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Abstract

In the present study, we proposed and evaluated a workflow of personalized near

infra-red optical tomography (NIROT) using functional near-infrared spectroscopy

(fNIRS) for spatiotemporal imaging of cortical hemodynamic fluctuations. The pro-

posed workflow from fNIRS data acquisition to local 3D reconstruction consists of:

(a) the personalized optimal montage maximizing fNIRS channel sensitivity to a

predefined targeted brain region; (b) the optimized fNIRS data acquisition involving

installation of optodes and digitalization of their positions using a neuronavigation sys-

tem; and (c) the 3D local reconstruction using maximum entropy on the mean (MEM)

to accurately estimate the location and spatial extent of fNIRS hemodynamic fluctua-

tions along the cortical surface. The workflow was evaluated on finger-tapping fNIRS

data acquired from 10 healthy subjects for whom we estimated the reconstructed

NIROT spatiotemporal images and compared with functional magnetic resonance

imaging (fMRI) results from the same individuals. Using the fMRI activation maps as

our reference, we quantitatively compared the performance of two NIROT

approaches, the MEM framework and the conventional minimum norm estimation

(MNE) method. Quantitative comparisons were performed at both single subject and

group-level. Overall, our results suggested that MEM provided better spatial accuracy

than MNE, while both methods offered similar temporal accuracy when reconstructing

oxygenated (HbO) and deoxygenated hemoglobin (HbR) concentration changes

evoked by finger-tapping. Our proposed complete workflow was made available in the

brainstorm fNIRS processing plugin—NIRSTORM, thus providing the opportunity for

other researchers to further apply it to other tasks and on larger populations.

K E YWORD S

finger tapping, functional magnetic resonance imaging (fMRI), functional near-infrared
spectroscopy (fNIRS), maximum entropy on the mean (MEM), near infra-red optical
tomography (NIROT), personalized optimal montage
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1 | INTRODUCTION

Functional near infra-red spectroscopy (fNIRS) noninvasively mea-

sures fluctuations of both oxygenated and deoxygenated hemoglobin

(i.e., HbO and HbR) in the cerebral cortex with high temporal resolu-

tion (Jöbsis, 1977; Scholkmann et al., 2014; Yücel et al., 2021). fNIRS

raw data measured by source-detector pairs called channels refer to

light intensity changes at specific wavelengths (e.g., 685 nm and

830 nm), modulated by local absorption associated with underlying

fluctuations of hemoglobin concentrations. Concentration changes in

HbO/HbR in each channel are usually estimated via the modified

Beer–Lambert Law (mBLL) (Delpy et al., 1988).

Importantly, the channel space analysis assumes homogeneous

concentration changes within the underlying region(s) of interest.

Such an assumption actually introduces systematic errors when deal-

ing with focal hemodynamic responses (Boas et al., 2001; Strangman,

Franceschini, & Boas, 2003). Near Infra-Red Optical Tomography

(NIROT) is a powerful alternative to channel space analysis to over-

come this issue, as well as to generate hemodynamic images along the

cortical surface (Arridge, 1999; Boas et al., 2001). NIROT avoids the

homogeneity assumption by reconstructing the light intensity changes

measured in the channel space on the underneath cortical area, before

converting them into local hemodynamic HbO/HbR fluctuations.

NIROT reconstruction actually consists in solving an ill-posed inverse

problem that requires specific regularization to obtain a unique

solution.

The first step of NIROT involves the definition of a specific fNIRS

channel layout, also called the montage, used for data acquisition,

which should allow sufficient density and spatial overlap between

channels to allow accurate 3D reconstruction (White & Culver, 2010).

A high-density montage involving various channel distances and

extensive overlapping between channels was initially proposed in

White and Culver (2010) and Zeff, White, Dehghani, Schlaggar, and

Culver (2007) and successfully considered in several NIROT studies

(Eggebrecht et al., 2012; Eggebrecht et al., 2014; Ferradal et al., 2016;

Hassanpour, Eggebrecht, Peelle, & Culver, 2017; Fishell, Burns-

Yocum, Bergonzi, Eggebrecht, & Culver, 2019). However, fNIRS

devices allowing such high-density montages are not widely accessi-

ble and are usually custom-made solutions not available commercially.

In previous studies (Machado et al., 2018; Machado, Marcotte, Lina,

Kobayashi, & Grova, 2014), our group has proposed an approach

entitled—personalized optimal montage, which maximizes the fNIRS

channel layout's sensitivity to a targeted region of interest along the

cortex, suggesting fNIRS as a technique mainly used to accurately and

locally explore hemodynamic processes, rather than a whole brain

imaging technique. While avoiding the need for a large high-density

montage, our approach could provide a personalized fNIRS montage

maximizing the detection efficiency as well as maintaining a sufficient

number of channels and spatial overlap to allow local reconstruction

of NIROT images.

The other important step when considering NIROT is to solve the

inverse problem to reconstruct HbO/HbR maps along the cortex from

the channel space measurements. This inverse problem is ill-posed

such that there are infinite number of solutions. Therefore, regulariza-

tion is required to estimate a unique solution. The most widely used

inverse problem estimator is the so-called minimum norm estimation

(MNE), which was first proposed by Hämäläinen and Ilmoniemi (1994)

for electroencephalography (EEG) and magnetoencephalography

(MEG) source localization and since then applied in several fNIRS

reconstruction studies (Dehghani, White, Zeff, Tizzard, &

Culver, 2009; Eggebrecht et al., 2012; Eggebrecht et al., 2014; Zeff

et al., 2007). MNE consists of applying Tikhonov regularization to min-

imize the L2-norm when solving the ill-posed inverse problem.

The maximum entropy on the mean (MEM) framework was first

proposed by Amblard, Lapalme, and Lina (2004), before being adapted

and carefully evaluated in the context of EEG/MEG source localization

(Chowdhury, Lina, Kobayashi, & Grova, 2013; Grova et al., 2006). A key

property of MEM source imaging is its ability to accurately recover the

spatial extent of the generators, as demonstrated in the context of:

(a) localizing transient epileptic discharges (Chowdhury et al., 2016;

Grova et al., 2016; Heers et al., 2016; Pellegrino et al., 2016; Pellegrino

et al., 2020) and oscillations (Avigdor et al., 2020; Pellegrino, Hedrich,

et al., 2016); (b) localizing focal sources, such as those evoked by

electrical median nerve stimulations (Hedrich, Pellegrino, Kobayashi,

Lina, & Grova, 2017); (c) EEG/MEG fusion in the presurgical evalua-

tion of epilepsy (Chowdhury et al., 2018); and (d) MEG resting state

connectivity (Aydin et al., 2020). In our previous study (Cai

et al., 2021), we adapted the MEM framework to perform fNIRS

reconstructions to generate NIROT images and then carefully evalu-

ated MEM performance within a comprehensive and realistic simula-

tion framework. In this study, we opted to combine the above

methodology developments as a workflow for conducting NIROT

and evaluated its performance using the real data acquired during a

motor task.

Here, we introduce a comprehensive NIROT workflow, the per-

sonalized NIROT using MEM, to accurately reconstruct and assess

HbO/HbR fluctuations within targeted brain regions. Our workflow

allows: (a) experiment planning and optimal probe design;

(b) personalized fNIRS montage installation and digitalization of sensor

positions using the neuronavigation device and (c) reconstruction of

hemodynamic images using the MEM method. To evaluate the

workflow, we considered a finger tapping task applied on a cohort of

10 healthy participants who performed the task twice, once during

fMRI and then during personalized fNIRS data acquisition. fMRI Z-

maps served as the reference for validation purposes. Evaluations

were conducted by visual inspections of the reconstructed NIROT

maps and using several quantitative validation metrics such as

Area Under the Receiver Operating Characteristic (ROC) curve

(AUC), Minimum geodesic distance (Dmin), Spatial Dispersion (SD)

and reconstructed HbO/HbR peak times. We also compared MEM

reconstructions to the conventional MNE approach. Finally, we

assessed the reliability (Yu et al., 2018; Zuo, Xu, & Milham, 2019) of

the performance differences between MEM and MNE, using a non-

parametric measure of discriminability (Bridgeford, Shen, Wang, &

Vogelstein, 2018; Wang, Bridgeford, Wang, Vogelstein, &

Caffo, 2020).
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2 | MATERIALS AND METHODS

2.1 | Subject cohort and experiment protocol

Ten healthy subjects (24�5 years old, right-handed) participated in

this study. The study was approved by the Central Committee of

Research Ethics of the Minister of Health and Social Services

Research Ethics Board, (CCER), Québec, Canada. All subjects signed a

written informed consent before participating in the study.

The study comprised two sessions for each participant who per-

formed the same task during a fMRI scan and a personalized fNIRS

scan. Participants performed a finger-tapping task which consisted of

tapping the left thumb to the other four digits sequentially, with a

pace at around 2Hz. The duration of the finger tapping block was

10s, and blocks were interleaved with a resting period lasting

between 30s to 60 s (i.e., one random sampled resting period in this

range per block). In the fMRI scan, during the resting period, partici-

pants looked at a fixation cross through a mirror placed above the

subjects' forehead. They were also asked not to move the head and

body while tapping the finger to reduce motion artifacts. The begin-

ning/end of each block was signaled by an auditory cue. The inter-

block interval was set so to reduce the influence caused by physiologi-

cal and systemic fluctuations so to achieve a better estimation of

task-evoked brain hemodynamic responses (Aarabi, Osharina, &

Wallois, 2017). The finger tapping-rest sequence was repeated 20

times, for around 16 min scan duration.

