
Diffuse optical reconstructions of 
functional near infrared spectroscopy data 
using maximum entropy on the mean 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Cai, Z., Machado, A., Arman Chowdhury, R., Spilkin, A., 
Vincent, T., Aydin, Ü. ORCID: https://orcid.org/0000-0002-
6327-7811, Pellegrino, G., Lina, J.-M. and Grova, C. (2022) 
Diffuse optical reconstructions of functional near infrared 
spectroscopy data using maximum entropy on the mean. 
Scientific Reports, 12. 2316. ISSN 2045-2322 doi: 
10.1038/s41598-022-06082-1 Available at 
https://centaur.reading.ac.uk/111216/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1038/s41598-022-06082-1 

Publisher: Nature Publishing Group 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2316  | https://doi.org/10.1038/s41598-022-06082-1

www.nature.com/scientificreports

Diffuse optical reconstructions 
of functional near infrared 
spectroscopy data using maximum 
entropy on the mean
Zhengchen Cai1*, Alexis Machado2, Rasheda Arman Chowdhury2, Amanda Spilkin1, 
Thomas Vincent1,3,4, Ümit Aydin1,5, Giovanni Pellegrino3, Jean‑Marc Lina6,7 & 
Christophe Grova1,2,3,7

Functional near‑infrared spectroscopy (fNIRS) measures the hemoglobin concentration changes 
associated with neuronal activity. Diffuse optical tomography (DOT) consists of reconstructing the 
optical density changes measured from scalp channels to the oxy‑/deoxy‑hemoglobin concentration 
changes within the cortical regions. In the present study, we adapted a nonlinear source localization 
method developed and validated in the context of Electro‑ and Magneto‑Encephalography (EEG/
MEG): the Maximum Entropy on the Mean (MEM), to solve the inverse problem of DOT reconstruction. 
We first introduced depth weighting strategy within the MEM framework for DOT reconstruction to 
avoid biasing the reconstruction results of DOT towards superficial regions. We also proposed a new 
initialization of the MEM model improving the temporal accuracy of the original MEM framework. To 
evaluate MEM performance and compare with widely used depth weighted Minimum Norm Estimate 
(MNE) inverse solution, we applied a realistic simulation scheme which contained 4000 simulations 
generated by 250 different seeds at different locations and 4 spatial extents ranging from 3 to 
40cm2 along the cortical surface. Our results showed that overall MEM provided more accurate DOT 
reconstructions than MNE. Moreover, we found that MEM was remained particularly robust in low 
signal‑to‑noise ratio (SNR) conditions. The proposed method was further illustrated by comparing to 
functional Magnetic Resonance Imaging (fMRI) activation maps, on real data involving finger tapping 
tasks with two different montages. The results showed that MEM provided more accurate HbO and 
HbR reconstructions in spatial agreement with the main fMRI cluster, when compared to MNE.

Functional Near-infrared spectroscopy (fNIRS) is an non-invasive functional neuroimaging modality. It detects 
changes in oxy-/deoxy-hemoglobin (i.e., HbO/HbR) concentration within head tissues through the measurement 
of near-infrared light absorption using sources and detectors placed on the surface of the  head1,2. In continuous 
wave fNIRS, the conventional way to transform variations in optical density to HbO/HbR concentration changes 
at the level of each source-detector channel, is to apply the modified Beer Lambert Law (mBLL)3. This model 
assumes homogeneous concentration changes within the detecting region, i.e., ignoring the partial volume effects 
which indicates the absorption of light within the illuminated regions varies locally. This assumption reduces 
quantitative accuracy of HbO/HbR concentration changes when dealing with focal hemodynamic  changes4,5.

In order to handle these important quantification biases associated with sensor level based analysis, diffuse 
optical tomography (DOT) has been proposed to reconstruct, from sensor level measures of the optical density, 
the fluctuations of HbO/HbR concentrations within the  brain6. This technique not only provides better spatial 
localization accuracy and resolution of the underlying hemodynamic  responses7,8, but also avoids partial volume 
effect in classical mBLL, hence achieves better quantitative estimation of HbO/HbR concentration  changes4,5. 
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DOT has been applied to reconstruct hemodynamic responses in sensory and motor cortex during median-nerve 
 stimulation9,10 and finger  tapping7,11; to conduct visual cortex retinotopic  mapping12–14 and to simultaneous image 
hemodynamic responses over the motor and visual  cortex15.

To formalize DOT reconstruction, one needs to solve two main problems. The first one is the forward problem 
which estimates a forward model or sensitivity matrix that maps local absorption changes within the brain to var-
iations of optical density changes measured by each  channel16. The second problem is the inverse problem which 
aims at reconstructing the fluctuations of hemodynamic activity within the brain from scalp  measurements17. 
The forward problem can be solved by generating a subject specific anatomical model, describing accurately 
propagation of light within the head. Such anatomical model is obtained by segmenting anatomical Magnetic 
Resonance Imaging (MRI) data, typically into five tissues (i.e., scalp, skull, cerebro-spinal fluid (CSF), white mat-
ter and gray matter), before initializing absorption and scattering coefficients values for each tissue type and for 
each  wavelength18,19. Solving the inverse problem relies on solving an ill-posed problem which does not provide a 
unique solution, unless specific additional constraints are added. The most widely used inverse method in DOT is 
a linear approach based on Minimum Norm Estimate (MNE) originally proposed for solving the inverse problem 
of MagnetoencephaloGraphy(MEG) and Electroencephalography (EEG) source  localization20. It minimizes the 
L2 norm of the reconstruction error along with Tikhonov  regularization9,12,14,21–23. Other strategies to solve DOT 
inverse problem have also been considered, such as sparse regularization using the L1  norm23–27 and Expectation 
Maximization (EM)  algorithm28. A non-linear method based on hierarchical Bayesian model for which inference 
is obtained through an iterative  process29,30 has been proposed and applied on finger tapping  experiments11.

Maximum Entropy on the Mean (MEM) framework was first proposed by Amblard et al.31 and then applied 
and carefully evaluated by our group in the context of EEG/MEG source  imaging32,33. The MEM framework was 
specifically designed and evaluated for its ability to recover spatially extended  generators34–37. We recently dem-
onstrated its excellent performances when recovering the spatial extent of the underlying generator in the context 
of focal  sources38 and when applied on clinical epilepsy  data39,40. In addition to its unique ability to recover the 
spatial extent of the underlying generators, we also demonstrated MEM’s excellent reconstruction spatial accuracy 
in low SNR conditions, with the ability to limit the influence of distant spurious  sources34,36,38,40–42.

We believe that these important aspects should be carefully considered in the context of fNIRS reconstruc-
tion. The first one is the ability to accurately recover the spatial extent of the underlying hemodynamic activity 
for both focal and extended generators. The second one is to provide robust reconstruction results when data 
SNR decreases, especially when considering the fact that it is challenging to maintain a good intra-subject 
consistence using continuous-wave fNIRS due to its relatively low  SNR43. Therefore, our main objective was to 
adapt the MEM framework for fNIRS reconstruction and carefully evaluate its performance. Moreover, fNIRS 
reconstruction results tends to be biased towards more superficial regions, because the light sensitivity profile 
decreases exponentially with the depth of the  generators44. To overcome this bias, we implemented and evaluated 
a depth weighted variant of the MEM framework.

The article is organized as follows. The methodology of depth weighted MEM for DOT is first presented. 
Then, we described our validation framework using realistic simulations and associated validation metrics. 
fNIRS reconstruction using MEM was compared with widely used depth weighted Minimum Norm Estimate 
(MNE) inverse solution. Finally, illustrations of the methods on finger tapping fNIRS data set acquired with two 
different montages from 6 healthy subjects are provided and compared with functional Magnetic Resonance 
Imaging (fMRI) results.

