
An altered balance of integrated and 
segregated brain activity is a marker of 
cognitive deficits following sleep 
deprivation 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Cross, N. E., Pomares, F. B., Nguyen, A., Perrault, A. A., 
Jegou, A., Uji, M., Lee, K., Razavipour, F., Bin Ka'b Ali, O., 
Aydin, Ü. ORCID: https://orcid.org/0000-0002-6327-7811, 
Benali, H., Grova, C. and Thanh Dang-Vu, T. (2021) An altered
balance of integrated and segregated brain activity is a marker
of cognitive deficits following sleep deprivation. PLoS Biology, 
19 (11). e3001232. ISSN 1545-7885 doi: 
10.1371/journal.pbio.3001232 Available at 
https://centaur.reading.ac.uk/111218/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1371/journal.pbio.3001232 

Publisher: Public Library of Science 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


RESEARCH ARTICLE

An altered balance of integrated and

segregated brain activity is a marker of

cognitive deficits following sleep deprivation

Nathan E. CrossID
1,2,3*, Florence B. PomaresID

1,2,3, Alex NguyenID
1,2,4, Aurore

A. PerraultID
1,2,3, Aude JegouID

1,4, Makoto UjiID
1,2,4, Kangjoo Lee4,5,6,

Fatemeh Razavipour1,4,5, ObaïBin Ka’b Ali1,4,5, Umit AydinID
1,4,5,7, Habib BenaliID

1,

Christophe Grova1,4,5*, Thien Thanh Dang-Vu1,2,3*

1 PERFORM Centre, Concordia University, Montreal, Canada, 2 Center for Studies in Behavioral

Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal,

Canada, 3 Institut Universitaire de Gériatrie de Montréal and CRIUGM, CIUSSS du Centre-Sud-de-l’Île-de-
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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Sleep deprivation (SD) leads to impairments in cognitive function. Here, we tested the

hypothesis that cognitive changes in the sleep-deprived brain can be explained by informa-

tion processing within and between large-scale cortical networks. We acquired functional

magnetic resonance imaging (fMRI) scans of 20 healthy volunteers during attention and

executive tasks following a regular night of sleep, a night of SD, and a recovery nap contain-

ing nonrapid eye movement (NREM) sleep. Overall, SD was associated with increased cor-

tex-wide functional integration, driven by a rise of integration within cortical networks. The

ratio of within versus between network integration in the cortex increased further in the

recovery nap, suggesting that prolonged wakefulness drives the cortex towards a state

resembling sleep. This balance of integration and segregation in the sleep-deprived state

was tightly associated with deficits in cognitive performance. This was a distinct and better

marker of cognitive impairment than conventional indicators of homeostatic sleep pressure,

as well as the pronounced thalamocortical connectivity changes that occurs towards falling

asleep. Importantly, restoration of the balance between segregation and integration of corti-

cal activity was also related to performance recovery after the nap, demonstrating a bidirec-

tional effect. These results demonstrate that intra- and interindividual differences in cortical

network integration and segregation during task performance may play a critical role in vul-

nerability to cognitive impairment in the sleep-deprived state.
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Introduction

The cognitive consequences of acute total sleep deprivation (SD) are substantial, negatively

affecting a wide range of processes including attention, vigilance, and working memory [1,2].

Yet, the measurable impact of SD on cognition varies across individuals in a trait-like manner

[3,4]. Investigating intraindividual changes in brain activity patterns has significant potential

in understanding the interindividual effects of prolonged wakefulness on cognitive function-

ing. Previous studies have demonstrated the effects of acute total SD on brain activity mea-

sured with functional magnetic resonance imaging (fMRI) during the resting state, such as

disrupted connectivity within and between large-scale cortical networks [5] and a reduction in

network modularity [6]. However, very few studies have investigated the changes in brain con-

nectivity during the performance of cognitive tasks.

Both localised brain regions and cortical networks display characteristic and independent

(segregated) activity patterns during the performance of tasks [7,8]. However, even simple

behaviours and cognitive processes require the coordination (integration) of information

flows across systems distributed in the brain [9]. It has been proposed that efficient cognitive

functioning is reflected through a balance of segregation and integration of information across

brain networks [10,11].

Endogenous activity fluctuations in the human brain share a robust association with ongo-

ing cognitive and perceptual processes [12,13], as they may interfere with the capacity for

information processing. Importantly, both local and global fMRI activity fluctuates at a signifi-

cantly greater magnitude in states of reduced arousal and vigilance [14], as well as following

SD [5,15,16]. Therefore, in states of reduced arousal, an elevation in endogenous fluctuations

across the cortex may affect the ability to integrate information between and within cortical

networks, corresponding to the cognitive deficits experienced during these states. These defi-

cits may also be driven by certain changes in subcortical regions, such as the thalamus, which

is involved in both maintaining cortical arousal [17] and constraining the engagement of dis-

tributed neural assemblies within the cerebral cortex [18]. However, this has not been explored

following experimental manipulation of arousal states, such as SD. Furthermore, SD-induced

cognitive impairment partially improves with subsequent sleep [19]. Yet, it remains unclear

whether this behavioural recovery is associated with a functional “recovery” of cortical net-

works after sleep.

Here, we assessed the principles of functional brain activity across various arousal states

using simultaneous electroencephalography (EAU : PleasenotethatEEGhasbeendefinedaselectroencephalographyinthesentenceHere;weassessedtheprinciplesof ::::Pleasecheckandcorrectifnecessary:EG)–fMRI recording and an SD protocol. Par-

ticipants were scanned both at rest and while performing cognitive tasks probing attention,

executive control, and working memory, after both a regular night of sleep and 24 hours of

SD. Additionally, we measured EEG–fMRI activity during a recovery nap containing nonrapid

eye movement (NREM) sleep following SD, as well as during a post recovery nap (PRN) ses-

sion when the rest and task sequences were repeated. Firstly, to quantify the functional interac-

tions within and between cortical networks across vigilance states, we computed a measure of

integration of fMRI activity [20,21] within and between functional networks across different

hierarchical levels of a representation of the cortex. We then compared the changes in func-

tional integration during task performance to the magnitude of cognitive impairment follow-

ing SD. In addition, we measured the association between recovery of both performance and

the integration of cortical networks following the nap. Next, we assessed these changes in the

context of changes to the amplitude of both local activity fluctuations and the global brain sig-

nal. Finally, we investigated the influence of thalamocortical activity on functional integration

in the cortex across different arousal states.

