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ABSTRACT 28 

Phosphorus (P) is an indispensable macronutrient serving a variety of functions in plants. Inositol 29 

pyrophosphates (PP-InsPs) nutrient messengers play vital roles in the signaling of P status and 30 

plant growth and development. In this review, we summarize (1) the biosynthetic pathway of 31 

PP-InsPs and their regulation by plant P status, (2) the effects of PP-InsPs on the function of the 32 

SPX-domain containing proteins in signaling plant P status, (3) the effects of inositol 33 

pyrophosphates on auxin signaling through TIR1 and on jasmonate signaling through COI1, and 34 

(4) the potential crosstalk between P status signaling and phytohormone signaling in plants 35 

mediated by inositol pyrophosphates. It is concluded that the interactions between inositol 36 

pyrophosphates and their binding proteins are central to plant P status and developmental 37 

responses to different P supply. 38 

Keywords: inositol phosphates; inositol pyrophosphates; the SPX-domain containing proteins; 39 

TIR1; COI1; phosphorus status; auxin; jasmonic acid 40 
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INTRODUCTION 57 

Phosphorus (P) is an indispensable macronutrient for plants (White and Hammond 2008). It is 58 

largely present in nucleic acids, phospholipids and phosphorylated metabolites (White and 59 

Hammond 2008; Scheible and Rojas-Triana 2015). Although the total amount of P in soil is often 60 

abundant, it mainly exists in the form of organic P and insoluble P, while the quantity and 61 

concentration of inorganic phosphate (Pi) that can be taken up directly by plants in the soil 62 

solution is small (Raghothama and Karthikeyan 2005; White and Hammond 2008; Peret et al. 63 

2011; Lopez-Arredondo et al. 2014; Wang et al. 2018). The application of inorganic Pi fertilizer is 64 

the main agronomic method to increase Pi phytoavailability, but only 30-60% of the applied Pi 65 

fertilizer is utilized by crops in the year that it is applied (Schachtman et al. 1998; Syers et al. 66 

2008). Excessive application of Pi fertilizers not only increases the cost of agricultural activities, 67 

but also increases the flow of P into rivers, lakes, and oceans, causing environmental problems 68 

(Scheible and Rojas-Triana 2015). 69 

Through evolution, plants have developed a series of morphological, physiological and 70 

molecular mechanisms to improve Pi uptake efficiency (PUpE) and Pi utilization efficiency (PUtE) 71 

(White and Hammond 2008; Veneklaas et al. 2012; Wang et al. 2019b; Han et al. 2022b; Wen et al. 72 

2022). Low Pi availability promotes the elongation of lateral roots and formation of root hairs 73 

(Lynch 2011; Peret et al. 2011), as well as the establishment of mycorrhizal symbiosis 74 

(Lopez-Arredondo et al. 2014; Wen et al. 2022), enabling greater access to the soil volume. The 75 

synthesis and secretion of plant acid phosphatases, ribonucleases, and organic acids are induced 76 

by low Pi availability, which release Pi from organophosphates, RNA, and Pi-metal ion complexes, 77 

respectively (Fang et al. 2009; Du et al. 2022; Wen et al. 2022). Low Pi availability also increases 78 

the abundance of Pi transporters to improve Pi uptake by plants (White and Hammond 2008; 79 

Lopez-Arredondo et al. 2014). The glycolysis- and oxidative-phosphorylation pathways in plant 80 

cells are severely curtailed under low Pi availability, decreasing the P demand of metabolism 81 

(Plaxton and Tran 2011) and the phospholipid content of lipid membranes, while the 82 

non-phospholipid content is increased, thereby decreasing tissue P requirements (White and 83 

Hammond 2008; Sun et al. 2021; Yang et al. 2021). The redistribution of P from old leaves to 84 

developing tissues is also enhanced in plants lacking P to maintain photosynthetic capacity 85 

(Scheible and Rojas-Triana 2015). 86 



An elaborate signaling network regulates the morphological, physiological and biochemical 87 

adaptations to fluctuations in Pi supply, which has been well reviewed (Franco-Zorrilla et al. 2004; 88 

Secco et al. 2012; Liu et al. 2014; Gu et al. 2016; Wang and Liu 2018; Pan et al. 2019). In 89 

particular, fluctuations in Pi supply alter hormone biosynthesis, transport, and signaling, which 90 

have been implicated in plant acclimation to vagaries in Pi availability (Chiou and Lin 2011). 91 

Although substantial insights into the molecular biology of the regulatory networks regulating 92 

plant P status and phytohormone signaling have been obtained, exact knowledge is limited on how 93 

plants sense external Pi availability and to evoke proper intracellular responses. 94 

This review summarizes the biosynthetic pathway of inositol (pyro)phosphates and their 95 

regulation by plant P status, and the functions of the SPX-domain containing proteins that bind 96 

inositol (pyro)phosphates in signaling plant P status and co-receptors in phytohormone response 97 

pathways. It highlights the possible new roles of inositol (pyro)phosphates in mediating plant P 98 

status, and the crosstalk between P status and phytohormone signaling. 99 

BIOSYNTHESIS OF INOSITOL PYROPHOSPHATES IN PLANTS 100 

Myo-, D-chiro-, L-chiro-, muco-, scyllo-, and neo- inositol are naturally occurring isomers, of 101 

which myo-inositol is the most abundant form (Michell 2008; Pani et al. 2020). The myo-inositol 102 

isomer is the skeleton for inositol phosphates (InsPs), which are a series of phosphorylated inositol 103 

metabolites synthesized by the multi-step phosphorylation of myo-inositol. Phytic acid (PA) is the 104 

fully phosphorylated myo-inositol (Fig. 1). PA is synthesized via lipid-dependent or 105 

lipid-independent pathways (Wang et al. 2022). Both lipid-dependent and lipid-independent 106 

pathways rely on phosphorylation of several kinases to produce InsP5, which is subsequently 107 

phosphorylated by IPK1 (inositol pentakisphosphate 2-kinase) to yield PA (Wang et al. 2022). PA 108 

can be (1) transported via a multidrug-resistance-associated protein (MRP) to protein storage 109 

vacuoles (PSV) where it is accumulated into globoids in the form of PA salts (Otegui et al. 2002; 110 

Shi et al. 2007; Krishnan 2008; Regvar et al. 2011); (2) decomposed by phytase to release Pi, 111 

inositol and associated cations; or (3) used as a precursor to be further phosphorylated into inositol 112 

pyrophosphates (PP-InsPs). PA plays a central role in the synthesis of PP-InsPs (Fig. 1). 113 



 114 

Fig. 1 The chemical structure of myo-inositol, phytic acid (InsP6), and inositol pyrophosphates (5-InsP7 and 115 

