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Abstract
An anomalous signal-to-noise ratio (also called the signal-to-noise paradox)
present in climate models has been widely reported, affecting predictions and
projections from seasonal to centennial timescales and encompassing predic-
tion skill from internal processes and external climate forcing. An anomalous
signal-to-noise ratio describes a situation where the mean of a forecast ensem-
ble correlates better with the corresponding verification than with its individual
ensemble members. This situation has severe implications for climate science,
meaning that large ensembles might be required to extract prediction signals.
Although a number of possible physical mechanisms for this paradox have been
proposed, none has been universally accepted. From a statistical point of view,
an anomalous signal-to-noise ratio indicates that forecast ensemble members
are not statistically interchangeable with the verification, and an apparent para-
dox arises only if such an interchangeability is assumed. It will be demonstrated
in this study that an anomalous signal-to-noise ratio is a consequence of the rel-
ative magnitudes of the variance of the observations, the ensemble mean, and
the error of the ensemble mean. By analysing the geometric triangle formed by
these three quantities, and given that for typical seasonal forecasting systems
both the correlation and the forecast signal are relatively small, it is concluded
that an anomalous signal-to-noise ratio should, in fact, be expected in such
circumstances.
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1 INTRODUCTION

Modern dynamical medium-range and seasonal-scale
weather forecasting models are self-assessing in that they
not only report a single (“best guess” or “most proba-
ble”) scenario for the future evolution of the weather, but
in addition provide statements regarding the predicted

accuracy of their own forecasts (or, equivalently, the asso-
ciated uncertainty). In many operational forecasting sys-
tems this is accomplished through ensemble forecasts (see
for instance Leutbecher and Palmer, 2008; Weigel, 2011);
a complete instance of the forecast comprises not one but
several (typically between 10 and 100) scenarios for the
future evolution of the weather. These scenarios are gen-
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erated by perturbations to the initial state, model param-
eters, or added stochastic noise. Typically, each scenario
(or ensemble member) is deemed equally likely given the
information available about the state of the atmosphere,
which needs to be determined from inherently uncer-
tain meteorological observations. More generally, we may
think of modern forecasting systems as providing a very
rough approximation of the distribution of the future,
given the information available and uncertainties present
at the time the forecast is issued.

It should not come as a surprise that many such
forecasting systems turn out to be overconfident; the
uncertainties predicted by the forecasting system are
smaller than the actual uncertainties (Weisheimer
et al., 2011; Weisheimer and Palmer, 2014). The overcon-
fidence of ensemble forecasts is a major motivation for
the development of stochastic physics approaches to rep-
resent model uncertainties in dynamical forecast models
explicitly (Palmer, 2019). In the case of ensemble forecasts,
for instance, the squared distance between the ensemble
mean and individual ensemble members should, when
averaged over all ensemble members and over time, be a
good estimate of the distance between the ensemble mean
and the actual verification (again averaged over time,
Palmer et al., 2006). The former distance is often signif-
icantly smaller than the latter, leading to overconfident
forecasts.

Recently, several studies have reported instances of
forecasting systems that appear to be underconfident in a
certain sense (Eade et al., 2014; Scaife et al., 2014; Stock-
dale et al., 2015; Baker et al., 2018; Scaife and Smith, 2018;
Charlton-Perez et al., 2019; Weisheimer et al., 2019) Here,
we do not mean that the errors predicted by the fore-
casting system are larger than the actual errors obtained
when comparing those forecasts with verifications. Rather,
the ensemble mean forecast of these systems correlates
better with the verification than would be expected by
comparing the ensemble mean forecast with another real-
isation from the forecasting system. Therefore, those fore-
casts seem to contain more information when correlated
with the real world than they pretend to contain (by
their self-assessing nature) when correlated against the
model world. This phenomenon, first reported in Scaife
et al. (2014) (and mentioned in Kumar, 2009, as a possi-
bility), has been termed the signal-to-noise paradox. The
review of Scaife and Smith (2018) shows the effect is
present for forecasts on a range of timescales, including
not just initialised seasonal and decadal predictions but
also the response of climate models to external forcing
such as large volcanic eruptions. If climate models exhibit
a signal-to-noise paradox, this has broad and far-reaching
consequences for our ability to use them for making use-
ful climate predictions and projections. In particular, it

implies that running large ensembles will be necessary
to isolate robust climate signals, constraining the ways in
which finite computational resources can be used.

In the present work, it is argued that, depending on the
precise circumstances, the signal-to-noise paradox should
not actually appear paradoxical. The ensemble dispersion
is directly related to the correlation of the ensemble mean
with individual ensemble members, and the behaviour
described above appears paradoxical only if the forecast
error is assumed to be similarly related to the correlation
of the ensemble mean with the verification, which is not
the case. This remains true even if the ensemble dispersion
and mean-squared forecast error agree, as they typically
do, at least approximately. For instance, if the forecast or
the verification is multiplied by a factor, or if a constant
is added to either, the correlation between them does not
change. The forecast error, however, does change and thus
cannot be determined by the correlation alone. Examples
of this effect are widespread in the literature: for example,
figure 1 of Scaife et al. (2014) and figure 1 of Stockdale
et al. (2015). In both cases, for ease of comparison with
the observed state, a series of ensemble forecasts is scaled
by a constant value. This does not change the correla-
tion between the ensemble mean and the observations, but
does change the properties of the forecast error (see also
Smith et al., 2020).