PLOS BIOLOGY Information processing in the human cortex following sleep deprivation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001232 November 4, 2021 2 / 22

corresponds to each aspect of the figures is

described in the documents

‘Data_underlying_figures.docx’, included with

these files. All code used in this study was

developed by the authors for the execution of the

study, and is available online at https://github.com/

nathanecross/sleep-deprivation. Raw data are

restricted due to legal/ethical considerations.

However, they may be shared with other

investigators upon reasonable request and

evaluation of such request by our local ethics

review board: oor.ethics@concordia.ca.

Funding: This research was supported by the

Natural Sciences and Engineering Research

Council of Canada (TDV) and the Canada

Foundation for Innovation (TDV). The MRI

compatible high-density EEG device (Philips

Neuro) and data acquisition were made possible

through an internal grant from PERFORM center

and the Faculty of Arts and Science of Concordia

University (CG). TDV is also supported by the

Canadian Institutes of Health Research (MOP

142191, PJT 153115, PJT 156125 and PJT

166167), the Fonds de Recherche du Québec –
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Results

A total of 20 participants (mean age of 21.2 ± 2.5 years, 12 females) participated in the study.

In each session (PRN, post recovery nap; RW, rested wakefulness; SD, sleep deprivation), par-

ticipants completed a 5-minute resting state sequence (fixation cross) (Fig 1A). Participants

also completed 3 cognitive tasks (Fig 1B). Two were focused on attention—the attention net-

work task (ANT [22], 13 minutes) and the Mackworth clock task (MCT [23], 5 minutes). The

other focused on working memory—the N-back task [24] (8 minutes). As expected, perfor-

mance outcomes (accuracy and reaction time) across all tasks were significantly impaired fol-

lowing SD and improved following the recovery nap (S1 Text, Fig A in S1 Text, Table A in S1

Text).

Through EEG confirmation, 13 participants (65%) had brief sleep episodes (<10 seconds),

and 4 (20%) fell asleep (>30 seconds) during the resting state sequences in the SD condition.

In addition to excessive head motion (average framewise displacement: 0.16 ± 0.09mm in RW

versus 0.22 ± 0.14mm in SD), this resulted in these sequences not being used in the main anal-

yses, however results from the resting state data can be found in (SI Results in S1 Text, Fig B in

S1 Text). None of the subjects in the final sample fell asleep during the cognitive tasks. Addi-

tionally, head movement inside the scanner during the cognitive tasks was not significantly

different between the sessions (average framewise displacement across 3 tasks: 0.15 ± 0.08 mm

(RW) versus 0.17 ± 0.09 mm (SD); F = 1.06, p = 0.301). Therefore, we focused our main analy-

ses on task fMRI data during the RW, SD, and PRN states, as well as during the recovery nap

consisting of NREM sleep.

The fMRI data across the multiple tasks were concatenated temporally for every subject,

resulting in a 26-minute–long time series of blood oxygen level dependent (BOLD) signal (Fig

1C). The general task-specific activity (i.e., for all trials for the ANT and all blocks for the MCT

and N-back tasks) was regressed out from the BOLD time series as has been implemented in

previous studies [25,26] to reduce the influence of task-evoked activations in connectivity and

integration analyses. The BOLD data sampled along the cortical surface were clustered into

400 parcels [27]. Integration was calculated at different levels in a constructed hierarchical

model of the cortex. The whole cortex was divided into 7 networks, and each of these 7 net-

works were further divided into smaller subnetworks (17 networks in total), based on a widely

used functional template of cortical networks [28]. We further divided the 17 subnetworks

into smaller clusters (57 clusters in total, estimated through hierarchical clustering within each

of the 17 subnetworks, Fig 1D, Fig C in S1 Text) to assess integration changes at an even more

localised level than 17 networks. Total integration (ITot) equates to the sum of within and

between subsystem integration (i.e., within and between 7 networks at the whole cortex level).

Differences in total integration were compared between the 3 vigilance states and NREM sleep

within a Bayesian framework as has been used previously [20,21].

Altered functional integration in the cerebral cortex during the sleep-

deprived state

Overall, there was a widespread increase in correlation values (functional connectivity)

between cortical parcels from RW to SD (41% of edges significantly increased, Fig 2A). This

coincided with an increase in the (ITot) measured across the entire cortex. Fig 2B illustrates the

changes in functional integration across distinct levels in the hierarchical model of the cortex.

At the level of 7 cortical networks, there was an increase in integration within 6 of the 7 net-

works, with the exception of the limbic network (Table B in S1 Text). At the 17-network level,

12 networks demonstrated increased integration, while 1 of the ventral attention (B) and 2 of

the frontoparietal control (A and C) and limbic networks showed no change (Table C in S1

PLOS BIOLOGY Information processing in the human cortex following sleep deprivation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001232 November 4, 2021 3 / 22

https://doi.org/10.1371/journal.pbio.3001232


PLOS BIOLOGY Information processing in the human cortex following sleep deprivation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001232 November 4, 2021 4 / 22

https://doi.org/10.1371/journal.pbio.3001232


Text). At the cluster level, there was more of a variety of change in integration, and 2 clusters

within the limbic network demonstrated a substantial decreased integration from RW to SD.

This pattern of change indicates that while increases in total integration were detectable when

measured across the entire cortex, this was not uniform and preferentially affected certain net-

works and regions at lower, more localised, levels of the hierarchy (Fig 2C).

