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of Conserved Variables in a Compressible Ocean
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Abstract: Explicit expressions of the 3D velocity field in terms of the conserved quantities of ideal fluid
thermocline theory, namely the Bernoulli function, density, and potential vorticity, are generalised in
this paper to a compressible ocean with a realistic nonlinear equation of state. The most general such
expression is the ‘inactive wind’ solution, an exact nonlinear solution of the inviscid compressible
Navier–Stokes equation that satisfies the continuity equation as a consequence of Ertel’s potential
vorticity theorem. However, due to the non-uniqueness of the choice of the Bernoulli function, such
expressions are not unique and primarily differ in the magnitude of their vertical velocity component.
Due to the thermobaric nonlinearity of the equation of state, the expression for the 3D velocity field
of a compressible ocean is found to resemble its ideal fluid counterpart only if constructed using
the available form of the Bernoulli function, the Bernoulli equivalent of Lorenz’s available potential
energy (APE). APE theory also naturally defines a quasi-material, approximately neutral density
variable known as the Lorenz reference density. This density variable, in turn, defines a potential
vorticity variable that is minimally affected by thermobaric production, thus providing all the
necessary tools for extending most results of ideal fluid thermocline theory to a compressible ocean.

Keywords: absolute velocity field; vertical velocity; ideal fluid; compressible ocean; thermobaric
nonlinearity; available potential energy; conserved variables; Bernoulli function; potential vorticity;
quasi-neutral density

1. Introduction

Although oceanic observations have increased dramatically in recent decades, espe-
cially since the development of the Argo floats program (https://argo.ucsd.edu, accessed
on 7 March 2023), they still primarily constrain the density stratification rather than the
velocity field. As a result, even in the most sophisticated ocean state estimate products [1–4],
the realism of the simulated 3D oceanic velocity field v = (u, v, w) can rarely, if ever, be
ascertained directly. Indeed, even when current meters are available, they usually contain
high-frequency motions linked to tides and gravity waves that are not usually captured
by numerical ocean models, thus complicating the comparison. In any case, comparisons,
when possible, are only limited to the horizontal velocity field as the vertical velocity is
generally too small to be directly measurable.

Since, for all practical purposes, the 3D oceanic velocity field is not a measurable
parameter of the system, the development of accurate dynamical theories that predict how
to infer it from available oceanic observations plays an especially important role in physical
oceanography. It is, therefore, no surprise that the subject has a long history going back
to the early days of the discipline, which, to date, has primarily relied on the use of the
dynamic method [5]. As is well known, the dynamic method assumes geostrophic and
hydrostatic balances and provides an explicit expression of the horizontal velocity field
in terms of the vertical integrals of the horizontal density gradients relative to the velocity
field at some reference level. Understanding how to specify the latter is one of the main
challenges of the dynamic method and has given rise to many different approaches to tackle
it. The simplest approach, which is most often encountered in the literature, assumes
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the existence of a level of no motion at which the geostrophic velocity vanishes (see [6]
for a discussion of its limitations). That approach has since been superseded by the beta-
spiral method of [7] or the inverse method(s) of [8,9], whose connection is discussed in [10].
Refs. [11–14] are examples of studies that further discuss these ideas. At some point, there
was hope that the sea surface height (SSH) signal measured by satellite altimetry would be
accurate enough to constrain the surface geostrophic velocity field. However, this requires
a more accurate determination of the geoid than is presently available. Moreover, the fact
that the SSH signal is contaminated by small-scale and high-frequency processes while also
reflecting transient variations of the interior density field complicates filtering out only the
relevant part needed by the dynamic method [15]. More recently, measurements of Argo
float displacements have shown promise for constraining the geostrophic velocity at the
floats’ parking depth, as recently demonstrated in [16,17]. Nevertheless, some limitations
remain, as Argo float displacements are also a priori impacted by energetic small-scale
and transient ageostrophic motions in addition to the geostrophic flow, which the authors
sought to mitigate by averaging over the Argo period. Outside the Argo period, or when
focusing on time snapshots, alternative/complementary approaches for constraining the
unknown reference level are still needed.

Although the geostrophic approximation is generally accepted to represent an accurate
theory for the horizontal velocity field u = (u, v), how best to predict the vertical velocity
field w is, in contrast, much less understood and still actively debated. Physically, there
are two main fundamental approaches to thinking about the vertical velocity field. The
first approach, which, as far as we are aware, underlies the computation of the vertical
velocity field in all existing numerical ocean models [18], is based on vertically integrating
the continuity equation ∇h · u + wz = 0. Doing so yields an expression for w controlled
by the horizontal velocity divergence relative to the vertical velocity at some reference level
zr

w(x, y, z, t) = w(x, y, zr, t)︸ ︷︷ ︸
wr

−
∫ z

zr
∇h · u dz′, (1)

where ∇h is the horizontal nabla operator. As is well known, using the continuity equation
in conjunction with geostrophy yields the celebrated linear Sverdrup balance βv = f ∂w/∂z,
which may be integrated to yield

w = wr +
β

f

∫ z

zr
v dz′, (2)