Material and methods
Statement. All methods were carried out in accordance with relevant guidelines and regulations. All sub-
jects have signed written informed consent forms for this study which was approved by the Central Committee 
of Research Ethics of the Minister of Health and Social Services Research Ethics Board, Québec, Canada.

fNIRS reconstruction. To perform fNIRS reconstructions, the relationship between measured optical den-
sity changes on the scalp and wavelength specific absorption changes within head tissue is usually expressed 
using the following linear  model6:

where Y is a matrix ( p× t ) which represents the wavelength specific measurement of optical density changes 
in p channels at t time samples. X ( q× t ) represents the unknown wavelength specific absorption changes in q 
locations along the cortex at time t. A ( p× q ) is called the light sensitivity matrix which is actually the forward 
model relating absorption changes in the head to optical density changes measured in each channel. Finally, e 
( p× t ) models the additive measurement noise. Solving the fNIRS tomographic reconstruction problem consists 
in solving an inverse problem which can be seen as the estimation of matrix X (i.e. the amplitude for each location 
q at time t). However, this problem is ill-posed and admits an infinite number of possible solutions. Therefore, 
solving the DOT inverse problem requires adding additional prior information or regularization constraints to 
identify a unique solution.

In DOT studies, anatomical constraints can be considered by defining the reconstruction solution space (i.e. 
where q is located ) within the gray matter  volume45 or along the cortical  surface46,47. In EEG and MEG source 
localization  studies32,33,48, it also is common to constrain the reconstruction along the cortical surface. In this 
study, the reconstruction space was considered as the mid surface defined as the middle layer between gray 
matter/pial and gray/white matter  interfaces49.

(1)Y = AX + e
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Minimum norm estimation (MNE). Minimum norm estimation is one of the most widely used recon-
struction methods in  DOT9,11–15,22. Such estimation can be expressed using a Bayesian formulation which solves 
the inverse problem by estimating the posterior distribution P(X|Y) = P(Y |X)P(X)

P(Y)  (i.e. the probability distribu-
tion of parameter X conditioned on data Y). A solution can be computed by imposing Gaussian distribution 
priors on the generators X ( P(X) = N(0,�−1

s ) ) and the noise e ( P(e) = N(0,�−1
d ) ). �d is the inverse of the 

noise covariance which could be estimated from baseline recordings. �s is the inverse of the source covariance 
which is assumed to be an identity matrix in conventional MNE.

The Maximum a Posteriori (MAP) estimator of the posterior distribution P(X|Y) can be obtained using 
maximum likelihood estimation:

where X̂MNE is the reconstructed absorption changes along the cortical surface. � is a hyperparameter to regu-
larize the inversion using the priori minimum norm constraint ||X||2�s

 . In this study, we applied the standard 
L-Curve  method50 to estimate �.

Depth weighted MNE. Standard MNE solutions assumes �s = I , which then tends to bias the inverse 
solution towards the generators exhibiting large sensitivity in the forward model, therefore the most superficial 
 ones51. When compared to EEG-MEG source localization, such bias is even more pronounced in fNIRS since 
within the forward model light sensitivity values decrease exponentially with the  depth44. This bias can be com-
pensated by scaling the source covariance matrix such that the variances are  equalized51,52. In the context of 
DOT, depth weighted MNE has been proposed by Culver et al.53 as an approach to compensate this effect and 
applied in different  studies9,12,14,15,22. In practice, depth weighting can be formulated differently, here we consider 
a generalized expression for the implementation of depth weighted MNE as proposed in Lin et al.54. It consists 
in initializing the source covariance matrix as �−1/2

s = � , resulting in a so called depth weighted MNE solution, 
described as follows:

Depth weighted MNE solution takes into account the forward model A for each position in the brain and 
therefore penalizes most superficial regions exhibiting larger amplitude in A, by enhancing the contribution to 
deeper regions. ω is a weighting parameter tuning the amount of depth compensation to be applied. The larger 
is ω , the more depth compensation is considered. ω = 0 would therefore refer to no depth compensation and 
an identity source covariance model. ω = 0.5 refers to standard depth weighting approach mentioned above. In 
the present study, we carefully evaluated the impact of this parameter on DOT accuracy with a set of ω values 
(i.e. ω = 0, 0.1, 0.3, 0.5, 0.7 and 0.9).

Maximum entropy on the mean (MEM) for fNIRS 3D reconstruction. MEM framework. The 
main contribution of this study is the first adaptation and evaluation of MEM  method31–33 to perform DOT re-
constructions in fNIRS. Within the MEM framework, the intensity of x, i.e. amplitude of X at each location q in 
Eq. (1), is considered as a random variable, described by the following probability distribution dp(x) = p(x)dx . 
The Kullback-Leibler divergence or ν-entropy of dp(x) relative to a prior distribution dν(x) is defined as,

where f(x) is the ν-density of dp(x) defined as dp(x) = f (x)dν(x) . Following a Bayesian approach to introduce 
the data fit, we denote Cm as the set of probability distributions on x that explains the data on average:

where Y represents the measured optical density changes, Edp[x] =
∫
xdp(x) represents the statistical expectation 

of x under the probability distribution dp, and Iq is an identity matrix of (q× q) dimension. Therefore, within 
the MEM framework, a unique solution of dp(x) could be obtained,

The solution of dp∗(x) can be solved by maximizing the ν-entropy which is a convex function. It is equivalent 
to minimize an unconstrained concave Lagrangian function i.e., L(dp(x), κ , �) , along with two Lagrangian con-
straint parameters, i.e., κ and � . It is finally equivalent to maximize a cost function D(�) which is described as,

(2)
X̂MNE = argmin

(
||(Y − AX)||2�d

+ �||X||2�s

)

= (AT�dA+ ��s)
−1AT�dY

(3)

X̂dMNE = argmin
(
||(Y − AX)||2�d

+ �||X||2�s

)

= (AT�dA+ �(��t)−1)−1AT�dY

diag(�) =
1

diag
(
(AT�dA)

)ω

(4)Sv(dp(x)) = −

∫

x
log

(
dp(x)

dν(x)

)
dp(x) = −

∫

x
f (x)log(f (x))dν(x)

(5)Y − [A|Iq]

[
Edp[x]

e

]
= 0, dp ∈ Cm

(6)dp∗(x) = argmaxdp(x)∈Cm

(
Sv(dp(x))

)
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where �−1
d  is the noise covariance matrix. Fv represents the free energy associated with reference dν(x) . It is 

important to mention that D(�) is now an optimization problem within a space of dimension equal to the num-
ber of sensors. Therefore, if we estimate �∗ = argmax�D(�) , the unique solution of MEM framework is then 
obtained from the gradient of the free energy.

For further details on MEM implementation and theory we refer the reader  to31–33.

Construction of the prior distribution for MEM estimation. To define the prior distribution dν(x) mentioned 
above, we assumed that brain activity can be depicted by a set of K non-overlapping and independent cortical 
parcels. Then the reference distribution dν(x) can be modeled as,

Each cortical parcel k is characterized by an activation state, defined by the hidden variable Sk , describing if the 
parcel is active or not. Therefore we denote αk as the probability of k th parcel to be active, i.e., Prob(Sk = 1) . δk 
is a Dirac function that allows to “switch off ” the parcel when considered as inactive (i.e., Sk = 0 ). N(µk ,�k) 
is a Gaussian distribution, describing the distribution of absorptions changes within the k th parcel, when the 
parcel is considered as active ( Sk = 1 ). This prior model, which is specific to our MEM inference, offers a unique 
opportunity to switch off some parcels of the model, resulting in accurate spatial reconstructions of the underly-
ing activity patterns with their spatial extent, as carefully studied and compared with other Bayesian methods 
in Chowdhury et al.33.