Fundamentally, the signal-to-noise paradox in an
ensemble forecasting system indicates that the ensem-
ble members and verification are not statistically equiv-
alent, which can be regarded as a lack of reliability or
calibration (Bröcker, 2021). Whether this is caused by
a single underlying physical phenomenon is currently
not known, yet it is conceivable that, even in a sin-
gle forecasting system exhibiting a signal-to-noise para-
dox, more than one effect might contribute. Scaife and
Smith (2018) and Smith et al. (2020) discuss the weak
response to external forcings (such as volcano aerosols,
solar variability, Arctic sea-ice loss, and the dynam-
ics of the ozone hole) as a possible reason. In Zhang
et al. (2021), poor representation of ocean mesoscale
processes is identified as a partial explanation of the
signal-to-noise paradox, especially over eddy-rich regions
of the oceans. Markov-type models are used in Strommen
and Palmer (2019) and Zhang and Kirtman (2019) to
link the signal-to-noise paradox to underestimated persis-
tence and regime behaviour, while Hardiman et al. (2022)
identify missing eddy feedback as a physical mecha-
nism. Finally, evidence for a signal-to-noise paradox in
seasonal forecasts involving the stratosphere is mixed,
with ongoing discussions regarding whether and how the
stratosphere adds predictive skill (Seviour et al., 2014;
Byrne et al., 2019; Charlton-Perez et al., 2019; O’Reilly
et al., 2019).

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4440 by U
niversity of R

eading, W
iley O

nline L
ibrary on [30/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BRÖCKER et al. 3

Although identifying the underlying reasons is
extremely important given the implications, they are not
the focus of the present contribution. Rather, we will
present an analysis of the signal-to-noise paradox from a
statistical perspective. Our findings are in line with ear-
lier studies (Eade et al., 2014; Siegert et al., 2016; Scaife
and Smith, 2018; Christiansen et al., 2022), although a
different and more quantitative angle allows us to derive
several complementary results. Furthermore, our analysis
does not rely on assuming a specific statistical model as
in Siegert et al. (2016), Charlton-Perez et al. (2019), and
Christiansen et al. (2022).

The structure of this article is as follows. In Section 2
the correlation coefficient between a generic forecast and
a corresponding verification will be formally introduced
and discussed, along with its connection to the ratio of
predictable components (RPC: Eade et al., 2014). The role
of the correlation coefficient as a measure of informa-
tion content (broadly speaking) will be contrasted with the
mean-squared error as a measure of actual forecast per-
formance, and we will define the concepts of a normal
and anomalous signal-to-noise ratio. The approach allows
us to consider these concepts for generic (possibly deter-
ministic) forecasts. The discussion in Section 3 focusses
on ensemble forecasts. More specifically, the ensemble
mean takes the role of the forecast. In this setup, we anal-
yse the situation of normal and anomalous signal-to-noise
ratios, and in particular provide reasons as to why an
anomalous signal-to-noise ratio might seem paradoxi-
cal. Section 4 will discuss aspects of the performance of
seasonal ensemble forecasting systems of the European
Centre for Medium-Range Weather Forecasts (ECMWF),
namely the operational SEAS5 system as well as the lower
resolution Coupled Seasonal Forecasts of the 20th Century
(CSF–20C) system, along with uncoupled (i.e., atmosphere
only, ASF–20C) versions of these systems (see Weisheimer
et al., 2020). The observations of previous studies, in par-
ticular with regards to the signal-to-noise paradox, will be
revisited in the light of the discussion in previous sections.
Conclusions and avenues for future work will be presented
in Section 5.

2 THE RATIO OF PREDICTABLE
COMPONENTS AND THE
SIGNAL-TO-NOISE RATIO

We fix some notation first, which we will use throughout
the article. For a general random variable Z, we write E(Z)
and V(Z) ∶= E

[
(Z − E(Z))2

]
for the expected value and

the variance of Z, respectively. Further,

Cov(Z1,Z2) ∶= E
[
(Z1 − E(Z1))(Z2 − E(Z2))

]

denotes the covariance between two random variables Z1
and Z2. It will be convenient to assume that all random
variables have mean zero, or E(Z) = 0. This convention
implies that the forecasts and verifications have been ren-
dered mean-free by subtracting the empirical mean from
both; note, however, that the empirical means of forecasts
and verifications are not necessarily the same, so this step
corresponds to a simple postprocessing or “debiasing” of
the forecasts, which is common practice in seasonal fore-
casting. With this assumption, we have that V(Z) = E(Z2).
Therefore the root of the variance

√
V(Z) of a random vari-

able can be interpreted as the “magnitude” or “amplitude”
of that random variable.

For the moment, we consider a single verification (or
observation) Y as a random variable with values that are
real numbers. The corresponding forecast X is likewise a
real-valued random variable (ensemble forecasts will be
considered in Section 3).

We recall the Pearson correlation coefficient

𝜌 ∶= Cov(X ,Y )
√

V(X)V(Y )
= E(XY )

√
E(X2)E(Y 2)

,

where the second version applies to mean-free random
variables (recall that this is our convention).

The correlation coefficient can be interpreted in the
following way. Consider a triangle with sides of length√

V(X),
√

V(Y ), and
√

V(X − Y ), with 𝛼 being the angle
between the first two sides (Figure 1). Now, on the one
hand, using a standard trigonometric identity,1 we find

V(Y − X) = V(X) +V(Y ) − 2
√

V(X)V(Y ) cos(𝛼). (1)

On the other hand, by expanding the left-hand side we
find

V(Y − X) = V(X) +V(Y ) − 2E(XY ).

Comparing the two previous relations, we obtain

cos(𝛼) = 𝜌.