2.2 | Structural and functional MRI acquisitions

Each participant underwent anatomical and functional MRI with a

General Electric Discovery MR750 3T scanner at the PERFORM Cen-

tre of Concordia University, Montréal, Canada. The anatomical scans

were performed for fNIRS head model, optimal montage, and cor-

egistration between anatomical and fMRI data. In details, data were

recorded with the following parameters:

• T1-weighted anatomical images with the 3D BRAVO sequence

(1�1�1mm3, 192 axial slices, 256�256 matrix).

• T2-weighted anatomical images were scanned using the 3D Cube

T2 sequence (1�1�1mm3 voxels, 168 sagittal slices, 256�256

matrix).

• fMRI images with a gradient echo EPI sequence (3:7�3:7�3:7mm3,

32 axial slices, TE = 25ms, TR = 2000ms, 70� flip angle).

2.3 | Anatomical data processing

High-resolution T1- and T2-weighted images were processed using

FreeSurfer 6.0 (Fischl et al., 2002) (https://surfer.nmr.mgh.harvard.edu/

fswiki/FreeSurferWiki) and SPM12 (Penny, Friston, Ashburner, Kiebel, &

Nichols, 2011) (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) to

segment the head into five tissues (i.e., scalp, skull, Cerebrospinal fluid

(CSF), gray matter and white matter). Gray matter and white matter

masks were generated from the cortical/subcortical segmentation of

FreeSurfer. Scalp and skull masks were segmented using SPM. All seg-

mentation processes used both T1 and T2 weighted images to achieve

more accurate estimations of the tissue types by taking advantage of

their complementary contrasts. Anatomical surfaces such as pial surface,

gray/white matter interface and mid surface (i.e., a middle layer of the

gray matter) were estimated using FreeSurfer (Fischl & Dale, 2000).

2.4 | fMRI data processing

fMRI data were processed using FSL v6.0.0 (https://fsl.fmrib.ox.ac.uk/

fsl/) (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). Data

preprocessing included the following steps: (a) slice timing correction

using interleaved Hanning-windowed interpolation; (b) brain extraction

using BET2; (c) head motion correction applying rigid-body transforma-

tions (MCFLIRT); (d) spatial smoothing (5 mm FWHM Gaussian kernel);

(e) high-pass temporal filtering (45 s cut-off) and (f) registration to the

individual T1 anatomical image (FLIRT, linear transformation with

6 degrees of freedom), and normalization (linear affine transformation

with 12 degrees of freedom) to the MNI (Montreal Neurological Insti-

tute and Hospital) 1mm standard brain template (i.e., ICBM152).

The first-level general linear model (GLM) analyses were per-

formed using FEAT v6.0 (Woolrich, Ripley, Brady, & Smith, 2001),

employing boxcar (10 s) finger-tapping events convolved with the

double-gamma Hemodynamic Response Function (HRF). Time series

analysis was carried out using FILM (Woolrich et al., 2001) with local

autocorrelation correction. The resulting first-level task-evoked BOLD

Z statistic images were thresholded using Gaussian random field the-

ory based maximum height thresholding (Worsley, 2001) with the

voxel-wise inference (p< :01, corrected). To allow visual and quantita-

tive comparison with NIROT, individual images estimated along the

cortical surface, individual volumetric fMRI Z-maps were projected

onto the mid-surface (downsampled to 25,000 vertices) using a

Voronoi-based projection, which is a volume to surface interpolation

method able to preserve sulco-gyral morphology (Grova et al., 2006).

Z-values were averaged within each Voronoi cell and assigned to the

corresponding vertex of the cortical surface.

By using each subject's volume-based fMRI first-level results, we

conducted a group-level analysis in order to identify a reliable fMRI

reference region of interest (ROI) to be considered as our “ground
truth” for NIROT images evaluation. This group-level analysis was

performed using a mixed-effects model—FLAME1 in FEAT (Woolrich,

Behrens, Beckmann, Jenkinson, & Smith, 2004). The resulted BOLD Z-

statistic images were thresholded using Gaussian random field theory

based maximum height thresholding (Worsley, 2001) (clusters deter-

mined Z >3:1, cluster significance threshold of p< :01, corrected). The

thresholded fMRI group-level Z-map registered on the MNI standard

template (see Figure S1) was projected onto the mid-surface of the

template per se, using the same Voronoi projection method previously

mentioned. The significant region on the surface was determined

according to the Z threshold of volume-based results.

CAI ET AL. 4825
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2.5 | Personalized fNIRS data acquisition and
preprocessing

FNIRS data acquisition was conducted in the Multimodal Functional

Imaging Laboratory at PERFORM Center (Concordia University,

Montréal, Canada) using a continuous wave Brainsight fNIRS device

(Rogue-Research Inc, Montréal, Canada). Personalized fNIRS acquisi-

tion strategy consists of estimating a subject-specific optimal fNIRS

montage to maximize, a priori, the fNIRS sensitivity to the hemody-

namic activity in some targeted brain regions, while ensuring sufficient

spatial coverage and overlap to allow accurate local 3D reconstruction

(Machado et al., 2014; Machado et al., 2018). In this study, the hand-

knob region within the right primary motor cortex was defined as the

individual ROI. It was selected manually along the cortical surface (see

Figure 1a), taking into account anatomical landmarks (Raffin,

Pellegrino, Di Lazzaro, Thielscher, & Siebner, 2015) and using the

Brainstorm software (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011)

(http://neuroimage.usc.edu/brainstorm). Then, we estimated a per-

sonalized optimal fNIRS montage under the following constraints (see

Figure 1b): (a) 3 sources and 15 detectors; (b) source-detector dis-

tance between 2:0cm and 4:5cm; (c) spatial overlap between

channels—signal from each source to be detected by at least 13 out of

15 detectors. For each candidate source/detector pair, a fNIRS for-

ward model, computed using MCXLab Monte Carlo Photon simulator

(Fang & Boas, 2009; Yu, Nina-Paravecino, Kaeli, & Fang, 2018) was

considered to measure light sensitivity within the target region. The

output of the resulting optimization algorithm under proposed con-

straints, consisted in a set of spatial 3D coordinates indicating the opti-

mal position of the optodes on subject's scalp. Please find further

details in (Cai et al., 2021; Machado et al., 2014; Machado et al., 2018).

To monitor systemic fluctuations within superficial layers, we also

added one proximity detector (i.e., ~0:7cm to each source), located in

the center of the 3 sources of the montage. These optimal 3D coordi-

nates were loaded into a neuronavigation system (Brainsight TMS

navigation system, Rogue-Research Inc, Montreal) to guide the instal-

lation of the optodes on the scalp (Machado et al., 2018). fNIRS sen-

sors were then glued on the scalp (see Figure 1d) using a clinical

adhesive, called collodion, in order to minimize sensitivity to motion

artifacts and to improve fNIRS signal to noise ratio (Machado

et al., 2018; Yücel, Selb, Boas, Cash, & Cooper, 2014).

Raw fNIRS data were then preprocessed using a conventional

pipeline. Channels exhibiting either negative raw amplitude or a coef-

ficient of variation (standard deviation over the signal mean) larger

than 8% were classified as low-quality and rejected (Eggebrecht

et al., 2012; Piper et al., 2014; Schmitz et al., 2005; Schneider

et al., 2011). Superficial physiological fluctuations, also considered

here as noise, were modeled by the average signal of all proximity

channels and were regressed out from all channels using a linear

regression (Zeff et al., 2007). All channels were band-pass filtered

between 0:01Hz and 0:1Hz using a third order Butterworth filter.

Optical density changes (i.e., ΔOD), normalized for each channel by

the mean amplitude of the entire time course, were calculated using

the logarithm conversion of the filtered signal. ΔOD epochs with a

time window ranging from �10s to 30s around the task onset were

extracted, and noisy epochs were rejected through visual inspections

(i.e., overall, less than 4 out of 20 epochs were rejected for each sub-

ject, mainly caused by motion artifacts). Then, the resulting epochs

were averaged. This epoch averaged ΔOD, measured either at 685nm

or 830nm, was the input signal of fNIRS reconstruction algorithm to

obtain the NIROT images for each subject.

2.6 | Forward model estimation for NIROT

The subject-specific head model was calculated to estimate how a local

change in light absorption elicited by the hemodynamic response at a

specific vertex of the cortical area would impact fNIRS signals on scalp

channels. Volume-based subject-specific head segmentation (e.g., scalp,

skull, CSF, gray matter and white matter), were used to model the light

propagation from each optode of the optimal montage within head tis-

sues. We assigned each tissue the same optical coefficients used in

Fang & Boas, 2009; Machado et al., 2018 for the two wavelengths

(i.e., 685nm and 830nm). Fluences of each wavelength for each

optode were calculated by simulating the propagation of 108 photons

F IGURE 1 Personalized fNIRS investigation using an optimal montage targeting the right motor cortex. (a) Black profile represents the right

“hand knob” targeted region of interest, (b) resulting personalized optimal montage targeting this ROI consisting of 3 sources (red), 15 detectors
(green) and one proximity (in the center of sources not shown), (c) normalized light sensitivity profile of the optimal montage which was calculated
as the sum of all channel's sensitivity along the cortical surface, (d) optimal montage glued on the subject's head using collodion. Installation was
guided by a neuronavigation system, and optodes positions were then digitized after the acquisition for coregistration and forward modeling

4826 CAI ET AL.
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using MCXLAB (Fang & Boas, 2009; Yu, Nina-Paravecino, et al.,

2018) (http://mcx.space/wiki/index.cgi?MCX). Each voxel's sensitiv-

ity value corresponding to each fNIRS channel was then computed

using the adjoint formulation with the Rytov approximation

(Arridge, 1999).

To constrain the fNIRS reconstruction space within the cortical

region (Boas & Dale, 2005), we applied volume-to-surface interpola-

tion using Voronoi (Grova, Makni, et al., 2006) to generate surface

based sensitivity matrix along the mid cortical surface (please see Cai

et al., 2021 for further details).

