as it is voluntary (Shepperson et al., 2018) and VMS is not required in 

European waters for these vessels. Smaller vessels are also potentially more vulnerable to 

environmental change (Sainsbury et al., 2018; Young et al., 2019) and importantly, despite their 

small size, small vessels make up a large percentage of global fisheries with 82% of recorded 

motorized fishing vessel lengths being less than 12 meters (FAO, 2020). It is therefore important to 

consider, for both small and larger fishing vessels, all available information in trying to understand 

fisher decisions and their impact on fishing pressure.   

In this study, we focus on smaller vessels and use as a case study the UK under 10-meter fleet 

catching European sea bass (Dicentrachus labrax, Moronidae) in the North Sea, English Channel, 

Celtic Sea, Bristol Channel, and Irish Sea (Northern Stock, ICES 4b&c, 7a,d-h). Sea bass is a large, high 

value, slow growing and late maturing fish that until 2015 was not subject to catch restrictions. In 

the past decade, the northern stock size fell rapidly, which was attributed to a combination of poor 

year classes and fishing mortality (ICES, 2018a). The decline led to the implementation of emergency 

management measures in 2015 (ICES, 2019), and, since 2020, UK vessels have been limited to 

targeting sea bass with hook and line, and bycatch limits for fixed gill nets, seine nets, and trawls 

(GOV.UK, 2020). Sea bass continues to be an important species of the UK under 10-meter fleet as it 

is a high value species that can be harvested close to shore (Williams et al., 2018).  

In an attempt to gain insight into the complex decisions made by fishers using smaller fishing vessels, 

we analyse first the decision of when to leave port, and then the success of the fishing trip. To 

demonstrate our approach, we assess the impact of environmental and socio-economic drivers on 

under 10-meter fishery for sea bass. We collate data from a number of different sources which we 

use to predict when fishing trips occur and their success as measured by landings. Based on a linear 

regression approach, we assess the importance of different factors driving decisions to leave port 

and fishing success. The results are discussed in the context of management of sea bass and other 

small-scale inshore fisheries. 
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3.3 Methods   

Our analysis has two components:  

1. The decision to leave the port analysed here by a logistic model we term Leave port. 

2. The success of the fishing trip analysed here by a linear regression model we term Fisher 

success. 

Models are created for each of these processes independently. This is done by identifying possible 

predictors of fisher decisions and then attempting to obtain relevant data. The approach for this will 

vary extensively between fisheries, but to give an idea of how it can be done in practice, we illustrate 

our method below with a case study of the under 10m fleet of UK northern stock sea bass fishery.  

 

3.3.1 Identifying possible predictors   

Both fuel price and weather have been identified as explanatory variables in other fisher behaviour 

studies (e.g., Abernethy et al., 2010; Shepperson et al., 2016). Time of high water is a further 

environmental driver that is likely to affect the decision to leave port due to a priori understanding 

of logistical issues of low tides (e.g., navigating shallow water and ability to leave tidal moorings). To 

our knowledge daily tide cycles have not been included in fisher behaviour analyses until now, 

though Sharples et al. (2013) studied Celtic sea fishing activity in response to spring and neap tides 

and Poisson et al. (2010) assessed monthly tidal influence for a Réunion Island longline fishery. 

Inclusion of further possible fisheries behaviour predictors is necessarily constrained by the 

availability of data. In the case of the UK northern stock sea bass fishery, the best data source 

available to record when vessels leave port and their success are the Marine Management 

Organisation (MMO) logbooks, whose contents are described below. MMO logbooks contain 

information beyond a simple yes/no answer for leaving port, however we do not have any 

information on the reasoning when vessels have remained in port, so we cannot assess this in our 

case study leave port analysis. It was possible however to supplement logbook data with data from 

other sources, here in our case study we were able to obtain data on time of high water, wave 

height and fuel price (details shown below). 

For the fishing success analysis, we defined the dependent variable, termed fisher success, as 

landings per metre of vessel length in order to standardise the outcome of fishing trips for 

differences in vessel size. For this analysis, we were able to use all the data in the MMO logbooks (in 

addition to our extra data sources) as predictors of fisher success, namely wave height, tide, change 

in fish price, fuel price, month, and year. One key recording from the MMO logbooks is fish price, 

however rather than use fish price directly we used the change in fish price since the previous fishing 

trip to account for potential changes in revenue and therewith profit (van Putten et al., 2012). Wave 

height, to the nearest metre, was entered as a factor to capture any non-linear effects. Individual 

vessel ID and port name were entered as fixed effects to reveal associated unobserved effects of 

vessel and location. Yearly fixed effects capture the annual changes in fisheries legislation which 

might restrict harvest success. Vessel fixed effects captures skipper ability as well as capacity or 

technical restrictions due to vessel characteristics. We chose predictors from the logbook and other 

data sources on the assumption that they are likely predictors of fishing success and are of relevance 

to legislation and future management decisions (GOV.UK, 2016, 2017, 2018, 2019, 2020).  
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3.3.2 Obtaining data 

In the case of the UK northern stock sea bass fishery, the main data source of when vessels leave 
port and their success are the MMO logbooks which incorporates sales notes for the under 10-meter 
vessels in similar format. In addition to recording the days on which named vessels left named ports, 
the logbooks record the weight of fish caught. These records were supplemented by data on wave 
height, time of high tide and fuel price. We analysed individual trip data for the years 2014-2018 for 
vessels of up to 10 meters in length for four study ports: Burry Port; Plymouth; West Mersea; and 
Weymouth (Fig. 3-1, Tables 3-1 and 3-2). The chosen ports represent the fishery spatially, each being 
chosen on the basis that it had the highest annual value landings of sea bass within its region 
(logbook data 2014 - 2018). Each study port had a fleet consisting of vessels with lengths over and 
under 10-meter, but sea bass fishing was more valuable to the under 10-meter vessels in all four 
ports (Table 3-1). We define vessels that are sea bass-targeting/impacting as those that recorded 
more than 10 trips with more than 10% landings by weight of sea bass. The resulting dataset 
contains 8,815 fishing trips between 2014 - 2018 (Table 3-2). The study ports differed in the number, 
size, and engine power of the vessels in their fleets, and the total landings of sea bass varied 
between ports with Weymouth catching the most sea bass (Table 3-2). Fishing gear also varied with 
more sea bass caught using hook and line than other fishing methods in all our study ports except 
West Mersea, where gill nets were favoured (Table 3-2). 

We collated several environmental and socio-economic parameters for use in the analysis. Out of 
possible weather variables, we use Wave height to represent sea conditions due to availability of 
data and its convenience as a combination of wind speed, and direction. Wave height was taken 
from the UK strategic wave monitoring network WaveNet4. The closest Waverider buoys to our 
focus ports (Fig. 3-1) were used to calculate daily average wave height. The buoys are not always 
stationed directly outside our study ports but gave an adequate representation of the daily sea state 
for our purpose. To calculate time of high tide, we first obtained data on tidal movements, from the 
British Oceanographic Data Centre’s (BODC) tide gauge archive5. The time of tide measurements 
were rounded to the nearest hour, we then checked in the first 12 hours (00:01 - 11:59) of each 24-
hour period for the highest water and corresponding time, taking this as the first high tide of the 
day. We only used the first high tide time in our analysis as first and second tide times are closely 
correlated. Tide gauges are not all stationed directly outside our study ports (Fig. 3-1) but should 
give an adequate representative of tide state for our purpose.  
 
To calculate price change, we extracted the mean daily price of sea bass for each port (£.kg-1) from 
the MMO logbooks. We then subtracted the price received by the vessel on its previous trip. The 
resulting price change is either a positive or negative value indicating a price rise or drop, 
respectively. Data from February and March 2016 - 2018 were excluded because there was a ban on 
fishing for sea bass in these months (GOV.UK, 2016, 2017, 2018). To estimate fuel price, because 
daily fuel price at each port was not recorded, we used monthly red diesel prices6 on the assumption 
that fishing vessels used untaxed diesel or other fuels (e.g., regular pump petrol) correlated to these 
prices.  

All statistical analyses were carried out in R (version 3.6.1 [R Core Team, 2019]). Final estimations 
were derived by backwards stepwise regression (StepAICc MASS - Venables and Ripley, 2002) and a 
Likelihood ratio test (Step Stats - R Core Team, 2019). We checked for collinearity in model 
predictors using correlation matrixes and analysing variance inflation factor (VIF) scores. 

 
4 Source: https://www.cefas.co.uk/data-and-publications/wavenet/ [last access: 02/02/2021] 
5 Source: https://www.bodc.ac.uk/data/hosted_data_systems/sea_level/uk_tide_gauge_network/ [last 
access: 02/02/2021] 
6 Source: https://www.gov.uk/government/statistical-data-sets/oil-and-petroleum-products-monthly-statistics 
[last access: 02/02/2021] 

https://www.cefas.co.uk/data-and-publications/wavenet/
https://www.bodc.ac.uk/data/hosted_data_systems/sea_level/uk_tide_gauge_network/
https://www.gov.uk/government/statistical-data-sets/oil-and-petroleum-products-monthly-statistics
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Figure 3-1. Map of study ports, and instruments from which data was taken. Black dots indicate 
the study port locations. Red dots and Green dots show the approximate location of tide gauges 
and waver rider buoys respectively.  

 

Table 3-1. Descriptive statistics of the chosen ports from MMO landings data 2014-2018 (< 10 or > 
10 indicated under & over 10-meter fleet respectively).  

Port name 
Total landings (t) 

Sea bass Landings 
(t) 

Sea bass % of total 
value of catch Location in England & 

Wales 
<10 >10 <10 >10 <10 >10 

Burry Port 247 - 129 - 87 - West 

Plymouth 4207 47320 137 44.6 15 0.63 South-West 

West Mersea 580 68 74 0.4 44 1.66 East 

Weymouth 1891 6356 254 0.6 44 0.03 South 

 
Table 3-2. Descriptive statistics of chosen vessels from MMO logbook scheme. no. vessels = 
number of vessels per port, no. trips = total number of fishing trips for all vessels in each port, r. = 
range, m. = mean, GN = Gill net, HL = Hook and line, TRP = Traps/Pots, TRW = Trawls).    

 

 

Port name no.  
vessels 

no.  
trips 

Vessel Length 
(m) 

Vessel Power 
(hp) 

Landings 
 (t) 

% caught by gear 

r. m. r. m. GN HL TRP TRW 

Burry Port 42 2416 4.5 -10 5.7 15 - 170 58 97 36 64 0 0 

Plymouth 46 3342 4.0 - 10 6.4 9 - 216 53 113 38 62 0.2 0.2 

West Mersea 14 679 4.6 - 10 7.7 4 - 157 54 64 96 0.2 0.1 3.8 

Weymouth 40 2378 4.3 - 10 7.5 4 - 158 103 200 11 89 0.1 0.8 
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3.4 Results 

3.4.1 Leave port model 

To assess the effects of factors affecting the decision of a fishing vessel to leave port, we used a 

binary logistic regression. The dependent variable was whether or not the vessel left port to go 

fishing, and the predictors were: Wave height, entered as a continuous variable, and port and time 

of high tide, entered as fixed factors. Fuel price was not included in the final model for reasons given 

in the discussion below. To identify any regional differences between ports, we included interaction 

terms port*wave height and port*time of high tide. It is not possible to use other information from 

the MMO logbook as predictors of whether a vessel leaves port as we only have data when vessels 

do leave, with unknowns when they do not.  

P-values < 0.0005 for all predictors entered into the leave port model indicate that there is sufficient 

statistical evidence to reject the null hypothesis in favour of the alternative (Table 3 [null hypothesis 

= neither wave height, tide time or which port fishers are based have an effect on the vessel decision 

to leave port and go fishing]). In calm conditions (wave height less than a meter) most vessels left 

port, except from West Mersea where the proportion leaving port was lower (Fig. 3-2A). As wave 

height increased, fewer vessels left port to go fishing. Fewer than 25% left port when wave height 

exceeded 2 meters, and very few when wave height was over 3 meters (Fig. 3-2A). The effect of time 

of high tide is shown in Fig. 3-2B. The decision to leave port was little affected by time of high water 

except at Weymouth, where there was a distinct preference for later tides, between 6 a.m. and 11 

a.m. (Fig. 3-2B).  

 

3.4.2 Fisher success model 

Fisher success is defined in this study as the natural logarithm of the landings of sea bass (kg) per 
metre of vessel length. We used a general linear model to assess the effects on fishing success of 
environmental and socio-economic variables. Wave height , vessel identity and year were entered as 
fixed factors and change in fish price was entered as a continuous variable. Fuel price, time of high 
tide and month were not included in the final model for reasons given in the discussion below. Port 
was also not included in this model as a result of a backwards stepwise regression used for model 
selection. P-values < 0.0005 for all predictors entered into the final regression model indicate that 
there is sufficient statistical evidence to reject the null hypothesis in favour of the alternative (Table 
3-4 [null hypothesis = neither wave height, vessel ID, year of fishing trip or price of fish, effect the 
success of a fishing trip]). Fishing success was lower when wave height was greater (Fig. 3-3A) 
though note the large confidence intervals around fishing trips when wave height is above two 
meters. Fishing success is also shown to decrease when fish price had increased relative to the 
previous trip (Fig. 3-3B). Finally, a large proportion of the total sum of squares was explained by 
factors associated with individual vessel (Vessel ID, Table 3-4).  
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Figure 3-2. Predictors of whether a vessel will leave port from the binary logistic regression. A) 
mean significant wave height, B) time of first high tide. Bars and bands indicate confidence 
intervals. For both figures, colours are used to distinguish between ports where Red = Burry port, 
Blue = Plymouth, Green = West Mersea and Purple = Weymouth.  

 

Figure 3-3. Effects of predictors on fishing success, from the regression analysis (Eqn. 2). A) Effect 
of mean daily wave height; B) Change in fish price from last trip; C) year the fishing trip took place. 
Bars and bands indicate confidence intervals.  

 

 



 

47 

Table 3-3. Analysis of deviance table for the Leave Port model. The dependent variable was 
whether or not a vessel left port to go fishing. 

Predictor  Df Deviance  Resid. Df  Resid. Dev Pr(>Chi) 

NULL     13286 15329   

Time of high tide (HT) 11 183 13275 15146 *** 

Port name (PN) 3 1307 13272 13839 *** 

Wave height (WH) 1 1826 13271 12014 *** 

HTxPN 33 210 13238 11803 *** 

WHxPN 3 82 13235 11721 *** 
*** <  0.0005   
VIF range 1.09 – 1.46  
Cragg-Uhler pseudo-R2= 0.35 for 51 df. 

 

Table 3-4. Analysis of Variance table for the Fisher Success model. The dependent variable was 
landed weight of sea bass per meter of vessel. 

Predictor  Df Sum Sq Mean Sq F value Pr(>F) 

Wave height (As factor) 4 11.09 2.7736 13.990 *** 

Change in fish price 1 4.97 4.9685 25.061 *** 

Year 4 16.83 4.2073 21.221 *** 

Vessel ID 138 693.20 5.0232 25.336 *** 

Residuals 8667 1718.32 0.1983  
*** <  0.0005 
VIF range 1.01 – 2.69  
R2 = 0.30 
 

3.5 Discussion 

In this study, we demonstrate a general fisher behaviour modelling approach which analyses 

separately the decision to leave a fishing port and the impact of decisions on fishing trip success. 

When applying our method, it is important to note that each fishery will be unique in the data 

available and the predictors that significantly affect fisher decisions. We demonstrate our approach 

with a case study investigating the decisions of fishers in under 10-meter sea bass fishing vessels at 

four UK representative ports, aiming to identify how decisions are affected by socio-economic and 

environmental factors.  

In both analyses we discarded some predictors because their estimated effects are a priori 

implausible, so including them could distort the analyses. Results including those variables are 

shown in Figs. 3-4 and 3-5. For both models we discarded fuel price, because increased fuel price 

was found to correlate with more trips and with more successful trips, which seem a priori 

implausible. Results including fuel price are shown in Fig. 3-4 and 3-5. For the Fisher Success model, 

we discarded time of high tide and Month from our analysis as we lack a sensible explanation of their 

effects. Tide time did not show consistent patterns hour-to-hour, unlike the Leave port model 

(compare Fig. 3-5A and Fig. 3-2B). Including the effect of month on fishing success suggests that 

December is the most profitable month to fish (Fig. 3-5C). This is unlikely to be a reliable result to 

include in the wider analysis as there are fewer fishing trips that occur in December compared to 

during peak fishing, from April to October (Pickett and Pawson, 1994). Hence, it is likely that the high 

profitability of December fishing is an artifact of incidental sea bass landings. 
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Our principal findings are that almost all vessels left port when wave height was below a meter, but 

less than a quarter when wave height exceeded 2 meters, and those that did then leave caught less 

(though note the large confidence intervals around the success of trips taken in over two meters 

wave height, likely due to a smaller sample of trips taken in these conditions [Fig. 3-3A]). Our finding 

that in rougher weather fewer vessels leave the port to go fishing (Fig. 3-2A) is in line with other 

studies of fisher behaviour (Shepperson et al., 2016; Sainsbury et al., 2018). Due to their small 

physical size the small vessels that make up the under 10-meter fleet have potential to be 

particularly vulnerable to rough weather. The port with the smallest mean vessel size is Bury Port 

(Table 3-2) and this is the port seemingly most impacted by wave height (Table 3-5), though note its 

distance from its Waverider buoy (Fig. 3-1).  

Decisions to leave port were also affected by the time of high water. We describe the variation 

between ports, and present quantitative estimates of all effects. To our knowledge, there is only 

limited incorporation of environmental predictors other than weather variables in studies of fisher 

behaviours. Daily tidal state has not been included in any fisher behaviour study that we are aware 

of, though studies by Sharples et al. (2013) and Poisson et al. (2010) show results of fishers reacting 

differently throughout the monthly tide cycles depending on their target species. In our study, the 

vessels we have defined as targeting/impacting sea bass (see section 3.3.2 obtaining data) appear to 

have fishing decisions to leave port affected by the time of high water. However, the effects of daily 

tide cycle did differ between ports (Fig. 3-2B). Depth of water may limit the ability to leave or return 

to a tidal mooring, so leaving on an early tide may allow a fisher to stay out at sea and fish through 

two tide cycles rather than be limited to one. Early tides may also allow fishers more sociable hours 

and/or to fish in daylight. The preference for certain tide times could also be due to a perceived 

increased chance of catching sea bass and/or due to logistical preferences. Fishers may be attracted 

to certain tide times as changes in current velocity could carry the scent of bait further and also have 

a direct impact on feeding behaviour of fish (Stoner, 2004). Empirical studies of these effects are 

rare (Stoner, 2004), but grey literature in fishing magazines suggests sea bass have greater feeding 

activity during times of tidal movement, making them potentially profitable times to go fishing. A 

final consideration is the different effect tide can have on different fishing gears (Sharples et al., 

2013). West Mersea was shown to have a different response to tidal effects than the other ports 

(Fig. 3-2B), contributing to this could be the prevalence there of using gill nets, which is different to 

the majority of vessels in other ports that used hook and line (Table 3-2).  

The success of fishing trips, as measured by landed weight of sea bass per metre of vessel length, 

was generally greater in calmer seas (Fig. 3-3A). Fewer vessels go fishing in rougher weather (Fig. 3-

2A) and the success of the vessels that do fish is reduced (Fig. 3-3A), reasons could include: not being 

able to fish the best/preferred fishing marks (Pet-Soede et al., 2001), being unable to deploy as 

much fishing gear (e.g., number of hooks), or because time spent at sea is reduced. Given the major 

effect of wave height on decision to leave port and fisher success, any change in storminess due to 

climate change (Sainsbury et al., 2018) could have implications for sea bass fishing pressure. 

Increased future storminess would result in more days when fishing is not possible and could result 

in significant changes to the spatial and temporal distribution of fishing pressure. In addition to 

changes in fisher behaviour, climate change has the potential to effect the distributions and 

reproductive biology of the sea bass that they target (Cheung et al., 2012; Heath et al., 2012). This 

combination of climate change effects on both sea bass and the fishers that target them could have 

compounding impact on the dynamics and distribution of future sea bass fishing pressure.  

The success of fishing trips was also greater when the change in fish price, compared with the 

previous trip, was lower (Fig. 3-3B). Amongst other factors affecting success of catch, bad weather 
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may help explain this because prices are inflated when fewer fish are brought to market due to 

adverse fishing conditions such as bad weather (Graddy, 2006). Although the increase in storminess 

may impact when and where sea bass are landed, the economic outcome may have a limited net 

change. Fishing success varied between years, being greatest in 2014 (Fig. 3-3C). Fishing success 

varied substantially between vessels (Table 3-4), this is likely due to a variety of reasons including the 

effects of seasonality on individual trips but also variation in skipper experience and risk perception 

(Salas and Gaertner, 2004), sometimes termed the skipper effect (Thorlindsson, 1988). Although 

beyond the scope of this study, further insight into the skipper effect is often gained from semi-

structured interviews and other survey techniques (Hill et al., 2010; Zukowski et al., 2011; 

Shepperson et al., 2016). 

We cover the top port per region for sea bass landings in the UK 2014-2018, and our logbook data 

covers at least 75% of the total trips per port (Tables 3-1 and 3-2). However, since our analysis shows 

ports react differently to environmental and socio-economic predictors, it is likely that other UK 

ports not included in this study may also differ. Furthermore, we know there is a 25 kg exemption 

from sales notes for landed sea bass, meaning that some landings of sea bass are unreported 

(Pawson et al., 2007) and some discard mortality that cannot be captured, resulting in potential 

underestimation of fishing pressure and mortality. Nevertheless, we believe our study is a good 

starting point to indicate some of the mechanisms of fishing pressure responses between ports. 

These findings have implications for the management of sea bass. Management is through technical 

measures that include catch limits (monthly, annual), closed seasons to protect spawning 

aggregations, and minimum size (GOV.UK, 2020). Increases of extreme weather events especially 

during the key fishing seasons may impact on the ability of under 10-meter inshore vessels to land 

catch limits within the allowed time periods. As these are time bound and there is no carryover, this 

will impact the potential revenue generated and therewith the profit. It may also be the case that as 

the stock expands northwards, due to warming sea temperatures, any seasonal closures may not 

protect spawning aggregations in all areas.  

To further the use of our method for our case study and other fisheries, it would be useful to 

consider the spatial aspect of fisher behaviour. Spatial data is not necessary for estimating total 

pressure on the stock, but it is important when investigating the spatial concentration of fishing 

effort and the pressure of fishing near protected areas (McCluskey and Lewison, 2008). A promising 

line of future work would be to incorporate our fisher behaviour findings into an individual based 

model (IBM). IBMs use a bottom-up approach and simulate a population of discreet individuals 

where a combination of individual state and environmental variables change individual behaviour 

(DeAngelis and Grimm, 2014). IBMs have been used in fisheries research to study fish populations 

(Kühn et al., 2008; Politikos, Huret and Petitgas, 2013; Boyd et al., 2018; Boyd, Sibly, et al., 2020; 

Walker et al., 2020), but have also been used to study fisher behaviour (Jules Dreyfus-León, 1999; 

Millischer and Gascuel, 2006; Bastardie et al., 2010; Bailey et al., 2019; Lindkvist et al., 2020). We 

suggest that incorporation of the fishing behaviour relationships we have found into a suitable IBM 

could be a useful management tool. 

 

3.6 Conclusions 

The primary findings from this study relate to the effect of wave height on the under 10-meter 

inshore vessels that target or impact sea bass around the UK. We found that fewer vessels left port 

during rough weather to go fishing and vessels that did were less successful. Fishers were also more 
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successful when fish price had decreased relative to the previous trip, due to supply/demand. The 

decision to leave port was only substantially affected by time of high tide at one of the four ports 

investigated. Fuel price was unimportant, but a large proportion of the variation in success was 

explained by variation between individual vessels, presumably due to variation in skipper ability or 

technical restrictions due to vessel characteristics. The findings from this study have implications for 

the management of sea bass fishing pressure as any increases of extreme weather events during the 

key fishing seasons may affect the ability of under 10-meter inshore vessels to land catch limits 

within the allowed time periods. As these are time bound and there is no carryover, this will impact 

the potential revenue generated and profit. We hope the methodology employed here will prove 

useful in future studies seeking to identify and quantify the effects of factors affecting fisher 

decisions and success. 

 

3.7 Acknowledgements  

This work was supported by a NERC PhD studentship [grant number NE/L002566/1] with CASE 
sponsorship from CEFAS. 

 

3.8 Supplementary 

Table 3-5. Coefficients for leaveport model Eqn. 1 

Coefficients: Estimates Std. Error Pr(>|z|) 

(Intercept) 4.12009 0.21632 *** 

Time_F1 -0.35324 0.3136   

Time_F2 -0.59732 0.28589 * 

Time_F3 0.10743 0.28563   

Time_F4 0.36582 0.2728   

Time_F5 0.35582 0.2538   

Time_F6 0.63745 0.25598 * 

Time_F7 0.60632 0.25243 * 

Time_F8 0.25861 0.24568   

Time_F9 0.2166 0.24688   

Time_F10 -0.338 0.24612   

Time_F11 -0.55768 0.2883 . 

Port_namePlymouth -1.867 0.2675 *** 

Port_nameWest Mersea -3.91104 0.27867 *** 

Port_nameWeymouth -2.6563 0.24813 *** 

mean_hs -2.72693 0.10519 *** 

Time_F1:Port_namePlymouth 0.70653 0.41023 . 

Time_F2:Port_namePlymouth 1.10812 0.37294 ** 

Time_F3:Port_namePlymouth 0.76895 0.3771 * 

Time_F4:Port_namePlymouth 0.7316 0.35494 * 

Time_F5:Port_namePlymouth 0.45929 0.32607   

Time_F6:Port_namePlymouth 0.48955 0.33135   

Time_F7:Port_namePlymouth 0.29396 0.32433   

Time_F8:Port_namePlymouth 0.77894 0.31797 * 

Time_F9:Port_namePlymouth 0.48716 0.31605   

Time_F10:Port_namePlymouth 0.83087 0.32234 ** 

Time_F11:Port_namePlymouth 1.85447 0.39789 *** 

Time_F1:Port_nameWest Mersea 0.575 0.36751   

Time_F2:Port_nameWest Mersea 0.64275 0.347 . 

Time_F3:Port_nameWest Mersea -0.06729 0.34582   

Time_F4:Port_nameWest Mersea -0.43089 0.34305   

Time_F5:Port_nameWest Mersea -0.95588 0.351 ** 

Time_F6:Port_nameWest Mersea -0.98164 0.3457 ** 

Time_F7:Port_nameWest Mersea -0.93353 0.34348 ** 

Time_F8:Port_nameWest Mersea -0.72119 0.34796 * 
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Time_F9:Port_nameWest Mersea -0.63316 0.34232 . 

Time_F10:Port_nameWest Mersea 0.31037 0.32386   

Time_F11:Port_nameWest Mersea 0.44027 0.36608   

Time_F1:Port_nameWeymouth -0.13857 0.39052   

Time_F2:Port_nameWeymouth 0.09285 0.36526   

Time_F3:Port_nameWeymouth -0.61662 0.35394 . 

Time_F4:Port_nameWeymouth -0.64804 0.33936 . 

Time_F5:Port_nameWeymouth -0.50917 0.31648   

Time_F6:Port_nameWeymouth -0.0722 0.31454   

Time_F7:Port_nameWeymouth 0.23878 0.30617   

Time_F8:Port_nameWeymouth 0.50412 0.29658 . 