The concepts of normal and anomalous signal-to-noise
ratios (to be defined below) are typically introduced in the
context of ensemble forecasts (Eade et al., 2014; Siegert

1To see this, write
√

V(X) = x1 + x2, where x1 and x2 split the line√
V(X) at the intersection point with height h. Since h divides the

triangle into two right-angled triangles, we have, by Pythagoras’
theorem, h2 = V(Y − X) − x2

2 = V(Y ) − x2
1 , so

V(Y − X) = V(Y ) + x2
2 − x2

1 , and since x2 =
√

V(X) − x1 we have
V(Y − X) = V(Y ) +V(X) − 2

√
V(X)x1. From this relation we can

eliminate x1 with the identity cos(𝛼) = x1∕
√

V(Y ), and Equation (1)
emerges.
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4 BRÖCKER et al.

F I G U R E 1 A triangle illustrating the interpretation of the
correlation coefficient as cos(𝛼) (see also Rodgers and
Nicewander, 1988).

et al., 2016; Scaife and Smith, 2018). They can be defined
for deterministic forecasts as well, however, by comparing
the actual correlation 𝜌 with the correlation obtained if the
forecast X has a certain optimality property, namely that
the triangle formed by

√
V(X),

√
V(Y ), and

√
V(Y − X)

in Figure 1 is right-angled (with
√

V(Y ) forming the
hypotenuse and 𝛾 a right angle). If this is the case, we will
refer to the forecasts as being linearly calibrated, for rea-
sons that will become clear soon. The forecast X is linearly
calibrated if and only if

V(Y ) = V(X) +V(Y − X), (2)

which is a consequence of Pythagoras’ theorem. If the fore-
cast is linearly calibrated, the correlation coefficient 𝜌 is
given by the quantity

𝜌f ∶=

√
V(X)

V(X) +V(Y − X)
, (3)

which we call the model correlation coefficient (a term we
will use no matter whether the forecast is linearly cali-
brated or not). To see this, use Equation (2) to eliminate
V(Y ) in Equation (1) and solve for cos(𝛼) = 𝜌. Note that
rescaling of X will not change either Y or the angle 𝛼

(or equivalently 𝜌), but it will change the error variance
V(X − Y ); it is easy to see that the error is minimal if the
forecast X is linearly calibrated. Said differently, if the fore-
cast X is linearly calibrated, then any rescaling of X (while
keeping 𝜌 and Y fixed) would make the error V(X − Y )
larger. As a consequence, the mean-square error of a lin-
early calibrated forecast cannot be improved by linear
rescaling of the forecasts.

The ratio RPC ∶= 𝜌∕𝜌f will be referred to as the ratio
of predictable components. This quantity was introduced
in Eade et al. (2014), albeit with 𝜌f defined in the con-
text of ensemble forecasts. (More specifically, 𝜌f will
be replaced with the correlation between the ensemble
mean and individual ensemble members.) This will be

F I G U R E 2 The relationship between the correlation
coefficient (abscissa) and the signal-to-noise ratio (ordinate). See
also figure 2 in Kumar (2009).

discussed in Section 3 in more detail, where it should
also become clearer why we call 𝜌f the “model correla-
tion coefficient”. If the forecasts are linearly calibrated,
then 𝜌f = 𝜌 as discussed and therefore RPC = 1. Follow-
ing Scaife and Smith (2018), we introduce the following
definition.

Definition 1. We will say that the
verification–forecast pair (Y ,X) exhibits an
anomalous signal-to-noise ratio if RPC > 1.
Otherwise, we will say that the signal-to-noise
ratio is normal.

Given the previous discussion, it would probably be
more appropriate to speak of the normal and anomalous
ratio of predictable components. The term “signal-to-noise
ratio” was chosen, however, to link clearly to the prior
literature on this topic. The quantity SNR = cot(𝛼) can
be interpreted as the signal-to-noise ratio, but pro-
vides the same information as the correlation coef-
ficient 𝜌 = cos(𝛼) (see Figure 2, which is figure 2
in Kumar (2009) with axes interchanged), and we will
continue working with the latter. We will also use the
terms “normal RPC” (respectively “anomalous RPC”) syn-
onymously with “normal SNR” (respectively “anomalous
SNR”).

We stress that our approach permits us to define
the RPC as well as normal and anomalous signal-to-noise
ratios without having to resort to more explicit statisti-
cal models, such as, for instance, in Siegert et al. (2016),
Charlton-Perez et al. (2019), and Christiansen et al. (2022).
Nonetheless, it needs to be kept in mind that the RPC
is expressed in terms of variances and covariances and
therefore has to be estimated; any estimated RPC will
clearly carry uncertainties. These uncertainties will bear
on whether a forecasting system is classified as exhibiting
a normal or an anomalous signal-to-noise ratio. In other
words, whether a forecasting system exhibits a normal
or an anomalous signal-to-noise ratio requires a statis-
tical test. Developing such tests will be subject to future
research.
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BRÖCKER et al. 5

3 ANOMALOUS
SIGNAL-TO-NOISE RATIOS AND
ENSEMBLE FORECASTS

In this section, we hope to clarify a point regarding the
signal-to-noise ratio that has generated considerable dis-
cussion in the literature. Most of this discussion centres
around the performance of seasonal or decadal ensemble
prediction systems. An ensemble can be considered as a set
(X1, … ,XK) of forecasts for the same verification Y . Each
ensemble member Xk represents a possible value for Y ;
in an ideal ensemble, the members (X1, … ,XK) are “sta-
tistically indistinguishable from Y” given the currently
available information such as the current state of the atmo-
sphere. This property is described adequately mathemati-
cally (see Bröcker and Kantz, 2011) by assuming the joint
distribution of ensemble members and the verification to
be exchangeable, that is, the distribution of (Y ,X1, … ,XK)
is symmetric.