Finally, to define the field of view (FOV) of fNIRS reconstruction,

this surface-based sensitivity was further spatially constrained to be

within 3 cm to any optode of a specific optimal montage, Euclidean

distance calculated from 100% inflated cortical surface to the head

surface by Brainstorm (Tadel et al., 2011).

2.7 | NIROT reconstruction

We compared two fNIRS reconstruction methods, one being our pre-

viously proposed and validated maximum entropy on the mean

(MEM) (Cai et al., 2021) and the other one being the conventional

minimum norm estimation (MNE) (Hämäläinen & Ilmoniemi, 1994).

MEM offers an efficient nonlinear probabilistic Bayesian framework

to incorporate prior knowledge in the solution of the inverse problem.

It assumes that brain activity is modeled by cortical parcels that are

estimated using a data-driven parcellation of the full field of view con-

sidered for NIROT. While fitting the data through relative entropy

maximization, MEM has the unique ability to switch off parcels of the

model considered as inactive using a hidden variable. In our previous

studies in the context of EEG/MEG source imaging, we have demon-

strated excellent accuracy of MEM and the ability to be sensitive to

the spatial extent of the underlying generators (Chowdhury

et al., 2013; Chowdhury et al., 2016; Grova et al., 2016; Hedrich

et al., 2017; Heers et al., 2016; Pellegrino et al., 2020), before

adapting this framework in the context of NIROT (Cai et al., 2021). As

the most conventional inverse procedure considered in NIROT, MNE

is a linear method (Hämäläinen & Ilmoniemi, 1994) using Tikhonov

regularization to minimize the L2-norm. Please refer to Appendix A

for further details on those NIROT methods. In practice, NIROT

reconstructions were calculated by our implementations of these two

methods in the fNIRS processing plugin—NIRSTORM (https://github.

com/Nirstorm/nirstorm) in Brainstorm software.

2.8 | Quantitative evaluation by comparing NIROT
to fMRI

To evaluate and compare the spatial accuracy of NIROT reconstruc-

tions obtained using either MEM or MNE mentioned above, we pro-

posed to compare the reconstructed HbO/HbR responses along the

cortical surface to surface-based fMRI Z-maps, both at the individual

and at the group level. To do so, we first defined two cortical regions

from the resulted surface-based fMRI Z-map as the ROIs to quantita-

tively assess the spatial accuracy of NIROT maps.

2.8.1 | Determination of the cortical ROIs used for
quantitative evaluation

ROIs selected for quantitative evaluation consisted of two cortical

regions, extracted from surface-based subject-specific fMRI Z-map

response to the finger-tapping task. The first one, fMRI reference

ROI#1, corresponded to the “activated” region where the main activa-

tion of task-evoked HbO/HbR responses should be expected. The

second one, fMRI reference ROI#2, corresponded to the “non-acti-
vated” region where no significant HbO/HbR responses were

expected. These two fMRI regions were our reference “true positives”
and “true negatives” for later NIROT evaluations.

The determination of fMRI reference ROI#1 for each subject was

obtained from the first-level Z-map projected on individual mid-sur-

face. We did not directly use the significant region on the projected Z-

map (threshold) considering that each subject only went through one

fMRI task session, and this might not be enough to estimate a reliable

size of the main activation cluster, as suggested by fMRI test–retest

reliability studies during motor tasks (Quiton, Keaser, Zhuo,

Gullapalli, & Greenspan, 2014; Zandbelt et al., 2008). Instead, the

ROI#1 was defined by thresholding the individual surface-based fMRI

Z-map until a predefined size, in order to ensure a similar spatial

extent of the activated area of the one found at the group level. The

group level analysis provided a more reliable generalized size parame-

ter of the activation pattern, as suggested by Zandbelt et al. (2008).

Therefore, to identify the expected size of fMRI reference ROI#1, we

considered from the fMRI group-level map (described in Section 2.4)

the most significant cluster (Figure 2a) projected along the cortical

surface. It resulted in 366 vertices shown by the black profile in

Figure 2a. Consequently, we considered a parameter size of 366 verti-

ces to determine the threshold of each individual map, to estimate the

“activated” region at the expected size. It is worth mentioning that

such an approach was actually more conservative than the conven-

tional threshold obtained at the single subject volume map (see Sec-

tion 2.4, p < .01 corrected using Gaussian random field theory).

Finally, fMRI reference ROI#2 (“true negatives”) was directly defined

as the “non-activated” region (see Figure 2b) on each individual fMRI

Z-map on the cortical surface, by identifying vertices that were below

the conventional threshold on the single subject volume map (p < .01

corrected using Gaussian random field theory). The remaining vertices

between ROI#1 and ROI#2 could be considered as a region of fMRI

uncertainty at the single subject level.

2.8.2 | Quantitative validation metrics

To assess the spatial accuracy of NIROT maps, we applied similar vali-

dation metrics described in our previous evaluation of MEM source

imaging in the context of EEG/MEG data (Chowdhury et al., 2013;
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Chowdhury et al., 2016; Grova, Makni, et al., 2006; Hedrich

et al., 2017). Each reconstructed NIROT image is actually a spatiotem-

poral map of the whole hemodynamic response, whereas the fMRI Z-

map consists of a statistical static map assessing the presence of a

modeled canonical hemodynamic response. To select a single NIROT

map to evaluate, from the spatiotemporal estimates of each subject

using each reconstruction method, we first averaged the

reconstructed HbO/HbR time courses within the fMRI reference

ROI#1, and then extracted the HbO/HbR maps at the time point of

HbO versus HbR peaks on these averaged time courses. Moreover,

since we have no ground truth for the reconstructed time course in

fNIRS and since fNIRS is considered a relative measurement com-

pared to baseline activity, we considered only the shape of the

reconstructed fNIRS response by normalizing each selected spatial–

temporal HbO/HbR map by this selected peak amplitude.

Using the 2 previous selected fMRI reference ROIs, defining our

reference “true positives” and “true negatives,” we proposed the fol-

lowing four validation metrics to evaluate NIROT spatial and temporal

accuracy, for both MNE and MEM:

• Area Under the Receiver Operating Characteristic (ROC) curve

(AUC) was used to assess the detection ability of the reconstruc-

tion methods. ROC analysis consists of assessing the sensitivity

and specificity of NIROT maps, when varying the threshold from

0 to maximum amplitude of normalized NIROT maps at their peak.

The ROC curve is obtained by plotting sensitivity as a function of

(1—specificity). AUC score is then estimated as the area under this

ROC curve. It is considered as a measure of detection accuracy,

assessing the sensitivity of NIROT map to the underlying spatial

extent of the hemodynamic response. We used the two ROIs

defined in the previous section to calculate sensitivity and specific-

ity. Sensitivity was calculated when considering fMRI reference

ROI#1 as the “true positive (TP)” region, and specificity was calcu-

lated when considering fMRI reference ROI#2 as the “true nega-

tive (TN)” region. Moreover, we applied a random and

homogeneous parcellation on ROI#2 to have the size of each clus-

ter similar to the size of ROI#1. Then the fictive generators were

sampled cluster wise within ROI#2, instead of vertex wise when

calculating the True Negative rate. This approach was considering

the fact that if the fictive generators would have sampled vertex

wise, the number of samples for calculating True Negatives would

have been much larger than for calculating True Positive. This pro-

cedure is consistent with Grova, Daunizeau, et al. (2006) on AUC

calculation to fit the context of a distributed source model—

generating as many “fictive” sources in the TN region as the num-

ber of vertices of the TP region. Therefore, our approach to esti-

mate AUC prevented underestimation of the True Negative rate.

Please note that the remaining vertices between selected ROI#1

and ROI#2 were not considered by our proposed ROC analysis,

but they were actually taken into account in the following Dmin

and SD metrics.

• Minimum geodesic distance (Dmin) was calculated as the mini-

mum geodesic distance, following the circumvolutions of the corti-

cal surface, from the vertex that exhibited maximum of

reconstructed activity to the closest border from the individual

fMRI reference ROI#1. The Dmin score would therefore be 0mm if

the peak of the HbO/HbR reconstruction map was located inside

the fMRI reference ROI#1.

• Spatial dispersion (SD) assessed the spatial spread of the estimated

activation region distribution and the localization error using the

following equation: SD¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

minj∈Θ D2 i, jð Þð ÞX̂2
i,τð Þ

� �
PN
i¼1

X̂
2
i,τð Þ

� �
vuuuut

where minj∈Θ D2 i, jð Þ
� �

is the minimum squared Euclidean distance

between the vertex i to a vertex j located inside the fMRI reference

ROI#1 represented by Θ. X̂
2
i,τð Þ is the power of the peak amplitude

F IGURE 2 Determination of the cortical regions used for
quantitative evaluations. (a) group-level fMRI Z-map obtained by FSL
group-level activation map projected along the mid-surface of MNI
template ICBM152. The map was thresholded to only contain the
significant activation region along the surface. Black profile represents
the most significant cluster, which consists of 366 vertices.
(b) Determination of fMRI reference ROIs on the individual level
surface-based fMRI Z-map of Sub01, projected from FSL first-level
activation map on subject's mid-surface. The black profile is the
individual fMRI reference ROI#1 which contains 366 vertices when
thresholding the individual map by Z values. It represents the
“activated” region used for AUC, SD and Dmin metrics. The white
profile is the individual fMRI reference ROI#2 represents the
intersection between nonsignificant region and NIROT reconstruction
field of view, which is defined as the “non-activated” region for AUC
calculations. Cortical surfaces are 50% inflated for visualization

purposes
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of the reconstructed time course on vertex i at the peak time τ. N is

the total number of vertices within the reconstruction field of view.

The ideal value (i.e., SD¼0mm) would be achieved when no activation

is reconstructed outside the fMRI reference ROI#1. The larger the SD

is, the more spatially spreading or mislocalized the reconstructed maps

are.

