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Highlights 15 

● STEEP is a RS-based SEB model from a one-source bulk transfer equation for SDTF. 16 

● STEEP includes improved representations of phenology and soil moisture for SDTF. 17 

● STEEP is tested against eddy covariance data from the largest SDTF in South America. 18 

● STEEP exhibits satisfactory metrics and outperforms SEBAL, MOD16, and PMLv2. 19 

Abstract 20 

Improvement of evapotranspiration (ET) estimates using remote sensing (RS) products based on 21 

multispectral and thermal sensors has been a breakthrough in hydrological research. In large-scale 22 

applications, methods that use the approach of RS-based surface energy balance (SEB) models 23 

often rely on oversimplifications. The use of these models for Seasonally Dry Tropical Forests 24 

(SDTF) has been challenging due to incompatibilities between the assumptions underlying those 25 

models and the specificities of this environment, such as the highly contrasting phenological phases 26 

or ET being mainly controlled by soil–water availability. We developed a RS-based SEB model from 27 

a one-source bulk transfer equation, called Seasonal Tropical Ecosystem Energy Partitioning 28 

(STEEP). Our model uses the plant area index to represent the woody structure of the plants in 29 

calculating the moment roughness length. We included the parameter kB−1 and its correction using 30 

RS soil moisture in the calculation of the aerodynamic resistance for heat transfer. 31 
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Besides, λET caused by remaining water availability in endmembers pixels was quantified using the 32 

Priestley-Taylor equation. We implemented the algorithm on Google Earth Engine, using freely 33 

available data. To evaluate our model, we used eddy covariance data from four sites in the Caatinga, 34 

the largest SDTF in South America, in the Brazilian semiarid region. Our results show that STEEP 35 

increased the accuracy of ET estimates without requiring any additional climatological information. 36 

This improvement is more pronounced during the dry season, which, in general, ET for these SDTF 37 

is overestimated by traditional SEB models, such as the Surface Energy Balance Algorithms for Land 38 

(SEBAL). The STEEP model had similar or superior behavior and performance statistics relative to 39 

global ET products (MOD16 and PMLv2). This work contributes to an improved understanding of the 40 

drivers and modulators of the energy and water balances at local and regional scales in SDTF. 41 

Keywords: Sensible heat flux, Aerodynamic resistance for heat transfer, Surface energy balance, 42 

Caatinga, Google Earth Engine 43 

 44 

1. Introduction 45 

Quantifying evapotranspiration (ET) is one of the largest research challenges in hydrology 46 

because ET is driven by a complex combination of atmospheric, vegetation, edaphic, and terrain 47 

characteristics (Wang et al., 2016; Bhattarai et al., 2017). The traditional techniques to quantify ET, 48 

e.g. Bowen ratio or eddy covariance system (EC), are limited to areas up to ~10 km² (Allen et al., 49 

2011; Anapalli et al., 2016; Mcshane et al., 2017; Mallick et al., 2018; Chu et al., 2021). Over the 50 

past decades, models based on satellite remote sensing (RS) data have been increasingly 51 

developed and applied to estimate ET for multiple temporal and spatial scales (Anderson et al., 2011; 52 

Chen and Liu, 2020). RS-based surface energy balance (SEB) models estimate ET in terms of 53 

energy per unit area (e.g. W/m²), i.e. by latent heat flux, λET, where λ is the latent heat of vaporization 54 

of water (Shuttleworth, 2012; Barraza et al., 2017; Trebs et al., 2021). SEB models obtain λET by 55 

subtracting the soil heat (G) and sensible heat (H) fluxes from the net radiation (Rn). Estimates of Rn 56 

obtained with RS data have been improving, and this flux can nowadays be estimated with 57 

acceptable precision (Allen et al., 2011; Ferreira et al., 2020). The G:Rn ratio can be predicted with 58 

reasonable accuracy through the use of empirical relationships with soil, vegetation, and temperature 59 

characteristics (Bastiaanssen, 1995; Murray and Verhoef, 2007; Allen et al., 2011; Danelichen et al., 60 
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2014). Challenges in estimating λET as a residual of the energy balance are mostly associated with 61 

the uncertainties in H (Gokmen et al., 2012; Paul et al., 2014; Mohan et al., 2020a, Mohan et al., 62 

2020b; Costa-Filho et al., 2021). The bulk heat transfer calculation that is used to compute H involves 63 

variables related to the temperature gradient and to the aerodynamic resistance for heat transfer 64 

(rah). If any of these variables are poorly estimated, the performance of SEB models will be reduced 65 

(Verhoef et al., 1997a, b; Su et al., 2001; Gokmen et al., 2012; Costa-Filho et al., 2021; Liu et al., 66 

2021; Trebs et al., 2021). 67 

The difference between the aerodynamic surface temperature and air temperature (dT) 68 

drives H. However, the lack of techniques to measure the aerodynamic surface temperature required 69 

strategies to use the radiometric land surface temperature (LST) as an alternative. Bastiaanssen et 70 

al. (1998), when creating the Surface Energy Balance Algorithms for Land (SEBAL), proposed that 71 

dT can be estimated with a linear relationship on LST. This requires identifying areas with contrasting 72 

extreme conditions in terms of cover and humidity, e.g., dry bare and well-watered soil surfaces, 73 

commonly known as hot/dry and cold/wet endmembers, respectively. The sensible heat transfer 74 

equation in conjunction with the surface energy balance in hot/dry and cold/wet endmembers allows 75 

one to obtain the coefficients of the linear relationship between dT and LST. Bastiaanssen et al. 76 

(1998) proposed the selection of endmembers by assuming that H in the cold/wet endmember and 77 

λET in the hot/dry endmember are zero. However, these assumptions are not necessarily valid 78 

(Singh and Irmak, 2011; Singh et al., 2012). The cold/wet endmember refers to an area with a well-79 

irrigated crop surface having ground fully covered by vegetation, so it can be assumed that a non-80 

negligible amount of sensible heat can still be generated by such a surface. Similarly, for the hot/dry 81 

endmember, an area dominated by bare soil, there may be a λET resulting from antecedent rainfall 82 

events, hereafter referred to as remaining λET. Some studies have quantified H and λET in hot/dry 83 

and cold/wet endmembers (Trezza, 2006; Allen et al., 2007; Singh and Irmak, 2011); they have 84 

shown that this quantification produces a better approximation of daily ET. 85 

Based on the Monin-Obukhov similarity theory, rah is defined as a function of the momentum 86 

(z0m) and heat (z0h) roughness lengths. Theoretically, the sum of the zero plane displacement 87 

height (d0) together with z0h defines the level of the effective source of sensible heat (Thom, 1972; 88 

Chehbouni et al., 1996; Gokmen et al., 2012) and, therefore, z0h constitutes one of the most crucial 89 



4 
 

parameters for the accurate calculation of H (Verhoef et al., 1997a; Su et al., 2001). However, as 90 

z0h cannot be measured directly, it is commonly calculated via the dimensionless parameter kB-1 91 

formulated to express the excess resistance of heat transfer compared to momentum transfer (Owen 92 

and Thomson, 1963). In RS-based SEB models, oversimplifications are present in the calculation of 93 

rah, e.g. different land use types are represented by the same values for z0h (Bastiaanssen et al., 94 

2005; Allen et al., 2007) and kB-1 (Bastiaanssen et al., 1998), or the values for the aerodynamic 95 

parameters are kept constant in time and space. However, these parameters should not be 96 

considered constant, nor set to zero, because this can lead to large inaccuracies in the estimates of 97 

H (Verhoef et al., 1997a) and, consequently, of λET (Liu et al., 2007; Paul et al., 2014; Liu et al., 98 

2021). Studies have shown that kB-1 typically ranges from 1 to 12, depending on the dominant 99 

surface coverage (Kustas et al., 1989a; Troufleau et al., 1997; Verhoef et al., 1997a; Lhomme et al., 100 

2000; Su et al., 2001). Studies confirm that if appropriate values of kB-1 are used, H can be accurately 101 

estimated using LST via the bulk transfer method (Stewart et al., 1994; Su et al., 2001; Jia et al., 102 

2003; Paul et al., 2013). 103 

Another problem with RS-based SEB models is that these methods are imprecise when 104 

applied to non-agricultural environments, such as forests, deserts, sparse savannahs or rangelands, 105 

and riparian systems, because of the heterogeneous nature of the vegetation, terrain, soils, and 106 

water availability in these environments. This causes the flux estimates obtained with the SEB 107 

methods, and the underlying aerodynamic parameters, to be highly variable (Allen et al., 2011; 108 

Gokmen et al., 2012; Barraza et al., 2017; Chen and Liu, 2020; Costa-Filho et al., 2021). This is 109 

especially true in Seasonally Dry Tropical Forests (SDTF) regions, where there is a large spatio-110 

temporal variation in vegetation density, in vegetation structural parameters such as canopy height, 111 

crown shape and branching, and water availability. SDTF are an important tropical biome and one 112 

of the most threatened ecoregions of the world (Moro et al., 2015; Pennington et al., 2018). SDTF 113 

are broadly defined as forest formations in tropical regions characterised by marked seasonality in 114 

rainfall distribution, resulting in a prolonged dry season that usually lasts five or six months 115 

(Pennington et al., 2009; Paloschi et al., 2020). The most extensive contiguous areas of SDTF are 116 

in the neotropics, comprising more than 60% of the remaining global stands of this vegetation (Miles 117 

et al., 2006; Queiroz et al., 2017). The physiognomies exhibited by SDTF are heterogeneous, with 118 
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vegetation ranging from tall forests with closed canopies to scrublands rich in succulents and thorn-119 

bearing plants (Moro et al., 2015; Paloschi et al., 2020). SDTF foliage patterns are adapted to the 120 

intense climate and water seasonality, which is highly dependent on interannual climate variability 121 

(Alberton et al., 2017; Medeiros et al., 2022). The vegetation drops most leaves during the dry 122 

season, and the first rainfall events trigger a rapid leaf growth in the wet season (Alberton et al., 123 

2017; Paloschi et al., 2020; Medeiros et al., 2022). SDTF are being rapidly degraded (12% between 124 

1980 and 2000), highlighting an urgent priority for their conservation (Moro et al., 2015; Maia et al., 125 

2020). The risks faced by SDTF mainly stem from anthropogenic disturbance effects, which range 126 

from local habitat loss to global climate change, leading to biodiversity loss and reductions in biomass 127 

(Allen et al., 2017; Maia et al., 2020). 128 

Application of SEB models to estimate evapotranspiration over SDTF has been challenging 129 

due to the incompatibility between the existing assumptions of the models and the specificities of 130 

these forests. Precipitation seasonality is the primary phenological regulator of SDTF (Moro et al., 131 

2016; Campos et al., 2019; Paloschi et al., 2020), and land-cover patterns show distinct intra- and 132 

inter-annual spectral responses (Cunha et al., 2020; Andrade et al., 2021; Medeiros et al., 2022). 133 

Therefore, biophysical remotely-sensed variables, such as Normalized Difference Vegetation Index 134 

(NDVI) and surface albedo, which are usually used to select the endmembers, exhibit high spatial 135 

and temporal variability in SDTF, which causes ET estimates from the SEB models to lack fidelity 136 