Time_F9:Port_nameWeymouth 0.47708 0.29516   

Time_F10:Port_nameWeymouth 1.04772 0.29826 *** 

Time_F11:Port_nameWeymouth 1.42817 0.3559 *** 

Port_namePlymouth:mean_hs 0.81641 0.13656 *** 

Port_nameWest Mersea:mean_hs 1.4908 0.24574 *** 

Port_nameWeymouth:mean_hs 1.30149 0.17373 *** 

Observations 13278 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 3-6. Coefficients for Success model Eqn. 2 

Coefficients: Estimates Std. Error Pr(>|z|) 

(Intercept) 0.882048 0.111828 *** 

mean_hsr1 -0.035235 0.010603 *** 

mean_hsr2 -0.088608 0.029968 ** 

mean_hsr3 -0.143398 0.169473  

mean_hsr4 -0.663104 0.447051  

price_change -0.013953 0.002884 *** 

vessel_id13 -0.234831 0.146437  

vessel_id16 -0.271115 0.115431 * 

vessel_id21 -0.5056 0.12883 *** 

vessel_id43 -0.117583 0.157501  

vessel_id47 -0.417999 0.121167 *** 

vessel_id48 0.030674 0.151436  

vessel_id55 -0.029619 0.151365  

vessel_id56 -0.732218 0.145266 *** 

vessel_id59 -0.44641 0.148045 ** 

vessel_id63 -0.694191 0.174663 *** 

vessel_id68 -0.133228 0.192855  

vessel_id69 -0.838183 0.129204 *** 

vessel_id81 -0.954925 0.143791 *** 

vessel_id89 -0.443469 0.135121 ** 

vessel_id92 -0.694151 0.151387 *** 

vessel_id93 -0.829517 0.139788 *** 

vessel_id101 0.108991 0.135256  

vessel_id107 0.209084 0.120204 . 

vessel_id119 -0.008595 0.117105  

vessel_id120 -0.255232 0.166542  

vessel_id121 0.142423 0.11793  

vessel_id132 -0.202831 0.138104  

vessel_id135 -0.633855 0.146704 *** 

vessel_id136 -0.199661 0.137845  

vessel_id160 -1.260379 0.157964 *** 

vessel_id162 -0.054863 0.128494  

vessel_id164 -0.114629 0.121475  

vessel_id171 0.137812 0.116195  

vessel_id178 -0.150051 0.125312  

vessel_id179 -0.01622 0.119351  

vessel_id183 -0.148641 0.117808  

vessel_id187 -0.341761 0.11535 ** 

vessel_id194 -0.802073 0.132871 *** 

vessel_id199 -0.509809 0.128694 *** 

vessel_id211 -0.167905 0.127416  

vessel_id212 -0.425032 0.192823 * 

vessel_id215 -0.7002 0.135829 *** 

vessel_id219 -0.625107 0.185926 *** 

vessel_id222 -0.695224 0.185925 *** 

vessel_id231 -0.314065 0.174796 . 

vessel_id237 -0.234348 0.116574 * 

vessel_id240 -0.239747 0.118739 * 

vessel_id243 -0.532558 0.146715 *** 

vessel_id260 -0.252448 0.136841 . 

vessel_id265 0.131024 0.125388  

vessel_id278 0.051319 0.148712  

vessel_id282 -0.543862 0.157448 *** 

vessel_id286 -0.674815 0.11839 *** 

vessel_id290 -0.073338 0.117577  

vessel_id291 0.23684 0.17483  

vessel_id292 -0.123679 0.139664  

vessel_id298 -0.113263 0.193056  

vessel_id302 -0.275293 0.170517  

vessel_id306 0.349309 0.160319 * 

vessel_id310 -0.567098 0.126361 *** 

vessel_id312 -0.019767 0.13892  

vessel_id321 -0.983429 0.163048 *** 

vessel_id325 -0.094321 0.13125  
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Coefficients: Estimates Std. Error Pr(>|z|) 

vessel_id328 -0.354967 0.121113 ** 

vessel_id333 0.301551 0.12172 * 

vessel_id337 0.75773 0.179884 *** 

vessel_id339 -0.259192 0.124293 * 

vessel_id341 -0.291618 0.11924 * 

vessel_id342 -0.22227 0.147914  

vessel_id345 -0.10561 0.130407  

vessel_id346 -0.559051 0.146604 *** 

vessel_id347 -0.263862 0.170088  

vessel_id348 -0.148419 0.134538  

vessel_id353 -0.164866 0.122626  

vessel_id354 -0.136339 0.118778  

vessel_id358 -0.49057 0.12889 *** 

vessel_id360 -0.002579 0.142594  

vessel_id361 0.038115 0.151151  

vessel_id364 0.371916 0.166827 * 

vessel_id369 -0.686104 0.119703 *** 

vessel_id371 -0.288773 0.180844  

vessel_id372 0.093003 0.18618  

vessel_id377 -0.151009 0.117908  

vessel_id378 -0.444397 0.142968 ** 

vessel_id379 -0.454061 0.126557 *** 

vessel_id387 -0.575262 0.117643 *** 

vessel_id388 0.12595 0.125412  

vessel_id389 -0.182025 0.118785  

vessel_id390 0.209047 0.11406 . 

vessel_id391 -0.393117 0.128177 ** 

vessel_id392 -0.390957 0.133125 ** 

vessel_id393 -0.854372 0.162977 *** 

vessel_id394 -0.193814 0.117747 . 

vessel_id400 -0.998976 0.137153 *** 

vessel_id408 -0.016717 0.140533  

vessel_id410 0.054023 0.119785  

vessel_id411 -0.282638 0.115656 * 

vessel_id412 -0.615609 0.116564 *** 

vessel_id414 -0.42587 0.11921 *** 

vessel_id415 -0.354622 0.132199 ** 

vessel_id416 -0.303555 0.142665 * 

vessel_id418 -0.099567 0.119396  

vessel_id419 -0.619474 0.167004 *** 

vessel_id420 -0.400642 0.163519 * 

vessel_id422 0.121783 0.119123  

vessel_id423 0.209912 0.115359 . 

vessel_id427 -0.260952 0.120921 * 

vessel_id428 0.003511 0.131043  

vessel_id430 -0.774729 0.193081 *** 

vessel_id431 0.077003 0.151233  

vessel_id434 -0.567203 0.133328 *** 

vessel_id435 -0.325312 0.135532 * 

vessel_id438 -0.393286 0.174895 * 

vessel_id443 -0.227639 0.127678 . 

vessel_id445 -0.271582 0.151641 . 

vessel_id448 -0.386843 0.119577 ** 

vessel_id449 -0.144921 0.114013  

vessel_id451 0.179578 0.115844  

vessel_id454 -0.172454 0.160786  

vessel_id457 -0.627976 0.123113 *** 

vessel_id458 -0.716978 0.146504 *** 

vessel_id460 -0.361209 0.135082 ** 

vessel_id461 -0.484931 0.185651 ** 

vessel_id464 0.197084 0.160108  

vessel_id466 0.016801 0.119696  

vessel_id467 -0.395992 0.130443 ** 

vessel_id469 -0.163483 0.115616  

vessel_id470 -0.368841 0.148173 * 

vessel_id473 -0.773556 0.122655 *** 
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Coefficients: Estimates Std. Error Pr(>|z|) 

vessel_id478 0.100286 0.116365  

vessel_id479 -0.150223 0.130906  

vessel_id481 -0.28821 0.170467 . 

vessel_id483 -0.86852 0.166861 *** 

vessel_id487 0.20876 0.179988  

vessel_id488 -0.30349 0.12186 * 

vessel_id493 -0.275667 0.123874 * 

vessel_id494 -0.255734 0.129301 * 

vessel_id495 -0.220427 0.127103 . 

vessel_id497 -0.17912 0.126244  

vessel_id498 0.140055 0.193457  

vessel_id499 -0.022843 0.124846  

vessel_id500 -0.155012 0.139429  

vessel_id504 -0.258477 0.151908 . 

year2015 -0.037601 0.015736 * 

year2016 -0.105457 0.01594 *** 

year2017 -0.129264 0.016813 *** 

year2018 -0.033632 0.017329 . 

Observations  8815 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

Figure 3-4. Prediction of whether a vessel will leave port with changes to fuel price (pence per litre 
of red diesel) from the binary logistic regression (Eqn. 1 + fuel price as a predictor). 
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Figure 3-5. Predictors of fishing success, measured as landed weight per metre of vessel length, 
from the regression analysis (Eqn. 2 + time of high tide + fuel price and Month of fishing trip); A) 
time of high tide, B) fuel price, C) Month the fishing trip took place. 
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4 Incorporating environmental variability in a spatially-

explicit individual-based model of European sea bass. 

4.1 Abstract  

The northern stock of European sea bass (Dicentrarchus labrax) is a large, high value, slow growing 

and late maturing fish that is an important target species for both commercial and recreational 

fisheries. Around the UK, scientific assessments have shown a rapid eight-year decline in spawning 

stock biomass since 2010 attributed to poor recruitment driven by environmental factors, and high 

fishing mortality. Management of the stock is informed by scientific assessments in which a 

population model is fitted to the available data and used to forecast the possible consequences of 

various catch options. However, the model currently used cannot represent the spatial distribution 

of the stock or any effects of environmental variability. Individual based models (IBMs) use agents to 

represent individual organisms that can interact with each other and their environment. The 

mechanistic nature of IBMs is often advantageous as a management tool for complex systems 

including fisheries. Here we add to an existing IBM to produce a spatio-temporally explicit IBM of the 

northern stock of sea bass in which individual fish respond to local food supply and sea surface 

temperature. All life stages (i.e., pelagic stages, juvenile and mature fish) are modelled and individual 

fish have their own realistic energy budgets driven by observed dynamic maps of phytoplankton 

density and sea surface temperature. The model is calibrated using Approximate Bayesian 

Computation (ABC). After calibration by ABC the model gives good fits to key population parameters 

including spawning stock biomass. The model provides a mechanistic link between observed local 

food supplies and sea surface temperatures and overall population dynamics. Alongside calibration 

plots, we show some spatial catch plots to demonstrate how the model uses the energy budget to 

predict spatial and temporal change in sea bass catch distribution in response to environmental 

variability. Our results show that the IBM is a promising approach that could be used to support 

stock assessment with the scope for testing a range of spatially and temporally explicit management 

scenarios in addition to testing stock responses to novel environmental changes.   

4.2 Introduction  

The European sea bass (Dicentrarchus labrax) has been an important target species for commercial 

and recreational fishers around the UK for more than 50 years, however after decades of 

exploitation and minimal regulation the stock began to rapidly decline in 2010 (Pickett and Pawson, 

1994; ICES, 2021). The decline continued for eight years and was attributed to a combination of poor 

recruitment and fishing mortality which led to the implementation of emergency management 

measures in 2015 with continuing stringent harvest restrictions to present day (ICES, 2019, 2021). 

Sea bass are a slow growing, long lived, generalist predator with a complex life cycle that includes 

feeding and spawning migrations (Pickett and Pawson, 1994). A further complex component of the 

sea bass life cycle is the recruitment process (i.e., the surviving from egg through larval stages to a 

harvestable fish) which is particularly precarious and influenced by many drivers, the result of which 

can be observed as recruitment rates with high levels of interannual variation (Pickett and Pawson, 

1994; ICES, 2021). These life history components make the building of assessment models for this 

stock particularly challenging. 

The northern sea bass stock is assessed by the International Council for the Exploration of the Sea 

(ICES) using Stock Synthesis 3 (SS3); an analytical age - and length-based assessment model 

optimized for tactical management (ICES, 2019). SS3 includes: 1) a population dynamics model, 



 

57 

which represents growth, mortality, and recruitment; 2) an observation model which relates the 

population dynamics to available data; and 3) a statistical model which estimates parameters to 

maximise the goodness of fit between population model and data. While SS3 is well-suited for use in 

tactical management, there are important strategic questions which it cannot, and is not designed, 

to answer. First, SS3 can include only a crude representation of the spatial distribution of the stock 

using its “multi-area” configuration (Methot and Wetzel, 2013). For this reason it is limited in its 

ability to represent the effects of spatial management scenarios (e.g., sea bass fishery spatial 

closures in key of spawning areas [GOV.UK, 2020]). Second, SS3 does not represent the effects of 

environmental variability on the stock; for this reason it cannot make predictions about how the 

stock will develop against uncertain climate backdrops, or how climate uncertainty might interact 

with harvesting scenarios e.g., Boyd, Thorpe, et al., 2020. 

Walker et al. (2020) developed an individual-based framework for European sea bass. IBMs such as 

Walker et al. (2020) are widely used to simulate the spatial distribution of fish populations (Watkins 

and Rose, 2017; Heinänen et al., 2018; Boyd, Walker, et al., 2020), as well as population size and 

structure (Politikos, Huret and Petitgas, 2015; Boyd, Walker, et al., 2020; Bueno-Pardo et al., 2020).  

In Walker et al. (2020) the stock’s spatial distribution results from algorithms that govern the 

movements of the individuals, but the population dynamics component is that of SS3. The logical 

next step is to allow individuals to respond to observed local variation in key environmental drivers. 

To do so one must first identify important environmental drivers, and then incorporate sub-models 

that describe the ways in which the stock responds to these drivers.   

Prey availability and temperature are two key environmental drivers that affect rates of growth and 

reproduction in sea bass and ultimately population dynamics (Pickett and Pawson, 1994). The effects 

of prey availability and temperature on fish are typically modelled using energy budgets (sometimes 

called bioenergetics). Our energy budget approach follows an established methodology (Sibly et al., 

2013) that has been used for a range of species and applications (Sibly et al., 2013; Grimm et al., 

2014; van der Vaart et al., 2015; Boult et al., 2019; Boyd, Walker, et al., 2020; Mintram et al., 2020; 

Watson et al., 2020). The energy budget models describe the acquisition of energy from food in the 

environment and its allocation to maintenance (metabolism), growth, reproduction, and energy 

storage. Rates of acquisition and expenditure depend on temperature and body size, and these can 

be modelled using established theoretical relationships. Recently, bioenergetics models have been 

implemented in IBMs which enables extrapolation of the individual-level effects of prey availability 

and temperature (e.g., on body size and reproductive output) to the population level. Here we use 

phytoplankton density, assessed through remote sensing, as an index of food supply, and we 

examine the implications for the sea bass population of individual fish having their own energy 

budgets. The energy budgets link population dynamics to environmental drivers and ultimately 

outputs the population metrics that are used in fisheries management.  

In this study, we extend the model of Walker et al. (2020) incorporating a bioenergetics module to 

account for spatio-temporal variation in prey availability and temperature. Information on prey 

availability and temperature are derived from two satellite products: chlorophyll concentration, 

which we use as a proxy for prey availability (with additional assumptions about trophic delay); and 

sea surface temperature (SST). We estimate five parameters of the bioenergetics model by fitting 

the IBM to individual- and population-level outputs from the latest stock assessment. We show that 

the calibrated model matches the stock assessment outputs well, and we show some spatial outputs 

to demonstrate how the model links environmental drivers to spatial and temporal distribution of 

catch. Finally, we discuss the potential utility of our model for strategic management of the 

European sea bass stock.  
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4.3 Methods 

4.3.1 Overview  

Here we provide a summary description of the IBM. A full description following the ODD (Overview, 

Design concepts, Details) protocol for describing individual- and agent based models (Grimm et al., 

2006, 2010, 2020) is provided in a TRACE (TRAnsparent and Comprehensive model Evaludation; 

Augusiak, Van den Brink, & Grimm, 2014; DeAngelis & Grimm, 2014; Schmolke, Thorbek, DeAngelis, 

& Grimm, 2010) document forming the supplementary material. The IBM is implemented in 

NETLOGO version 5.3.1 (Wilensky, 1999). All the codes and dataset used for this research, can be 

downloaded from https://github.com/eth-cscs/abcpy-models/tree/master/EcologicalScience/Bass. 

The model develops the approach of Walker et al. (2020) to include energy budgets for individual 

fish. The model environment is composed of a grid landscape of 36 x 38 patches (grid cells), 

representing the area from 9°E to 9°W and 48°N to 57.5°N (Fig. 4-1). The model uses dynamic patch 

variables of sea surface temperature (SST [shown in blue Fig. 4-1A]; a key driver of sea bass 

dynamics; Pickett & Pawson, 1994; TRACE Section 5.8.2 and 5.10.2), and now includes an additional 

patch variable of phytoplankton density (PHY[shown in orange Fig. 4-1B];, derived from chlorophyll 

concentration using an empirical conversion factor; see Discussion and  TRACE Sections 5.8.2 , 5.10.3 

for discussion of the role of PHY as a base of the marine food web and the basis for energy in our 

energy budget updates). The patches of the model environment are categorised depending on 

location within the environment (Fig. 4-1). Coastal patches are those within an ICES rectangle that 

intersects land and offshore patches are all remaining sea patches. Between February–May any 

offshore patches south of 54°N with an SST value between 9–15°C are assigned as spawning patches 

(Thompson and Harrop, 1987; Kelley, 1988; Beraud et al., 2018). Nursery patches are those south of 

54°N intersecting land; (Kelley, 1988; Beraud et al., 2018). Patches are also assigned an ICES division 

(4.b, 4.c, 7.a, 7.d, 7.e or 7.fg see https://www.ices.dk/data/maps/Pages/ICES-statistical-

rectangles.aspx) and region (North Sea, English Channel, Celtic Sea or Irish Sea). ICES divisions and 

regions are mutually exclusive while patch types are not, as all nursery patches are coastal, and all 

spawning patches are offshore (Fig. 4-1).  

For simplicity, we assume the population is closed to migration outside the model domain. To keep 

model run times practical the sea bass population is modelled with super-individuals (hereafter 

termed individuals) each of which represents many fish with identical state variables (Scheffer et al., 

1995). Individuals are characterised by; the number of fish represented, age, life stage (see Figs. 4-1 

and 4-2 and sub model Transform), length, weight (including structural mass, gonad mass and total 

mass), ingested energy, energy reserves, metabolic rate, location, swimming speed and daily 

direction changes, spawning trigger and counter, mortality rates (natural, commercial 

inshore/offshore fishing mortality and recreational-fishing mortality) and the division they have an 

affinity to feed in. Sea bass variables and processes are described further in Section 4.3.3 and full 

details can be found in the TRACE. After an initial spin up (1985-2004), the model runs in daily time 

steps from 1st of January 2004 to the 31st of December 2014, just prior to the implementation of 

emergency management measures in 2015 (ICES, 2021). In each time step, individuals follow six 

main processes, all constructed from several sub models: ingestion, metabolic rate, growth, 

reproduction, movement, and mortality. Fig. 4-2 provides a conceptual overview of the processes 

and sub models represented in the IBM. In the following sections we give an overview of these sub 

models, highlighting the new energy budget updates and directing the reader towards relevant 

supplementary materials (TRACE sections) for further details.  

 

https://github.com/eth-cscs/abcpy-models/tree/master/EcologicalScience/Bass
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4.3.2 Initialization and spin up. 

The model is initialised on 1st of January 1985 and runs with daily time steps for a 19-year spin-up 

period. Thereafter emergent results are collected from 1st of January 2004 until 31st of December 

2014. During the spin up, Numbers-at-age data from the ICES stock assessment 2020 are used to 

base the initialized population and then each year new agents are introduced from estimates of 

numbers at age 0 also from the stock assessment. The remote sensing data for SST and PHY for 2004 

is used on repeat for each year in the spin up as it was unavailable before this date (for full details of 

spin up see TRACE section 5.5).  

 

 

Figure 4-1. The model interface; Both sea surface temperature (SST) and phytoplankton 
concentration (PHY) can not be shown simultaneously in the model interface so here; A) shows 
offshore patches as blue with dark to light representing increasing SST (min and max potential 
values 0- 30oC), and B) shows offshore patches as orange with dark to light representing increasing 
PHY (min and max potential values 0-75 g/m2). For both A) and B) coastal patches represented in 
green, nursery patches (also coastal) are turquoise. Targets that eggs and larval stages drift 
towards (depending on ICES division affinity) are represented by red patches. Agent colour 
represents life stage (white = eggs, black = ys-larvae and larvae, yellow = juvenile sea bass [not all 
life stages are shown here]). For mature sea bass colour shows the affinity to feeding ground. 
Spawning patches (which vary depending on time of year and environmental conditions) are 
shown with a yellow “S”. These remote sensing data are updated every 8 days and agents perform 
all sub models each day (see section below 4.3.3).  

 

4.3.3 Process overview and scheduling  

An overview of the sub models is presented here but for complete detail we refer the reader to the 

relevant TRACE sections. The major addition to the model of Walker et al. (2020) are the energy 

budget processes and the sub models; ingestion and assimilation, maintenance and reserves, 

growth, and reproduction. The equations (1-5) that make up the energy budget approach follow an 

established methodology (Sibly et al., 2013) that has subsequently been used for a range of species 

and applications (Sibly et al., 2013; Grimm et al., 2014; van der Vaart et al., 2015; Boult et al., 2019; 

Boyd, Walker, et al., 2020; Mintram et al., 2020; Watson et al., 2020). The model proceeds through 

all sub models in daily time steps that reset every 365 days. The following sub models are executed 

in the order they are presented. Within each sub model, super-individuals and patches are 

processed in a random order as there are no interactions among agents (an overview can be seen in 
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Fig. 4-2). Agents age one day each time step and the cohort age is increased by one every 365 time 

steps.  

Update-patches: New SST and PHY data is assigned to patches, and offshore patches update their 

spawning patch status (though note that SST and PHY data only changes every 8 days). 

Natural mortality: The number of fish in each individual is discounted by its natural mortality rate. 

Any super-individuals reaching the age of 30 are removed from the simulation.  

Ingestion and assimilation: All life stages calculate ingestion and assimilation except for eggs and 

egg- sac larvae as these early life stages rely on their own energy source rather than feeding (Pickett 

and Pawson, 1994). For the older life stages (larvae, juvenile and mature sea bass) the rates of 

ingestion and assimilation are dictated by size of the individual, energy available in the environment, 

temperature, and density dependence (i.e., intraspecific competition for food). The assimilated 

energy (E) is then the energy available for the remainder of the energy budget processes (i.e., 

growth, maintenance, and reproduction) and is calculated as: 

𝐸 =  ((((𝐶𝑚𝑎𝑥 ∗ (
𝑃𝐻𝑌

𝐻+𝑃𝐻𝑌
)) ∗ 𝑀𝑡

2/3)   ∗  (𝑖 ∗ (
1

𝑀𝑛𝑚

2
3

) ∗ 𝐸𝑝)) ∗ 𝐴𝑒) ∗ 𝐴ℎ                   (1) 

where Cmax is the maximum consumption of food in relation to body size, PHY is the energy value of 

the patch, H is the half saturation constant, Mt is total mass, i is importance of conspecific density, 

Mnm is the sum of non-egg biomass in the same patch, Ep is the energy in phytoplankton and Ae is 

the product of assimilation efficiency (i.e., the proportion of energy that is absorbed from prey) and 

trophic delay (i.e., how long/how much energy from a phytoplankton bloom makes its way through 

the trophic levels to sea bass prey) and Ah is an Arrhenius function (for details see TRACE sections 

5.7, 5.8.2, 5.10.3, and see Table. 4-1 for parameter values).  

Maintenance and reserves: All life stages calculate metabolic rate and its energetic cost, except for 

eggs and egg- sac larvae. Metabolic rate is affected by body mass and temperature, and here we 

calculate field metabolic rate as twice the standard metabolic rate (Peters, 1986) and is calculated as 

Mr below: 

𝑀𝑟 =  (𝐴𝑜 ∗ (𝑀𝑡

3

4 ∗ 2) ) ∗ 𝐴ℎ                      (2)                                                                                                                                                               

where Ao is a metabolic rate normalisation, Mt is total mass and Ah is an Arrhenius function. Once 

the energetic cost of maintenance/metabolic rate is established it is either paid for directly from 

assimilated energy or if this is insufficient (e.g., reduced feeding available in the winter) then energy 

reserves are added to assimilated energy and metabolic costs are taken from this (for details see 

TRACE sections 5.7 and see Table. 4-1 for parameter values).  

Growth: All life stages except eggs calculate their total mass (mass of an individual including, if any, 

fat reserves and gonad mass): 

𝑀𝑡 = (𝑎 ∗ 𝐿𝑏 ) +  ((
𝐸𝑟

𝐸𝑙
) + 𝐺𝑚)         (3) 

where a and b are Length-mass coefficient values (for details see TRACE Section 5.8.3), Er is how 

much energy is in reserves, El is the energy content of lipid and Gm is mass of gonads.  
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Next the maximum possible growth increment (MaxGr) is calculated and here we assume individuals 

under 70 days have a constant maximum growth rate (for details see TRACE section  5.8.3) and those 

older are assumed to follow a von Bertalanffy growth curve: 

 

𝑀𝑎𝑥𝐺𝑟 = {
 𝐺𝑙 ∗ 𝐴ℎ,                                                              𝐴𝑔𝑒 < 70 𝑑𝑎𝑦𝑠

(𝐿𝑖𝑛𝑓 − 𝐿) ∗ (1 − 𝑒𝑥𝑝(−𝑘/365)) ∗ 𝐴ℎ, 𝐴𝑔𝑒 ≥ 70 𝑑𝑎𝑦𝑠
    (4) 

where Gl is the slope coefficient of a regression of larval length on age, Linf is the asymptotic length 

of sea bass, L is fish length and k is the annual growth constant and Ah is an Arrhenius function. After 

calculating the theoretical maximum size increase, the energetic cost of this maximum increase is 

calculated. Eggs do not grow, instead they develop and transform into yolk-sac larvae which do not 

ingest energy and thus are assumed to have maximum energy available to grow maximally. However 

once egg-sac larvae have transformed to larvae they begin to ingest energy and here larvae, juvenile 

and mature sea bass only grow maximally if there is adequate assimilated energy and update length 

accordingly. If there is not enough assimilated energy, they will grow at a suboptimal growth rate 

(for details see TRACE section 5.8 and see Table. 4-1 for parameter values).  

Calculate-speed: The swimming speed of each fish is calculated from its length and SST of the patch. 

Transform: In our model update we include the full fish life cycle and use length-based definitions to 
distinguish between life stages. In the transform sub model if a super-individual meets the criteria 
(sufficient length; see Fig. 4-2) then it transforms to the next life stage. The life stages are egg; yolk-
sac larvae; larvae; juvenile sea bass; and mature sea bass. When juveniles transition to mature sea 
bass, they set their coastal feeding ground affinity as the ICES division in which they are in at the 
time of exceeding this length requirement (this could be a different division to the original ICES 
division target they would have drifted towards when they were in pelagic stages, see TRACE section 
5.8.7). Note that at the end of the first spawning migration there is an opportunity to change ICES 
division affinity which is altered with a probability that can be set by the model user. 

Fishing-mortality: For fish that are over the minimum landing sizes the number of fish represented 
by each super individual is discounted by fishing mortality rates from the commercial offshore, 
commercial inshore and recreational fleets (data obtained from ICES stock assessment 2020). 

Movement: Juvenile and mature movement sub models remain mostly unchanged from Walker et 
al., 2020. However, a major addition to the model is the full fish life cycle and the inclusion of life 
stages of eggs, yolk sac larvae and larvae. In our update we provide movement sub models for these 
pelagic life stages.  

Spawn-migration: During the months October–May if SST is below the 9oC spawning trigger 
threshold then mature fish move towards offshore spawning grounds.   

Feeding-migration: When spawning period is over at the end of May each mature fish moves back 

towards or within its assigned coastal feeding ground. 

Local-movement: Each juvenile fish moves randomly within coastal patches. Juveniles less than 

32cm (not yet classed as “adolescent”) are further constrained to nursery coastal patches.  

Larval stages drift: Each egg, yolk-sac larvae and larva move one patch closer to its assigned coastal 

feeding ground. 

Reproduction: On the 17th of March mature sea bass calculate their potential fecundity and then the 

energy required to produce this number of eggs (MaxR):  
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𝑀𝑎𝑥𝑅 (𝑀𝑠𝑡𝑟 ∗ 𝐸𝐺𝑝𝑤) ∗ 𝐸𝐺𝑚 ∗ (𝐸𝑓 + 𝐹𝑠)       (5) 

where Mstr is Structural mass of sea bass (i.e., not including any fat reserves or gonad mass), EGpw is 

number of eggs per kg of sea bass (Pickett and Pawson, 1994), EGm is the weight of eggs, Ef is the 

energy in flesh and Fs is the cost of synthesising flesh. If there is enough energy to produce maximum 

potential fecundity, then the energy needed to do this is deducted from energy reserves and gonad 

mass and realised fecundity are set accordingly. However, if there is not enough energy to reach 

maximum fecundity then energy reserve is set to whatever is left after subtracting maintenance 

costs and gonad mass and realised fecundity is set to what is achievable with the limited resources.  

Once calculated for all mature sea bass, a random sample of 10 mature sea bass super-individuals 

spawn one super-individual which represents as many eggs as determined by total realised fecundity 

of the whole spawning stock divided by 10. The number of eggs is therefore based on the cumulative 

available energy reserves. With only 10 individuals spawning the number of super-individuals 

remains consistent for each cohort and 10 new super-individuals continue to represent the spatial 

aspect of the fishery (for details see TRACE sections 5.7, 5.8.7 and see Table. 5-1 for parameter 

values). 
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Table 4-1. Parameter values used in Energy budget equations.  

Parameter Description Value Reference 

a  Length-mass coefficient 
(for details see TRACE 
Section 5.8.3). 

1.296x10-5 
*0.95 

(Pickett and Pawson, 1994; ICES, 2012a) 

b Length mass scaling 
exponent. 

2.969 (ICES, 2012a) 

Ao  Normalizing constant 
for relationship 
between Metabolic 
rate and fish size.  