Further deconstructing these changes in integration following SD, we additionally calcu-

lated the degree of functional clustering within the cortex. Functional clustering estimates how

integration is hierarchically organised within and between the constituent parts of a system,

Fig 1. Study design and behavioural results. (A) Participants made 3 visits to the lab: a habituation night, followed by a counterbalanced design of either another full-

night opportunity to sleep (blue) or a night of total SD. In the morning following each night, participants completed RS and cognitive tasks inside the MRI scanner. In

the sleep-deprived state (red), participants also had a recovery nap opportunity (yellow) and then recompleted the tasks inside the MRI scanner. (B) Participants

completed 3 cognitive tasks inside the scanner in each condition: the ANT, N-back task, and MCT. (C) The preprocessed BOLD time series was concatenated across the

3 tasks, providing one time series for each subject and condition. Task-specific activity (trials for the ANT, blocks for the N-back, and MCT) was modelled with a finite

impulse response combined with a hemodynamic response function (black line) and regressed from the time series (blue line) for each parcel to reduce the influence of

task-evoked coactivation in subsequent connectivity analyses. (D) Integration was calculated from the covariance matrix of cortical parcels, in a hierarchical manner:

across the whole cortex, 7 networks, 17 networks, and 57 clusters. At the cortex level, total integration was calculated as the sum of integration within each of Yeo7

networks and a single measure of integration between networks (between systems). The total integration within each Yeo7 network was calculated as the sum of

integration within each of Yeo17 subnetworks and the integration within each of the Yeo17 networks as the sum of integration within each cluster of parcels, as well as a

single measure of integration between subnetworks or clusters. AAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1 � 5:Pleaseverifythatallentriesarecorrect:NT, attention network task; BOLD, blood oxygen level dependent; MCT, Mackworth clock task; MRI,

magnetic resonance imaging; RS, resting state; SD, sleep deprivation.

https://doi.org/10.1371/journal.pbio.3001232.g001

Fig 2. Changes in functional integration between large-scale cortical networks and regional clusters in the sleep-deprived state. (A)

The t test matrix of change in functional correlations between the time series of 400 cortical parcels (during task performance) depicts a

widespread increase in correlations between SD and WR states (unthresholded, lower triangle; thresholded PFDR<0.05, upper triangle).

(B) Changes in integration (as a percentage of the value in the WR condition) are shown across different levels of a hierarchical model of

the cortex: whole cortex, 7 networks, 17 networks, and 57 clusters. The total integration within the cortex increased from the WR to the SD

state, but not within all networks (�italics depict significant changes measured through a Bayesian framework). (C) The % change in total

integration at each level of the hierarchy mapped onto the cortical surface illustrates that the increase in integration is most focused

towards the centre of the lateral surface. Data underlying this figure can be found in S1 Data. DAN, dorsal attention network; DMN,

default mode network; PFDR, positive false discovery rate; Somato, somatomotor network; VAN, ventral attention (salience) network;

WR, well rested.

https://doi.org/10.1371/journal.pbio.3001232.g002
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such as networks in the cortex. Specifically, the functional clustering ratio (FCR) is the ratio of

within-network integration to between-network integration and quantifies the degree of func-

tional segregation of a given system into subsystems [20]. There was a significant increase in

the FCR from RW to SD at both the level of the entire cortex and within 4 of the 7 cortical net-

works: control, default mode, somatomotor, and ventral attention (Table D in S1 Text). The

increase in both ITot and FCR was highly correlated across subjects (r = 0.92, p< 0.001). This

indicates that the increase in ITot following SD was driven by integration within each network

than any increased integration between networks (Fig D in S1 Text). After parsing each of the

17 networks into assemblies (clusters) based upon a hierarchical clustering of each network

(Fig C in S1 Text), the only significant increases in the FCR were observable within the control

(A), default mode (C), somatomotor (B), and ventral attention (A) networks (Table E in S1

Text).

To demonstrate the robustness of these findings to the choice of preprocessing or parcella-

tion, we replicated these analyses without regressing out the task-specific activity (Table F in

S1 Text) or when using network communities defined by a data-driven clustering of the func-

tional connectome (via the Louvain algorithm [29]) rather than an a priori enforced template

(Table G in S1 Text, Fig E in S1 Text). These analyses support the main findings. However,

more cortical networks demonstrated significant increases in integration induced by SD when

the task-evoked activity were not regressed out (7 of the Yeo7 networks and 15 of the Yeo17

networks), suggesting that task activations may interact with SD to further drive an increase in

cortical within-network integration.

Altered functional integration in the cerebral cortex is related to changes in

cognitive performance

To assess how the changes in brain activity patterns related to changes in cognitive perfor-

mance, we first assessed a combination of performance change across all tasks. The difference

in performance outcomes (SD–RW) on each of the 3 separate cognitive tasks were grouped

into either accuracy (% of correct responses) or speed (reaction time, ms). These change scores

for accuracy or speed were entered into 2 separate principal component analyses (PCAs) to

obtain resulting the principal components that explained the most variance in accuracy or

speed across the 3 tasks. The first component for accuracy (explaining 71% of the variance

across tasks) was robustly and significantly negatively associated with the change in FCR

within the cortex (Fig 3A). The first component for speed (explaining 95% of the variance) was

also significantly positively correlated with the change in FCR across the entire cortex. Very

similar results were observed for associations between the increase in (ITot) and decrease in

performance (SI Results in S1 Text, Fig F in S1 Text). The change in integration within each of

the 7 networks was negatively correlated with change in accuracy and speed from RW to SD

(SI Results in S1 Text). We also assessed the change in performance on each task separately in

comparison to the change in (ITot) during that task only. A greater increase in (ITot) was signifi-

cantly related to worse accuracy and speed in the ANT and Nback tasks, but not the MCT (Fig

G in S1 Text).

Changes in functional integration and cognitive performance following a

recovery nap

A decrease in connectivity was observed from the SD to the PRN state, although to a lesser

extent than the increase observed between RW and SD (16.7% of connections significantly

decreased, Fig H in S1 Text). There was a small decrease in FCR across the entire cortex (Fig

3B). This was not correlated with the duration of the nap or the amount of slow wave sleep
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Fig 3. The changes in total integration and FCR is related to performance decline and recovery following SD. (A) There

is a strong relationship between the change in total integration across the cortex and decrement in both performance

accuracy and speed across 3 cognitive tasks from the WR to the SD state (top panel; performance on the x-axis is depicted as

the first component from a principal component analysis on task outcomes). (B) The paired change in integration and

performance was also observed for recovery after the nap. (C) The FCR increased from RW to SD, however, significantly

increased in all subjects during the nap containing NREM sleep, indicating the role of FCR in conscious states (lines

represent significant within-subjects differences between sessions). (D) Conversely, total integration increased within

subjects from RW to SD, but there was a drop during the recovery nap despite remaining high upon waking after the nap

PLOS BIOLOGY Information processing in the human cortex following sleep deprivation
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across individuals (SI Results in S1 Text). However, the subjects who had the greatest decrease

in FCR from SD to the PRN showed the largest improvement in performance for both the

accuracy and speed outcomes (Fig 3A). This recovery effect demonstrates a bidirectional link

between changes in functional integration and changes in cognitive performance due to SD.