InsP8). ITPK1 & 2, Inositol tetrakisphosphate kinase 1 & 2; VIH1 & 2, Diphosphoinositol pentakisphosphate 116 

kinase 1 & 2. 117 

The biosynthesis of PP-InsPs in plants is mainly catalyzed by two types of bifunctional 118 

enzymes, inositol tetrakisphosphate kinase (ITPK) and diphosphoinositol pentakisphosphate 119 

kinase (VIH) (Fig. 1). In Arabidopsis, PA can be phosphorylated at the 5-position phosphate group 120 

by ITPK1 to yield InsP7, and kinetic analysis revealed that ITPK1 exhibits an extremely high KM 121 

for ATP of approximately 520 µM (Laha et al. 2019; Riemer et al. 2021). ITPK1 not only 122 

phosphorylates InsP6 to generate InsP7, but also mediates the decomposition of 5-InsP7 (Riemer et 123 

al. 2021). An interesting question regarding bifunctional enzyme is how ITPK1 catalyzes the 124 

reverse reaction of the kinase activity as there is no phosphatase domain within ITPK1 protein. 125 

Kinetic analyses demonstrate that ITPK1 has comparable KM values for ATP and ADP, and ITPK1 126 

can shift its activity to an ADP-phosphotransferase that can transfer Pi from the 5-position 127 

phosphate group of 5-InsP7 to ADP at low ATP/ADP ratio conditions (Riemer et al. 2021). 128 

Additionally, there was no ADP-phosphotransferase activity of ITPK1 with any other InsP7 isomer, 129 

suggesting a substrate specificity for the reaction. Collectively, Pi-dependent changes in ATP 130 

concentration and the ATP/ADP ratio may ultimately determine the production of 5-InsP7 by 131 

shifting ITPK1-mediated InsP6 kinase and ADP-phosphotransferase activities (Riemer et al. 2021). 132 

InsP7 is phosphorylated by VIH1 and VIH2 to generate InsP8. The products of InsP8 are likely 133 

1,5-InsP8 and its enantiomeric isomer 3,5-InsP8, but the enantiomer identity has not been resolved 134 

(Fig. 1; Dong et al. 2019; Zhu et al. 2019; Laha et al. 2019). Both VIH1 and VIH2 are bifunctional 135 

enzymes that synthesize and decompose InsP8. Although VIHs contain both kinase and 136 

phosphatase domains, only mutating the kinase active center, but not the phosphatase active center, 137 

leads to constitutive P starvation responses (PSR) and P accumulation (Dong et al. 2019). In vitro 138 



experiments show that Mg2+-ATP concentrations control the relative kinase and phosphatase 139 

activities of VIH1 and VIH2 and that Pi inhibits the phosphatase activity of the enzyme (Zhu et al. 140 

2019). Thus, VIH1 and VIH2 regulate the production of InsP8 depending on intracellular ATP and 141 

Pi concentrations, which vary with external P supply (Zhu et al. 2019). 142 

INOSITOL PYROPHOSPHATES SIGNALING OF PLANT 143 

PHOSPHORUS STATUS 144 

Inositol pyrophosphates control phosphorus status 145 

The SPX (SYG1, Pho81 and XPR1) domain (PfamPF03105) were named after a homologous 146 

sequence shared by yeast SYG1, PHO81 and human XPR1 (Secco et al. 2012). In plants, the SPX 147 

domain-containing proteins can be divided into four subfamilies: SPX proteins, SPX-EXS (EXS, 148 

named after the yeast ERD1, the human XPR1 and the yeast SYG1) proteins, SPX-MFS (MFS, 149 

the major facilitator superfamily) proteins, and SPX-RING (RING, the really interesting new gene) 150 

proteins (Secco et al. 2012). The SPX domain in the SPX domain-containing proteins contains a 151 

putative binding site for PP-InsPs, which could play a key role in signaling plant P status and 152 

affecting the regulation of plant P as an intracellular sensor in plants (Fig. 2A, Fig. 2B, Table1). 153 

Since many InsPs and PP-InsPs exist in plant cells, one question is which molecules are involved 154 

in signaling plant P status and affecting internal P concentrations. Using titanium dioxide 155 

(TiO2)-based pull-down followed by PAGE, and capillary electrophoresis electrospray ionization 156 

mass spectrometry (CE-ESI-MS), different species of InsP6, InsP7, and InsP8 were quantified 157 

under P-sufficient and -deficient conditions (Riemer et al. 2021). In Arabidopsis thaliana, the 158 

concentrations of InsP6, InsP7 and InsP8 decreased significantly upon P deficiency. After 159 

resupplying P, the increase of InsP7 and InsP8 concentrations were significantly larger than that of 160 

InsP6 concentration, with the concentration of InsP8 increasing approximately 100-fold, greatly 161 

exceeding the concentration detected in plants grown continuously with an adequate P supply 162 

(Riemer et al. 2021). InsP7 and InsP8 are most sensitive to fluctuations in external P supply, 163 

suggesting that they may be intracellular signaling molecules allowing plants to respond to 164 

external P supply. Similar responses are also observed in rice and Physcomitrium patens, 165 

suggesting that the response to P availability in the biosynthesis of InsP7 and InsP8 is 166 

evolutionarily conserved in plant kingdom (Riemer et al. 2021). 167 



Similar to IPK1, ITPK1 is widely distributed at the tissue level, localized to the cytoplasm 168 

and nucleus, and the expression of ITPK1 is not induced by P deficiency (Kuo et al. 2018). The 169 

ipk1-1/itpk1 double mutant exhibits more severe growth reduction than single mutants and plants 170 

that proceeded to the reproductive stage have aborted seeds (Kuo et al. 2018). Although tissue P 171 

concentrations are greater in the ipk1-1/itpk1 double mutant than in single mutants, by 50~70%, 172 

this might be attributed to the relative 50~80% reduction in fresh weight of the former. The 173 

expression of phosphate starvation induced (PSI) genes in ipk1-1/itpk1 double and single mutants 174 

was comparable, indicating that ITPK1 and IPK1 are in a common response pathway to plant P 175 

status (Kuo et al. 2018). 176 

In vitro assays have shown that ITPK2 also has InsP6 kinase activity, however, only the 177 

disruption of ITPK1, but not of ITPK2, results in growth defects and constitutive P 178 

overaccumulation (Riemer et al. 2021). Concentrations of 5-InsP7, InsP8, and other inositol 179 

(pyro)phosphates in the itpk2 mutant were similar to wild-type (Laha et al. 2019; Riemer et al. 180 

2021). Despite the different phenotypes of the itpk2 and itpk1 mutants, the growth reduction and P 181 

hyperaccumulation in itpk1 are not as severe as vih1/vih2 mutants, which is unable to catalyze the 182 

conversion of InsP7 to InsP8 (Fig. 1), suggesting partial functional redundancy of ITPK2 and 183 

ITPK1 (Dong et al. 2019; Zhu et al. 2019; Riemer et al. 2021). However, when grown in 184 

P-sufficient conditions, the itpk1/itpk2 double mutant exhibits severe growth reduction, and its 185 

shoot P concentration was approximately 3.5-fold and 2.1-fold higher than wild-type and itpk1, 186 

respectively, suggesting that ITPK2 plays a relatively minor role in signaling plant P status in the 187 

presence of a functional ITPK1 (Riemer et al. 2021). 188 

Among a series of mutants in the PA and PP-InsPs biosynthesis pathways, only ipk1-1 and 189 

itpk1 show significant increases in shoot P concentration from seedlings to the mature plant (Kuo 190 

et al. 2018). PHOSPHATE2 (PHO2) is an ubiquitin-conjugating enzyme (UBC24) that 191 

ubiquinates the SPX-EXS Pi transporter PHOSPHATE1 (PHO1), resulting in its degradation and a 192 

decrease in xylem Pi loading (Liu et al. 2012). Compared with ipk1-1 and pho2 single mutants, the 193 

ipk1-1/pho2 double mutant showed additive shoot P accumulation, suggesting that P 194 

hyperaccumulation in the ipk1-1 mutant was mainly independent of the PHO2 regulatory pathway 195 