0.1227808 (Claireaux, 2006; Jourdan‐Pineau et al., 
2010; Luna-Acosta et al., 2011; Zupa et 
al., 2015; Peixoto et al., 2016) 

Ae Efficiency of energy 
from phytoplankton to 
fish.  

1.64x10-3 Parameterised with ABC  

Cmax Max ingestion. 0.54 grams per 
gram of fish 

(Lanari, D’Agaro and Ballestrazzi, 2002) 

Ef Energy content of flesh. 7 kJ g-1  (Peters, 1986) 

EGm Sea bass egg mass. 0.96 x10-3 g (Cerdá et al., 1994) 

EGpw Potential egg 
production per gram of 
sea bass.  

375,000  (Pickett and Pawson, 1994)  

El Energy content of lipid. 39.3 kJ g-1  (Schmidt-Nielsen, 2013) 

Ep Energy content of 
phytoplankton. 

6.02 kJ g-1 (Annis et al., 2011) 

Fs Energy to synthesise 
flesh. 

3.6 kJ g-1 (Sibly and Calow, 1986; Sibly et al., 2013) 

GL  Larval stages growth 
coefficient. 

0.02485 cm d-1 (Jennings, Jennings and Pawson, 1992; 
Regner and Dulčić, 1994) 

H Half saturation 
constant  

4.87x10-1 Parameterised with ABC 

I Importance of density 
on ingestion. 

5.14x10+13 Parameterised with ABC 

K Annual growth rate 
coefficient. 

0.096699 (ICES, 2012a) 

Linf Asymptotic length. 84.55 cm (ICES, 2012a) 
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Figure 4-2. Model overview showing for each life stage the processes occurring on day T that may 
result in transformation to the next life stage at the end of the day. For each life stage (egg, yolk-
sac larvae, larvae, juvenile, and mature sea bass) the sub models are indicated in the order of 
model execution. Eggs transform to the next life stage after a specified time and from then on 
transformation is length based. Overviews of movement sub models are given on the right.  

 

4.3.4 Model calibration  

The model contains 25 parameters, and the values were where possible taken from literature (see 

TRACE section 5.5 and Table 5-2). Where absolute values of these parameters could not be directly 

taken from the literature, we used a version of Approximate Bayesian Computation (ABC) 

called Simulated Annealing ABC (Albert, Künsch and Scheidegger, 2015) as implemented in the 

Python library ABCpy (Dutta et al., 2017) to fit 5 parameters to calibrate the model. The five 

calibrated parameters were: H; half saturation constant, AM: adult natural mortality, AE; absorbed 

energy, PM: pelagic mortality, I; importance of density dependence. This method is highly 

parallelizable, making it an excellent algorithm for use by high-performance computers. ABC began 

by randomly drawing values of H, AM, AE, Pm and I from uniform prior distributions (for full details 

of priors see TRACE section 5.9.4) and ran the IBM with these parameter values. Subsequent runs 

were guided according to how well the outputs of previous runs fitted data as indicated by the sum 

of the weighted Euclidean distance between the model outputs and data. The data used for 

parameter calibration was from the sea bass stock assessment model (stock synthesis 3, SS3). SS3 

outputs for SSB and numbers at age are estimated annually, however mass at age is simply taken as 

the stock assessment parameters of the von Bertalanffy model. It is necessary to include mass at age 

in the calibration to get a realistic population size structure, and in the absence of real data this is 

the best available guide. The estimated posterior means for all five parameters and 95% credible 

intervals are shown in Table 4-2 together with the prior distributions used. The estimated correlation 

matrix between parameters is shown in Table 4-3 and the values shown suggest medium to weak 

correlations between these five model parameters, with a maximum of -0.47 between parameters 

PM and AM.  

 

To quantify the uncertainty in predictions that results from uncertainty in the five calibrated 

parameters, we ran a posterior predictive check by drawing 111 parameter samples from the 

inferred approximate posterior distribution and simulating 111 data sets, each using a different 
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parameter sample. From these we obtained posterior predictive inter-quartile ranges, and these are 

shown in Figs. 4-3 – 4-5 to indicate the uncertainty in predictions. 

 

Table 4-2. Values for priors, posterior mean and 95% credible intervals for parameters obtained by 
ABCpy. H: half saturation constant, AM: adult natural mortality; AE: absorbed energy, PM: pelagic 
mortality, I: importance of density dependence. For rationale for choice of priors see TRACE 
section 5.9.4  

Parameter Priors  Posterior mean 95% credible intervals 

H 2.5x10-1,7.5x10-1 4.87x10-1 3.04x10-1, 7.26 x10-1 

AM 2.8x10-4,5.9x10-4 4.71x10-4 3.43x10-4, 5.87 x10-4 

Ae 0.0, 3x10-3 1.64x10-3 2.51 x10-4, 2.88 x10-3 

PM 4.5x10-2, 1.35x10-1 8.01x10-2 5.76 x10-2, 1.02 x10-1 

I 2.5x10+13,7.5x10+13 5.14x10+13 2.72 x10+13, 7.39 x10+13 

 

Table 4-3. Estimated correlation matrix between the parameters shown in Table 4-2.   

- AM Ae PM I 

H 0.19 -0.04 0.06 0.02 

AM  -0.04 -0.47 -0.05 

Ae   0.35 0.17 

PM    0.13 

 

4.3.5 Sensitivity analysis  

The sensitivities of model outputs for SSB and numbers/mass at age are shown in Table 4-4 as 

percentage change in output for a 10% decrease/increase in model parameters. The model remains 

robust against most parameters with most sensitivities less than 10%. The model was most sensitive 

to changes in length weight parameter (b_g). For the full table of sensitivities of number and mass at 

age see TRACE section 5.12. 
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Table 4-4. Sensitivities of SSB, mean mass at age, and numbers at age, to changes in parameter 
values. Results are presented as % change in output for a 10% decrease/increase in parameter 
value relative to values in Table 4-1 or, for the five fitted parameters, the posterior means shown 
in Table 4-2.  For mass and numbers at age we show the range of values for brevity, for full table 
see TRACE section 5.12 and Table 5-6.  

Parameter Value Output Variable  

    SSB Mass at age Numbers at age 

    Decrease Increase Decrease Increase Decrease Increase 

linf 84.55 -9.56 0.79 -21.9,0.8 -12.0,25.7 -2.1,7.5 -10.5,3.6 

K 0.096699 -1.68 10.52 -20.5,2.7 -4.8,21.5 -2.7,12.3 -2.5,11.6 

t0 -0.73 -7.60 -1.53 -16.3,2.0 -14.1,2.7 -1.8,17.1 -2.0,6.6 

Ea 0.5 1.71 -0.45 -10.1,4.0 -9.9,2.8 -1.8,10.8 -2.2,2.0 

EaS 0.1903656 10.13 -0.67 -10.8,4.7 -10.0,7.6 -2.5,7.7 -1.7,3.2 

Cmax 0.54 4.12 6.53 -9.4,7.5 -5.3,6.4 -2.0,13.5 -1.9,10.2 

ep 6.02 -1.27 2.18 -9.8,5.6 -10.8,5.1 -1.6,3.7 -3.0,19.4 

A0 0.1227808 7.09 -2.12 -7.2,9.9 -6.5,3.1 -1.2,10.1 -2.6,7.9 

Ef 7 -11.62 -8.11 -9.3,3.8 -11.6,7.4 -2.3,11.6 -2.3,8.5 

El 39.3 4.52 -6.25 -8.3,3.5 -13.4,2.3 -2.4,2.4 -2.5,14.3 

Ls 14.7 -10.30 0.55 -17.8,5.5 -8.9,2.6 -2.4,9.3 -2.6,8.1 

Fs 3.6 -1.50 0.12 -12.3,2.3 -7.5,3.8 -1.8,14.5 -1.8,11.3 

egg_mass 0.00096 5.58 4.29 -16.7,5.9 -8.7,3.4 -1.5,21.8 -3.4,2.0 

a_g 1.23x10-5 -5.00 10.66 -17.8,-7.2 2.9,16.0 -1.6,6.7 -2.1,20.4 

b_g 2.969 -61.27 152.43 -72.9,-45.0 29.8,265.7 -57.5,5.3 -1.2,5.8 

eggs_per_bass 375000 -0.06 -4.45 -11.4,9.4 -22.0,3.9 -1.7,10.5 -2.1,13.9 

Gl 0.02485 3.66 -0.78 -7.8,7.7 -11.2,3.9 -28.2,17.6 -2.1,51.8 

H 4.46x10-1 0.67 6.65 -5.3,6.1 -5.8,7.4 -2.7,9.7 -3.3,11.7 

AM 4.91x10-4 -0.89 3.49 -8.9,5.0 -6.8,6.4 -0.7,8.9 -3.3,6.8 

AE 1.57x10-3 1.52 6.78 -17.5,2.7 -8.4,4.7 -3.4,19.0 -1.8,10.6 

PM 8.42x10-2 1.18 -1.46 -7.4,3.7 -7.5,4.4 -1.3,71.9 -37.1,2.7 

I 5.20x1013 2.75 5.49 -7.2,4.3 -10.8,4.8 -2.7,2.4 -3.6,5.6 
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4.4 Results  

To assess the model fits to data, we compare the IBM outputs for SSB and numbers/mass at age 

with outputs from stock synthesis 3 from 2004 to 2014 (ICES, 2019), as shown in Figs. 4-3 – 4-5.  In 

these figures the black points represent the ‘data’, i.e., outputs from stock synthesis 3, and the solid 

red lines/dots are IBM outputs using posterior medians. Uncertainty about these outputs is 

indicated by ribbons representing posterior predictive inter-quartile ranges.  

SSB is the total mass of all fish that are mature (>42cm). The fit of SSB is shown in Fig. 4-3.  The IBM 

captures the shape of the data well and follows the decline in SSB from 2010 suggested by the SS3 

data. Mass-at-age predictions are assessed by reference to the von Bertalanffy growth curve 

assumed by SS3 (Fig. 4-4), which assumes no variation year-to-year. The model slightly overpredicts 

mass for ages 0 to 4, and underpredicts mass after age 7. The fit of numbers-at-age predictions are 

shown in Fig. 4-5. Model fits to the SS3 data are good for ages 5 and above, and reasonably good for 

all ages. In addition to the calibration plots (Figs, 4-3, 4-4 and 4-5) we show some spatial model 

outputs in Figure 4-6. Here we show the total catch (see sub model Calculate-catch Trace section 

5.7) for each patch for each year (2004-2014). In general, costal patches (see Fig. 4-1 for distribution 

of model coastal patches) are where the greatest mass of sea bass are predicted to be caught, 

however there are interannual variations. For example the model predicts there is a greater mass of 

sea bass caught in the Irish sea in 2007 than in all other years shown (Fig 4-6).  

 

Figure 4-3. Model calibration for Spawning Stock Biomass (SSB) for years 2004-2014. Black dots 
represent the outputs of SS3; solid red line is IBM output using posterior medians; ribbon 
represents interquartile range.  
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Figure 4-4. Model calibration for individual average masses (kg) over years 2004-2014 of 30 age 
classes. Black dots represent the Bertalanffy growth curve used by SS3; red dots are the IBM 
outputs using posterior medians; ribbon represents interquartile range (which is calculated for 
each age as the average of the yearly interquartile ranges). For model fits of each of the 30 age 
classes for years 2004-2014 see TRACE section 5.11.  
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Figure 4-5. Model calibration for numbers in 30 age classes for years 2004-2014. N0 = number at age 0, N1 = number at age 1, etc. Black dots represent 
the outputs of SS3; red dots are the IBM outputs using posterior medians; ribbon represents interquartile range. 
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Figure 4-6 Total catch per patch per year (2014-2015) Catch is recorded in tonnes ranging from 0 
catch to 500 tonnes and indicated by colour (light yellow = low catch and dark red =  high catch). 
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4.5 Discussion  

Here we present a spatially explicit individual based model of the northern stock of sea bass which 

has been calibrated and assessed for goodness of fit against stock synthesis 3 outputs of SSB and the 

numbers and individual masses of 30 age classes. The model builds on Walker et al. (2020), but our 

addition of individual energy budgets driven by phytoplankton density provides a mechanistic link 

between environmental drivers and fish populations. Here we also present spatial outputs of annual 

catch to demonstrate how the energy budget creates a mechanistic link between changes in 

environmental drivers and predictions of temporal and spatial distribution of sea bass catch. The 

energy budget approach follows established methods (Boyd, Walker, et al., 2020; Mintram et al., 

2020; Watson et al., 2020) however it is important to note that our model is intended for use by 

fisheries managers to complement, not replace, current stock assessment approaches using SS3.  

A key assumption in our model is that local food density available to sea bass can be represented by 

observed phytoplankton density. Sea bass are generalist predators, and their diet is opportunistic, so 

it is difficult to predict what they will be eating at any particular time (Pickett and Pawson, 1994). 

Their food choices could in principle be derived from a model of local ecosystems, but this would 

require many unobservable parameters (i.e., what, when and where sea bass are eating and the 

associated uncertainly). We therefore chose instead to make use of remote sensing data of 

phytoplankton blooms which constitute the base of the marine food web. There are a number of key 

necessary assumptions required when attempting to estimate how much of the energy present in 

phytoplankton is feasibly available to sea bass. Our first assumption is that areas of high 

phytoplankton density are favourable to all trophic levels i.e., will correlate with high densities of 

species that directly consume phytoplankton and consequently will be attractive to species that prey 

upon these secondary consumers and a continuation of this pattern up the food chain. We also 

assume that there is likely a delay (which we term trophic delay) in time from a large amount of 

energy being present in the form of phytoplankton till it is available to sea bass as a range of prey 

(i.e., an increase in biomass of prey species through individual growth or reproduction). A final 

assumption is that energy is lost at each trophic interaction and many species in the marine 

environment (including much of sea bass prey) are highly mobile and may move around seeking 

energy in the form of their preferred prey. In this model we cumulate these important assumptions 

and bypasses these complexities by using a single parameter absorbed energy to indicate how much 

of the phytoplankton ends up in the fish. Here this combines all the unknowns of how-much/how-

long energy takes to become available from phytoplankton to bass prey. Our approach can be 

considered justified by the good fits to the data seen in Figs, 4-3, 4-4 and 4-5.  

Methods of calibrating and evaluating complex models have advanced considerably in recent years. 

Here we used Simulated Annealing ABC (SABC [Albert, Künsch and Scheidegger, 2015]) to calibrate 

five model parameters (adult and pelagic mortality rates, absorbed energy and two density 

dependences) that would otherwise be extremely difficult to estimate. SABC is much faster and more 

accurate than rejection ABC methods (Dutta et al., 2017) which have previously been used to 

calibrate similar IBMs (e.g., Boult et al., 2018; Boyd, Walker, et al., 2020; van der Vaart et al., 2015). 

The model outputs we have presented give insight into how different aspects of the model are 

working. Spawning stock biomass (SSB, Fig. 4-3) is the size of the mature stock, which is the basis for 

setting legislative targets to manage the stock. We see good fits for SSB across the simulation period. 

We also see good fits to body weights-at-age (Fig. 4-4) which suggests that both the numbers and 

sizes of the individuals are reasonable. The numbers and masses in each age class are discussed 

below. 
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The numbers in each age class are shown in Fig. 4-5. Assessing numbers at age rather than total 

abundance is necessary to avoid the more numerous younger fish dominating the model fits. Overall, 

the dynamic model age structure shown in Fig. 4-5 is a good fit against the SS3 data, although some 

of the goodness of fit may stem from what happens in the spin up period. Cohorts born in the spin up 

period are read in from ICES numbers at age data, and their numbers thereafter are only affected by 

two model parameters, natural mortality (AM) and fishing mortality.  

The N0 panel shown in Figure 4-5 represents the number of fish that are age 0 and no longer in the 

pelagic stage (defined in our model as an individual with age < 1 and Length > 1.4 cm [Beraud et al., 

2018]). Predicted N0 fits SS3 data well in some years but in others there are significant discrepancies. 

Discrepancies may arise from lack of realism in our model, but may also arise from errors in the SS3 

‘data’. The SS3 estimates of the N0 are outputs of a population-dynamics model described in the 

Introduction, and subject to some uncertainty. So the discrepancies between our predictions and the 

SS3 data do not necessarily mean our predictions are wrong. N0 (i.e., the number of N0 individuals) 

in our model is an emergent property driven by the number of mature fish and their spawning 

success, which depends on the condition of the parents (Mcbride et al., 2015), and early survival. 

Larger fish with higher fat reserves can produce more eggs (i.e., have higher potential fecundity) than 

smaller fish, so the more mature fish there are in the simulation, the greater their collective realised 

fecundity. If the mature fish have had access to abundant energy, there is more left to produce eggs 

after the necessary allocation to maintenance and growth. It is important to note that the model 

does not cover quality of eggs though there is some evidence that fish that have had access to better 

nutrition may also be able to produce higher quality eggs, which may increase larval survival and 

stock recruitment (Cerdá et al., 1994; Chatzifotis et al., 2011). In the model presented the amount of 

energy to produce eggs is also influenced by temperature, since individuals in warmer sea 

temperatures are able to ingest more energy, grow faster and have higher levels of reserves from 

which to produce eggs. The other major contributor to the N0 output is pelagic natural mortality 

rate. The daily pelagic mortality rate 8.01x10-2 is far greater than that of the adult mortality 

parameter in our model 4.71x10-4, so there is a substantial payoff to growing faster to escape the 

pelagic phase earlier. In this way the number of larvae that make it through to be juvenile fish (i.e., 

classified as N0) is dependent on their growth rate, which in turn depends on food availability, 

temperature, and the density of competitors.  

The masses of the individuals in each age class are presented in Fig. 4-4. Although the models provide 

fairly good fits for younger fish, the masses of older fish are underpredicted. Discrepancies between 

our predictions and the SS3 data do not necessarily mean our predictions are wrong, because the SS3 

‘data’ are simply outputs of a fitted von Bertalanffy growth curve (ICES, 2021). Discrepancies may 

also arise as a result of the spin-up process. During spin up we read in the numbers at age 0 

estimates from SS3 as is done in the spawning sub models of Walker et al. (2020), but afterwards 

spawning is determined by the fishes’ energy budgets, and the two methods differ in when spawning 

takes place. The result is that the IBM age 0 cohort consists of older and larger fish than in the SS3 

data. As the cohort ages it continues heavier for a few years, and this may explain the 

overpredictions of mass for M0 – M4 in the first few years of the simulations (see Figure 5-17 in 

TRACE section 5.11). The underpredictions of masses of older fish are harder to explain but may 

result from some lack of realism in our representation of energy budgets. In our model an 

individual’s mass depends on its history of ingesting energy, and this in turn depends on the energy 

available in the environment, competition from other fish and sea surface temperature and this is 

what the AE and I parameters hoped to capture. In excess of structural mass individuals have the 

potential to put on weight as fat reserves. High reserves result from abundant energy, high SST 
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and/or low competition, and eventually allow mature individuals to spawn. These processes result in 

fluctuations in fat reserves that the SS3 assessment does not capture.  

There are many potential fisheries management applications for the IBM we present here. The 

original model published by Walker et al., 2020 was designed to complement the SS3 stock 

assessment and to test spatial management scenarios, and the updated model here still retains that 

utility (though note movement sub model limitations discussed below). We demonstrate some of the 

spatial and temporal utility in Figure 4-6 where results show predictions of interannual variation in 

the distribution of sea bass catch. Our energy budget additions and the subsequent emergent 

population dynamics that are driven by the environmental drivers make the model a good tool to 

study a range of climate impacts on the stock. Using different climate projections the energy budget 

could capture the effect of temperature on life processes of ingestion, metabolic rate, growth and 

sea bass recruitment (known to be heavily influenced by temperature [Pawson, Pickett and Smith, 

2005]) and the subsequent impacts of the stock could be analysed. Another advantage of the full fish 

life cycle and closed energy budget additions is that changes in condition or number of the spawning 

stock will have consequences on the following year's recruitment. This closed loop facilitates testing 

of a range of existing and new management measures for recreational and commercial fishing (e.g., 

spatial, and temporal closures, changes to total allowable catch/minimum landing size, bag limits 

etc.).  

The model is built in a modular fashion making additions or changes to further the model utility 

achievable. One promising line of work is to add other dynamic maps of anthropogenic stressors to 

the model environment. For example, the addition of a soundscape map to which the individuals 

would suffer sublethal effects through reduced ingestion and the knock-on effects through the 

energy budget (Watson et al., 2020) would give rise to emergent population effects of anthropogenic 

noise (a similar approach was done for porpoise in a study by Nabe-Nielsen et al., 2014). In addition, 

there is scope to update fishing pressure which is currently read in from ICES data to a more 

mechanistic sub model. Sea bass are mostly targeted by the under 10m fleet in the UK (Williams et 

al., 2018) and the small vessels are often most vulnerable to bad weather (Sainsbury et al., 2018; 

Young et al., 2019). An updated fishing pressure sub model that responded mechanistically to 

environmental and socio-economic pressures would further develop the model utility to fisheries 

management (e.g., [Dreyfus-León, 1999; Millischer and Gascuel, 2006; Bastardie et al., 2010; Bailey 

et al., 2019; Lindkvist et al., 2020]).   

We believe that the IBM we present here is a useful tool in its current form, however there are some 

caveats and further opportunities for improvement. Firstly, a general critique of individual/agent 

based models is the large amount of data that they require for model parameterisation, calibration, 

and validation (Johnston et al., 2019). To calibrate and asses the fits of the model, we use outputs 

from the sea bass SS3 assessment model. The SS3 model takes all the available data from surveys 

and literature to assess the state of the stock (ICES, 2021) and outputs modelled ‘data’, so we are 

fitting the IBM model outputs to another model’s outputs. This is suboptimal but in the absence of 

the extensive long-term field data on individuals, outputs from SS3 remain the best calibration option 

and the limited availability of calibration data may also explain why the credible intervals remain 

wide for the five parameters fitted with ABC (Table 4-2). Further detailed spatial distribution data 

would also be required to truly validate the spatial and temporal explicit predictions by the model 

(shown in Fig 4-6). Another limitation is the movement sub model which remains unchanged from 

Walker et al., 2020. Walker et al., 2020 outline how modern tagging methods (Quayle et al., 2009; 

O’Neill et al., 2018; de Pontual et al., 2019) could provide data on which a mechanistic movement 

sub model could be built and added to further the spatial utility of the model. To conclude we hope 

that fisheries managers may find the spatial, mechanistic, and emergent merits of this IBM a useful 
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complementary tool to SS3 with scope for further development to aid the sustainable management 

of northern sea bass stock.   
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5 “TRAnsparent and Comprehensive model Evauldation” 

(TRACE) document for a spatially explicit individual-based 

model of the northern stock of European sea bass 

Dicentrarchus labrax. 

This is a TRACE document (“TRAnsparent and Comprehensive model Evaludation”) which provides 

supporting evidence that our model presented in this thesis was thoughtfully designed, correctly 

implemented, thoroughly tested, well understood, and appropriately used for its intended purpose.  

The rationale of this document follows:  

Schmolke A, Thorbek P, DeAngelis DL, Grimm V. 2010. Ecological modelling supporting 

environmental decision making: a strategy for the future. Trends in Ecology and Evolution 25: 479-

486. 

and uses the updated standard terminology and document structure in: 

Grimm V, Augusiak J, Focks A, Frank B, Gabsi F, Johnston ASA, Liu C, Martin BT, Meli M, Radchuk V, 

Thorbek P, Railsback SF. 2014. Towards better modelling and decision support: documenting model 

development, testing, and analysis using TRACE. Ecological Modelling  280:129-139. 

and 

Augusiak J, Van den Brink PJ, Grimm V. 2014. Merging validation and evaluation of ecological models 

to ‘evaludation’: a review of terminology and a practical approach. Ecological Modelling 280:117-128.  
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5.1 Problem formulation 

This TRACE element provides supporting information on: The decision-making context in which the 

model will be used; the types of model clients or stakeholders addressed; a precise specification of 

the question(s) that should be answered with the model, including a specification of necessary model 

outputs; and a statement of the domain of applicability of the model, including the extent of 

acceptable extrapolations.  

5.1.1 Summary: 

A spatially explicit individual-based model (IBM) was developed to simulate the population 

dynamics and geographical distribution of the northern sea bass stock. Life processes are driven by 

energy budget equations from sea surface temperature and phytoplankton density remote sensing 

inputs. Assumptions regarding movement relate to past observations.  

The model is designed to model population dynamics and simulate spatial distribution of the 

European sea bass (Dicentrarchus labrax) in ICES divisions’ 4.b–c, 7.a and 7.d–h. Sea bass are a large, 

slow growing, late maturing, high value fish that is exploited by both commercial and recreational 

fisheries (Pickett and Pawson, 1994). Scientific assessments for the UK have shown a rapid decline in 

spawning stock biomass for eight years since 2010 which has been attributed to poor recruitment 

(driven by environmental factors) and high fishing mortality. The decline led to the implementation 

of emergency management measures in 2015, and has resulted in significant reductions in the 

harvest (ICES, 2021).  

The model described here builds upon the model of Walker et al. (2020). Walker et al. (2020) used 

the ICES stock assessment as a basis for the population dynamics. In our update, population 

dynamics are now emergent from the model, based on an energy budget. The energy budget is 

driven from remote sensing environmental data (sea surface temperatures [SST] and phytoplankton 

density [PHY]). In this way, environmental changes are linked to life processes and ultimately 

population dynamics. With emergent population dynamics, there is scope for model predictions in 

novel environmental conditions whilst improving reliability of predictions for management strategies 

for the spawning stock. The model output, spawning stock biomass (SSB), is an important metric of 

stock status currently used by scientists to provide advice on fishing opportunities for the stock. We 

focused on statistics related to SSB to evaluate the impact of management strategies on stock status. 

The IBM could also be used to assess other aspects of performance such as yield maximisation, risk 

reduction, and Total Allowable Catch (TAC) stability. In addition, the model could act as a tool to test 

the impact of:  

● Behaviours of commercial and recreational fishers. 

● Management approaches that limit catch and/or effort. 

● Environmental/anthropogenic stressors (e.g., anthropogenic noise, catch and release 

fishing injuries etc.). 

The scope for a broad range of testing applications means stakeholders for this model include 

scientists and organisations advising on fishing opportunities for sea bass as well as decision makers. 

The spatial component of the IBM retains the hardwired movement of Walker et al., 2020. However, 

the model remains a useful tool to complement the stock assessment through enhanced predictions 

of management scenarios and testing spatial strategies, which are not possible with a population-

based assessment model. Important future additions to the model are steps to further elucidate the 

mechanisms underlying sea bass movement. This is suggested to be done with new mechanistic 
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migration sub models that allow for spatial predictions in novel environmental conditions and 

improve reliability of predictions for strategies relating to the spawning stock.  

5.2 Model description  

This TRACE element provides supporting information on: The model and provides a detailed written 

model description. For individual/agent-based and other simulation models, the ODD protocol is 

recommended as standard format. For complex sub models it should include concise explanations of 

the underlying rationale. Model users should learn what the model is, how it works, and what guided 

its design. 

5.2.1 Summary 

Here, we provide an ODD (Overview, Design concepts and Details) description of the individual-

based model for sea bass (Grimm et al., 2006, 2010, 2020). 

The model description follows the ODD (Overview, Design concepts, Details) protocol for describing 

individual- and agent-based models (Grimm et al., 2006, 2010, 2020). The model was implemented in 

NetLogo 5.3.1 (Wilensky, 1999), a free software platform for implementing individual-based models.  

Purpose and patterns  

The purpose of the model is to simulate the population dynamics and spatial distribution of the 

European sea bass (Dicentrarchus labrax) in the North Sea, Channel, Celtic & Irish seas (ICES divisions’ 

4.b–c, 7.a and 7.d–h). Using the emergent population dynamics, there is scope to use the model as a 

tool to test differing fisher behaviours (both commercial and recreational), management approaches 

(both catch limiting and spatial) and the impacts of environmental/anthropogenic sublethal stressors 

(e.g., anthropogenic noise, catch and release fishing injuries etc.). 