The ensemble mean

X = 1
K

K∑

k=1
Xk

may then be used as a forecast, and in particular the RPC
for this forecast can be considered. In Weisheimer
et al. (2019), for instance, the performance of several dif-
ferent ECMWF seasonal ensemble prediction systems
(System 4, SEAS5, and ASF-20C) is compared over the
common hindcast period 1981–2009. Over this period,
the ensemble mean shows an anomalous signal-to-noise
ratio for certain regions, in agreement with other
studies.

We stress that in Eade et al. (2014), Weisheimer
et al. (2019), and also elsewhere the model correlation coef-
ficient 𝜌f is defined with the ensemble dispersion in the
denominator rather than the mean-square error V(X − Y ).
More precisely, instead of 𝜌f , the quantity

𝜌
𝜎
=

√
V(X)

V(X) + 𝜎
2

is used in lieu of the model correlation coefficient, with
the ensemble dispersion defined as 𝜎

2 = V(Xk − X). The
ensemble dispersion is the same for all k, as the ensem-
ble members are supposed to be exchangeable. It can
be estimated by averaging (Xk − X)2 over all ensemble
members and all forecast instances. Using 𝜌

𝜎
instead

of 𝜌f in the definition of the ratio of predictable com-
ponents, we define RPC

𝜎
∶= 𝜌∕𝜌

𝜎
. We will refer to 𝜌

𝜎

as the ensemble correlation coefficient in order to distin-
guish it from the model correlation coefficient 𝜌f . The

ensemble correlation coefficient 𝜌
𝜎

provides the corre-
lation between the ensemble mean and the individual
ensemble members.

In general, RPC and RPC
𝜎

are different and, in par-
ticular, one of these might be anomalous while the other
is not. In the case of the atmospheric seasonal hindcasts
discussed in Weisheimer et al. (2019), however, over the
110-year period from 1900–2009 the dispersion in fact
matches the mean-square error V(X − Y ) of the ensemble
mean approximately (see figure 7h in that article). There-
fore, for the experiments in Weisheimer et al. (2019), the
values of 𝜌f and RPC, respectively, will be very similar to
those of 𝜌

𝜎
and RPC

𝜎
, respectively.

As was already mentioned in the Introduction,
typical seasonal forecast ensembles are underdispersive,
in the sense that 𝜎2

< V(Y − X) (this includes the systems
considered in Section 4). All other things being equal,
this implies that 𝜌f < 𝜌

𝜎
and hence RPC > RPC

𝜎
. Hence

an anomalous signal-to-noise ratio according to RPC
𝜎

will then also be anomalous with respect to RPC. In our
numerical experiments, we will consider both quanti-
ties, which however provide the same conclusions. It is
also worth stressing that the finite ensemble size leads
to an overestimate of V(X) and therefore an underesti-
mate of 𝜌 due to residual noise, with the consequence
that finite ensembles tend to underestimate both RPC and
RPC

𝜎
(Scaife and Smith, 2018).

3.1 Why an anomalous SNR might
appear paradoxical

Let us assume for the moment that the ensemble dis-
persion 𝜎

2 is equal to the mean-square error V(Y − X)
of the ensemble mean (a property that is sometimes
called marginal calibration). In that situation, an anoma-
lous signal-to-noise ratio may lead to the apparently
paradoxical conclusion that the ensemble mean is bet-
ter in predicting the verification than in predicting indi-
vidual ensemble members. Here, “better in predicting”
means “being more strongly correlated with”. This con-
clusion is correct, as we will see now, but, as we will
argue in the next subsection, appears paradoxical only
if unwarranted assumptions are made regarding the sta-
tistical equivalence (or interchangeability) of ensemble
members and verifications. An anomalous signal-to-noise
ratio means that 𝜌 > 𝜌

𝜎
, and we will now demonstrate

that 𝜌
𝜎

is indeed the correlation between the ensem-
ble mean X and the individual ensemble members Xk
(justifying us calling this quantity the “ensemble corre-
lation coefficient”). To see this, we consider the quantity
E(XkX), and note that it does not depend on k, due to our
assumption that the ensemble members are exchangeable.
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6 BRÖCKER et al.

Therefore it will not change if we average over k. This
gives

E(XkX) = 1
K

K∑

l=1
E(XlX) = E

(
1
K

K∑

l=1
XlX

)

= E(X2) = V(X). (4)

This, however, implies that in the following calculation the
E(… ) term vanishes:

V(Xk) = V(Xk − X + X)
= V(Xk − X) +V(X) + E((Xk − X)X)
= V(Xk − X) +V(X). (5)

Thus the exchangeability provides the justification for
decomposing the total variance of an ensemble prediction
system as a sum of the variance of the ensemble mean
and ensemble dispersion about this mean (see also Siegert
et al., 2016, for a related discussion). This decomposition,
which many readers will be familiar with, is used and
implied in many of the references we refer to, including
those that originally defined the RPC.

We may now invoke Pythagoras’ theorem as before
and conclude that, because the triangle formed by

√
V(X),√

V(Xk), and
√

V(X − Xk) is right-angled, the correlation
between X and Xk is given by 𝜌

𝜎
, as claimed.

The geometric situation is shown in Figure 3; the
solid triangle has the same interpretation as in Figure 1,
formed by the square roots of V(X),V(Y ), and V(X − Y ).
The triangle with the dashed lines, however, is formed
by the square roots of V(X),V(Xk), and V(X − Xk), that
is, the ensemble member replaces the verification. The
cathetes opposite the angle 𝛼 (respectively 𝛼) have the
same length in both triangles, but only the latter triangle
is a right-angled one. Moreover, we see from this construc-
tion that if the solid-line triangle is obtuse then the dashed
triangle exhibits an angle 𝛼 between V(X) and V(Xk)which
is larger than 𝛼. Therefore, if the solid-line triangle is
obtuse, the correlation between X and Xk is smaller than
that between X and Y . In other words, when 𝛼 is greater
than 𝛼, an anomalous signal-to-noise ratio is obtained.