(see [19]), where f is the Coriolis parameter and β = d f /dy, with y denoting the latitude.
The second approach is based on extracting w from the conservation equation ∂C/∂t + v ·
∇C = Ċ of any conserved tracer C, viz.,

w =

(
∂C
∂z

)−1(
Ċ− ∂C

∂t
− u · ∇hC

)
, (3)

where Ċ represents the non-material sinks/sources of C. Both approaches come with
important theoretical challenges. In the first approach, the difficulty stems from the fact
that the horizontal divergence ∇h · u is often dominated by the ageostrophic compo-
nent uag of the velocity, in which case (2) may become very inaccurate. In the second
approach, the difficulty is that the time derivative ∂C/∂t, and perhaps, to a lesser ex-
tent, the diabatic term Ċ, may both be important for predicting the large-scale vertical
velocity field, yet are often hard (if at all possible) to constrain observationally. Existing
approaches, therefore, can be regarded as attempts to mitigate these difficulties in some way.
For instance, the well-known omega equation is obtained by artfully combining two prog-
nostic equations (for vorticity and buoyancy, respectively) in a way that eliminates the
time-derivative in each equation to formulate a diagnostic elliptic problem for the vertical
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velocity (see [20] for a recent implementation). Another approach of interest that shows
how to infer the vertical velocity from individual moorings is that proposed in [21].

Physically, one key reason that makes the second approach potentially the most
attractive is that if one ignores the difficulties associated with the time-dependent and
diabatic terms ∂C/∂t and Ċ in (3), knowledge of the geostrophic velocity field is generally
sufficient enough to accurately estimate the horizontal advection term−u ·∇hC. In contrast,
knowledge of the ageostrophic velocity component uag is often needed for an accurate
determination of the horizontal velocity divergence in the first approach, as mentioned
above. As a result, there has been much interest in seeking to exploit the existence of quasi-
material, conserved quantities to construct explicit expressions of the steady-state 3D
velocity field. Thus, if C1 and C2 represent two independent conserved quantities, it is
well known that in a steady state, the 3D velocity should lie at the intersection of two
iso-surfaces of C1 and C2. Mathematically, this implies that the velocity field can be written
in the form

v = λ∇C1 ×∇C2, (4)

for some scalar field λ. Physically, the constraint determining λ is that the horizontal
component of (4) be either exactly or approximately geostrophic. The conserved quantities
C1 and C2 then determine the vertical velocity according to w = u · S1 or w = u · S2 or both,
where S1 and S2 are the horizontal ‘slope’ vectors

Si = −
(

∂Ci
∂z

)−1
u · ∇hCi, i = {1, 2}. (5)

Thus, depending on the conserved quantities considered, the relations w = u · S1 and
w = u · S2 may or may not define the same vertical velocity. In practice, this means that
the problem to be solved might be over-determined, and its resolution may require the use
of least-squares methods.

Although (4) can, in principle, be implemented in practice using a variety of conserved
tracers, three particular quantities deserve special attention owing to their theoretical
and dynamical importance in oceanography, namely the Bernoulli function B, potential
vorticity Q, and density ρ. Physically, this is because these quantities are the ones that
underlie the ideal fluid thermocline equations [22] that have formed the basis for most ocean
circulation theories, as well as those originally considered by Needler [23], who pioneered
the use of (4). Unfortunately, such quantities have, so far, been unambiguously defined
only for an ideal fluid, which significantly hinders our ability to evaluate the usefulness
of (4) for the real compressible ocean. Although several studies have since extended
Needler’s approach, e.g., [24–27], most discussions with a few exceptions, e.g., [28,29],
have remained limited to the case of an ideal fluid in geostrophic balance. To make progress,
this paper aims to generalise Needler’s approach to the case of a fully compressible ocean
in order to systematically test its usefulness in the future (which is beyond the scope of this
paper). Section 2 reviews the basic properties of the ideal fluid thermocline equations
and introduces the concept of the ’available’ Bernoulli function. Section 3 shows how
to generalise ideal fluid thermocline theory to compressible seawater and shows that the
results are related to [30]’s ‘inactive wind’ solution. Section 4 discusses the results and
some perspectives.

2. Absolute Velocity Field Based On Ideal Fluid Thermocline Theory
2.1. Thermodynamic Form of Ideal Fluid Thermocline Equations

We begin by briefly reviewing the properties and structure of the ideal fluid ther-
mocline equations [22] that underlie Needler’s determination of the absolute velocity
field in terms of conserved properties [23]. Although most of the material is standard,
an important new element is the introduction of the concept of the ‘available’ Bernoulli
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function, where the term ‘available’ is meant to parallel that of Lorenz’s ‘available potential
energy’ [31]. The ideal fluid thermocline equations are written in the following form

f k× ρv +∇p = −ρgk, (6)

∇ · v = 0, (7)

v · ∇ρ = 0, (8)

and describe the geostrophic and hydrostatic momentum balances, continuity, and conser-
vation of density, respectively, where p is the pressure, ρ is the density, g is the acceleration
of gravity, and k is the unit vector pointing upward. Although the geostrophic and hydro-
static balances are expected to meaningfully describe the balanced part of the flow even
under transient evolution for a sufficiently small Rossby number, the steady form of the
density equation in (8) is, in contrast, much more difficult to justify rigorously, especially
without a clarification of what the density variable ρ is supposed to represent. Presumably,
any justification of (8) must consider some form of temporal averaging that does not intro-
duce eddy-correlation terms, such as thickness-weighted averaging [32]. As the issue is
quite complex and cannot fully be addressed without having first clarified the exact nature
of ρ, its full treatment is deferred to a subsequent study.