(Silva et al., 2019). Selection of suitable roughness parameters such as z0m, d0, and kB-1 is 137 

important for the correct quantification of the energy balance in SDTF. However, these parameters 138 

are more challenging to obtain in SDTF than for evergreen forests, as in addition to vegetation height, 139 

other characteristics such as plant density, above-ground plant structure and the strong seasonality 140 

of phenology (Alberton et al., 2017; Miranda et al., 2020; Paloschi et al., 2020) have a considerable 141 

effect on the turbulent transfer in these forests. Another key issue is how to verify the results of SEB 142 

methods due to the scarcity, in many regions, of terrestrial observations and the uneven 143 

spatiotemporal distribution of monitoring data. SEB models may not satisfactorily represent ET in 144 

regions with sparse vegetation and high climatic seasonality, such as SDTF (Senkondo et al., 2019; 145 

Laipelt et al., 2021; Melo et al., 2021). The main reason is that these methods have generally been 146 

evaluated and/or parameterized using sites located in other ecosystems and climates in North 147 
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America, Europe, Australia, East Asia, and in agricultural regions that have characteristics quite 148 

distinct from SDTF (Melo et al., 2021). Therefore, a better quantification of ET, especially in regions 149 

with high climatic seasonality, will help to design better water management policies that will be able 150 

to deal with the effects of climate variability, land use/cover and climate changes (Lima et al., 2021). 151 

We hypothesise that a SEB model that improves or considers estimates of rah via z0m and 152 

kB-1 will improve H and ET for STDF. To test this assumption, we introduce a novel calibration-free 153 

SEB model based upon a one-source bulk transfer equation, herein referred to as Seasonal Tropical 154 

Ecosystem Energy Partitioning (STEEP). The STEEP model aims to improve H and ET estimates 155 

for STDF by incorporating the woody structure of plants through the Plant Area Index (PAI), and soil 156 

moisture obtained by remote sensing to help represent the seasonality of the aerodynamic and 157 

surface variables that drive the energy fluxes. To obtain the coefficients of the linear relationship 158 

between dT and LST its coefficients, we computed H by the surface energy balance, and the 159 

remaining λET through the principle of the Priestley-Taylor equation in the hot/dry and cold/wet 160 

endmembers. STEEP is designed to take advantage of the extensive free database available on the 161 

Google Earth Engine (GEE) cloud computing environment. STEEP is herein evaluated at the field 162 

scale against four flux towers in the Caatinga, the largest continuous SDTF in the Americas. 163 

Additionally, the model was compared with SEBAL and two consolidated global ET products: MOD16 164 

(Mu et al., 2011; Running et al., 2017) and PMLv2 (Zhang et al., 2019).  165 

 166 

2. Methodology 167 

2.1 Study areas and respective data 168 

The study concerns the Brazilian Caatinga, located between the Equator and the Tropic of 169 

Capricorn (about 3 and 18° south), in the Brazilian semiarid region. It covers an area of about 170 

850,000 km² (Silva et al., 2017a; Andrade et al., 2021; Brazil MMA, 2021). The climate in the 171 

Caatinga is characterized by high air temperatures (around 26–30° C) and high potential 172 

evapotranspiration (1,500–2,000 mm/year) coupled with low annual rainfall (300–800 mm/year, 173 

normally concentrated in 3–6 months) with high intra- and inter-annual variability in space and time, 174 

and a long dry season which sometimes lasts up to 11 months in some areas of Caatinga (Moro et 175 

al., 2016; Miranda et al., 2018; Paloschi et al., 2020). The Caatinga vegetation has at least thirteen 176 
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physiognomies ranging from woods to sparse thorny shrubs, morphologically adapted to resist water 177 

stress and high air temperatures (Araújo et al., 2009; Silva et al., 2017a; Marques et al., 2020; 178 

Miranda et al., 2020), and it has been identified as one of the most biodiverse SDTF regions globally 179 

(Pennington et al., 2006; Santos et al., 2014; Koch et al., 2017). Still, the Caatinga and other SDTF 180 

are among the least studied ecoregions compared to tropical forests and savannas (Santos et al., 181 

2012; Koch et al., 2017; Tomasella et al., 2018; Borges et al., 2020). Only 1% of the Brazilian 182 

Caatinga area is legally protected (Koch et al., 2017). 183 

We used data from four sites located in the Caatinga (Fig. 1 and Table 1). The surrounding 184 

areas of each of our study sites — which exceeds these EC towers footprints — are homogeneously 185 

covered by Caatinga vegetation (Fig. S1).  Located on crystalline terrain (Fig. 1a), these Caatinga 186 

sites have soils with highly variable properties, ranging from fertile (those with a clayey texture) to 187 

poor (those soils that are sandier). However, most soils of the SDTF are typically shallow and stony 188 

(i.e. Entisols, Alfisols, and Ultisols; WRB, 2006), retaining water only for a short period between 189 

rainfall events and after the rainy season (Moro et al., 2015; Queiroz et al., 2017). The wet and (dry) 190 

seasons from the sites Petrolina (PTN) are concentrated in Jan–Apr (May-Dec; Souza et al., 2015); 191 

Serra Negra do Norte (SNN) in Jan–May (June–Dec; Marques et al., 2020); Serra Talhada (SET) in 192 

Nov–Apr (May–Oct; Silva et al., 2017b) and Campina Grande (CGR) in Mar–July (Aug–Feb; Oliveira 193 

et al., 2021). The climate of the four observation sites is semi-arid, type BSh (Fig. 1b) according to 194 

the Köppen climate classification (Alvares et al., 2013).  195 

Eddy covariance data, covering several periods from 2011 to 2020 (Fig. 1c), were used to 196 

evaluate the modelled ET and H. The four sites were instrumented with five flux towers equipped 197 

with three-dimensional ultrasonic anemometers (CSAT3, Campbell Scientific Inc., Logan, UT, USA 198 

in all the sites except CGR 2020) and open-path infrared gas analysers (LI-7500, LI-COR Inc., 199 

Lincoln, NE, USA, in the PTN site, or EC150, Campbell Scientific Inc., Logan, UT, USA, in the SET, 200 

SNN, and CGR 2014 sites). In the more recent experiment (CGR 2020), the flux tower was equipped 201 

with an IRGASON (Campbell Scientific Inc., Logan, UT, USA) that integrates the two sensors in just 202 

one instrument. ET data for the PTN, SNN, and SET sites have been previously described; they 203 

underwent standard procedures to ensure their quality and were published by Melo et al. (2021). 204 

Observations at the CGR site were collected through two micrometeorological towers, located in a 205 
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dense Caatinga area within the Brazilian National Institute of Semiarid (INSA) experimental area, a 206 

300 ha forest reserve with different stages of regeneration. The first tower (height of 7 m) was active 207 

between the years of 2014 and 2017, as described in Oliveira et al. (2021). The second tower (height 208 

of 15 m) is part of the Caatinga Observatory (OCA) and includes an EC system that has been 209 

collecting data since 2020. The OCA is a laboratory maintained by the Federal University of Campina 210 

Grande and INSA. H data for the PTN, SNN and CGR sites have been obtained from the respective 211 

principal investigators, while data for the SET site have been obtained from the AmeriFlux network 212 

(Antonino, 2019). For the retrieval of λET and H, LoggerNet software (Campbell Scientific, Inc., 213 

Logan, UT, USA) was used in order to transform 10 Hz raw data into 30 min binaries. Afterwards, 214 

EdiRe software (Campbell Scientific Inc., Logan, UT, USA) was used to process the high-frequency 215 

data, averaging every 30 min. The data from the EC flow towers in CGR have previously gone 216 

through standard procedures to ensure their quality. Detailed information on data processing, quality 217 

control, and post-processing can be found in Campos et al. (2019) and Cabral et al. (2020). The raw 218 

data from the CGR flux tower were processed by Easy-flux data processing software (Campbell 219 

Scientific Inc., Logan, UT, USA). In addition, data for any day with rainfall greater than 0.5 mm were 220 

removed. The daily ET was calculated using the daily average λET. 221 

 222 

 223 

 224 

 225 

 226 

 227 
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Table 1. List of EC-equipped flux tower observation sites in the study area. 228 

Sites 
State of 
Brazil 

Mean annual 
of rainfall 

(mm)¹ 

Site average 
elevation (m) 

Main tree species 
Location 
(Lon;Lat) 

Data 
availability 

Wet / Dry Seasons 
Main 

reference 

Petrolina (PTN) Pernambuco 428.6 395 

Commiphora 
leptophloeos, 
Schinopsis 

brasiliensis, Mimosa 
tenuiflora, 

Cenostigma 
microphyllum, Sapium 

glandulosum 

-40.3212; -9.0465 
Jan–Dec 

2011 
Jan-Apr / May-Dec 

Souza et al. 
(2015) 

Serra Negra do 
Norte (SNN) 

Rio Grande 
do Norte 

629.5 205 

Caesalpinia 
pyramidalis, 

Aspidosperma 
pyrifolium, 

Anadenanthera 
colubrina, Croton 

blanchetianus  

-37.2514; -6.5783 
Jan–Dec 

2014 
Jan-May / June-

Dec 
Marques et 
al. (2020) 

Serra Talhada 
(SET) 

Pernambuco 648 465 

Mimosa hostilis, 
Mimosa verrucosa, 

Croton sonderianus, 
Anadenthera 
macrocarpa, 

Spondias tuberosa 

-38.3842; -7.9682 
Jan–Dec 

2015 
Nov-Apr / May-Oct 

Silva et al. 
(2017b) 

Campina 
Grande (CGR) 

Paraíba 777 490 

Croton blanchetianus, 
Mimosa 

ophthalmocentra, 
Poincianella 
pyramidalis,  
Allophylus 

quercifolius, Mimosa 
sp. ² 

-35.9750; -7.2798 
Jan–Dec 

2014 
Mar-July / Aug-

Feb 
Oliveira et 
al. (2021) 

Campina 
Grande (CGR) 

Paraíba 777 490 

Croton blanchetianus, 
Mimosa 

ophthalmocentra, 
Poincianella 
pyramidalis,  
Allophylus 

quercifolius, Mimosa 
sp. ² 

-35.9763; -7.2805 
Jan–Dec 

2020 
Mar-July / Aug-

Feb 
This study 
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¹ Rainfall Data Sources: Brazilian National Institute of Meteorology (INMET) and Pernambuco State Agency for Water and Climate (APAC).  229 

² Barbosa et al. (2020).230 
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 231 

Fig. 1. Location of flux tower observation sites in Caatinga. a) Geographical overview of the 232 

Caatinga (Moro et al., 2015), b) Köppen's climate classification map:Tropical zone with dry summer 233 

(As), Tropical zone with dry winter (Aw), Dry zone semi-arid low latitude and altitude (Bsh), Humid 234 

subtropical zone without dry season and with hot summer (Cfa), Humid subtropical zone with dry 235 

winter and hot summer (Cwa), Humid subtropical zone with dry winter and temperate summer 236 

(Cwb), Humid subtropical zone with dry winter and short and cool summer (Cwc), Humid 237 

subtropical zone with dry summer and hot (Csa), according to Alvares et al. (2013) and c) Data 238 

availability on the observation sites after procedures to ensure their quality.  239 