• Peak times of reconstructed HbO/HbR time course and the delay

between HbO and HbR peak times were compared when

reconstructing NIROT images using MEM and MNE. The average

of the reconstructed time course of HbO/HbR within fMRI refer-

ence ROI#1 was first calculated to extract corresponding peak

times (i.e., PeakHbO and PeakHbR). The delay between HbO and HbR

peak times was then calculated as PeakHbR�PeakHbO.

To conduct group-level evaluation for NIROT, individual NIROT maps

at their corresponding peak amplitude were first normalized to

[�1, 1]. FreeSurfer spherical registration was used to project normal-

ized individual HbO/HbR maps onto the mid surface of ICBM152

template. Group-level HbO/HbR reconstruction maps were then esti-

mated by averaging the projected individual maps. AUC, SD and Dmin

were calculated by comparing to the group-level fMRI Z-map. We also

conducted in the supplementary materials a group-level Z map, in

which the Z score was calculated for each vertex, using the mean

amplitude divided by the standard deviation among 10 subjects,

instead of considering only the average.

Additionally, AUC was also calculated under three different sce-

narios to answer the following questions specific to the use of person-

alized fNIRS reconstructions.

• Was MEM more accurate than MNE at different time instants other

than only the peak of the hemodynamic response? AUCs of the

reconstructed HbO/HbR maps using MEM and MNE were evalu-

ated at different time instants ranging from 5s to 20s with a step

size of 0:5 s.

• Would it be possible to further threshold MNE reconstruction maps to

achieve a similar spatial accuracy than the one obtained when using

MEM? AUCs of HbO/HbR peak maps were calculated by consider-

ing different initial thresholds, as a percentage of the peak ampli-

tude of each corresponding map, ranging from 0% to 50% with an

increment of 1%, instead of standard AUC starting with a threshold

of 0%.

• Was the 3D reconstruction obtained by using the combination of per-

sonalized optimal montage and MEM reconstruction primarily biased

by the local forward model (i.e., sensitivity map), since the optimal

montage was optimized to a targeted ROI in the motor region? We

assumed the sensitivity profile of each subject, obtained by sum-

ming up the sensitivity of all channels of the corresponding optimal

montage, to mimic a fully “montage-biased” reconstruction map.

Therefore, computing the AUC score of this sensitivity profile and

comparing it to the reconstruction results obtained from either

MEM or MNE can evaluate whether the local forward model plays

a role in biasing the reconstruction.

2.9 | Reliability of the performance differences
between MEM and MNE

Considering reliability is the basis for individual difference research, espe-

cially on personalized methods (Yu, Linn, et al., 2018; Zuo et al., 2019),

we also evaluated the reliability of reconstruction performance of MEM

and MNE individually, and more importantly, when considering the

paired performance differences between the two methods. To do so, we

considered the discriminability measure, which was proposed as a novel

nonparametric approach for assessing reliability, proved to be more

robust than traditional intraclass correlations and fingerprinting

approaches (Wang et al., 2020; Yu, Linn, et al., 2018). Considering a reli-

ability study design, pair-wised distances of the measurement of interest

are first calculated for all experiment sessions (within- and between-sub-

jects), and discriminability is then defined as the proportion of the num-

ber of cases in which within-subject distances are smaller than between-

subject distances. We applied the Multiscale Graph Correlation (MGC)

package (Bridgeford et al., 2018; Vogelstein et al., 2019) (available at

https://github.com/neurodata/r-mgc) to estimate discriminability. Euclid-

ean distance was considered as the default distance measurement to

construct within- vs. between-subject distance matrices (Wang

et al., 2020) (see Figure B2).

Although we did not have multiple sessions of the same task for

each subject, we considered random sub-averaged 16 nonoverlapping

blocks out of a total of 20 blocks to mimic the task performance vari-

ability within each subject. To ensure good coverage of within-subject

variance, we sorted all sub-averaged trials by decreasing SNR values

and selected 10 trials with a step of 10 SNR value increments around

the median SNR value. The selection of 10 sub-averaged trials was to

ensure the same degree of freedom of within-subject when compared

to between-subject variance, which was 10 subjects in our case. The

selection of 16 blocks was to ensure not reducing SNR too much after

averaging. This number was empirically defined according to the obser-

vation that usually there were less than 4 artifacts contaminated blocks

in one finger tapping session. Selecting sub-averaged trials around the

median SNR ensured a good representation of fNIRS responses, while

discarding artifacts in the meantime. For instance, in artifacts contami-

nated data, large motion artifacts would result in high SNR of sub-

averaged trials. We then performed both MEM and MNE reconstruc-

tions on all data samples (e.g., 100 = 10 within-session sub-averaged

� 10 subjects) and applied the same evaluations for the reconstructed

hemodynamic maps. Discriminability was then estimated for each vali-

dation metric AUC, SD and Dmin, considering either MEM and MNE

individually, or paired performance differences between them.

3 | RESULTS

3.1 | Reconstruction performance comparisons at
the individual-level

Statistical summary of individual level results is presented in Figure 3.

Paired two sample t tests were considered when comparing
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performance between the two methods (MEM vs. MNE). When

reconstructing HbO responses, MEM provided significantly larger

AUC values than MNE (0:79vs:0:68, p< :01). Moreover, MEM also

showed significantly lower spatial dispersion (SD) than MNE

(5:11mmvs:9:83mm, p< :01). Both methods reconstructed the peak

amplitude very close from the fMRI main cluster as quantified using

Dmin, with no significant difference between MEM and MNE

(2:17mmvs:3:00mm, p> :05). Similar performances were also

observed when reconstructing HbR responses. MEM provided signifi-

cantly larger AUC (0:80 vs: 0:70, p< :05), significantly lower SD

(5:93mmvs:8:97mm, p< :05) and similar Dmin values

(3:33mmvs:2:90mm, p> :05).

Figures 4 and 5 present all the individual level reconstruction

maps and time courses calculated using MEM and MNE for each of

10 subjects. Figures 4a and 5a showed the individual fMRI Z-map

along with the individual fMRI reference ROI#1 represented by a

black profile. All subjects showed clear fMRI activations along M1 and

S1 areas, evoked by the finger tapping task. Columns b and c of Fig-

ures 4 and 5 showed NIROT maps normalized by the peak amplitude

of HbO/HbR reconstructed using MEM and MNE, respectively,

together with validation metric values. For Sub02, 03, 05, 07, 08,

09 and 10, MEM reconstructed accurately HbO/HbR responses with

high AUC values ( Q1,Q3½ � ¼ 0:73,0:89½ � for HbO, 0:74,0:94½ � for HbR

among all maps, Q1,Q3 referring to the first and third quartile of the

distributions, respectively) and small spatial spread (low SD values,

Q1,Q3½ � ¼ 3:52mm,6:63mm½ � for HbO, 3:45mm,6:37mm½ � for HbR).

On the other hand, for these selected 7 subjects, MNE provided less

accurate reconstructions characterized by lower AUC values

( Q1,Q3½ � ¼ 0:60,0:75½ � for HbO, ( 0:60,0:77½ � for HbR) and larger SD

values ( Q1,Q3½ � ¼ 7:64mm,10:46mm½ � for HbO, 8:31mm,10:59mm½ �
for HbR). For Sub01, MEM and MNE were both able to provide accu-

rate HbO/HbR reconstructions when comparing to fMRI results. For

Sub06, MEM and MNE provided similar reconstruction results, all

maps were able to recover the main cluster but spread out toward

more anterior regions. For Sub04, only MEM provided a good

reconstruction only for HbO, resulting in an AUC¼0:7 and

Dmin¼0mm. Column d of Figures 4 and 5 illustrated the averaged

reconstructed HbO/HbR time courses within the fMRI reference

ROI#1. Temporal fluctuations of averaged reconstruction time

courses of HbO/HbR were similar between MEM and MNE in most

of the subjects, except that the amplitudes were larger for MEM in

Sub 04, 07 and 08, because MNE did not reconstruct the spatial map

accurately within the expected region.

Table 1 summarized the statistical comparison of the peak times

of HbO/HbR extracted from the above averaged reconstruction time

courses within the fMRI reference ROI#1. When comparing MEM and

MNE results, there were no significant differences in the peak times

of HbO/HbR (paired two sample t test, p¼ :71and:17 for HbO and

HbR, respectively). Both NIROT methods demonstrated a significant

(one sample t test against 0, < 0:05) delay between the peak time of

HbR and HbO (0:9s�0:3 s and 1:9 s�0:7 s for MEM and MNE,

respectively. Moreover, there was no significant difference (paired

two sample t test, p¼0:27) between the delays estimated by MEM

and MNE. Note that Sub04 was rejected from this analysis since it

was exhibiting a very noisy reconstructed time course and therefore

was considered as an outlier (Figure 4d).

3.2 | Reconstruction performance comparisons at
the group-level

Figure 6 reports fMRI versus NIROT comparisons at the group-level.