Entities, state variables and scales 

The model has two types of entity: sea bass super-individuals and square patches which represent 

the local environment. Super-individuals (hereafter termed individuals) comprise many sea bass with 

identical state variables, and were employed to reduce run times while dealing with the large 

number of fish in the stock (Scheffer et al., 1995). Sea bass super-individuals are characterised by the 

variables: age (years), the number of fish represented, life stage (egg, yolk-sac larvae [ys-larvae], 

larvae, juvenile or mature [adult]), length (cm), weight (including structural mass, gonad mass and 

total mass [kg]), ingested energy, energy reserves, metabolic rate, location, swimming speed and 

daily direction changes, spawning trigger and counter, mortality rates (natural, commercial 

inshore/offshore fishing mortality and recreational-fishing mortality) and the division they have an 

affinity to feed in (site fidelity; 4.b, 4.c, 7.a, 7.d, 7.e or 7.fg). The temporal extent spans from 1st  of 

January 2004 to 31st of December 2015 and the model proceeds in discrete daily time-steps. 
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Figure 5-1. The model interface; Both sea surface temperature (SST) and phytoplankton 
concentration (PHY) can not be shown simultaneously in the model interface so here; A) shows 
offshore patches as blue with dark to light representing increasing SST (0- 30oC), and B) shows 
offshore patches as orange with dark to light representing increasing PHY (0-75 g/m2). For both A) 
and B) coastal patches represented in green, nursery patches (also coastal) are turquoise. Targets 
that eggs and larval stages drift towards (depending on ICES division affinity) are represented by 
red patches. Agent colour represents life stage (white = eggs, black = ys-larvae and larvae, yellow = 
juvenile sea bass [not all life stages are shown here]). For mature sea bass colour shows the affinity 
to feeding ground. Spawning patches (which vary depending on time of year and environmental 
conditions) are shown with a yellow “S”.  These remote sensing data are updated every 8 days and 
agents perform all sub models each day (see section below 4.3.3).  

The patches make up a grid landscape of 36 x 38 patches representing the area from 9° east to 9° 

west and 48° to 57.5° north (Fig. 5-1). Sea patches are characterised by dynamic variables sea surface 

temperature (SST °C) (shown in blue for demonstration purposes in Fig. 5-1A) and phytoplankton 

density (shown in orange for demonstration purposes in Fig. 5-1B). The patches also have variables 

for area type (sea, coastal, offshore, spawning and nursery; see TRACE section 5.5), ICES division (4.b, 

4.c, 7.a, 7.d, 7.e, or 7.fg) and spawning region (North Sea, Celtic Sea, Channel or Irish Sea). Each patch 

is approximately 30 x 30 km, although this distance varies by latitude due to the Earth's spheroid 

shape (29.9 x 27.8 km north of the domain, 37.2 x 27.8 km south of the domain). The model runs in 

discrete daily time steps (assuming 365 days in a year) from 2004 to 2015 (excluding a spin up from 

1985 – 2004; see TRACE Section 5.5). This time span covers 10 years of assessment period to a point 

when management measures were introduced. 
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Table 5-1. Key state variables for the model entities. 

State variable Description Details 

Individuals 

Age Non integer age of egg/larvae/fish.  years 

Assimilation-energy The energy that ends up assimilated by each 

individual fish within the super-individual.  

kJ 

Breed Life stage of agent; Egg, yolk-sac larvae, 

larvae, juvenile or mature sea bass. 

NA 

Cohort Integer age of year class. years 

Development The number of days remaining before an 

egg hatches. Based on embryo-duration.   

Days 

Embryo-duration The time for an egg to hatch. This is 

currently fixed at 5 days (range of 3-7.5 days 

in [Beraud et al., 2018]). 

Days  

Energy-reserve The amount of energy a fish has stored 

based on the difference between ingested 

and expended energy.  

kJ 

Energy-reserve-max The maximum amount of energy a fish can 

store, based on size.  

kJ  

ER The energy reserve left after the energetic 

cost of maintenance is taken out. 

kJ 

Fci Commercial inshore fishing mortality. Per 

day (fishing pressure limited to 214 days per 

year). 

Daily 

Fco Commercial offshore fishing mortality. Per 

day (fishing pressure limited to 151 days per 

year). 

Daily 

Fri Recreational offshore fishing mortality. Per 

day (fishing pressure is 365 days a year). 

Daily 

Func-response Holling type II functional response adjusts 

ingestion rate based on phytoplankton 

density.  

NA 

Gonad-mass Mass of gonads is calculated from the 

energy that went into producing eggs. 

kg 

Growth-costs The energetic cost of adding new length and 

mass to larvae and fish.  

kJ 
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Growth-rate  The realised amount of length added in a 

day if there is insufficient energy to grow 

maximally.  

(cm) 

Ingestion-rate The maximum ingestion rate a fish can 

achieve; based on size, temperature, 

availability of food, and conspecific density. 

grams per day 

IVbt  Affinity to division IVb. *  True or 0 for no affinity 

IVct Affinity to division IVc. * True or 0 for no affinity 

L Length of egg, larvae or fish. cm 

Maintenance-energy 10% of energy reserves at the beginning of 

spawning is saved for maintenance costs 

while fasting on the spawning grounds. 

kJ 

Max-growth-rate Maximum daily growth increment is 

calculated for different life stages. Mature 

and juvenile sea bass growth rate is 

calculated with the von Bertalanffy 

equation. Young life stages are calculated 

with the Gompertz growth equation. 

cm  

Max-R The energetic costs of synthesising potential 

fecundity. 

kJ 

Migrating A Boolean switch that prevents super-

individuals "moving locally" if true. 

True or 0 if False 

MR Metabolic rate equals SMR x2 (Peters, 1986) 

and is based on size and SST.  

kJ 

Number Number of individual fish the super-

individual represents. 

Number  

Potential-fecundity The maximum potential number of eggs 

that can be produced based on size of fish.  

Number  

R Movement repeats. Steps per day. This 

limits how far agents travel in one direction 

before turning.  

Number 

Realised-fecundity Number of eggs that are produced from 

energy available.  

Number  

Spawn-count Time in spawning ground.  days 

Spawn-trigger Migration switch. 0 = feeding; 1 = spawning 

Speed Swimming speed. Patches per day 

Standard-L Standard length, the measure of head to 

base of tail fork. 

cm 
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Std-mass standard mass = mass as calculated from 

length using aLb (see Table 5-2). 

kg  

Structural-mass Structural mass is total mass minus lipid 

energy reserve and gonad mass.  

kg 

Total-mass Total mass is the total of; structural, lipid 

energy reserve and gonad mass.  

kg 

VIIat Affinity to division VIIa. * True or 0 for no affinity 

VIIdt Affinity to division VIId. * True or 0 for no affinity 

VIIet Affinity to division VIIe. * True or 0 for no affinity 

VIIfgt Affinity to division VIIfg. * True or 0 for no affinity 

W Body mass. kg 

Patches 

ArrS Arrhenius multiplier calculated with specific 

parameters when calculating swimming 

speed. 

 

PHY Phytoplankton density value from remote 

sensing.  

gm2 

Processed For use in set up patches as a check that the 

distance from target patch is only calculated 

once.   

True or 0 

Spawn-patches Marker for spawning patches, depending on 

time of year and SST.  

True or 0 (dynamic) 

SST Sea surface temperature from remote 

sensing. 

°C 

*Affinity is the assigned ICES division that agents are given.   

5.3 Process overview and scheduling 

The model proceeds in daily time steps, resetting ticks every 365 days. The following sub models are 

executed in the order they are presented below. Within each sub model, super-individuals and 

patches are processed in a random order as there are no interactions among agents (an overview can 

be seen in Fig. 5-2). 

Sea check: Make sure super-individuals are in the sea, if not they move back to the sea and then 

continue with processes.  

Update-patches: New SST and PHY data are assigned to patches, the Arrhenius rates for each patch 

recalculated (required to calculate speed), and offshore patches update their spawning patch status. 

Note this sub model is ran every tick but remote sensing data is only updated every 8 days due to 

limitations of the data 

Calculate-catch: The catch taken by fishing fleets is calculated for each sea patch. 
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Natural mortality: the number of fish in each individual is discounted by its natural mortality rate. 

Any super-individuals reaching the age of 30 or with less than one individual fish continue to 

represent a decimal number of fish.  

Calc ingestion larvae, juvenile and mature sea bass only: Calculates the energy ingested from mass, 

energy available, temperature and density dependence.   

Calc assimilation larvae, juvenile and mature sea bass only: Calculates the energy assimilated and 

available for life processes. 

Calc maintenance larvae, juvenile and mature sea bass only: The energy used for maintenance, 

adjusted by Arrhenius. Paid for either from assimilated energy or, if insufficient available food, paid 

from reserves.    

Calc-growth: The maximum daily growth rate is calculated. Agents under 70 days have a constant 

maximum growth rate (see TRACE section 5.8.3) for fish older than 70 days we use a von Bertalanffy 

curve. The maximum daily growth rate depends on fish length and SST.  

Grow: Each fish increases its length as a fraction of the maximum growth increment, calculated 

above, dependent on SST and available energy.  

Calc-total-mass: The mass of each fish is calculated from its length, with the addition of the mass of 

energy reserves and gonad mass. 

Calculate-speed: The swimming speed of each fish is calculated from its length and SST of the patch. 

Calculate-r: The number of ‘steps’ taken by each fish is calculated from its swimming speed. 

Transform: If a super-individual meets the criteria (sufficient length; see Fig. 5-2) then it transforms 

to the next life stage. The life stages are egg; yolk-sac larvae; larvae; juvenile; and mature. When 

juveniles graduate to mature sea bass (Length > 42 cm) they set their coastal feeding ground affinity 

as the ICES division in which they are in at the time of ticking over this length requirement (this could 

be a different division to the original ICES division target they would have drifted towards when they 

were in pelagic stages, see TRACE 5.8.7). Note that at the end of the first spawning migration there is 

an opportunity to change ICES division affinity which is altered with a probability defined by the site-

fidelity slider on the model interface (GUI). 

Fishing-mortality: The number of individuals each super individual represents is discounted by 

fishing mortality rates from the commercial offshore, commercial inshore and recreational fleets 

(data obtained from ICES stock assessment 2020).  

Spawn-migration: If (ticks >= 274) or (ticks < 152) each mature sea bass with spawn-trigger equal to 

1 moves towards offshore spawning grounds. This action can only be executed between ticks 274–

151 corresponding to the months October–May. 

Feeding-migration: Each mature sea bass with spawn-trigger equal to 0 moves towards or within its 

assigned coastal feeding ground. 

Local-movement: Each juvenile sea bass moves randomly within coastal patches. Juveniles less than 

32cm (not yet classed as “adolescent”) are further constrained to nursery coastal patches.  

Drift eggs: Each egg moves one patch closer to its assigned coastal feeding ground. 

Drift_ys-larvae: Each yolk-sac larva moves one patch closer to its assigned coastal feeding ground. 

Drift_larvae: Each larva moves one patch closer to its assigned coastal feeding ground. 
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Age: Agents age a day each tick. The cohort age is increased by one at the end of tick 365. 

Spawn: On the 60th tick every year (17th of March) 10 mature sea bass super-individuals spawn, 

producing as many eggs as determined by total realised fecundity of the whole spawning stock (the 

number of eggs is based on cumulative available energy reserves and fish size, see TRACE section 

5.8.7).  

Calc-egg-development: Eggs get one day older per tick until they hatch in correspondence with the 

embryo-duration. 

Temperature effects  

Throughout the model, temperature affects life processes via its effect on energy budgets. This is 

accomplished using the Arrhenius function. Biological rates increase exponentially with absolute 

temperature according to an Arrhenius function, AT, as: 

  𝐴𝑇 = 𝑒
−([

𝐸𝑎
𝑏𝑜𝑙𝑡𝑧

][
1

𝑇
− 

1

𝑇𝑟𝑒𝑓
])

         (3) 

where 𝐸𝑎 is activation energy, boltz is the Boltzmann constant, 𝑇 is absolute temperature and Tref is 

a reference temperature for the energy budget. The parameters used are different for calculating 

speed (see TRACE section 5.7 calc speed), where we use a specific activation energy (EaS = 

0.1903656) and reference temperature (TrefS = 6oC ) (see TRACE section 5.8.4). For ease of 

understanding we write out the Arrhenius function where used throughout the document. 
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Figure 5-2. Model overview; Each life stage (egg, yolk-sac larvae, larvae, juvenile and mature sea bass) is outlined with the sub models applicable to each 
stage are presented in the order of model execution. To transform to the next life stage, eggs develop after a specified time and from then on 
transformation is length based. Each life stage gives details about their movement sub models. After spawning the egg super-individuals then start the 
processes from the beginning again.
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5.4 Design concepts 

Basic principles: We aim to model the population dynamics and simulate spatial distribution of European sea 

bass in ICES divisions’ 4.b–c, 7.a and 7.d–h. Life processes are driven by energy budget equations driven by sea 

surface temperature (SST) and phytoplankton density (PHY) remote sensing inputs to give emergent population 

dynamics. The spatial aspect of the model is not fully emergent and relies on assumptions relating to past 

observations. The visualisation of the large-scale migrations known to be undertaken by sea bass each year is 

not possible with a population model (for example the stock synthesis 3 model used for sea bass stock 

assessment) but is essential for simulating the spatial distribution of sea bass. 

Emergence: The model’s primary result – population dynamics – emerge from; the numbers at age 0, growth 

and mortality of sea bass. 

Growth follows a fixed relationship adjusted by the effects of temperature and energy available. 

Numbers at age 0 is dependent on energy ingested that is stored and then used to produce eggs as well as the 

environmental conditions that eggs and larvae experience. 

Migrating adults follow a set of empirical rules triggered by an environmental cue while non-migrating adults 

and juvenile sea bass move randomly within an area type.  

Adaptation: The movement and migratory behaviour of mature fish is an adaptive trait. The departure time 

and arrival in offshore spawning grounds is influenced by SST, while cessation of spawning is imposed after a 

fixed number of days.  

All processes that are influenced by SST and energy availability are adaptive including ingestion, growth, 

spawning and numbers at age 0.  

As the factors affecting navigation are otherwise unknown, fish follow a set of empirical rules that reproduce 

observed migratory patterns. Super individuals may choose to switch assigned feeding area after spawning; 

however, because the mechanisms of site fidelity are unknown, new allocations are assigned randomly with 

fixed probability defined by the site-fidelity slider on the model interface. Site fidelity was fixed at 100% in the 

current study.  

Sensing: Individuals are assumed to know their length, location and the type of patch currently occupied so 

that they can apply the correct migratory rules. Mature sea bass are assumed to sense temperature so they 

may successfully arrive in suitable spawning grounds. The model does not include interaction among sea bass 

or environmental patches. 

Stochasticity: The main uses of stochasticity are to: (1) distribute and age super-individuals when they enter the 

model at initialisation; (2) simulate the movement and site fidelity of sea bass; (3) assign super-individuals to 

ICES division at initialisation; and (4) the random component of the movement sub models. 

Collectives: Beyond the distinction of the different life stages (egg, yolk-sac larvae, larvae, juvenile or mature 

sea bass) there is no social grouping between the super-individuals. Using super-individuals to represent 

multiple individual fish could be representative of shoaling behaviour (e.g., Shin & Cury, 2001) although its 

introduction was for computational feasibility and reducing run times. 

Observation: For model testing, the spatial distribution and migration patterns of the super-individuals were 

observed. The population variables spawning stock biomass (SSB), numbers at age and mass at age are 

recorded on the 1st of January (tick 1) and compared to ICES stock assessment values. 
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5.5 Initialisation  

The model starts with a spin-up initiated in 1985 and then the model begins on 1st of January 2004 

and continues till 2015. During the 19 years of spin up, we use the 2004 SST and PHY remote sensing 

data and read in yearly numbers-at-age data from the ICES stock assessment 2020. The spin up 

allows individual energy rates to settle before running the model for the years used for calibration 

and assessment of fits (2004-2015). The relevant SST and PHY data is loaded and assigned to patches 

within a shapefile of the UK and surrounding countries (Figs.5-1A and 5-1B). Patches with an SST 

value within the stock area (ICES divisions’ 4.b–c, 7.a and 7.d–h) are set as sea patches. ICES 

rectangles (sets of four sea patches) intersecting land and patches (14, 34), (18, 24), (20, 20), and (16, 

6) are set as coastal patches (green patches in Figs. 5-1A and 5-1B), and all other sea patches are set 

as offshore (blue patches see Fig. 5-1A). Coastal patches whose midpoint intersect land are assumed 

mostly land and set as non-sea patches, except for patches (28, 21), (15, 10), (13, 10) and (5, 22). 

Individual coastal patches intersecting land south of 54°N (y coordinate < 24) are assigned as nursery 

patches. The patches that eggs, ys-larvae and larvae drift towards are termed Target patches (shown 

as red patches in Fig. 5-1 and used for ease of coding). We calculate how far away each patch is from 

each target patch for use in sub models Drift_eggs/ys_larvae/larvae (see TRACE 5.7 for details of sub 

models). All coastal patches are assigned to an ICES division (4.b, 4.c, 7.a, 7.d, 7.e or 7.fg) and all 

offshore patches south of 54° N to a spawning region (IS – Irish Sea, CS – Celtic Sea, C – Channel or NS 

– North Sea). Both sea surface temperature (SST) and phytoplankton concentration (PHY) cannot be 

shown simultaneously in the model interface so for demonstration purposes Fig.5-1B shows offshore 

patches as orange with dark to light representing increasing PHY.  

Numbers-at-age data from the ICES stock assessment 2020 are used in spin up. 10 super-individuals 

are created per cohort, with the number of fish represented by an individual taken as the stock 

assessment numbers-at-age estimated for the year divided by 10. Juvenile super-individuals are 

distributed randomly amongst nursery patches if less than four years of age, and amongst all coastal 

patches if four to six years of age. Mature super-individuals are distributed randomly in pre-spawning 

areas (ICES divisions’ 7.e–g) with spawn-trigger set equal to 1. Each mature individual is assigned a 

random ICES division (4.b, 4.c, 7.a, 7.d, 7.e, or 7.fg) for which it has an affinity to feed. 

Initial cohort age of super-individuals is taken as the whole number stock assessment age, but actual 

age is incremented by a random number between 222 and 314 days to reflect mid-year spawning. 

From that length is calculated from the von Bertalanffy growth equation: 

𝐿𝑡 = 𝐿∞(1 − 𝑒−𝐾[𝑡−𝑡0]) 

where 𝐿∞ is the asymptotic length, 𝐾 the growth rate coefficient and 𝑡0 the hypothetical age at 

length 0 (Table 5-2). Note these calculations are at initialisation only, once running there are 

different processes for deciding ICES division affinity and growth of larval stages which use a different 

growth model (see TRACE sections 5.7 and 5.8.7). 

Remaining energy budget variables starting values calculated and initialised as follows; 

Calculate structural mass; 

Structural-mass = a * (L ^ (b)) 

where L (cm) is the length and a and b are Length-mass coefficient values taken from the ICES stock 

assessment (Table 5-2) (parameter a is adjusted to account for the original values being used to 

calculate total mass, for details see TRACE section 5.8.3). 
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Calculate maximum energy reserve; 

energy-reserve-max = ((Structural-mass * 0.01) * El) 

where El is the energy content of lipid (Table 5-2). 

Calculate energy reserve; 

energy-reserve = (energy-reserve-max * 0.5) 

Calculate total mass;  

Total-mass = (structural-mass + (energy-reserve / El)) 

where El is the energy content of lipid (Table 5-2).  

Calculate maintenance (the energy put aside to pay for maintenance during spawning); 

Maintenance-energy = (energy-reserve * 0.1) 

Calculate potential fecundity (number of eggs that could theoretically be produced by a fish that 

size);  

Potential-fecundity = (std-mass / 1000) * (eggs_per_bass)  

Calculate potential fecundity (the energy required to produce the potential fecundity);  

Max-R = (potential-fecundity * egg-mass * (Ef + Fs)) 

where Ef is the energy content of flesh and Fs is the energy to synthesise flesh (Table 5-2). 

Calculate-speed; See sub model Calc-speed. 

Calculate-r; See sub model calc-r. 

 

Table 5-2. Parameter values used in the model.  

Parameter Description Value Reference 

A Aspect ratio of the caudal fin. 1.76 (Froese and Pauly, 
2017) 

a  Length-mass coefficient (for details 
see TRACE Section 5.8.3). 

1.296x10 -5 * 0.95 (Pickett and 
Pawson, 1994; 
ICES, 2012a) 

b Length mass scaling exponent. 2.969 (ICES, 2012a) 

A0  Normalizing constant for 
relationship between Metabolic 
rate and fish size.  

0.1227808 (Claireaux,2006; 
Jourdan‐Pineau et 
al., 2010; Luna-
Acosta et al., 2011; 
Zupa et al., 2015; 
Peixoto et al., 
2016) 
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AE Efficiency of energy from 
phytoplankton to fish.  

1.64x10-3 * 

 

boltz Boltzmann constant. 8.62 10x10-5 eV K-1  

Cmax Max ingestion. 0.54 grams per 
gram of fish 

(Lanari, D’Agaro 
and Ballestrazzi, 
2002) 

Ea Activation energy. 0.5  eV (Gillooly et al., 
2006) 

EaS   Activation energy for speed 
Arrhenius function.  

3.05x10- 20 J (Claireaux, 2006) 

Ef Energy content of flesh. 7 kJ g-1  (Peters, 1986) 

egg-mass Sea bass egg mass. 0.96x10-3  g (Cerdá et al., 1994) 

Eggs_per_bass Potential egg production per gram 
of sea bass.  

375,000  (Pickett and 
Pawson, 1994) 
(reference states 
between 1/4 and 
1/2 a million eggs 
per kg of sea bass) 

El Energy content of lipid. 39.3 kJ g-1  (Schmidt-Nielsen, 
2013) 

ep Energy content of phytoplankton. 6.02 kJ g-1 (Annis et al., 2011) 

Fs Energy to synthesise flesh. 3.6 kJ g-1 (Sibly and Calow, 
1986; Sibly et al., 
2013) 

GL  Larval stages growth coefficient. 0.02485 cm d-1 Jennings, Jennings 
and Pawson, 1992; 
Regner and Dulčić, 
1994) 

H Half saturation constant.  4.87x10-1 *  

I Importance of density on 
ingestion.  

5.14x10+13 * 

k Annual growth rate coefficient. 0.096699 (ICES, 2012a)  

L∞ Asymptotic length. 84.55 cm (ICES, 2012a) 

Ls Energy to synthesise lipid. 14.7 kJ (Pullar and 
Webster, 1977) 

AM   Natural mortality rate juvenile and 
mature sea bass. 

4.71x10-4 * 

PM Natural mortality rate eggs, ys-
larvae and larvae. 

8.01x10-2 * 
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ncohort Number in each super-individual. 10  

T0
 Age at length 0. -0.73 years (ICES, 2012a) 

TrefS Reference temperature at which 
swimming speed at the length used 
in the paper coincides with that 
from the model. 

6 oC (Claireaux, 2006) 

Tref Reference temperature for the 

energy budget. 

285.15 K (12oC)  

*parameters in bold are calibrated with ABC see TRACE section 5.9 for calibration details.   

5.6 Input data 

Numbers-at-age, used to initialise the model and introduce recruits at setup come from the 2020 

stock assessment. Environmental inputs comprise dynamic maps of chlorophyll-a concentration and 

SST. The satellite remote-sensing data were taken from NASA’s ocean colour portal in NetCDF format 

(NASA, 2017; NASA OBPG, 2017). Processing of the satellite data included: 1) cropping to the model 

extent (Fig. 5-1); 2) estimating missing values using linear temporal interpolation (e.g., NAs for a cell 

in one time period become the average of the last prior period with a value, and next subsequent 

period with a value); 3) fill in any further gaps with the annual average; 4) re-sampling the spatial 

resolution from 9km x 9km to 30km x 30km; and 5) convert chlorophyll to plankton biomass;  

Chlorophyll-a was converted to carbon mass using a C:Chl-a ratio of 75. Then, a wet mass:C ratio of 

10 was used to obtain phytoplankton biomass (g wet mass m-2) (Link et al., 2006). This gives 

phytoplankton biomass (g m-2) = chl-a (mg m-2) x 0.75 and 6) re-project on to lambert azimuthal equal 

area projection.   

5.7 Sub models 

The following sections provide full detail on how model processes are simulated. The equations in 

Netlogo code are shown in blue.   

Seacheck: Super-individuals check if the patch they are on is sea if not then move to the closest sea 

patch within a radius of 2 patches before continuing processes. 

Update-patches: Sea patches are assigned new SST data each tick. Between ticks 32–151 any 

offshore patches south of 54°N with a SST value between 9–15°C are set as spawn-patches.  

Natural-mortality: The number of sea bass within each individual is discounted with a mortality 

constant.  

Eggs, yolk-sac larvae and larvae have a greater mortality rate than older life stages. The quicker they 

grow through to a juvenile sea bass the higher the number of age 0 for that year. The growth of 

these is influenced by energy available [PHY] and sea surface temperature [SST].  

We update the number of individuals each super-individual represents each tick with; 

number * exp (- PM) 

Here number is the number of eggs, egg-sac larvae or larvae that the super-individual represents. PM 

is the daily natural mortality rate for these young life stages. The actual value of PM is unknown so is 

calibrated with ABC see TRACE section 5.8.9. 
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Juvenile and adult sea bass experience less mortality than egg, yolk-sac larvae and larvae life stages 

and we update the number of super-individuals each super-individual represents each tick with; 

number * exp (- AM) 

Here number is the number of individual fish the super individual represents and AM is the adult 

daily natural mortality rate calibrated with ABC see TRACE section 5.9 for details. Finally, in addition 

to daily natural mortality, any super-individuals reaching the age of 30 are removed from the 

simulation. If the super-individual represents less than one fish then they become decimal. This is 

required to keep the number of super-individuals per cohort constant and avoid any erroneous 

knock-on distribution bias whilst making sure there is not misleading excess biomass.  

Calculate-catch: Each patch calculates the catch, 𝐶𝑡, in tonnes taken by commercial and recreational 

fishing fleets during that time-step and adds it to a running total, resetting annually.  

𝐶𝑡 = 𝐶𝑡+1 +
1

1000
∑

30

𝑎=0

𝑤 (
∑𝑓 𝐹𝑎,𝑓

∑𝑓 𝐹𝑎,𝑓 + 𝑀
) 𝑁𝑡 (1 − 𝑒−(𝑀+∑𝑓 𝐹𝑎,𝑓)) 

where 𝑁𝑡 is the number of fish occupying the patch in time step 𝑡, 𝐹𝑎,𝑓 is the fishing mortality on 

cohort age; 𝑎, by fishing fleets; 𝑓 (𝑓 = commercial inshore and recreational if the patch is coastal and 

commercial offshore if the patch is offshore; see TRACE section 5.8.9), 𝑀 is natural mortality (see 

TRACE 5.7 Natural-mortality) and 𝑤 is the mass of individual fish (see TRACE 5.7 calc total mass). 

Fishing-mortality: The number of sea bass within each individual is discounted exponentially by 

fishing mortality F, partitioned and applied daily. Partial fishing mortality estimates by age and metier 

derived from the ICES stock assessment outputs (ICES, 2018c) were aggregated to give fishing 

mortality rates for three broad fishing fleets (see Trace section 5.8.9): commercial inshore (FCi), 

commercial offshore (FCo) and recreational (FRi). Fishing mortality is distributed by area type such 

that the commercial inshore and recreational fishing mortality rates are applied only to fish 

occupying coastal patches and the commercial offshore fishing mortality rate is applied only to fish 

occupying offshore patches. The annual commercial fishing mortality rates were raised inversely 

proportional to the amount of days spent fishing, where the commercial offshore fleet is assumed to 

operate for 151 days between November and April (ICES, 2012a) and the commercial inshore fleet 

for 214 days during the remainder of the year (giving raising factors ~2.4 and ~1.7 respectively). 

Recreational fishing is assumed to occur all year and hence no raising factor is applied. The total F 

applied to super-individuals is then the sum of the fishing mortality from relevant fleets. 

Catches taken by commercial fleets (commercial inshore and offshore) are summed across. Once the 

specified quota has been reached (if set), fishing mortality is switched off until the running total is 

reset according to the time-scale specified. 

Minimum conservation reference sizes (MCRS) for the commercial and recreational fleets can be 

specified via the com-net-hole-size and angler-min-size sliders on the models GUI. If set > 0 fishing 

mortality from the commercial and recreational fleets will apply only to the fish exceeding the 

specified lengths, which can be set up to 60cm / 80cm for the commercial / recreational fleets 

respectively. It is important to mention that any post-release/discard mortality is not included in the 

model.  

Calc ingestion: The first life stages (Eggs and egg-sac larvae) do not feed until they transform into 

larvae. We calculate an ingestion rate for each life stage that is based on the energy available, the 

size of the larvae/fish and SST.  
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For larvae ingestion:  

Func-response = (PHY / (H + PHY)) 

ifelse (any? other turtles-here) 

[ingestion-rate = (Cmax * exp((- Ea / Boltz) * ((1 / (SST + 273.15)) - (1 / Tref))) * func-response * 

(total-mass ^ (2 / 3))) * (I * (1 / ((mass_near_me ^ 2 / 3) )))] 

[ingestion-rate = (Cmax * exp((- Ea / Boltz) * ((1 / (SST + 273.15)) - (1 / Tref))) * func-response * 

(total-mass ^ (2 / 3))) * (I * (1 / ((total-mass ^ 2 / 3) * number )))]  

where PHY is the energy value of the patch, H is the half saturation constant, Cmax is the max 

consumption of food in relation to body size, I is the importance of density, mass_near_me is the 

sum of biomass of all larvae, juvenile and mature sea bass in the same patch. The remainder of the 

equation components relate to the Arrhenius function (Table 5-2). 