The spatial clustering of the cortical surface into K non-overlapping parcel was obtained using a data driven 
parcellization (DDP)  technique55. DDP consisted in first applying a projection method, the multivariate source 
prelocalization (MSP)56, estimating a probability like coefficient (MSP score) between 0 and 1 for each vertex of 
the cortical mesh, characterizing its contribution to the data. DDP is then obtained by using a region growing 
algorithm, along the tessellated cortical surface, starting from local MSP maxima. Once the parcellization is done, 
the prior distrubution dν(x) is then a joint distribution expressed as the multiplication of individual distribution 
of each parcel in Eq. (9) assuming statistical independence between parcels,

where dν(x) is the joint probability distribution of the prior, dνk(qk) is the individual distribution of the parcel 
k described as Eq. (9).

To initialize the prior in Eq. (9), µk which is the mean of the Gaussian distribution, N(µk ,�k) , was set to zero. 
�k at each time point t, i.e. �k(t) , was defined by Eq. (11) according to Chowdhury et al.33,

where Wk(σ ) is a spatial smoothness matrix, defined by Friston et al.57, which controls the local spatial smooth-
ness within the parcel according to the geodesic surface neighborhood order. Same value of σ = 0.6 was used 
as in Chowdhury et al.33. η(t) was defined as 5% of the averaged energy of MNE solution within each parcel Pk 
at time t. Finally, we can substitute this initialization into Eq. (9) to construct the prior distribution dν(x) , and 
then obtain the MEM solution using Eq. (8).

It is worth mentioning that we did not use MNE solution as the prior of µk in Eq. (9) at all, which was actu-
ally initialized to 0 in our framework. We only used 5% of the averaged energy of MNE solution, over the parcel 
k, to set the prior for covariance �k . The posterior estimation of parameter µk was estimated from the Bayesian 
framework by conditioning with data. Moreover, the prior of MEM framework is a mixture of activation prob-
ability αk and a Gaussian distribution [see Eq. (9)], in which the prior for αk was informed by a spatio-temporal 
extension of the MSP score (see Chowdhury et al.33 for further details). These aspects completely differentiate 
MEM from approaches that iteratively update reconstruction results initialized by a MNE solution.

Depth weighted MEM. In addition to adapting MEM for fNIRS reconstruction, we also implemented for the 
first time, depth weighting within the MEM framework. Two depth weighting parameters, ω1 and ω2 , were 
involved in this process. ω1 was used to apply depth weighting on the source covariance matrix �k of each parcel 
k in Eq. (11). ω2 was applied to solve the depth weighted MNE, as described in Eq. (3), before using those prior to 
initialize the source covariance model within each parcel of the MEM model. Therefore, the standard MNE solu-
tion X̂MNE(i, t) in Eq. (11) was replaced by the depth weighted version of MNE solution X̂dMNE(i, t) described by 
Eq. (3). Consequently, the depth weighted version of �k(t) is now defined as,

(7)D(�) = �
TY − Fv(A

T
�)−

1

2
�
T�−1

d (�−1
d )

T
�

(8)X̂MEM = ∇ξF
∗
ν (ξ)|ξ=AT�∗

(9)dν(x) =

K∏

k=1

[(1− αk)δ(xk)+ αkN(µk ,�k)]dxk , 0 < αk < 1

(10)dν(x) = dν1(q1)dν2(q2)...dνk(qk)...dνK (qK )

(11)

�k(t) = η(t)Wk(σ )
T
Wk(σ )

η(t) = 0.05
1

Pk

∑

i∈Pk

X̂
2
MNE(i, t)
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where �Pk
 is the depth weighting matrix for each pacel k, in which ω1 was involved to construct this scaling 

matrix as described in Eq. (3). This initialization followed the logic that depth weighting is in fact achieved by 
scaling the source covariance matrix. The other depth weighting parameter, ω2 , was considered when solving 
X̂dMNE(i, t) , therefore avoiding biasing the initialization of the source covariance with a standard MNE solution.

To comprehensively compare MEM and MNE and also to investigate the behavior of depth weighting, we 
first evaluated the reconstruction performance of MNE with different ω2 (i.e. step of 0.1 from 0 to 0.9). Then two 
of these values (i.e. ω2 = 0.3 and 0.5) were selected for the comparison with MEM since they performed better 
than the others. Note that the following expressions of depth weighted MEM will be denoted as MEM(ω1 , ω2 ) 
to represent the different depth weighting strategies.

Accuracy of temporal dynamics. The last contribution of this study was to improve the temporal accuracy of 
MEM solutions. In classical MEM  approach33, X̂MNE(i, t) in Eq. (12) was globally normalized by 
max

i∈�,t∈T
(X̂MNE(i, t)) , where � represents all the possible locations along the cortical surface and T is the whole 

time segment. Therefore, the constructed prior along the time actually contained the temporal scaled dynamics 
from MNE solution. To remove this effect, we performed local normalization for X̂dMNE(i, t) at each time 
instance t, i.e., by dividing by max

i∈�
(X̂dMNE(i, t)) . This new feature would preserve the spatial information pro-

vided by prior distribution, while allowing MEM to estimate the temporal dynamics only from the data.

Validation of fNIRS reconstruction methods. We evaluated the performance of the two fNIRS recon-
struction methods (i.e., MEM and MNE), first within a fully controlled environment involving the use of real-
istic simulations of fNIRS data using montage 1, followed by evaluations on real data acquired with a well con-
trolled finger tapping paradigm using montage 2. One subject was involved in acquisitions using montage 1 and 
five subjects participated in acquisitions using montage 2.

Montage 1 A full Double Density (DD) montage (see Fig. 1) which is a widely used fNIRS montage, was 
considered given that it allows sufficient dense spatial coverage of fNIRS channel to allow local  DOT58. One 
healthy subject (20 years old, right handed) underwent fNIRS acquisitions with this DD montage, involving the 
two following sessions,

• A 10 minutes resting state session was acquired to add realistic physiology noise to corrupt our noise-free 
simulations, thus generating highly realistic fNIRS simulations. These resting-state fNIRS data captured 
spontaneous fluctuations in fNIRS signals that are related to intrinsic brain activity as well as the physi-
ological noise of non-cerebral origin, associated with systemic blood  circulations1. The subject was seating 
on a comfortable armchair and instructed to keep the eyes open and to remain awake. The optodes of the 
full DD montage (i.e. 8 sources and 10 detectors resulting in 50 fNIRS channels) are presented in Fig. 1e. 
The montage composed of 6 second-order distance channels (1.5 cm), 24 third-order channels(3 cm) and 
12 fourth-order channels with 3.35 cm distance. In addition, we also added one proximity detector paired 
for each source to construct close distance channels (0.7 cm) in order to measure superficial signals within 
extra-cerebral tissues. To place the montage with respect to the region of interest, the center of the montage 
was aligned with the center of the right “hand knob” area, which controls the left hand  movement60, projected 
on the scalp surface and then each optodes were projected on the scalp surface (see Fig. 1d).

• The subject was asked to sequentially tap the left thumb against the other digits around 2Hz, therefore the 
main elicited hemodynamic response was indeed expected over the right hand knob area. The finger tapping 
paradigm consisted in 10 blocks of 30s tapping task and each of them was followed by a 30 to 35s resting 
period. The beginning/end of each block was informed by an auditory cue.

Montage 2: Five subjects underwent fNIRS acquisitions with personalized optimal  montage19 during a similar 
aforementioned finger tapping task. Personalized optimal montage was applied to maximize the fNIRS sen-
sitivity to the hand knob within right primary motor cortex of each participant. Please find further details in 
Supplementary material S4.

