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Abstract

Geomorphic patterns are abundant in nature, however the mechanisms that drive the
formation and the evolution of these structures are not well understood. In this thesis, we
focus on one such pattern. On the surface of stalactites, we find centimetre scale ripples,
called crenulations. Stalactites grow as a result of a thin film flowing down the outside,
which deposits calcium on the surface. This deposition changes the shape of the wall,
which will in turn affect the flow. As the stalactite grows at a much slower rate than the
fluid flows, we can model these separately. In this thesis, we will first look at modelling
the thin film flow in the appropriate geometries. For this problem, we will consider the
radius and the wavelength to be of similar sizes. These will be much larger than the fluid
thickness. For this model, we consider the crenulation amplitude to be a similar size to the
fluid thickness. We will then look to see how the crenulation wavelength and amplitude
affects the flow. Using these flows, we then look at modelling the evolution of the stalactite
wall. We examine under what conditions we would expect the crenulations to form and

how they evolve once they do.
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Chapter 1

Introduction

This thesis is motivated by the morphological instabilities, called crenulations, that form
on calcite surfaces. These instabilities can be seen on flowstones, draperies, and stalagmites
(Meakin and Jamtveit, |2010), but here we will focus on the crenulations that occur on the
surface of stalactites. Stalactites grow as a result of a thin liquid film that is saturated
with calcium, and this calcium is deposited on the wall (Short et al., [2005b]). The shape of
the stalactite will affect the flow of the fluid. This in turn will affect how the calcium is
deposited, which again changes the shape. We will therefore be looking into modelling the
flow based on a stalactite with crenulations, and then we will look at seeing how this flow

will affect the growth.

1.1 The Origins of Stalactites

In order to model the problem, we must first understand how stalactites form. We will
be looking at limestone stalactites that form in caves, however stalactites can also form
from other minerals being deposited (Hicks, 1950)). Stalactites can also form from the
solidification of lava (Allred and Allred, |1998)) and water, however, these have different
boundary conditions. Icicles, for example, have a growth rate depending on the temperature

gradient (Uenoj 2007)), rather than a concentration gradient, which is the case for limestone
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(Bertagni and Camporeale, 2017).

The overall process is described in more detail in Fairchild et al.| (2012)), and the main

points are summarised below. In the karst environment, the process begins with rainwater.

rainfall

o Soil zone

o [=]

Hzo +C02 -_— H2C:03

— 1 Carbonate
1 bedrock

Dissolution:
CaCO3 + H2C03 —
Ca?+ + 2HCO,

|I| Speleothem

Precipitation:

Ca2* + 2HCO; —
CaCO; + H,0 + CO,

Fractures - slow to Conduits - rapid
______ Water tabl o )\ P
M ater table fast throughflow throughflow
Figure 1.1: Conceptual model of karst system. Here we have the rainwater travel through
the soil zone, where it reacts with carbon dioxide. This then travels through the carbonate
bedrock, where dissolution occurs. The water then reaches the caves through fractures
to enter the cave environment, which has a channel to the surface, so the carbon dioxide

pressure is lower. In the cave, precipitation occurs, allowing for speleothems to grow [Tooth
(2000).

As the water percolates through soil, it absorbs carbon dioxide that has been released by
microorganisms, plants, and animals through respiration (Raich and Schlesinger| 1992).
This carbon dioxide mixed in the water forms carbonic acid. Under the soil layer we have
a bedrock of limestone. Limestone is very porous and contains joints and fractures that
the water can flow through. As the water is now acidic, it dissolves the calcium from
the limestone, which in turn causes the fractures to grow. The calcium rich water then

enters a cave environment, a large cavity in the bedrock. The cave may have an opening
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and where there is good ventilation, then the cave will have a CO, pressure similar to
that of the atmosphere. As the CO, concentration is much higher in the water than the
atmosphere, it is outgassed until it attains equilibrium with that of the cave atmosphere.
This in turn increases the pH of the water, resulting in it becoming supersaturated with
calcium carbonate. Stalactites form as this calcium carbonate is deposited (Dreybrodt],
2012; Meakin and Jamtveit, 2010). Initially, the water forms pendant drops on the cave’s
ceiling. These droplets may form directly under the fissure that fed the water onto the
ceiling, however where there is a gradient on the ceiling the pendant drop may travel
towards a local minimum (Maltsev}, [1999). The initial drop deposits a ring of calcite
around the outside in a manner similar to that found by Kumar et al.| (2021). This ring
builds up and acts as a channel for water to flow down the middle of (Moore, [1962)). These

channels are known as tubular or soda straw stalactites.

Soda straws fed from a fracture clearly have the water flowing down the inside. Maltsev
(1999) suggests that soda straws can still appear when they are not under a feeding fracture,
as a large pressure difference can cause water to be sucked through the cleavage in the

calcite crystals into the inner channel.

Curl (1972) looked into the growth of soda straw stalactites and found that they must
have a minimum radius of around 2.5 mm, which is a result of the surface tension of
the drop. Moore (1962)) and Paul et al.| (2013)) noted that soda straws stalactites grow
seasonally due to increased pressure of COs in the soil during summer months, causing
a fluctuation of the pH across a year. Additionally, the flow rate can change with |Arbel
et al. (2010) noting the groundwater is linked with rainfall in the area. This results in
seasonal differences in the groundwater as well as shorter term increases after storms,
which also would affect the growth rate. This results in the soda straw stalactites having
visible growth layers. Conical stalactites form when water starts flowing down the outside
of soda straw stalactites. This may be due to leakage from the walls if the flow rate is
large enough (Ford and Williams, [2013). Conical stalactites can have both internal and

external feeding, however the inner channel may get blocked, resulting in growth only
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¢

Figure 1.2: The growth of stalactites. (a) shows a drop hanging on the ceiling after water
has entered the cave from a fracture. This drop deposits calcium in a ring around its edge.
In (b) we see that eventually the drop drips, leaving behind this deposit. (c) shows after
some time this ring around the edge has grown downwards, forming a channel in which
the water is contained. (d) shows that water now also flows down the outside walls. Now

the stalactite is thickening and becoming a conical shape 1962).

coming from the fluid flowing down the outer walls. Conical stalactites tend to have higher

flow rates than soda straw stalactites (Fairchild and Baker] 2012)). Therefore, an increase

in the volume of water should occur for the soda straws to transition. [Kim and Sanderson
(2010) provides a possible transition event with changes in rock fractures. Here they note
that the size of the fractures or intersection between two fractures can increase the flow,

which in turn results in bigger stalactites.

The effect of the external flow was looked at by [Short et al. (2005b)). Here they were

able to model the overall conical shape of stalactites. As the calcite crystals grow with their
long axis perpendicular to the calcite surface 1962), we can determine whether the
growth was due to internal or external feeding. Here, internal feeding results in crystals
orientated parallel to the flow, as the stalactite lengthens from the bottom. External flow

causes the radius of the stalactite to increase, and so the calcite crystals are perpendicular

to the flow direction (Moore, |1962; [Forti and Springer|, 2020)).
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Figure 1.3: Stalactites found in caves. a) shows soda straw stalactites on the roof of the
National Showcaves Centre for Wales. b) shows stalactites in Treak Cliff Cavern, Castleton,
UK. ¢) a cone stalactite with crenulations also in Treak Cliff Cavern.