The term “paradox” has presumably been used in the
literature due to an implicit (but generally unwarranted)
assumption that the ensemble mean forecast X is linearly
calibrated, or that the solid triangle in Figure 3 should also
be right-angled (and therefore identical to the dashed tri-
angle). In this case, 𝛼 is equal to 𝛼 and the correlation of
the ensemble mean with each ensemble member is iden-
tical to the correlation between the ensemble mean and
the verification. In other words, this would imply RPC = 1.
Effectively the same apparent paradox, yet in a different
guise, would arise from the assumption that Pythagoras’

F I G U R E 3 The upper panel shows a triangle corresponding
to ensemble mean and verification (as in Figure 1, solid lines), the
only difference being that the angle 𝛾 is now obtuse. The lower
panel shows the same triangle overlaid with another triangle
(dashed lines) in which the verification Y is replaced with an
ensemble member Xk. Both triangles share the cathete of length√

V(X). Furthermore, the cathete opposite the angles 𝛼
(respectively 𝛼) has the same length in both triangles, but only the
latter triangle is a right-angled one. As a consequence 𝛼 ≥ 𝛼,
resulting in an anomalous signal-to-noise ratio.

theorem applies to the verification in the same way that
it does to the ensemble members. In reality, however,
although

V(Xk) = 𝜎

2 +V(X)

is always correct (this is Equation 5), the corresponding
relation (Equation 2) for the verification only holds if the
ensemble mean forecast X is linearly calibrated; in general
we have

V(Y ) ≠ 𝜎

2 +V(X).

Again in different words, the error between the ensemble
mean and the ensemble members is always uncorrelated
with the ensemble mean and can thus be regarded as noise;
yet the error between the ensemble mean and the veri-
fication (whether or not we assume it to have the same
magnitude as the error between the ensemble mean and
the ensemble members) is in general not uncorrelated
with the ensemble mean and thus cannot be regarded
as noise. Therefore, the correlation between ensemble
mean and ensemble members will in general not be equal
to the correlation between ensemble mean and verifica-
tion. The possibility of such a situation was first noted
by Kumar (2009).

The ratio of predictable components RPC
𝜎

ceases to be
a useful diagnostic if the ensemble mean error V(Y − X)
is very different from the ensemble spread 𝜎

2, that is, if
the ensemble is no longer marginally calibrated. In that
situation, the ensemble does not contain any statistical
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BRÖCKER et al. 7

information about the verification beyond the ensemble
mean, and consequently the correlation between ensem-
ble mean and ensemble members cannot be expected to
bear any relation to the correlation between ensemble
mean and verification. Of course, the value of RPC makes
no reference to 𝜎

2 (as opposed to RPC
𝜎
) and may there-

fore be used as a diagnostic even if the ensemble is not
marginally calibrated. It must be kept in mind, however,
that RPC is merely a diagnostic of the ensemble mean and
its correlation with respect to the verification. Therefore
RPC does not permit any conclusions about correlations
between ensemble mean and ensemble members, in
contrast to RPC

𝜎
.

3.2 Why an anomalous SNR is not a
paradox

In Weisheimer et al. (2019) it is hypothesised that the
paradox emerges due to statistical problems in estimating
correlation-based statistics such as the ratio of predictable
components. When one examines the RPC as above (or in
other prior studies), it is clear that there is large potential
for error in this estimate, as it is a ratio of two quan-
tities containing further ratios of sample variances esti-
mated from small samples with typically no more than 30
or 40 members. In other words, the RPC might in fact
not be significantly larger (in a statistical sense) than one.
Nonetheless, the ubiquitous nature of low signal-to-noise
ratios in many models and model experiments and
on different timescales perhaps suggests a different
explanation.

Indeed, by considering the geometric relationships
between correlation, RPC, and variance, we will now see
that both normal and anomalous signal-to-noise ratios are
possible, depending on the precise shape of the triangle in
Figure 1. First we note that we may regard V(Y ) as fixed
and given by the problem statement and the verifications,
while both V(X) and 𝛼 are the variables that determine the
triangle in Figure 1. (In fact we could assume

√
V(Y ) = 1

by dividing X and Y by
√

V(Y ), as this would not change
𝜌 or 𝜌f , but have decided not to do so in this section for the
sake of clarity.) We claim that the signal-to-noise ratio is
normal if and only if

𝜌 ≤

√
V(X)
V(Y )

≤
𝜌

2𝜌2 − 1
, (6)

where the upper limit is interpreted as ∞ if 𝜌

2 ≤ 1∕2,
which corresponds to 𝛼 ≥ 𝜋∕4. The claim will be proved at
the end of this section.

The criterion in Equation (6) can be translated
to the criterion in Christiansen et al. (2022), if the

F I G U R E 4 Ensemble mean X and dispersion 𝜎

2 give rise to
the dashed triangle. If V(X − Y ) = 𝜎

2, the vertex  lies on the circle
indicated. The signal-to-noise ratio will be normal if  lies on the
solid section of the circle and anomalous if  lies on the dashed
section. There are two dashed sections corresponding to upper and
lower bounds in Equation (6), unless 𝛼 ≥ 𝜋∕4, in which case the
smaller section disappears.

right identifications are made. The model introduced
in Christiansen et al. (2022) uses X and O for the sig-
nal component of forecasts and observations, respec-
tively, and assumes these are related through X = 𝜆O.
The signal O, however, must be defined in context
with the forecast X , namely as the part of the obser-
vation that can be “explained” through the forecast X ,
while the “unexplained” noise Y − O in the observation
is then uncorrelated with X (see Siegert et al., 2016,
end of section 2a for a discussion of this point).
This requires that 𝜆 = V(X)∕E(YX) (a value of 𝜆 = 1
would mean that X is linearly calibrated in the sense of
the present work). With 𝜆 set in this way, the criterion
in Christiansen et al. (2022) translates into the criterion in
Equation (6) (both upper and lower bound).