The key step for linking the velocity field to the conserved quantities of the system
is to rewrite the momentum in (6) in its thermodynamic form (also known as the Crocco–
Vazsonyi form [33,34]),

f k× ρv + ρ?∇Bideal
h = ρ?Pideal

h , Pideal
h =

gz∇ρ

ρ?
, (9)

where Bideal
h = (p + ρgz)/ρ? is the standard Bernoulli function and ρ? is a constant Boussi-

nesq reference density.

2.2. Available and Background Bernoulli Functions

One of the main ideas of this paper is that Lorenz’s APE theory holds the key to un-
derstanding how to generalise the key ingredients of ideal fluid thermocline theory, that is,
the Bernoulli function, potential vorticity, and density, to a compressible ocean. The key
ingredients needed here are the reference pressure and density profiles, denoted by p0(z)
and ρ0(z), respectively. These profiles characterise the Lorenz reference state of minimum
potential energy that can be obtained through an adiabatic and isohaline re-arrangement
of mass. Additionally, we require the reference position of a fluid parcel, zr, which is
defined as the solution of the level of neutral buoyancy (LNB) equation ρ = ρ0(zr). This
definition yields zr = zr(ρ) as a function of density only [35–37]. Physically, the APE theory
is useful for distinguishing between the potential energy that can be converted into kinetic
energy in a reversible way (the APE) and the dynamically inert part of potential energy (the
BPE) that cannot. Because the Bernoulli function Bideal

h = (p + ρgz)/ρ? is thermodynamic
in nature, the same idea that only a fraction of it is available for reversible conversions
with kinetic energy must apply. This motivates us to define its dynamically inert part
in a Lagrangian sense as its value in a Lorenz reference state, viz.,

Bideal
r =

p0(zr) + ρ0(zr)gzr

ρ?
, (10)
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and the ‘available’ part of the Bernoulli function as

ρ?Bideal
a = ρ?(Bideal

h − Bideal
r ) =p− p0(z) + p0(z)− p0(zr) + ρg(z− zr)

=p− p0(z) +
∫ z

zr
g(ρ− ρ0(z′))dz′︸ ︷︷ ︸

ρ?Ea

(11)

using the fact that, by definition, dp0/dz(z) = −gρ0(z) and ρ0(zr) = ρ, where the un-
derbraced quantity Ea can be recognised as the positive definite APE density that was
originally introduced in [38,39] and later extended to multi-component Boussinesq and
stratified fluids in [35,37]. Physically, the APE density can be written as the work against
buoyancy forces needed to bring a fluid parcel from its level of neutral buoyancy zr (hence,
satisfying b(S, θ, zr) = 0)) to its actual position, viz.,

Ea = −
∫ z

zr
b(S, θ, z′)dz′, (12)

and the only difference between the expressions for a Boussinesq and a general compressible
fluid is in the expressions for the buoyancy b. For a Boussinesq fluid, b = −g(ρ− ρ0(z))/ρ?,
whereas for compressible seawater, which is discussed in the next section, b = −g[1−
ρ0(z)υ(S, θ, p0(z))]. Note that since ρ = ρ0(zr), ρ?Ea may also be rewritten as

ρ?Ea = −g
∫ z

zr

∫ z′

zr

dρ0

dz
(z′′)dz′′ dz′, (13)

so that for a small departure from the reference position,

Ea ≈ −
g
ρ?

dρ0

dz
(zr)

(z− zr)2

2
=

N2
r (z− zr)2

2
(14)

which a reader unfamiliar with APE may still recognise. It also makes the positive definite
character of Ea clearer if needed.

Removing∇Br from both sides of (9) using the easily verified result that∇Br = gzr∇ρ,
yields the following available thermodynamic form of momentum balance

f k× ρv + ρ?∇Bideal
a = ρ?Pideal

a , ρ?Pideal
a = g(z− zr)∇ρ. (15)

A key point to note here is that in both (9) and (15), the two P-vectors Pideal
h and Pideal

a
are parallel to the gradient of density ∇ρ, and, therefore, perpendicular to the isopycnal
surfaces ρ = constant. We see in Section 3 that this property is lost in a compressible ocean.
It is of interest to note that Pideal

h is the ideal fluid counterpart of the P-vector previously
identified in [40].

2.3. Bernoulli and Potential Vorticity (PV) Theorems

The Bernoulli theorem [41] and Ertel’s PV conservation theorem [42,43] play key roles
in this paper. The former is trivially obtained by taking the inner product of (9) and (15)
with v, accounting for (8), which immediately yields v · ∇Bh = 0 and v · ∇Ba = 0. The
proof of the potential vorticity (PV) conservation theorem is somewhat more involved. To
obtain it, first, divide (6) by ρ and take the curl, thus leading to

k(v · ∇ f )− f
∂v
∂z

=
∇ρ×∇p

ρ2 . (16)

Next, take the inner product of (16) with ∇ρ, which then yields

∂ρ

∂z
v · ∇ f − f∇ρ · ∂v

∂z
= v · ∇

(
f

∂ρ

∂z

)
= 0, (17)
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which establishes the material conservation of the potential vorticity (PV) Q = ( f /ρ?)∂ρ/∂z
as expected.