1.1.1 Crenulations

Many limestone features have patterns on their surface (Meakin and Jamtveit, [2010]), with

stalactites being no exception. On the surface of stalactites, there are centimetre scale
ripples known as crenulations. These can be seen on figure (c). Previous works mostly

focus on looking at the effect of a small perturbation to the wall fluid interface (Vesipa

et al., 2015, Camporeale and Ridolfi, [2012; Camporeale, [2017). These works often ignore

the effect of the radius of the stalactite, however the radius is a similar length to the
crenulation wavelength. The linear stability analysis is usually performed based on a large
radius stalactite. The crenulations could form on stalactites with smaller radii, as we
have these dynamics as soon as the water starts flowing down the outside of a soda straw

stalactite.

Crenulations also form on icicles (Uenoj, 2007; Ueno et al., 2009; Bertagni and Campos

reale) [2017). The hydrodynamics can be modelled in the same way for both icicles and
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stalactites, as they exhibit similar shapes, and have a thin film flowing down them. The
wall growth equations are slightly different, but at leading order for both cases, the wall
grows proportionally to the fluid thickness. The wall growth rate being 10° times faster in

the ice case than the karst case (Bertagni and Camporeale, 2017).

Uenol (2007)) looks at thin film flow down an inclined plane. The solid-liquid interface is
initially considered flat. A perturbation is made to the solid liquid interface, which results
in a perturbation to the fluid liquid interface. The ratio between the amplitudes of the
wall and fluid disturbances is looked at for a vertical fluid and one going down a gentle
slope of angle 75. The amplitude of the fluid disturbance is found to be less than the wall
disturbance. Here it is also found that the wavelength of the crenulations depends on two
length scales, one being the capillary length and the other being the fluid thickness. The
wavelength also depends on the dimensionless Péclet number, which is the ratio of heat
transfer to thermal diffusion. [Ueno et al.|(2009) expanded on these ideas, changing the

thermal boundary conditions.

Camporeale and Ridolfi| (2012)) model the growth of stalactites by making use of the

PWP equation for calcite deposition (Plummer et al., |1978)

F = k1 (HY) + k2 (HoCO3*) + k3 — k4 (Ca®t)(HCO3 7). (1.1)

This shows that the rate of calcite deposition (F') depend on the activities of hydrogen,
calcium, and bicarbonate ions, as well as the activity of carbonic acid. The equation is
based on the reactions which occur to produce calcite, with x; being the rate constants for
these reactions. Using this, they performed linear stability analysis to calculate critical
wavelengths depending on the fluid thickness. Here they also found that the crenulations
should migrate upstream. Vesipa et al. (2015)) also looks at a thin film down an inclined
plane. Again they made use of the PWP equations and considered a perturbation to
the bottom surface. They looked more fully at how the Reynolds number, calcium
concentration, pressure of carbon dioxide, temperature, and angle affected the growth.

Here they found that the wavelength of the crenulations was only substantially affected by
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the fluid properties. However, all these properties could have a substantial effect on the

growth rate and migration speed.

Camporeale| (2017) worked to improve the hydrodynamics of the previous models by
using a gradient expansion technique to find an evolution equation for the fluid surface. A
formula for the wavelength of the crenulations was found based on the Reynolds number
and calcium concentration. He also derived a formula for the migration speed. These
models all suggest that the crenulation wavelength should increase with the Reynolds
number. Physically, this can be viewed as thicker fluids result in longer wavelengths.
However, if the flow rate is constant, a stalactite with a larger radius will result in a

thinner film, meaning that it should have a smaller wavelength.

Other geological features can also form from thin films flowing down inclined planes.
Draperies which are an instability in the direction of flow of the fluid can occur on

underhanging walls (Ledda et al., [2021]).

1.2 Thin Film Flows

Thin films are those where the thickness of the fluid is much smaller than the characteristic
length scale of the flow. This allows the introduction of a small parameter €, which is the

ratio between the fluid thickness and the larger length scale.

In the case of stalactites, the longer length scale can be either the wavelength of the
crenulation or the radius of the stalactite. The momentum and mass equations can be
approximated by only looking at the terms which appear at leading order or first order in
€. Various review papers have looked into the dynamics and instabilities caused by thin
films, such as|Craster and Matar| (2009); Oron et al.| (1997). Here we can see that the fluid
can be driven by several different forces such as gravitation, centrifugal, intermolecular or
electromagnetic. The film can also be driven by thermal gradients and will be affected by

surface tension and topography.

In the case of stalactites, we have gravity driven flow over topography. Gravity driven
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flows can be separated into those with or without significant inertia. With negligible
inertia, it is interesting to look at the contact line. It has been shown theoretically and
experimentally that the contact line develops fingers or rivulets across the flow (Bertozzi
and Brenner, [1998; Johnson et al., 1999). The instability on the surface of stalactites
is perpendicular to the flow, so is unlikely to arise because of this. Falling films with

significant inertia lead to waves in the direction of the flow (Chang et al., [1993)).
Taking a gravity driven thin film down an inclined plane and expanding up to O(e)

one can derive the Benney equation (Benney, |1966)

2 1 2 1
he + (—h3 te ( R on, — 2 coton®h, + —h3hm)) = 0. (1.2)

3 15 3 3 Bo

This gives an evolution equation for the fluid thickness h, which has the effects of the
Reynolds number Re, which is the ratio between inertial and viscous forces; the Bond
number Bo, which is the ratio between gravitaional forces and the surface tension forces;
and the angle of the slope from the horizontal #. The subscripts denote derivatives, with ¢

being time and x is the spatial coordinate in the direction of the flow.

Under suitable rescaling, the Benney equation (1.2)) can be reduced to a weakly
nonlinear evolution equation known as the Kuramoto-Sivashinsky equation |[Kuramoto

(1978)); |Sivashinsky] (1977)

hi + hhy + hpy + hpgesr = 0. (1.3)

1.2.1 Flows down cylinders

In the case of stalactites, instead of flow down an inclined plane, we will consider flow
down an axisymmetric and vertical cylinder. Work here generally considers the fluid to be
thin compared to the radius. Considering the surface tension to be the leading cause for

wave formation, [Frenkel (1992) derived an evolution equation for the free surface. This
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was rescaled by Kalliadasis and Chang (1994)) to
he + (B + Bh’hy + B hyey) = 0 (1.4)

where the parameter 5 depends on the Bond number and the radius. This equation was
studied numerically to find that depending on the size of the radius, the fluid interface

could exhibit solitary wave like structures or blow-up in finite time.

Considering a long wave perturbation of the fluid interface of a similar length to the

radius of a cylinder, Frenkel (1993)) derives an equation similar to the Benney equation

2

8 Re 1 h 1
h: + 2h°h ——hh —(=+h —nt) = 1.

which in addition to the parameters seen in the Benney equation , has the parameter
R, the ratio between the radius of the cylinder and the fluid thickness. Here instead of the
slope term we have a similar h3h, term as a result of the curvature of a cylinder. There is
also an additional h* term. However, in the limit where the radius increases to infinity

these terms vanish, and we are left with the Benney equation ((1.2)) for a vertical plane.

Craster and Matar| (2006) consider thin film flow down a cylinder, where the radius is
not necessarily thicker than the fluid thickness. Here, they use scalings similar to those
used by [Papageorgiou| (1995) to model viscous liquid threads. |Craster and Matar| (2006))
consider the fluid to be thin compared to a capillary length scale. Here they compared
experimental results with those simulated numerically and found a good agreement between

the two.