Functional clustering of brain activity is robustly associated with conscious

states

Following the SD condition, 19 of the 20 participants managed to successfully sleep inside the

scanner, for an average of 50 ± 12 minutes (a sleep summary can be found in Table H in S1

Text). To ensure the reliability of integration measures in all conditions (RW, SD, PRN, and

sleep), a stable period of 26 minutes (i.e., the same length as the concatenated task time series)

consisting of NREM sleep (Stages N2 and N3) was selected from the fMRI scan sequence, and

the same connectivity and integration metrics were calculated. During this recovery nap of

NREM sleep, the FCR was significantly greater during NREM sleep than the wake states, for

all subjects (Fig 3B). This was despite the amount of (ITot) being comparable to the other wake

states (Fig 3C). The increase in FCR and stability of (ITot) was driven by both an increase in

within-networks integration as well as a decrease in the integration between networks during

the nap (SI Results in S1 Text, Fig D in S1 Text). These changes demonstrate that the altered

balance of within-networks and between-networks integration is a characteristic feature of

online versus offline brain states.

Functional integration is linked to the amplitude of local and global signal

fluctuations

We investigated whether the increase in functional integration may be due to regional changes

in the amplitude of brain activity fluctuations. Between the RW and SD states, the parcel-wise

change in signal fluctuation amplitude (standard deviation of task-regressed signal in each 400

parcels) was greatest over the somatosensory cortex and peripheral visual cortex (Fig 4A).

Across individuals, these changes in signal fluctuation amplitude were only correlated with

individual-level changes in integration within the visual cortex (Fig 4B). However, the spatial

correspondence between the group-level changes in signal fluctuation and changes in integra-

tion at the group level were all significantly correlated, and the relationship was strongest for

integration changes at the cluster (assembly) level (Fig 4C).

In line with previous reports [5,15,16], the amplitude of the global signal fluctuation (stan-

dard deviation of the global signal time series) significantly increased from the RW to the SD

state (Fig 4D). At the RW state, the time series of each parcel were only moderately associated

with the global signal time series; however, this increased significantly across a widespread

number of parcels, including somatomotor, visual, temporal, and parietal regions of the cortex

during the SD state and persisted in the PRN state (Fig 4E). In each state, the (ITot) was signifi-

cantly correlated with the global signal fluctuation; however, the relationship was the strongest

during the SD state (Fig 4F). This suggests that the global signal is strongly associated with

measures of functional integration, but these measures become more tightly coupled in peri-

ods of reduced arousal, such as following SD. To ensure that these results were not driven by

motion, the relationship between the global signal fluctuation and (ITot) remained significant

(lines represent significant within-subjects differences between sessions). Data underlying this figure can be found in S2

Data. FCR, functional clustering ratio; NREM, nonrapid eye movement; PRN, post recovery nap; SD, sleep deprivation; WR,

well rested.

https://doi.org/10.1371/journal.pbio.3001232.g003
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Fig 4. The relationship between functional integration and local and GS fluctuations. (A) The group average

change in amplitude of signal fluctuation (standard deviation of signal) in each of 400 cortical parcels between SD and

WR states. (B) The individual-level correlations between change in amplitude of the signal fluctuation and integration

within 17 networks. (C) Correspondence between the group average change in amplitude of signal fluctuation with

group average total integration within 7 networks, 17 networks, and 57 clusters (significance corrected with 100 spin

permutations). (D) The distribution across subjects of the amplitude of the GS fluctuation in the WR, SD, and PRN

states. (E) Group average correlation coefficient between each parcel’s time series and the GS in each state. (F)

Individual relationships between total integration across the cortex and the amplitude of the GS fluctuation in the WR,

SD, and PRN states. Data underlying this figure can be found in S3 Data. GS, global signal; PRN, post recovery nap;

SD, sleep deprivation; WR, well-rested.

https://doi.org/10.1371/journal.pbio.3001232.g004
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when average framewise displacement in each state was included as a covariate in the regres-

sion model (SI Results in S1 Text).

Relationships with sleepiness and physiological markers of sleep pressure

Given the increase in both (ITot) and the FCR within the cortex following SD, we tested

whether these were related to the level of homeostatic sleep pressure. Firstly, the change in

(ITot) was not associated with subjective sleepiness (Karolinska sleepiness score [30]). Neither

did the magnitude of the increase in (ITot) or FCR following SD correlate with sleep latency,

latency to Stage 3 NREM sleep, or the amount of slow wave activity (SWA) during the recovery

nap (SI Results in S1 Text). Additionally, despite a slight slowing of EEG frequencies from RW

to SD (1 to 4 Hz, SI Results in S1 Text), these changes were not related to the change in FCR or

(ITot). These all have been previously shown to be markers of homeostatic sleep pressure, sug-

gesting that functional integration in the cortex is not merely a marker of enhanced sleep pres-

sure. Furthermore, none of the aforementioned measures of homeostatic sleep pressure were

related to the change in accuracy or reaction time from RW to SD (SI Results in S1 Text).

Changes in subcortical connectivity

We also measured subcortical–cortical connectivity to investigate whether these interactions

may influence changes in cortical integration in periods of reduced arousal. Out of 5 subcorti-

cal regions (amygdala, caudate, pallidum, putamen, and thalamus) and the hippocampus,

there was a notable significant decrease in the correlations between the thalamus and wide-

spread cortical regions following SD (Fig 5A). Connectivity changes with the thalamus were

greatest in the somatomotor, dorsal attention, and temporal parietal networks (Fig 5B). How-

ever, no correlations between the change in thalamocortical connectivity and cortical integra-

tion were observed across individuals (Fig 5C). Neither were there any relationships observed

Fig 5. Changes in thalamocortical connectivity and the relationship to functional integration. (A) The group average change in

connectivity (correlation of time series) between all 400 cortical parcels and 6 subcortical regions from SD and WR states during task

performance. (B) Spatial map of changes in thalamocortical connectivity between SD and WR states during task performance. (C) The

individual-level relationship between change in thalamocortical connectivity and integration within 17 networks during task

performance. (D) The individual distributions of thalamocortical connectivity (averaged across the entire cortex) in the WR, SD, and

PRN states. � Denotes average connectivity is significantly different from zero. Data underlying this figure can be found in S4 Data.