MRI and fMRI Data acquisitions. Anatomical MRI data were acquired on those 6 healthy subjects ( 25± 6 years 
old, right-handed) and were considered to generate realistic anatomical head models. MRI data were acquired 
in a GE 3T scanner at the PERFORM Center of Concordia University, Montréal, Canada. T1-weighted anatomi-
cal images were acquired using the 3D BRAVO sequence ( 1× 1× 1mm3 , 192 axial slices, 256× 256 matrix), 
whereas T2-weighted anatomical images were acquired using the 3D Cube T2 sequence ( 1× 1× 1mm3 voxels, 
168 sagittal slices, 256× 256 matrix).

Participants also underwent functional MRI acquisition while performing the same finger opposition tasks 
considered in fNIRS. fNIRS and fMRI data were acquired in two different sessions, one week apart from each 
other. fMRI acquisition consisted in a gradient echo EPI sequence ( 3.7× 3.7× 3.7mm3 voxels, 32 axial slices, 

(12)

�k(t)dw = �Pk
η(t)dwWk(σ )

T
Wk(σ )

η(t)dw = 0.05
1

Pk

∑

i∈Pk

X̂
2
dMNE

(i, t)
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TE = 25ms , TR = 2000ms ). fMRI Z-maps were generated by standard first-level fMRI generalize linear model 
analysis using FEAT from FSL v6.0.0  software61,62.

fNIRS data acquisition. fNIRS acquisitions were conducted at the PERFORM Center of Concordia University 
using a Brainsight fNIRS device (Rogue Research Inc., Montréal, Canada), equipped with 16 dual wavelength 
sources (685nm and 830nm), 32 detectors and 16 proximity detectors (for short distance channels). All montages 
(i.e., double density and optimal montages) were installed to cover the right motor cortex. Knowing a priori the 
exact positions of fNIRS channels estimated on the anatomical MRI of each participant, we then used a 3D neu-
ronavigation system (Brainsight TMS navigation system, Rogue Research Inc.) to guide the installation of the 
sensors on the scalp. This neuronavigation system provided real-time feedback of the optodes targeted positions, 
while installing them on the subject’s head. Finally, every sensor was glued on the scalp using a clinical adhesive, 
collodion, to prevent motion and ensure good contact to the  scalp19,63. For further details about this personalized 
installation procedure, please refer to our previous  publication19.

fNIRS forward model estimation. T1 and T2 weighted anatomical images were processed using FreeSurfer 
V6.049 and Brain Extraction Tool2 (BET2)61 in FMRIB Software Library (FSL) to segment the head into 5 tissues 
(i.e. scalp, skull, Cerebrospinal fluid (CSF), gray matter and white matter see Fig. 1a).

Same optical coefficients used  in19,63 for the two wavelengths considered during our fNIRS acquisition, 685nm 
and 830nm, were assigned to each tissue type mentioned above. Fluences of light for each optode (see Fig. 11b) 
was estimated by Monte Carlo simulations with 108 photons using MCXLAB developed by Fang and  Boas64 and 
Yu et al.65 (http:// mcx. space/). Sensitivity values were then computed using the adjoint formulation and were 
normalized by the Rytov  approximation6.

For each source-detector pair of our montages, the corresponding light sensitivity map was first estimated in 
a volume space, and then further constrained to the 3D mask of gray matter tissue (see Fig. 1c), as suggested by 

Figure 1.  fNIRS measurement montage 1 and the anatomical model considered for DOT forward model 
estimation. (a) Anatomical 3D MRI segmented in five tissues, namely, scalp (green), skull (brown), CSF (light 
green), gray matter (purple) and white matter (black). (b) Optical fluence of one optode calculated through 
Monte Carlo simulation of Photons within this head model, using MCXLab. (c) Sensitivity profile of the whole 
montage in volume space. (d) Sensitivity profile, i.e. the summation of sensitivity map of all channels, along the 
cortical surface. Green dots represent detectors, including one proximity detector 0.7 cm for each source, and 
red dots represent sources. (e) double-density montage 1 considered for this acquisition. There were 50 channels 
in total, 12 of 3.8 cm (black), 24 of 3 cm (blue), 6 of 1.5 cm (yellow) and 8 of close distance (0.7 cm) channels. 
Figure created by  Brainstorm59 using the NIRSTORM plugin developed by our team (https:// github. com/ Nirst 
orm).

http://mcx.space/
https://github.com/Nirstorm
https://github.com/Nirstorm
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Boas and  Dale45. Then, these sensitivity values within the gray matter volume were projected along the cortical 
surface (see Figs. 1d and S4c) using the Voronoi based method proposed  by32. We considered the mid-surface 
from FreeSurfer as the cortical surface. This surface was downsampled to 25, 000 vertices. This volume to surface 
interpolation method has the ability to preserve sulco-gyral  morphology32. After the interpolation, the sensitivity 
value of each vertex of the surface mesh represents the mean sensitivity of the corresponding volumetric Voronoi 
cell (i.e., a set of voxels that have closest distances to a certain vertex than to all other vertices).

fNIRS data preprocessing. Using the coefficient of variation of the fNIRS data, channels exhibiting a stand-
ard deviation larger than 8% of the signal mean were  rejected14,66–68. Superficial physiological fluctuations were 
regressed out at each channel using the average of all proximity channels’ (0.7 cm)  signals12. All channels were 
then band-pass filtered between 0.01 Hz and 0.1 Hz using a 3rd order Butterworth filter. Changes in optical 
density (i.e., �OD ) were calculated using the conversion to log-ratio. Finally, �OD of finger tapping data were 
block averaged around the task onsets. Note that since sensors were glued with collodion, we observed very 
minimal motion during the acquisitions. Real background signal considered to generate realistic simulations 
also underwent the same preprocessing.

Realistic simulations of fNIRS data. We first considered realistic simulations of fNIRS data to evaluate DOT 
methods within a fully controlled environment. To do so, theoretical task-induced HbO/HbR concentration 
changes were simulated within cortical surface regions with a variety of locations, areas and depths. Correspond-
ing optical density changes in the channel space were then computed by applying the corresponding fNIRS 
forward model, before corrupting noise-free simulation using real resting state fNIRS baseline signal, allowing to 
add physiological fNIRS signal of cerebral and non-cerebral origin at different signal to noise ratio (SNR) levels.

As presented in Fig. 2a, we defined three sets of evenly distributed seeds within the field of view of DOT 
reconstruction. The locations were selected with respect to the depth relative to the skull, namely we simulated 
100 “superficial seeds”, 100 “middle seeds” and 50 “deep seeds”. The cortical regions in which we simulated an 
hemodynamic response were generated by region growing around those seeds, along the cortical surface. To 

Figure 2.  Workflow describing our proposed realistic fNIRS simulation framework. (a) 100 Superficial 
seeds (black dots), 100 Middle seeds (red dots), 50 Deep seeds (blue dots) with spatial extent of Se = 3, 5, 7, 9 
neighbourhood order within the field of view. (b) Convolution of a canonical HRF model with an experimental 
block paradigm (60s before and 50s after the onset). (c) Simulated theoretical HbO/HbR fluctuations along 
the cortical surface within the corresponding generator. (d) Realistic simulations obtained by applying the 
fNIRS forward model and addition of the average of 10 trials of real fNIRS background measurements at 830 
nm. Time course of �OD of all channels with SNR of 5, 3, 2 and 1 respectively are presented. Figure created by 
 Brainstorm59 using the NIRSTORM plugin developed by our team (https:// github. com/ Nirst orm).

https://github.com/Nirstorm
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simulate generators with different spatial extents (denoted here as Se), we considered four levels of neighborhood 
orders, growing geodesically along the cortical surface, resulting in spatial extents ranging from Se = 3, 5, 7, 9 
(corresponding areas of 3 to 40 cm2 ). For simplification, these cortical regions within which an hemodynamic 
response was simulated will be denoted as “generators” in this paper. For each vertex within a “generator”, a 
canonical Hemodynamic Response Function (HRF) was convoluted with a simulated experimental paradigm 
which consisted in one block of 20s task surrounded by 60s pre-/post- baseline period (Fig. 2b). Simulated HbO/
HbR fluctuations within the theoretical generator (Fig. 2c) were then converted to the corresponding absorption 
changes of two wavelengths (i.e., 685nm and 830nm). After applying the forward model matrix A in Eq. (1), we 
estimated the simulated, noise free, task induced �OD in all channels. Such a simulation procedure provided a 
fully controlled access to ground truth since the location and size of the generator along the cortical surface and 
the corresponding simulated hemodynamic response time courses (HbO/HbR) within each generator were fully 
known. Therefore, this controlled ground truth, defined in space along the cortical surface and along time, was 
then considered for quantitative validations of fNIRS reconstructions, when assessing localization error, spatial 
extent accuracy and accuracy of temporal reconstructions.