1.2.2 Flows over topography

Another feature that could influence the flow on a stalactite is the shape of the crenulations.

Surface topography leads to additional surface tension terms. Flow down an inclined plane
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with sinusoidal walls has been studied by |Wierschem and Aksel (2003)); Wierschem et al.
(2005)). Here they used linear and Floquet analysis to determine the stability of steady

state solutions. Here they discovered that the wall corrugations have a stabilising effect.

Kalliadasis et al.| (2000]) looks at the effect that trenches and mounds have on the

steady state fluid thickness. The shape of the trench was modelled as

il () @) e

with 6, ¢, £ representing the trench depth, width, and steepness. Here they found that a

capillary ridge forms just upstream of where the wall steps down.

Tseluiko et al.|(2013) looked at the stability of film flowing down an inclined plane
with topography. Here they looked at both sinusoidal walls and trenches. On sinusoidal
walls, the steady state fluid is thinnest around the wall maximum. Here they found that

the wavelength and the amplitude of the wall can be either stabilising or destabilising.

Combining cylindrical geometry with a wall perturbation was done experimentally
by Kuehner et al| (2019] 2021)). Here they used a 3D-printed pipe with semicircular
corrugations. Water was poured down the inside of the pipe and a statically deformed free
surface was observed. Here they found that the free surface amplitude increased as the
wall amplitude did. They also observed that the phase shift of the free surface changed

the most for shorter wavelengths.

1.2.3 Other applications

While the motivation for the fluid dynamics was based on stalactites, flow down a cylinder
with topography could have many industrial applications. Coating a surface is one such
application, and modelling it can be important to minimise defects that could arise as a
result of an instability. Several coating methods are listed in a review paper by |Weinstein

and Ruschak| (2004).
An example of this is the manufacturing of 3D printed parts (Zhu et al., [2015]). Here,

10
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the coating film could smooth surface defects or cause them to grow. The geometry of our
problem could also be useful for desalination (Sadeghpour et al., 2019; Zeng et al., 2019).
Here, water vapour can be condensed onto liquid beads. Such beads form on cylindrical

strings, where the size of the beads would be influenced by the radius and the topography.

1.3 Deposition Problems

Stalactites grow due to the deposition of calcium on the surface. As dissolution and
precipitation are related through a reversible reaction, much work on calcite precipitation
is based on Plummer et al.| (1978)). Here they derive a rate equation for dissolution of
calcium known as the PWP equation. This requires the concentration of the chemicals
at the calcite surface. Buhmann and Dreybrodt| (1985)) expanded on this by looking at
how chemicals are transported throughout the fluid layer. In this work they determined
that for calcite dissolution and precipitation, the rate could be limited by the conversion
of carbon dioxide to carbonic acid or diffusion across the fluid, depending on the fluid

thickness.

The precipitation was looked into further in \Dreybrodt| (1980} [1981), with the cases with
a thin fluid layer having precipitation rates increasing with the fluid thickness. However,
with larger film thicknesses, where diffusion becomes the rate limiting process, thicker
film thickness can cause smaller precipitation rates. [Dreybrodt| (1999) uses these to
model stalagmite growth, where he looks at how different flow conditions, temperature,

concentration of calcium ions and fluid thicknesses affect the growth rates.

For stalactites, Short et al.| (2005b) shows that the time it takes for calcium ions and
carbon dioxide to diffuse from the stalactite boundary to the air boundary is around 0.1s.
This is much faster than that of the rate limiting carbon dioxide reaction, which takes
around 10s. Therefore, we expect to be in the case where the deposition is proportional to
fluid thickness. Vesipa et al.| (2015) however, suggests that crenulations in the wall grow

more when the fluid is thinnest. The chemical model is looked at more extensively in

11
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chapter 5

1.4 Outline of the Thesis

In chapter [2] we show the derivation of the models that will be used. Chapters [3| and [4] look
at the hydrodynamics of the problem. Specifically, chapter [3| has the fluid primarily driven
by surface tension, where chapter 4] uses a Benney like equation. Chapter [5| looks at the
deposition of calcium on the wall and the resulting moving boundary problem. Chapter [f]

concludes.

12



Chapter 2

Problem Setup

2.1 Stalactite Parameters

We wish to model our stalactite as a cylinder with a thin film flowing down it. For this
model, we will have four main parameters that can change. These are the flow rate of water
Q; the radius of the stalactite R; the amplitude of the crenulation 0; and the wavelength
of the crenulation L. The fluid thickness A is also an important parameter for the growth
of stalactites. It is however derived from the flow rate and the radius. In order to create

our model, it would be useful to know approximate values for these parameters.

We will look at the stalactites in the two different stages in their life: soda straw
stalactites, where the flow is predominantly internal; and conical stalactites, where the
flow is predominately external. As stalactites evolve from soda straw stalactites to conical

ones, we can model stalactites having reasonable values between the two.

For a soda straw stalactite the diameter, which Curl (1972) found to depend on the
surface tension, was calculated to be around 5 mm for water. Samples studied by [Paul
et al|(2013) confirm diameters of this size. Soda straw stalactites have banding based on
yearly growth (Paul et al., [2013; |[Fairchild et al., 2001; Huang and Fairchild, 2001; Huang
et al., [2001; |Desmarchelier et al., [2006). This is due to the seasonal fluctuation of rainfall

and carbon dioxide. These bands are 0.5 mm long, with a relief of 2 ym. Soda straws can

13
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get up to 6 m in length, however, as they are fragile, many of them break when they are

only 100s of millimetres long (Fairchild and Baker), 2012).

In summary, we are looking at these values.

Variable Symbol Value
Diameter 2R 5x 1072 m
Banding amplitude 7| 2x107% m

Banding wavelength L 5x107% m
Length 14 0.1-6 m

Table 2.1: Approximate values of variables for a soda straw stalactite.

Soda straw stalactites are fairly regular in their dimensions, where conical stalactites
are less so. This is because conical stalactites have the fluid now flowing down the outside.
This means that calcium will be deposited on the outside surface, increasing the radius.

Some smaller stalactites were measured in Treak Cliff Cavern, Castleton, UK.

Figure 2.1: Crenulations on a stalactite transitioning between soda straw and conical, at
Treak Cliff Cavern, Castleton.

Figure[2.1]shows a stalactite of radius 7 mm. This would be an example of a transitioning

stalactite. Here the crenulation wavelength was 4 mm and the amplitude was too small

14
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to measure. A stalactite of radius 17 mm was also measured. Here the crenulations had
a wavelength of 8 mm and an amplitude of 0.4 mm. According to |Short et al.| (2005b);

Vesipa et al.| (2015) conical stalactites have the values.

Variable Symbol Value
Radius R |(05—-1)x10"'m
Crenulation wavelengths L (1-10) x 1072 m
Length l 0.1-6 m

Table 2.2: Approximate values of variables for a conical stalactite.

While the wavelength of the bands on soda straw stalactites may seem small compared
to the values of conical stalactites, the ratio between the wavelength and the radius is
similar. When performing linear stability analysis, Vesipa et al.| (2015); Camporeale| (2017))
consider a small perturbation to an inclined plane. These small amplitude bands could
be viewed as the initial disturbance in the analysis. Another thing to note is if the same
amount of fluid is flowing down the outside of a soda straw stalactite, the fluid thickness

would be larger than for the conical case, due to the smaller radius.