(Kuo et al. 2014). In comparison with the ipk1-1 single mutant, the P concentration and the 196 

expression of several genes regulated directly by the transcription factor PHOSPHATE 197 



STARVATION RESPONSE1 (PHR1) and PHR1-like 1 (PHL1) in the ipk1-1/phr1 double and 198 

ipk1-1/phr1/phl1 triple mutants were significantly decreased, but they were still greater than those 199 

in phr1 and phr1/phl1 mutants, respectively, indicating that PHR1 (PHL1) plays a partial role in 200 

upregulating the expression of PSI genes and P hyperaccumulation in the ipk1-1 mutant (Kuo et al. 201 

2014). Similarly, the shoot P concentration of the itpk1/pho2 double mutant was approximately 202 

twice that of itpk1 and pho2 mutants, suggesting that P hyperaccumulation in the itpk1 mutant is 203 

also independent of the PHO2 regulatory pathway (Riemer et al. 2021). Although phr1/itpk1 and 204 

phr1/phl1/itpk1 mutants accumulate more P than phl1 and phr1/phl1 mutants, respectively, the 205 

relative increments are smaller than in the presence of functional PHR1 and PHL1, suggesting that 206 

PHR1 (PHL1) is tightly linked to ITPK1-mediated regulation of plant P status (Riemer et al. 207 

2021). 208 

The growth of vih2/itpk1 is slower than itpk1, and shoot P accumulation in vih2/itpk1 is 209 

greater by about 27%, suggesting that VIH2 and ITPK1 are located in the same regulatory 210 

pathway affecting plant P status (Riemer et al. 2021). The concentration of InsP8 was decreased in 211 

vih2 and undetectable in the vih1/vih2 double mutants (Dong et al. 2019). Although vih1 and vih2 212 

single mutants have similar P concentrations to wild-type plants, vih1/vih2 double mutants have 213 

severely restricted growth and significantly increased P accumulation, indicating that VIH1 and 214 

VIH2 are functionally redundant in Arabidopsis (Dong et al. 2019; Zhu et al. 2019). Knockout of 215 

PHR1 in the vih1/vih2 mutant partially complements its phenotype, suggesting that VIH1/VIH2 216 

functions in signaling and regulating plant P status (Dong et al. 2019; Zhu et al. 2019). 217 



 218 

Fig. 2 Inositol pyrophosphates binding proteins in plant cells and their function. 219 

(A) Under P sufficient conditions, Pi stimulates the synthesis of PP-InsPs, and PP-InsPs involved in signaling plant 220 

P status by regulating the function of the SPX domain-containing proteins. (B) Under P deficient conditions, 221 

PP-InsPs are hydrolyzed and their actions on the SPX-domain containing proteins are abolished. (C) InsPs and 222 

PP-InsPs involved in auxin signaling by regulating the function of TIR1 in plants. (D) InsPs and PP-InsPs involved 223 

in jasmonic acid signaling by regulating the function of COI1 in plants. Green hexagons indicate InsPs or PP-InsPs, 224 

and yellow circle indicates ubiquitin. 225 

Table 1 Inositol pyrophosphates binding proteins in plants and their functions 226 

PP-InsPs binding 

proteins 

Interaction protein InsPs/PP-InsPs 

dependency 

Consequence of interaction References 

SPX 

(AtSPX1~AtSPX4; 

OsSPX1~OsSPX6) 

AtPHR1/OsPHR2 Yes (InsP6/7/8) Block PHR-mediated transcription 

activation of PSI genes 

Puga et al. 2014; Wang et al. 

2014b; Wild et al. 2016; Dong et 

al. 2019; Zhou et al. 2021; Guan 

et al. 2022 

OsSDEL1/2 No Degrade SPX4 to release PHR Ruan et al. 2019 

OsNRT1.1B No Recruit NBIP1 to degrade SPX4 Hu et al. 2019 

OsNBIP1 No Degrade SPX4 to release PHR and NLP Hu et al. 2019 

OsNLP3 No Block NLP-mediated transcription 

activation of nitrate responsive genes 

Hu et al. 2019 

OsRLI1 Unknown Inhibit RLI1 to regulate leaf inclination Ruan et al. 2018; Zhang et al. 

2021 



AtPAP1 Yes (InsP6) Block PAP1-mediated transcription 

activation of anthocyanin biosynthesis 

He et al. 2020b 

OsbHLH6 Unknown Block the effect of SPX4 on PHR2 He et al. 2021a 

SPX-EXS 

(AtPHO1; 

AtPHO1;H1~H10; 

OsPHO1;1~1;3) 

AtPHO2 Unknown Degrade AtPHO1 to reduce Pi loading Liu et al. 2012 

SPX-MFS 

(AtSPX-MFS1~3; 

OsSPX-MFS1~4; 

FaVPT1) 

Within VPT1 protein 

(i.e., SPX domain 

and MFS domain) 

Yes (InsP8) Activate the transport activity of VPT1 Luan et al. 2022 

SPX-RING 

(AtNLA1~AtNLA2; 

OsNLA1~OsNLA2) 

AtPHT1 Unknown Degrade AtPHT1 to reduce Pi uptake Kant et al. 2011; Lin et al. 2013 

OsPHT1 Unknown Degrade OsPHT1 to reduce Pi uptake Yue et al. 2017; Yang et al. 2020 

AtNRT1.7 Unknown Degrade NRT1;7 to reduce nitrate 

redistribution 

Liu et al. 2017 

AtORE1 

 

AtPHR1 

Unknown 

 

Yes (InsP8) 

Degrade ORE1 to alleviate leaf 

senescence 

Degrade PHR1 to block transcription 

activation of PSI genes 

Park et al. 2018 

 

Park et al. 2022 

TIR1 IAA7 Yes (InsP6/7) Degrade IAAs to release ARFs Tan et al. 2007; Calderon 

Villalobos et al. 2012; Laha et al. 