For the older life stages, juvenile and adult ingestion was previously restricted to only feeding over 

9oC SST, but this was subsequently relaxed during the process of bug testing and manually fitting 

parameters. Previous to this relaxation many fish were starving to death. We assume it unlikely a 

starving fish will refuse to eat if food was available, even in cold water. Instead we reduce the 

feeding temperature threshold ensuring fish will feed until SST is less than 5oC. 

Func-response = (PHY / (H + PHY)) 

ifelse (any? other turtles-here) 

[ingestion-rate = (Cmax * exp((- Ea / Boltz) * ((1 / (SST + 273.15)) - (1 / Tref))) * func-response * 

(total-mass ^ (2 / 3))) * (I * (1 / ((mass_near_me ^ 2 / 3) )))] 

[ingestion-rate = (Cmax * exp((- Ea / Boltz) * ((1 / (SST + 273.15)) - (1 / Tref))) * func-response * 

(total-mass ^ (2 / 3))) * (I * (1 / ((total-mass ^ 2 / 3) * number )))] 

where PHY is the energy value of the patch, H is the half saturation constant, Cmax is the max 

consumption of food in relation to body size, I is the importance of density mass_near_me is sum of 

biomass of all larvae, juvenile and mature sea bass in the same patch. The remainder of the equation 

components relate to the Arrhenius function (Table 5-2). 

Calc assimilation: We calculate the proportion of ingested energy available for energy budget 

processes (e.g., growth, maintenance and reproduction);  

Assimilation-energy = ((Ingestion-rate * ep) * AE)  

Ingestion rate is calculated as above and influenced by available food (PHY), fish size, SST and the 

density of agents competing for the same food. ep is the energy in phytoplankton and absorbed-

energy is the percentage of ingested energy that becomes available to the budget. AE is the product 

of assimilation efficiency (i.e., the proportion of energy that is absorbed from prey) and trophic delay 

(i.e., how long/how much energy from a phytoplankton bloom makes its way through the trophic 

levels to sea bass prey). For more details see TRACE section 5.10.3. 

Calc maintenance: We calculate the field metabolic rate as twice the standard metabolic rate (Peters, 

1986) with;  

MR = (A0 * (total-mass ^ (0.75)) * 2) * exp ((- Ea / boltz) * ((1 / (SST + 273.15)) - (1 / Tref))) 
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where Ao is a metabolic rate normalisation. Maintenance energy is influenced by both mass and SST 

with Arrhenius (Table 5-2).  

Once we have calculated the cost of maintenance we check if it can be covered by the assimilated 

energy. If assimilated energy is sufficient to cover maintenance, we subtract this cost from the 

assimilated energy. If there is not enough assimilated energy (e.g., reduced feeding available in the 

winter) then energy reserves are added to assimilated energy and then metabolic costs are taken 

from this: 

If there is sufficient assimilated energy to cover metabolic rate then;  

Assimilation-energy = assimilation-energy - MR  

Otherwise if there is insufficient assimilated energy to cover metabolic rate then pay out of reserves; 

Energy-reserve = (energy-reserve + assimilation-energy) – MR   

We then set assimilation energy to 0 as it has all been used.   

Note that here we check that this does not create a negative energy reserve, if it does we force the 

individual set energy reserves as 0.                           

Calc total mass: The structural mass (without reserves and gonad mass) of each fish is calculated 

from its length following the standard allometric equation: 

Structural-mass = a L ^b 

Where a and b are Length-mass coefficient values were taken from the ICES stock assessment (Table 

5-2). Note ICES a and b coefficients are for calculating total mass (which includes energy reserves 

mass and gonad mass), to adjust this we adjust parameter a, reducing it by 5% for details see TRACE 

Section 5.8.3.  

To calculate the total mass (sum of structural, fat and gonad mass) we check if there are energy 

reserves then calculate the total mass of all reserves and gonads. If energy reserve is greater than 0 

then:  

Total-mass = structural-mass + (energy-reserve / El) + gonad-mass  

where El is the energy content of lipid (Table 5-2). 

However, if there are no energy reserves then: 

Total-mass = structural-mass + gonad-mass  

Calc growth: Calculate max daily growth rate. Agents under 70 days have a constant maximum 

growth rate (see TRACE section 5.8.3): 

Max-growth-rate = GL * exp((- Ea / boltz) * ((1 / (SST + 273.15)) - (1 / Tref))) 

where GL = 0.02485 and is the slope coefficient of a regression of larval length on age (see TRACE 

section 5.8.3). The remainder of the equation components relate to the Arrhenius function (Table 5-

2). 

Fish older than 70 days year are assumed to follow a von Bertalanffy growth curve: 

Max-growth-rate = (linf - L) * (1 - exp(- k / 365)) * exp((- Ea / boltz) * ((1 / (SST + 273.15)) - (1 / Tref))) 
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where, linf is the asymptotic length of sea bass, L is fish length and k is the annual growth constant, 

divided by 365 to get daily growth. The remainder of the equation components account for the 

effects of temperature using the Arrhenius function (Table 5-2). 

Now the max daily growth increment has been calculated we can apply this to agents. 

We calculate what the potential new fish length could be and how much this will cost in energy. 

Possible-L = (L + max-growth-rate) 

Growth-costs = ((((a * (possible-L ^ b)) - structural-mass)) * (Fs + Ef)) 

where L is fish length, a and b are Length-mass coefficient values, Fs is the energy content of flesh 

and Ef the costs of synthesising flesh (Table 5-2). 

Eggs; eggs do not grow, instead they develop (described later) and then transform into yolk-sac 

larvae.  

Ys-larvae; yolk-sac larvae do not ingest energy and are nourished by the yolk sac thus are assumed to 

have maximum energy available to grow maximally; 

Growth-rate = max-growth-rate 

L = L + max-growth-rate 

Structural-mass = a * (L ^ (b)) 

Total-mass = structural-mass 

Larvae; once the egg-sac larvae have transformed to larvae they begin to ingest energy. We first 

check if there is adequate assimilated energy to grow maximally and update length accordingly (note 

this is a different measure of length specifically for calculating swimming speed). From the new 

length the new structural mass is calculated and because larvae do not store lipid their structural 

mass is equal to their total mass. 

If larvae are assimilating enough energy then they grow maximally:  

L = L + max-growth-rate 

Structural-mass = a * (L ^ b) 

Total-mass = structural-mass 

Assimilation-energy = assimilation-energy - growth-costs 

If larvae don’t assimilate enough energy they then grow sub-maximally: 

Growth-rate = (max-growth-rate / growth-costs) * assimilation-energy 

L= L + growth-rate 

Structural-mass = a * (L ^ (b)) 

Assimilation-energy = 0 

Juvenile and mature sea bass have to ingest energy so their growth will depend on the energy they 

have available.  
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If assimilated energy on a particular day is enough to cover growth then they will grow maximally. 

Juvenile and mature sea bass allocate energy equally to growth in length and to fat reserves;  

if (Assimilation-energy * 0.5) >= growth-costs  

After checking available energy, sea bass with enough energy grow maximally; 

L = L + max-growth-rate 

Structural-mass = a * (L ^b) 

Assimilation-energy = assimilation-energy - growth-costs 

Calc-storage 

If the sea bass don’t have enough energy they grow at a suboptimal growth rate. 

Growth-rate = (max-growth-rate / growth-costs) * (assimilation-energy * 0.5) 

L = L + growth-rate 

Structural-mass = a * (L ^ b) 

Assimilation-energy = assimilation-energy * 0.5 

Calc-storage 

where L is length and a, b are Length-mass coefficient values were taken from the ICES stock 

assessment (Table 5-2). For both scenarios total mass is calculated later, after they have stored lipid a 

procedure calc-storage is called that converts remaining energy to lipid stores and accounts for the 

cost of synthesis. 

Calc speed: The sustained swimming speed of each fish is calculated from its length and adjusted by 

the Arrhenius factor for the occupied patch to account for the effects of temperature on the 

chemical processes that contribute to swimming speed: 

𝑆 = (10−0.828+0.6196(𝐿𝑡)+0.3478(𝐴)  )* Ks 

𝑘𝑠 = 𝑒
𝐸𝑎𝑆  

𝐾
(

1
𝑇

−
1

𝑇𝑟𝑒𝑓𝑆
)
 

where 𝐴 is the aspect ratio of the caudal fin (Froese & Pauly, 2017; Table 5-2). Note that the 

Arrhenius parameters are different for speed specific Arrhenius equations see table 5-2, and TRACE 

section 5.7 update patches. Values in kilometres per hour were converted to patches per day 

assuming 12 swimming hours spent per day in patches of 30 x 30 km.  

Calculate-r: The speed of each fish is divided by a movement repeat variable 𝑟 with fish moving 𝑟 

times per day. 𝑟 is chosen as the smallest integer such that fish travel no more than 0.25 patches 

before changing direction. This allows fish to change direction whilst moving the correct distance and 

was introduced to reduce overlap with land.  

Transform: If a super-individual meets the criteria (sufficient length [see Fig. 5-2]) then it will 

transform to the next life stage and the necessary energy budget variables values will be calculated. 

Eggs into yolk-sac larvae; after a development period of 5 days (a study by a Beraud et al., 2018 gave 

a range of 3 - 7.5 days): 

Std-mass = 0.001 
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Energy-reserve-max = 0 

Energy-reserve = energy-reserve-max 

Larval-production = larval - production + number 

Yolk-sac larvae into larvae: larvae do not store energy, they feed continuously to grow: 

L >= 0.35 (study by Beraud et al., 2018 gives a range of 1.5 - 5.5mm) 

structural-mass = a * (L ^ b) 

energy-reserve-max ((structural-mass * 0.01) * El)    

Energy-reserve = energy-reserve-max 

Larvae into juvenile sea bass:  

L >= 1.425 (study by Beraud et al., 2018 gives a range of 10.5-18mm) 

structural-mass = a * L ^ (b)  

energy-reserve-max ((structural-mass * 0.01) * El)    

Energy-reserve = energy-reserve-max * 0.5   

Juvenile sea bass into mature sea bass: 

L >= 42 

Male and female sea bass mature at different rates which vary regionally within the stock (Pickett 

and Pawson, 1994). However for simplicity and to ensure the model remains precautionary with 

outputs of SSB we use the larger but generally accepted maturity length as 42cm for all adult sea 

bass (Pickett and Pawson, 1994), note 42cm is also the minimum landing size for sea bass in northern 

stock legislation since 2015 [ICES, 2021]). When juveniles graduate to mature sea bass (Length > 42 

cm) they set their coastal feeding ground affinity as the ICES division in which they are in at the time 

of ticking over this length requirement (this could be a different division to the original ICES division 

target they would have drifted towards when they were in pelagic stages, see TRACE section 5.8.7. At 

the end of the first spawning migration there is an opportunity to change ICES division affinity which 

is altered with a probability defined by the site-fidelity slider on the GUI. 

Spawn-migration: This sub model is executed between ticks 274–151 corresponding to the months 

October–May. Between ticks 274–90, corresponding to the months October–March, any mature 

super-individuals not currently performing a spawning migration (spawn-trigger = 0) on a patch that 

either neighbours a spawning patch or is less than 9°C switches its spawning trigger to 1 (Fig. 5-3). All 

super-individuals with spawn-trigger equal to 1 take 𝑟 steps of distance 𝑆/𝑟 (see TRACE section 5.7 

calculate-speed and calculate-r) according to the hierarchy presented in Fig. 5-4. 

Once a mature individual reaches a spawning patch its spawn-count increments by 1 each tick. When 

the spawn counter reaches 60 (indicating the agent has spent 60 ticks/days cumulatively on a 

spawning patch) or the end of the spawning period is reached (tick 152 corresponding to the 1st of 

June) both spawning trigger and counter are set to zero, and the individual no longer executes 

spawn-migration but defaults to feeding-migration (see TRACE section 5.7 feeding-migration). Before 

ending a spawning migration, each individual changes its affinity to a new coastal feeding area with 

fixed probability set by the site-fidelity slider on the model’s interface. Each new assignment is 



TRACE document: supporting information to Watson et al. 2020 

96 
 

random with equal probability between the six coastal feeding areas. Site fidelity was fixed at 100% 

in the reported results. 

 

 

Figure 5-3. (a) Schedule for spawning migrations. Outer circle: migration to (pre-) spawning areas is 
triggered by sea surface temperature and can take place between October and March. Inner circle: 
spawning takes place within offshore spawning patches in February–May. b) Migrations of mature 
super-individuals follow the hypotheses of Pawson et al. (1987, 2007). Arrows show movement 
around the coast to and from the Channel and Celtic Sea with black arrow heads representing the 
spawning migration and red arrow heads the feeding migration.
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Figure 5-4. Decision hierarchy for the spawning migration. Diamonds represent decisions, green circles terminators and rectangles processes. Upward links 
are followed when the answer to a decision is ‘yes’ and downward links when the answer is ‘no’. The hierarchy moves mature super-individuals towards 
offshore spawning patches where they are assumed to have reached their destination and move randomly (green ‘Random walk’ terminator). Blue 
processes show the action to take for a repeat in the current time-step, after which the hierarchy is followed from the beginning for the next repeat or time-
step. Division 7.e. is a reported pre-spawning area; hence super-individuals take directed steps towards 7.e via coast patches, and then move randomly until 
spawning patches start to appear (see TRACE section 5.7 update-patches). The grey nodes represent troubleshooting decisions and actions. Given that 
migrations take place along the coast, any occupied offshore patch should be a spawning patch. If it is not then either (1) the offshore patch lost its 
spawning status during a update-patches, in which case the individual searches for a new spawning patch by moving to the offshore neighbour with the 
highest SST; or (2) the individual moved off the coast (either onto an offshore patch or land), as a consequence of allowing super-individuals to travel across 
square patches at any angle.  In either of these two cases the individual is moved towards a neighbouring coastal patch. 
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Figure 5-5. Decision hierarchy for the feeding migration. Diamonds represent decisions, green circles terminators and rectangles processes. Upward links are 
followed when the answer to a decision is ‘yes’ and downward links when the answer is ‘no’. The hierarchy moves mature individuals towards their 
assigned feeding divisions where they are assumed to have reached their destination and move randomly (green ‘Random walk’ terminator). Blue processes 
show the action to take for a repeat in the current time-step, after which the hierarchy is followed from the beginning for the next repeat or time-step. The 
square brackets indicate the immediate target which, assuming the individual starts the feeding migration offshore following spawning, broadly follows (1) 
move to the coast, (2) move to the correct region and (3) move to assigned division. Additional rules are in place to move individuals around, rather than 
over, Cornwall. The grey node represents a troubleshooting action for individuals that move onto land as a result of individuals traveling across square 
patches at any angle. In this event the individual is moved towards a neighbouring coastal patch. 
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Feeding-migration: This sub model is executed by mature individuals not on a spawning migration 

(spawn-trigger = 0). All individuals with spawn-trigger equal to 0 take 𝑟 steps of distance 𝑆/𝑟 (see 

TRACE section 5.7 calculate-speed and calculate-r) according to the hierarchy in Fig. 5-5. 

Local-movement: All juvenile individuals follow a random walk process, taking 𝑟 steps of distance 

𝑆/𝑟 (see TRACE section 5.7 calculate-speed and calculate-r) in random directions. Juveniles that 

move off coastal patches turn 180° to move back to their last position on a coastal patch. Juveniles 

with length less than 32 cm are further constrained to nursery coastal patches.  

Drift eggs: If the egg is on the target patch associated with is assigned affinity, then it moves at 

random around its target area. If not on the target patch it moves to the next patch with one less 

target distance, thus moving one patch closer to the target every tick. *  

Drift_ys-larvae: If the ys-larvae is on the target patch associated with is assigned affinity then it 

moves at random around its target area. If not on target patch move to the next patch with one less 

target distance. Thus moving one patch closer to target every tick. Once reached the target patch 

the ys-larvae undergoes random movement restricted to nursery patches. *  

Drift larvae: If the larvae is on the target patch associated with is assigned affinity then it moves at 

random around its target area. If not on target patch move to the next patch with one less target 

distance. Thus moving one patch closer to target every tick. Once reached the target patch the 

larvae undergoes random movement restricted to nursery patches. *  

* It is important to note that we use ICES affinity as a convenient way of ensuring new cohorts are 

split spatially across the model domain, and there is no evidence to our knowledge that larval stages 

inherit their affinity from their parents. Instead, once transformed through the life stages, a newly 

mature sea bass is leaving the coast for its first spawning migration, its fidelity is set to the ICES areas 

it is leaving. Thus is more in-keeping with evidence from tagging studies reviewed by Pawson, 

Brown, Leballeur, & Pickett, 2008 (for more details see TRACE section 5.8.7). 

Spawning: Initiate spawning on the 60th tick which is the 17th of March (picked as the middle of the 

spawning period). We first calculate potential fecundity and then the energy required to produce 

this number of eggs (Max-R) for all mature sea bass. We allow for maintenance costs whilst 

spawning by setting aside 10% of reserves: 

Potential-fecundity = (std-mass / 1000) * (Eggs_per_bass) 

Max-R = (potential-fecundity * (egg-mass * (Ef + Fs)))   

Maintenance-energy = energy-reserve * 0.1 

where  we assume a female sea bass can produce 375,000 eggs per kg of sea bass (Pickett & Pawson, 

1994 state between 0.25 and 0.5 million per kg). Ef is the energy in flesh and Fs is the cost of 

synthesising flesh (Table 5-2). 

If there is enough energy to produce max fecundity, then the energy needed to produce the max 

number of eggs is taken from the energy reserve and we set the gonad mass and realised fecundity 

accordingly: 

(Energy-reserve - maintenance-energy) >= max-R 

Energy-reserve = energy-reserve - max-R 

Gonad-mass = (max-R / (Ef + Fs))                                
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Realised-fecundity = potential-fecundity 

However, if there is not enough energy for max fecundity then energy reserve is set to whatever is 

left after subtracting maintenance costs. We then set the gonad mass and realised fecundity to what 

is achievable with the limited resources:  

ER = energy-reserve - maintenance-energy  

Gonad-mass = (ER) / (Ef + Fs) 

Realised-fecundity = (ER / (max-R)) * potential-fecundity 

where Ef is the energy in flesh and Fs is the cost of synthesising flesh (Table 5-2). 

Once we have calculated how many eggs can be produced, we ask 10 mature super-individuals to 

spawn the total realised fecundity of the total SSB (all mature sea bass). We choose 10 to keep the 

number of super-individuals consistent for each cohort (see TRACE section 5.8.7). We split the 10 

new super-individuals to represent the spatial aspect of the fishery (see TRACE section 5.8.7). 

5.8 Data evaluation 

This TRACE element provides supporting information on: The quality and sources of numerical and 

qualitative data used to parameterize the model, both directly and inversely via calibration, and of 

the observed patterns that were used to design the overall model structure. This critical evaluation 

will allow model users to assess the scope and the uncertainty of the data and knowledge on which 

the model is based. 

5.8.1 Summary 

The population dynamics component of the IBM is emergent from the energy budget equations, 

while parameters and inputs were derived from the literature or public databases. The movement 

sub model was based on hypotheses drawn from tagging studies.  

5.8.2 Environmental inputs 

SST and PHY: Environmental inputs comprise dynamic maps of chlorophyll-a concentration, and sea 

surface temperature. The satellite remote-sensing data were taken from NASA’s ocean colour portal 

in NetCDF format (NASA, 2017; NASA OBPG, 2017). Processing of the satellite data included: 1) 

cropping to the model extent (Fig. 5-1), 2) estimating missing values using linear temporal 

interpolation (e.g., NAs for a cell in one time period become the average of the last prior period with 

a value, and next subsequent period with a value), 3) fill in any further gaps with the annual average, 

4) re-sampling the spatial resolution from 9km x 9km to 30km x 30km, 5) convert chlorophyll to 

plankton biomass. Chlorophyll-a was converted to carbon mass using a C:Chl-a ratio of 75, then, a 

wet mass:C ratio of 10 was used to obtain phytoplankton biomass (g wet mass m-2) (Link et al., 

2006). This gives phytoplankton biomass (g m-2) = chl-a (mg m-2) x 0.75 and 6) re-project on to 

lambert azimuthal equal area projection. 

5.8.3 Growth 

Juvenile and mature sea bass von Bertalanffy L∞, k: L∞ is the maximum length a sea bass can reach, 

and K is annual growth constant. The IBM uses the same von Bertalanffy growth parameter values as 

used in the stock assessment (Table 5-2). These parameter values were estimated from data derived 

from sampling of UK fishery catches around England and Wales as well as from trawl surveys of 

young sea bass in the Solent and Thames estuary, and consisted of over 90,000 fish sampled and 
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aged between 1985–2011. All ageing was done from scales and the growth curve was fit in Excel 

solver using non-linear minimization. Standard deviations of length-at-age are also provided in 

(Armstrong and Walmsley, 2012). 

Length weight growth parameters a, b: Length weight parameters a and b, (used to convert 

calculated lengths from growth equations into estimates of mass are sourced from ICES, 2012). 

These parameters are originally used to calculate total mass from fish length, thus include the mass 

of gonads and fat reserves. In this model we require estimates of structural mass (the minimum 

weight of fish without gonad or fat reserve mass). To allow for this we have taken average figures of 

energy reserve mass (~1% of body weight [Pickett and Pawson, 1994]) and gonad somatic index 

(~4% of body weight [Pickett and Pawson, 1994]), to inform a reduction in parameter a by 5%. 

Early life: We used sea bass larvae growth experimental data from Regner and Dulčić, 1994 to set 

the maximum growth rate during the first 70 days of growth after hatching (Fig. 5-6). 70 days is also 

consistent with other studies of length of the pelagic stages of sea bass (Jennings and Ellis, 2015; 

Beraud et al., 2018). For the first 70 days we calculate that larva grow at a constant rate which is 

affected by temperature. At the reference temperature of 14oC this is 0.02485 cm/d (also consistent 

with daily growth value of 0.2mm in Jennings, Jennings and Pawson, 1992) We test the effect of 

extremes of observed SST on maximum growth rate. The highest observed SST (30°C) results in a 

greater maximum growth rate (0.07216844 cm/d) when compared to growth in the lowest observed 

SST (0°C, maximum growth = 0.008824422 cm/d). 

 

Figure 5-6. Digitised larvae growth data from (Regner and Dulčić, 1994). The solid line represents 
the regression from which we use the slope coefficient (0.02485 cm/d) to represent maximum 
growth rate.  

Reference temperature: This is the temperature used in the Arrhenius functions throughout the 

model (except for the use with calc-speed). 12°C was chosen as the reference temperature following 

Walker et al., 2020. 
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Figure 5-7. Juvenile and mature max daily growth rate using the von Bertalanffy growth equation 
for European sea bass. Red, black, and blue shows the extremes obtained if larvae were to 
continuously inhabit a patch at the highest (30°C), reference (14oc) or lowest (0°C) observed SST. 

5.8.4 Swimming 

Aspect ratio of the caudal fin A: The value of 1.76 was obtained from FishBase (Swim type) based on 

the value reported in a doctoral thesis (FishBase Ref No. 12676). 

Activation energy Es: The activation energy used in the Arrhenius equation used when calculating 

speed (see TRACE section 5.7 calculate-speed). The temperature dependences of biological 

processes are known to vary with activity levels, reducing as activity levels increase (Bennett, 1985). 

This is why the activation energy for sea bass swimming fast is lower than the activation energy for 

sea bass at other times (Claireaux, 2006). The activation energy value used is 0.1903656 following 

(Walker et al., 2020). 

Reference temperature Ts: The reference temperature used in the Arrhenius equation used when 

calculating speed (see TRACE section 5.7 calculate-speed) The reference temperature value used as 

6oC following rational in Walker et al., 2020. Fig. 5-8 illustrates the potential effects of the Arrhenius 

multiplier on swimming speeds in the IBM. 
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Figure 5-8. The deterministic swimming speed of European sea bass (kilometres per hour) at the 
reference temperature of 6oC (black curve). red, and blue which show the extremes obtained if 
larvae were to continuously inhabit a patch at the highest (30°C), or lowest (0°C) observed SST. 

Time spent swimming: 12 hours was chosen arbitrarily in the absence of further information. 

Movement repeats: Fish move 𝑟 times per day where 𝑟 is the smallest integer is such that fish travel 

no more than 0.25 patches before changing direction. With no movement repeats (𝑟 = 1) fish 

sometimes overlap with land, while restricting movement to 0.1 patches before enforcing a direction 

change can prevent fish from reaching feeding grounds and results in tighter grouping at the 

divisional boundaries, particularly for fish with an affinity to feed in division 4. 

5.8.5 Ingestion  

Cmax: Cmax is the maximum ingestion rate in grams of food per day per gram of fish. Currently 

Cmax is set as Cmax = 0.54 grams per day per gram of fish. This value is used in Watson et al., 2020 

which was based on extrapolation from data in Lanari, D’Agaro and Ballestrazzi, 2002. Lanari, 

D’Agaro and Ballestrazzi, 2002 used sea bass specimens weighing 60 - 250 grams but we assume this 

Cmax is appropriate for all agents in the model that feed (i.e., larvae, juvenile and mature fish).   

 



TRACE document: supporting information to Watson et al. 2020 

104 
 

 

Figure 5-9. Temperature effect on ingestion rate (PHY = 2, h = 0.5, fish length = 42cm).  

 

Half saturation constant (H): Half saturation constant is the resource availability at which half of the 

maximum intake is reached. We show how H affects ingestion rate in Fig. 5-10. This parameter is 

calibrated with ABC (see TRACE section 5.9)  
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Figure 5-10. Ingestion rate as a function of phytoplankton biomass with half saturation constant 
values 0.5 (black), 1 (yellow), 1.5 (green) and 2 (red). 

Absorbed energy (AE): Absorbed energy is the fraction of energy in the environment (phytoplankton 

[PHY]) that is ingested and assimilated for use in life processes. To keep parameters to a minimum 

we combined the correlated parameters assimilation efficiency (which was set at 0.95 for mackerel 

in Boyd et al., 2020) and a trophic delay term. Trophic delay is needed as sea bass do not directly 

access the energy being read into the model in the form of PHY remote sensing data. The sea bass 

will only access a fraction of this due to inefficiencies as energy is passed through the trophic levels 

to the broad range of sea bass prey. This parameter is calibrated with ABC (see TRACE section 5.9)  

Density dependence importance (I): Importance of density dependence is necessary to give a 

consequence of having an inflated population, for example a profitable area to feed becomes less 

optimal as the number of individuals there increases. This parameter is calibrated with ABC (see 

TRACE section 5.9).  

5.8.6 Maintenance  

Maintenance is assumed to be the same cost all year round and is assumed to be twice Standard 

Metabolic Rate to take account of activity in the field (Peters, 1986). 

Normalizing constant (Ao): Ao is the scaling coefficient between fish size and metabolic rate. We use 

the mean scale coefficient (Ao = 0.1227808) between fish size and metabolic rate from data used in 

Watson et al., 2020 (Fig. 5-11). 
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Figure 5-11. The scale coefficient between fish mass and metabolic rate.   

5.8.7 Spawning  

Numbers eggs per sea bass: Pickett and Pawson, 1994 give a range of ¼ to ½ a million eggs per kg of 

sea bass so we use a value of 0.33x106 eggs per kg of sea bass. 

Representative spawning super-individuals: We maintain 10 super-individuals per cohort throughout 

the model simulation by introducing 10 new super-individuals each year. To ensure the new cohort 

are spatially representative we split the new 10 into; 3 super-individuals with affinity to Celtic/Irish 

Sea (VIIfg and VIIa), 5 with affinity to the Channel (VIId and VIIe) and 2 with affinity to the North Sea 

(IVb and IVc). We have based this distribution on (Walker et al., 2020). 

Although this fixes the number of super-individuals, note that each super individual can represent 

many fish. So, although there are only two super-individuals in the North Sea, they could in theory 

still represent more fish than the whole Channel if necessary. In this way we still can adequately 

spatially represent the fishery.  

It is important to note that we use ICES affinity as a convenient way of ensuring new cohorts are split 

spatially across the model domain, and there is no evidence to our knowledge that larval stages 

inherit their affinity from their parents. Instead, once transformed through the life stages, a newly 

mature sea bass that is leaving the coast for its first spawning migration sets its fidelity to the ICES 

area it is leaving. Thus is more in-keeping with evidence from tagging studies reviewed by (Pawson 

et al., 2008). 
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Figure 5-12. Schematic showing how we represent the total spawning potential of all mature sea 
bass with a new cohort consisting of 10 super-individuals split between the three main areas in 
the fishery.  