2.2 The Seasonal Tropical Ecosystem Energy Partitioning (STEEP) model 240 

SEB models have been applied in many parts of the world (Mohan et al., 2020a). The one-241 

source SEB models that are most commonly found in the literature are SEBAL (Bastiaanssen et al., 242 

1998), Surface Energy Balance System (SEBS; Su, 2002), Mapping EvapoTranspiration at high 243 

Resolution with Internal Calibration (METRIC; Allen et al., 2007), and Operational Simplified Surface 244 

Energy Balance (SSEBop; Senay et al., 2013). As in other SEB models, STEEP performs the energy 245 

balance at the time of satellite overpass (instantaneous) to obtain λET as the surface energy balance 246 

residual. The computation of Rn and G, necessary to get λET, followed the procedures described in 247 

Ferreira et al. (2020) and Bastiaanssen et al. (2002), respectively, but with input data from the 248 
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Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor. H was calculated following the 249 

methods described in Table 2: using rah and dT, both traditionally applied in SEB models, but also 250 

focusing on peculiarities of SDTF that have never been considered in other SEB models. In this 251 

proposed version, rah was described according to Verhoef et al. (1997a) and Paul et al. (2013), 252 

which requires, among other parameters/variables, the momentum roughness length (z0m), the zero 253 

plane displacement height (d0), the dimensionless parameter kB-1, and the atmospheric stability 254 

corrections (Paulson, 1970). z0m is influenced by a range of plant structural properties, e.g. 255 

vegetation height, breadth and vegetation drag coefficients, and spacing (or density). z0m is 256 

commonly computed as a function of Leaf Area Index (LAI; Verhoef et al., 1997b; Liu et al., 2021). 257 

However, most SDTF plants spend a substantial part of the year without leaves; under these 258 

conditions, z0m should be derived from information on dimensions of trunks, stems, and branches. 259 

Since LAI is only related to leaf cover quantity and variability, it cannot represent the woody plant 260 

structure without leaves (Miranda et al., 2020). Therefore, the Plant Area Index (PAI), which is the 261 

total above-ground plant area, i.e. leaves and woody structures, was used to represent plant 262 

structures in the computation of z0m and d0.  263 

To incorporate the conditions of water variability in the forest system in the calculation of 264 

sensible heat we applied the procedure described in Gokmen et al. (2012) that corrects the kB-1 265 

equation presented in Su et al. (2001), incorporating soil moisture obtained by remote sensing. The 266 

canopy conductance profiles are the link between soil moisture and sensible/latent heat flux. The 267 

source of sensible/latent heat moves vertically throughout the canopy as a function of plant water 268 

stress (Gokmen et al., 2012; Bonan et al., 2021), which affects heat roughness length, and, therefore, 269 

kB-1 and rah. Thus, when there is a reduction in soil moisture, there is also a reduction in the value 270 

of rah and, consequently, an increase of H and a decrease in λET. Furthermore, to calculate dT, we 271 

used the linear relationship on LST, using the assumption of extreme contrast in terms of cover and 272 

soil wetness (hot/dry and cold/wet endmembers) to determine the linear relationship coefficients. 273 

However, in the hot/dry and cold/wet endmembers pixels, H was computed by the surface energy 274 

balance (Allen et al., 2007), and the remaining λET was incorporated through the Priestley-Taylor 275 

(1972) equation and plant physiological constraints following the approach in Singh and Irmak (2011) 276 

and French et al. (2015). PAI and soil moisture time series used in our study can be seen in Fig. S2. 277 
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The references for the methods and equations adopted to formulate the STEEP model can be found 278 

in Table 2 and Appendix A, respectively. For illustration purposes, Table 2 also shows the references 279 

for the methods for one of the most widely used RS SEB models, the SEBAL model. 280 

Table 2. References for the methods used in the STEEP and SEBAL models to obtain the sensible 281 

heat flux. 282 

Variable/Parameter STEEP SEBAL 

Aerodynamic resistance for 
heat transfer (rah) 

Verhoef et al., 1997a; Paul et al., 
2013 

Bastiaanssen et al., 2002; 
Laipelt et al., 2021 

Roughness length for 
momentum transfer (z0m) 

Verhoef et al., 1997b; Paul et al., 
2013, replacing LAI with PAI 

Bastiaanssen et al., 2002; 
Laipelt et al., 2021 

Zero plane displacement 
height (d0) 

Verhoef et al., 1997b; Paul et al., 
2013 

- 

Plant Area Index (PAI) Miranda et al., 2020 - 

Parameter kB-1 Su et al., 2001 
uses z0h with constant value 

(0.1); Bastiaanssen et al., 
2002 

Correction of soil moisture by 
remote sensing in kB-1 

Gokmen et al., 2012 - 

Calculation of the H and the 
remaining λET in 

endmembers pixels 

Allen et al., 2007; Singh and Irmak, 
2011; French et al., 2015 

Calculation of the H in the 
hot/dry endmember only; 
Bastiaanssen et al., 2002 

 283 

2.3 Algorithm implementation and processing 284 

We implemented STEEP on the Google Earth Engine (GEE) cloud computing environment 285 

(Gorelick et al., 2017) using the Python API (version 3.6). Statistical analyses to evaluate the 286 

performance of the models were also conducted in Python and implemented in the Jupyter 287 

programming environment. The Python package geemap (Wu, 2020) enabled the integration of 288 

Python with the GEE environment, and the hydrostats package (Roberts et al., 2018) was used for 289 

the statistical evaluation of the performance of the models. 290 

We designed the application of the model to take advantage of the data available on GEE 291 

(Table 3). The remote sensing datasets were derived from MODIS sensor products, the Shuttle 292 

Radar Topography Mission (SRTM; Farr et al., 2007), and the Global Forest Canopy Height product 293 

provided vegetation height (Potapov et al., 2021). The climate data necessary to run the model, i.e. 294 

wind speed, air temperature, relative humidity, shortwave radiation, and net thermal radiation at the 295 

surface, were sourced from the ERA5-Land reanalysis product (Muñoz Sabater, 2019). For data 296 
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regarding soil moisture, we used the Global Land Data Assimilation System (GLDAS) product 297 

(Rodell et al., 2004). CHIRPS precipitation product (Funk et al., 2015) was used to estimate the daily 298 

rainfall amount at the sites evaluated. 299 

Table 3. Description of the datasets available on the GEE platform used in the research. 300 

Product GEE ID Bands/variables 
Time 

coverage 
Spatial 

resolution 
Temporal 
resolution 

MCD43A4.006 
MODIS/006/
MCD43A4 

B1–B7 
Feb 2000–

present 
0.5 km 1 day 

MOD09GA.006 
MODIS/006/
MOD09GA 

SolarZenith 
Feb 2000–

present 
1 km 1 day 

MOD11A1.006 
MODIS/006/
MOD11A1 

LST_Day_1km; Emis_31, 
Emis_32 

Mar 2000–
present 

1 km 1 day 

SRTM 
USGS/SRT
MGL1_003 

Elevation Feb 2000 0.03 km - 

ERA5-Land 
ECMWF/ER
A5_LAND/H

OURLY 

dewpoint_temperature_2m, 
temperature_2m, 

u_component_of_wind_10, 
v_component_of_wind_10m, 
surface_net_solar_radiation

_hourly, 
surface_net_thermal_radiati

on_hourly 

Jan 1981–
present 

0.1° 1 h 

GLDAS 
NASA/GLDA
S/V021/NOA
H/G025/T3H 

SoilMoi0_10cm_inst 
Jan 2000–

present 
0.25° 3 h 

Global Forest 
Canopy Height, 

2019 

users/potapo
vpeter/GEDI

_V27 
- Apr 2019 0.03 km - 

CHIRPS 
UCSB-

CHG/CHIRP
S/DAILY 

Precipitation 
Jan 1981–

present 
0.05° 1 day 

MOD16A2.006 
MODIS/006/
MOD16A2 

ET 
Jan 2001–

present 
0.5 km 8 days 

PML_V2 

projects/pml
_evapotrans
piration/PML
/OUTPUT/P
ML_V2_8da

y_v016 

Es, Ec, Ei 
Feb 2000–

present 
0.5 km 8 days 

 301 

The presence of clouds or instrumental malfunctioning of orbital sensors can cause gaps in 302 

data. To reduce the loss of information due to missing data, we chose to use the MODIS MCD43A4 303 
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reflectance product. By combining reflectance data from MODIS sensors aboard the AQUA and 304 

TERRA satellites and modelling the anisotropic scattering characteristics using sixteen-day quality 305 

observations, the MCD43A4 product represents the daily dynamics of the Earth's surface without 306 

missing data (Schaaf and Wang, 2015). Daily surface reflectance data from the MCD43A4 product 307 

were used to obtain the surface albedo and vegetation indices (NDVI and PAI) needed to run STEEP. 308 

Thus, the surface albedo data and the vegetation indices show a low percentage of missing data. 309 

To compose the LST time series, we used data from MOD11A1, and to fill its missing data, a filter 310 

with the average value for a monthly window was applied. This procedure is similar to the method 311 

proposed by Zhao et al. (2005) and it is also used by the MOD16 algorithm to generate the 312 

continuous global ET (Mu et al., 2011).  313 

Following the approach in comparable studies, STEEP algorithm processing was conducted 314 

with automatic selection of endmembers pixels (Bhattarai et al., 2017; Silva et al., 2019; Laipelt et 315 

al., 2021). Like Silva et al. (2019), we used the biophysical variables NDVI, surface albedo and LST 316 

to automate selection of the endmembers, but we applied different criteria. For the hot/dry 317 

endmember selection, the first step consisted of selecting those pixels whose surface albedo values 318 

are between the 50 and 75% quantiles, and with NDVI values greater than 0.1 and less than the 319 

15% quantile. After this first selection, a refinement is applied by selecting only those pixels from this 320 

first set that have LST values between the 85 and 97% quantiles. Using the set of pixels that met 321 

these criteria, the median values of Rn, G, LST and rah were calculated to establish a single value 322 

for each variable and describe the characteristics of the hot pixel. We applied a similar procedure to 323 

select the cold/wet endmember but with different limits (Table 4). The procedure for finding 324 

endmembers was conducted daily. To execute the model and conduct the selection of endmembers, 325 

we used an area of interest (AOI), also known as domain size. AOI was defined as a square area 326 

with 1000-km sides within the Caatinga domain and centred on the tower coordinates of each site. 327 

Cheng et al. (2021), for example, applied the SEBAL using MODIS data in China and used an AOI 328 

of 1200-km x 1200-km.  329 

Table 4. Methodology used for the selection of endmembers pixels. 330 

 Endmembers 
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 Hot/dry pixel Cold/wet pixel 

Step 1 
Q50% < surface albedo < Q75% and 

0.10 < NDVI < Q15% 

Q25% < surface albedo < Q50% and 

NDVI > Q97% 

Step 2 
of the pixels of the 1st Step, select 

pixels with Q85% < LST < Q97% 

of the pixels of the 1st Step, select 

pixels with LST < Q20% 

Step 3 

Of the set of pixels that met the previous steps, the median values of Rn, G, LST 

and rah were calculated to establish a single value for each variable and 

describe the characteristics of endmembers 

Q = quantile. 331 

2.4 Analysis of the algorithms’ performance 332 

We used SEBAL as a reference RS SEB model for comparison with STEEP. SEBAL is one 333 

of the most applied SEB models since the algorithm uses a minimal number of in situ measurements 334 

compared to similar models, e.g. METRIC and SSEBop, and is considered a suitable choice for 335 

evapotranspiration estimates over cropped areas and in the context of water resource management 336 