Validation metrics were calculated on the group averaged NIROT

HbO and HbR maps, when using either MEM or MNE. Similar trends

were found when considering group-level comparisons by visualiza-

tion. When compared to MNE results (Figure 6, using fMRI group-

level activation as a reference), MEM provided similar AUC

(0:73vs:0:72 for HbO and 0:74vs:0:74 for HbR), lower SD (7.52

mmvs:10:52mm for HbO and 7:48mmvs:11:18mm for HbR) and

similar Dmin (6:14mmvs:6:14mm for HbO and 2:99mmvs:2:76mm

F IGURE 3 Quantitative evaluation of the performances of MEM and MNE reconstructions. (a) Distribution of AUC values for MEM and MNE
NIROT reconstructions, for HbO and HbR responses respectively, (b) distribution of SD (in mm) comparison between MEM and MNE in the
context of reconstructed HbO/HbR, (c) distribution of Dmin (in mm) comparison between MEM and MNE in the context of reconstructed
HbO/HbR. Each circle represents the index of one subject, superimposed on a boxplot representation of the distribution, * represents significant
paired two sample t test at p < .05 and ** for p < .01
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F IGURE 4 Legend on next page.
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for HbR). When comparing the group averaged reconstructed

HbO/HbR time course within the fMRI main cluster region, as a

nonlinear method MEM provided almost identical ones to MNE. As

a reference, we also illustrated the expected fMRI time course (black

dash line in Figure 6d) by convolving a standard canonical hemody-

namic response function (HRF) (Penny et al., 2011) and a 10s boxcar

stimuli. It followed well both MEM and MNE reconstructed HbR mean

time courses and laid within the shaded areas, demonstrating the

good temporal accuracy of our NIROT workflow.

3.3 | NIROT performance along time

Figure 7a illustrates the comparison of AUC values obtained for

MEM and MNE reconstructions when considering NIROT maps at

different time samples between 5 s and 20 s by steps of 0:5 s. Over-

all, AUC values corresponding to HbO and HbR reconstructions, when

considering either MEM or MNE, were following the temporal fluctu-

ation of the expected task-evoked hemodynamic responses from 5 s

to 20 s. Within this temporal window, MEM always provided larger

AUC values when compared to MNE, for both HbO and HbR recon-

structions. The differences were statistically significant (paired two

sample t test at each time sample, p< :05 for both HbO and HbR com-

parisons) within the range 8:5 s to 14:5 s. Additionally, AUC values of

HbR were also slightly larger than HbO for both reconstruction

methods.

3.4 | NIROT performance when applying spatial
thresholding on reconstruction maps

Figure 7b illustrates AUC as a function of different initial percentage

thresholds (percentage relative to the peak amplitude of each NIROT

map) applied on reconstructed HbO/HbR maps. ROC analyses were

estimated from a specific starting percentage amplitude threshold

from 0 up to 50%, in order to assess the impact of initial thresholding

on detection accuracy. As expected, AUC values decreased when

thresholding the reconstruction map with a larger initial percentage

threshold. Overall, MEM provided larger AUC than MNE under all the

thresholding scenarios, and the difference was statistically significant

(paired two sample t test at each percentage threshold, p< :05 for

both HbO and HbR comparisons) within the whole threshold range.

Results of this analysis, as illustrated in Figure 7b, showed that

additional thresholding of the MNE results does not improve the esti-

mation accuracy of the activity map, when compared to MEM.

3.5 | AUC of the sensitivity profile of the optimal
montage

The last column of Figure 8 demonstrates the AUC values calculated

when assessing detection accuracy only on the light sensitivity profile

(SP) resulting from the personalized optimal montage of each subject.

The mean AUC value among 10 subjects was 0:64, significantly lower

than the mean AUC value of MEM reconstructed HbO (0:76,p< :01,

paired two sample t test, Bonferroni corrected) and HbR (0:81,p< :01,

paired two sample t test, Bonferroni corrected). This AUC measure

was also lower than MNE reconstructed HbO (0:66) and HbR (0:71)

map but the difference was not statistically significant. These results

suggest that our detection accuracy is slightly influenced by the instal-

lation of the optimal montage, but MEM reconstruction still signifi-

cantly improves NIROT accuracy within the targeted brain region.

3.6 | Reliability of performance differences
between MEM and MNE

Over 100 reconstructions, including 10 within-subject resampled ses-

sions and 10 subjects, all three validation metrics (AUC, SD and Dmin)

showed significantly better performances using MEM, when compared

to MNE. The 95% confidence interval (CI) of the paired differences

(MEM-MNE) was [0.13, 0.17] for AUC, [�5.50, �4.31] for SD (in mm)

and [�2.76, �0.23] for Dmin (in mm) (see distributions reported in

Figure B1). Discriminability of these performance differences was esti-

mated as 0.68 for AUC, 0.70 for SD and 0.68 for Dmin (see Figure B2),

indicating that MEM was exhibiting reliably better performances than

MNE. When considering the performance of MEM and MNE individu-

ally, the discriminability of MEM was estimated as 0.71 for AUC, 0.66

for SD and 0.64 for Dmin, whereas the discriminability of MNE was

estimated as 0.85 for AUC, 0.88 for SD and 0.73 for Dmin.

4 | DISCUSSION

The present study proposed and evaluated a workflow of personal-

ized NIROT using MEM for spatiotemporal imaging of cortical

F IGURE 4 Visual and quantitative evaluation for NIROT images at the individual level (subjects 1 to 5). (a) Individual level fMRI Z-map
thresholded to only contain the significant activation of each subject during finger tapping task, black profile represents the fMRI reference

ROI#1 (“true positive”), non thresholded gray area (nonsignificant) within the reconstruction FOV represents the fMRI reference ROI#2 (“true
negatives”). (b) MEM reconstructed NIROT maps at HbO/HbR peak amplitude, respectively, (c) MNE reconstructed NIROT maps at HbO/HbR
peak amplitude, respectively, (d) reconstructed time courses within the black profile, solid lines represent the averaged time courses, and the
shaded areas represent standard deviation within the ROI#1. Quantitative evaluation metric results are showed on top of each map, respectively.
AUCs were calculated by setting black profiles (fMRI reference ROI#1) as the “activated” region and gray area (fMRI reference ROI#2) as the
“non-activated” region. SD and Dmin only considered fMRI ROI#1 as the “activated” region. Note that each subject's map was normalized by its
own peak, and time courses were normalized by the maximum HbO amplitude across two methods before averaging within the black profile
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F IGURE 5 Legend on next page.
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hemodynamic fluctuations evoked by a motor task. This workflow

attempted to optimize the reconstruction accuracy considering

(a) fNIRS montage planning using personalized optimal montage

(Machado et al., 2014; Machado et al., 2018), which aimed to maxi-

mize the fNIRS probing ability of the hemodynamic responses within

a targeted ROI along the cortical surface; (b) data acquisition involving

the neuronavigation-guided optode installation using collodion, which

ensured accurate positioning, excellent contact to the scalp and mini-

mized motion artifacts (Machado et al., 2018; Pellegrino et al., 2016;

Yücel et al., 2014), digitalization of the positions of the sensors along

with more than 150 head points, accurate coregistration with the ana-

tomical head model, and therefore minimizing potential errors when

F IGURE 5 Visual and quantitative evaluation for NIROT images at the individual level (subjects 6 to 10). (a) individual level fMRI Z-map
thresholded to only contain the significant activation of each subject during finger tapping task, black profile represents the fMRI reference

ROI#1 (“true positives”), nonthresholded gray area (nonsignificant) within the reconstruction FOV represents the fMRI reference ROI#2 (“true
negatives”). (b) MEM reconstructed NIROT maps at HbO/HbR peak amplitude, respectively, (c) MNE reconstructed NIROT maps at HbO/HbR
peak amplitude, respectively, (d) reconstructed time courses within the black profile, solid lines represent the averaged time courses, and the
shaded areas represent standard deviation within the ROI#1. Quantitative evaluation metric results are showed on top of each map, respectively.
AUCs were calculated by setting black profiles (fMRI reference ROI#1) as the “activated” region and gray area (fMRI reference ROI#2) as the
“non-activated” region. SD and Dmin only considered fMRI ROI#1 as the “activated” region. Note that each subject's map was normalized by its
own peak, and time courses were normalized by the maximum HbO amplitude across two methods before averaging within the black profile

TABLE 1 Statistical comparison of reconstructed HbO/HbR peak times

MEM MNE

PeakHbO (s) PeakHbR (s) PeakHbR–HbO (s) PeakHbO (s) PeakHbR (s) PeakHbR–HbO (s)

Mean ± se 11.7 ± 0.7 12.7 ± 0.5 0.9 ± 0.3 11.6 ± 0.5 13.5 ± 1.0 1.9 ± 0.7

[Q1, Q3] [11.0, 12.5] [11.7, 13.3] [0.1, 2.0] [10.8, 12.6] [12.1, 13.8] [0.8, 2.4]

Mean > 0 — — p = .03 — — p = .03

MEM vs. MNE p = .71 p = .17 p = .27 — — —

Note: The first row showed the mean� standard error of each corresponding peak time in seconds. PeakHbR�HbO indicated the time delay between peak

time of HbR (PeakHbR) and HbO (PeakHbO). The second row listed the first quartile (Q1) to third quartile (Q3) of each peak time and delay. The third row

indicated the p-value of one sample t test against 0 s of peak time delay estimated by MEM and MNE. The last row demonstrated the p-value of paired

two sample t test, when comparing MEM and MNE results, for each peak time and delay. “—” represented the cases in which no statistical test was

conducted since we consider it was not necessary to test whether PeakHbO or PeakHbR itself were significantly larger than 0. Red background indicated

significant differences with p< .05.

F IGURE 6 Comparisons of MEM and MNE group averaged reconstructions with fMRI Z-maps at the group-level, 10 subjects included.
(a) Group-level fMRI Z-maps estimated by FSL group-level activation map projected along the mid-surface of ICBM152 mid-surface. The black
profile represents fMRI the most significant cluster projected on the cortical surface. Maps were thresholded to exclude the nonsignificant
regions along the cortical surface. (b) Group averaged MEM reconstruction peak maps, individual peak maps were extracted at the peak times of
HbO/HbR in native space and then projected onto the ICBM152 mid-surface, (c) group averaged MNE reconstruction peak maps, individual peak
maps were extracted at the peak times of HbO/HbR in native space and then projected onto the ICBM152 mid-surface. (d) Group-level
reconstructed time courses within the black profile, solid lines represent the averaged time courses, and the shaded areas represent standard
deviation within the black profile. The black dash line represents the expected fMRI time course resulting from the convolution of the standard
canonical HRF and a 10s boxcar representing the task stimuli. The amplitude was reversed for better comparison with HbR time courses
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calculating the forward model of NIROT; (c) reconstruction using

MEM, which is sensitive to the spatial extent of the generators in the

context of EEG/MEG source location (Chowdhury et al., 2013;

Chowdhury et al., 2016; Grova et al., 2016; Hedrich et al., 2017;

Heers et al., 2016; Pellegrino et al., 2020) and fNIRS reconstructions

with realistic simulations (Cai et al., 2021). We evaluated the spatial

accuracy of the NIROT workflow by comparing the HbO/HbR maps

to fMRI Z-maps. Our results showed that MEM provided overall bet-

ter spatial accuracy than MNE, while both NIROT methods exhibited

similar temporal features when estimating the fNIRS hemodynamic

responses.