NREM, nonrapid eye movement; PRN, post recovery nap; RS, resting state condition; SD, sleep deprivation; T, task condition; WR, well

rested.

https://doi.org/10.1371/journal.pbio.3001232.g005
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between thalamocortical connectivity and cognitive performance or markers of sleep pressure

(SI Results in S1 Text). Nevertheless, thalamocortical connectivity was lowest during the SD

state, even less than during NREM sleep (Fig 5D). This was particularly accentuated in the rest-

ing state sequence following SD, a period of sleep–wake instability when the majority of sub-

jects had sleep intrusions (Fig 5D).

Discussion

These findings demonstrate that in states of low arousal (i.e., SD), the integration within corti-

cal networks increases relative to integration between networks. These changes were observed

during the performance of cognitive tasks, and, importantly, were strongly related to overall

performance. The balance of these 2 integration terms, i.e., the FCR, can be viewed as a mea-

sure of the degree of functional segregation of a system into its constituent parts [11,20]. In

other words, this signifies how much information cortical networks generate independently,

compared with the information generated by the cortex as a whole. The FCR was found to

increase across the cortex in the SD state and preferentially within certain functional networks

(each divided, in turn, into smaller networks; Fig 2B), suggesting that these modifications in

information integration were present when measured across different hierarchical levels of the

cortex.

We detected the greatest FCR during the NREM recovery nap (Fig 3C), consistent with pre-

vious observations during NREM sleep [20,31,32]. Although previous comparisons of NREM

sleep were with the wakeful resting state, the current findings demonstrate that these effects

generalise to other states of wakefulness (i.e., task performance). The increase in FCR was

driven by both an increase in within-network integration as well as a significant decrease in

between-network integration. It is widely accepted that sleep is not merely a state of quies-

cence, but an active brain state of self-organised, endogenous activity mostly cut off from the

outside world. The level of consciousness has been hypothesised to be related to the degree of

integrated information in the brain, that is, the information generated by the interactions in a

whole system, beyond the information generated by the parts [33,34]. This is consistent with

our observations of segregated brain activity during the recovery nap. Alternatively, in the SD

state, the integration between networks remained the same as the RW state, which is coherent

with the fact that subjects remained in a conscious, wakeful state. However, given the increase

of within-network integration, the FCR was still significantly higher when compared to RW.

In summary, these results suggest that following prolonged wakefulness, the proportional inte-

gration and segregation of brain activity within structured cortical networks appears to be

driven from levels in well RW towards those observed during offline states, such as NREM

sleep, suggesting that there exists an underlying continuum of functional segregation from

RW to NREM sleep. We were not able to robustly measure the differences between NREM2

and NREM3 in this study with the same amount of consecutive data points as in the wake con-

ditions; however, other studies suggest that brain networks are even more segregated during

NREM3 compared to NREM2 sleep [35] and that total integration decreases in proportion to

SWA [20].

We have recently shown that the primary axes of differentiation in functional connectivity

(i.e., functional gradients) across the cortex do not undergo major changes following SD [36].

This is consistent with the current findings, although within-network integration increased,

and between-network functional connectivity remained stable (Fig D in S1 Text). Further-

more, the gradient approach is mainly sensitive to the shape of the functional connectivity dis-

tributions rather than variations in amplitude. Indeed, in this study, we found that changes in

the integration of brain activity are related to elevated amplitude of brain signal fluctuations,
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particularly the global signal (Fig 4F). We were able to confirm that this relationship was not

due to increased motion during the SD state (SI Results in S1 Text). The reason behind an

increase in signal amplitude during SD is not clear. However, one emerging candidate for a

primary role of sleep is the flushing of metabolic waste through the mixing of cerebrospinal

and interstitial fluid via the glymphatic system [37,38]. Large oscillations of fluid inflow into

the perivascular space occur during sleep and are tightly coupled with large amplitude EEG

slow waves [39,40]. Thus, a buildup of waste products from extended periods of cellular activ-

ity in the brain may trigger the mechanisms (i.e., large amplitude slow waves) for the glympha-

tic system to begin clearing waste, even in the wake state [38]. Additionally, it is also plausible

that a change in respiration or cardiac activity due to parasympathetic drive could account for

changes in BOLD activity amplitude, as cerebral blood flow increases after SD [41], and the

greatest changes in integration were detected nearest to the middle cerebral artery [42]. Finally,

given the assumptions of our model of integration, in particular that the BOLD data at each

time point are temporally independent and identically distributed (i.i.d) realisations of a

400-dimensional random variable y [21], it is possible that potential sample dependencies

across time could contribute to an overestimation of integration measures within the data.

This could mean that the increased integration we observed in the SD condition is due to an

increase in temporal dependencies in the data. This should be investigated in future studies

investigating the dynamics of brain activity in the SD state. The effect of spatial dependence in

the BOLD time series would have had a negligible impact on these findings, as it has been

shown that this effect is important at the small spatial scale (i.e., few voxels) and is less impor-

tant at the regional level (i.e., >30 mm), the latter of which was implemented in this study

[43].

Our results demonstrate that disruption to the balance between integration and segregation

of cortical networks has a significant impact on effective and efficient cognitive performance

(Fig 3A), which was shown to be specific to executive attention and working memory rather

than vigilance (Fig G in S1 Text). This effect was bidirectional, as both increased FCR follow-

ing SD negatively correlated with performance change, while the decrease in FCR following a

recovery nap was associated with the greatest cognitive improvement. Maintaining a balance

between integration and segregation of information flow is thought to be crucial for distrib-

uted brain networks to execute effective cognitive function [7,11]. In particular, the ability to

dynamically fluctuate between integrated and segregated brain states may be the primary

mechanism that supports ongoing cognitive processes [44,45]. Information generated by the

brain would theoretically decrease if dynamic states become more homogenous (indicated by

an increase in total and within-network integration or global signal amplitude). Evidence from

resting state fMRI studies have demonstrated that SD results in increased time spent in

dynamic states associated with low vigilance [46–48]. Also, it has recently been shown that

brain connectivity integration changes during resting state are coupled with arousal fluctua-

tions [49]. However, how SD impacts state dynamics during the performance of cognitive

tasks remains to be seen.