2.4. Determination of the Absolute Velocity Field in Terms of Conserved Quantities

Taking the cross product of ∇ρ with (9) or (15) and using the result that ∇ρ× ( f k×
v) = (v · ∇ρ) f k− ( f∇ρ · k)v = − f ρzv (which follows from the vector algebra relation
A× (B× C) = (A · C)B− (A · B)C and conservation of density v · ∇ρ = 0, with ρz being
shorthand for ∂ρ/∂z) leads, after some manipulation, to the following explicit expression
of v that was previously obtained in [23],

ρv =
∇ρ×∇B

Q
, (18)

which explicitly relies on density and the Bernoulli function being conserved following fluid
parcels, regardless of which form of the Bernoulli function is used (B refers indifferently
to Bh or Ba).

To show that (18) naturally satisfies the continuity equation as a consequence of Ertel’s
PV conservation theorem, simply take its divergence, which yields

∇ · (ρv) = − (∇ρ×∇B) · ∇Q
Q2 = −ρv · ∇Q

Q
= 0, (19)

QED. As a result, (18) represents an exact steady solution of the ideal fluid Equations (6)–(8)
that, in addition to the horizontal velocity, predicts the vertical velocity

ρw =
k · (∇hρ×∇hB)

Q
. (20)

Importantly, Needler’s formula (22) is insensitive to the particular choice of Bernoulli
function—B or Ba—used to estimate it due to Br = Br(ρ) being a function of ρ only.

2.5. Bernoulli Method

Physically, one key reason that Needler’s formula (18) is appealing is that the idea that
the steady or time-averaged 3D velocity field should lie at the intersection of the iso-surfaces
of two conserved quantities is a priori valid beyond the geostrophic approximation. Its other
key advantage is that it naturally satisfies the continuity equation as a consequence of Ertel’s
potential vorticity conservation theorem, which also generalises beyond the geostrophic
approximation, as discussed in the next section. In the context of the dynamic method,
however, Needler’s formula does not, in itself, solve the problem of the unknown reference
level. Indeed, because∇hB = ∇ph + gz∇hρ, it is easily verified that the horizontal velocity
it predicts is the standard geostrophic balance, whereas the vertical velocity predicted
in (20) is predicted more easily from the density equation v · ρ = 0, i.e.,

w = −
(

∂ρ

∂z

)−1
u · ∇hρ = u · Sρ, (21)

where Sρ is the slope vector associated with the isopycnal surfaces. In other words, Needler’s
formula does not solve the problem of the unknown reference level because the Bernoulli
function depends on the same unknown constant of integration as the pressure field.

To circumvent the difficulty and make (18) useful, it is necessary to invoke the result
that if ρ, B, and Q are all conserved along fluid parcel trajectories, they must be functionally
related. Thus, to the extent that such a result holds and this functional relationship may be
written in the form B = G(ρ, Q), it is possible to rewrite (18) as

ρv =
∂G
∂Q
∇ρ×∇Q

Q
, (22)
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[23]. Now, the key advantage of (22) over (18) is that the term (∇ρ ×∇Q)/Q can, in
principle, be empirically estimated from climatological fields without having to solve the
problem of the unknown reference level since the latter affects neither ρ nor Q. In other
words, (22) provides a determination of the absolute velocity field up to the multiplicative
constant ∂G/∂Q. In this approach, the problem of the unknown reference level, therefore,
transforms into the problem of how best to evaluate the functional relationship G(ρ, Q) and
the partial derivative ∂G/∂Q. For related discussions of these ideas, the reader is referred
to, e.g., [13,24–28,44,45]. However, it seems fair to say that the current empirical evidence
for a well-defined relationship B = B(ρ, Q) is inconclusive at best. Current approaches,
however, have relied on using the conventional form of the Bernoulli function B = Bh rather
than its available form B = Ba. It will be of interest in future studies to test whether using
Ba, as well as the density variable discussed in the next section, can lead to a better-defined
relationship Ba = Ba(ρ, Q).

3. Generalisation to Compressible Seawater
3.1. Governing Equations for Compressible Seawater

We now turn to a realistic nonlinear ocean described by the compressible Navier–
Stokes equations, treating seawater as a two-constituent stratified fluid:

Dv
Dt

+ 2Ω× v +
1
ρ
∇p = −∇Φ + F, (23)

∂ρ

∂t
+∇ · (ρv) = 0, (24)

Dη

Dt
= η̇,

DS
Dt

= Ṡ, (25)

υ =
1
ρ
= υ(η, S, p), (26)

where η is the specific entropy, S is the salinity, υ = 1/ρ is the specific volume, F is a friction
force, and Φ = gz is the geopotential. Moreover, η̇ and Ṡ denote the diabatic sources/sinks
of heat and salt due to molecular diffusive fluxes (radiation can be included if needed).
As in the previous section, the first step is to rewrite the momentum balance (23) in its
thermodynamic or Crocco–Vazsonyi form

∂v
∂t

+ ωa × v +∇Bh = Ph + F, (27)

where ωa = ξ + 2Ω is the absolute vorticity and ξ = ∇× v is the relative vorticity. The
results were obtained using the well-known relation (v · ∇)v = ∇(v2/2) + ξ × v, as well
as the total differential for the specific enthalpy dh = Tdη + µdS + υdp, where T is the in
situ temperature and µ is the relative chemical potential. For a compressible ocean, the
conventional form of the Bernoulli function is

Bh =
v2

2
+ h(η, S, p) + Φ(z), (28)

whereas the P-vector Ph is the vector that retains the thermohaline gradient of h, viz.,