2022 

COI1 JAZ Yes (InsP8) Degrade JAZs to release MYCs Sheard et al. 2010; Mosblech et 

al. 2011; Laha et al. 2015; Laha 

et al. 2016 

SPX protein subfamily 227 

There are four members in Arabidopsis SPX protein subfamily, known as AtSPX1~AtSPX4 228 

(Duan et al. 2008). Except for AtSPX4, the expression of other members is induced by P 229 

deficiency, among which AtSPX1 and AtSPX3 are strongly induced while AtSPX2 is only slightly 230 

induced (Duan et al. 2008). The spx1/spx2 double mutant exhibits an increased activity of PHR1 231 

in plants grown in P-sufficient conditions but only a minor alteration of PHR1 activity in 232 

P-deficient plants, indicating that the inhibitory effect on PHR1 of SPX1 and SPX2 is cellular 233 

Pi-dependent (Puga et al. 2014). The interaction of SPX1 and PHR1 is compromised under 234 

P-sufficient conditions in the vih1/vih2 mutant, leading to a constitutive activation of PSI genes. 235 

Furthermore, isothermal titration calorimetry shows that InsP8 binds directly to SPX1 proteins and 236 

co-immunoprecipitation demonstrates that the interaction of SPX1 and PHR1 is Pi- and 237 

InsP8-dependent (Dong et al. 2019). Recently, it was reported that the KHR motif (PHR1K325, 238 

PHR1H328, and PHR1R335) at the surface of the coiled-coil (CC) domain of AtPHR1 is essential for 239 



its interaction with AtSPX1 (Ried et al. 2021). The Pi-InsP8-SPX1-PHR1 working model indicates 240 

that InsP8 is an intracellular signaling molecule which is sensitive to Pi concentration, and SPX1 241 

suppresses the activities of PHR1 in an InsP8-dependent manner as an intracellular sensor (Fig. 2 242 

A and B). 243 

AtSPX4 functions as a repressor not only in PHR1-dependent but also in PHR1-independent 244 

pathways in P-sufficient plants. Gene regulatory network analyses revealed that SPX4 interacts 245 

with several regulators of shoot development, such as SUPPRESSOR OF OVEREXPRESSION 246 

OF CONSTANS1 (SOC1) and ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN55 247 

(ANAC055) (Osorio et al. 2019). SPX4 acts as a regulator not only in signaling P status, but also 248 

in transmitting the P deficiency signal to anthocyanin biosynthesis. The MYB transcription factor 249 

PRODUCTION OF ANTHOCYANIN PIGMENTS1 (PAP1) controls the synthesis of anthocyanin 250 

by activating the expression of genes encoding the proteins in the synthesis pathway (He et al. 251 

2021b). SPX4 interacts with PAP1 to inhibit the binding of PAP1 to the promoter of its 252 

downstream genes in a PP-InsPs -dependent manner under P-sufficient conditions, conversely, in 253 

the absence of PP-InsPs under P-deficient conditions, the interaction between SPX4 and PAP1 is 254 

compromised, and PAP1 is released to initiate anthocyanin biosynthesis (He et al. 2021b). 255 

In rice, there are six members in SPX protein subfamily, namely OsSPX1~OsSPX6 (Zhong 256 

et al. 2018). Except for OsSPX4, which is not responsive to P deficiency, the other five SPX genes 257 

are all induced significantly after 7 days of P deficiency (Zhong et al. 2018). Rice transcription 258 

factor PHR2 is composed of transcriptional activation domain, MYB domain responsible for DNA 259 

binding, and CC domain responsible for dimerization, from N- to C-terminal (Wang et al. 2014b). 260 

Nuclear-localized OsSPX1 and OsSPX2 regulate P status by inhibiting the activity of PHR2 in a 261 

Pi-dependent manner (Wang et al. 2014b). Unexpectedly, PHR2 binds to P1BS elements in 262 

dimerized form in vivo to activate the expression of PSI genes in P-deficient conditions (Zhou et al. 263 

2021). When two OsSPX1 proteins approach a dimerized PHR2 in P-sufficient conditions, their 264 

helix α1 will be sterically hindered, resulting in the inability of the OsSPX1s bind to the PHR2 265 

dimer (Zhou et al. 2021). Upon binding PP-InsPs, an allosteric effect is produced so that OsSPX1s 266 

can disrupt PHR2 dimers and form a SPX1-PHR2 complex in a 1:1 ratio. In this instance, the 267 

DNA binding activities of PHR2 will be sterically blocked (Zhou et al. 2021). Similarly, in the 268 

OsSPX2-InsP6-PHR2 complex, the InsP6-binding OsSPX2 proteins assemble into a dimer and 269 



binds two molecules of PHR2, making the MYB domain of PHR2 severely allosteric turned and 270 

unable to bind DNA molecules (Guan et al. 2022).  271 

Rice REGULATOR OF LEAF INCLINATION1 (OsRLI1) is a transcription factor positively 272 

regulating leaf inclination by affecting lamina joint cell elongation in rice (Zhang et al. 2021). 273 

OsRLI1 directly activates the downstream genes OsBU1 and OsBU1-LIKE1 COMPLEX1 to 274 

regulate elongation of the lamina joint cells (Ruan et al. 2018). OsSPX1 protein interacts directly 275 

with OsRLI1, which could prevent OsRLI1 binding to the promoter of its downstream genes. In 276 

this way, OsSPX1 can also regulate leaf inclination by inhibiting the transcriptional activity of 277 

OsRLI1 in rice, whether this process is dependent on PP-InsPs remains to be further investigated 278 

(Ruan et al. 2018). 279 

OsSPX4 can interact with OsPHR2 to prevent the latter from entering the nucleus or binding 280 

to P1BS elements in downstream genes, thereby regulating P status (Lv et al. 2014). Although 281 

OsSPX4 does not respond to changes in external P availabilities at the transcriptional level, its 282 

protein stability is reduced under P-deficient conditions (Lv et al. 2014). RING-type E3 ubiquitin 283 

ligases OsSDEL1 and OsSDEL2 induced by P deficiency are involved in the degradation of 284 

OsSPX4 protein, resulting in the release of OsPHR2, allowing plants to adapt to P deficiency 285 

(Ruan et al. 2019). Furthermore, OsPHR2 competes with OsSDELs by interacting with OsSPX4 286 

under P-sufficient conditions, which protects OsSPX4 from ubiquitination and degradation (Ruan 287 

et al. 2019). In vitro assays provide a more detailed working model of 288 

PP-InsPs-SDELs-SPX4-PHR2 complex in rice (Ruan et al. 2019). The presence of PP-InsPs 289 

promotes the interaction of OsSPX4 and OsPHR2, which prevents OsSDELs from interacting 290 

with OsSPX4 and mediating its degradation under P-sufficient conditions, reversely, the 291 

dissociation of the OsSPX4-OsPHR2 in the absence of PP-InsPs releases OsSPX4 to OsSDELs, 292 

leading to ubiquitination and degradation of OsSPX4 under P-deficient conditions (Ruan et al. 293 

2019).  294 

Nuclear- and cytoplasm-localized OsbHLH6 exclusively interacts with OsSPX4 but not with 295 

other OsSPX proteins, moreover, OsbHLH6 has higher binding affinity with OsSPX4 than 296 

OsPHR2. Therefore, OsbHLH6 can alleviate the blocking effect of OsSPX4 on OsPHR2 (He et al. 297 

2021a). The interaction between OsbHLH6 and OsSPX4 mainly occurs under P-sufficient 298 

conditions, however, it remains unknown whether the interaction is PP-InsPs-dependent. Under 299 



nitrate-sufficient conditions, nitrate perception strengthens the interaction of OsNRT1.1B and 300 

OsSPX4, and OsNRT1.1B interacting protein 1 (OsNBIP1) is recruited to degrade OsSPX4, 301 

therefore releasing OsPHR2 and OsNLP3 to promote Pi and nitrate acquisition; while under low 302 

nitrate conditions, OsSPX4 interacts with OsPHR2 and OsNLP3 and inhibits the function of 303 

OsPHR2 and OsNLP3 in P and nitrate signaling and regulation (Hu et al. 2019). 304 