We also replicated previous findings demonstrating that SD results in disruptive changes of

thalamocortical functional connectivity, including the introduction of negative correlations

[5,50]. The underlying mechanisms and physiological meaning of negative functional connec-

tivity are still unclear [51–53]. However, the disruption of thalamocortical connectivity would

have a significant impact on the maintenance of cortical arousal. The intralaminar and midline

nuclei of the thalamus, with strong inputs from brainstem nuclei, are considered as part of the

ascending reticular activating system that stimulate the cortex and facilitate the generation of

intrinsic functional modes [17,54,55]. The thalamus also serves as the major hub for gating the

flow of information into the cerebral cortex by blocking incoming signals through synaptic
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inhibition of thalamocortical relays. This is proposed to be the main mechanism contributing

to shifting the brain from an aroused state into an “offline” state such as sleep [56].

However, we observed no relationship between the change in thalamocortical connectivity

and cortical integration or cognitive performance across subjects (Fig 5C). Specifically, almost

every subject expressed decreased (or anticorrelated) thalamocortical connectivity in the SD

state, while there were more varied changes in integration between the RW and SD states

across subjects (some not exhibiting relative increases in integration or FCR after 24 hours of

SD). There are 2 possible explanations for these findings. Firstly, during prolonged wakeful-

ness, thalamocortical disconnection may precede changes in cortical integration, the latter

occurring after different durations of SD across individuals. This is supported by evidence that

during sleep onset, thalamic deactivation (i.e., thalamic activity decreasing to overall sleep lev-

els) precedes cortical changes by several minutes [57,58]. This would also be consistent with

the observation that the thalamocortical connectivity was at its lowest in the SD resting state

sequence (Fig 5D), when it was confirmed through EEG that the majority of subjects experi-

enced brief entry into sleep. An alternative possibility is that disrupted thalamocortical connec-

tivity is a state-based effect of SD, while altered cortical integration underlies interindividual

differences in cognitive performance (or cortical “reserves”) following SD. To compare these

hypotheses would require repeated measurements of brain activity across an extended period

of prolonged wakefulness. Regardless, these results further elucidate the relationship between

the thalamus and cortex, demonstrating that, in some individuals, the cortex can still maintain

an optimal balance of integration and segregation required for cognitive processing despite

becoming functionally disconnected from the thalamus. As has been proposed, the ascending

modulatory transmitter systems mostly provide the necessary arousal to tune the state and

excitability of the different parts of the cortex, which allow for the appropriate analysis of sen-

sory information (i.e., cognitive processing and behavioural responses) [56]. Therefore, thala-

mocortical disruption following SD may not directly cause impaired cognition, but rather be a

precipitating factor via altered functional integration in the cortex.

Conclusions

In conclusion, SD appears to impact the balance of integration and segregation of brain activ-

ity. Whether these changes are completely neurogenic or arise from systemic processes

involved in maintaining homeostasis of the cellular environment in the brain remain to be elu-

cidated. However, they appear independent from conventional markers of homeostatic sleep

pressure and changes in thalamocortical connectivity. Regardless, the disruption of informa-

tion integration in the brain is significantly linked to the extent of cognitive impairment expe-

rienced by individuals following SD. Future perspectives should focus on why integration and

segregation of brain activity is impaired following SD and how this impacts the dynamics of

integrated network states during cognitive task performance.

Materials and methods

Population and experimental design

A total of 20 participants were recruited using advertisements posted online and within Con-

cordia University, Montreal. This study was approved by the Comité central d’éthique de la

recherche (CCER), established by the Ministère de la Santé et des Services sociaux in Quebec.

This ethical review of research adheres to the principles expressed in the Declaration of Hel-

sinki. Informed written consent was obtained from all participants. All participants were 18 to

30 years old, healthy, and regular sleepers, and none were taking any medication. Participants

made 3 visits to the sleep laboratory, including a night for habituation and screening to rule
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out sleep disorders, a normal night (8-hour sleep, RW) and experimental night (0-hour sleep,

SD). Each morning in the RW and SD conditions, participants completed one resting state

sequence and 3 cognitive tasks: the ANT, MCT, and the N-back task. In the SD condition, par-

ticipants were provided a 60-minute opportunity to sleep inside the MRI, and the tasks and

then the resting state sequence were repeated. The order of the RW and SD sessions was coun-

terbalanced across subjects (SI Materials and methods in S1 Text).

Analysis

The change in performance outcomes on each of the 3 separate cognitive tasks were grouped

into either accuracy (% of correct responses) or speed (reaction time, in ms). This provided 2

data matrices of size #subjects × #tasks, one matrix containing accuracy scores and one con-

taining reaction times. The change scores for accuracy or speed were entered into separate

PCAs, in order to provide a global estimate of performance. The first principal component

from each PCA was extracted and used as a single measure for accuracy or speed across the 3

tasks.

fMRI data acquisition and analysis

MRI scanning was acquired with a 3T GE scanner (General Electric Medical Systems, Wiscon-

sin, United States) using an 8-channel head coil. Structural T1-weighted images with a 3D

BRAVO sequence, and functional echo planar images were acquired. Data were preprocessed

using the fMRIPrep [59] and xcpEngine [60] toolboxes (for detailed steps, see SI Materials and

methods in S1 Text). The preprocessed BOLD time series for each subject was projected onto

the cortical surface and smoothed along the surface using a 6-mm smoothing kernel using the

FreeSurfer software package. For each subject and session, the general task-specific activity

(convolved with a hemodynamic response function) was regressed out from the BOLD time

series, and the time series from all tasks were concatenated into one time series per subject and

condition.

Network and assembly identification

For all analyses of task data, the BOLD time series for each vertex on the fsaverage surface was

assigned to one of 400 cortical parcels from a predetermined standardised template of func-

tionally similar cortical regions [27]. The time series for all the vertices corresponding to each

parcel were averaged to give one mean time series per parcel, resulting in a total of 400 time

series across both cortical hemispheres. We then divided the cortex in 3 separate steps, which

allowed us to arrange the data in a hierarchical framework comprising 4 levels (Fig B in S1

Text). Firstly, at the cortex level, each parcel was assigned to either 1 of 7 functional networks,

taken from a template based on a large sample of resting state data [28]. At the second level of

the hierarchy (7 networks), each parcel was assigned to 1 of 17 functional networks taken from

a higher resolution version of the same template [28], and these 17 networks were clustered

into 1 of the 7 original networks based on naming convention. At the third level (17 networks),

each of the 17 functional networks were further partitioned into assemblies (clusters) based

upon a hierarchical clustering technique, resulting in a partitioned composed of 57 clusters.