(Kayser et al., 2022). Applications with SEBAL have been conducted in the Caatinga as in the studies 337 

of Teixeira et al. (2009), Santos et al. (2020), Costa et al. (2021), and Lima et al. (2021). 338 

Implementations of the SEBAL algorithm are popular on several computing platforms, e.g. GRASS-339 

Python (Lima et al., 2021); Google Earth Engine (Laipelt et al., 2021); Python (Mhawej et al., 2020), 340 

following the formulations described in Bastiaanssen et al. (1998) and Bastiaanssen et al. (2002). 341 

The SEBAL version implemented in this work followed those presented by Bastiaanssen et al. 342 

(2002), Costa et al. (2021) and Laipelt et al. (2021). The remote sensing datasets and endmembers 343 

pixels selection for SEBAL were the same as described in STEEP. 344 

ET and H estimates from STEEP and SEBAL were evaluated against the eddy covariance 345 

measurements of the corresponding tower. Here, the modelled values were extracted for the pixel 346 

representing the EC tower for each observation site. The footprint fetches for PTN, SET, SNN is less 347 

than 500 m (Silva et al., 2017b; Campos et al., 2019; Santos, et al., 2020). We assume a similar 348 

footprint for CGR due to its similarity in terms of wind characteristics and terrain slope compared to 349 

the other sites. Moreover, the surrounding areas of each of our study sites (Fig. S1) — which exceeds 350 

these EC towers footprints — are homogeneously covered by Caatinga vegetation. We evaluated 351 

daily ET values, and instantaneous hourly H values more specifically with the modelled/measured H 352 
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value at 11:00 am local time (GMT-3), considering this is the closest time to the satellite’s overpass. 353 

Additionally, the STEEP model was compared with two consolidated global ET products available 354 

on GEE: MODIS Global Terrestrial Evapotranspiration A2 version 6 (MOD16; Mu et al., 2011; 355 

Running et al., 2017) and Penman-Monteith-Leuning model version 2 global evaporation (PMLv2; 356 

Zhang et al., 2019); both products have a pixel resolution of 500 m (Table 3). The algorithm used in 357 

MOD16 is based on the Penman-Monteith equation and driven by MODIS remote sensing data with 358 

Modern-Era Retrospective analysis for Research and Applications (MERRA; Mu et al., 2011). In 359 

MOD16 ET is the sum of soil evaporation (Es), canopy transpiration (Tc) and wet-canopy evaporation 360 

(Ec) and is provided as eight-day cumulative values. More details about MOD16 can be found in Mu 361 

et al. (2011) and Running et al. (2017). The global PMLv2 product involves a biophysical model 362 

based on the Penman-Monteith-Leuning equation which also uses MODIS remote sensing data, but 363 

with meteorological reanalysis data from GLDAS as model inputs. As in MOD16, ET in PMLv2 is 364 

also the sum of Es, Tc and Ec but is provided as eight-day average values. To make MOD16 and 365 

PMLv2 values compatible, ET of PMLv2 was multiplied by eight. Details about PMLv2 can be found 366 

in Gan et al. (2018) and Zhang et al. (2019). We accumulated the daily ET measured at the 367 

observation sites, i.e. derived from EC data, and ET modelled with STEEP for the same eight-day 368 

time periods to make them compatible with the temporal resolution of the MOD16 and PMLv2 369 

datasets. The average of the measured daily values over each eight-day time period (even if there 370 

were missing values within this period) was multiplied by eight to calculate the observed 8-day ET. 371 

To match the time steps of STEEP and MOD16/PMLv2 ET values, the 8-day average of the 372 

evaporative fraction (EF) was multiplied by the daily net radiation over those 8 days, assuming that 373 

EF can be considered constant in each of these periods. Then the ET was summed over the 8-day 374 

interval. Finally, we also compared the modelled ET (by STEEP and the two global products) with 375 

the observed ET, only in the 8-day periods when no field-observed data was missing. However, with 376 

this criterion the number of observations dropped dramatically. 377 

The STEEP and SEBAL models and global ET products were evaluated with five performance 378 

metrics (Table 5). A combination of performance metrics is often used to assess the overall 379 

performance of models because a single metric provides only a projection of a certain aspect of the 380 

error characteristics (Chai and Draxler, 2014). Root mean square error (RMSE) is commonly used 381 
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to express the accuracy of the results with the advantage that it presents error values in the same 382 

units of the variable analysed; optimal values are close to zero (Hallak and Pereira Filho, 2011). 383 

Coefficient of determination (R²) represents the quality of the linear trend between observed and 384 

simulated data and ranges from 0 to 1; high values indicate better model performance. Nash–385 

Sutcliffe efficiency (NSE) indicates the accuracy of the model output compared to the average of the 386 

referred data (NSE = 1 is the optimal value; Nash and Sutcliffe, 1970). Concordance correlation 387 

coefficient (ρc) is a measure that evaluates how well bivariate data falls on the 1:1 line. ρc measures 388 

both precision and accuracy. It ranges from -1 to +1 similar to Pearson's correlation coefficient, with 389 

perfect agreement at +1 (Lin, 1989; Liao and Lewis, 2000; Akoglu, 2018). Percentage bias (PBIAS) 390 

measures the average relative difference between observed and estimated values, with an optimal 391 

value of 0 (Gupta et al., 1999). Additionally, we evaluate STEEP’s model structure by extracting 392 

model’s performance metrics after excluding it from its main implementations individually (Table 2) 393 

and by two-by-two combinations of z0m, rah and rλET. We run the control version of the SEB model, 394 

i.e. SEBAL in our case, while incorporating one or two improvements in the model and keeping the 395 

remaining parts of the algorithm the same as the reference SEB model. 396 

Table 5. Performance metrics used to evaluate ET and H in this study. 397 

Performance 

metric 
Equation 

Range 

(Perfect value) 

Root mean 

square error 

(RMSE) 
𝑅𝑀𝑆𝐸 = √

∑ (𝑀𝑖 − 𝑂𝑖)2𝑁
𝑖=1

𝑁
 [0, +∞ [ (0) 

Coefficient of 

determination 

(R²) 
𝑅2 =  

[∑ (𝑂𝑖 − �̅�)(𝑀𝑖 − �̅�)𝑁
𝑖=1 ]

2

∑ (𝑂𝑖 − �̅�)2𝑁
𝑖=1 ∙  ∑ (𝑀𝑖 − �̅�)2𝑁

𝑖=1

 [0, 1] (1) 

Nash–Sutcliffe 

efficiency (NSE) 
𝑁𝑆𝐸 =  1 −

∑ (𝑀𝑖 − 𝑂𝑖)2𝑁
𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑁
𝑖=1

 ]-∞, 1] (1) 

Concordance 

correlation 

coefficient (ρc) 

𝜌𝑐 =  
2 ∑ (𝑂𝑖 − �̅�)(𝑀𝑖 − �̅�)𝑁

𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑁
𝑖=1 + ∑ (𝑀𝑖 − �̅�)2𝑁

𝑖=1 + (𝑁 − 1)(O̅  − �̅�)2
 [-1, 1] (1) 

Percentage bias 

(PBIAS) 
𝑃𝐵𝐼𝐴𝑆 =   

∑ (𝑀𝑖 − 𝑂𝑖) ∙ 100𝑁
𝑖=1

∑ 𝑂𝑖
𝑁
𝑖=1

 ]-∞, +∞ [ (0) 

where: N sample size; 𝑂 observed value; 𝑀 modelled value; �̅� observed mean; �̅� modelled mean. 398 

3. Results and discussion  399 

3.1 Comparison of STEEP and SEBAL models results with observed (EC) values 400 
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 The performance statistics of daily ET by STEEP and SEBAL in wet and dry seasons for the 401 

evaluated sites are shown in Fig. 2. In general, STEEP exhibited a better performance than SEBAL. 402 

Although the better statistical metrics of STEEP were in the dry season, in the wet season, they were 403 

also superior compared to SEBAL. Specifically, in the dry season, STEEP exhibited a RMSE 404 

between 0.6 and 1.06 mm/day, while SEBAL this was between 1.06 and 2.24 mm/day. The maximum 405 

value of R² in STEEP was 0.62 (sites PTN and SNN), whereas SEBAL achieved only 0.33. The NSE 406 

metric was the worst among the five analysed in SEBAL: values lower than -7.5 occurred in three of 407 

the five sites. Although in STEEP, PTN and SNN sites NSE had values higher than 0 (0.55 and 0.25, 408 

respectively) the other sites also had negative values, reaching up to -2.5. In terms of ρc, values 409 

ranged from 0.09 to 0.77 in STEEP and from -0.04 to 0.41 in SEBAL. It is also possible to see the 410 

reduction that STEEP has brought to ET modelling in terms of PBIAS when compared to SEBAL.  411 

 412 

 413 

Fig. 2. Results of the performance statistics of daily ET in wet and dry seasons for evaluated sites. 414 

Globally, without discriminating between wet and dry seasons, STEEP exhibited better 415 

statistical performance than SEBAL at all the evaluated sites (Fig. 3). While STEEP exhibited a 416 

RMSE between 0.75 and 0.94 mm/day, the RMSE for SEBAL was between 1.08 and 1.75 mm/day. 417 

In terms of R², the values were between 0.24 to 0.69 for STEEP, and were below 0.2 for SEBAL for 418 

all sites except in SNN (0.55). Similarly, NSE and ρc values were higher for STEEP compared to 419 

SEBAL. For STEEP, all sites had NSE and ρc values above -0.42 and 0.41, respectively, whereas 420 

all sites except SNN had values below these limits for SEBAL. Both models overestimated ET 421 

(PBIAS > 0), with the exception of the STEEP estimates for the PTN site. The highest overestimation 422 

by the STEEP model was less than 60%, whereas in SEBAL it was greater than 140%. 423 
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SEBAL metrics concerning the modelled ET were similar to those found in other studies. 424 

Laipelt et al. (2021) found R² ranging from 0.18 to 0.87 when applying SEBAL and comparing it with 425 

data from ten EC towers located in different Brazilian biomes (Amazon, Cerrado, Pantanal, and 426 

Pampa). Cheng et al. (2021) obtained R² of 0.53–0.77 and RMSE of 0.89–1.02 mm/day when 427 

comparing estimates from SEBAL and EC towers on different land covers in China. Costa et al. 428 

(2021), when applying SEBAL in the Caatinga, found R² and NSE values of 0.57 and 0.36, 429 

respectively. Santos et al. (2020) modelled ET with SEBAL at the SNN site for the 2014–2016 period 430 

and obtained R² and RMSE values of 0.28 and 1.43 mm/day, respectively. For this site, we obtained 431 

R² and RMSE of 0.55 and 1.08 mm/day, respectively, for the year 2014 using SEBAL. 432 