OsSPX3 and OsSPX5 redundantly regulate plant P status, and genetic analysis indicates that 305 

both are repressors of OsPHR2 (Shi et al. 2014). OsSPX6 is localized in cytoplasm and nucleus 306 

The interaction of OsSPX6 with OsPHR2 blocks the translocation of OsPHR2 from cytoplasm 307 

into the nucleus, and inhibits OsPHR2 binding to the P1BS elements in downstream genes. Thus, 308 

OsSPX6 negatively regulates the PSR through suppression of PHR2 (Zhong et al. 2018). In 309 

addition, SPX proteins in other species are also involved in plant P status through similar 310 

mechanisms, such as GmSPX1 and GmSPX3 in soybean, BnaSPX1 in rapeseed, and MtSPX1 and 311 

MtSPX3 in Medicago truncatula (Yao et al. 2014; Zhang et al. 2016; Du et al. 2017; Wang et al. 312 

2021). 313 

SPX-EXS protein subfamily 314 

PHOSPHATE1 (PHO1), identified by map-based cloning, shows very low homology to 315 

H+-Pi co-transporters, belonging to a new class of ion transporters in plants (Hamburger et al. 316 

2002). The PHO1 family has 11 members in the Arabidopsis genome, namely PHO1 and 317 

PHO1;H1~PHO1;H10 (PHO1 homologs), most of which are expressed in the vascular tissues of 318 

roots, stems, leaves and flowers (Wang et al. 2004). PHO1 and PHO1;H1 are responsible for the 319 

loading of Pi from root epidermal cells and cortical cells to xylem vessels (Stefanovic et al. 2007). 320 

Loss of PHO1 function can hinder the long-distance transport of Pi from roots to shoots, resulting 321 

in the decline of Pi concentrations in the shoot (Stefanovic et al. 2007). There are three 322 

homologous genes of PHO1 in rice, known as OsPHO1;1, OsPHO1;2, and OsPHO1;3, among 323 

which OsPHO1;1 and OsPHO1;2 are located in the plasma membrane and mainly expressed in 324 

node I, being responsible for the transportation of Pi to grains (Che et al. 2020; Chiou 2020; Ma et 325 

al. 2021). Additionally, OsPHO1;2 is also responsible for the long-distance transport of Pi from 326 

roots to shoots in rice (Secco et al. 2010). It is worth noting that the regulation of expression of 327 

PHO1 occurs at different levels in Arabidopsis. Firstly, there are W-box cis-acting elements in the 328 

promoter region of PHO1, to which transcription factors WRKY6 and WRKY42 can bind to 329 



inhibit the expression of PHO1 (Chen et al. al 2009; Su et al. 2015). Secondly, the 330 

ubiquitin-conjugating enzyme PHO2 (UBC24) is involved in the ubiquitination of PHO1, 331 

resulting in the degradation of PHO1 protein (Liu et al. 2012). Finally, there is an upstream open 332 

reading frame (uORF) in the 5' untranslated region of PHO1, which can also regulate the protein 333 

abundance of PHO1 (Reis et al. 2020). 334 

Pi efflux in human cells is highly dependent on Xenotropic and Polytropic Retrovirus 335 

Receptor 1 (XPR1) (Wilson et al. 2019). Isothermal titration calorimetry shows that InsP8 has a 336 

very high affinity for the XPR1 protein (Kd=180 nM), and diphosphoinositol pentakisphosphate 337 

kinases (PPIP5Ks) mutant cell lines have reduced Pi efflux, while the XPR1 mutant cell lines 338 

exhibit a similar phenotype (Li et al. 2020). By mutating PPIP5Ks or adding an inhibitor of 339 

inositol hexakisphosphate kinases (IP6Ks), intracellular synthesis of InsP8 can be reduced, thereby 340 

inhibiting XPR1-mediated Pi efflux in human cells (Wilson et al. 2019; Li et al. 2020). In 341 

Arabidopsis thaliana, topological analysis reveals that the N-terminus of the PHO1 protein 342 

contains an SPX domain, followed by four transmembrane motifs and an EXS domain (Wege et al. 343 

2016). The SPX domain of PHO1 contains no transmembrane motif and is located in the 344 

cytoplasmic side of the cell, providing a putative anchor site to be regulated (Wege et al. 2016). 345 

Using a tobacco transient expression system, it was found that the EXS domain of PHO1 is 346 

necessary for its Pi transport activity and subcellular localization, but the EXS domain alone 347 

cannot transport Pi. Expression of the EXS domain in the pho1 background rescues the shoot 348 

growth defect, while the P concentration remains the same as in pho1 mutant, suggesting that the 349 

SPX domain is indispensable for a functional PHO1 (Wege et al. 2016). Although the mutation of 350 

the PP-InsPs binding site in the Arabidopsis PHO1 protein did not affect its subcellular 351 

localization, the mutated PHO1 proteins driven by the native promoter are unable to rescue the 352 

reduced shoot P concentration of the pho1 mutant, suggesting that the binding of PP-InsPs is also 353 

critical for a functional PHO1 protein (Wild et al. 2016). AtPHO1 was previously identified as a Pi 354 

efflux transporter (Arpat et al. 2012; Vogiatzaki et al. 2017), but OsPHO1;1 and OsPHO1;2 were 355 

recently identified as Pi influx transporters (Che et al. 2020). The influx activity of PHO1 cannot 356 

explain its prominent role in the xylem loading, which requires efflux activity to move Pi out of 357 

cells (Stefanovic et al. 2007). Alternatively, it cannot be ruled out that PHO1 is able to mediate 358 

bi-directional transport of Pi. The N-terminal part of PHO1, which contains the SPX domain, is 359 



required for the recognition, interaction, and subsequent ubiquitination by PHO2 (Liu et al. 2012). 360 

There exists a possibility that the transport direction/activity of PHO1 and the interaction between 361 

PHO1 and PHO2 are controlled finely by the concentration of PP-InsPs in plant cells. 362 

SPX-MFS protein subfamily 363 

Plant vacuoles are the main organelle for storing Pi, and vacuole Pi transporter (VPT), also 364 

known as SPX-MFS or PHT5, mediates Pi transport between cytosol and vacuole (Yang et al. 365 

2017). The PHT5 family in Arabidopsis includes three members, known as AtPHT5;1, AtPHT5;2 366 

and AtPHT5;3, of which AtPHT5;1 plays a major role in Pi accumulation (Liu et al. 2015; Liu et 367 

al. 2016). The SPX-MFS family in rice includes four members, namely OsSPX-MFS1, 368 

OsSPX-MFS2 OsSPX-MFS3 and OsSPX-MFS4, among which OsSPX-MFS1 and OsSPX-MFS3 369 

are downregulated under P deficiency, whereas OsSPX-MFS2 is induced (Wang et al. 2012). All 370 

the OsSPX-MFS proteins transport Pi from the cytosol to the vacuole, among which 371 

OsSPX-MFS3 plays dominant role while OsSPX-MFS2 has the weakest function (Lin et al. 2010; 372 

Wang et al. 2015; Xu et al. 2019; Guo et al. 2022). Recently, we identified two vacuolar Pi influx 373 

transporters in B. napus, and revealed the distinct and conserved roles of BnaPHT5;1bs in cellular 374 