4.1 | Evaluation of the performance of
personalized NIROT using MEM

Individual and group analysis revealed that MEM recovers more accu-

rately the hemodynamic responses for both HbO and HbR, when

compared to MNE (significantly larger AUC). MEM was sensitive to

the spatial extent of the generator (significantly lower SD), in agree-

ment with our previous EEG/MEG results (Chowdhury et al., 2013;

Chowdhury et al., 2016; Grova et al., 2016; Hedrich et al., 2017;

Heers et al., 2016; Pellegrino et al., 2020). Additionally, when

assessing the reliability of our measures using discriminability (Wang

et al., 2020; Yu, Linn, et al., 2018) through bootstrap resampled sub-

averaged task responses, we found that MEM provided reliably better

reconstruction performance than MNE. When evaluating the discrimi-

nability of MEM and MNE individually, MNE exhibited very large reli-

ability values (e.g., 0.85 for AUC, 0.88 for SD), which were even larger

than the known largest reliability values reported in neuroimaging

fields—0.8 for morphological measures of the human brain (Zuo

et al., 2019). This finding might be explained since MNE is known to

spatially smear the reconstruction map, therefore reducing sensitivity

and specificity (Ding, 2009), hence resulting in reliable but less

F IGURE 7 AUC comparisons of MEM and MNE reconstructions with respect to time and amplitude threshold value. (a) AUC comparison
between MEM and MNE, for both HbO and HbR reconstructions. AUC values (mean� standard error) were estimated within the time range 5s�
20s with increments of 0:5s. The last column denoted as “Peak” reports the distribution of AUC values considered at the peak of the
hemodynamic response, within the ROI#1, (b) AUC comparison between MEM and MNE, for both HbO and HbR reconstructions, AUC values
(mean� standard error) were estimated within a percentage threshold of the peak amplitude of each NIROT maps ranging from 0% to 50% with

an increment of 1%. Error bars represented the standard error within 10 subjects. Horizontal black bars indicated a significant difference of AUC
between MEM and MNE, paired two sample t test at each time sample or percentage threshold, p< .05 for both HbO and HbR comparisons

F IGURE 8 Distribution of AUC values estimated for MEM and
MNE local reconstructions with the personalized optimal montage, in
comparison to the AUC values obtained when considering only the
montage light sensitivity profile (SP) for each subject. Exactly the
same calculations of AUC for reconstruction methods were applied
considering the light sensitivity profile (forward problem) as the
reconstructed map. Paired two sample t test showed significant
higher AUC of MEM reconstructed HbO (mean = 0.76) and HbR
(mean = 0.81) than “SP” (mean = 0.64), p < .01, Bonferroni corrected
for multiple comparison). AUC of “SP” was lower than MNE
reconstructed HbO (mean = 0.66) and HbR (mean = 0.71) but not
significant
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accurate results when compared to MEM. On the other hand, the reli-

ability of MEM alone (0.71 for AUC, 0.66 for SD and 0.64 for Dmin)

was overall good.

MEM reconstructed temporal fluctuations of HbO and HbR were

similar to MNE (last column of Figures 4 and 5). The statistical analysis

of the reconstructed HbO/HbR peak times in Table 1 further proved

this point as no significant differences were found between MEM and

MNE regarding the HbO/HbR peak times and the delay between

them. Moreover, both methods provided significant delay around 1–

2 s between HbR and HbO peak times consistent with previous litera-

ture (Jasdzewski et al., 2003; Steinbrink et al., 2006). In the end, our

group level reconstructed HbR time courses (see Figure 6d) estimated

by MEM and MNE were almost identical to the expected fMRI time

course estimated through the convolution of a 10 s boxcar with the

standard canonical HRF. To the best of our knowledge, this is the first

study reproducing this aspect by investigating reconstructed time

courses rather than measures in the channel space. It is important to

note that the time course reconstructed by MNE directly depends on

the averaged signal at the channel level as it is a linear projection.

Conversely, MEM is a nonlinear technique applied at every time sam-

ple, and not originally optimized for the estimation of resulting time

courses. The temporal similarity to MNE further validated our previ-

ous improvement of MEM (Cai et al., 2021) on temporal accuracy of

fNIRS reconstruction.

4.2 | Comparison of MEM and MNE
reconstruction performance along time

Most of the spatial accuracy comparisons in this study were per-

formed with the NIROT maps extracted at the HbO/HbR peak. Would

MEM outperform MNE at other time points? We also assessed detec-

tion accuracy using AUC along the time course of the

hemodynamic response, and our results demonstrated that MEM out-

performed MNE at any time instance along the elicited hemodynamic

response from 5s to 20s after the task onset (Figure 7).

4.3 | Comparison of MEM and MNE
reconstruction performance with spatial thresholding

MNE tends to spatially spread the reconstructions out of the “true
positive” region due to the use of L2-norm for the regularization when

solving the inverse problem (Ding, 2009). Could post-hoc thresholding

on the reconstruction map achieve a better spatial extension estima-

tion in MNE? As illustrated in Figure 7b, when increasing the initial

thresholding in ROC analysis, MNE still provided smaller AUC values

than MEM along all percentage thresholding values from 0% to 50%.

Therefore, thresholding the MNE map does not solve the typical rate

of false positives introduced by the method. While both methods

were localizing accurately the maximum of the underlying activity (see

Dmin results), MNE did not recover the underlying spatial extent of

the active region, whereas MEM did. This result further supported the

study of Ding (2009), which demonstrated that MNE reconstruction

cannot retrieve the spatial extent of the underlying generator.

4.4 | Assessment whether the local forward model
of personalized optimal montage was biasing NIROT
reconstructions

We also carefully assessed if the use of a local forward model (light

sensitivity profile map) obtained from an optimal personalized mon-

tage targeting a specific ROI, could bias NIROT reconstruction toward

this targeted region. We found that the optimal montage maximized

the sensitivity with respect to a targeted ROI, but this does not mean

that it was “blind” to the other surrounding areas. As shown in

Figure 1c, the optimal montage used in this study provided sensitivity

covering not only the ROI (“hand knob”) but also surrounding areas

such as the pre-central and post-central cortex. To assess this critical

issue, we estimated what would be the detection accuracy of the per-

sonalized sensitivity profile of each individual optimal montage using

AUC (see Figure 1c), assuming that the sensitivity profile itself could

be considered as a reconstruction result entirely biased by the optimal

montage sensitivity. Our results reported in Figure 8 demonstrated

that MEM reconstruction of data from personalized optimal montage

provided significantly larger AUC values than the ones estimated

when considering only the sensitivity profile as the solution. These

results are indeed suggesting that the reconstruction performance is

dominated by the process of solving the inverse problem rather than

the sensitivity. If optimizing the sensitivity could simply lead the MEM

reconstructed activation easily showing up in the targeted ROI, such a

clear difference of AUC between sensitivity profile and real recon-

structions conducted by MEM should not have been observed.

Besides, the apparent difference we found between MEM and MNE

reconstruction should not have been observed either. On the other

hand, MNE was showing slightly larger AUC when compared to the

sensitivity profile (nonsignificant), further demonstrating the inability

of the MNE operator to recover accurately the spatial extent. This

indicated MNE reconstruction is actually not far from a simple projec-

tion of the channel space data onto the cortical surface (Ding, 2009).

In the end, these reconstruction results also support our previous con-

clusion (Machado et al., 2018) that local reconstruction, comparing to

NIROT using the high density montage (White & Culver, 2010; Zeff

et al., 2007), is possible given appropriate spatial sampling of the

montage.

4.5 | Using fMRI as the reference for NIROT
evaluation

Using fMRI as the reference to evaluate the accuracy of NIROT

reconstructions has been conducted in previous studies (Eggebrecht

et al., 2012; Eggebrecht et al., 2014; Huppert, Barker, Schmidt,

Walls, & Ghuman, 2017; Tremblay et al., 2018; White & Culver, 2010;

Yamashita et al., 2016; Zhan, Eggebrecht, Culver, & Dehghani, 2012).
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Mainly three types of reconstruction errors have been considered in

these evaluation studies, as follows:

- The first evaluation criterion was the overall localization accuracy,

as assessed in our study using AUC, also considered in the simulation

study (Tremblay et al., 2018) and in a motor task study (Yamashita

et al., 2016), which considered both the reconstructed map sensitivity

and specificity when compared to the fMRI activation map. Tremblay

et al., 2018 used the theoretical ground truth defined in the simulation

as the “true positive” region. On the other hand, for real data recon-

structions, the calculation of AUC requires the definition of the “true
positive” and the “true negative” regions referring to the fMRI activa-

tion map. Yamashita et al., 2016 defined the “true positive” region on

the fMRI t-map, thresholded at p< :05 (Family-wise error rate

corrected), and the “true negative” regions with the other voxels

exhibiting p values below this threshold. However, in our study, we

decided to propose a different approach to determine more robust

ROIs from fMRI results as our proposed NIROT validation references.