�OD of real resting state data were then considered as baseline data and used to add realistic fluctuations 
(noise) to these simulated noise-free signals. Over the 10min of recording, we randomly selected 10 baseline 
epochs of 120s each, free from any motion artifact by visual inspection. To mimic a standard fNIRS block aver-
age response, realistic simulations were obtained by adding the average of these 10 real baseline epochs to the 
theoretical noise-free simulated �OD , at five SNR levels (i.e. SNR = 5, 3, 2, 1 ). SNR was calculated through the 
following equation,

where �OD�[0, t1] is the optical density changes of a certain wavelength � in all channels during the period from 
0s to t1 = 60s . std(�OD�[−t0, 0]) is the standard deviation of �OD� during baseline period along all channels. 
Simulated trials for each of four different SNR levels are illustrated in Fig. 2d. A total number of 4000 realistic 
simulations were considered for this evaluation study, i.e., 250 (seeds)× 4 (spatial extents)× 4 (SNR levels) . Note 
that resting state fNIRS baseline signal was preprocessed before adding to the simulated signals.

Validation metric. Following the previously described validation  metrics32,33,36,38, we applied 4 quantitative 
metrics to access the spatial and temporal accuracy of fNIRS 3D reconstructions. Further details on the compu-
tation of those four validation metrics are reported in Supplementary material S1.

• Area Under the Receiver Operating Characteristic (ROC) curve (AUC) was used to assess general recon-
struction accuracy considering both sensitivity and specificity. AUC score was estimated as the area under 
the ROC curve, which was obtained by plotting sensitivity as a function of (1- specificity). AUC ranges from 
0 to 1, the higher it is the more accurate the reconstruction is.

• Minimum geodesic distance (Dmin) measuring the geodesic distance in millimeters, following the cir-
cumvolutions of the cortical surface, from the vertex that exhibited maximum of reconstructed activity to 
the border of the ground truth. Low Dmin values indicate better accuracy in estimating the location of the 
generator.

• Spatial Dispersion (SD) assessed the spatial spread of the estimated generator distribution and the localiza-
tion error. It is expressed in millimeters. A reconstructed map with either large spatial spread around the 
ground truth or large localization error would result in large SD values.

• Shape error(SE) evaluated the temporal accuracy of the reconstruction. It was calculated as the root mean 
square of the difference between the normalized reconstructed time course and the normalized ground truth 
time course. Low SE values indicate high temporal accuracy of the reconstruction.

Statistics. Throughout all of the quantitative evaluations among different methods involving different depth 
weighting factors ω in the results section, Wilcoxon signed rank test was applied to test the significance of the 
paired differences between each comparison. For each statistical test, we reported the median value of paired dif-
ferences, together with its p-value (Bonferroni corrected). We are only showing results at 830nm for simulations, 
since the ones from 690nm under the same SNR level would have provided similar reconstructed spatiotemporal 
maps except for the reversed amplitudes. However, reconstruction results on real data indeed involved both 
wavelengths.

Results
Evaluation of MEM versus MNE using realistic simulations. We first investigated the effects of depth 
weighting factor boldsymbolω2 selection for depth weighted MNE. To do so, we evaluated spatial and temporal 
performances of DOT reconstruction for a set of ω2 (step of 0.1 from 0 to 0.9). Based on those results reported in 
the Supplementary material S2 and Fig. S1, we decided to considered that most accurate fNIRS reconstructions 
were obtained when considering ω2 = 0.3 and 0.5 for depth weighted MNE. Therefore only those two values 
were further considered for comparison with MEM reconstructions.

Comparison of the performance of MEM and MNE on superficial realistic simulations are presented in Table 1 
and Fig. 3, for 4 levels of spatial extent ( Se = 3, 5, 7, 9 ), using boxplot distribution of the 4 validation metrics. 
We evaluated 3 depth weighted implementations of MEM, namely, MEM(ω1 = 0.3,ω2 = 0.3 ), MEM(0.3, 0.5) 
and MEM(0.5, 0.5), as well as 2 depth weighted implementations of MNE, namely, MNE(0.3) and MNE(0.5).

(13)SNR� =
max(abs(�OD�[0, t1]))

mean(std(�OD�[−t0, 0]))
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For spatial accuracy, results evaluated using Dmin, we obtained median Dmin values of 0 mm for all methods, 
indicating the peak of the reconstructed map, was indeed accurately localized inside the simulated generator. It 
is worth mentioning that MEM(0.5, 0.5) provided few Dmin values larger than 0 mm in Se = 3 and Se = 5 cases, 
which consisted of superficial and focal generators. Since MEM accurately estimated the spatial extent, more 
depth weighting considered for MEM(0.5, 0.5) could results in focal and deeper reconstruction, hence resulting 
in non-zero Dmin values. On the other hand, MNE would over-estimate the size of the underlying generators, 
therefore resulting in 0 mm Dmin, but larger SD values in similar conditions.

When considering the general reconstruction accuracy using AUC, for focal generators such as Se = 3 and 
5, we found significant larger AUC (see Table 1) for MEM(0.3, 0.3) and MEM(0.3, 0.5) when compared to the 
most accurate version of MNE, i.e., MNE(0.3). When considering more extended generators, i.e., Se = 7 and 
9, MEM(0.3, 0.5) and MEM(0.5, 0.5) achieved significantly larger AUC than MNE(0.3). However, the AUC of 

Figure 3.  Evaluation of the performances of MEM and MNE using realistic simulations involving superficial 
seeds for different spatial extent ( Se = 3, 5, 7, 9 ). Boxplot representation of the distribution of four validation 
metrics for three depth weighted strategies of MEM and two depth weighted strategies of MNE, namely: 
MEM(0.3, 0.3) in blue, MEM(0.3, 0.5) in green, MEM(0.5, 0.5) in red, MNE(0.3) in magenta and MNE(0.5) 
in black. Results were obtained after DOT reconstruction of 830nm �OD . Figure created by MATLAB version 
(R2016a) https:// www. mathw orks. com/ produ cts/ matlab. html.

Table 1.  Wilcoxon signed rank test results of reconstruction performance comparison of MEM and MNE in 
superficial seeds case. Median values of paired difference are presented in the table. p values were corrected for 
multiple comparisons using Bonferroni correction, * indicates p < 0.01 and ** represents p < 0.001 . Median of 
the paired difference of each validation metrics is color coded as follows: green: MEM is significantly better than 
MNE, red: MNE is significantly better than MEM and gray: non-significance.

https://www.mathworks.com/products/matlab.html
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MNE(0.5) was significantly larger than MEM(0.3, 0.3) for Se = 7 as well as significantly larger than MEM(0.3, 0.5) 
and MEM(0.5, 0.5) for Se = 9.