Figure 4 illustrates the criterion in Equation (6) further.
Given an ensemble forecast with mean X and dispersion
𝜎

2, then, for any verification Y with the property that
V(X − Y ) = 𝜎

2, the solid triangle formed by V(X),V(Y ),
and V(X − Y ) will have the vertex  lying on the cir-
cle indicated with radius 𝜎

2. The signal-to-noise ratio
will be normal if  lies on the solid section of the cir-
cle, while it will be anomalous if it lies on the dashed
section. It is seen that there are two dashed sections,
with the larger one corresponding to obtuse triangles
and the lower bound in Equation (6), while the smaller
section corresponds to very acute triangles and the upper
bound in Equation (6). If 𝛼 ≥ 𝜋∕4, the latter section does
not exist.

We stress that the RPC is always anomalous if the
angle 𝛾 in the triangle in Figure 1 is obtuse, since this cor-
responds to the correlation 𝜌 = cos(𝛼) being larger than
cos 𝛼 =

√
V(X)∕V(Y ), as is easily seen using elementary

geometry and should also be clear from Figure 3. This
seems to be the prevalent situation in climate forecasts,
where forecasts exhibit significant correlations 𝜌 with
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8 BRÖCKER et al.

the verifications but the variance of the ensemble mean
V(X) is much smaller than the variance of the verifi-
cations V(Y ) (as noted in Scaife et al., 2014; Scaife and
Smith, 2018). In fact, the correlation does not need to
be that large. Assuming that V(X)∕V(Y ) is of order 0.1
(already an overestimate for seven out of the eight fore-
casting systems we will consider in Section 4), the RPC
becomes anomalous as soon as the correlation exceeds
𝜌 = 0.316 (which corresponds to an angle 𝛼 smaller than
about 72◦).

Another observation, again relevant in the seasonal
forecasting context, pertains to the sensitivity of RPC,
the ratio of predictable components, with respect to
changes in the correlation 𝜌. We consider a situation
that is calibrated linearly initially and vary the correla-
tion 𝜌 but keep V(Y ) and 𝛽 constant (see Figure 3 for
definition of 𝛽). We find (using elementary calculations)
that

d(RPC)
d𝜌

= 1
𝜌

(1 − 𝜌

2). (7)

Clearly, the smaller the correlation, the more sensi-
tive RPC will be to a small increase or decrease in the cor-
relation, which can easily occur in small samples with 30
or 40 years of data.

A similar calculation also explains the phe-
nomenon (reported in several papers, e.g., Scaife
et al., 2014) of an anomalous signal-to-noise ratio despite
V(Xk) and V(Y ) being approximately equal. Note first
that if V(Xk) = V(Y ) (and 𝜎

2 = E[(X − Y )2] as we always
assume), then RPC = 1 and there is no signal-to-noise
paradox. Despite this, in situations of small correlations
(as in climate forecasts), minor differences between V(Xk)
and V(Y ) can lead to strongly anomalous signal-to-noise
ratios. To see this, we again consider a situation that is
calibrated linearly initially (this implies V(Xk) = V(Y )
and RPC = 1), but now we vary V(Y ) and keep V(X)
and 𝜎

2 constant. Again, using elementary calculations
we find

d(RPC)
d(V(Y ))

= 1
2𝜎2

(
1 − 𝜌

2

𝜌

)2

. (8)

This relationship has an equivalent form in terms of log-
arithmic derivatives, thus describing relative changes of
RPC due to relative changes of V(Y ):

d[log(RPC)]
d[log V(Y )]

= 1
2

(
1
𝜌

2 − 1
)
. (9)

Equation (9) again shows that, for small correlations 𝜌

2,
minor violations of the identity V(Xk) = V(Y ) can have a
large effect on RPC.

3.3 SNR is normal if and only if
Equation (6) holds

We will now demonstrate our claim that the
signal-to-noise ratio is normal if and only if the relation in
Equation (6) holds. We note that RPC = 1 if and only if

𝜌

2 = V(X)
V(X) +V(Y − X)

, (10)

or, after multiplying with V(X) +V(Y − X) and subtract-
ing 𝜌

2V(X), we find

𝜌

2
V(Y − X) = (1 − 𝜌

2)V(X), (11)

After expanding the left-hand side, this becomes

𝜌

2(V(Y ) +V(X) − 2𝜌
√

V(Y )V(X)) = (1 − 𝜌

2)V(X). (12)

Dividing by V(Y ) and calling 𝜉 ∶=
√

V(X)∕V(Y ), we
finally arrive at

𝜌

2 + (2𝜌2 − 1)𝜉2 − 2𝜌3
𝜉 = 0. (13)

The roots of the left-hand side are 𝜉1 = 𝜌 and
𝜉2 = 𝜌∕(2𝜌2 − 1). If 𝜌

2
> 1∕

√
2 ≅ 0.71, then RPC < 1 for

𝜉1 < 𝜉 < 𝜉2. If 𝜌2
< 1∕

√
2, then the second root 𝜉2 becomes

negative and we get RPC < 1 for 𝜉1 < 𝜉. These two state-
ments together prove our claim around the relation in
Equation (6). As a final note, we stress that, in any event,
whenever the lower bound in Equation (6) fails to hold
and we have

√
V(X)∕V(Y ) < 𝜌 , then the solid triangle

in Figure 3 is obtuse and RPC > 1, that is, an anoma-
lous signal-to-noise ratio. Underlying the analysis are
two important assumptions. Firstly, the statistical quanti-
ties such as V(X),V(Y ),V(Y − X), as well as the average
ensemble spread 𝜎

2 and the correlation 𝜌, are assumed
not to depend on time. Secondly, we assume the ensem-
ble members to be exchangeable, or, in other words,
indistinguishable with regards to their statistical proper-
ties (Bröcker and Kantz, 2011). We stress that assumptions
made in previous work are at least as strong, and there
is no need here for a more specific model (as in Siegert
et al., 2016; Charlton-Perez et al., 2019; Christiansen
et al., 2022, for example).