Our “true positive” region, denoted as fMRI reference ROI#1,

consisted in two features, which are respectively size and shape. We

proposed a robust approach to define the size of it from the group-

level fMRI Z-map for the following reasons: (a) each subject only went

through one fMRI task session, and this is not enough to estimate a

robust size of the main activation cluster, as suggested by fMRI test–

retest reliability studies during motor tasks (Quiton et al., 2014;

Zandbelt et al., 2008). (b) Group-level analysis involved more sessions,

although collected from different subjects, therefore likely to result in

a more robust estimation of the spatial extent of the activated map.

This important finding was demonstrated by Zandbelt et al. (2008)

who showed a highly stable group-wise spatial activation pattern and

BOLD signal changes but substantial variations at the individual level.

Then, the shape of the “true positive” region was automatically

defined when thresholding the individual fMRI Z-map until the

resulted region was exhibiting a similar size to the one defined from

the group-level analysis. In the end, the “true positive” region for each

individual map was following its own spatial pattern, along the individ-

ual level fMRI Z-map, but constrained by a robust cluster size parame-

ter estimated from group-level fMRI analysis. Our resulting threshold

informed by the group-level size parameter was usually higher (more

conservative) than the conventional threshold considered at the single

subject level (p < .01, corrected using Gaussian random field theory).

When defining the “true negative” region, denoted as fMRI refer-

ence ROI#2, we did not simply use the area that is outside the “true
positive” region defined above. Instead, we rather referred to the sig-

nificance test results of conventional FSL individual voxel-wise fMRI

analysis (p < .01, corrected using Gaussian random field theory). The

nonsignificant fMRI regions projected on the cortical surface were

then considered as our “true negative” reference. Our results

(Figures 2, 4 and 5) showed that this region was always more

extended than the areas outside the “true positive” region. We

believe that this proposed approach, discarding the vertices between

ROI#1 and ROI#2 from ROC analysis, was fair regarding the evalua-

tion of MNE, since it is known that MNE tends to spatially spread the

reconstruction along the cortical region (Ding, 2009). On the other

hand, those “in between” vertices were actually taken into account in

our other validation metrics (SD and Dmin).

- The second evaluation criterion was the localization error

(LE) which can be estimated as suggested in Yamashita et al., 2016 by

the distance between the peak of fNIRS reconstruction map and the

peak of fMRI Z-map. On the other hand, other studies (Eggebrecht

et al., 2012; Eggebrecht et al., 2014; Huppert et al., 2017; White &

Culver, 2010) proposed a center of mass error calculated by the dis-

tance between the center of mass of two maps (fMRI and NIROT),

while others (Tremblay et al., 2018; Zhan et al., 2012) considered the

Euclidean distance between reconstruction peak to the peak of

the stimulated ground truth. In our study, we defined Dmin as the

minimum geodesic distance, following the circumvolutions of the cor-

tical surface, from the vertex that exhibited maximum of

reconstructed activity to fMRI reference ROI#1. Overall, we believe

that there was little difference between these different localization

error metrics, given the fact that reconstructing HbO/HbR peak inside

the “true positive” region was not so challenging, resulting in our case

of Dmin values mostly close to 0 mm.

- A third validation criterion was the false positive or spatial extent

reported by the reconstructions. The square root of the area

exhibiting amplitudes higher than half maximum, that is, � an

estimatee of the full width at half maximum (FWHM), was proposed

by White and Culver (2010). Similarly, a focality measurement was

considered by Zhan et al. (2012), which calculates the ratio between

localized full volume half maximum (LVHM) and full volume half maxi-

mum (FVHM). FVHM is determined as the volume of all voxels along

the whole reconstruction field of view that exhibit amplitude larger

than half of the peak amplitude. LVHM is defined similarly but only

considering the voxels within the single cluster that contains the peak.

Yamashita et al. (2016) estimated a false-positive amount metric

defined as the average amount of negative HbR results in the fMRI

nonsignificant region, and finally Tremblay et al., 2018 considered a

measurement of blurring using the root mean squared of the gradient

of the reconstructed map. In our study, we considered the Spatial Dis-

persion metric (SD), originally proposed by Molins, Stufflebeam,

Brown, and Hämäläinen (2008) when studying EEG/MEG source

imaging results. SD consists in weighting the distance of the spread of

the reconstructed activity around the “true positive” region, by the

reconstructed energy in such a region. SD distance in mm is therefore

sensitive to how much the reconstructed map is spreading around the

“true positive” region but also to eventual mislocalization errors. In

our study, by considering SD metric, we are not weighting in a similar

manner a false positive activation reported close to the “true positive”
region, as opposed to the same amplitude false-positive activation

reported far away from the reference region. Therefore, SD is han-

dling correctly such an issue by weighted the distance to the “true
positive” region by reconstructed amplitude. When considering only

the spatial extent around the peak of the activation, SD also serves

similarly as a FWHM measure to quantify the PSF of the reconstruc-

tions (Hedrich et al., 2017).

In our previous studies in the context of EEG/MEG source imag-

ing, AUC and SD metrics appeared overall as key metrics to assess
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how a source localization or NIROT reconstruction technique could

accurately recover the spatial extent of the underlying generators (Cai

et al., 2021; Chowdhury et al., 2013; Chowdhury et al., 2016; Hedrich

et al., 2017; Pellegrino et al., 2020) therefore they were considered in

this study, exhibiting very informative trends in NIROT maps.

4.6 | Difference between NIROT and fMRI maps

Our results also suggested that NIROT images exhibit activations

maps more superficial than fMRI Z-maps, both at the individual and

group-level analysis. This is in agreement with findings from a simulta-

neous fMRI/fNIRS study investigating electrical median nerve stimula-

tion (Huppert et al., 2017). This observation is due to the limited

ability of fNIRS to detect the deeper areas, a standard limitation of

the technique itself (Scholkmann et al., 2014) which can be partially

compensated by introducing depth weighting when solving the

inverse problem. We investigated the impact of depth weighting, in

both MEM and MNE, in fNIRS reconstruction in our previous study

(Cai et al., 2021). The optimal depth weighting parameters identified

in our previous study were actually the ones considered for this study.

Therefore, we believe that our reconstructed results should not over-

compensating the effect of the depth of the cortical region.

Although fMRI results were considered as our “ground truth,”
fMRI and fNIRS signals still have different physical and physiological

origins. fMRI measures the Blood-Oxygen-Level-Dependent (BOLD)

signal which is a combination of blood flow changes, blood volume

changes and deoxygenated hemoglobin concentration changes

(Buxton, 2012; Ogawa, Lee, Kay, & Tank, 1990). On the other hand,

using infra-red light absorption in two wavelengths, fNIRS measures

the relative oxy-/deoxygenated hemoglobin concentration changes

evoked by a task or during the resting state (Scholkmann et al., 2014).

Previous studies have provided conflicting results on whether BOLD

signals exhibit the highest correlation with HbO or HbR (Cui, Bray,

Bryant, Glover, & Reiss, 2011; Eggebrecht et al., 2012; Eggebrecht

et al., 2014; Huppert, Hoge, Diamond, Franceschini, & Boas, 2006;

Steinbrink et al., 2006; Strangman, Culver, Thompson, & Boas, 2002;

Wijeakumar, Huppert, Magnotta, Buss, & Spencer, 2017). HbR is

physically closer to fMRI BOLD signal but the correlation is biased by

variability resulted from systematic errors (Strangman et al., 2002).

We did not fully investigate this aspect, but HbR reconstruction maps

showed overall a better consensus with fMRI Z-map (see Figures 4

and 5). For similar reasons, Yamashita et al., 2016 decided to compare

only HbR maps in their comparison with fMRI results.

4.7 | Comparison with other NIROT workflows

Most references reported on NIROT results were performed in the

context of high-density fNIRS montage (Eggebrecht et al., 2014; Zeff

et al., 2007). Increasing the density of the fNIRS montage is expected

to improve the power of the reconstruction accuracy and the resolu-

tion (White & Culver, 2010). Along with our previous work (Cai

et al., 2021; Machado et al., 2018) and the present study, we showed

that our approach allows accurate local reconstruction of NIROT

images even when considering fewer well-positioned channels. More-

over, we believe that optimal montage can also be beneficial for stud-

ies which require more on portability.

Other NIROT strategies have also been reported in the literature.

Linear approaches using L1-norm based regularization (Kavuri, Lin,

Tian, & Liu, 2012; Okawa, Hoshi, & Yamada, 2011; Prakash, Shaw,

Manjappa, Kanhirodan, & Yalavarthy, 2014; Süzen, Giannoula, &

Durduran, 2010) have been used to obtain more focal localization

with high specificity but with much lower sensitivity. Bayesian model

averaging (Tremblay et al., 2018) proposed by Trujillo-Barreto,

Aubert-V�azquez, and Valdés-Sosa (2004) and a hierarchical Bayesian

model applied by Shimokawa et al. (2012), Shimokawa et al. (2013),

Yamashita et al. (2016) reported more accurate sparse reconstructions

with both higher sensitivity and specificity than L1-and L2-norm

based regularizations. It would be of great interest to compare our

MEM framework with these other NIROT Bayesian methods, as we

previously completed in the context of MEG source imaging

(Chowdhury et al., 2013), either on realistic simulations or on well

controlled experimental data, however such analysis was out of the

scope of this study.