Ph =
∂h
∂η
∇η +

∂h
∂S
∇S = T∇η + µ∇S. (29)

As in the previous section, we introduce the available Bernoulli function as Ba = Bh − Br,
that is, as the difference between the conventional form of the Bernoulli function Bh and
the background Bernoulli function

Br = h(η, S, p0(zr)) + Φ(zr) (30)
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where, as before, zr = zr(η, S) is the reference height of a fluid parcel in Lorenz’s reference
state of minimum potential energy, which, in practice, may be computed using the com-
putationally efficient algorithm of Saenz et al. [36]. Physically, zr is defined as before as a
solution of the level of neutral buoyancy equation, which, for two-component compressible
seawater, takes the form

υ(η, S, p0(zr)) = υ0(zr), (31)

where υ0(z) = 1/ρ0(z). The available Bernoulli function may thus be written in the form

Ba =
v2

2
+ h(η, S, p)− h(η, S, pr) + g(z− zr)

=
v2

2
+ Π +

p− p0(z)
ρ

(32)

where Π = Π1 + Π2 is the potential energy density defined in [37], and Π1 and Π2 are the
subcomponents

Π1 = h(η, S, p)− h(η, S, p0(z)) +
p0(z)− p

ρ
, (33)

Π2 = h(η, S, p0(z))− h(η, S, p0(zr)) + g(z− zr) (34)

As explained and demonstrated in [37], both Π1 and Π2 are positive definite.
Π1 may be interpreted as the available compressible energy (ACE), which represents
the expansion/contraction work required to compress/expand from the reference pres-
sure p0(z) to the actual pressure. As for Π2, it is the APE density and represents the
work against the buoyancy forces required to move the fluid parcel from its reference
position zr at pressure p0(zr) = pr to its actual position z at pressure p0(z). As before,
the available thermodynamic form of the momentum balance is obtained by removing
∇Br = Tr∇η + µr∇S from both sides of (27), which leads to

∂v
∂t

+ ωa × v +∇Ba = Pa + F (35)

where the P-vector Pa takes the form

Pa = (T − Tr)∇η + (µ− µr)∇S. (36)

Note that the suffix ’r’ denotes the thermodynamic quantities estimated at the reference
pressure pr = p0(zr).

3.2. Comparison of Ideal and Compressible Forms of Bernoulli Functions and P-Vectors

In an ideal fluid, Needler’s formula (18) defines the 3D velocity field as being per-
pendicular to the density surfaces ρ = constant, regardless of the particular form of (B, P)
used due to Pideal

h and Pideal
a both being parallel to ∇ρ in that case. The 3D velocity field is

also perpendicular to the iso-surfaces of the Bernoulli function in both cases but, generally,
the iso-surfaces of Bideal

h and Bideal
a should appear distinct from each other. Whether the

available form (Bideal
a , Pideal

a ) is superior to the conventional form (Bideal
h , Pideal

h ) cannot be
determined from theoretical considerations alone; however, it is possible that the assumed
empirical functional relationship B = B(ρ, Q) underlying the Bernoulli method may be
more accurately achieved in climatological observations of the density field by using one of
the forms of (B, P).

The situation is different for compressible seawater, however, as Pa and Ph now,
generally, define different directions, as is clear from Equations (29) and (36). Moreover, it
is easily verified that both P-vectors have a non-zero helicity Hp = P · (∇× P) because of
thermobaricity and are, therefore, both non-integrable. Mathematically, this means that it is
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not possible to identify a well-defined seawater variable whose iso-surfaces are everywhere
perpendicular to P. From a theoretical perspective, this is both interesting and important,
as it suggests that the superior form of (B, P) may be the one for which the compressible
and ideal expressions resemble each other the most.

To explore this idea, Table 1 summarises the forms of the Bernoulli function and P-
vectors for the ideal and compressible forms established in the previous sections, whereas
Figure 1 illustrates the four different types of Bernoulli functions along the 30◦W meridional
section in the Atlantic Ocean. We used the WOCE climatological dataset [46] and computed
the hydrostatic pressure, assuming a level of no motion at 1500 m. The Lorenz reference
density and pressure profiles, as well as the reference depths, were computed as in [47].
The contribution from the kinetic energy was ignored. The figure clearly shows that the
Bernoulli function depends sensitively on the approach considered, as well on the choice of
the arbitrary constants entering the definition of the specific enthalpy, as defined by TEOS-
10 (www.teos-10.org, accessed on 7 March 2023). In the figure, panel (a) shows that the ideal
standard Bernoulli function is dominated by its depth variations, with values increasing in
height from −700 J.kg−1 at depth to close to 0 at the surface. In contrast, the compressible
standard Bernoulli function (panel (b)), which depends on the TEOS-10 definition of the
specific enthalpy, is dominated by thermal variations ∝ cp0θ near the surface that result
in much bigger values overall, which also increase in height from about close to zero at
depth to about 60,000 J.kg−1 near the surface. The ideal and compressible forms of the
available Bernoulli function are depicted in panels (c) and (d), respectively. Although our
theory predicts that the latter should be close to each other, this is not the case in practice
because our prediction in (11) assumes an incompressible ρ, which is not true of in situ
density. Panel (d) shows that the compressible available Bernoulli function Ba is dominated
by horizontal variations. This seems to be an optimal behaviour for plotting it on isopycnal
surfaces, which will be discussed in detail in a subsequent study. Note that the values
exhibited by Ba, which range approximately from 0 to 20 J.kg−1, are considerably smaller
than that of all other Bernoulli functions, confirming the idea that Ba is the only one not
affected by irrelevant dynamical information, which we hope can be exploited in the future.