Pi status in this plant species (Han et al. 2022a). 375 

Yeast VTC (Vacuolar Transporter Chaperone) is a type of inorganic polyphosphate (polyP) 376 

polymerase localized on the tonoplast (Gerasimaite et al. 2017). 5-PP-InsP5 bind specifically to 377 

the SPX domain of the VTC protein and acts as the main activator of intracellular VTC, indicating 378 

that the SPX domain may integrate PP-InsPs to adapt to cytoplasmic Pi levels under different 379 

metabolic conditions (Gerasimaite et al. 2017). When PP-InsPs is binding to the SPX domain 380 

within the VTC protein, the catalytic polymerase domain at the entrance of the trans-membrane 381 

channel is oriented, both activating the enzyme and coupling polyP synthesis and membrane 382 

translocation (Guan et al. 2023). Rice OsSPX-MFS1, OsSPX-MFS2 and OsSPX-MFS3 localize to 383 

the tonoplast, and their truncated proteins ΔMFS1, ΔMFS2 and ΔMFS3 with the SPX domain 384 

deleted still localized to the tonoplast, suggesting that the transmembrane domain and C-terminal 385 

motif are critical for the localization of SPX-MFSs, while the SPX domain probably plays a 386 

regulatory role (Wang et al. 2015). The SPX domain of the strawberry FaVPT1 protein shows a 387 

high affinity for InsP6 (Kd=3.5 μM), moreover, the SPX-MFS family proteins share highly 388 

conserved PP-InsPs binding sites, suggesting that PP-InsPs may also act on SPX-MFS proteins to 389 



control intracellular P homeostasis (Secco et al. 2012; Huang et al. 2019). The auto-inhibitory 390 

domain in the VPT1 protein suppresses its transport activity under P deficient conditions. 391 

However, under P sufficient conditions activity of VPT1 is activated to transport excess Pi into 392 

vacuole upon binding of InsP8 through the SPX domain (Luan et al. 2022). 393 

SPX-RING protein subfamily 394 

Proteins containing the RING domain generally possess ubiquitin ligase (E3) activity, which 395 

can transfer ubiquitin from ubiquitin-conjugating enzyme (E2) to specific substrate proteins (Kraft 396 

et al. 2005; Stone et al. 2005). In the Arabidopsis and rice genomes, there are only two genes 397 

encoding proteins containing both SPX and RING domains, namely NLA1 and NLA2 (Secco et al. 398 

2012; Jung et al. 2018). Screening of 200 T-DNA insertion lines identified a line that failed to 399 

develop the essential adaptive responses to low nitrogen conditions, and senesced earlier and more 400 

rapidly than wild type under nitrogen deficiency, so it was named NITROGEN LIMITATION 401 

ADAPATATION1 (NLA1) (Peng et al. 2007). Two suppressors of nla1 (nla1-Suppressor1 and 402 

nla1-Suppressor2) were identified by genetic approaches, both of which can rescue the phenotype 403 

of nla1 mutants failing to adapt to nitrogen deficiency. It was found that the two suppressors were 404 

PHF1 and PHT1;1 mutations after map-based cloning, moreover, the nla1/phf1 or nla1/pht1;1 405 

double mutant can also restore the phenotype of nla1 (Kant et al. 2011). NLA1 co-localizes with 406 

PHT1;1 and PHT1;4 in the plasma membrane, and NLA1 regulates P status by mediating the 407 

ubiquitination and degradation of PHT1;1 and PHT1;4 in Arabidopsis (Lin et al. 2013). OsNLA1 408 

also controls P status by ubiquitinating several OsPHT1s in rice, notably, the main difference 409 

between two species is that AtNLA1 is regulated by the microRNA miR827 at the 410 

post-transcriptional level, while OsNLA1 is not regulated in this manner (Yue et al. 2017; Yang et 411 

al. 2020). Interestingly, the phenotype of nla1 mutant whilst failing to adapt to low nitrogen 412 

conditions can not only attribute to Pi toxicity, but also excessive nitrogen transfer from old leaves 413 

to new leaves under nitrate deficiency. NLA1 mediates the ubiquitination and degradation of 414 

nitrate transporter NRT1;7, and regulates the redistribution of nitrate from source to sink in plants 415 

under low nitrogen conditions (Liu et al. 2017). ORE1 is a core transcription factor that controls 416 

leaf senescence under nitrate deficient conditions, and NLA1 also regulates leaf senescence under 417 

nitrogen limitation by mediating ORE1 ubiquitination and degradation (Park et al. 2018). 418 

Sequence alignment shows that the binding site of PP-InsPs in NLA1 is highly conserved 419 



(Secco et al. 2012). Furthermore, both mutation in genes related to PP-InsPs synthesis (e.g., IPK1, 420 

ITPK1, and VIHs) and NLA1 leads to P overaccumulation (Lin et al. 2013; Kuo et al. 2018; Dong 421 

et al. 2019). It was shown that the SPX domain of NLA1 not only interacts with the Pi transporter 422 

PHT1s, but also with the nitrate transporter NRT1;7 (Lin et al. 2013; Liu et al. 2017). Although it 423 

was revealed that NLA1 mediates the ubiquitination of PHR1 in a PP-InsPs-dependent manner 424 

(Park et al. 2022), it remains largely unknown whether PP-InsPs affect the NLA1-PHT1s module 425 

to control Pi uptake, or on the NLA1-NRT1;7 module to regulate nitrate status in plants. The SPX 426 

domain of NLA2 also contains a conserved PP-InsPs binding site, suggesting that NLA2 may also 427 

work coordinately with PP-InsPs to control P status in plants (Secco et al. 2012; Jung et al. 2018). 428 

INOSITOL (PYRO)PHOSPHATES MEDIATED AUXIN 429 

SIGNALING PATHWAY 430 

Inositol (pyro)phosphates and auxin co-receptor TIR1 431 

Auxin is widely involved in plant growth, development, and stress adaptation (Salehin et al. 432 

2015). There are four types of auxins derived from plants, of which indole-3-acetic acid (IAA) is 433 

the most abundant form (Lavy and Estelle 2016). The distribution of auxin within plant tissues is 434 

controlled by biosynthesis, transport and inactivation, and once sensed by its receptors in the 435 

nucleus, triggers a series of downstream reactions (Zazimalova et al. 2010; Kasahara 2016). The 436 

core auxin sensing complex includes three parts: the F-box type auxin co-receptor TRANSPORT 437 

INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX PROTEIN (TIR1/AFB), the 438 

transcriptional repressor Auxin/INDOLE-3-ACETIC ACID (Aux/IAA), and AUXIN RESPONSE 439 

FACTOR (ARF) (Salehin et al. 2015; Fig. 2C). Auxin enhances the interaction between the 440 

TIR1/AFB complex and Aux/IAA proteins, leading to degradation of Aux/IAA and release of ARF 441 

to regulate auxin-mediated transcriptional activation or repression of downstream genes 442 