In terms of spatial extent of the estimated generator distribution and the localization error, MEM provided 
significantly smaller SD values among all the comparisons. Finally, for temporal accuracy of the reconstruction 
represented by SE, MNE provided significantly lower values, but with a small difference (e.g., 0.01 or 0.02, see 
results on real data as a reference of this effect size), than MEM among all comparisons when Se = 3, 5.

Similar comparison between MEM and MNE were conducted respectively for middle seed simulated genera-
tors and deep seed simulated generators. Results were overall reporting similar trends when comparing MEM 
and MNE methods for middle and deep seeds, and as expected more depth weighting resulted in more accurate 
reconstructions (described in detail in supplementary material, Fig. S2 and Table S1for middle seeds, Fig. S3 
and Table S2 for deep seeds).

To further illustrate the performance of MEM and MNE as a function of the depth of the generator, we are 
presenting some reconstruction results in Fig. 4. Three generators with a spatial extent of Se = 5 , were selected for 
this illustration. They were all located around the right “hand knob” area, and were generated from a superficial, 
middle and deep seed respectively. The first column in Fig. 4 shows the location and the size of the simulated 
generator, considered as our ground truth. The generator constructed from the superficial seed only covered 
the corresponding gyrus, whereas the generators constructed from the middle seed, included parts of the sulcus 
and the gyrus. Finally, when considering the deep seed, the simulated generator covered both walls of the sulcus, 
extended just a little on both gyri. For superficial case, MEM(0.3, 0.3) and MEM(0.3, 0.5) provided similar per-
formances in term of visual evaluation of the results and quantitative evaluations ( AUC = 0.96 , Dmin = 0mm , 
SD = 1.94mm, 2.15mm , SE = 0.03 ). On the other hand, for the same simulations, MNE(0.3) and MNE(0.5) 
resulted in less accurate reconstructions, spreading too much around the true generator, as confirmed by valida-
tion metric, exhibiting notably large SD values ( AUC = 0.86, 0.89 , Dmin = 0mm , SD = 9.84mm, 14.63mm , 
SE = 0.02 ). When considering the simulation obtained with the middle seed, MEM(0.3, 0.5) retrieved accurately 
the gyrus part of the generator but missed the sulcus component, since less depth compensation was considered. 
When increasing depth sensitivity, MEM(0.5, 0.5) clearly outperformed all other methods, by retrieving both 
the gyrus and sulcus aspects of the generator, resulting in the largest AUC = 0.98 and the lowest SD = 2.93mm . 

Figure 4.  Comparisons of the reconstruction maps using MEM and MNE in realistic simulations. Three 
theoretical regions with spatial extent Se = 5 ( 11 cm2 ) were selected near the ‘hand knob’ at different depth. 
The first column presents the locations and the size of the generator along the cortical surface. (a) Superficial 
seed case with reconstructed maps reconstructed using all MEM and MNE implementations considered in this 
study. (b) Middle seed case with reconstructed maps reconstructed using all MEM and MNE implementations 
considered in this study. (c) Deep seed case with reconstructed maps reconstructed using all MEM and MNE 
implementations considered in this study. 20% inflated and zoomed maps are presented on the left corner of 
each figure. 100% inflated right hemisphere are presented on the right side. All the maps were normalized by 
their own global maximum and no threshold was applied. Figure created by  Brainstorm59 using the NIRSTORM 
plugin developed by our team (https:// github. com/ Nirst orm).

https://github.com/Nirstorm
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MNE(0.3) was not able to recover the deepest aspects of the generator, but also exhibited a large spread outside 
the ground truth area as suggested by a large SD = 9.69mm . MNE(0.5) was able to retrieve the main generator, 
but also exhibited a large spatial spread of SD = 10.16mm . When considering the generators obtained from 
the deep seed, MNE(0.3) only reconstructed part of gyrus, missing completely the main sulcus aspect of the 
generator, resulting in low AUC of 0.57 and large SD of 10.34 mm . MEM(0.3, 0.5) was not able to recover the 
deepest aspects of the sulcus, but reconstructed accurately the sulci walls, resulting in an AUC of 0.89 and a SD 
of 2.71 mm . MEM(0.5, 0.5) recovered the deep simulated generator very accurately, as demonstrated by the 
excellent scores ( AUC = 0.97 , SD = 2.11mm ) when compared to MNE(0.5). For those three simulations, all 
methods recovered the underlying time course of the activity with similar accuracy (i.e., similar SE values). In 
supplementary material, we added Video.1, illustrating the behavior of all the simulations and all methods, fol-
lowing the same layout provided in Fig. 4.

Note that for this quantitative evaluation of fNIRS reconstruction methods using realistic simulation frame-
work, we considered fNIRS data at only one wavelength (830nm). Using single wavelength in the context simula-
tion based evaluation is a common procedure in DOT  literature9,13,23,25,29,30,69, since we may expect overall similar 
performances for 685 nm wavelength under the same SNR level.

Effects of depth weighting on the reconstructed generator as a function of the depth and size 
of the simulated generators. To summarize the effects of depth weighting in 3D fNIRS reconstructions, 
we further investigated the validation metrics, AUC, SD and SE, as a function of depth and size of the simu-
lated generators. Dmin was not included due to the fact that we did not find clear differences among methods 
throughout all simulation parameters from previous results. In the top row of Fig. 5, 250 generators created from 
all 250 seeds with a spatial extent of Se = 5 were selected to demonstrate the performance of different versions of 
depth weighting as a function of the average depth of the generator. Whereas in the bottom row of Fig. 5, we con-
sidered 400 generators constructed from all 100 superficial seeds with 4 different spatial extents of Se = 3, 5, 7, 9 , 
to illustrate the performance of different versions of depth weighting as a function of the size of the generator. 
According to AUC, depth weighting was indeed necessary for all methods when the generator moved to deeper 
regions ( > 2 cm ) as well as when the size was larger than 20 cm2 . Moreover, any version of MEM always exhib-
ited clearly less false positives, as indicated by lower SD values, than all of MNE versions, whatever was the depth 

Figure 5.  Effects of depth weighting on the depth and size of the simulated generators. First row demonstrates 
the validation matrices, AUC, SD and SE, as a function of depth of generators. We selected 250 generators 
created from all 250 seeds with a spatial extent of SD = 5 . Depth was calculated by the average of minimum 
Euclidean distance from each vertex, within each generator, to the head surface. Second row demonstrates 
the validation matrices, AUC, SD and SE, as a function of size of generators. Involving 400 generators which 
constructed from 100 superficial seeds with 4 different spatial extend of Se = 3, 5, 7, 9 . Line fittings were 
performed via a 4 knots spline function to estimate the smoothed trend and the shade areas represent 95% 
confident interval. Color coded points represent the values of validation matrices of all involved generators. 
Figure created by MATLAB version (R2016a) https:// www. mathw orks. com/ produ cts/ matlab. html.

https://www.mathworks.com/products/matlab.html
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or the size of the underlying generator. We found no clear trend and difference of temporal accuracy among 
methods when reconstructing generators of different depths and sizes.

Robustness of 3D reconstructions to the noise level. All previous investigations were obtained from 
simulations obtained with a SNR of 5, in this section we compared the effect of the SNR level in Fig. 6, on depth 
weighted versions of MNE and MEM, for superficial seeds only and generators of spatial extent Se = 5 . We 
only compared MEM(0.3, 0.5) and MNE(0.5) considering the observation from previous results that these two 
methods were overall exhibiting best performances in this condition. Regarding Dmin, paired differences were 
not significant but MNE exhibited more Dmin values above 0 mm  than MEM at all SNR levels, suggesting 
that MNE often missed the main generators while MEM was more accurate in reconstructing the maximum of 
activity within the simulated generator. Regarding AUC, MEM(0.3, 0.5) exhibited values higher than 0.8 at all 
SNR levels, whereas MNE(0.5) failed to recover accurately the generator for SNR = 1 . Besides, in Table 2, we 
found that difference of AUC between MEM and MNE increased when SNR level decreased, suggesting the 
good robustness of MEM when decreasing the SNR level. The difference of SD also increased when SNR levels 
decreased. Indeed, MEM exhibited stable SD values among most SNR levels (except SNR = 1 ), whereas for MNE 
SD values were highly influenced by the SNR level. Finally, for both methods, decreasing SNR levels resulted in 
less accurate time course estimation (SE increased), slightly more for MEM when compared to MNE.