To achieve this last level of the hierarchy, the averaged correlation matrix was computed for

each network during the RW session and thresholded at p< 0.05. The thresholded correlation

structure was computed for each of the 17 networks, and their structure was assessed by a hier-

archical clustering that maximised intraclass similarity, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � r2Þ

p
, where r is the

correlation coefficient between 2 regions. By thresholding the similarity trees at the level of the
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highest increase of intracluster distance, the 17 networks were divided into assemblies of areas

(Fig E in S1 Text). Subcortical regions were extracted from the FreeSurfer segmentation of the

FSL MNI152 template represented by 8 regions of interest (RAU : PleasenotethatROIshasbeendefinedasregionsofinterestinthesentenceSubcorticalregionswereextractedfromthe::::Pleasecheckandcorrectifnecessary:OIs) corresponding to the left

and right hemispherical thalamus, striatum, hippocampus, and amygdala. Partition into com-

munity structure and analyses of resting state data are described in SI Materials and methods

in S1 Text.

Functional connectivity and integration

The mean time course of each parcel or volume was correlated to the mean time courses of all

other parcels, and the correlation matrices were z-scored. Significance was corrected at

p< 0.05 using the false discovery rate method [61].

Functional integration was calculated as follows. The functional data were considered as N
ROIs (parcels) characterised by their mean time courses y = (y1,. . .,yN) gathered into K systems

(networks) defined as S = {S1,. . .,SK}. For any partition of y, integration (or mutual informa-

tion) can then defined as the Kullback–Leibler information divergence between the joint dis-

tribution p(y1,. . .yK) and the product of the marginal distributions of the N-dimensional fMRI

BOLD time series y divided into K subsets, such that

I½y1; . . . ; yK � ¼ DKL½pðy1; . . . ; yKÞ;
QK

k¼1
pðykÞ�;

which can be rewritten as

I½y1; . . . ; yK � ¼
PK

k¼1
HðpðykÞÞ � Hðpðy1; . . . ; yKÞÞ;

whereH is the Shannon entropy measure [21]. For multivariate normal data with meanmu
and covariance matrix Sigma, entropy can be computed as

H pðyÞð Þ ¼
1

2
ln jSigmajð Þ

where |Sigma| refers to the determinant of the covariance matrix. As described in [21], the

total integration (ITot) can be decomposed, according the organisation of regions into systems,

as the sum of each system’s integration relative to its regions (within-system integration) and a

between-system integration term

I½y1; . . . ; yN � ¼ Iws þ Ibs

or, alternatively,

I½y1; . . . ; yN � ¼
PK

k¼1
IððynÞn2SkÞ þ I½yS1

; . . . ; ySK �:

Integration was calculated at different levels in our proposed hierarchical model of the cor-

tex. Firstly, integration was calculated across the whole cortex where N = 400 parcels were

gathered into 7 networks. Secondly, for each of 7 networks separately, the N parcels were gath-

ered into small subnetworks (Yeo 17 networks), where each of the 7 networks contained a

minimum of 2 out of 17 subnetworks. Finally, for each of the 17 subnetworks, the N parcels

were divided into K of the 57 clusters (assemblies), where each of the 17 networks contained a

minimum of 2 out of 57 clusters.

We defined the FCR as the ratio of the integration within subsystems (Iws), compared to the

integration present between these subsystems (Ibs) [20]. It is a measure of clustering inside a

given system because an increase in FCR indicates that subsystems become proportionally

more independent of each other. In other words, it quantifies the degree of functional
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segregation of a given system into subsystems:

FCR ¼ Iws=Ibs:

The FCR was also computed for each network or cluster at each level of the hierarchy.

EEG data acquisition and analysis

EEG was acquired using an MR compatible 256 high-density geodesic sensor EEG array

(EAU : PleaseprovidethemanufacturerlocationforElectricalGeodesicsinthesentenceEEGwasacquiredusinganMRcompatible::::lectrical Geodesics (Eugene, OR, USA), Magstim EGI). EEG data were recorded at 1,000 Hz

referenced to Cz using a battery-powered MR-compatible 256-channel amplifier. Electrocardi-

ography (ECG) was also collected via 2 MR compatible electrodes through a bipolar amplifier

(PAU : PleaseprovidethemanufacturerlocationforPhysioboxinthesentenceElectrocardiographyðECGÞwasalso::::hysiobox (Eugene, OR, USA), Magtism EGI). The EEG data were corrected for MR gradient

ballistocardiographic pulse-related artefacts using the Brainvision Analyzer (Brain Products,

Gilching, Germany). The MR-denoised EEG signal was band-pass filtered between 1 and 20

Hz to remove low-frequency drift and high-frequency noise, down-sampled to 250 Hz, and re-

referenced to the linked mastoids. Scoring of the sleep session was performed in conjunction

by 2 trained scorers (NEC and AAP) using the Wonambi toolbox (https://github.com/

wonambi-python/wonambi) (using the channels Fz, F3, F4, C3, C4, O1, and O2) in order to

obtain measures of sleep including total sleep time and the duration of sleep stages. For the

analysis of wake EEG, eye blink artefacts were removed with independent component analysis

(IAU : PleasenotethatICAhasbeendefinedasindependentcomponentanalysisinthesentenceFortheanalysisofwakeEEG; eyeblinkartefacts::::Pleasecheckandcorrectifnecessary:CA) using the MNE Python package. The ICA was fit on each EEG time series concatenated

across tasks for each subject and condition. The number of components was set to 15, with a

random seed to ensure the uniformity of components. The resulting ICA components were

then compared to electrooculogram (EAU : PleasenotethatEOGhasbeendefinedaselectrooculograminthesentenceTheresultingICAcomponentswerethen::::Pleasecheckandcorrectifnecessary:OG) electrodes any AU : PleasedefinedICsinthesentenceTheresultingICAcomponentswerethen:::ifapplicable=appropriateandaddtothemainabbreviationlist:independent components (ICs) that

matched the EOG pattern were automatically marked for exclusion. Any matching compo-

nents were then excluded from the original signal, and this new time series was then used for

all subsequent analysis. Power spectral analysis was also computed using MNE, via the Welch

method using a frequency resolution of 1 Hz.