(Okushima et al. 2005; Badescu and Napier 2006; Hagen 2015). 443 

Inositol (pyro)phosphates not only play an important role in signaling P status, but are also 444 

involved in the auxin signaling pathway (Fig. 2C, Table1). TIR1 is an F-box protein containing a 445 

leucine-rich-repeat (LRR) that forms part of a SKP1/Cullin/F-box (SCF) type E3 ubiquitin ligase 446 

complex. Specifically, SKP1 (e.g., SKP1-like protein ASK1) links TIR1 to the Cullin (e.g., CUL1), 447 

which in turn interacts with RBX1, SCF-type ubiquitin ligases catalyze the transfer of activated 448 



ubiquitin from a ubiquitin-conjugating enzyme (E2) to a target protein (i.e., Aux/IAAs) (Fig. 2C, 449 

Kepinski and Leyser 2005). The TIR1 protein expressed and purified from insect cells 450 

co-crystallized with InsP6, while mutation of the InsPs/PP-InsPs binding site of TIR1 resulted in 451 

failure of the auxin-TIR1-Aux/IAA complex to form, suggesting that InsPs/PP-InsPs are directly 452 

involved in the auxin signaling pathway (Tan et al. 2007; Calderon Villalobos et al. 2012). 453 

Addition of exogenous auxin induced the expression of the Arabidopsis IPTK1 gene, and 454 

ITPK1 played an important role in auxin-mediated processes, including primary root elongation, 455 

leaf vein development, thermomorphogenesis and gravitropism (Laha et al. 2022). 5-InsP7 456 

produced by ITPK1 has a very high affinity for the auxin receptor TIR1, furthermore, 5-InsP7 457 

promotes the interaction between AFB1/AFB2 and Aux/IAA in yeast, suggesting that PP-InsPs are 458 

involve in auxin signaling (Laha et al. 2022). 459 

Crosstalk between P status- and auxin- signaling 460 

Root architecture undergoes adaptive changes, including the inhibition of primary root 461 

growth and the increase in the number and length of lateral roots under P-deficient conditions 462 

(Peret et al. 2011). It was reported that P deficiency changes the sensitivity of plant roots to auxin, 463 

which in turn causes the morphogenesis of plant lateral roots. Specifically, the expression of the 464 

auxin receptor gene TIR1 is induced after P deficiency. As a result, the degradation of the repressor 465 

Aux/IAAs are accelerated, releasing ARF19, which further activates the expression of genes 466 

related to lateral root morphogenesis (Pérez-Torres et al. 2008). AtPHR1, a target gene of AtARF7 467 

and AtARF19, is positively regulated by auxin signaling, and both AtPHR1 and its downstream 468 

PSI genes are down-regulated in arf7, arf19, and arf7/arf19 mutants (Huang et al. 2018). In rice, 469 

knocking out OsARF12 affected the transcript abundance of OsPHR2 and its downstream genes, 470 

moreover, knocking out OsARF16 resulted in the loss of primary root, lateral root and root hairs 471 

responses in response to auxin and P deficiency signals (Shen et al. 2013; Wang et al. 2014a), 472 

indicating that ARF family members are involved in the crosstalk between auxin signaling and P 473 

status. Although the pho2 mutant (with high concentrations of Pi and InsP8, Liu et al. 2012; Dong 474 

et al. 2019) and wild-type display similar phenotypes with respect to auxin responsiveness, the 475 

auxin insensitive primary root growth of itpk1 plants is not observed anymore when plants are 476 

grown under P deficiency, indicating that both P overaccumulation and defective auxin 477 

responsiveness are independent consequences of impaired ITPK1 activity (Laha et al. 2022). 478 



Given that InsP7 and InsP8 are sensitive to fluctuations in external P supply, whether P status 479 

affects the interaction between TIR1 and Aux/IAA at the protein level by controlling the synthesis 480 

of PP-InsPs, and then regulates plant growth and development is still elusive. It seems 481 

contradictory that P deficiency induces the expression of TIR1, but inhibits the synthesis of 482 

PP-InsPs, as they are both essential for the degradation of Aux/IAA and the release of ARFs. 483 

However, the underlying complex regulation mode is worthy of investigation (Fig. 2; Fig. 3). 484 

 485 

Fig. 3 The crosstalk among P status, auxin, and jasmonate signaling pathways in plants. Core transcription 486 

factor PHRs play major roles in the signaling crosstalk of P status, auxin, and JA. Firstly, PHRs regulate 487 

multi-pathways in P status signaling including microRNA-mediated surveillance of Pi uptake and transport. 488 

Secondly, PHRs targeted directly by ARF proteins so that auxin signaling is able to affect P status signaling. 489 

Thirdly, PHRs activate the expression of genes associated with JA signaling (e.g., rapid alkalinization factor 490 

(RALF), OsJAZ11, and OsMYC2), in turn, protein kinases BIK1 and PBL1 in JA signaling regulate Pi uptake 491 

directly. Green hexagons indicate InsPs or PP-InsPs, and yellow circle indicates ubiquitin. 492 

INOSITOL (PYRO)PHOSPHATES MEDIATED JASMONIC ACID 493 

SIGNALING PATHWAY 494 

Inositol (pyro)phosphates and JA co-receptor COI1 495 

Jasmonic acid (JA) is widely involved in plant growth and development, including root 496 

elongation, leaf senescence, and pollen fertility, and is also essential for plants to resist insect 497 

infestation, low temperature, drought and other stresses (Hu et al. 2017; Huang et al. 2017; Wang 498 



et al. 2019a). JA is synthesized in chloroplasts and peroxisomes, and then chemically modified in 499 

the cytoplasm (Huang et al. 2017; Wang et al. 2019a). Methyl jasmonate (MeJA), JA-isoleucine 500 

complex (JA-Ile) and cis-jasmone (CJ) are biologically active JA derivatives, in which JA-Ile 501 

possesses the highest biological activity, and JASMONATE RESISTANT1 (JAR1) is responsible 502 

for its chemical modification (Wasternack and Strnad 2016; Wastenack and Song 2017). 503 

When JA-lle is accumulated in plants, the COI1-JAZ protein complex acts as a JA 504 

co-receptor to bind to JA-lle, promoting the ubiquitination of the repressor JAZ proteins by the 505 

SCF-COI1 complex (Fig. 2D). After JAZ proteins are degraded by the 26S proteasome, the 506 

transcription factor MYCs are released and bind to the promoters of a series of JA-responsive 507 

genes, thereby turning on the expression of downstream genes (Fig. 2D). Similar to TIR1, COI1 is 508 

an F-box protein that forms part of a SKP1/Cullin/F-box (SCF) type E3 ubiquitin ligase complex 509 

(Chini et al. 2009; Kazan and Manners 2012; 2013). The COI1-JAZ co-receptor contains not only 510 

a JA-lle binding site, but also a InsPs or PP-InsPs binding site, indicating InsPs and PP-InsPs play 511 

important regulatory roles in the JA signaling pathway (Sheard et al. 2010; Laha et al. 2015; Fig. 512 

2D, Table 1). Yeast two-hybrid experiments showed that the COI1 protein, mutated at the InsPs or 513 

PP-InsPs binding site, had a reduced interaction with the JAZ9 protein, and its mutant version also 514 

had a reduced degree of rescue to the inhibited phenotype of root growth and silique development 515 

in the coi1 mutant, indicating that InsPs or PP-InsPs is indispensable for a functional COI1 516 

(Mosblech et al. 2011). Yeast ipk1Δ strongly accumulates PP-InsP4 (an inositol pyrophosphate), 517 

and the interaction between COI1 and JAZ9 is enhanced in yeast ipk1Δ mutant lines (Saiardi et al. 518 