STEEP exhibited a greater seasonal accuracy compared to SEBAL (Fig. 3), as evidenced by 433 

the goodness-of-fit between simulated and observed values expressed by the NSE indicator. STEEP 434 

estimates followed the same temporal evolution as the observed values. STEEP satisfactorily 435 

captured both minimum and maximum ET values, including after rainfall events, this is particularly 436 

evident in Fig. 3a, where the two observed ET peaks in late 2011 — between DOY 300 and 360 — 437 

in the PTN site were captured nicely by STEEP. This improved performance can be explained 438 

because soil moisture is incorporated in the STEEP algorithm. In semi-arid regions and particularly 439 

in the SDTF, besides the availability of energy, evapotranspiration is highly dependent on the soil–440 

water availability (Lima et al., 2012; Carvalho et al., 2018; Mutti et al., 2019; Paloschi et al., 2020). 441 

In rainy months, low daily ET rates are often observed due to the reduced levels of incoming radiation 442 

caused by high cloud cover (Mutti et al., 2019; Paloschi et al., 2020). Towards the end of the wet 443 

period, when the available energy increases, the daily ET values also increase as a result of the high 444 

soil water availability from previous precipitation events (Allen et al., 2011; Marques et al., 2020). In 445 

the transition period from the rainy to the dry season, the leaves do not fall immediately (see Table 446 

1, main tree species). Instead, leaf-shedding depends on the environmental conditions in each 447 

location, including the rainy season duration, and species composition (Lima and Rodal, 2010; Lima 448 

et al., 2012; Miranda et al., 2020; Paloschi et al., 2020; Queiroz et al., 2020; Medeiros et al., 2022). 449 

The remaining water available in the soil or previously accumulated in plant tissues is sufficient for 450 

the Caatinga vegetation to maintain its leaves, for short periods, at levels similar to the rainy season 451 

(Barbosa et al., 2006; Mutti et al., 2019). However, in the dry season, when soil moisture reaches its 452 
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lowest levels, the Caatinga vegetation enters a state of dormancy that is accompanied by leaf drop 453 

and a drastic reduction of photosynthetic activity (and hence of transpiration) as a strategy to cope 454 

with the lack of available soil moisture (Dombroski et al., 2011; Paloschi et al., 2020). This resilience 455 

mechanism is typical of xerophytic and/or deciduous species such as those found in the Caatinga 456 

(Lima et al., 2012; Mutti et al., 2019; Paloschi et al., 2020), and explains the low rates of ET in the 457 

dry season. In contrast, in SEBAL, which does not consider water availability, it was observed that 458 

the daily ET followed the course of the daily net radiation throughout the year, especially in the dry 459 

period of each of the experimental sites. This is in agreement with the results of Kayser et al. (2022), 460 

who pointed out that estimates with SEBAL can be seasonally accurate in locations where the main 461 

driver of ET is the available energy. Our results highlight that SEB models such as SEBAL, which 462 

are formulated to be mainly dependent on energy availability and do not consider soil and plant water 463 

availability, may not satisfactorily represent ET in semi-arid vegetation such as that found in the 464 

SDTF (Gokmen et al., 2012; Paul et al., 2014; Melo et al., 2021). 465 
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Fig. 3. Observed and modelled daily evapotranspiration (ET, mm/day) for the different 467 

experimental sites: a) and b) PTN 2011, c) and d) SNN 2014, e) and f) SET 2015, g) and h) CGR 468 

2014, i) and j) CGR 2020. The black lines represent observed ET; the red crosses and points are 469 

STEEP and SEBAL estimates, respectively; the blue bars represent CHIRPS daily rainfall; the gray 470 

region represents daily net radiation from ERA5-land. 471 

The core of the STEEP and SEBAL algorithms is based on finding λET as the residual of the 472 

energy balance; however, they differ with regards to the approach used to calculate H. In the STEEP 473 

model, the seasonal variation of H fitted the observed values of the instantaneous measurements at 474 

11:00 am (local time) better than SEBAL, for all the sites (Fig. 4). Our results show that an 475 

improvement in H leads to a correspondent in ET estimates. This is contrary to the findings of Faivre 476 

et al. (2017), who used the same formulation for kB-1 applied in our study, but included four different 477 

methods to compute z0m. While STEEP estimates of H exhibited ρc values over 0.5 for three of the 478 

five sites, SEBAL H estimates exhibited ρc values below 0.5 for all sites. When wet and dry seasons 479 

data are analysed separately (Fig. 5), the same trend is observed in the results: in general, the 480 

STEEP model presents better statistical metrics than SEBAL.  481 

 482 
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 483 

Fig. 4. Observed and modelled instantaneous sensible heat flux (H, at 11:00 am, W/m2) for the 484 

different experimental sites: a), b) and c) PTN 2011, d), e) and f) SNN 2014, g), h) and i) SET 485 
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2015, j), k) and l) CGR 2014, m), n) and o) CGR 2020. The blue line represents the observed 486 

values; the red crosses and grey points correspond to the STEEP and SEBAL estimates, 487 

respectively. The black line is the 1:1 line. 488 

 489 

Fig. 5. Results of the performance statistics of instantaneous sensible heat flux (H, at 11:00 am, 490 

W/m2) in wet and dry seasons, for the evaluated sites. 491 

 Evaluation of the STEEP and SEBAL daily ET and instantaneous H for all experimental sites 492 

(Fig. 6) indicates that both models lack a high performance for H estimates, although the use of 493 

STEEP resulted in better statistical measures than when SEBAL was employed (Fig. 6b). This 494 

substantiates previous findings (Gokmen et al., 2012; Paul et al., 2014; Trebs et al., 2021), that have 495 

shown the tendency of underestimation (overestimation) of H (ET) at water-limited sites. It can be 496 

seen that the overestimation of H by the STEEP model, compared to SEBAL, produced modelled 497 

ET values that were closer to the EC measurements (see Fig. 3 and 4). We ascribe the poor 498 

performance of H in the models relative to observed data to the continuous H oscillations throughout 499 

the day (Campos et al., 2019; Lima et al., 2021). As we compare an instantaneous H estimate 500 

(STEEP or SEBAL) to the 30-min H average measurement (EC), it is expected that modelled H 501 

performs worse than daily ET for the same site and period. Furthermore, for sites with fewer 502 

observations of H (SET 2015 and CGR 2020), especially in the dry season, the metrics showed that 503 

STEEP did not perform as well, for each season, as other sites with more data available. Still, these 504 

limited data were sufficient to show that STEEP outperformed SEBAL in estimating H. 505 
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 506 

 507 

Fig. 6. Evaluation of observed and modelled: (a) daily evapotranspiration (ET, mm/day) and b) 508 

instantaneous sensible heat flux (H, at 11:00 am, W/m2) for all experimental sites. STEEP (red 509 

crosses) and SEBAL (black points). The black line is the 1:1 line; the cyan (black) dashed line is 510 

the fitted linear regression between observed and STEEP (SEBAL) model values. 511 

We attribute the better performance of STEEP over SEBAL for the Brazilian Caatinga to at 512 

least three reasons, shown in order of impact of model implementation on its performance (Fig. 7 513 

and Table S1). First, by quantifying the remaining λET in the endmembers pixels through the 514 

Priestley-Taylor equation, a more reliable estimate of H in the endmembers pixels can be obtained, 515 

as was also evidenced by Singh and Irmak (2011). This process is critical for the subsequent 516 

numerical calculation of H in SEB models that use dT, as its accuracy is closely related to quantifying 517 

the energy balance at the hot and cold endmembers (Trezza, 2006; Allen et al., 2007; Singh and 518 

Irmak, 2011; Singh et al., 2012). Secondly, roughness characteristics near the surface where the 519 

heat fluxes originate are parameterised by z0m, which depends on several factors, such as wind 520 

direction, height and type of the vegetation cover (Kustas et al., 1989b). Estimation of z0m only with 521 

an exponential relationship, as a function of vegetation indices, may be an oversimplification (Kustas 522 

et al., 1989a; Paul et al., 2013). In our study, z0m and d0 are calculated with the equations and 523 

coefficients proposed in Raupach (1994) and Verhoef et al. (1997b), and using PAI because this 524 
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index better represents the intra-annual phenological changes in the Caatinga (Miranda et al., 2020). 525 

This procedure considers the characteristics of SDTF, such as seasonality of phenology and 526 

vegetation height, that considerably affect the quantification of turbulent transfer (Liu et al., 2021). 527 

Third, our study uses the equation described in Verhoef et al. (1997a) and Paul et al. (2013) to 528 

estimate rah, which considers the differences between heat and momentum transfer, unlike the 529 

original equation employed in other SEB models e.g. SEBAL or METRIC that only considers z0m 530 

and sets z0h = 0.1 when computing this resistance. Furthermore, we account for the kB-1 parameter 531 

that varies in space and time and incorporates the soil moisture content obtained by RS (Su et al., 532 

2001; Gokmen et al., 2012). ET estimation is best represented with a spatially varying kB-1 values, 533 

as pointed out by the studies of Gokmen et al. (2012) and Paul et al. (2014). Long et al. (2011) report 534 

that the introduction of these fixed values (z0h or kB-1) has a significant impact on the magnitudes of 535 

the estimates of H. Furthermore, Mallick et al. (2018) and Trebs et al. (2021) indicate that the 536 

parameterization of rah can influence the estimation of ET, especially in SEB models that are largely 537 

dependent on rah. Our results show that including just one or two of the refinements had only partial 538 

performance gains (Fig. 7 and Table S1). In contrast, all the proposed STEEP improvements when 539 

implemented together resulted in the best performance metrics for all sites. 540 

 541 

Fig. 7. Change of the concordance correlation coefficient (ρc) by the exclusion/modification of one 542 

or two parameters/variables implemented in the STEEP model, in the wet and dry seasons: scale 543 

factor soil moisture correction (SF), the parameter kB-1, the aerodynamic resistance for heat 544 

transfer (rah), PAI replace with LAI (determined by two different methods), the roughness length for 545 

momentum transport (z0m) and the residual latent heat flux in the end members pixels (rλET). 546 
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3.2 Comparison of STEEP model estimates with global evapotranspiration products 547 

 The comparison of ET estimates by STEEP, MOD16 and PMLv2 with the observed values 548 

at the different sites (Fig. 8) reveals that the ET estimates by STEEP and global products adequately 549 

followed the seasonality of the values, with a better fit for STEEP and MOD16. In general, the 550 

evaluation at the different sites shows that the RMSE of STEEP was not higher than 6.45 mm/8 551 

days, while the ET products' maximum RMSE was close to 15 mm/8 days. It is noted that the lowest 552 

RMSE value found (4.11 mm/8 days) was for MOD16 at the SET site. Regarding R² values, 80% of 553 

the evaluations with STEEP were equal to or greater than 0.50. For MOD16, 60% of the R² values 554 

were equal to or greater than 0.70, while for PMLv2, no site had R² values that exceeded 0.55. The 555 

best NSE value produced by STEEP was 0.77, while with MOD16, it was 0.70, both at the SNN site, 556 

while PMLv2 did not exceed 0.39 (PTN site). Regarding ρc, the percentages of ET evaluations that 557 

obtained values equal to or greater than 0.70 were 60% for STEEP and MOD16, and only 20% for 558 