Next we will consider the flow rate. Soda straws typically grow when they have lower
flow rates than conical stalactites. This is because carbon dioxide is only degassed once
the fluid comes into contact with the air as it forms a drop. If the flow rate is too high,
the drop will drip before it has had time for calcite to be deposited on the walls (Forti
and Springer}, 2020). According to Short et al.| (2005b) typical flow rates are 10 — 1000
cm? /hour depending on how much rainfall the area around the cave gets. These values
are given per hour, so it is likely that these measurements were taken over a couple of
hours. As stalactites take many years to grow, it would be better to have mean flow rates
measured over a similar period of time. Genty and Deflandre (1998)) recorded the drip
flow under a soda straw stalactite of the Pere Noél cave in Belgium. Here they found the
minimum flow rate was 227 ml/day, with the maximum flow rate being 10 135 ml/day.

Over the 5 years of data the mean flow was 1763.3 1/year. Even et al. (1986) measured
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Figure 2.2: Volumetric flow rate of a stalactite in the Péere Noél cave, Belgium (Genty
and Deflandre, |1998). Here we can see the seasonality of the flow rate, with the summer
months experiencing much lower flow rates. There is also a sharp rise in the flow rate
during the autumn months, with a more gradual decrease over the spring months.

the flow rates of various stalactites in the Soreq Cave in Israel. Here they measured :

a straw stalactite with mean discharge 100 ml/day throughout the year.

a conical stalactite that showed little correlation with the rain, that discharged 85-95

ml/day in summer and 95-100 ml/day in winter.

a straw stalactite that varies seasonally with 2500-2800 ml/day during winter,

decreasing to 170 ml/day in June and 5-8 ml/day in late summer.

a conical stalactite with a straw on its end. This has a discharge of around 14

ml/day.

These high flow rates on soda straw stalactites in winter are likely to be too fast for growth,

with the seasonal banding showing the most growth in summer (Paul et al., 2013]).

If the flow rate exceeded the maximum flow rate for water within the soda straw, we
would know that fluid must also travel down the outside. The maximum flow rate within
the soda straw stalactite would be equivalent to flow down a pipe acting under gravity.

This is a Poiseuille flow (Batchelor and Batchelor, 2000) where it is driven by gravity. This
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results in the vertical velocity
9, 2 2
_ _ 2.1
wir) = L@~ ) 21)

which depends on the axial displacement r. Here v is the kinematic velocity, g is acceleration
due to gravity and a is the radius of the soda straw stalactite. Integrating the velocity

over the surface area of the cross-section of the fluid gives the flow rate

Q="29 (2.2)

The radius of a soda straw stalactite is 2.5 mm, and the kinematic viscosity of water
is 1 mm?/s, therefore we find in this case the flow rate would be @ ~ 1 x 107* m3/s.
The highest flow rate for the soda straw observed in previously mentioned caves was
Q ~ 1 x 107" m3/s, which is significantly lower, meaning even in winter months, water will

flow in a film down the inside of the soda straw stalactite until it joins the drop at the tip.

For conical stalactites |Short et al.| (2005b)) shows that the time it takes for the fluid to
traverse the length of a stalactite is of the order of minutes, therefore this is much quicker
than seasonal fluctuations to the flow rate, so we can assume that the fluid has coated
the stalactite. When the fluid flows down the outside of the stalactite, it has a thickness
much thinner than that of the radius of the stalactite. Therefore, |Short et al.| (2005b)
approximates the flow as a gravity driven flow down a flat plate. The flow rate is still
calculated by integrating the velocity over the surface area, resulting in

B 21 Rh3

@ 3v

(2.3)

where R is the stalactite radius and A is the fluid thickness. Therefore, we can calculate

the fluid thicknesses for our example stalactites by solving for

h= < Qv >é (2.4)

ZWQR
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Example fluid thickness for the stalactites are given below, with the flow rates converted
to m?/s to make it easier to compare. Here we have picked 3 example radii based on a

soda straw stalactite and conical radii from [Short et al.| (2005b])

Radius (mm) | 2.5 | 10 100
Stalactite
Flow rate m®/s | Fluid Thickness (um)

kShort et al.7(2005b) lower bound 2.8 x 107° 38 | 24 11
Short et al.| (2005b) upper bound 2.8 x 1077 180 | 110 51
Pere Noél cave daily minimum 2.6 x 107 37 | 23 11
Pere Noéel cave daily maximum 1.2 x 1077 130 | 83 39
Peére Noél cave yearly average 5.6 x 1078 100 | 65 30
Soreq cave 100 ml/day 1.2 x 107 28 | 18 8

Soreq cave summer minimum 5.8 x 10711 10 | 7 3

Table 2.3: Table of approximate fluid thickness for flow rates given in this section

From table [2.3| we see that the fluid thicknesses are usually around 1 x 1076 — 1 x 10~*
m, however most of the flow rates were observed on soda straw stalactites and so may not
relate to flow rates on the outside of stalactites. Flow rates greater than 1 x 1078 m3/s
typically occurred in winter months. This period was when less deposition occurred. This
could be different on the outside of a stalactite, as the water is immediately in contact
with the cave air and so has the carbon dioxide pressure gradient (Paul et al.| |2013]).
The conical stalactite with a straw on its end observed in Soreq Cave (Even et al., |[1986)
suggests that this flow rate is perhaps too low to sustain conical growth modelled in [Short
et al.| (2005b)), with instead the fluid being drawn into a straw as suggested by Maltsev
(1999). Therefore, for our model we have decided to use a flow rate of Q@ =1 x 1072 m?/s,

that matches the flow rate on the conical stalactite in the Soreq Cave (Even et al., [1986).

From figure [2.3| we can see that increasing the radius decreases the fluid thickness.
However, all the fluid thicknesses are of the order 1075 m, which agrees with |Short et al.

(20051).
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Figure 2.3: How the fluid thickness is affected by the radius of the stalactite according to

equation
2.2 Hydrodynamic Model

In order to understand the growth of stalactites, we must understand the flow of water
down the outside. While conical stalactites do taper towards the point, the angle is
very close to vertical (Camporeale, 2017). As soda straw stalactites are cylindrical too,
transitioning between the cases will be close to a cylinder. Therefore, we will treat our

stalactite as being cylindrical with radius R.

The initial bands observed on soda straws were 2 ym which is smaller, but of a similar
order of magnitude to that of the fluid thickness. On conical stalactites, these crenulations
do grow to amplitudes of the order of millimetres. Therefore, if they do develop from the
banding on soda straws, there will be a transitional case where the crenulations will have
an amplitude of similar magnitude to the fluid thickness. Even if these crenulations are
not the result of this banding, since they end up being larger than the fluid thickness, at

some point they must exist with an amplitude similar to that of the fluid thickness.

Due to the symmetry of stalactites, we will model this as an axisymmetric flow. While
the radius and crenulations do grow over time, this is on a timescale much slower than the

time it takes the fluid to traverse a stalactite (Short et al., 2005b). For this reason we will
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assume that the radius R, and the crenulation 7 are fixed in time.

A sketch of the geometry of the problem is shown in figure 2.4]

R

\_ﬂl
=g

[

R
=

g Stalactite

Figure 2.4: Sketch of cross-section of the problem.

For an incompressible fluid with velocity @ = (u,0,w) and pressure p in cylindrical

coordinates X = (T, 0, Z), the continuity equation is

ou
f

%4_

and the Navier-Stokes equations give

ot or 0z por
8—IE) + u@ + ﬁ)@ = —l@
ot or 0z p Oz

ow

55 =0 (2.5)
o*u 10w 1. 0%
v 1ow O*w
+IJ<W+;§+W)+Q (27)

where p is the density, v is the kinematic viscosity, and ¢ is the acceleration due to gravity.