Table 1. Comparison of the ideal and compressible forms of the Bernoulli function and P-vectors.
Note that the Bernoulli functions for a compressible fluid do not include the kinetic energy term.

Quantity Ideal Compressible

Bh
p+ρgz

ρ?
h(η, S, p) + gz

Ba Ea +
p−p0(z)

ρ?
Π1 + Π2 +

p−p0(z)
ρ

Ph
gz∇ρ

ρ?
T∇η + µ∇S

Pa
g(z−zr)∇ρ

ρ?
(T − Tr)∇η + (µ− µr)∇S

3.2.1. Conventional Bernoulli Function

By contrasting the ideal and compressible forms of the conventional Bernoulli function,

p + ρgz
ρ?

↔ h(η, S, p) + gz (37)

it is clear that the two expressions are not easily related. The difference in behaviour
between Bh and Bideal

h can be further evidenced by contrasting, for instance, their vertical
derivatives, leading to

∂

∂z
Bideal

h =
∂

∂z

(
p + ρgz

ρ?

)
=

gz
ρ?

∂ρ

∂z
, (38)

∂Bh
∂z

=
∂

∂z
(h + gz) = T

∂η

∂z
+ µ

∂S
∂z

. (39)

www.teos-10.org
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In order to link ∂Bh/∂z to the vertical derivative of some density variable, one needs
to make use of the Maxwell relations attached to the total differential of the enthalpy
dh = Tdη + µdS + υdp, which is obtained by stating the equality of the cross derivatives,
viz.,

∂2h
∂η∂p

=
∂T
∂p

=
∂υ

∂η

∂2h
∂S∂p

=
∂µ

∂p
=

∂υ

∂S
. (40)

Figure 1. Illustrative examples of the different kinds of Bernoulli functions considered in this paper
(in J.kg−1) along the 30 ◦W meridional section in the Atlantic Ocean, with the hydrostatic pressure
assuming a level of no motion at 1500 m. (a) Bideal

h ; (b) Bh; (c) Bideal
a ; (d) Ba.

To proceed, let us now introduce a reference pressure p? = p0(z?) that is envisioned
as being not too different from p, defining the reference values T? = T(η, S, p?) and
µ? = µ(η, S, p?). If we also use use the approximation p ≈ p0(z), (39) can be rewritten as

∂Bh
∂z

=
∫ p

p?

∂υ

∂η
dp′

∂η

∂z
+
∫ p

p?

∂υ

∂S
dp′

∂S
∂z

+ T?
∂η

∂z
+ µ?

∂S
∂z

≈(p− p?)
(

υη
∂η

∂z
+ υS

∂S
∂z

)
+ T?

∂η

∂z
+ µ?

∂S
∂z

≈ g(z− z?)
ρ?

∂ρlr
∂z

+ T?
∂η

∂z
+ µ?

∂S
∂z

.

(41)

where ρlr is the potential density referenced to p? (or more accurately to (p? + p)/2), where
the result assumes that p? is close enough to p that the overbar value can be approximated
by their values at p?. Although the first term of (41) succeeds in showing dependence on the
vertical derivative of some density variable that makes it directly comparable to dBideal

h /dz,
the second term is extraneous. Using the same ideas, it is also easily established that the
same difficulties exist in relating Ph to Pideal

h .
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3.2.2. Available Bernoulli Function

In contrast, it is immediately apparent that the ideal and compressible available
Bernoulli functions

Ea +
p− p0(z)

ρ?
↔ Π1 + Π2 +

p− p0(z)
ρ

(42)

are directly comparable, as Bideal
a can be obtained from Ba by neglecting Π1 and replacing ρ

with ρ? in (p− p0(z))/ρ, as Tailleux [37] showed that Π2 closely resembled Ea. Likewise,
it is possible to show that the APE-based P-vectors resemble each other

g(z− zr)∇ρ

ρ?
↔ (T − Tr)∇η + (µ− µr)∇S (43)

To see the connection, one may use the Maxwell relations (40) to establish that

Pa =(T − Tr)∇η + (µ− µr)∇S

=
∫ p

pr

∂υ

∂η
(η, S, p′)dp′∇η +

∫ p

pr

∂υ

∂S
(η, S, p′)dp′∇S

=(p− pr)
(
υη∇η + υS∇S

)
≈ g(z− zr)

ρ

(
ρη∇η + ρS∇S

)
(44)

using the fact that υη = −ρη/ρ2, υS = −ρS/ρ2, and p− pr ≈ −ρg(z− zr), where υη =
∂υ/∂η, υS = ∂υ/∂S, etc. This shows that Pa is intermediate between the locally-referenced
gradients referenced to the local and reference pressure, respectively, which means that it is
close to the standard neutral vector considered in [48]. In other words, Pa is approximately
parallel to the gradient of the potential density referenced to the mid pressure (p + pr)/2.
For a more extensive discussion of this link, see [49].

The above considerations clearly establish that the results of ideal fluid thermocline
theory can only be generalised to compressible seawater if the available form (Ba, Pa) rather
than the conventional form (Bh, Ph) is used.