PMLv2 (site PTN). The overestimations (PBIAS) with STEEP were not higher than 50%, and not 559 

higher than 95% with MOD16. For PMLv2 the overestimations did not exceed 80%, except for the 560 

SET site that obtained a PBIAS approx. 160%.. We highlight the good performance of MOD16 for 561 

the SET, SNN, and especially the PTN sites, with very good performance metrics and seasonal 562 

behaviour, capturing ET values in dry periods very well. The evaluation results of STEEP, MOD16 563 

and PMLv2 for all observation sites combined are shown in Fig. 9. Noteworthy is the better 564 

performance of STEEP over MOD16 and PMLv2, with RMSE of < 6 mm/8 days, R² and NSE greater 565 

than or close to 0.60, ρc of > 0.75 and an average overestimation < 12%. Analysis with the dataset 566 

considering only the 8-day time periods without missing field-observed data, i.e. periods with valid 567 

ET measurements during eight consecutive days (Fig. S3) did not change the results overall, 568 

confirming STEEP's dominance compared to the two standard products evaluated. 569 

 570 
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Fig. 8. Temporal evolution of ET from STEEP, MOD16 and PMLv2 for the different observation 572 

sites, and their individual performance statistics. a), b) and c) PTN 2011; d), e) and f) SNN 2014; g) 573 

h) and i) SET 2015; j), k) and l) CGR 2014; m), n) and o) CGR 2020. Black lines correspond to 574 

observed ET while data points refer to estimates by the STEEP model (red crosses), MOD16 (blue 575 

diamonds) and PMLv2 (green squares) products.  576 

 577 

Fig. 9. Evaluation of evapotranspiration (ET, mm/8 days) observed and modelled with STEEP (red 578 

crosses), MOD16 (blue diamonds) and PMLv2 (green squares) for all experimental sites. The 579 

black line is the 1:1 line; dashed lines are the fitted linear regressions of observed versus modelled 580 

values by the STEEP model (red), MOD16 (blue) and PMLv2 (green) products. N = 138 is the total 581 

number of eight-day periods with at least one day of EC data measured in at least one of the five 582 

experimental sites of Caatinga where all the ET models (STEEP, MOD16 and PMLv2) outputs 583 

were available. 584 
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The explanation of the differences between STEEP and the MOD16 and PMLv2 products is 585 

two-fold. Firstly, the way ET is obtained differs between STEEP and the other products. While 586 

STEEP and other SEB single-source models estimate ET as a combined single process, i.e. soil 587 

evaporation and transpiration estimates are provided as a lumped sum (Sahnoun et al., 2021), and 588 

interception loss is not taken into account, MOD16 and PMLv2 discriminate the ET components, i.e. 589 

soil evaporation, transpiration, and wet canopy evaporation (Mu et al., 2011; Zhang et al., 2019). 590 

With this in mind it is remarkable that STEEP performs better than the other, widely used, multiple-591 

source ET products. Secondly, the input data sets and their uses are different. The driving 592 

meteorological data for STEEP are from ERA5-Land, while in MOD16, they are from MERRA and in 593 

PMLv2 are provided by GLDAS (Mu et al., 2011; Zhang et al., 2019). In addition, the meteorological 594 

elements used are different among the ET products. MOD16 requires air temperature, atmospheric 595 

pressure, relative humidity, and downward shortwave radiation. In addition to these elements, 596 

PMLv2 also requires precipitation, downward longwave radiation, and wind speed (Mu et al., 2011; 597 

Zhang et al., 2019; Yin et al., 2020; Chen et al., 2022). Although both ET products use the same 598 

land cover data (MOD12Q1), only MOD16 integrates it into its algorithm. In MOD16, the land cover 599 

type defines biome delimitation for the characterization of leaf stomatal conductance, vapour 600 

pressure deficit (VPD) and other related factors, while PMLv2 only uses land cover to construct a 601 

mask of the land area (Chen et al., 2022). The sources and use of LAI in these two products are also 602 

different. LAI is used to increase leaf conductance in MOD16, while it is used to divide the total 603 

available energy into canopy uptake and soil uptake in PMLv2 (Mu et al., 2011; Zhang et al., 2019; 604 

Chen et al., 2022). Although MOD16 uses EC data from 46 distributed sites for validation (Mu et al., 605 

2011) and PMLv2 uses EC data from 95 distributed sites and ten plant functional types for calibration 606 

(Zhang et al., 2019; Yin et al., 2020), none of the products had observation sites in SDTF. 607 

The uncertainties associated with field measurements of ET can also influence the evaluation 608 

of the model products. It is generally accepted that EC flux towers provide reliable local, i.e. for areas 609 

of relatively limited spatial extensions, ca. 10 km², ET measurements (Mu et al., 2011; Chu et al., 610 

2021; Salazar-Martínez et al., 2022). However, generally flux tower data have a lack of energy 611 

balance closure, that is the difference between net radiation and ground heat flux is sometimes 612 

greater than the sum of the turbulent latent and sensible heat fluxes, an error that can be in the of 613 
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10–30% range (Wilson et al., 2002; Foken, 2008; Allen et al., 2011). This gap can result from 614 

instrument errors, weather and surface conditions, e.g. those that result in advection, and gap-filling 615 

methods (Mu et al., 2011). In addition, the complex and heterogeneous canopy structure, the 616 

stochastic nature of turbulence (Hollinger and Richardson, 2005) and adverse weather conditions, 617 

e.g. rainy and stormy days, tower sensors recording abnormal values, can affect ET measurements 618 

obtained by EC systems (Ramoelo et al., 2014). 619 

3.3 Sources of error and further research for STEEP  620 

In its current configuration, STEEP has some limitations that should be noted. Meteorological 621 

reanalysis provides only large-scale averages and can misrepresent local meteorological conditions; 622 

hence, it suffers from biases, especially over heterogeneous surfaces (Rasp et al., 2018). However, 623 

despite moderate accuracy and biases at regional scales, ground-based assimilation and reanalysis 624 

data have become important sources of meteorological inputs for ET estimates (Mu et al., 2011; 625 

Zhang et al., 2019; Allam et al., 2021; Senay et al., 2022). Laipelt et al. (2020) and Kayser et al. 626 

(2022) showed that global reanalysis data when used as meteorological inputs had modest effects 627 

only on the accuracy of SEBAL for estimating ET. In our study, ERA5-Land exhibited relatively high 628 

and satisfactory agreement with micrometeorological data measured at each site (Fig. S4). Also, 629 

although gap-filling was used in the present study to improve the availability of LST data, this 630 

procedure should be used with caution. In addition, care should be taken when using the MCD43A4 631 

reflectance product, because in its composition there is also gap-filling. For example, on some cloudy 632 

days, the estimates of vegetation indices, surface albedo, and LST may have introduced 633 

inaccuracies in the STEEP (and in SEBAL) model calculation process due to these gap-filling 634 

methods. Regarding the selection of endmembers pixels, although the temporal evolution of the 635 

selected pixels in this study seems plausible, their representativeness of the actual conditions may 636 

be debatable, especially considering the considerable extent of the AOI. The computational capacity 637 

and the effectiveness of GEE for running SEB models should be commended. Although other studies 638 

have demonstrated GEE's strength (Laipelt et al., 2021; Jaafar et al., 2022; Senay et al., 2022), this 639 

platform has some limitations when it comes to the number of iterations, e.g. a convergence 640 

threshold cannot be set to stop the within-loop iterations of H calculations; instead a fixed number of 641 
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iterations needs to be defined. Still, the availability of the several necessary datasets within one 642 

platform greatly facilitates the run of STEEP and other SEB models. 643 

One of the main focuses of this study is to provide a one-source model capable of 644 

representing ET in environments that are mainly governed by soil–water availability, such as those 645 

represented by SDTF, in a parsimonious way. Based on our findings we deem this main aim to be 646 

achieved due to the relative simplicity of the STEEP model and its low data demand. The improved 647 

performance of STEEP was the result of improvement of existing and physically meaningful 648 

parameters (z0m and kB-1), rather than by introducing additional empirical parameters, thereby 649 

satisfying the principle of equifinality (see Beven and Freer, 2001). To explore further the potential 650 

and accuracy of STEEP, more research is needed to analyse the impact that the improved H 651 

approach has on ET of different land covers at longer time scales. Despite the promising overall 652 

results, additional efforts are required on modelling H in SDTF regions. Although we have shown 653 

that STEEP outperforms other models in simulating either H or ET, we acknowledge that there is still 654 

room for model improvement. Given that the STEEP model was formulated to be a calibration-free 655 

model, it may be possible to improve H estimates by, for example, optimising coefficients associated 656 

to soil moisture (see Eq A.12) and applying dynamic values to αpt (see Eq A.25) varying seasonally. 657 

Another potential improvement for instantaneous H estimates can be achieved by accounting for 658 

biomass heat storage (BHS; Swenson et al., 2019) in STEEP. Meier et al. (2019) have shown that 659 

considering BHS can enable land surface models to capture the diurnal asymmetry of the 660 

temperature impact on energy fluxes and, consequently, provide improved sub-hourly H. Improving 661 

the quantification of regional ET via RS-based SEB models has a great potential to provide a more 662 

accurate estimate of the energy and water fluxes in SDTF regions, and will contribute to a better 663 

understanding of the water cycle, its uses, and the interrelationships with ecosystem functioning.  664 

4. Conclusions 665 

Our work developed a calibration-free model (STEEP) with an improved approach for 666 

estimating the latent and sensible heat fluxes by remote sensing for SDTF. In summary, the main 667 

conclusions are: 668 

● The estimates of H by STEEP allowed ET estimates to be closer to the observed field 669 

values than those obtained by SEBAL. Based on all the performance metrics used to 670 
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analyse the models, STEEP was superior to SEBAL. STEEP showed RMSE less than 671 

1mm/day, R² between 0.24 and 0.69, NSE between -0.17 and 0.65, ρc between 0.41 672 

and 0.80 and PBIAS between -17% to 54%. Also noteworthy is how well STEEP captured 673 

the seasonal course of observed ET. 674 

● Compared with ET data from the global MOD16 and PMLv2 products, the STEEP model 675 

simulated a similar but generally superior seasonal evolution and its performance metrics 676 

were also better. Considering all observation sites simultaneously, at the eight-day scale, 677 

STEEP showed superior performance with RMSE less than 6 mm/8 days, R² and NSE 678 

equal to or greater than 0.60, ρc greater than 0.75, and an overestimation of < 12%. 679 

Thus, we conclude that STEEP, a one-source model that incorporated the seasonality of the 680 

aerodynamic and surface variables, was well-heeled in representing ET in environments that are 681 

mainly governed by soil–water availability. All the same, there is a need to evaluate the newly 682 

developed STEEP model performance for different land covers, climate, and for longer time series 683 

than those considered during the modelling process in this study. 684 
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Data Availability Statement 700 

ET data for the PTN, SNN, and SET sites were published by Melo et al. (2021), and are available at 701 

https://doi.org/10.5281/zenodo.5549321. ET data for the CGR site; H data for the PTN, SNN, CGR 702 

sites, and the code used for the formulation of the STEEP model presented in this study can be 703 

accessed at https://doi.org/10.5281/zenodo.7109043 and 704 

https://github.com/ulissesaalencar/ET_SDTF, respectively. H data for the SET site is publicly 705 

available for download at https://ameriflux.lbl.gov/. 706 

Supplementary material 707 

Table S1. Performance statistics by the exclusion/modification of one or two parameters/variables 708 

implemented in the STEEP model, in the wet and dry seasons: scale factor soil moisture correction 709 