On the boundary between the stalactite and the fluid we have no flux and no slip,

=0 w=0 at 7 =R+7.
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On the surface of the fluid, where it has an interface with the air, we have the kinematic
boundary condition.

oS  _9S

E—i—w% at =S (2.9)

u =

where S = R+ 7] + h. We also have the tangential and normal stress balances on the free

surface (7 = S), which are

25 (1 — ws) 4+ (1 — S%)(tiz 4 w5) = 0 (2.10)
and
~ 2 (o Es - &2~ 1 Sz
— = Ur — Oz(Uz + W5) + Sgwg = = 1. =~ 3 2.11
b 1+ 52 ( ( ) ) 7(S(lJrSZ?)z) (1+S§)2> (2.11)

respectively. Here subscripts denote partial derivatives, ;1 = pv is the dynamic viscosity

and -~y is the surface tension. This formulation is also used in |Craster and Matar| (2006]).

2.2.1 Scalings

Before we do our scalings, it is useful to note the size of some of the physical parameters

of water. These parameters will remain constant for the water flowing down stalactites.

Parameter Symbol Value
Density p 997 kg/m?
Kinematic Viscosity v 1 x 107%m3
Acceleration due to Gravity g 9.81 m/s?
Surface Tension o 7.2 x 1072N/m

Table 2.4: Physical parameters

For this problem, we have five different length scales. In the radial direction we have

the radius of our stalactite (R), the crenulation amplitude (7)), and the typical fluid
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thickness (ho). In the vertical direction, we have the crenulation wavelength (L) and the

capillary length £. The capillary length balances surface tension and gravity through

equations (2.7) and (2.11]). This results in £ = —.

pgho

For this problem, we will nondimensionalise by using the fluid thickness for 7 and the
crenulation wavelength for Z. At this point, we will also translate the domain, to make

2 Therefore, we are writing our
0

the nondimensional coordinate r be between 0 and A = 7

coordinates as

il
|
>

o (R+bi(z)+7) (2.12)

IS 3
I
>

oAz (2.13)

where we have the dimensionless ratios: R = % between the radius and fluid thickness,
5= % between the crenulation amplitude and fluid thickness, and A = hLO between the
crenulation wavelength and fluid thickness. 7 is the normalised nondimensional crenulation

shape.

For this, we will assume the crenulation amplitude is similar to the fluid thickness,
resulting in & being O(1). In section we found that the wavelength of the crenulation
was a similar order of magnitude to the radius, varying by at most a factor of 10. While
the radius varied between 1073 — 10~! m, figure showed that the thickness was always
around 107°. This means that R ~ O(10? — 10%), with the smaller value relating to soda
straw stalactites and the larger relating to conical ones. Similarly, this is true for \. We

therefore rewrite our coordinates as

<
Il
=

0 (§ +1(2) + 7’) (2.14)

I3
Il
>

oW

0 (2.15)

where e = 1 < 1, R = }% ~ O(1) and n = 07 ~ O(1). Using the small parameter ¢, we
can make an approximation to equations (2.5)-(2.11). The dimensional variables (with
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tildes) are related to the nondimensional variables (without tildes) as such

Noting this change of variables means that the derivatives become

%:%% (2.17)
% _ hio (% _ m%) | (2.18)
We can Taylor expand the reciprocal of the radial component
1_ e < ! )
P hg \R+e(m+r)
_ RLhO (1 _ e”;T 4 0(62)) . (2.19)

Using equations ([2.14)-(2.19)), we can get the nondimensional versions of equations ({2.5)-
@.11).

U, + w, — nyw, + 6}% = 0(é?) (2.20)
EUpp — % = 0(é?) (2.21)
Wy +14¢€ (% — %(pz) — Re(w; + uw, + w(w, — nzwr))) = 0(é?) (2.22)
u=0,w=0 at r=0 (2.23)
u="h+wn,+h,) at r=nh (2.24)
w,(h) = O(€?) (2.25)
€ n+h
p<h) = E - 62 ( R2 + Nz + hzz) (226)

To find approximate values for the Bond and Reynolds numbers, we consider the
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potential stalactites. For soda straws the radius of the stalactite R = 2.5 mm and so
if the flow rate is 100 ml/day then fluid thickness is 29 um according to equation ([2.4)).
From this fluid thickness we find Re = 0.23 and B = 1.1 x 10~*. Soda straw stalactites
have a wavelength of around 0.5 mm, which means ¢ = 6 x 1072, so here we have roughly

Re = 0O(1) and B = O(€?).

On the other hand, if we take a conical stalactite of radius 10 cm, with the same
flow rate of 100 ml/day, then the fluid thickness is 8.4 um. This gives Re = 5.7 x 1073
and B = 9.6 x 1075, A stalactite with 10 cm radius has been modelled to have a 2 cm
crenulation wavelength (Camporeale, 2017), making € = 4 x 107*. Here B ~ O(¢) and
Re ~ O(e). For conical stalactites however, the amplitude of the crenulations is also
significantly larger than the fluid thickness. Therefore, we would expect the curvature of

the wall to appear at higher order.

The case where the fluid is a similar thickness to the wall amplitude should occur
somewhere between the soda straw stalactite, where the banding is smaller, and the conical
one. We will call this the transition stalactite. As this stalactite is somewhere between

these 2 cases, we will assume that the Bond number is B ~ O(€?), so we set Bo = 6%.

If we write the Reynolds number in terms of the flow rate

3C)

Re = hd
21 Ry

(2.27)

we see that for Re = 1 we require % = 2 x 107%. This is possible for the Q = 2 x 1078

m?3/s and R =1 x 1072 m, so we will include Re at O(1) for the transition case.

For both cases, equation has the pressure term much larger than the biggest
velocity term. This means that the pressure is constant with respect to r. From equation
([2.26), we see that p. is O(e?). For the soda straw case, this pressure term comes into
equation at leading order. We will further look at the hydrodynamics for this case
in chapter [3] For the transition stalactite, the pressure term is smaller and only comes

into equation (2.22)) at O(e). The hydrodynamics based on this scaling for transitioning
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stalactites is studied in chapter [4]

While here we have scaled the z direction with respect to the crenulation wavelength,
it is also useful to have scaled this instead by the stalactite radius. This would make it
clearer to understand the effect changing the wall wavelength will have for a given radius.

In this case, we will set R =1 and can set a sinusoidal wall to be of the form

2
1 = d cos (LZ) (2.28)
L
where 0 is the amplitude of the wall relative to the fluid thickness and L = % is the
wavelength of the wall. This makes it easier to see the effect of changing the wavelength,

which previously would have to be done by changing several of the other parameters

(R, Bo,€).

2.3 Crenulation Shapes

In order to model the crenulations, we will look at three possible shapes. These are
sinusoidal, step and sawtooth. For our crenulations, we will assume periodicity. This
makes a sinusoidal wall a good place to start, as we can write any periodic function as a

Fourier series.

N
ao 2mna . [ 2mnx
77:§+ g [ancos( 7 )—I—bnsm( 17 )} (2.29)

n=1

Steps and sawtooths could be used to model the banding found on soda straw stalactites
(Huang and Fairchild, 2001} [Huang et al., 2001). Alternatively, they could be used to
model plant growth or erosion. These could all be the initial wall perturbation that leads

to the growth of the crenulations (Vesipa et al., [2015; |(Camporeale} 2017)).