3.3. Inactive Wind Solutions

To discuss how to extend Needler’s formula to compressible seawater, we consider
the steady and inviscid momentum equations written in their thermodynamic, or Crocco–
Vazsonyi, form

ωa × v +∇B` = P`, (45)

(from Equations (27) and (35)), where the subscript ` = a, h indicates whether the con-
ventional or available form of B and P is used. To simplify the notations, this subscript is
dropped in the following and re-introduced only when needed. For a small Rossby number,
as pertains to the large-scale motions of interest here, the relative vorticity and kinetic
energy only affect ωa and B at second order. Equation (45) is then an under-determined
linear system for v that can only be solved if the following solvability condition is satisfied

ωa · P = ωa · ∇B, (46)

(obtained by taking the inner product of (45) with ωa), so that v in (45) is determined only
up to an arbitrary vector χωa parallel to ωa, with χ a scalar field. The χ = 0 solution of (45)
that is perpendicular to both ∇B and P and is the counterpart of Needler’s formula (18), is
easily verified to be

v def
= via =

P×∇B
ρQb

, (47)
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whereas the counterpart of Q = f ρz is

Qb =
ωa · ∇B

ρ
=

ωa · P
ρ

, (48)

which is the equality following from (46). In the context of a dry atmosphere, [30] derived
an expression similar to (47) and referred to via as the ‘inactive wind’.

In order to examine the consistency of the inactive wind solution (47) with mass
conservation, let us take the divergence of ρvia, which yields

∇ · (ρvia) =−
(P×∇B)

Q2
b

· ∇Qb +
(∇× P) · ∇B

Qb

=− ρvia · ∇Qb
Qb

+
(∇× P) · ∇B

Qb
.

(49)

Similarly as for one of Needler’s formulas, via is shown here to satisfy the continuity
equation as a consequence of Ertel’s PV conservation theorem applied to the PV constructed
from the Bernoulli function Q = ωa · ∇B/ρ. To show this, let us recall that in its most
general form, [50]’s theorem (see [43] for an English translation) establishes that for any
scalar λ, the PV variable Qλ = ωa · ∇λ/ρ can be shown to satisfy the conservation law

DQλ

Dt
=

ωa

ρ
· ∇
(

Dλ

Dt

)
+

1
ρ3∇λ · (∇ρ×∇p) +

∇λ · ∇ × F
ρ

(50)

(e.g., see Equation 4.95 in [51]). To make the link with (49), it is important to understand
the different equivalent forms that the baroclinic production term (the term proportional
to ∇ρ×∇p in (50)) may assume. As seen previously, from the definitions of Ph and Pa, we
have the following equivalence relations

1
ρ
∇p +∇Φ = ∇(h + Φ)− Ph = ∇(h + Φ− Br)− Pa. (51)

Taking the curl yields the following equivalent expressions

1
ρ2∇ρ×∇p =

1
ρ2 N×∇p = ∇× Ph = ∇× Pa. (52)

which are proportional to the baroclinic production term, where N = ρS∇S + ρθ∇θ =
ρη∇η + ρS∇S is the so-called N-neutral vector entering [48]’s definition of (approximately)
neutral surfaces (ANS). Now, if we use B = λ in the inviscid case F = 0 and invoke the
Bernoulli theorem, DB/Dt = 0, (50) predicts that

DQb
Dt

= via · ∇Qb =
1
ρ
∇B · (∇× P) (53)

Comparing this with (49) shows that

∇ · (ρvia) = 0, (54)

as expected, thus confirming that via satisfies the continuity equation regardless of which
form of (B, P) is used.

3.4. Uniqueness of the Inactive Wind Solution

The two inactive wind solutions introduced above may be written explicitly as

vh
ia =

Ph ×∇Bh
ωa · ∇Bh

, va
ia =

Pa ×∇Ba

ωa · ∇Ba
. (55)

Since these two solutions both satisfy the continuity equation, a question that natu-
rally arises is whether they define the same velocity field despite being constructed from
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different fields. To examine this, let us recall that, by definition, Pa = Ph −∇Br, whereas
Ba = Bh − Br. It follows that

Pa ×∇Ba =(Ph −∇Br)×∇(Bh − Br)

=Ph ×∇Bh + (∇Bh − Ph)×∇Br

=Ph ×∇Bh +

(
∇v2

2
+

1
ρ
∇h p

)
×∇Br,

(56)

which suggests that vh
ia and va

ia define two different vector fields. However, because they
both represent an exact solution of (45), it follows that their difference must be proportional
to the null-space solution ωa. In other words, there must exist some scalar δλ such that

vh
ia − va

ia = δλ ωa. (57)

For a small Rossby number, ωa ≈ f k (where f is the Coriolis parameter), which im-
plies that vh

ia and va
ia must primarily differ by their vertical velocity component. Physically,

this is plausible because in this case, the horizontal components of vh
ia and va

ia must both be
approximately geostrophic, i.e., uh

ia ≈ ua
ia ≈ ug, whereas their vertical components must

satisfy wh
ia = ug · Sh and wa

ia = ug · Sa, respectively, where Sh and Sa are the horizontal
slope vectors defined by Ph and Pa, respectively. As a result,

wh
ia − wa

ia = ug · (Sh − Sa), (58)

which confirms that the two vertical velocities wh
ia and wa

ia might differ if the slopes defined
by the two different P-vectors differ, as is generally the case. It is of interest to ascertain
whether the vertical velocity component of va

ia is a better predictor of the actual vertical
velocity field than that of vh

ia, which we plan on investigating in a subsequent study.