(SF), the parameter kB-1, the aerodynamic resistance for heat transfer (rah), PAI replace with LAI 710 

(determined by two different methods), the roughness length for momentum transport (z0m), the 711 

residual latent heat flux in the end members pixels (rλET), and of the SEBAL model.712 
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 713 

    Performance statistics 

Site 
  RMSE R² NSE ρc PBIAS 

  wet dry wet dry wet dry wet dry wet dry 

PTN (N = 239; 2011) 

STEEP 1.23 0.7 0.53 0.62 0.34 0.5 0.68 0.77 -18.01 -17.01 

(-) SF 1.38 0.69 0.56 0.58 0.16 0.52 0.65 0.75 -26.39 -7.99 

(-) kB-1 1.39 0.67 0.54 0.62 0.14 0.55 0.66 0.78 -23.37 -8.23 

(-) rah 1.61 0.66 0.42 0.6 -0.22 0.55 0.54 0.77 -32.42 -6.56 

LAI* 1.37 1.08 0.57 0.59 0.19 -0.18 0.68 0.59 -24.24 -56.26 

LAI** 1.27 0.91 0.54 0.34 0.28 0.17 0.68 0.57 -19.73 -11.95 

(-) z0m 1.48 0.88 0.36 0.3 0.01 0.21 0.5 0.54 -25.94 7.55 

(-) rλET 1.5 1.6 0.12 0.19 -0.15 -1.54 0.31 0.28 14.75 75.96 

(-) z0m & rah 1.51 0.72 0.44 0.51 -0.04 0.48 0.57 0.7 -28.85 4.4 

(-)rah & rλET 1.47 1.66 0.13 0.15 -0.11 -1.81 0.33 0.23 12.99 81.63 

(-) z0m & rλET 1.42 1.45 0.14 0.09 -0.31 -0.04 0.36 0.22 0.73 57.29 

SEBAL 1.39 1.55 0.16 0.12 0.01 -1.43 0.38 0.23 2.12 69.2 

SNN (N = 267; 
2014) 

STEEP 1.03 0.6 0.46 0.62 0.32 0.25 0.64 0.68 -12.17 58.08 

(-) SF 1.07 0.58 0.47 0.64 0.29 0.44 0.6 0.73 -17.2 42.77 

(-) kB-1 1.12 0.67 0.44 0.59 0.21 0.24 0.6 0.69 -17.86 50.26 

(-) rah 1.19 0.6 0.49 0.62 0.19 0.41 0.57 0.7 -25.47 47.33 

LAI* 1.38 0.8 0.54 0.3 -0.21 -0.07 0.6 0.44 -29.33 -58.36 

LAI** 1.19 0.98 0.52 0.09 0.07 -0.6 0.62 0.26 23.77 55.02 

(-) z0m 1.14 0.83 0.41 0.23 0.24 -0.16 0.5 0.37 -19.01 60.45 

(-) rλET 1.16 1.18 0.32 0.43 0.18 -1.33 0.51 0.41 12.96 122.85 

(-) z0m & rah 1.19 0.63 0.52 0.57 0.17 0.34 0.52 0.64 -26.49 50.69 

(-)rah & rλET 1.13 1.14 0.25 0.37 0.16 -1.19 0.47 0.41 6.43 111.65 

(-) z0m & rλET 1.13 1.03 0.24 0.17 0.16 -0.79 0.47 0.32 -5.86 79.17 

SEBAL 1.13 1.06 0.22 0.33 0.16 -0.88 0.45 0.41 0.91 98.12 

SET (N = 283; 2015) STEEP 1.16 0.6 0.12 0.12 -0.55 -0.94 0.28 0.27 52.19 55.18 
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(-) SF 1.04 0.61 0.11 0.02 -0.25 -0.99 0.28 0.14 36.58 38.26 

(-) kB-1 1.13 0.58 0.06 0.07 -0.49 -0.86 0.21 0.23 36.71 40.83 

(-) rah 1.06 0.56 0.04 0 -0.43 -1.03 0.18 0.03 21.82 39.71 

LAI* 1.3 0.68 0.03 0.09 -0.98 -1.51 0.12 0.2 -62.3 -75.32 

LAI** 1.15 0.6 0.04 0.05 -0.53 -0.97 0.19 0.21 -6.83 -29.78 

(-) z0m 1.09 0.75 0.1 0 -0.36 -2.74 0.26 -0.02 42.62 80.96 

(-) rλET 2.11 1.37 0.15 0.04 -4.18 -9.27 0.15 0.06 151.66 190.07 

(-) z0m & rah 1.06 0.58 0.05 0 -0.3 -1.24 0.21 0.02 21.6 51.96 

(-)rah & rλET 1.99 1.37 0.11 0.01 -3.99 -9.27 0.13 0.04 143.27 183.22 

(-) z0m & rλET 1.66 1.16 0.07 0.01 -2.47 -6.31 0.14 0.04 104.32 134.34 

SEBAL 1.83 1.28 0.1 0 -3.21 -7.93 0.14 0.03 128 161.89 

CGR (N = 171; 
2014) 

STEEP 0.8 0.72 0.35 0.51 -0.35 -0.8 0.55 0.58 5.85 25.16 

(-) SF 0.7 0.67 0.36 0.52 -0.02 -0.53 0.59 0.6 6.57 30.14 

(-) kB-1 0.78 0.8 0.25 0.44 -0.28 -1.18 0.47 0.51 15.04 38.9 

(-) rah 0.71 0.78 0.28 0.46 -0.06 -1.07 0.51 0.48 -8.54 54.63 

LAI* 0.76 0.83 0.49 0.61 -0.23 -1.35 0.64 0.51 -7.64 -62.39 

LAI** 0.75 0.68 0.46 0.58 -0.18 -0.57 0.63 0.63 -9.25 -26.31 

(-) z0m 0.71 0.83 0.28 0.35 -0.05 -1.35 0.51 0.38 -11.12 62.72 

(-) rλET 1.15 2.32 0.09 0.07 -1.77 -17.48 0.19 0.04 46.68 217.84 

(-) z0m & rah 0.69 0.84 0.24 0.44 -0.01 -1.43 0.48 0.39 3.9 68.9 

(-)rah & rλET 1.14 2.44 0.05 0.03 -1.72 -19.4 0.15 0.02 43.77 229.58 

(-) z0m & rλET 0.85 1.97 0.11 0.04 -0.51 -12.27 0.33 0.04 9.18 175.39 

SEBAL 0.97 2.24 0.07 0.03 -0.97 -14.7 0.21 0.03 28.63 208.13 

CGR (N = 48; 2020) 

STEEP 0.61 1.06 0.39 0.02 0.29 -2.98 0.62 0.09 -1.19 101.37 

(-) SF 0.82 1.03 0.3 0 -0.29 -2.76 0.52 0.02 -6.52 106.36 

(-) kB-1 0.83 1.26 0.29 0 -0.3 -4.63 0.51 -0.03 -5.31 135.98 

(-) rah 1.11 1.13 0.25 0 -1.2 -3.55 0.42 -0.02 -15.37 133.29 

LAI* 0.85 1.02 0.29 0.01 -0.38 -0.99 -3.06 0.4 -4.71 31.63 

LAI** 0.67 0.76 0.36 0.07 0.14 -1.03 0.59 0.26 -3.58 2.87 
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(-) z0m 0.69 1.03 0.41 0 0.15 -2.73 0.58 -0.02 -12.29 106.1 

(-) rλET 0.99 2.25 0.03 0.06 -0.52 -16.98 0.17 -0.04 6.37 312.54 

(-) z0m & rah 1.04 1.13 0.34 0.01 -0.74 -3.52 0.5 -0.03 -16.56 134.92 

(-)rah & rλET 0.89 2.38 0.05 0.14 -0.24 -19.08 0.22 -0.05 1.07 330.94 

(-) z0m & rλET 0.83 1.77 0.18 0.02 -0.6 -10.14 0.33 -0.04 -14.15 216.81 

SEBAL 0.81 2.11 0.16 0.07 -0.02 -0.02 0.31 -0.04 -12.25 285.53 

 714 

z0m = roughness length for momentum transfer; rah = aerodynamic resistance for heat transfer; rλET = remaining λET in the endmembers pixels.715 
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 716 

Fig. S1. Location of the flux towers sites and MOD16 and PMLv2 pixel boundaries. True colour 717 

composite (bands 4, 3, and 2) of Harmonized Sentinel-2 MSI acquired via Google Earth Engine. 718 

Scene acquired of PTN (12/06/2021); SNN and SET (25/05/2021); CGR (29/07/2021). 719 

 720 
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 721 

Fig. S2. PAI and soil moisture time series for the different observation sites. 722 
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 723 

Fig. S3. Evaluation of evapotranspiration (ET, mm/8 days) observed and modelled with STEEP 724 

(red crosses), MOD16 (blue diamonds) and PMLv2 (green squares) for all experimental sites 725 

considering only the 55 periods where the field-observed data had eight consecutive days. The 726 

black line is the 1:1 line; dashed lines are the fitted linear regressions of observed or modelled 727 

values by the STEEP model (red), MOD16 (blue) and PMLv2 (green) products. 728 

 729 
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 730 

Fig. S4. Comparison between ERA5-Land reanalysis dataset and local observational 731 

meteorological measurements from the flux tower at the closest time from the satellite overpass. 732 

Micrometeorological sensors installed at the flux towers are up to 16 m in distance from the land 733 

surface, and ERA5-Land variables have different reference elevation (e.g. 2 m for air temperature 734 

and 10 m to wind speed). 735 

 736 
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Appendix A – Equations adopted to formulate the STEEP model 737 

Latent heat flux (𝜆𝐸𝑇) was modeled using Eq. (A.1): 738 

𝜆𝐸𝑇 =  𝑅𝑛 −  𝐺 −  𝐻 (A.1) 

where Rn is net radiation, G is soil heat flux, and H is sensible heat flux. All variables are expressed 739 

in energy units (e.g., W/m2). 740 

Net radiation (𝑅𝑛) was modeled based on the radiation budget indicated by Allen et al. (2007) and 741 

Ferreira et al. (2020) by Eq. (A.2):  742 

𝑅𝑛 = 𝑅𝑆↓ × (1 − 𝛼) + 𝜀𝑆 × 𝑅𝐿↓ − 𝑅𝐿↑ (A.2) 

where 𝑅𝑆↓ is incident shortwave radiation (W/m2) estimated following Allen et al. (2007), 𝛼 is surface 743 

albedo (dimensionless), estimated following Trezza et al. (2013), 𝑅𝐿↓ is longwave radiation from the 744 

atmosphere (W/m2) estimated following Ferreira et al. (2020) with atmospheric emissivity from 745 

Duarte et al. (2006); 𝑅𝐿↑ is emitted longwave radiation (W/m2) following Ferreira et al. (2020) with 𝜀𝑆 746 

the surface emissivity (dimensionless), estimated following Long et al. (2010). 747 