5.8.8 Natural mortality 

Early life mortality (PM): PM is the young life stages daily natural mortality rate. Young life stage 

(eggs, egg-sac larvae and larvae) are exposed to a much higher mortality rate than juvenile and 

mature sea bass. Early life mortality can be impacted by a multitude of factors including: SST, 

predation and weather, making it complex to model explicitly. Instead, PM is calibrated with ABC see 

TRACE section 5.9 

Juvenile and mature mortality (AM): For juvenile and mature sea bass we do not follow the ICES 

assessment and AM is calibrated with ABC see TRACE section 5.9. 

5.8.9 Fishing mortality 

Fishing mortalities were taken as those estimated by the stock assessment (ICES, 2018c). Catch data 

for six fishing fleets (1. UK bottom trawls and nets; 2. UK lines; 3. UK midwater pair trawls; 4. French 

fleets (combined); 5. Other (other countries and UK fleets combined) and 6. Recreational fisheries) 

are taken as input to the SS3 assessment, and fishing mortalities estimated to match the observed 

catch (Methot and Wetzel, 2013). 

For the purposes of the IBM, fishing mortality was partitioned among the fleets modelled within SS3 

by proportion of catch: 

𝐹𝑎,𝑦,𝑓 =
𝐶𝑎,𝑦,𝑓

∑𝑓 𝐶𝑎,𝑦,𝑓

𝐹𝑎,𝑦 

where 𝐹𝑎,𝑦 is fishing mortality-at-age estimated by the assessment and 𝐶𝑎,𝑦,𝑓 catch-at-age by fleet f. 

Fishing mortalities for fleets 1–5 (UKOTB_Nets, Lines, UKMWT, French and Other) were summed to 

give overall commercial fishing mortality-at-age while fleet 6 (RecFish) gave recreational fishing 

mortality-at-age. 

5.8.10 Numbers-at-age 

Numbers-at-age data were used to set up the initial population of sea bass and introduce recruits 

into the IBM for the first year from the stock assessment. Thereafter the numbers at age are 

emergent from the energy budget equations and discounted by the appropriate fishing mortality.  
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5.8.11 Movement 

Movements and migrations follow the Pawson et al. (1987) hypothesis. This hypothesis is based on 

data for 5959 tagged sea bass, with a follow-on exercise for 4959 sea bass confirming the validity of 

the hypothesis 20 years later (Pawson et al., 2007). 

 

Figure 5-13. Hypothesised distribution and movements of sea bass. Figure from (Kelley and 
Pickett, 1987). 
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5.9 Calibrating parameters 
The model contains 25 parameters, and the values were where possible taken from literature (see 

TRACE section 5.5 and Table 5-2). Where absolute values of these parameters could not be directly 

taken from the literature, we used a Bayesian analysis to fit five parameters to calibrate the model. 

The five calibrated parameters were: H; half saturation constant, AM: adult natural mortality, AE; 

absorbed energy, PM: pelagic mortality, I; importance of density dependence. We assigned a prior 

distribution to these five parameters, which was later updated to a posterior distribution, influenced 

by the observed data. Our goal to simulate from the posterior is made difficult by the complexity of 

the model which makes the likelihood function not analytically available and hard to compute. In 

this section we describe the technique used to overcome this problem. 

5.9.1 Approximate Bayesian Computation (ABC) 

In settings where the likelihood function is intractable, ABC allows us to perform approximate 

statistical inference by drawing samples from an approximation of the posterior distribution of 

parameters. In a fundamental rejection ABC scheme, a parameter value is simulated from the prior 

distribution and given this value, fake observations y_0 are generated, which are then compared to 

the actual observations y, using some predefined discrepancy function d(y_0,y). Based on this 

discrepancy function, the parameter value is only accepted if d(y_0,y) is less than some 

predetermined threshold ε. This procedure is repeated multiple times until we have a reasonable 

number of acceptances, which are then distributed approximately like the posterior. The problem 

with this method is that it typically needs a lot of runs and model evaluations before it generates a 

reasonable number of samples. This is due to the vast number of rejected samples which are 

wasted. 

A different approach is, instead of explicitly rejecting and wasting the samples that generated fake 

data distant from the true observations, to store them but give them a very low weight. In contrast, 

the samples that led to fake data close to the actual observations are given a larger weight, which 

also depends on the threshold ε. This ε threshold measures the distance between the actual 

posterior and the approximate posterior and in an ideal setting would be set equal to zero. Instead 

of fixing ε, one could try to decrease it as the algorithm is running, in such a way that it takes into 

account the current outputs of the algorithm. This adapted decrease of ε, may allow the algorithm 

to sample values very close to the posterior. The algorithm we use to calibrate the five parameters 

was constructed to incorporate this idea and is called Simulated Annealing ABC (SBAC) (Albert, 

Künsch and Scheidegger, 2015). This algorithm has been seen to sample values from the posterior 

distribution faster and has the additional advantage of being highly parallelisable. One can see a run 

of this algorithm as the evolution of a set of particles that move almost independently of each. This 

allows SABC to be implemented within a High Performance Computing (HPC) framework with 

multiple cores.  

In order to implement SABC for the inference of the parameters of this model with the help of High 

Performance Computing, we used the Python library ABCPy (Dutta et al., 2017). We used 4 nodes of 

Orac Server with 28-core each (Lenovo NeXtScale nx360 M5 servers with 2 x Intel Xeon E5-2680 v4 

(Broadwell) 2.4 GHz 14-core processors) maintained by the Scientific Computing Research 

Technology Platform of the University of Warwick. The algorithm ran for 10 iterations which took 

approximately 2 hours. All the tuning parameters of the algorithm were set to the default values 

specified in ABCPy. Overall, 111 samples were generated approximately from the posterior. The 

quantities needed to run SABC, i.e., the discrepancy measure between the observed and fake data, 
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the prior distribution of parameters and the perturbation kernel to explore the parameter space, are 

described next. 

5.9.2 Observed Data and Discrepancy Function  

 The data used for parameter calibration was from the sea bass stock assessment model (stock 

synthesis 3, SS3). SS3 outputs for SSB and numbers at age are estimated annually, however mass at 

age is simply taken as the stock assessment parameters of the von Bertalanffy model. It is necessary 

to include mass at age in the calibration to get a realistic population size structure, and in the 

absence of real data this is the best available guide. As a summary statistic in order to run SABC, we 

use the whole data set, i.e., Spawning Stock Biomass (SSB), mass and numbers at ages. 

Here we define the discrepancy function used to decide the weight we assign to every parameter. 

We recall that the larger the distance between the fake observations and the actual one, the less we 

weigh the parameter value that generated those fake observations. If we write 

y=(SSB_1,...,SSB_{11},N_{1,1},...,N_{11,30}, M_{1,1},...,M_{11,30}) for the actual observations (where 

SSB_i is the SSB at year i and N_{i,j} and M_{i,j} the numbers and the mass at year i of the j age 

group) and respectively y^0 for a fake observation then we use the discrepancy function 𝑑  defined 

as 

𝒅(𝒚, 𝒚𝟎) = (∑𝒊=𝟏
𝟏𝟏𝟏𝟎𝟎𝟎 ∗ (𝑺𝑺𝑩𝒊 − 𝑺𝑺𝑩𝒊

𝟎)𝟐 + 𝟏/𝟑𝟎 ∗ ∑𝟑𝟎
𝒋=𝟏

(𝑵𝒊,𝒋 − 𝑵𝟎
𝒊,𝒋 )𝟐

+ (𝑴𝒊,𝒋 − 𝑴𝟎
𝒊,𝒋)𝟐)𝟏/𝟐. 

Note that we consider all the components of the data, i.e., SSB for all 11 different years and number 

and mass for all 11 different years and 30 different ages. For each component of the fake data, we 

consider its difference from the component of the actual data, we square it and we sum over all 

components. However, each component has a different weight, more precisely we add a weight of 

1000 to the SSB components and 1/30 to the numbers and masses. This means that we prioritise the 

fake SSB to be close to the actual one for a parameter to be accepted. 

5.9.3 Perturbation Kernel 

To explore the parameter space of the five fitted parameters, we consider a five-dimensional 

truncated multivariate Gaussian distribution as the perturbation kernel. The truncation range is the 

support of the prior distributions (see next subsection). SABC inference scheme centres the 

perturbation kernel at the sample it is perturbing and updates the variance-covariance matrix of the 

perturbation kernel based on the samples learned from the previous step. 

5.9.4 Prior Distribution  

As a prior distribution we set all five parameters to be uniform distributions independent of each 

other. Here we describe the reasoning behind the prior values used in the ABC approach to calibrate 

our unknown IBM parameters (H: half saturation constant, AM: adult natural mortality, AE: 

absorbed energy, PM: pelagic mortality, I: importance of density dependence). We began by running 

the model extensively in a process we term “manual parametrisation” where we adjusted parameter 

values on the model interface in an attempt to get fairly good fits to the SS3 data. In the absence of 

other data or knowledge, to give a starting point for priors, we have used half and double (50% and 

150%) the values revealed by our manual parametrisation. We have then updated priors wherever 

sensible after insight from multiple rounds of rejection ABC. 
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H: half saturation constant  

Best value from manual parametrisation was 0.5. 

Initial Priors 0.25 and 10.75 (double/half). were updated and final priors were set at 0.25 and 0.75 

These updates were after rounds of rejection ABC that revealed no good parameter values at the 

upper end of the parameter space.  

 

AM: Adult natural mortality  

Final priors set at 2.8x10-4 and 5.9x10-4 

We set these priors based on an online app (http://barefootecologist.com.au/shiny_m) which 

estimates the value of AM from a range of life-history based methods. The priors are the highest and 

lowest values given.  

AE: absorbed energy  

Best value from manual parametrisation was 1x10-3 

Initial Priors set at 5x10-1 and 2x10-2 (double/half) and based on assumption ~10% efficiency at each 

trophic level and the assumption that sea bass are around trophic level 3. Initial priors were then 

updated and finally set at 0, 3x10-3 after rounds of rejection ABC that revealed uncertainty at both 

the upper and lower bound.  

PM: pelagic mortality  

Best value from manual parametrisation was 3.71x10-2 

Initial Priors set at 1.86x10-2 and 7.42x10-2 (double and half) were then updated to 4.5x10-2, 1.35x10-

1. These updates were after rounds of rejection ABC that showed that poor fits were obtained 

outside this range. 

I: importance of density dependence  

Best value from manual parametrisation was 5x1013 

 

Initial Priors set at 2.5x1013and 1x1014 (double and half) then updated to 2.5x1013, 7.5x1013. These 

updates were after rounds of rejection ABC that showed that poor fits were obtained outside this 

range. 

5.9.5 Posterior Shape 

The mean of the posterior (or the mode) can serve as a particular value estimate of the parameter. 

The estimated posterior mean for all five parameters and 95% credible intervals are shown in Table 

5-3 together with the prior distributions used. The estimated correlation matrix between parameters 

is shown in Table 5-4: the values shown suggest medium to weak correlations between these five 

model parameters, with a maximum of -0.47 between parameters PM and AM. Finally, Figure 5-14 

presents the estimated probability density functions (PDFs) of the marginal distributions for each 

one of the five fitted parameters. For every pair of these five parameters, the figure also presents 

their estimated joint marginal PDF by showing their contours. Each contour line indicates the area of 

the space where the joint PDF has the same value, and this value is presented next to the contour 

plot (Fig. 5-14).  

http://barefootecologist.com.au/shiny_m
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Table 5-3. Values for priors, posterior mean and 95% credible intervals from ABCpy runs for 
parameters H; half saturation constant, AM: adult natural mortality, AE; absorbed energy, PM: 
pelagic mortality, I; importance of density dependence. For rationale for choice of priors see 
TRACE section 5.9.4.  

Parameter Priors  Posterior mean 95% credible intervals 

H 2.5x10-1,7.5x10-1 4.87x10-1 3.04x10-1, 7.26 x10-1 

AM 2.8x10-4,5.9x10-4 4.71x10-4 3.43x10-4, 5.87 x10-4 

Ae 0.0, 3x10-3 1.64x10-3 2.51 x10-4, 2.88 x10-3 

PM 4.5x10-2, 1.35x10-1 8.01x10-2 5.76 x10-2, 1.02 x10-1 

I 2.5x10+13,7.5x10+13 5.14x10+13 2.72 x10+13, 7.39 x10+13 

 

Table 5-4. Estimated correlation matrix between the parameters shown in Table 5-2.  

- AM Ae PM I 

H 0.19 -0.04 0.06 0.02 

AM  -0.04 -0.47 -0.05 

Ae   0.35 0.17 

PM    0.13 
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Figure 5-14. Estimated joint posterior distributions and posterior means (red lines) of the five 
fitted parameters H, Am, AE and I, where each of the diagonal and off-diagonal panels show 
correspondingly the probability density functions (PDF) of the univariate and bivariate marginal 
posterior distributions. For example, the second panel in the top row shows the contour plot of 
the marginal posterior PDF of Am and H, indicating areas of the space where their joint PDF takes 
specific values, presented next to the contour plots.   

 

 

 

 

 

 

 



TRACE document: supporting information to Watson et al. 2020 

114 
 

5.10  Conceptual model evaluation 

This TRACE element provides supporting information on: The simplifying assumptions underlying a 

model’s design, both with regard to empirical knowledge and general, basic principles. This critical 

evaluation allows model users to understand that model design was not ad hoc but based on 

carefully scrutinized considerations.  

5.10.1 Summary 

Here we provide rationale for our choice of temperature as a forcing variable and phytoplankton 

density as an energy input. We provide justification for our use and handling of super-individuals, 

life stages and describe the trade-offs associated with increasing the number of super-individuals 

in the IBM. We describe how we approached fishing pressure and finally summarise how 

observations and hypotheses in the literature have informed our movement sub models. 

5.10.2 Temperature as a forcing variable 

Temperature is a key driver of sea bass dynamics influencing several processes: 

Spawning and numbers at age 0: Sea temperature influences distribution of the spawning 

population and the growth of eggs and larval stages. Larvae that grow faster are quicker to graduate 

to the lower mortality rate inflicted on the juvenile and adult/mature life stages. This means that 

faster growth in response to warmer SSTs will influence numbers at age 0 (Pawson, 1992). To test 

this we show a positive relationship between SST on spawning patches from the model and the 

numbers at age 0/SSB from ICES stock assessment figures for the years 1985.- 2017 (Fig. 5-15 and 

Table 5-5). Eggs are rarely found in SST of less than 8.5–9°C or above 15°C leading to the belief that 

spawning is bound by the 9°C isotherm (Thompson and Harrop, 1987; Pickett and Pawson, 1994), 

and this governs where spawning patches appear in the IBM (see TRACE section 5.2). 

Growth: Water temperature affects growth of sea bass (Pickett and Pawson, 1994) and is modelled 

through use of an Arrhenius multiplier. 

Movement: Swimming speed is positively correlated with temperature (Pickett and Pawson, 1994; 

Claireaux, 2006) and modelled through use of an Arrhenius multiplier. Temperature also provides an 

important cue to initiate spawning migrations (Kelley and Pickett, 1987; Pickett and Pawson, 1994) 

reflected in our migration sub models (TRACE section 5.7). 

Ingestion: Water temperature affects ingestion rates of larvae , juvenile and mature sea bass (Pickett 

and Pawson, 1994) and is modelled through use of an Arrhenius multiplier. 
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Figure 5-15. Numbers at age 0 over SSB data from ICES data plotted against the mean annual sea 
surface temperature of the spawning patches from 1987 – 2017.   

Table 5-5. Analysis of Variance of a liner regression testing Numbers at age 0/SSB as predicted by 
mean annual sea surface temperature of the spawning patches from 1987 – 2017. 

           Df      Sum Sq     Mean Sq F value   Pr(>F)   

SST   1 11563903 11563903 2.3994 0.1326 

Residuals 28 134947308 4819547                     

 

5.10.3 Using phytoplankton as driver of energy budgets 

Sea bass are generalist predators and their diet is opportunistic (Pickett and Pawson, 1994), thus it is 

very difficult to predict what they will be eating at any particular time. In addition, the use of 

ecosystem model outputs was considered to introduce too much further uncertainty and calibration 

challenges. Instead, we use remote sensing data of phytoplankton blooms assuming this to be the 

base of the marine food web. This remote sensing data provides information on how much energy is 

being inputted to the marine ecosystem. With this method there are difficulties calculating explicitly 

how energy travels through trophic levels of the marine food web. We know energy is lost at each 

trophic interaction and many species in the marine environment (including much of sea bass prey) 

are highly mobile, and may move around seeking energy in the form of their preferred prey. 
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Modelling this complex phenomenon to calculate how much energy and how long it will take to get 

from a phytoplankton bloom to a sea bass is beyond the scope of this model and requires too many 

complex assumptions which we term trophic delay. Trophic delay is highly correlated with 

assimilation efficiency and so are combined as a single parameter termed Absorbed energy (AE). AE 

is calibrated with ABC, for more details see TRACE section 5.9.   

5.10.4 Super-individuals 

Super-individuals comprise many sea bass with identical state variables and were employed to make 

simulation of the large population of European sea bass computationally feasible. 

Grimm & Railsback (2005) list three approaches to handle the relationship between the number of 

super-individuals in an IBM and number of individuals per super-individual as population size 

decreases due to mortality: 

1) Assume that mortality reduces the number of individuals per super-individual while the 

number of super-individuals remains constant. 

2) Assume that mortality reduces the number of individuals per super-individual, but combine 

super-individuals as needed to keep the number of individuals relatively constant. 

3) Assume that an entire super-individual either lives or dies. 

Our approach is most similar to option 1, in that we fix the number of super-individuals per cohort 

and divide the population numbers-at-age accordingly (Shin and Cury, 2001). This option reduces 

spatial artefacts by keeping the total number of super-individuals relatively constant and allows 

application of mortality in a way that is compatible with the stock assessment. 

The fixed number of super-individuals chosen per cohort introduces a trade-off between spatial 

distributions, longevity and model run times: more super-individuals allow for more variability and 

better spatial age-structure, but the lower number of super-individuals within super-individuals may 

lead to truncation of cohorts before the maximum age of 30 years. Conversely, having fewer super-

individuals containing more individual fish better preserves the overall age structure of the 

population and reduces model run times but may result in patchy age distributions at the divisional 

level. 

5.10.5 Life stages 

After the young life stages (eggs, ys-larvae, larvae) have drifted back to the coastline (see TRACE 

section 5.7 drift_x sub models) juvenile and adult/mature sea bass are the two life stages 

represented in the IBM. Juvenile and adult/mature sea bass are the two life stages which broadly 

relate to the two distinct movement patterns described in the literature (Kelley and Pickett, 1987; 

Pickett and Pawson, 1994; Pawson et al., 2007): (1) juvenile residency in nursery grounds and coastal 

areas and (2) large scale migrations between spawning and feeding grounds upon reaching maturity. 

Our choice of maturity of fish greater than 42 cm is consistent with observations in which maturity is 

based on length rather than age (Pickett and Pawson, 1994).   

5.10.6 Fishing fleets 

Although sea bass are caught by a variety of gears, commercial fisheries operating in the northern 

management unit are considered to have two distinct components catching different subsets of the 

population throughout their life and migration-cycles (ICES, 2012a): 
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1) Offshore fisheries on pre-spawning and spawning sea bass, predominantly by pelagic 

trawlers from France and the UK, operating during November to April. 

2) Small-scale inshore fisheries catching immature sea bass and mature sea bass returning to 

coastal areas following spawning. These fisheries include many small (10m and under) 

vessels employing a variety of gears and often take sea bass as by-catch with other species.   

Sea bass are also a popular target for recreational fishing in European waters. 

5.10.7 Movement and migrations 

Although the mechanisms informing sea bass navigation are largely unknown, our empirical 

movement sub models were constructed to incorporate observations and hypotheses reported in 

the literature: 

Egg, egg-sac larvae and larvae movement: The mechanism by which early life stages return to the 

coast after offshore spawning is understood to be driven by a complex combination of wind, 

currents and sea temperatures alongside some active vertical movement of larvae to utilize currents 

(Beraud et al., 2018). These enable the pelagic stages (eggs, yolk sac larvae and larvae) to reach 

nursery areas around the coast of the UK, made up of estuaries, harbours, backwaters, creeks and 

shallow bays (Pickett and Pawson, 1994). It is not feasible to explicitly model this movement, instead 

for model simplicity the pelagic life stages drift the most direct route back to their target site. This is 

the forced distribution that ensures that each new 10 super individuals follow a spatial distribution 

as set out by (Walker et al., 2020) for more details see TRACE section 5.8.7.  

Juvenile movement: The local movement of juveniles within the IBM is consistent with observations 

that juveniles remain within nursery grounds for the first few years of life and disperse primarily 

during the adolescent phase (Pickett and Pawson, 1994; Pickett, Kelley and Pawson, 2004). 

Spawning cues: Movement to pre-spawning and offshore spawning grounds takes place as the water 

cools between October and December, when mature females seek water warmer than 9°C (Kelley 

and Pickett, 1987; Pickett and Pawson, 1994), but may be delayed and take place over shorter 

distances during warmer winters. This is captured by using temperature as a trigger for the spawning 

migration: most mature sea bass will depart between October and December but some will depart 

later in warmer years, which allows for spawning in the North and Irish Seas as spawning patches 

start appearing there. Triggering spawning migrations by appearance of spawning patches also 

encourages movement from the coastal Channel (divisions 7.de) to offshore in warmer years when 

patches there do not always drop below the 9°C temperature threshold. Use of a temperature-based 

cue also allows spawning to extend into April–May as super-individuals with a later departure 

complete their spawning cycle. Currently 10 mature sea bass spawn only once on the 60th tick (17th 

of March) assuming they are on a spawning patch. These 10 sea bass are representative of the entire 

SSB. We currently have only one spawning event (60th tick) for modelling simplicity, however we 

appreciate that there is evidence of sea bass as a fractional spawner (spawning 3-4 batches [Mayer, 

Shackley and Witthames, 1990]). 

Cessation of spawning: Feeding migrations don’t appear to be triggered by an environmental cue, 

but occur when fish are spent at the end of spawning (Pawson et al., 2007). This is modelled with a 

60-day spawning period once a mature fish locates a spawning patch, after which it is assumed spent 

and defaults to the feeding migration. Assumption of 60 days in spawning grounds was chosen for 

modelling reasons to prevent fish performing more than one spawning migration per year while 
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ensuring that fish begin feeding migrations in the months April and May (Kelley and Pickett, 1987; 

Pawson et al., 2007). 

Migrations: Our empirical rules consist of choosing a suitable neighbouring patch based on 

destination direction and patch type, ensuring direct movement along the coast (Pickett and 

Pawson, 1994) when migrating between spawning and feeding grounds. 

Site fidelity: Sea bass have a high affinity for coastal feeding grounds (Kelley and Pickett, 1987; 

Pawson et al., 2008), but the reason for this and its extent is unclear. Hence the probability that fish 

change affinity to a feeding area can be specified via the site-fidelity? Slider on the model's GUI. Site 

fidelity was fixed at 100% in the current study. 

5.11  Implementation verification 

This TRACE element provides supporting information on: (1) whether the computer code 

implementing the model has been thoroughly tested for programming errors, (2) whether the 

implemented model performs as indicated by the model description, and (3) how the software has 

been designed and documented to provide necessary usability tools (interfaces, automation of 

experiments, etc.) and to facilitate future installation, modification, and maintenance. 

5.11.1 Summary 

A series of techniques were employed to test and debug the model code and check that it 

performs according to the ODD specification. These checks included syntax checking, visual 

testing, print and error statements, spot tests with agent monitors, test procedures and programs, 

independent reimplementation and testing of sub models in R. 

The original model on which this model has developed from had extensive bug checking adding to 

the confidence in model behaviour (Walker et al., 2020). In addition to the bug testing on the 

original model we have performed a range of checks to ensure the model is behaving as expected.  

The NetLogo syntax checker and GUI interface was used to test and debug the code throughout all 

stages of model development. In the new model updates we add dynamic maps of chlorophyll 

remote sensing data. To check this is working correctly we visually checked the dynamic maps by 

representing the data as colours and plots in the model GUI. We performed extensive testing of 

energy budget sub models both through spot checks of individual agents and by re-coding the sub 

model in R and testing the outputs with a range of values. The model outputs we fit of number and 

mass at age also add to confidence in model performance allowing obscure results to be spotted and 

cohorts to be followed through the simulation. The model is coded in a modular fashion making it 

feasible for sub models to be updated by new users however modifications of the model will require 

knowledge of NetLogo. The model has been implemented in NetLogo version 5.3.1 (Wilensky, 1999), 

a free software platform. The developers of NetLogo provide transition guides to new versions of 

NetLogo and keep old versions available for download.  
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5.11.2 Model output verification  

This TRACE element provides supporting information on: (1) how well model output matches 

observations. 

 Summary: Here we compare model output to ICES SS3 stock assessment data.  

 

Figure 5-16. Model callibration for Spawning Stock Biomass (SSB) for years 2004-2014. Spawning 
stock biomass is shown here as the cumulative mass of all individuals over 42cm in length as the 
threshold for being classed as a mature sea bass. Black dots represent the outputs of SS3; red dots 
are the IBM outputs using posterior medians; ribbon represents interquartile range.  
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Figure 5-17. Model calibration for mean mass (kg) of 30 age classes for years 2004-2014. M0 = mass at age 0, from then on M1 = mass at age 1, M2 = mass at 
age 2 etc. Black dots represent the outputs of SS3 (note these are based on as von Bertalanffy growth curve and are fixed so do not change year to year); 
red dots are the IBM outputs using posterior medians; ribbon represents interquartile range.  
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Figure 5-18. Model callibration for numbers of 30 age classes for years 2004-2014. Numbers in each age class, N0 = number at age 0, N1 = number at age 1, 
etc. Black dots represent the outputs of SS3; red dots are the IBM outputs using posterior medians; ribbon represents interquartile range. 
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5.12  Model analysis  

This TRACE element provides supporting information on: (1) how sensitive model output is to 

changes in model parameters (sensitivity analysis), and (2) how well the emergence of model output 

has been understood.  

5.12.1 Summary: 

The sensitivities of model outputs for SSB, mass at age and numbers at age are shown below as 

percentage change in output for a 10% increase and decrease in the model parameters. One 

parameter was tested at a time whilst keeping all other parameters at their base value. To keep run 

times achievable we repeat the test five times for each parameter and after the spin up (1985-2003) 

we take the results after one year of energy budget simulations (1st tick of 2005). A full table of 

results can be seen below in Table 5-6. The model is robust to most parameters with most 

sensitivities reported at less than 10% change in output for a 10% change in parameter value. The 

model is most sensitive to changes in length weight parameter (b_g). The parameters that are 

calibrated with ABC, Half saturation constant, Adult mortality and Absorbed energy, Pelagic mortality 

and Importance of density dependence (H, AM, AE, PM, I) are relatively robust with the majority of 

output changes less than 10%, though note the output of N0 high sensitivity to PM.  
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Table 5-6. Sensitivities of SSB, mean mass at age, and numbers at age, to 10% changes in parameter values. Results are presented as the change in relative 
output to a 10% decrease/increase in parameter value.  