In order to model these shapes, we will use tanh as a smoothing function, as is done in
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Tseluiko et al.| (2008). Our step function will be modelled as

n=2a [tanh (M) — tanh <M) — 24 . (2.30)

26 26L
Here 6 and L define the amplitude and wavelength of the crenulation as before. Additionally,
we have the parameters: ¢, which is the ratio between the width of the top of the step
and the wavelength; and &, which controls the steepness of the step. As & — 0 the corners
of the step become right angles. The shift of 26/ is done so that the wall has 0 mean
( fOL ndz =0).

How the steepness parameter affects the wall shape How ¢ affects the wall shape
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Figure 2.5: Different shapes of steps used as the wall. (a) shows how decreasing the
steepness parameter makes the step approach a right angle. (b) shows steps of different
widths.

Figure [2.5] shows how ¢ and & affect the wall shape. For ¢ > 0.5 we can view this as

being a flat wall with a mound on it, and ¢ < 0.5 can be viewed as having a trench.

Similarly, we can model our sawtooth using this step

B 2z — L(1 — 090) 22— L+/(L 22— L— /(L
n= 0'16 |: 2L :| [tanh (%—L> tanh (%—L)] O'gég.
(2.31)

Again, £ and /¢ are the steepness parameters and the proportion of the wall that is a
sawtooth. 01,09 € (—1,1), are parameters to determine the direction of the slope, and

whether the step is before or after the slope. Here we have L(1 — /) of the wall being flat.
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2.4. GROWTH OF STALACTITES

As ¢ — 1 we will have the normally defined sawtooth. However, for the cases ¢ = 1, we

would lose the smoothing effect of the tanh. Therefore, we will generally keep ¢ < 0.9.

How the steepness parameter affects the wall shape 5 Different direction Sawtooths
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Figure 2.6: Different shapes of sawtooth used as the wall. (a) shows how decreasing the
steepness parameter makes the point of the saw much sharper. (b) shows the different
configurations of saw we have.

Figure shows the different shapes of sawtooths we have. Subfigure (a) similarly
to the step plot shows how the smaller £ is, then the steeper the point of the saw is. In
(b) the fluid is flowing from left to right. These walls in the order of the legend are then
viewed as: the fluid flowing down a slope before a drop; the fluid dropping down a step
before flowing down a slope; the fluid underhanging a slope before a step-up; and the fluid

stepping up before underhanging a slope.

2.4 Growth of Stalactites

As highlighted by Short et al.| (2005b) the growth of a stalactite is much slower than the
time it takes for the fluid to transverse it. The time it takes for the fluid to traverse one
crenulation ¢; = % ~ 10 s. Meanwhile, assuming a growth rate v of 1 cm/century, the

~ 105 s. As this is much

S

time it takes for a stalactite to grow by a fluid thickness is t;, =

slower than the traversal times, Short et al. (2005b)) separates the timescales and considers

a stagnant fluid layer.
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Because of the different timescales, Vesipa et al. (2015); Camporeale (2017) make
use of a quasi-steady approximation. Here they find the steady state fluid thickness to
determine the stalactite growth. However, if the fluid does not settle into a steady state,
the dynamics of the fluid may yet affect the growth. Therefore, a time averaged fluid

thickness will be considered.

The growth of the stalactite is dependent on the amount of calcite deposited on the
surface. This can be viewed as the flux of calcium concentration at the surface. This
deposition not only causes the crenulations to grow, but also the radius of the stalactite.
Overall we have

- oc
Rt + N = —pch (232)
LR
where p.. is the molar volume of calcite, D is the diffusion coefficient for calcium and ¢ is the
concentration of calcium ions in the fluid. The time it takes for the ions to diffuse across
the wavelength is t; = %2 ~ 0.1 s, which is faster than the fluid transverses. Therefore,
the concentrations should effectively be constant across the fluid.

The growth is however limited by the production of carbon dioxide (Plummer et al.
1978; Buhmann and Dreybrodt, [1985). Therefore, to model the growth, we must also
consider the carbon dioxide concentration. The concentrations of calcium and carbon
dioxide in the fluid layer can be modelled by the convection-diffusion-reaction equations

0¢;
ot

+-VE = DVE 47 (2.33)

where ¢; denotes the concentration, with the subscripts ¢ = 1,2 referring to calcium
and carbon dioxide respectively. u is the velocity of the fluid, D; denotes the diffusion
coefficients and 7; is the reaction rate. For this problem, the conversion of carbon dioxide
to bicarbonate is the rate limiting process (Kaufmann and Dreybrodt} 2007). The other
chemical reactions of the system occur much faster, and so they can be assumed to be in

equilibrium (Buhmann and Dreybrodt, [1985)). Therefore, the reaction rate for calcium is
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71 = 0, and the reaction rate for carbon dioxide
7o = k_[HCO3™| — kyéy, (2.34)

where ky are the reaction rates.

While the concentrations may vary seasonally, we will consider growth based on mean
concentrations so that the temporal derivatives of the concentration are neglected. This is
similarly done by Short et al.| (2005b)); [Vesipa et al.| (2015)). While the concentration of
the calcium concentration should deplete further down the stalactite due to the calcium
being deposited, the concentration gradient is small and the effect over one wavelength
is negligible (Vesipa et al., |2015). Therefore, we will consider the z dependence in the
concentrations to be caused by the wall shape. In order to model the growth of the
stalactite, we will at each time step compute the fluid thickness and velocities for the given
radius and wall shape. From this we can calculate the chemical concentrations and hence
the calcite flux. This allows us to grow the radius and wall shape. With the new radius
and wall shape, we again calculate the new fluid properties, so we can calculate the new

calcite flux and so on. This is explored further in chapter [5

2.5 Computational Methods

For these problems, our spatial coordinate z € [0, L]. In order to solve the equations

numerically, we discretise z so that
zp = — (2.35)

where n is the number of points and i € {1,2,...,n + 1}. As our domain is periodic,
21 = Zp41. The fluid thickness at a point is denoted h; = h(z;). For the spatial derivatives,
we initially finite differences, however as our domain is periodic, we then used a pseudo-

spectral method to improve the precision. We used second order finite centred finite
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differences,

n
B! — n’ (h 2% h 2.37
i = a2\ = i+ hio1) (2.37)
= (hive — 2hits + 2hi 1 — h 2.38
i = 573 hive = 2hiv + 2hi — i-2) (2.38)
1
R = %(hiH —4hiy + 6h; — 4hi 1 + hig). (2.39)

For the spatial derivatives, we used a pseudo-spectral method, following the steps of
Alexander| (2021)). Here, we make use of MATLAB function £ft to perform a fast Fourier

transform, resulting in hy = ££t(hg). In Fourier space the m™ derivative becomes
W™ = (ik)™ by (2.40)

This is then converted back into real space by using MATLAB function ifft.

For these problems, we need to calculate up to the fourth derivative, as seen by
equations ([1.2))-(1.5). For the wall and the initial condition we will mostly be using cosines,
so if we have a wall 1 = cos z, this results in 7,,.. = cos z. We can test the accuracy of

the numerical methods based off this, with the error defined as

n

E = % (Z(nzzzz - 77z)?> ) (2'41>

i=1
where again n is the number of points and ; denotes the value at z;.