Illustration of MEM and MNE reconstructions on real fNIRS data. For all finger tapping fNIRS data 
considered in our evaluations, two wavelength (i.e., 685nm and 830nm) were reconstructed first and then con-
verted to HbO/HbR concentration changes along cortical surface using the standard absorption coefficients for 
each wavelength and each hemoglobin chromophore (HbO, HbR), as reported in our previous  publications19,47,70. 
All the processes from fNIRS preprocessing to 3D reconstruction were completed in  Brainstorm59 using the 
NIRSTORM plugin developed by our team (https:// github. com/ Nirst orm). For full double density montage 

Figure 6.  Evaluation of the performances of MEM and MNE at four different SNR levels. Boxplot 
representation of the distribution of four validation metrics for MEM(0.3, 0.5) and MNE(0.5) involving 
superficial seeds with spatial extent Se = 5 . SNR levels ( SNR = 1, 2, 3, 5 ) are represented using different colors. 
Figure created by MATLAB version (R2016a) https:// www. mathw orks. com/ produ cts/ matlab. html.

Table 2.  Reconstruction performance comparison of MEM and MNE with different SNR levels. Median of 
paired difference of validation metric (i.e. AUC, Dmin, SD and SE) values of Se = 5 are presented in the table 
following the SNR increase from 1 to 5. ** indicates corrected p < 0.001.

https://github.com/Nirstorm
https://www.mathworks.com/products/matlab.html
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(montage 1), reconstructed HbR amplitudes were reversed to positive phase and normalized to their own global 
maximum, to facilitate comparisons. In Fig. 7a, we showed the reconstructed HbR maps at the peak of the time 
course (i.e., 31s) for MEM and MNE by considering the 4 depth weighted versions, previously evaluated, i.e., 
MEM(0.3, 0.3), MEM(0.3, 0.5), MNE(0.3) and MNE(0.5). The two depth weighted versions of MEM clearly 
localized well the “hand knob” region, while exhibiting very little false positives in its surrounding. On the other 
hand, both depth weighted version of MNE clearly overestimated the size of the hand knob region and were also 
exhibiting some distant possibly spurious activity. The fMRI Z-map obtained during the corresponding fMRI 
task is presented on Fig. 7b, after projection of the volume Z-map on the cortical surface. Fig. 7c showed the 
time courses within the region of interest representing the “hand knob”. Each curve represents the reconstructed 
time course of one vertex of the hand knob region and the amplitude were normalized by the peak value within 
the whole region. Further illustrations of MEM and MNE performance on finger tapping for 5 subjects with 
montage 2 are presented in Supplementary material S4.

Discussion
In the present study, we first adapted the MEM framework in the context of 3D fNIRS reconstruction and exten-
sively validated its performance. The spatial performance of reconstructions can be considered in two aspects, 
1) correctly localizing the peak of the reconstructed map close enough to the ground truth area, 2) accurately 
recovering the spatial extent of the generator. According to our comprehensive evaluations of the proposed 
depth-weighted implementations of MEM and MNE methods, accurate localization was overall not difficult to 
achieve as suggested by our results using Dmin metric. Almost all methods provided median value of Dmin to 
be 0 mm  in all simulation conditions except for the lowest SNR = 1 condition where more localization error was 
found. On the other hand, recovering the actual spatial extent of the underlying generator is actually the most 
challenging task in fNIRS reconstruction. When considering the results of MNE on both realistic simulations 
and real finger tapping tasks, either from visual inspection (Figs. 4, 7 and S4) or quantitative evaluation by SD 
(Fig. 3, Table 1 and supplementary Sect. S2), we found that MNE overall reconstructed well the main generator 

Figure 7.  Application of MEM versus MNE reconstruction of HbR during a finger tapping task on one healthy 
subject. (a) Reconstructed maps of HbR (e.g. 20% inflation on the left and 100% inflation on the right side.) from 
MEM and MNE with different depth compensations. Each map was normalized by its own global maximum. 
(b) fMRI Z-map results projected along the cortical surface. (c) Reconstructed time courses of HbR within 
the hand knob region from MEM and MNE. Note that the hand knob region, represented by the black profile, 
was also matched well with the mean cluster of fMRI activation map on primary motor cortex. No statistical 
threshold was applied on fNIRS reconstructions. Figure created by  Brainstorm59 using the NIRSTORM plugin 
developed by our team (https:// github. com/ Nirst orm).

https://github.com/Nirstorm
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but largely overestimated the size of the underlying generator. MEM was specifically developed, in the context 
of EEG/MEG source imaging, as a method able to recover the spatial extent of the underlying generators, which 
has been proved not to be the case for MNE-based  approaches33,36–38,40. A recent  review71 in the context of EEG/
MEG source imaging also suggests that the Bayesian approach with sparsity constraints is required to accurately 
estimate the spatial extent. These important properties of MEM were successfully demonstrated in our results on 
fNIRS reconstructions. These excellent performances on spatial accuracy and sensitivity to the spatial extent of 
the underlying generators, as quantified using Dmin, AUC and SD metrics, were reliable for different sizes and 
depths of simulated generators, and for real finger tapping fNIRS data as well.

In this study, we performed a detailed evaluation of depth-weighted MNE reconstruction and we also pro-
posed for the first time a depth weighting strategy within the MEM framework, by introducing two parameters: 
ω1 acting on scaling the source covariance matrix, and ω2 tuning the initialization of the reference for MEM. 
When compared to depth weighted MNE, the MEM framework demonstrated its ability to reconstruct, different 
depth of focal generators as well as larger size generators, exhibiting excellent spatial accuracy to recover gen-
erators of different depths and spatial extent, as quantified using large AUC values (e.g., high AUC values) and 
few false positives (e.g., low SD values, see Fig. 5). When considering deeper focal generators ( depth > 2 cm ), 
MEM(0.5, 0.5) clearly outperformed all other methods (see AUC and SD values in Fig. 5). In summary, for a large 
range of depths and spatial extents of the underlying generators, MEM methods exhibited accurate results (large 
AUC values) and less false positives (lower SD values) when compared to MNE methods. In practice, we would 
suggest to consider either ω2 = 0.3 or 0.5 for the initialization of MEM in all cases and only tune ω1 . This is due 
to the fact that MNE(0.3 or 0.5) provided a generally good reconstruction with larger true positive rate in most 
scenarios, therefore providing MEM an accurate reference model, dν(x) , to start with. Even when considering 
the most focal simulated generators ( Se = 3 ) case (see Figs. 3, 5 and Table 1), MEM(0.3, 0.3) and MEM(0.3, 0.5) 
were actually exhibiting very similar performances. Our suggestion to tune ω1 and ω2 parameters was actually 
further confirmed when considered results obtained from real data. For both montages, MEM(0.3, 0.3) results 
in excellent spatial agreement with fMRI Z-maps. Note that depth weighting was also considered in DOT stud-
ies using  MNE9,12,14,15,22,53 and a hierarchical Bayesian DOT  algorithm11,29,30. A spatially-variant regularization 
parameter β was added to a diagonal regularization matrix featuring the sensitivity of every generator (forward 
model), and the value of β was tuned according to the sensitivity value of a certain depth. In practice, this strategy 
would result in similar depth compensation as ours, but we preferred the depth weighting parameter ω which 
mapped the amount of compensation from 0 to 1 [as described in Eq. (3)] for easier interpretation and com-
parison. This is also a standard procedure introduced in EEG/MEG source localization  studies51,54. Finally, using 
the depth weighted MNE solution as the prior is a common consideration in Hierarchical Bayesian framework 
based fNIRS  reconstructions11,29,30.