 

 

 

 

Parameter Value SSB.dec SSB.inc M0.dec. M0.inc M1.dec. M1.inc M2.dec. M2.inc M3.dec. M3.inc M4.dec. M4.inc M5.dec. M5.inc …

linf 84.55 -9.6 0.8 -21.9 25.7 -12.9 13.2 -7.9 1.2 -13.4 -10.3 -4.5 -2.8 -12.2 -7.3 …

K 0.096699 -1.7 10.5 -20.5 21.5 -10.2 4.1 -9.0 4.4 -0.3 5.5 -9.8 2.5 -12.4 -1.9 …

t0 -0.73 -7.6 -1.5 -1.2 -0.7 -0.7 -0.9 -9.6 2.7 -8.5 -3.6 -6.9 1.2 -10.3 -14.1 …

Ea 0.5 1.7 -0.4 -4.0 2.8 -5.5 1.3 -3.0 -0.6 -0.9 -7.5 2.4 -9.9 -1.9 -2.7 …

EaS 0.1903656 10.1 -0.7 -2.0 -2.1 -5.4 -0.6 2.2 7.6 0.4 4.5 2.8 -2.7 -10.8 -6.4 …

Cmax 0.54 4.1 6.5 -1.2 -0.7 -2.7 2.9 -1.4 5.0 -0.8 -2.2 -0.2 6.4 -7.2 -5.3 …

ep 6.02 -1.3 2.2 -1.6 -0.1 -1.2 1.9 5.6 4.9 1.6 -9.3 1.2 -10.8 -5.4 2.5 …

A0 0.1227808 7.1 -2.1 -0.7 -0.3 -2.8 -4.2 3.6 -1.7 -3.7 -6.5 2.5 -5.3 -7.0 -1.3 …

Ef 7 -11.6 -8.1 0.2 -0.8 -1.7 -3.2 0.6 -1.1 -7.1 7.4 -2.2 -6.4 -8.9 -4.8 …

El 39.3 4.5 -6.3 -0.3 -1.3 -4.0 -0.9 -5.3 -3.9 -1.3 -5.4 -0.7 2.0 -8.3 -13.4 …

Ls 14.7 -10.3 0.5 -0.6 -0.1 -0.4 -0.5 1.2 2.6 -3.6 -8.9 -3.3 -6.8 -13.6 -5.7 …

Fs 3.6 -1.5 0.1 -0.2 0.0 -1.3 -5.4 -2.4 -5.9 -7.7 -2.0 -5.2 -0.4 -12.3 2.6 …

egg_mass 0.00096 5.6 4.3 -0.2 -1.0 -5.0 1.6 1.1 3.4 -16.7 -8.7 -2.0 -1.3 2.1 -6.7 …

a_g 0.000012312 -5.0 10.7 -9.7 7.2 -8.0 3.6 -12.9 2.9 -16.1 4.5 -9.3 5.1 -16.1 4.3 …

b_g 2.969 -61.3 152.4 -45.0 29.8 -56.0 80.8 -58.3 98.6 -61.5 73.2 -61.0 119.8 -65.8 130.2 …

eggs_per_bass 375000 -0.1 -4.5 -1.1 -0.9 -0.2 -2.4 -1.4 -5.9 -7.2 -4.1 1.9 0.4 -11.4 -5.6 …

Gl 0.02485 3.7 -0.8 -5.3 3.0 -1.7 -4.1 -4.4 -2.7 -6.1 -11.2 -0.5 -4.9 -7.8 -7.6 …

H 4.46E-01 0.7 6.7 0.5 -2.1 -0.2 -5.8 1.8 -2.6 2.9 -3.1 0.2 -4.9 -5.3 -5.0 …

AM 4.91E-04 -0.9 3.5 0.2 -0.7 -2.3 0.7 0.8 3.4 -0.5 6.4 -1.9 -1.4 -7.5 2.5 …

AE 1.57E-03 1.5 6.8 0.3 -1.5 -4.2 -2.4 1.0 -0.3 0.1 0.0 2.7 -4.7 -3.9 -8.4 …

PM 8.42E-02 1.2 -1.5 -0.3 0.6 -0.7 -1.5 -2.3 -1.5 3.7 2.8 -2.3 -2.1 -3.2 0.2 …

I 5.20E+13 2.8 5.5 -1.8 0.0 -5.9 0.1 0.0 -6.1 -3.2 -10.8 -4.4 -4.6 -7.2 -6.9 …
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Parameter Value M6.dec. M6.inc M7.dec. M7.inc M8.dec. M8.inc M9.dec. M9.inc M10.dec. M10.inc M11.dec. M11.inc M12.dec. M12.inc …

linf 84.55 -1.9 -11.2 -4.2 -12.0 -10.5 0.8 -4.0 1.2 -4.6 3.2 -5.3 3.4 -3.4 5.0 …

K 0.096699 -8.6 10.6 -10.7 -1.1 -10.0 3.9 -6.2 -0.8 0.5 -0.1 -7.5 1.8 -6.2 1.6 …

t0 -0.73 0.1 -9.2 -16.3 -2.6 -7.1 -11.0 0.2 -9.5 -3.7 -1.2 -0.4 -5.1 -1.7 0.8 …

Ea 0.5 3.9 -6.3 -6.6 -4.5 -10.1 -4.0 3.4 0.0 -2.4 2.8 2.8 -0.9 3.4 1.7 …

EaS 0.1903656 4.7 4.3 -1.8 -10.0 3.6 -7.7 0.0 1.2 2.3 0.9 0.2 -2.6 3.3 -1.4 …

Cmax 0.54 7.5 0.6 -0.1 -2.0 -9.4 -4.8 -5.2 -0.6 -4.9 3.8 2.4 1.2 -0.3 2.9 …

ep 6.02 -0.4 0.8 -9.8 -3.0 3.8 -3.3 -2.1 -0.6 -1.4 -3.1 1.9 5.1 1.3 1.4 …

A0 0.1227808 9.9 -0.3 1.1 -4.0 -7.2 -5.2 1.1 0.2 0.4 -0.7 -0.5 0.5 0.4 0.4 …

Ef 7 0.9 -2.9 -3.3 -4.7 -9.3 -11.6 1.9 -2.7 -8.4 -9.1 -9.0 2.0 0.9 1.6 …

El 39.3 -1.9 -1.7 -3.3 -3.3 -5.3 -9.9 2.4 -2.3 1.4 -8.2 0.4 -1.5 1.0 1.3 …

Ls 14.7 0.6 -0.8 -0.1 -3.2 -17.8 -3.6 -5.2 0.3 -0.2 1.1 0.5 -0.6 0.5 -1.3 …

Fs 3.6 -0.6 3.5 -6.8 -7.5 -9.8 -7.1 -0.6 0.0 -7.5 2.9 0.2 0.4 0.2 -0.4 …

egg_mass 0.00096 -8.0 -4.0 -2.0 -6.3 0.2 -2.2 -0.1 -0.3 5.9 2.7 -1.6 1.4 -1.5 2.0 …

a_g 0.000012312 -7.2 16.0 -11.9 3.5 -17.8 9.6 -8.7 9.6 -10.9 11.7 -11.5 10.4 -8.0 10.9 …

b_g 2.969 -64.5 145.3 -66.9 134.5 -66.6 177.9 -68.2 182.1 -66.0 174.0 -69.2 196.8 -69.8 219.8 …

eggs_per_bass 375000 9.4 -11.2 -2.7 -4.7 -0.7 -22.0 0.5 0.6 5.2 -0.4 -1.4 3.9 -0.7 1.8 …

Gl 0.02485 7.7 -6.9 -1.3 -7.4 -1.6 -9.9 -0.4 -0.2 2.6 1.3 1.8 0.9 -1.4 0.7 …

H 4.46E-01 6.1 7.4 -2.0 -2.2 0.1 -2.4 -1.0 -0.8 -3.3 2.1 -1.8 2.5 0.3 -0.6 …

AM 4.91E-04 -2.4 4.6 -6.3 -0.7 -6.6 -2.6 -2.6 1.4 -1.9 -6.8 5.0 5.6 1.1 2.1 …

AE 1.57E-03 2.4 4.7 -3.9 -3.7 -13.3 2.0 -6.0 0.0 -17.5 1.8 -3.9 3.6 1.4 1.2 …

PM 8.42E-02 -4.7 -2.5 -4.0 -7.5 -5.4 -5.1 -5.2 1.4 -3.8 0.4 -7.4 3.2 1.2 1.7 …

I 5.20E+13 2.4 4.8 -3.3 -7.1 -0.9 -2.1 0.9 -0.6 3.3 1.9 2.8 1.5 0.8 -0.4 …
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Parameter Value M13.dec. M13.inc M14.dec. M14.inc M15.dec. M15.inc M16.dec. M16.inc. M17.dec. M17.inc M18.dec. M18.inc M19.dec. M19.inc …

linf 84.55 -1.8 5.7 0.8 4.5 -3.3 3.8 -1.7 -5.6 -1.2 3.0 -2.9 2.8 -1.4 4.2 …

K 0.096699 0.8 -2.0 2.7 3.1 -0.6 1.6 -12.4 -4.8 2.2 2.5 0.6 -0.1 1.0 1.7 …

t0 -0.73 -7.1 2.0 0.0 -0.1 -4.9 -1.4 -8.9 -1.2 1.3 1.3 -0.1 0.2 2.0 1.9 …

Ea 0.5 1.4 2.2 4.0 1.6 -0.4 -1.9 0.8 -1.2 1.8 0.9 0.5 -0.5 1.1 1.6 …

EaS 0.1903656 2.2 -4.4 4.0 3.5 -0.4 -0.3 -2.1 -1.1 2.9 1.4 1.1 1.1 1.4 1.8 …

Cmax 0.54 -0.6 2.6 2.7 3.0 0.2 0.6 -0.3 -0.1 0.8 2.0 0.0 0.5 1.1 2.1 …

ep 6.02 -1.6 1.0 2.0 3.0 -0.1 -0.8 -0.3 -2.7 0.8 1.6 0.3 0.0 0.9 1.2 …

A0 0.1227808 0.5 0.5 3.8 3.1 -0.2 0.4 -1.9 -3.7 0.9 -2.9 0.0 0.1 1.3 2.1 …

Ef 7 3.6 1.8 3.8 2.1 -0.3 1.0 -1.7 -0.3 1.8 1.7 -0.6 0.6 1.0 2.1 …

El 39.3 1.2 -6.3 3.5 2.3 -1.2 -0.7 2.0 -4.9 1.1 0.3 0.6 0.7 1.2 1.8 …

Ls 14.7 2.8 2.0 5.5 -1.7 -1.7 -0.2 -5.4 -3.9 0.5 -1.5 0.6 -0.6 1.1 1.9 …

Fs 3.6 -2.6 0.3 1.2 3.8 -0.7 -2.7 -7.7 -2.4 -0.7 -1.4 1.0 0.8 2.3 0.4 …

egg_mass 0.00096 0.9 -0.4 3.5 3.0 0.0 -0.5 -2.0 -0.2 1.4 0.6 0.3 -0.1 1.3 1.6 …

a_g 0.000012312 -9.7 11.6 -8.9 12.9 -12.3 11.0 -11.1 5.6 -9.8 11.0 -9.7 9.2 -8.5 11.1 …

b_g 2.969 -70.2 225.1 -70.4 242.8 -70.9 241.2 -70.8 211.2 -70.9 248.2 -71.4 250.0 -71.3 252.8 …

eggs_per_bass 375000 -2.5 -0.9 2.1 3.8 -1.0 0.2 -3.8 0.4 2.8 0.5 0.4 0.1 1.8 1.7 …

Gl 0.02485 0.6 2.0 2.6 3.9 0.7 -0.1 -6.6 -2.5 1.1 0.5 -1.5 1.3 1.0 1.8 …

H 4.46E-01 1.9 0.2 -0.2 2.8 -0.8 -1.1 -2.6 -5.4 1.9 1.4 0.1 -0.8 1.4 1.1 …

AM 4.91E-04 -0.7 -0.7 -0.2 4.2 -0.2 0.1 -8.9 1.2 -2.6 0.4 2.6 0.7 2.2 1.5 …

AE 1.57E-03 -6.3 0.8 -2.1 3.1 -0.1 0.8 -1.4 -4.0 0.3 1.3 0.1 0.0 1.6 1.5 …

PM 8.42E-02 1.8 3.4 2.2 4.4 -2.2 -2.3 -1.1 -2.7 1.5 -0.3 -0.3 -1.3 1.1 0.9 …

I 5.20E+13 -1.4 -1.3 4.3 4.6 0.2 1.4 -0.8 0.5 0.7 2.6 0.5 -0.4 1.5 1.5 …
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Parameter Value M20.dec. M20.inc M21.dec. M21.inc M22.dec. M22.inc M23.dec. M23.inc M24.dec. M24.inc M25.dec. M25.inc M26.dec. M26.inc …

linf 84.55 -4.1 3.2 -2.1 2.9 -2.6 3.3 -3.7 2.5 -3.5 2.4 -3.0 4.0 -3.2 3.3 …

K 0.096699 0.2 1.1 0.5 0.8 0.2 1.0 0.1 0.5 -0.3 0.5 0.8 1.5 -0.7 0.7 …

t0 -0.73 0.2 0.2 0.3 0.6 0.9 0.1 -0.5 0.3 -0.4 0.5 0.7 0.9 0.2 0.8 …

Ea 0.5 -0.4 0.6 0.0 1.0 0.1 1.0 -0.8 0.4 -0.5 -0.2 1.2 1.0 0.7 0.5 …

EaS 0.1903656 -0.4 0.3 0.5 0.9 0.4 0.4 0.4 0.0 0.1 -0.3 1.1 0.8 0.6 1.4 …

Cmax 0.54 0.2 0.1 -0.3 0.1 0.2 -0.2 -0.4 -0.3 -0.8 -0.8 0.3 1.3 0.9 0.8 …

ep 6.02 -0.7 0.4 0.2 0.1 -0.5 0.0 -0.9 -0.1 -0.4 -1.2 0.0 0.1 -0.5 0.9 …

A0 0.1227808 -0.3 0.5 0.7 0.8 0.4 0.8 -0.2 0.1 -0.5 -1.1 0.2 1.7 -0.1 0.5 …

Ef 7 -0.3 0.2 0.7 0.6 0.7 0.3 -1.6 0.2 -0.4 -0.4 0.5 0.8 0.9 0.6 …

El 39.3 -0.8 -0.1 -0.1 0.9 0.4 0.1 -0.4 -0.2 0.1 -0.7 0.4 0.4 0.4 0.8 …

Ls 14.7 -0.9 0.2 -1.0 0.9 0.8 0.6 -0.7 0.1 0.8 -0.5 1.1 1.5 0.7 1.1 …

Fs 3.6 0.4 -0.8 1.7 0.6 -0.1 0.1 0.0 -0.8 -0.9 -0.3 1.0 0.5 0.5 0.7 …

egg_mass 0.00096 -0.1 -0.2 1.0 0.3 0.7 0.4 0.2 -0.3 -0.7 -1.5 1.1 1.1 1.6 1.2 …

a_g 0.000012312 -9.4 9.2 -10.1 10.2 -9.2 9.8 -10.0 10.0 -11.2 8.7 -9.9 10.5 -9.7 10.4 …

b_g 2.969 -72.1 255.3 -71.9 255.7 -72.1 257.9 -72.2 258.4 -72.5 254.9 -72.4 262.4 -72.3 262.5 …

eggs_per_bass 375000 -1.4 -0.8 0.2 -0.3 0.5 0.4 -0.2 -0.5 -0.3 -0.4 1.2 1.0 1.3 0.7 …

Gl 0.02485 0.9 0.7 -0.1 0.3 0.8 0.7 -0.2 -0.7 -0.1 -0.9 0.7 1.6 0.8 1.5 …

H 4.46E-01 -0.4 0.0 -0.3 -0.5 0.5 0.7 -0.2 -0.9 -0.1 -0.2 0.5 0.6 0.8 0.5 …

AM 4.91E-04 0.1 -0.3 1.2 -0.2 0.1 0.3 0.3 0.0 0.5 -1.8 1.0 0.2 0.6 0.2 …

AE 1.57E-03 0.5 0.3 0.9 0.7 1.3 0.9 -0.4 -0.4 -0.3 -0.6 0.9 0.3 0.8 0.7 …

PM 8.42E-02 -0.2 -0.4 1.0 -0.9 1.2 -0.6 -1.4 -1.2 -0.2 -0.3 1.3 0.1 0.9 0.7 …

I 5.20E+13 -0.3 0.0 0.2 1.1 0.2 1.2 -0.2 -0.7 -0.8 -0.4 0.3 0.8 0.9 0.3 …
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Parameter Value M27.dec. M27.inc. M28.dec. M28.inc. M29.dec. M29.inc. N0.dec. N0.inc N1.dec. N1.inc N2.dec. N2.inc …

linf 84.55 -2.8 3.5 -2.7 2.4 -2.5 3.7 7.5 -10.5 0.0 0.0 0.0 0.0 …

K 0.096699 -0.7 0.5 -0.8 -0.2 0.2 0.6 0.0 6.8 0.0 0.0 0.0 0.0 …

t0 -0.73 -0.4 0.4 -1.2 -0.5 -0.1 0.2 -1.8 6.6 0.0 0.0 0.0 0.0 …

Ea 0.5 0.2 0.3 -0.7 -0.2 -0.3 0.2 10.8 0.3 0.0 0.0 0.0 0.0 …

EaS 0.1903656 0.0 0.0 -0.5 0.1 0.4 0.3 7.7 0.8 0.0 0.0 0.0 0.0 …

Cmax 0.54 -0.3 0.4 -0.4 -0.4 0.5 0.1 13.5 10.2 0.0 0.0 0.0 0.0 …

ep 6.02 0.4 0.1 -0.4 -0.5 -0.4 0.0 3.7 19.4 0.0 0.0 0.0 0.0 …

A0 0.1227808 -0.5 0.2 0.4 0.1 0.1 0.0 10.1 7.9 0.0 0.0 0.0 0.0 …

Ef 7 -0.2 0.0 -0.5 -0.4 0.2 0.2 11.6 -0.5 0.0 0.0 0.0 0.0 …

El 39.3 -1.1 0.0 -0.1 0.1 0.7 0.0 -1.9 14.3 0.0 0.0 0.0 0.0 …

Ls 14.7 0.1 -0.5 -0.2 0.3 0.1 0.3 0.6 4.3 0.0 0.0 0.0 0.0 …

Fs 3.6 0.5 0.3 -0.5 -0.3 0.1 0.5 14.5 11.3 0.0 0.0 0.0 0.0 …

egg_mass 0.00096 0.0 -0.8 0.3 -0.5 0.9 0.9 21.8 -3.4 0.0 0.0 0.0 0.0 …

a_g 0.000012312 -9.9 10.1 -9.7 9.4 -10.3 10.4 6.7 20.4 0.0 0.0 0.0 0.0 …

b_g 2.969 -72.7 262.6 -72.9 260.9 -72.7 265.7 -57.5 5.8 0.0 0.0 0.0 0.0 …

eggs_per_bass 375000 0.4 -0.1 -0.2 0.1 0.5 0.5 6.4 13.9 0.0 0.0 0.0 0.0 …

Gl 0.02485 -0.2 -0.1 -0.3 -0.3 0.4 -0.3 -28.2 51.8 0.0 0.0 0.0 0.0 …

H 4.46E-01 -0.2 0.0 -0.3 -0.3 1.0 0.7 9.6 11.7 0.0 0.0 0.0 0.0 …

AM 4.91E-04 0.6 -0.4 -0.4 -0.1 0.4 0.4 8.9 -2.0 1.7 -1.7 1.7 -1.7 …

AE 1.57E-03 -0.2 0.2 -0.5 -0.1 0.5 0.3 -3.4 10.6 0.0 0.0 0.0 0.0 …

PM 8.42E-02 0.4 0.1 -0.4 -0.3 0.3 0.7 71.9 -37.1 0.0 0.0 0.0 0.0 …

I 5.20E+13 0.0 -0.2 -0.5 -0.6 0.3 0.4 -1.6 -0.9 0.0 0.0 0.0 0.0 …
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Parameter Value N3.dec. N3.inc N4.dec. N4.inc N5.dec. N5.inc N6.dec. N6.inc N7.dec. N7.inc N8.dec. N8.inc N9.dec. N9.inc …

linf 84.55 0.0 0.1 0.0 0.3 0.0 -0.3 -2.1 -1.9 0.4 -0.5 3.9 -0.7 -0.6 -1.3 …

K 0.096699 -0.1 -0.1 -0.1 -0.3 0.1 -0.9 0.6 -0.7 0.7 0.2 -0.8 1.1 -2.7 -1.0 …

t0 -0.73 0.0 0.1 -0.2 -0.2 0.0 -0.7 -1.0 -1.9 1.9 -0.5 2.9 -1.9 -0.7 -0.8 …

Ea 0.5 0.0 0.1 0.0 -0.4 -0.6 -0.8 -1.5 -1.1 -0.3 -0.3 2.8 -1.4 -1.7 -1.0 …

EaS 0.1903656 0.0 0.0 0.0 -0.3 -0.9 0.0 -0.5 0.6 -0.2 0.6 0.6 -0.2 -0.5 -1.1 …

Cmax 0.54 0.1 0.0 -0.2 0.0 0.0 -0.6 -1.8 -1.3 0.9 0.0 1.2 3.0 4.6 -1.6 …

ep 6.02 0.0 0.0 -0.2 -0.2 1.1 0.0 -1.4 -1.5 1.5 0.6 1.1 0.8 -1.3 0.4 …

A0 0.1227808 0.0 0.0 -0.3 0.1 0.2 0.6 -0.9 -0.6 -0.7 0.2 -0.9 0.9 -1.0 -1.1 …

Ef 7 -0.1 0.0 0.0 0.2 0.0 -0.2 -0.9 -0.1 1.3 0.1 4.0 -1.0 -1.2 -2.1 …

El 39.3 -0.1 0.1 -0.3 -0.3 -0.7 0.1 -0.6 -0.2 0.9 -0.7 0.8 4.5 -1.5 -1.8 …

Ls 14.7 0.1 0.2 -0.1 -0.3 -0.5 -0.4 1.3 -0.5 -0.1 1.2 -2.4 0.0 -1.4 -0.9 …

Fs 3.6 -0.1 0.0 0.0 -0.4 -0.3 -0.1 -1.8 -0.3 0.1 -0.7 2.3 1.4 -1.8 -0.7 …

egg_mass 0.00096 0.0 0.0 0.2 -0.3 0.1 -0.3 -0.7 -1.1 1.3 0.4 -0.2 -0.6 -0.9 -1.0 …

a_g 0.000012312 0.0 0.1 -0.1 -0.2 0.3 -0.2 -1.3 -2.1 0.1 -0.4 6.0 1.1 -1.6 -0.7 …

b_g 2.969 0.1 0.0 -0.3 -0.4 -0.1 -0.8 -2.2 -1.2 -0.3 -0.2 5.3 -0.2 0.0 -0.6 …

eggs_per_bass 375000 0.1 0.1 0.4 -0.3 -0.3 -0.6 -0.7 -0.4 0.1 1.0 0.4 -0.7 -1.7 -1.3 …

Gl 0.02485 0.0 -0.1 -0.3 -0.2 0.4 -0.6 -1.7 -0.7 0.7 -0.9 -0.3 -1.6 -0.7 -0.2 …

H 4.46E-01 -0.1 0.0 -0.1 0.0 0.1 0.1 -1.2 -1.9 -0.7 -0.2 3.4 2.1 -0.7 -1.0 …

AM 4.91E-04 1.7 -1.8 1.4 -2.1 1.1 -2.1 1.2 -2.2 1.4 -1.1 4.5 0.6 -0.1 -2.7 …

AE 1.57E-03 0.0 0.0 0.0 -0.3 0.3 -0.7 -1.0 -1.7 -0.4 -0.2 3.3 1.6 -1.6 -1.0 …

PM 8.42E-02 0.1 0.0 -0.3 0.0 -1.0 1.0 -0.9 -1.4 -0.3 -1.0 -0.4 0.1 -1.3 -1.1 …

I 5.20E+13 -0.1 0.0 0.0 -0.2 -0.6 0.0 1.7 -1.6 0.1 -0.1 2.4 3.4 -0.2 -0.9 …
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Parameter Value N10.dec. N10.inc N11.dec. N11.inc N12.dec. N12.inc N13.dec. N13.inc N14.dec. N14.inc N15.dec. N15.inc N16.dec. N16.inc. …

linf 84.55 0.9 2.0 0.5 1.2 -0.6 -1.4 -1.2 -1.1 -2.0 0.2 0.3 1.1 0.3 -2.4 …

K 0.096699 0.5 4.6 10.5 0.5 12.3 1.8 -0.6 2.0 -1.1 -2.0 0.8 0.7 8.9 11.6 …

t0 -0.73 0.8 0.9 -0.1 0.3 -0.3 -0.2 17.1 -2.0 -1.4 -0.7 0.5 1.5 10.6 -1.2 …

Ea 0.5 5.4 1.8 3.4 -0.1 -1.6 -0.6 -1.8 -2.0 0.2 -2.2 0.5 0.8 0.2 -0.1 …

EaS 0.1903656 0.1 0.1 -0.2 -0.7 1.3 -0.1 -1.0 -1.5 -0.3 -0.1 -0.9 1.1 0.7 3.2 …

Cmax 0.54 2.2 0.5 1.6 0.2 0.1 -0.9 -2.0 -1.3 -0.3 -0.5 0.2 0.8 0.3 -0.3 …

ep 6.02 0.4 1.6 1.5 2.0 -0.4 -0.7 -1.6 2.4 -1.4 -1.1 0.5 0.1 0.4 3.4 …

A0 0.1227808 4.9 -1.2 3.3 0.8 -1.1 -1.1 -0.9 -1.4 -1.2 -2.0 2.4 0.9 0.8 0.6 …

Ef 7 -1.1 8.5 5.3 -0.9 -0.3 -0.8 -1.0 -0.3 -0.5 -0.8 0.1 -1.6 -2.3 -1.5 …

El 39.3 0.5 -2.2 -0.6 -0.2 0.8 1.2 -0.4 2.7 -0.7 -1.0 0.8 2.6 -2.4 2.7 …

Ls 14.7 3.3 4.0 -0.5 0.8 -0.6 0.2 -1.5 -0.5 -1.8 -0.6 0.6 0.5 9.3 4.7 …

Fs 3.6 -0.8 1.4 0.0 1.9 1.3 1.2 5.8 -1.6 0.8 -1.1 1.0 0.9 5.8 -1.2 …

egg_mass 0.00096 2.4 1.4 2.6 1.8 1.0 -0.5 -0.8 -2.0 -1.4 -0.4 1.9 0.9 -1.0 1.0 …

a_g 0.000012312 2.1 -1.5 0.3 -0.3 -0.8 -0.8 2.8 -0.8 -1.4 0.0 -1.0 0.0 2.3 -0.7 …

b_g 2.969 0.6 -1.0 2.4 -0.8 -0.4 1.3 -0.9 0.1 1.0 0.2 -0.2 2.4 -0.4 3.5 …

eggs_per_bass 375000 0.6 0.0 3.6 0.5 2.8 -0.7 -0.4 -0.9 -1.6 -1.7 0.3 -0.3 10.5 -2.1 …

Gl 0.02485 9.6 1.1 0.0 0.1 -0.2 -0.8 -0.2 -0.7 0.6 -2.1 0.8 2.2 17.6 -1.2 …

H 4.46E-01 6.4 0.6 -0.6 0.2 -0.4 0.2 -1.5 -0.7 6.6 -1.6 0.5 0.5 9.7 -3.3 …

AM 4.91E-04 0.1 6.8 1.1 -0.8 1.9 -2.5 -0.1 -3.1 -0.7 -1.9 0.5 0.2 1.2 -2.6 …

AE 1.57E-03 9.2 1.7 12.1 2.6 0.0 -0.3 15.3 3.2 19.0 -1.8 0.2 1.2 -2.3 0.7 …

PM 8.42E-02 2.5 0.4 12.2 1.2 0.2 0.9 -1.2 -1.1 -0.6 -1.1 0.9 0.9 -1.0 -2.2 …

I 5.20E+13 -0.4 1.3 0.4 1.4 -0.5 -0.5 -1.1 0.2 -0.5 -1.1 0.8 0.1 -0.7 5.6 …
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Parameter Value N17.dec. N17.inc N18.dec. N18.inc N19.dec. N19.inc N20.dec. N20.inc N21.dec. N21.inc N22.dec. N22.inc N23.dec. N23.inc …

linf 84.55 -0.4 -0.2 1.9 1.3 -0.4 -1.0 0.7 -0.1 2.3 -0.1 0.6 3.6 0.0 -0.9 …

K 0.096699 -0.3 -1.0 0.2 0.2 -1.3 -0.1 -0.1 1.0 -0.6 -0.3 -0.2 0.3 -0.5 -0.3 …

t0 -0.73 0.9 -1.3 1.1 0.1 0.4 1.5 -0.1 0.3 3.0 0.5 1.7 -0.2 -0.2 -0.2 …

Ea 0.5 -1.6 -0.8 1.3 0.9 -0.7 -0.1 -0.2 -0.2 -0.3 1.4 0.9 2.0 0.2 0.1 …

EaS 0.1903656 -0.3 -1.0 1.3 0.8 -0.5 -0.1 0.6 -1.0 2.0 1.6 2.0 1.5 -1.4 -1.6 …

Cmax 0.54 0.6 1.2 1.4 0.1 2.1 -0.6 0.0 -0.8 -0.1 1.7 1.5 2.0 -0.4 0.2 …

ep 6.02 -0.1 -0.8 -1.1 -1.4 -1.0 -1.0 -1.5 -0.5 0.7 1.0 2.0 1.5 -0.9 -3.0 …

A0 0.1227808 -1.1 -0.8 0.5 0.8 0.3 -0.4 -0.5 0.0 -0.2 0.9 0.9 0.8 -1.2 -0.6 …

Ef 7 -0.8 -1.9 0.2 0.6 -0.4 0.4 -0.1 0.4 2.7 -0.4 1.2 -0.2 -1.2 -0.6 …

El 39.3 -1.1 -2.5 1.2 -1.4 -2.2 0.5 0.6 -0.3 0.4 -0.5 2.4 1.3 0.3 -0.8 …

Ls 14.7 0.1 8.1 -0.1 0.3 -0.8 1.9 -0.8 0.7 -0.7 0.4 0.7 1.5 -0.4 -2.6 …

Fs 3.6 -1.0 -0.1 0.1 1.2 0.1 1.0 -0.4 1.6 0.5 0.5 1.8 1.6 -0.2 -1.8 …

egg_mass 0.00096 -1.5 -1.9 0.0 1.4 -0.6 -0.5 -0.2 -1.0 1.3 0.2 1.1 1.2 0.6 -0.8 …

a_g 0.000012312 -0.3 -1.1 -1.1 -0.3 1.0 -1.5 -0.1 -0.7 0.5 1.5 1.4 2.4 0.0 0.0 …

b_g 2.969 -0.8 -0.8 0.2 0.6 1.9 -0.2 -0.3 -0.3 1.5 1.3 0.3 1.1 1.2 -0.5 …

eggs_per_bass 375000 -0.1 -1.2 1.5 1.8 -0.6 -0.1 -0.1 -0.8 -0.3 -0.9 1.1 -0.1 -1.2 -0.7 …