Figure shows the error for the different schemes. For both finite difference and
pseudo-spectral, we see that increasing the number of grid points reduces the error.
Increasing the number of grid points however also slows down the integration. In the finite
difference case, the error increases again after 2'° points. From this figure, we see that the
finite difference has a minimum error of 107 at n = 21°. Meanwhile the pseudo-spectral

error is always less than that of the machine error. For this reason we decided to use
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Figure 2.7: Numerical error of (cos z),,., for the different differentiation methods, with 2"
points.

pseudo-spectral for the differentiation, with n = 256 grid points chosen as a compromise

between speed and error.

To solve our equations, we made use of several MATLAB functions. For the steady

state equations or other equations which can be written as

F(h) = 0, (2.42)

with h the fluid thickness, we use fsolve. fsolve takes this vector of equations and
an initial guess to find the solution h. Here we can write the spatial derivatives of h as
functions of h using the pseudo-spectral method outlined above. This outputs a vector for

the fluid thickness h that satisfies the equations.

Time integration is done using MATLAB function ode15s. This takes the input F,

where

hy = F(t, h) (2.43)

and an intial guess for the fluid thickness h. This solver was chosen as the equations we

are solving are stiff. Here the fluid thickness at each time step is outputted.
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For the Floquet analysis, we can cast the equation into the form
Ah = wh (2.44)

where A is a matrix, w are eigenvalues, and h the eigenvectors of the fluid thickness. We
can then use MATLAB function eig, which takes the input A and outputs the eigenvalues

w and corresponding eignevectors h.

Code written for this thesis can be found in the GitHub repository: https://github.
com/srh18/PhD-work. The class shape_solveh.m was created to find and analyse solutions

for different parameters.
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Chapter 3

Hydrodynamics 1: Inertialess Flow

3.1 Introduction

Thin films flowing down cylinders with topography has applications to the geophysical world
in the cases of icicles (Ueno, 2007; [Ueno et al., 2009) and stalactites (Short et al., 2005b;
Vesipa et al., [2015; Camporealel 2017). However, these tend to model the hydrodynamics
as a fluid flowing down a flat inclined plane, which could be missing some of the effects

that the true geometry has on their growth.

In this chapter, we will be building on gravity driven thin film flows down cylinders,
which were previously studied by [Kalliadasis and Chang (1994); Craster and Matar| (2006);
Frenkel (1992). In these works, the surface tension also works to drive the flow. To these
models, we will introduce surface topography, with an amplitude of similar size to the

fluid thickness.

Flow over topography has previously been studied down an inclined plane (Tseluiko
et al| 2013)), where we see the effect of the topography in the surface tension terms.
Experimentally, work has been done on the effects of flow over topography down an

inclined pipe (Kuehner et al., [2021)).
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3.2 Governing Equations

For this problem, we will be considering a thin film flow under gravity down a cylinder that
has a long wave disturbance to its surface. The cylinder and its disturbance are fixed in time.
The amplitude of this disturbance is of the same order as the fluid thickness. Continuing
on from section where we have nondimensionalised the Navier Stokes equation —

(2.11)) by using the scalings (2.14))-(2.16)). This resulted in the nondimensional equations
(2.20)-(2.26]). As discussed in section in this chapter we will work with a scaled Bond

2 . .
number Bo = g = p:%g. We will also scale the pressure term using

p— g (3.1)

)
€

so that the pressure terms appear more clearly at leading order in the momentum equations

@-21)-([@-22).

To leading order the equations ([2.20))-(2.26) have now become

Wy — P, +1=0 (3.4)
with boundary conditions
u(0) =w(0) =0 (3.5)
u(h) = hy + w(h)(h, +1n,) (3.6)
w,y(h) =0 (3.7)

p(h) 1 (_61 n+h

_B_O _R ‘|‘ R2 + nzz + hzz) . (38)

From equation (3.3 we find that the pressure is a constant in r and therefore is equal

to that given by the tangential stress balance (3.8]). For the velocities we require the
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pressure gradient, so differentiating with respect to z results in

Pz =

1 (n.+h,
Bo R2

+ nZZZ + hZZZ> (3.9)

From this we see that the pressure gradient comes from the balance between surface
tension caused by the curvature of the cylinder and of that caused by the curvature of the

wall.

We can then calculate w from equation (3.4)), with the boundary conditions (3.5)), (3.7)),

resulting in

2

w=(p, — 1) (% - rh) (3.10)

Substituting this into equation (3.2)), using the no flux boundary condition (3.5), we get

3 r2h r’h,
U ="MW — Pzz (g_T) +(pz_1) 5 (311)

Applying the velocities (3.10)-(3.11)) into the kinematic condition (3.6) we get an

evolution equation for the fluid thickness.

he + % (%3 (1 —pz)> ~0. (3.12)

This shows that the fluid thickness is driven by gravity balanced by the surface tension
found in the pressure gradient. Writing out the pressure gradient fully by substituting in

equation ([3.9)), we get the equation

o (h? 1 [(h,+mn.
ot e (5 (1 s (B + s ) ) =0 1

For the smooth cylinder case, n = 0, this is the same as the equation reported in

Kalliadasis and Chang| (1994)). For flow over topography on an inclined plane with no
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inertia, [T'seluiko et al. (2013) derives the equation

0 (2,4 2cotl 4 1,
—(ZpP -2 — 14
ht+8x (3h 3 h(h+77)‘”+3130h (h+ 1)z | (3.14)

where x is the coordinate in the direction of flow, and € is the angle of the plane from the
horizontal. We see that the term we have due to the azimuthal curvature is equivalent to
that of their term due to the z-component of gravity. Due to the positive sign we have in
our equation, this would be in the case where their angle 6 > 7, describing fluid flowing

down an overhanging wall.

3.3 Steady States

We can find steady states of the system by setting h; = 0. This allows us to integrate

equation (3.13) with respect to z to get

h? 1 (h.+mn.
=— 11 5 222 222 1
¢=73 < +B0( 7 +h... +1 )> (3.15)

where ¢ is the constant flow rate. For the smooth cylinder case, h = 1 is a trivial solution

of (B.15)), which has the flow rate ¢ = 3.

3.3.1 Small amplitude wall

We consider the amplitude of the wall to be small, so |n| = 0 < 1. For this problem, we
will assume § > € so that the O() terms are larger than the O(e) terms. Due to the small
wall perturbation, we expect this to cause a perturbation to the fluid thickness of a similar
size. Setting h =1+ §h and 1 = on, substituting into equation (3.15) and looking at the

O(0) terms, results in the equation

Pooo + — 4+ 3Boh = ——= — ... (3.16)
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In the case where we have a sinusoidal wall of the form 7 = cos kz, where k = 27“, we
can find a solution to (3.16]) of the form
h = Acos(kz — 0) (3.17)
where
3Bo L3R?
tanf = 3.18
MY r(nR? — I?) (3.18)
A = —cos¥b. (3.19)

For a positive amplitude we require cos < 0, hence the phase shift must be § <6 < 37”
There is a discontinuity in the phase shift at L = 27 R. However, at this wavelength, the

wall terms cancel out. The wavenumber in this case k = }% and so

7. ~ ksink

_+772zz_ - R2

2 + k*sink = 0. (3.20)

In this case we simply have the same equation as if there was no wall. Looking at the

wavelengths just before and after, by setting L = 27 R + ¢ where ¢ — 0, we find that

3T

L =27R — € gives  — =7 and L = 27 R + € gives § — 5. Both of these result in an

2
amplitude tending to 0, as expected from the smooth cylinder case.