4 NUMERICAL SIMULATIONS:
NORMAL AND ANOMALOUS RPC
OF ECMWF SEASONAL HINDCASTS

In this section we consider data from several different
seasonal hindcast experiments. All diagnostics are for a
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BRÖCKER et al. 9

North Atlantic Oscillation (NAO) index used routinely at
ECMWF, namely the first EOF of Z500, averaged over the
three months of December–January–February. The fore-
casts are taken from four different hindcast data sets listed
below; all forecasting systems use 25 ensemble members,
which are initialised on each November 1 during the hind-
cast period.

SEAS5 is ECMWF’s operational seasonal forecasting
system (Johnson et al., 2019), run in spectral
atmospheric resolution Tco319 (approx 40 km)
with 91 vertical levels and the 1/4 degree
horizontal resolution ocean configuration with
75 vertical levels (ORCA025L75), with forecasts
available from 1981 onwards.

ASF is the Atmospheric Seasonal Forecasts of the
20th Century (ASF-20C)
experiment (Weisheimer et al., 2017). The
configuration is atmosphere-only with
prescribed observed SSTs run in resolution
T255L91 (approx. 80 km horizontally) and a
slightly older model version, with forecasts
available from 1901–2010. Note that, since these
forecasts require future SST data as boundary
conditions at the start of the forecast, they
should be considered idealised forecast
experiments.

CSF is the Coupled Seasonal Forecasts of the
20th Century (CSF-20C)
experiment (Weisheimer et al., 2020). The
configuration is similar to ASF but run with a
coupled model that uses a resolution of 1 degree
and 42 vertical levels in the ocean, with
forecasts available from 1901–2010.

The experiments compare each of these hindcasts
with two sets of verifications. The first set of verifi-
cations is taken from ERA-5, which is ECMWF’s lat-
est atmosphere-only reanalysis (Hersbach et al., 2020).
(We stress that reanalyses are not direct meteorological
observations, but rather meteorological fields obtained
by assimilation of historical observations into a climate
model.) The second set is taken from CERA-20C, which
is ECMWF’s first coupled reanalysis of the 20th Century
(which was also used to initialise the CSF experiment
Laloyaux et al., 2018).

The common hindcast period between all three exper-
iments is 1981–2009, and results are shown in Table 1
for the ERA-5 verifications and in Table 2 for the
CERA-20C verifications. In the context of the analysis
presented in Section 2, X is the mean of an ensem-
ble with members X1, … ,XK , while Y is the verifica-
tion. Only V(Y ) (which is equal to one, due to data

normalisation), V(X), V(Y − X), and the ensemble dis-
persion 𝜎

2 = V(X − Xk) are relevant for the analysis in
the present section. It is evident from visual inspection
of Tables 1 and 2 that the seasonal hindcast statistics
for ERA-5 verifications and CERA-20C verifications are
very similar. In the following, we will therefore focus on
the results for CERA-20C verifications in this hindcast
period.

Table 3 shows results for the two experiments ASF
and CSF, but for an earlier hindcast period (1926–1954). In
this period, the skill and signal-to-noise behaviour are dif-
ferent from those in the more recent common period. The
verification data are CERA-20C (because ERA5 data are
not available for these early years).

All quantities in rows 4 and below in these tables are
functions of those in the first three rows. The quanti-
ties V(X) and V(Y − X) completely determine the triangle
and hence also allow us to compute 𝜌. It is seen that, for
all forecasting systems over the common hindcast period
1981–2009, we have V(X)∕V(Y ) = V(X) < 𝜌

2 and hence
these should, according to our analysis, exhibit an anoma-
lous signal-to-noise ratio, which they do as RPC > 1 for
these systems.

The triangles are shown in Figure 5. For all fore-
casting systems over the recent common hindcast period
1981–2009 (Figure 5, lower panel) it is readily apparent
that the angle 𝛾 (at the top corner of the triangles) is
obtuse, and hence that these forecasting systems exhibit
an anomalous signal-to-noise ratio. For the early hindcast
period from 1926–1954, however, 𝛾 is an acute angle, as
can be seen from Table 3 and also from Figure 5 (upper
panel, probably with the help of a geometry set square).
In any event, since 𝜌

2
< 1∕2 for both forecasting systems

considered, the upper limit in Equation (6) is to be taken
as infinity, so, in order to check whether these systems
exhibit a normal signal-to-noise ratio or not, V(X) has to
be compared with 𝜌

2.

T A B L E 1 Seasonal hindcast statistics against ERA-5 for the
common verification period 1981–2009. Forecasts and
verifications have been normalised so that V(Y ) = 1.

SEAS5 ASF CSF

V(X) 0.065 0.081 0.070

V(X − Y ) 0.894 0.776 0.814

𝜎

2 0.734 0.661 0.698

𝜌

2 0.112 0.287 0.234

𝜌 0.335 0.536 0.484

RPC 1.288 1.743 1.719

RPC
𝜎

1.176 1.622 1.602
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10 BRÖCKER et al.