Gl 0.02485 0.6 -2.1 8.3 0.0 0.4 0.1 0.9 0.6 0.8 0.8 1.3 0.5 -2.3 -1.7 …

H 4.46E-01 -0.9 -1.0 0.6 2.3 -1.0 0.8 -0.1 0.7 0.8 0.7 1.5 1.1 -1.5 -0.7 …

AM 4.91E-04 0.6 -3.0 2.7 -0.7 0.6 -2.5 3.3 -2.2 3.0 -1.4 4.4 -0.2 0.9 -3.3 …

AE 1.57E-03 -1.5 -0.1 0.7 -0.3 -0.8 0.2 0.9 0.1 1.0 0.9 2.3 2.9 -1.8 0.5 …

PM 8.42E-02 -0.4 -0.6 -0.2 0.2 1.1 1.0 -1.1 -0.4 0.3 -1.2 2.1 1.1 -0.4 -0.9 …

I 5.20E+13 -1.8 -0.9 1.1 0.6 -1.8 0.2 -1.0 -0.5 0.5 1.2 1.0 1.2 0.6 -3.6 …
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Parameter Value N24.dec. N24.inc N25.dec. N25.inc N26.dec. N26.inc N27.dec. N27.inc N28.dec. N28.inc. N29.dec. N29.inc.

linf 84.55 -1.3 -0.5 1.2 1.8 1.1 0.1 0.5 1.3 -1.6 -2.5 -0.4 0.3

K 0.096699 0.1 -1.6 2.1 1.5 -0.2 -0.1 -0.6 0.9 -2.1 -2.5 -0.7 -0.6

t0 -0.73 -0.5 0.9 1.1 0.2 0.6 -0.4 0.0 0.6 -1.4 -1.5 0.3 -1.8

Ea 0.5 -0.8 -0.5 2.0 1.8 0.7 -0.4 0.8 0.4 -0.8 -2.0 -0.7 -1.4

EaS 0.1903656 -0.3 0.6 1.6 1.6 -0.1 2.3 0.2 -0.6 -2.5 -1.7 0.4 -0.4

Cmax 0.54 -0.6 -1.9 -0.3 0.3 0.1 0.5 1.8 1.1 -0.4 -0.8 1.8 0.0

ep 6.02 -1.2 -1.0 -0.1 2.4 0.0 0.4 -0.1 0.4 -1.4 -1.9 0.0 0.2

A0 0.1227808 -0.7 -1.0 1.5 2.2 -0.6 2.1 0.1 1.9 -1.1 -2.6 0.0 -0.1

Ef 7 -0.6 -1.0 1.1 2.0 0.8 0.4 0.5 -0.1 -1.9 -2.3 -0.5 -0.9

El 39.3 -0.8 -2.2 0.4 0.7 0.7 0.5 1.1 0.6 -0.8 -0.6 -0.4 -0.3

Ls 14.7 -2.0 -2.4 0.3 1.2 2.0 1.6 0.7 -0.2 -1.8 -1.7 -0.8 0.1

Fs 3.6 -1.6 -0.9 1.3 0.6 -0.3 1.3 0.4 0.8 -1.2 -0.8 -0.3 -1.1

egg_mass 0.00096 -0.6 -0.7 1.6 2.0 2.5 1.2 1.5 -0.7 -0.9 -1.9 0.7 0.4

a_g 0.000012312 -0.1 -1.6 2.0 1.0 -0.4 1.2 0.8 1.4 -1.2 -1.8 -1.0 -0.5

b_g 2.969 -0.4 -0.7 1.4 1.9 1.3 1.7 0.2 0.4 -1.3 -0.8 -0.7 -0.6

eggs_per_bass 375000 -0.4 0.4 2.2 1.2 1.3 0.9 1.1 0.7 -1.4 0.0 0.4 0.3

Gl 0.02485 -1.0 -0.3 2.4 2.2 0.2 -0.1 1.0 0.1 -1.5 -1.5 0.1 -0.5

H 4.46E-01 -0.6 -1.9 1.4 1.5 0.6 0.9 1.8 1.3 -2.7 -2.4 0.3 -0.5

AM 4.91E-04 2.6 -2.2 3.2 -1.4 3.4 0.0 4.3 -2.0 0.0 -3.2 1.6 -2.0

AE 1.57E-03 -0.4 -1.8 0.5 1.6 1.3 2.0 0.0 0.5 -1.7 0.1 -1.9 -0.8

PM 8.42E-02 -0.9 -0.3 2.1 0.5 1.1 2.7 1.8 0.1 -1.2 -0.9 0.7 -0.2

I 5.20E+13 0.2 -1.0 2.3 1.5 1.1 0.0 0.5 1.2 -2.7 -0.3 -0.3 -1.1
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5.13  Model output corroboration  

This TRACE element provides supporting information on: How model predictions compare to 

independent data and patterns that were not used, and preferably not even known, while the model 

was developed, parameterized, and verified. By documenting model output corroboration, model 

users learn about evidence which, in addition to model output verification, indicates that the model 

is structurally realistic so that its predictions can be trusted to some degree.  

5.13.1 Summary 

Tests from the original model by (Walker et al., 2020) on the Spatial patterns of the IBM remain 

the same. In addition to these we compare estimations of egg production for the stock and 

maturity at age outputs from SS3. 

The IBM shows reasonable correlation between potential fecundity and predicted egg production in 

SS3 (Fig. 5-19). Here the IBM output is the total combined potential egg production of the spawning 

stock, which is a function of the number and size of the individuals. When we compare realized 

fecundity with the egg predictions from SS3 we see poor fits (Fig. 5-20). Here realized fecundity is a 

function of number, size, and condition of the individuals and one explanation for the poor fits may 

be that the data from the stock assessment we use for calibration and assessment of fits does not 

consider condition of individuals. An additional explanation for the poor fits may be an over 

estimation of the cost of producing eggs. We show a similar pattern to age at maturity in IBM 

outputs vs SS3 (Fig. 5-21). Walker et al., 2020 compared IBM spatial outputs to catch data from the 

Scientific, Technical and Economic Committee for Fisheries (STECF) and showed reasonable 

correlation with some trends to overestimate catch in the Celtic and Irish Seas and underestimate 

catch in the North Sea. We did not re-run the spatial tests done by Walker et al., 2020 as the 

movement sub models for migration remain mostly unchanged (see TRACE sections 5.7 and 5.8.11  

for more details on movement sub models).  

 

Figure 5-19. Combined potential fecundity IBM outputs vs number of egg predictions from the SS3 
stock assessment output for years 2004-2014. Black = SS3, Red = IBM outputs.  
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Figure 5-20. Combined realized fecundity IBM outputs vs number of egg predictions from the SS3 
stock assessment output for years 2004-2014. Black = SS3, Red = IBM outputs.  

 

 

Figure 5-21. Percentage of each age class (2- 12 years of age) that are mature (>42 cm L) IBM 
outputs vs proportion mature predictions from the SS3 stock assessment. Black = SS3, Red = IBM 
outputs.  
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6 General discussion  

In this final chapter, I give a detailed overview of the thesis and highlight the potential implications 

for management from my work. I then go on to discuss some caveats and consider possible future 

developments. 

6.1 Thesis overview 

Throughout this thesis I have focussed on the individual with the aim of gaining mechanistic insight 

into the fish and fishers of the northern stock of sea bass. Chapters two, three and four are written 

as journal articles and chapter five is a technical document (TRACE) in support of the IBM presented 

in chapter four.  

Chapter two shows a broadly applicable modelling approach to investigate sublethal impacts of a 

broad range of anthropogenic stressors on the life processes of individual fish. The approach 

developed is built on established bioenergetics methods and provides a comprehensive energetics 

overview through from initial escape to longer term injury/behavioural changes. Unique to this 

method, over other bioenergetics stressor models, is splitting the impact of the stressor into two 

parts. Firstly, assuming an escapable acute stressor, the fish may attempt to flee; this could include 

dodging an oil spill, avoiding anthropogenic noises, or trying to break free from commercial or 

recreational fishing gear. The period for which fish swim to escape depends on many factors specific 

to individual stressors. For example, it may depend on the proximity of the fish to an oil spill, 

construction project or, in a fishing situation, how long gear is being pulled. In these situations, the 

fish is swimming at speed away from somewhere it does not want to be and is forced to spend 

energy that is subsequently unavailable for life processes. As well as escaping, the fish may suffer an 

injury or endure a change in behaviour due to the stressor. This could be an injury from 

commercial/recreational fishing gear (e.g., mouth damage from a hook) or changed behaviour from 

a range of anthropogenic stressors e.g., chemical pollution and/or noise pollution from construction 

and shipping. Such effects may impact an individual fish’s ability and preference to feed, resulting in 

reduced ingested energy available for life processes. To show a broad range of possible impacts, 

results are presented using heat maps that allow the simultaneous display of many combinations of 

reduced ingestion rates and durations of effect. Each combination of these is unique and equates to 

a loss of energy. When this loss is compared with the energy needed to achieve life processes it is 

possible to investigate the overall impact of the stressor in question.  

The study uses catch and release fishing (C&R) of European sea bass as a case study for the 

modelling approach developed in chapter two. C&R fishing is the process of capturing a fish with a 

hook and line, and then releasing the live fish back into the water presumably unharmed (Arlinghaus 

et al., 2007). C&R is widely used as part of enforced legislation either exclusively or as part of other 

capture regulations. For example, recreational targeting of sea bass in the UK has undergone 

changing restrictive legislation including mandatory catch and release for periods of the year, 

minimum landing sizes and bag limits that force anglers to release fish once their limit is achieved 

(GOV.UK, 2016, 2017, 2018, 2019, 2020). C&R fishing is also practiced as a voluntary act for example 

in the UK there is a long tradition of C&R (Lewin et al., 2018). Although C&R is generally used with 

the assumption that the returned fish are unharmed it is now understood that there is often a 

percentage of released fish that suffer post release mortality in addition to a range of sublethal 

impacts (Cooke and Cowx, 2004). The results from the study in chapter two show potential impacts 

of catch and release angling on a single sea bass. Most outcomes where quite minor but did range 

from zero to losses of up to 100% growth and 62% fecundity, and although these results are not 



TRACE document: supporting information to Watson et al. 2020 

135 
 

validated this may be a good starting point to review potential effects and to establish the relevance 

of possible experimental investigation. I go on to suggest that the energy budget approach could be 

used within an IBM (such as the model presented in chapters four and five). Here an IBM could help 

indicate emergent population level effects for a broad range of anthropogenic stressors and 

cumulative impacts for many species and hence contribute to understanding and mitigating 

sublethal anthropogenic impacts on fish.   

Chapter three moves on from fish, and focuses on the factors influencing fisher decisions of the UK 

under 10m fleet that target sea bass. Here results and deductions are shown from the analysis of 

fishing logbooks alongside environmental and socio-economic datasets. It is well appreciated that 

fisher decisions are influenced by complex socio-economic factors (Ota and Just, 2008) and that 

small vessels can be particularly vulnerable to environmental change (Sainsbury et al., 2018). In 

fisher behaviour studies involving larger vessels, automatic information or vessel monitoring systems 

(AIS and VMS) are often used to provide high resolution fisher behaviour data (Lee, South and 

Jennings, 2010). The number of vessels that use AIS and VMS is increasing by 10-30% annually 

(estimated between 2014-2017 [FAO 2020]1) and provides scope for more detailed analysis of fisher 

behaviour in further studies. Unfortunately, the vessels in the study fleet of under 10m vessels 

analysed in chapter three have yet to adopt these measures. Instead, the study relies on fishing 

vessel logbook data with environmental and socio-economic data to investigate fisher behaviour. 

The method presented splits fisher behaviour into two components, firstly the decision to leave the 

port, analysed with a logistic model, and then the success of the fishing trip, analysed with a linear 

regression model. To assess the predictors of whether a vessel leaves harbour I chose a range of 

predictors to enter into the model namely wave height, fuel price and time of first high tide. The 

chosen predictors were believed to be key predictors of fisher behaviour and both fuel price and 

weather had been highlighted in other fisher behaviour studies (e.g., Abernethy et al., 2010; 

Shepperson et al., 2016). To then assess if any of our predictors had a significant effect on fishing 

success, I used the same predictors (wave height, tide, and fuel price) in addition to change in fish 

price, month, and year. The predictors chosen from the logbook are assumed to be key predictors of 

fishing success and of relevance to legislation and future management decisions (GOV.UK, 2016, 

2017, 2018, 2019, 2020).  

At the start of my fisher behaviour analysis, I incorporated as many feasible and relevant predictors 

as possible within the limitations of data availability. However, a large proportion were 

inconsequential to fishing decisions or had an unexplained effect. The main finding were that 

weather had a large influence on fisher behaviour. Results showed that in calm conditions (wave 

heights less than one meter) most vessels left port, but fewer than 25% left port when wave height 

exceeded two meters, and those that did leave then caught less. Another notable result was the 

impact of tide on these fisher decisions. The decision to leave port was affected by the time of high 

water, but effects differed between ports. There is likely a range of explanations for the impact of 

tidal state; for example depth of water may limit the ability to leave or return to a tidal mooring, so 

leaving on an early tide may allow a fisher to stay out at sea and fish through two tide cycles rather 

than be limited to one. Another possible explanation is that early tides allow fishers more sociable 

hours and/or to fish in daylight. The preference for certain tide times could also be due to a 

perceived increased chance of catching sea bass and/or due to logistical preferences. Fishers may be 

attracted to certain tide times as changes in current velocity could carry the scent of bait further and 

also have a direct impact on feeding behaviour of fish (Stoner, 2004). Empirical studies of these 

effects are rare (Stoner, 2004) but grey literature in fishing magazines suggests sea bass have greater 

feeding activity during times of tidal movement, making them potentially profitable times to go 

fishing. A final consideration is the different effect tide can have on different fishing gears (Sharples 
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et al., 2013). West Mersea was shown to have a different response to tidal effects than the other 

ports, contributing to this could be the prevalence of using gill nets, which is different to most 

vessels in other ports that choose hook and line. Findings from chapter three have some implications 

for the management of sea bass and other small-scale inshore fisheries. Management for sea bass is 

through technical measures that include catch limits (monthly, annual), closed seasons to protect 

spawning aggregations, and minimum size (42cm). Increases of extreme weather events especially 

during the key fishing seasons may impact on the ability of under 10-meter inshore vessels to land 

catch limits within the allowed time periods. As these are time bound and there is no carryover, this 

could impact the potential revenue generated and the profitability of fishers.  

Chapters four and five present a spatially explicit individual based model (IBM), which models 

population dynamics and simulates spatial distribution of the northern stock of sea bass in ICES 

divisions’ 4.b–c, 7.a and 7.d–h. In chapter four, I present the IBM as a journal article and then go on 

to give full technical details in chapter five in a TRACE document. The model presented is a major 

enhancement to an existing IBM of the northern stock of sea bass published by Walker et al., 2020. 

The key updates are: 1) addition of a realistic energy budget driven by dynamic maps of 

phytoplankton density; and 2) inclusion of all life stages (i.e., pelagic stages, juvenile and mature 

fish). The energy budget approach in the IBM presented uses the approach developed in chapter 

two and both are based on an established method (Sibly et al., 2013) that has been used for a range 

of species and applications (e.g., Sibly et al., 2013; Boult et al., 2019; Boyd, Walker, et al., 2020). The 

basis of the energy budget is that organisms absorb energy which they spend upon life processes 

including maintenance, growth, and reproduction. Organisms prioritise energy allocation in the 

order of maintenance, growth reproduction and any excess energy is stored until the reserves are 

full. If there is insufficient energy, then the organism can ‘pay’ for growth and reproduction from 

reserve energy until depleted, at this critical point all energy is then retained for essential 

maintenance (Sibly et al., 2013). The IBM benefits from dynamic maps (sourced from remote sensing 

data) of sea surface temperature (SST) and chlorophyll concentration which act as a proxy for 

phytoplankton biomass and ultimately represent food availability. Individuals respond to their local 

food availability and SST according to their energy budgets and give rise to the emergent population 

dynamics model outputs.  

The IBM outputs are important metrics of stock status currently used by scientists to provide advice 

on fishing opportunities for the stock. The model is assessed for goodness of fit with a comparison of 

outputs (numbers and mass at age, spawning stock biomass) to those from the current ICES 

assessment (stock synthesis 3 [Methot and Wetzel, 2013]). I present some encouraging fits to the 

ICES stock assessment data and suggest that this IBM could be a promising complementary stock 

assessment tool. The mechanistic and modular nature of IBMs are recognised in fisheries and are a 

well-established tool to study both fish populations (Kühn et al., 2008; Politikos, Huret and Petitgas, 

2013; Boyd et al., 2018), and fisher behaviour (Jules Dreyfus-León, 1999; Millischer and Gascuel, 

2006; Bastardie et al., 2010; Bailey et al., 2019; Lindkvist et al., 2020). Here I suggest that there is 

scope to use the sea bass IBM to test a range of management scenarios and responses to 

environmental change as well as the potential to add in some of the sublethal stressor and fisher 

behaviour findings in chapters two and three. 

6.2 Caveats and future work 

Throughout this thesis I have focused on the individual fish and fishers of the northern European sea 

bass and by using an individual-based approach I have attempted to gain insights into some of the 

important mechanisms of this fishery. A common limitation and caveat through all work completed 
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as part of this thesis is a shortage of data: this is a widely recognised constraint with many forms of 

mechanistic and individual-based analysis (Johnston et al., 2019). Results from all three models 

presented in chapters two, three, and four would be more robust with more data. Nevertheless, 

despite data limitations, the chapters are a step towards the original thesis aims. Throughout the 

remainder of this chapter, I will highlight some specific caveats to my work and identify some 

promising future directions for the models developed in this thesis.  

The energy budget modelling approach in chapter two is broad and could, with appropriate 

consideration, be applied to a wide range of anthropogenic stressors and fish species. As in other 

bioenergetics models (e.g., Beyers and Rice, 2002), to apply this method to different stressors or 

species it is necessary to collect relevant values for duration of escape, if any, and re-parametrise the 

energy budget equations for the intended species. Websites such as FishBase (Froese and Pauly, 

2018) are a useful starting point for many life history parameters; however understanding the range 

of escape durations and injury/behaviour severity would ideally be grounded in experimental or field 

work. For example more detailed information on swimming behaviour during stressor escape could 

be learned from tagging experiments, to measure how long and fast fish swim (Graves, Horodysky 

and Latour, 2009; Brownscombe et al., 2013; Braun et al., 2015) and respirometer experiments  

could be used to investigate changes in metabolic rate (Wright et al., 2014; Rupia et al., 2016). The 

end user of this modelling approach would be required to consider the appropriate caveats for their 

own study species. Considerations include disease status of the study species/stock, as infected fish 

may suffer additional complications from anthropogenic stressors (Steeger et al., 1994; Gauthier et 

al., 2008; Latour et al., 2012; Lapointe et al., 2014; Gervasi et al., 2019), and it may also be necessary 

to take into account complications with unique life history, e.g., brood protecting species (Suski et 

al., 2003; Hanson et al., 2007; Pinder et al., 2017). To combat any of these issues it is important to 

consider any further information/experimental data available and make sure to add in these effects 

or to be aware of the impacts they may have on any conclusions taken. Users may be able to borrow 

some parameters from similar species or make assumptions about responses to similar stressors in 

the literature, however more detailed experimental data would be required if the aim was to 

validate the model. 

A promising future line of work is to use the energy budget model within the IBM presented in 

chapters four and five. An IBM could be used to investigate sublethal impacts that last beyond one 

year, (e.g., long term injury’s or behaviour changes) as well as account for any catch-up growth 

where some species may be able to make up lost growth after a stressor event (e.g., compensatory 

growth [Cline et al., 2012]). By taking advantage of the modular structure of the IBM it is possible to 

make a range of additions to further its utility. For example, with the addition of a dynamic map of 

noise, it may be possible to investigate the emergent population effects of anthropogenic noise 

pollution similar to work completed on harbour porpoise by Nabe-Nielsen et al., 2014.  

Chapter three focuses on fisher behaviour with the principal result from the study being the large 

influence of weather and, to a lesser extent tide, on fisher behaviour. However, aside from weather 

and tide, a large proportion of the variables tested were inconsequential to fishing decisions or had 

an unexplained effect, with a notable result being that fishing decisions varied substantially between 

vessels. The heterogeneity between vessels is likely due to a variety of reasons including the effects 

of seasonality on individual trips but also variation in skipper experience and risk perception (Salas 

and Gaertner, 2004), sometimes termed the skipper effect (Thorlindsson, 1988). Further insight into 

the skipper effect is often gained from semi-structured interviews (SSI) and other survey techniques 

(Hill et al., 2010; Zukowski et al., 2011; Shepperson et al., 2016). A worthy extension to the work 

completed in chapter three would be to carry SSI to compliment the findings from the data.  
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SSIs are commonly used in social science (Leavy, 2014) and also within fisheries research (Hill et al., 

2010; Zukowski, Curtis and Watts, 2011). This interview technique is designed to make use of the 

knowledge that can be gained through dialogue and strikes a balance between flexibility, to allow 

the interviewer to follow up on important points, and structure to guide the conversation towards 

the desired information (Leavy, 2014). There are many ways to analyse the outcomes of SSI (e.g., 

thematic analysis or hypothesis testing tables [Robson, 2011; Zukowski, Curtis and Watts, 2011]) 

that would make an interesting extension to the work completed in chapter three. A further 

interesting extension to chapter three’s fisher behaviour work would be the inclusion of any VMS 

data that becomes available in the future (FAO, 2020). The main reason for using logbooks is the lack 

of opportunity to use VMS/AIS which is not used by the smaller vessels that target sea bass. 

Although this may become possible in the future (FAO, 2020) and would facilitate more detailed 

analysis of vessel movements and fisher behaviour (Shepperson et al., 2018). However, without 

interviews or VMS data I believe our study is a good starting point to indicate some of the 

mechanisms of fishing pressure responses to a range of drivers. An attractive next step would be to 

add fisher behaviour sub models to the IBM. Here it might be possible to have a mechanistic link 

between some of the important fisher behaviour drivers and the fishing pressure they inflict on the 

sea bass stock (e.g., the spatial concentration of fishing effort and the pressure of fishing near 

protected areas [McCluskey and Lewison, 2008]).  

Chapters four and five present a spatially explicit IBM of the northern stock of sea bass. The IBM 

provides emergent outputs of SSB, numbers and mass at age and is built in a modular fashion. 

Throughout the construction, parametrisation and validation of the IBM it is necessary to make a 

series of assumptions and simplifications. However, to reduce the number of assumptions and to 

reduce uncertainty around model outputs would require large amounts of data which is one of the 

main limitations of IBMs (Johnston et al., 2019). One sub model that could be substantially improved 

in the IBM presented is movement. Here the timings of fish migrations within the model are 

influenced by SST but the actual movement sub model is hardwired with the empirical rules set for 

movement and migration from the hypothesis of Pawson and Pickett, 1987; Pawson et al., 2007. 

Future updates might be to use modern tagging studies (Quayle et al., 2009; O’Neill et al., 2018; de 

Pontual et al., 2019) that could provide data on which a mechanistic movement sub model could be 

built and added to further the spatial utility of the model. As mentioned, there is scope to capitalize 

on the modular nature of the IBM and include both a mechanistic fisher behaviour sub model and 

responses to some different anthropogenic stressors. Despite the limitations I believe that the 

modelling assumptions are sensible, and the model developed produces good fits against the 

available calibration data from the current stock assessment (SS3). With or without these additions 

there is a scope to use the IBM for a range of scenario testing including management measurements 

(e.g., spatial/temporal closures, changes to total allowable catch or landing size limits) and reactions 

to both ecosystem drivers (e.g., changes associated with climate change) and anthropogenic 

stressors (e.g., sublethal responses to chemical/noise pollution and/or catch and release angling).  

6.3 Impact of the research 

The work in this thesis has focussed on the northern stock of sea bass and has resulted in some new 

applications. Firstly, the energy budget model developed in chapter two has been discussed in its 

application to recreational fisheries at the ICES recreational fishing working group (WGRFS) and this 

same approach has also been adopted in an ongoing project with University of Exeter. Working with 

Exeter we are using the energy budget approach (from chapter two) to add in responses to the 

stresses of anthropogenic noise (e.g., wind farms and shipping) in the sea bass IBM (from chapters 

four and five). For this project the IBM has been updated with: 1) a dynamic noise map added to the 
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model environment; 2) modifiers have been added to the energy budget equations. With these 

additions the ingestion rate of individuals within the model can respond to the noise map, these 

then cause knock on changes to vital rates through the energy budget and give rise to emergent 

population changes. This project is ongoing and not yet complete but is a good example of how the 

sea bass IBM can be/is being used to test different stressors and scenarios for the stock.  

An important application of the models built in this thesis is the identification of gaps in data sets 

relevant to sea bass. Here, I will give some short examples from each chapter which highlight where 

future research focus could improve the data available for this stock. The work in chapter two 

highlighted the need for more experimental work towards the realised impact of interruption of 

ingestion due to sublethal injuries of behavioural changes. Results from real experiments would 

allow the testing/validation of some of the hypothesis scenarios in this study (e.g., the realised 

reduction in feeding efficiency after a hook injury). Moving on to chapter three the study showed 

how the lack of AIS/VMS usage of the small vessels that target sea bass make analysing fisher 

behaviour much harder. This could be used as potential evidence for a legislative change that would 

encourage these small vessels to use these tracking technologies and improve understanding of 

fisher behaviour. Finally, when developing and calibrating the IBM in chapters four and five I found 

data gaps which led assumptions and decisions with knock on consequences to model uncertainty. 

The assumptions made because of these gaps are discussed in TRACE section 5.10 (examples 

include; better migration data, site fidelity, connectivity between spawning and nursery areas and 

spatial patterns of fishing mortality) but any endeavours towards filling them could help reduce 

model uncertainty and increase utility of the IBM and other models. The IBM approach has been 

presented to the stock assessors for sea bass within the ICES Working Group for Celtic Sea 

Ecoregion, and opportunities for incorporation of the outputs in the broader advice discussed. 

6.4 Concluding remarks 

Capture fisheries provide nutrition, jobs, and recreation across the world but are experiencing an 

increasing range of pressures and stressors. It is the difficult role of fisheries management to 

consider all the needs and threats of these aquatic resources and find an appropriate balance 

between stakeholders. In this thesis I have taken an individual-based approach to build a series of 

models of capture fisheries that analyse both the fish and the fishers of the northern stock of 

European sea bass. Specifically, I have: 1) developed an energy budget model to investigate the 

energetic impact of anthropogenic stressors on fish; 2) used statistical models to investigate fisher 

behaviour; and 3) developed a spatially explicit individual-based model with emergent population 

dynamics. The main limitation throughout the work completed is a lack of data, which has limited 

the strength of many of the conclusions made throughout the thesis. However, this could also be 

considered a benefit of these modelling exercises, by highlighting where there are data shortages 

that could be targeted in the future. Despite the limitations of lack of data, the work presented 

makes a promising case for developing the individual-based approach in modelling fisheries. The 

individual and mechanistic approaches presented and discussed throughout this thesis are 

suggested to be a useful complementary approach to current stock assessment models and could 

contribute to the successful management of the northern stock of sea bass amongst other important 

fish stocks. 
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