3.5. Reformulation in Terms of Quantities Independent of Pressure

Let γT = γT(S, θ) denote an approximately neutral quasi-material density vari-
able and QγT = ωa · ∇γT/ρ denote the PV variable constructed from it. As discussed
in [36,47,49,52], APE theory naturally includes a generalised form of the potential den-
sity ρLZ(S, θ) = ρ(S, θ, pr) that is naturally very accurately neutral outside the Southern
Ocean (even more so than Jackett and McDougall [53]’s empirical neutral density variable
γn) while also being mathematically and physically well defined. This motivated [47,52]
to define thermodynamic neutral density γT as

γT = ρ(S, θ, pr)− fn(pr) (59)

where fn(pr) is a polynomial pressure correction empirically fitted to make γT look as much
like γn. Because it tends to be more accurately neutral than γn outside the Southern Ocean,
γT is the variable that is currently the least affected by the thermobaric production term.

If one accepts γT and QγT as the most sensible generalisations of the concepts of density
and PV to compressible seawater, then one may proceed similarly to [23] and assume that if
B, γT, and QγT are all approximately conserved along fluid parcel trajectories, a functional
relationship should exist between B, γT, and QγT, say B = G(γT , QγT), as in ideal fluid
thermocline theory. Then, the seawater counterpart of Needler’s second formula (22) becomes

via =
∂G
∂γT

P×∇γT

ρQb
+

∂G
∂QγT

P×∇QγT

ρQb
. (60)
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In comparison to Needler’s formula, (60) possesses the extra and undesirable thermobaricity-
induced term proportional to P×∇γT. This term can only be neglected if Pa rather than Ph is
used, as the angle between Ph and∇γT is not generally small enough. If so,

via ≈
∂G

∂QγT

Pa ×∇QγT

ρQb
, (61)

which is more directly comparable to (22), stressing again the fundamental importance
of APE theory to extend the results of ideal fluid thermocline theory to compressible
seawater.

4. Discussion

The idea that steady fluid parcel trajectories lie at the intersection of the iso-surfaces of
conserved quantities is arguably one of the most promising avenues of research for pro-
gressing the theory of the 3D oceanic velocity field. This is because this idea is a priori
as equally valid for an ideal fluid for which it was originally developed by [23] as it
is for a fully compressible ocean with a realistic nonlinear equation of state, as recently
initiated by [29]. In this paper, we made significant progress towards generalising this idea
to compressible seawater, encapsulated into three main new results.

Our first main result is that Needler’s formula (18) can be interpreted as a linear
approximation of a much more general nonlinear and exact solution of the compressible
NSE called the ’inactive wind’ solution. This solution was previously derived by [30]
in the context of a dry atmosphere and was extended here to two-component compressible
seawater. Like Needler’s formula, the inactive wind solution satisfies the continuity
equation as a consequence of Ertel’s PV conservation theorem [42] (that is itself related to the
generalised Bernoulli theorem of [41]). Like Needler’s formula, the inactive wind solution
is perpendicular to the gradient of the Bernoulli function but unlike Needler’s formula, it is
perpendicular to a vector P rather than to the gradient of density∇ρ. Physically, the inactive
wind solution is most easily obtained by rewriting the momentum equations in their
Crocco–Vazsonyi, or thermodynamic, form, which appears to be the most illuminating
form for relating the 3D velocity field to the conserved quantities of the fluid.

Our second main result is that both Needler’s formula and the inactive wind solution
are sensitive to how the Bernoulli function is defined, as it is always possible to redefine
the latter by subtracting an arbitrary quasi-material function of ρ (for a simple fluid) or S
and θ (for compressible seawater). We find that only if the ‘available’ form of the Bernoulli
function is used is it possible to meaningfully relate the inactive wind solution to Needler’s
formula. Physically, the available Bernoulli function is defined as the difference between
the conventional Bernoulli function and its background reference value in Lorenz’s state
of minimum potential energy entering Lorenz’s APE theory [31]. Indeed, only in this case
is the vector P parallel to an approximately neutral density variable, namely the Lorenz
reference density (LRD), which is discussed at length in [47,49,52].

Our third main result is that inactive wind solutions defined for different forms of
the Bernoulli function and vector P do not necessarily define the same 3D velocity field,
even if each represents an exact solution of the compressible NSE satisfying the continuity
equation. Mathematically, this is because the nonlinear balance equation from which the
inactive wind solution is determined is degenerate. For a small Rossby number, this is
equivalent to saying that different inactive wind solutions differ primarily in their vertical
velocity components. More generally, this result means that although in principle, it is
possible to construct a 3D velocity field as λ∇C1×∇C2 in terms of any arbitrary conserved
quantities C1 and C2 for some λ, this does not necessarily imply that all constructions
define the same velocity field, which does not appear to have received much attention
so far. Physically, this is important because it provides the means, at least in principle,
to test the usefulness of different constructions by comparing the 3D velocity field that each
expression predicts with the 3D velocity field from any dynamically consistent ocean state
estimate, as we plan on pursuing in a subsequent study.
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The present results are important because we believe that they can pave the way for
a more rigorous and general theory of the oceanic 3D velocity field valid for a realistic
compressible ocean, as we hope to further demonstrate through concrete applications
in future studies.
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