Another important contribution of this study was that we improved the temporal accuracy time courses 
estimated within the MEM framework, resulting in similar temporal accuracy the one obtained with MNE. The 
largest significant SE difference between MEM and MNE was only 0.02 for Se = 3 and 0.01 for Se = 5 . Corre-
sponding time course estimations are also reported for MEM and MNE in real data (Figs. 7 and S4), suggesting 
again very similar performances. For instance, SE between MEM and MNE HbO time course was estimated as 
0.02 for Sub05 in Fig. S4. Moreover, we found no significant SE differences between MEM and MNE for more 
extended generators (Se = 7,9). These findings are important considering that MNE is just a linear projection 
therefore the shape of the reconstruction will directly depend on the averaged signal at the channel level. On 
the other hand, MEM is a nonlinear technique, applied at every time sample, which is not optimized for the 
estimation of resulting time courses.

To further investigate the effects of the amount of realistic noise in our reconstructions on both reconstruction 
methods, we performed the comparisons along 4 different SNR levels, i.e., SNR = 1, 2, 3, 5 . As shown in Fig. 6 and 
Table 2, we found that MEM was overall more robust than MNE when dealing with simulated signals at lower 
SNR levels. This is actually a very important result since when reconstructing HbO/HbR responses, one has to 
consider at least two � OD of two different wavelengths exhibiting different SNR levels. For the simulation results, 
we reported reconstruction results obtained from 830nm data, whereas when considering real data (Figs. 7 and 
S4), we had to convert the reconstruction absorption changes at 685nm and 830nm into HbO/HbR concentration 
changes. Therefore, our final results were influenced by the SNR of all involved wavelengths. fNIRS is inherently 
sensitive to inter-subject  variability72, as also suggested in our application on real data presented in Fig. S4. Data 
from Sub05 were exhibiting a good SNR level and therefore both MEM and MNE reconstructed accurately the 
main cluster of the activation, while MNE presented more spatial spread and false positive activation outside the 
fMRI ROI. When considering subjects for whom we obtained lower SNR data, e.g., Sub02 and Sub03, MEM still 
recovered an activation map similar to fMRI map. In those cases, MNE not only reported suspicious activation 
pattern but also incorrectly reconstruct the peak amplitude outside the fMRI ROI. Our results suggesting MEM 
robustness in low SNR conditions for DOT are actually aligned with similar findings suggested for EEG/MEG 
source imaging, when considering source localization of single trial  data39,42.

To perform a detailed evaluation of our proposed fNIRS reconstructions methods, we developed a fully con-
trolled simulation environment, similar to the one proposed by our team to validate EEG/MEG source localiza-
tion  methods33,36,38. The fNIRS resting state data, acquired by the same montage (montage1) and underwent the 
same preprocessing as conducted for the real data, was added to the simulated true hemodyanmic response for 
each channel. Indeed such environment provided us access to a ground truth, which is not possible when consid-
ering real fNIRS data set. Previous studies validated tomography  results11,22 by comparing with fMRI activation 
map which can indeed be considered as a ground truth, but only for well controlled and reliable paradigms. Since 
fMRI also measures a signal of hemodynamic origin, it is reasonable to check the concordance between fMRI 
results and DOT reconstructions. Therefore, as preliminary illustrations, we also compared our MEM and MNE 
results to fMRI Z-maps obtained during finger tapping tasks on 6 healthy participants (Figs. 7 and S4), suggesting 
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overall excellent performances on spatial accuracy (by qualitative visual inspections) of MEM when compared to 
MNE. Further quantitative comparison between fMRI and fNIRS 3D reconstruction, on well controlled finger 
tapping data using MEM and MNE, was conducted in our follow up  study73.

Several software packages have been proposed to provide fNIRS reconstruction pipelines, as for instance 
 NeuroDOT22,74,  AtlasViewer75 and fNIRS-SPM76. To ensure an easy access of our MEM methodology to the 
fNIRS community, we developed and released a fNIRS processing toolbox - NIRSTORM (https:// github. com/ 
Nirst orm), as a plugin of Brainstorm  software59, which is a renown software package dedicated for EEG/MEG 
analysis and source imaging. Our package NIRSTORM offers standard preprocessing, analysis and visualiza-
tion as well as more advanced features such as personalized optimal montage design, access to forward model 
estimation using  MCXlab64,65 and the MNE and MEM implementations considered in this study.

Previously, Tremblay et al.23 had comprehensively compared a variety of fNIRS reconstruction methods 
using large number of realistic simulations. Since introducing MEM was our main goal of this study, we did not 
consider such wide range of methodological comparisons. We decided to carefully compare MEM with MNE 
since MNE remains the main method considered for DOT, and is available in several software packages. As 
suggested in Tremblay et al.23, DOT reconstruction methods based on Tikhonov regularization, such as least 
square regularization in MNE, usually allow great sensitivity, but performed poorly in term of spatial extent - 
largely overestimating the size of the underlying generator. On the other hand, L1-based  regularization24–27 could 
achieve more focal solutions with high specificity but much lower sensitivity. As demonstrated in our results, the 
proposed MEM framework allows reaching good sensitivity and accurate reconstruction of the spatial extent 
of the underlying generator. Bayesian model averaging (BMA) originally proposed for EEG source imaging by 
Trujillo-Barreto et al.77, also allows accurate DOT reconstructions with less false positives when compared to 
MNE. Similarly, we carefully compared MEM to Bayesian multiple priors approaches in Chowdhury et al.33 in the 
context of MEG source imaging. Comparing MEM with more advanced DOT reconstruction methods, includ-
ing also the one proposed by Yamashita et al.11, would be of great interest but was out of the scope of this study.

Considering the main contribution of this study was to introduce and adapt the MEM framework for 3D 
fNIRS reconstruction, we decided to first carefully evaluate the performance of MEM using well controlled real-
istic simulations. We also included few real data set reconstructions to illustrate the performance of the MEM 
reconstruction, whereas quantitative evaluation of MEM reconstructions on a larger database were conducted 
in our follow-up  study73. In this complementary study, we conducted both individual and group-level quanti-
tative comparisons between fNIRS reconstructed maps and fMRI activation maps, both at the individual and 
group levels. In agreement with our detailed evaluation on realistic simulations, our results reported  in73 also 
showed that MEM provided better spatial accuracy than MNE, while both methods offered similar temporal 
accuracy when reconstructing HbO/HbR concentration changes evoked by finger-tapping. In previous reported 
 studies12–14,22,69, a high density montage was considered which was proved to be able to provide high spatial 
resolution and robustness to low SNR  conditions13, evaluating the performance of MEM when considering high 
density fNIRS montage would be of great interest but was out of the scope of this present study.

Conclusion
In this study, we introduced a new fNIRS reconstruction method entitled Maximum Entropy on the Mean 
(MEM). We first implemented depth weighting into MEM framework and improved its temporal accuracy. To 
carefully validate the method, we applied a large number ( n = 4000 ) of realistic simulations with various spatial 
extents and depths. We also evaluated the robustness of the method when dealing with low SNR signals. The 
comparison of the proposed method with the widely used depth weighted MNE was performed by applying 
four different quantification validation metrics. We found that MEM framework provided accurate and robust 
reconstruction results, relatively stable for a large range of spatial extents, depths and SNRs of the underlying 
generator. Moreover, we implemented the proposed method into a new fNIRS processing plugin - NIRSTORM in 
Brainstorm software to provide the access of the method to users for applications, validations and comparisons.
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