Regarding the statistical analysis of NIROT maps, a hierarchical

random-effects cortical surface reconstruction model proposed by

Abdelnour, Genovese, and Huppert (2010) was applied by Huppert

et al. (2017) to estimate a group level hemodynamic responses evoked

by parametric median nerve stimulations. Individual channel space

optical density changes and forward model (sensitivity) were

concatenated into a single inverse model so that the group-level infer-

ence can be made directly by solving this model. In our study, we

mainly focused on the paired comparison of the reconstruction per-

formance between MEM and MNE at the individual-level, not on sta-

tistical inferences at the group-level. However, in addition to standard

evaluation of the grand average group-level responses (average of

individual NIROT maps) presented in Figure 6, we also investigated

group-level evaluation when considering group-level Z maps of MEM

and MNE reconstructions (see Figure S2). In this case, the Z score was

estimated for each vertex along the cortical surface among 10 sub-

jects' reconstruction maps, using the mean of the normalized ampli-

tude divided by the standard deviation of 10 subjects, therefore

resulting in a random effect group-level analysis. Our results further

demonstrated a good estimation of the main activation cluster using

MEM, when compared to MNE.

4.8 | Implementation of the workflow in an open-
source toolbox

Our personalized NIROT workflow is publicly available. All methods

described in this study have been implemented in an fNIRS processing

plugin—NIRSTORM (https://github.com/Nirstorm/nirstorm) in Brain-

storm software. Brainstorm (Tadel et al., 2011) (https://neuroimage.

usc.edu/brainstorm/) is an open-source software dedicated to
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analyzing multimodality brain recordings such as MEG, EEG, fNIRS,

electrocorticography, depth electrodes and multiunit electrophysiol-

ogy. Researchers could apply our proposed NIROT workflow in

NIRSTORM starting with designing a personalized optimal montage

using individual MRI or a template MRI (Colin 27). If gluing optodes

on any possible location is not feasible, our optimal montage can also

be estimated on a discrete set of free optodes positions available on a

specific cap. fNIRS data preprocessing using the conventional pipeline,

and finally reconstruction NIROT spatiotemporal images using depth

weighted versions of MEM and MNE are all available in NIRSTORM.

4.9 | Limitations and future directions

The subject cohort involved in this study was still relatively small—10

subjects. This could reduce the power of our statistical analysis. How-

ever, the design of the study was fully within-subject, with paired

comparisons which typically grants more statistical power. The input

to each reconstruction method contained the exact same variances of

hemodynamic responses between- and within-subjects, meaning the

paired comparisons or contrasts involved in this study are not biased

by such variances. When studying the reliability of fNIRS 3D recon-

struction performances, within-subject variability was conducted

using a resampling sub-averaged approach. Although it was beyond

the scope of this study, it would be of great interest to perform such

reliability evaluation with a well-designed test–retest reliability study.

It is worth noting that a recent fNIRS reproducibility study has dem-

onstrated the importance of involving montage spatial information,

which specifically increased the within-subject reproducibility (Novi

et al., 2020), hence taking advantages of the personalized optimal

montage our proposed workflow is expected to provide high reliability

in a test–retest reliability evaluation study.

Although the same task was performed by the same cohort, fMRI

and fNIRS acquisitions were not conducted simultaneously. Within-

subject task performance variability might also cause some potential

differences between the NIROT and fMRI images, including influence

of other processes like attention or arousal (Novi et al., 2020). Concur-

rent fMRI/fNIRS acquisitions (Huppert et al., 2017; Wijeakumar

et al., 2017) may be used to address this problem but this was beyond

the scope of this study. Overall, we believe there should be great

interest to apply the proposed NIROT workflow into different experi-

ments designs, involving a variety of tasks.

5 | CONCLUSION

In the present study, we demonstrated and evaluated our proposed

workflow for personalized NIROT using MEM. Finger tapping data

acquired from 10 subjects were used to reconstruct NIROT images

and validating the results by comparing them to the fMRI Z-maps

obtained from the same task and cohort. Conventionally used recon-

struction method—MNE was compared with MEM. Our results

showed that MEM provides better spatial accuracy and similar

temporal features as compared with MNE, when reconstructing both

HbO and HbR responses evoked by a finger tapping task. Our

workflow is publicly available, and all the processing functionalities

have been implemented and validated in the fNIRS processing

plugin—NIRSTORM (https://github.com/Nirstorm/nirstorm) in Brain-

storm software.
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APPENDIX A: fNIRS reconstruction using minimum norm estimate

(MNE) and maximum entropy on the mean (MEM)

NIROT reconstruction can be modeled as a linear problem, Y¼AXþe,

where Y (p� t) is the preprocessed ΔOD at a specific wavelength for a

specific channel p at a time sample t; A is the sensitivity matrix (p�q)

estimated when solving NIROT forward problem between the vertex

q and the channel p. X is a (q� t) matrix representing the

reconstructed amplitude at vertex q along the cortical surface at time

t, and e is the reconstruction error (same dimension as Y). Solving X by

knowing Y and A involves solving an ill-posed inverse problem, which

requires regularization. In the MNE approach (Hämäläinen &

Ilmoniemi, 1994), Tikhonov regularization was used to minimize the

L2-norm, thus the estimated reconstruction spatial–temporal matrix

X̂MNE as,

X̂MNE ¼ argmin Y�AXð Þk k2Σd
þλ Xk k2Σs

� �
¼ ATΣdAþλΣs
� ��1

ATΣdY

where Σd and Σs are the inverse of noise covariance and source

covariance, respectively, λ is the hyperparameter to regularize the

inversion. Σd was estimated as a full noise covariance matrix from

baseline recordings (i.e., �10 s to 0 s). Σs is assumed to be an identity

matrix in conventional MNE. In our implementation, λ was estimated

by the standard L-Curve method, as suggested in Hansen (2000).

In our proposed MEM method, which is a probabilistic frame-

work, the probability distribution of the amplitude of X, described as

dp xð Þ¼ p xð Þdx, can be estimated by Bayesian inference, starting from

a predefined prior distribution of X denoted dν xð Þ. The peak of the

posterior of dp xð Þ represented by dp� xð Þ is estimated by maximizing

the Kullback–Leibler divergence or ν-entropy to the prior as following,

Sν dp xð Þð Þ¼�
ð
log

dp xð Þ
dν xð Þ

� �
dp xð Þ¼�

ð
f xð Þlog f xð Þð Þdν xð Þ

dp� xð Þ¼ argmaxdp xð ÞϵCm
Sν dp xð Þð Þð Þ

where Sν dp xð Þð Þ is the ν-entropy of dp xð Þ to prior dν xð Þ, Cm is the set

of probability distributions of x that explains the data Y on average,

meaning

Y� A Ij � Edp x½ �
e

	 

¼0, dpϵCm

	

where Edp x½ � is the statistical expectation of x under the probability

distribution dp, I is the identity matrix with the dimension of the num-

ber of vertices involved in the reconstruction.

Then, assuming that brain activity could be described by K non-

overlapping and independent cortical parcels, we proposed the fol-

lowing reference distribution dν xð Þ model,

dν xð Þ¼
YK

k¼1
1�αkð Þδ xkð ÞþαkN μk ,Σkð Þ½ �dxk , 0 < αk <1

where the hidden variable Sk defines the activation state (active or

not) of each cortical parcel k. αk is the probability of kth parcel to be

active, that is, Prob Sk ¼1ð Þ. δk is a Dirac function that allows to

“switch off” the parcel when considered as inactive (i.e., Sk ¼0).

N μk ,Σkð Þ is a Gaussian distribution, describing the distribution of

absorptions changes within the kth parcel, when the parcel is consid-

ered as active, Sk ¼1. Note that the multiplication in the definition of

dν xð Þ is referring to the assumption that all parcels are statistically

independent.

A data driven parcellation (DDP) technique (Lapalme, Lina, &

Mattout, 2006) was used to parcellate the cortical surface into

K nonoverlapping parcel. The probability of each parcel to be active

(αk) was initialized as the median multivariate source prelocalization

(MSP) (Mattout, Pélégrini-Issac, Garnero, & Benali, 2005) score from

all the sources within the parcels.

To initialize the N μk ,Σkð Þ in prior dν xð Þ, μk was set to zero. Σk tð Þ
at each time point t was defined according to Chowdhury

et al. (2013),

Σk tð Þ¼ η tð ÞWk σð ÞTWk σð Þ

η tð Þ¼0:05
1
Pk

X
i∈Pk

X̂
2
MNE i,tð Þ

where Wk σð Þ is a spatial smoothness matrix, defined by Friston

et al. (2008), which controls the local spatial smoothness within the

parcel according to the geodesic surface neighborhood order. η tð Þ was

defined as 5% of the averaged energy of MNE solution within each

parcel.
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Note that for NIROT reconstruction, we also applied a depth-

weighted version of MEM and MNE, as described and evaluated in

Cai et al. (2021). Please refer to this work for further methodological

details.

APPENDIX B: The reliability of performance differences between

MEM and MNE

F IGURE B1 Histograms of paired
evaluation metric differences between
MEM and MNE estimated over
100 sessions (10 within subject resampled
sessions � 10 subjects). The blue dashed
lines indicated the 95% confidence
interval (CI) of the estimated paired
differences on (a) AUC, (b) SD (in mm) and
(c) Dmin (in mm). Red dashed lines
showed 0 difference and black dashed
lines represented the mean of the
corresponding differences. Based on all
sessions including within- and between-
subjects variability, MEM provided
significantly higher AUCs (overall better
sensitivity and specificity), smaller SDs
(less amplitude weighted spatial spread)
and smaller Dmin (closer to the main fMRI
cluster) than MNE

F IGURE B2 Evaluations of reliability of performance differences between MEM and MNE using discriminability. Each diagonal matrix
demonstrated the within-subject and between-subject Euclidean distances of the pair-wised performance differences (MEM � MNE) for (a) AUC,
(b) SD (in mm) and (c) Dmin (in mm). MEM showed reliably better reconstruction performance than MNE indicated by a discriminability measure
of 0.68 for AUC, 0.70 for SD and 0.68 for Dmin, as illustrated in the figure showing that within-subject distances (block diagonal terms) were
overall smaller than between-subject distances (off diagonal terms)
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