It is also interesting to note that as L — 0 we would get tanf — 0, meaning that
0 = w. In this case, the fluid thickness disturbance is out of phase with the wall. It also
has A = 1 so that if you looked at the surface of the fluid it would appear cylindrical.
Looking at increasing L > 27w R, the phase shift and the amplitude will initially increase
slightly, however the limit L — oo again means that  — 7. This also tells us that the

fluid disturbance is never larger than that of the wall disturbance as A < 1.

Figure [3.1] shows this more clearly as we see the resulting amplitudes and phase shift
for R =0.5,1,2. The Bond number here is set to 1 as it only appears as a scaling factor

for tan f. From subfigure (a) we see that for L < 27 R, the amplitude decays from 1 to 0.
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Figure 3.1: (a) The amplitude of the fluid disturbance against the wavelength for R =
0.5,1,2. (b) The phase shift of the fluid disturbance from the wall disturbance for
R=0.5,1,2.

For L > 2w R on the other hand the amplitude remains a lot smaller, reaching only around
a tenth of the wall amplitude for R = 1. It can also be seen in these cases that the wall
amplitude decreases with increasing radius. Subfigure (b) shows the phase shift from the
wall disturbance. We can see that for small wavelengths the fluid disturbance is out of
phase with the wall as expected. The phase shift increases to 6 = 37” as L — 2mR and

then drops to 6§ = 7. For L > 27 the phase shift increases up until some point and slowly

decreases again.

3.3.2 Numerical steady state solutions

For larger amplitude walls, we solve the equation numerically using MATLAB’s function
fsolve, as outlined in section [2.5 The domain is discretised into 256 grid points, with
periodic boundary conditions. The derivatives are calculated using a pseudo spectral
method. Steady state solutions can be found by imposing an initial flow rate, however to
make it easier to compare to the dynamical solutions we have decided to fix the mass of

the fluid. The mass can be calculated from the volume integral of the density. Back in the
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dimensional variables this is

2 pL pR+G+A
m = / / / prdrdzdf. (3.21)
0 0 JR+j

At leading order this is now

Rh} [t

m=drp—- [ h(z)dz. (3.22)
€

0

L3
So here we have the dimensional constant for mass M = 47Tp%7 where m = Mm. This
gives

L
m:R/ hdz. (3.23)
0

For a smooth cylinder which has the solution h = 1, this gives us that the m = RL.

As we seek solutions that have mean thickness of 1 independent of the wavelength of

the wall, we have imposed the condition

1 L
Z/o hdz=1. (3.24)

The flow rate ¢ can be calculated as a result of this. While this is done to make it easier
to compare numerical results, in an experimental set-up it may be easier to alter the flow

rate.

As well as the flow rate ¢ the results can be characterised by the norm

1 L
Ihall, =\ [ hota (3.25)

For the smooth cylinder case, this gives ||ho||, = 1 and the small amplitude wall (3.17)

52A2
ol = /1 + (3.26)
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Figure 3.2: (a) Plot showing how the flow rate is affected by walls of different wavelengths
and amplitudes. (b) and (c) show the fluid thickness for wavelengths of L = 7 and L = 47
respectively. (d) shows the fluid profile in relation to the wall for walls of amplitude § = 1.

From figure [3.2|a) we see how the flow rate is affected by different shaped walls. For
these solutions, we have set the radius R = 1 and the Bond number Bo = 1. We see that
increasing the amplitude decreases the flow rate. For the smooth cylinder case § = 0, we
have g = % and this is also true for the case where L = 27 as this is where the wall terms
cancel. Increasing the wavelength causes the flow rate to decrease more slowly. In the
regions labelled “no steady state” the code did not converge. As we tend towards these
regions, we see that the flow rate tends to 0. Solutions on the boundary have the fluid
dewetting from the wall. This is because we have fixed the volume of the fluid to be L and
so for walls where 9 > 1 we have the amplitude of the wall larger than the mean thickness

of the fluid, resulting in the wall terms having a larger effect on the pressure gradient.

Figures (b) and (c) show the fluid thicknesses where the different pressure terms
dominate. In (b) we have a wavelength of L. = 7 meaning the axial curvature term
dominates the flow. In this scenario, we see that the maximum thickness is slightly

downstream of the trough in the wall, and the amplitude of the oscillation of the fluid is
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similar to that of the amplitude of the wall. This is in contrast to what we see in figure
(c). Here the wavelength is L = 47, where the azimuthal term dominates. Here we see
the maximum fluid thickness occurring roughly halfway between the peak and the trough,
with the amplitude of oscillation of fluid thickness only around 0.2 that of the amplitude
of the wall. These results agree with the phase shift and amplitude suggested by the small
amplitude wall . For the 6 = 3 we see the non-linearity appear, with a second smaller

maximum around z = 0.9L.

Figure (d) shows the fluid profiles compared to the walls which they flow over for
different wavelengths. Here the wall always has amplitude 6 = 1. We see that for the
wavelengths L > 27 that the fluid appears like it is just following the wall shape. This is
because the amplitude of the fluid thickness is small. The L = 27 case is included here,
which has thickness h = 1 everywhere. This allows us to see that in the longer wavelength
cases, the fluid is slightly thicker after the peak in the wall and slightly thinner just before
the peak. This is in contrast to the L < 27 cases, where the fluid can be viewed as trying

to fill the wall trough, with the fluid thickest before the wall peak and thinnest just after.

3.3.3 Alternative wall shapes

We can also numerically calculate the fluid thickness for wall shapes that are not sinusoidal
by using equation (3.15). We will first look at the steady state fluid thickness based on
a wall that is a step, as in equation (2.30)), described in section . Here we have taken

¢ = 0.01. This makes the 7,,, term in (3.15)) very large at the step up and down, where it

is around L%ﬂ, If this term is too large the code fails to converge, so to compensate for
the large derivatives, we must also impose that the wall has a small amplitude or a long

wavelength.

Figure shows how a step wall affects the fluid flow. (a) shows the fluid profile and
from this we can see that the fluid thins just before a bump, and thickens just before a
drop. These results can also be seen in other thin film flows over steps (Kalliadasis et al.,

2000; [T'seluiko et al., 2008, |2013). This can also be seen in the fluid thickness’s difference
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Figure 3.3: Steady state fluid thickness over a wall step. (a) and (c) show how different
wavelengths affect the fluid thickness, with the step up and down being equal lengths. (a)
shows the fluid profile, whereas (c) shows the difference of the fluid thickness from the
mean. (b) has a narrow step up and (d) a narrow step down and are both with wavelength
L =2m.

from the mean, with it being negative before the step-up and positive just after. Increasing
the wavelength makes these disturbances seem narrower, however if you factor L back in
they are of a similar width. From (c) we additionally see the fluid thickening just before
the step-up and thinning before the step-down. This has the effect of smoothing the fluid
surface. From (b) we have narrowed the step-up, and we find that the fluid still thickens
around 1 unit before the drop. For (d) we have narrowed the step-down, and we can see

that the fluid is thinning about 1 unit before the step-up. From (b) and (d) where we have

longer flat sections of the wall, we see that the fluid thickness remains close to the mean.

Instead of treating the wall as a step, we can model our wall as a sawtooth function
defined by equation . In these cases, instead of both a step-up and a step-d