Statistical analysis

Bayesian sampling scheme. Probable values of integration and FCR were inferred from

the data using a Bayesian numerical sampling scheme that approximates the posterior distribu-

tion of the parameters of interest [21]. We first ran Gibbs sampling on the model to propose a

numerical approximation of p(Sigma|y). Using this sampling procedure, we obtained 1,000

samples from the posterior distribution of the group covariance matrix (Sigmas = 1,. . .,1,000)

in either condition (RW, SD, and PRN). From each sample Sigmas, we computed the corre-

sponding values of integration (Iws and Ibs) and FCR. For each measure and condition, we

therefore obtained a frequency histogram that, by construction, approximated the posterior

distribution of that measure given the data. The samples were then used to provide approxima-

tions of either statistics (e.g., mean and SD) or probabilities (e.g., probability of an increase

between RW and SD) approximated as the frequency of that increase observed in the samples.

This also allowed to approximate the posterior probability p(A|y) of the assertion, e.g.,

FCRSD > FCRRW using the equation

P Ajyð Þ �
1

S
FCRSDfsg > FCRRWfsg
n o

;

where # stands for the cardinal function of a set. For analyses between conditions, a probability

of difference >0.95 was considered significant.
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During the sampling procedure, a covariance matrix was also estimated for each individual.

Thus, similarly to the group-level analysis, we compared the resulting estimates of FCR at the

individual level with other individual metrics (e.g., performance measures, global signal fluctu-

ation, and thalamocortical connectivity) using product–moment correlations.

Spatial correspondence between cortical maps. For the comparison between brain maps

(Fig 3), we used a spatial permutation framework to generate null models of overlap [62]. Spa-

tial permutation of brain maps was performed using 100 angular permutations of spherical

projections of the cortical surface. This approach calculates a correspondence statistic between

2 maps while controlling for spatial autocorrelation in the data.

Supporting information

S1 Text. This file contains Supporting information Materials and methods and Results

that provide more detailed information regarding how the study was conducted and con-

trol analyses that provide more information surrounding the results reported in the main

text. This file also contains Supporting information Tables A–H and Figs A–H. Table A:

Mean task performance scores in each state. Table B: The ITot within 7 cortical networks, in

the WR, SD, and PRN states. Table C: The ITot within 17 cortical networks, in the WR, SD,

and PRN states. Table D: The FCR within 7 cortical networks, in the WR, SD, and PRN states.

Table E: The FCR within 17 cortical networks, in the WR, SD, and PRN states. Table F:

Changes in total integration and FCR across the whole cortex and cortical networks, when

task-specific activity was not regressed out of the time series for each parcel. Table G: Changes

in total integration and FCR across the whole cortex using networks defined by the Louvain

modularity algorithm. Table H: Mean sleep statistics during the nap. Fig A: Performance out-

comes (accuracy + reaction time) across all tasks were significantly impaired following SD and

improved following the recovery nap. Fig B: (A) The matrix of change in resting state func-

tional correlations between the time series of 100 cortical parcels depicts a widespread increase

in functional connectivity from WR to SD states, however, to a lesser extent than during tasks

(unthresholded, lower triangle; thresholded PFDR<0.05, upper triangle). (B) Changes in inte-

gration are shown across 2 levels of a hierarchical model of the cortex: whole cortex and 7 net-

works (the other levels could not be calculated with a 100 parcellation templat, due to spatial

resolution and that integration calculations required >1 parcels per region). The total integra-

tion within the cortex increased from the WR to the SD state and within 6 out of the 7 func-

tional networks (white italics depict significant changes, variations probability >0.95). (C) The

change in total integration mapped onto the cortical surface illustrates a widespread increase

in integration across the entire cortex during resting state. Fig C: Each of the 17 Yeo functional

networks were partitioned into assemblies (clusters) based upon a hierarchical clustering that

maximised intraclass similarity. A total whole brain partition of 57 clusters was resulting from

this procedure. To achieve this, the averaged correlation matrix was computed for each net-

work during the WR session and thresholded at p< 0.05. The thresholded correlation struc-

ture was computed for each of the 17 networks, and their structure was assessed by a

hierarchical clustering that maximised intraclass similarity, defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � r2Þ

p
, where r is

the correlation coefficient between 2 regions. By thresholding the similarity trees at the level of

the highest increase of intracluster distance (dotted line), the 17 networks were divided into

assemblies of areas. Clusters are displayed upon the cortical surface (upper right). Fig D: There

was a significant increase in total integration from RW to SD. This increase was due to an

increase in within-systems (networks) integration, with no change in integration between net-

works. Alternatively, while there was no change in total integration during the NREM nap,

there was a significant increase in within-systems and decrease in between-systems integration
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(solid lines represent significant differences between states). Fig E: (A) Five networks (com-

munities) were detected from the functional connectome in the WR condition using the Lou-

vain modularity algorithm of the Brain Connectivity Toolbox. Visually, these appear to cover

well described cortical networks in the literature: visual; somatomotor; default mode; limbic;

attentional networks. (B) When hierarchical integration was computed across these extracted

networks, there was an observed increase from WR to the SD condition across the level of the

entire cortex and also within 4 of the 5 networks (�bold italics represent significant differences

across states). Fig F: (A) Associations between the increase in total integration and cognitive

performance. Similar to the FCR, there was a significant negative relationship between change

in integration and accuracy and a positive relationship with speed performance from RW to

SD. (B) There was also a significant negative relationship between change in integration fol-

lowing the PRN and the change in performance from SD to PRN. Fig G: The change in perfor-

mance from RW to SD on each task separately in comparison to the change in integration of

cortical BOLD activity during each task. A greater increase in total integration was signifi-

cantly related to worse accuracy and speed in the ANT and Nback tasks, but not the MCT. Fig

H: (A) Overall a decrease in functional connectivity was observed from the SD to the PRN

state. (B) Changes in integration are shown across different levels of a hierarchical model of

the cortex: whole cortex, 7 networks, 17 networks, and 57 clusters. The total integration within

the cortex decreased minimally from the WR to the SD state and at the network level decreases

were only observed within the default mode, somatomotor and visual networks (bold white

italics depict significant changes, FDR corrected). AAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutS1Text:Pleaseverifythatallentriesarecorrect:NT, attention network task; BOLD, blood

oxygen level dependent; FCR, functional clustering ratio; MCT, Mackworth clock task;

NREM, nonrapid eye movement; PFDR, positive false discovery rate; PRN, post recovery nap;

RW, rested wakefulness; SD, sleep deprivation; WR, well rested.
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