2002; Mosblech et al. 2011). Both the ipk1 mutant and vih2 mutants display a strong reduction of 519 

InsP8, moreover, the phenotypes of ipk1 mutant are similar to that of vih2 plants that display 520 

compromised JA-dependent defenses (Laha et al. 2015; Laha et al. 2016). Based on bioinformatics 521 

analysis and radioligand reconstitution experiments, InsP8 and COI1-JAZ co-receptor show a very 522 

high binding ability (Cui et al. 2018). The above findings indicate PP-InsPs, in particular InsP8, is 523 

a co-ligand of the COI1-JAZ co-receptor and is essential for JA-mediated plant immune 524 

responses. 525 

The content of PA in the mutants of genes related to PA synthesis pathway is decreased, and 526 

the immunity of the mutant lines to pathogenic bacteria is also decreased (Murphy et al. 2008). 527 

Potato inositol-3-phosphate synthase (MIPS) RNAi lines have reduced InsP6 content and reduced 528 



immunity to potato Y virus and tobacco mosaic virus (TMV), suggesting that InsP6 maintains 529 

plant resistance to basic immunity to pathogens (Murphy et al. 2008). The function of multiple 530 

immune pathways in plants depends on the biosynthesis of InsPs and PP-InsPs. In ipk1, itpk1 and 531 

vih2 mutants, constitutive activation of immune signaling results in enhanced resistance to 532 

Pseudomonas syringae, indicating that Arabidopsis IPK1, ITPK1, and VIH2 inhibited 533 

SA-dependent immune responses (Gulabani et al. 2022). After JA treatment, the biosynthesis of 534 

InsP8 is induced in plants, and VIH2 regulates the plant's ability to sense JA and resist to 535 

herbivorous insects and disease fungi (Laha et al. 2015). 536 

Crosstalk between P status- and JA- signaling 537 

There exists a crosstalk between P status- and JA- signaling in plants, enabling plants to 538 

coordinately adapt to stresses such as P deficiency, pest invasion, and diseases (Fig. 3). In 539 

Arabidopsis, P deficiency signals can enhance JA synthesis and affect signaling pathways, thereby 540 

enhancing plant resistance to herbivorous insects (Khan et al. 2016). In cotton, JA synthesis is also 541 

increased under P deficiency, and the resistance of cotton to Verticillium wilt is greatly enhanced 542 

(Luo et al. 2021). The GhAOS gene RNAi lines have a weakened resistance to Verticillium wilt 543 

under P deficiency, indicating that P deficiency signals enhanced cotton's resistance to Verticillium 544 

wilt by activating JA biosynthesis (Luo et al. 2021). Transcriptome analysis revealed that the 545 

differential expression of JA- and SA-related genes during P deficiency is dependent on PHR1, 546 

suggesting that PHR1 can regulate plant immune responses at the transcriptional level (Castrillo et 547 

al. 2017). Recently, it was reported that AtPHR1 activates the expression of rapid alkalinization 548 

factor (RALF) under P-deficient conditions, subsequently, RALF inhibits the complex formation 549 

of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) receptor through the 550 

PTI modulator FERONIA (Tang et al. 2022). Impairment of the plant immune response via the 551 

PHR1-RALF-FERONIA pathway allows the colonization of root-specific microbial communities, 552 

which in turn alleviate the PSR (Tang et al. 2022). The resistance of rice to Xanthomonas oryzae 553 

pv. oryzae is enhanced under P deficiency, which is achieved via OsPHR2 by activating the 554 

expression of the core transcription factor MYC2 in the JA signaling pathway (Kong et al. 2021). 555 

After benzoic acid treatment or inoculation with Pseudomonas syringae pv tomato DC3000, SA 556 

accumulated in nla1 (bah1) mutants, suggesting that NLA1/BAH1 (benzoic acid hypersensitive1) 557 

is involved in plant immune responses by regulating benzoic acid- and pathogen-induced SA 558 



accumulation (Yaeno and Iba 2008). The P concentration in the nla1 mutant and 559 

miR827-overexpressing lines was elevated, resulting in increased resistance to Plectosphaerella 560 

cucumerina (Val-Torregrosa et al. 2022). When infected with pathogenic bacteria or treated with 561 

fungal inducers, the expression of miR827 is induced, while the expression of NLA1 is 562 

down-regulated. Moreover, the concentrations of callose, phytoalexin, SA and JA in the leaves of 563 

nla1 mutants are increased, indicating that NLA1 may be a negative regulator involved in plant 564 

immunity (Val-Torregrosa et al. 2022). NLA1 may control the JA signaling pathway by regulating 565 

the protein level of PHR1 with a PP-InsPs-dependent manner (Park et al. 2022; Fig. 3). 566 

P deficiency signals can affect JA biosynthesis and signaling pathways, and the key genes of 567 

JA biosynthesis and signaling pathways are also involved in the PSR of plants (Khan et al. 2016; 568 

Pandey et al. 2021; Fig. 3). The P deficiency inducible gene OsJAZ11 is regulated by OsPHR1 at 569 

the transcriptional level, and overexpression of OsJAZ11 alleviates the inhibitory effect of JA on 570 

rice root growth (Pandey et al. 2021). OsJAZ11 overexpression lines have an increased primary 571 

and seminal root elongation, and their ability to forage P is enhanced (Pandey et al. 2021). The PSI 572 

genes are significantly down-regulated in OsJAZ11-overexpressing lines, whereas they are 573 

significantly up-regulated in RNAi lines, indicating that OsJAZ11 suppressed the PSR (Pandey et 574 

al. 2021). OsJAZ11 protein can interact with OsSPX1 protein, which may be another way of 575 

regulating PSR (Pandey et al. 2021). Recently, it was reported that protein kinases BIK1 and 576 

PBL1 functioning in immune pathway inhibit the activity of PHT1;4 via phosphorylation, 577 

suggesting that activation of immune signaling can directly inhibit Pi uptake in plants (Dindas et 578 

al. 2022). 579 

CONCLUSION AND FUTURE PERSPECTIVE 580 

In the past two decades, great progress has been achieved in the biosynthetic pathways of 581 

InsPs and PP-InsPs and their emerging roles in P status, auxin and JA signaling pathways in plants. 582 

The regulation of PP-InsPs on the SPX domain protein subfamily has been clearly elucidated. 583 

However, the dependence of the SPX-EXS, SPX-MFS and SPX-RING subfamily members on 584 

PP-InsPs still needs further study to understand their molecular mechanisms of controlling plant P 585 

status. In addition, given that PP-InsPs are essential for signaling P status, auxin and JA signaling 586 

pathways, whether P status acts on phytohormone signaling pathway by controlling the synthesis 587 



of PP-InsPs, and in turn phytohormone signaling affects the growth and development of plants 588 

under different P supply also warrants further study. Although it is becoming clearer that the SPX 589 

domain containing proteins are intracellular sensors, it is largely unknown what kind of proteins 590 

act as local P sensors. Understanding of whether and how PP-InsPs integrate local and systemic 591 

signaling pathways to module plant P status will be beneficial for genetic improvement of crop P 592 

efficiency. 593 
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