T A B L E 2 Seasonal hindcast statistics against CERA-20C
for the common verification period 1981–2009. Forecasts and
verifications have been normalised so that V(Y ) = 1. Note that
normalisations in Tables 1 and 2 are numerically slightly
different, as the verifying data sets are different. This is the reason
for the (very slightly) different numerical values of V(X) and 𝜎

2

between these tables, which in theory should be the same.

SEAS5 ASF CSF

V(X) 0.066 0.082 0.070

V(X − Y ) 0.895 0.771 0.813

𝜎

2 0.737 0.664 0.702

𝜌

2 0.111 0.295 0.236

𝜌 0.333 0.543 0.486

RPC 1.270 1.751 1.725

RPC
𝜎

1.161 1.638 1.613

T A B L E 3 Seasonal hindcast statistics against
CERA-20C for the verification period 1926–1954. Forecasts
and verifications have been normalised so that V(Y ) = 1.

ASF CSF

V(X) 0.132 0.076

V(X − Y ) 0.966 0.985

𝜎

2 0.938 0.973

𝜌

2 0.050 0.027

𝜌 0.224 0.164

RPC 0.666 0.617

RPC
𝜎

0.657 0.613

We have also shown the ensemble dispersion 𝜎

2 =
V(X − Xk). With this, in Section 3 we defined the quantity

RPC
𝜎
∶= 𝜌∕

√
V(X)

V(X) + 𝜎
2 ,

which (as we recall) should be seen as an alternative
to RPC where the error V(X − Y ) is replaced with the
ensemble dispersion 𝜎

2. Clearly, RPC and RPC
𝜎

should
coincide if the ensemble dispersion describes the mag-
nitude of the ensemble mean error correctly. This is
not quite the case for the most recent verification peri-
ods in Tables 1 and 2, as the ensembles are all under-
dispersive for these verification periods, with the result
that RPC > RPC

𝜎
. Since all these forecasts exhibit an

anomalous signal-to-noise ratio with respect to RPC
𝜎
,

the signal-to-noise ratio is “even more anomoalous” with
respect to RPC. In other words, both quantities give the
same conclusions.

For the early verification periods in Table 3, the ensem-
ble dispersion matches the magnitude of the ensemble

F I G U R E 5 Triangles as in Figure 1 for hindcast sets
SEAS5 (•), ASF (⧫), and CSF (▴). As in Figure 1, the horizontal line
represents

√
V(Y ), the shorter cathete on the left is

√
V(X), and the

longer one on the right is
√

V(X − Y ). Upper panel: 1926–1954
period verified against CERA-20C; lower panel: 1981–2009 period
verified against CERA-20C. Results for evaluation against ERA-5
during this period are virtually the same. [Colour figure can be
viewed at wileyonlinelibrary.com]

mean error to a higher degree, although the ensembles
are still a bit underdispersive. Hence, for these verifica-
tion periods also, we find that RPC > RPC

𝜎
, although the

difference is much smaller. In contrast to the experiments
for the later verification period, the forecasts now exhibit
a normal signal-to-noise ratio with respect to RPC, and
hence also with respect to RPC

𝜎
. Again, both quantities

give the same conclusions.

5 CONCLUSIONS AND FUTURE
WORK

In ensemble forecasting, the ratio of predictable compo-
nents, or RPC, is given by the correlation of the ensemble
mean with the verification, divided by the correlation of
the ensemble mean with individual members. For a per-
fect ensemble in which ensemble members are statistically
indistinguishable from the verification, the RPC should be
equal to one. Many cases have been reported of ensem-
ble forecasting systems exhibiting RPC values significantly
different from one; cases with RPC > 1 have received par-
ticular attention, as this implies that the ensemble mean
is better at forecasting the verification than the ensemble
members (in the sense that it is stronger correlated with
the former than with the latter).
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BRÖCKER et al. 11

In this contribution, the RPC has been analysed from
a statistical perspective. It has been shown that the prop-
erties of the RPC are easily understood in terms of the
triangle formed by the (square root of the) variances
of the ensemble mean and verification, as well as the
ensemble spread. An anomalous signal-to-noise ratio is
a consequence of the relative magnitudes of these three
quantities, and in particular occurs if the mentioned tri-
angle is obtuse. This, as we have seen, happens as soon
as the correlation 𝜌 between the ensemble mean and
verification exceeds the ratio

√
V(X)∕V(Y ) of the variance

of the ensemble mean to the observation variance. A ratio
V(X)∕V(Y ) of order 0.1, for instance, (a value not untyp-
ical for the seasonal hindcasts considered in the present
article) implies that the RPC becomes anomalous as soon
as the correlation exceeds 𝜌 = 0.316; for V(X)∕V(Y ) = 0.2
the critical value is 𝜌 = 0.447.

In medium-range forecasts, the signal-to-noise
paradox is much less prevalent, presumably because the
variance V(X) is much larger relative to V(Y ). At the same
time, the correlation between the ensemble mean and ver-
ification will also be larger, with the consequence that the
RPC is more robust with respect to sampling variations
(this follows from Equation 7).

This analysis also suggests that in certain other cases
the RPC might be fairly sensitive to sampling variability
of the quantities involved. To a degree, this is unavoid-
able, as any diagnostic quantity with discriminative power
will necessarily exhibit a certain amount of sensitivity
to sampling variability; however, this needs to be under-
stood properly and controlled better. The RPC (or some
other suitable quantity) might then be used as a statis-
tic in a hypothesis test for the presence of an anomalous
signal-to-noise ratio. This will be the subject of future
work.
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