Soil heat flux (𝐺), expressed as a ratio of net radiation, was estimated following the model by 748 

Bastiaanssen et al. (1998): 749 

𝐺

𝑅𝑛
= [(𝐿𝑆𝑇 − 273.15) × (0.0038 + 0.0074 × 𝛼) × (1 − 0.98 × 𝑁𝐷𝑉𝐼4)] 

(A.3) 

where LST is the surface temperature (K) and NDVI is the Normalized Difference Vegetation Index 750 

(dimensionless), estimated following Rouse et al. (1973). 751 

Sensible heat flux (𝐻) was modeled using: 752 

𝐻 =
𝜌 × 𝑐𝑝 × 𝑑𝑇

𝑟𝑎ℎ
 

(A.4) 

where 𝜌 is the air density (kg/m3), 𝑐𝑝 refers to the specific heat of air at constant pressure (J/kg/K), 753 

dT is the temperature gradient (K), and rah is the aerodynamic resistance for heat transfer (s/m). 754 

 755 

Aerodynamic resistance to heat transport was estimated based on the classical equation given in 756 

Paul et al. (2013), see also Verhoef et al. (1997a): 757 
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𝑟𝑎ℎ =  
1

𝑘 × 𝑢∗
× [𝑙𝑛 (

𝑧𝑟𝑒𝑓 − 𝑑0

𝑧0𝑚
)  − 𝜓ℎ] +

1

𝑘 × 𝑢∗
× 𝑘𝐵𝑢𝑚𝑑

−1  (A.5) 

where 𝑘 is the von Kármán constant taken as 0.41, 𝑢∗ is the friction velocity (m/s), 𝑧𝑟𝑒𝑓 is the 758 

reference height (m), d0 is zero plane displacement height (m), z0m is roughness length for 759 

momentum transfer (m), 𝜓ℎ is the atmospheric stability correction function for heat transfer (m), as 760 

calculated following Paulson (1970), 𝑘𝐵𝑢𝑚𝑑
−1  is the dimensionless parameter formulated to express 761 

the excess resistance of heat transfer compared to momentum transfer, corrected for soil moisture 762 

derived from remote sensing. 763 

The friction velocity was computed according to Verhoef et al. (1997b) and Paul et al. (2013):  764 

𝑢∗ = 𝑘 × 𝑢 [𝑙𝑛 (
𝑧𝑟𝑒𝑓 − 𝑑0

𝑧0𝑚
) − 𝜓𝑚 ]

−1

 (A.6) 

where 𝑢 is the wind speed (m/s) at a known height 𝑧𝑟𝑒𝑓, 𝜓𝑚 is the atmospheric stability correction 765 

function for momentum transfer (m), as calculated following Paulson (1970). 766 

Roughness length for momentum transport was estimated, based on the studies by Verhoef et al. 767 

(1997b): 768 

𝑧0𝑚 = (𝐻𝐺𝐻𝑇 − 𝑑0) × 𝑒𝑥𝑝(−𝑘×𝛾+𝑃𝑆𝐼𝐶𝑂𝑅𝑅) (A.7) 

where 𝐻𝐺𝐻𝑇 is the height of the vegetation (m),  𝑃𝑆𝐼𝐶𝑂𝑅𝑅 is taken as 0.2 and 𝛾 is the inverse of the 769 

square root of the bulk surface drag coefficient at the roughness canopy height (Raupach, 1992). 770 

Zero plane displacement height (𝑑0) was obtained following Raupach (1994) from: 771 

𝑑0 = 𝐻𝐺𝐻𝑇 × [(1 −
1

√𝐶𝐷1 × 𝑃𝐴𝐼
) + (

𝑒𝑥𝑝−√𝐶𝐷1×𝑃𝐴𝐼

√𝐶𝐷1 × 𝑃𝐴𝐼
)] (A.8) 

where 𝐶𝐷1 is taken as 20.6 and PAI is the Plant Area Index. 772 

𝛾 was following Verhoef et al. (1997b): 773 

𝛾 = (𝐶𝐷 + 𝐶𝑅 ×
𝑃𝐴𝐼

2
)

−0.5

 (A.9) 

if 𝛾 < 3.33, 𝛾 is set to 3.33. Following Verhoef et al. (1997), 𝐶𝐷 and 𝐶𝑅 are taken as 0.01 and 0.35, 774 

respectively. 775 

Plant Area Index was calculated according to Miranda et al. (2020) as: 776 

𝑃𝐴𝐼 =  10.1 × (𝜌𝑁𝐼𝑅 − √𝜌𝑅𝐸𝐷) + 3.1 (A.10) 
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where 𝜌𝑁𝐼𝑅 is the near infrared band reflectance, and 𝜌𝑅𝐸𝐷 is the red band reflectance. If PAI < 0, d0 777 

is set to 0.  778 

The dimensionless parameter 𝑘𝐵𝑢𝑚𝑑
−1  is corrected by soil moisture by remote sensing following the 779 

equations provided by Gokmen et al. (2012): 780 

𝑘𝐵𝑢𝑚𝑑
−1 = 𝑆𝐹 × 𝑘𝐵−1 (A.11) 

where SF is a scaling factor, represented by a sigmoid function: 781 

𝑆𝐹 = [𝑐 +
1

1 + 𝑒𝑥𝑝(𝑑−𝑒×𝑆𝑀𝑟𝑒𝑙)
] (A.12) 

Here, 𝑐, 𝑑, 𝑒 are the sigmoid function coefficients, for which we adopted values of 0.3, 2.5, and 4, 782 

respectively, following Gokmen et al. (2012). 𝑆𝑀𝑟𝑒𝑙 is the relative soil moisture, obtained from: 783 

𝑆𝑀𝑟𝑒𝑙 =
𝑆𝑀 −  𝑆𝑀𝑚𝑖𝑛

𝑆𝑀𝑚𝑎𝑥 − 𝑆𝑀𝑚𝑖𝑛
 (A.13) 

where 𝑆𝑀 is the actual soil moisture content, in our case obtained with the GLDAS reanalysis 784 

product, and 𝑆𝑀𝑚𝑖𝑛 and 𝑆𝑀𝑚𝑎𝑥 are the minimum and maximum soil moisture. The 𝑆𝑀𝑚𝑖𝑛 and 𝑆𝑀𝑚𝑎𝑥 785 

values were obtained using the annual time series analysis of the soil moisture data. 786 

𝑘𝐵−1 was calculated according to Su et al. (2001): 787 

𝑘𝐵−1 =
𝑘 × 𝐶𝑑

4 × 𝐶𝑡 ×
𝑢∗

𝑢(ℎ)
× (1 − 𝑒𝑥𝑝

(−
𝑛𝑒𝑐

2
)
)

× 𝑓𝑐
2 +

𝑘 ×
𝑢∗

𝑢(ℎ)
×

𝑧0𝑚
ℎ

𝐶𝑡
∗ × 𝑓𝑐

2 × 𝑓𝑠
2 + 𝑘𝐵𝑠−1 × 𝑓𝑠

2 (A.14) 

where 𝑘𝐵𝑠−1 = 2.46(𝑅𝑒∗)0.25 − 2 , 𝐶𝑑 is the drag coefficient of the foliage elements taken as 0.2, 𝐶𝑡 788 

is the heat transfer coefficient of the leaf with value 0.01. 789 

The ratio 
𝑢∗

𝑢(ℎ)
 is parameterized as: 790 

𝑢∗

𝑢(ℎ)
= 𝑐1 − 𝑐2 × 𝑒𝑥𝑝(−𝑐3×𝐶𝑑×𝑃𝐴𝐼) (A.15) 

where 𝑐1 = 0.320, 𝑐2 = 0.264, 𝑐3 = 15.1. 791 

𝑛𝑒𝑐 is the extinction coefficient of the wind speed profile within the canopy given by:  792 
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𝑛𝑒𝑐 =
𝐶𝑑 × 𝑃𝐴𝐼

2𝑢∗2

𝑢(ℎ)2

 
(A.16) 

𝐶𝑡
∗ is heat transfer coefficient of the soil given by: 793 

𝐶𝑡
∗ = 𝑃𝑟−2/3 × (𝑅𝑒)−1/2 (A.17) 

where 𝑃𝑟 is the Prandtl number with a value 0.71, and 𝑅𝑒 is the Reynolds number calculated as: 794 

𝑅𝑒 =
𝑢∗ × 0.009

𝑣
, 𝑣 = 1.461 × 10−5 (A.18) 

where 𝜈 is the kinematic viscosity (m2/s). 795 

In Eq. A.14 𝑓𝑐 is the fractional canopy cover calculated according to Eq. (A19), and 𝑓𝑠 is its 796 

complement. 797 

𝑓𝑐 = 1 − [
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑎𝑥

𝑁𝐷𝑉𝐼𝑚𝑖𝑛 − 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
]

0.4631

 (A.19) 

where 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 and 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 are maximum and minimum NDVI values, respectively. 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 and 798 

𝑁𝐷𝑉𝐼𝑚𝑖𝑛 values were obtained using the annual time series analysis of the NDVI. 799 

dT in Eq. (A4) was estimated daily with a linear relationship on the surface temperature 800 

(Bastiaanssen et al., 1998) as: 801 

𝑑𝑇 = 𝑎 + 𝑏 × 𝐿𝑆𝑇 (A.20) 

To find the coefficients 𝑎 and 𝑏 in Eq. (A20) requires that hot and cold endmembers pixels are 802 

established. The coefficients were found as: 803 

𝑏 =
(𝑑𝑇ℎ𝑜𝑡 −  𝑑𝑇𝑐𝑜𝑙𝑑)

(𝐿𝑆𝑇ℎ𝑜𝑡 −  𝐿𝑆𝑇𝑐𝑜𝑙𝑑)
 

(A.21) 

𝑎 = 𝑑𝑇𝑐𝑜𝑙𝑑 − 𝑏 × 𝐿𝑆𝑇𝑐𝑜𝑙𝑑 (A.22) 

𝑑𝑇ℎ𝑜𝑡/𝑐𝑜𝑙𝑑 =  
𝐻ℎ𝑜𝑡/𝑐𝑜𝑙𝑑 × 𝑟𝑎ℎℎ𝑜𝑡/𝑐𝑜𝑙𝑑

𝜌 × 𝑐𝑝
 

(A.23) 

𝐻ℎ𝑜𝑡/𝑐𝑜𝑙𝑑 = 𝑅𝑛ℎ𝑜𝑡/𝑐𝑜𝑙𝑑 − 𝐺ℎ𝑜𝑡/𝑐𝑜𝑙𝑑  −  𝜆𝐸𝑇ℎ𝑜𝑡/𝑐𝑜𝑙𝑑 (A.24) 
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where 𝑑𝑇ℎ𝑜𝑡/𝑐𝑜𝑙𝑑 are 𝑑𝑇 values for the hot/dry and cold/wet endmember pixels, respectively,  804 

𝑅𝑛ℎ𝑜𝑡/𝑐𝑜𝑙𝑑, 𝐺ℎ𝑜𝑡/𝑐𝑜𝑙𝑑, 𝐿𝑆𝑇ℎ𝑜𝑡/𝑐𝑜𝑙𝑑, 𝑟𝑎ℎℎ𝑜𝑡/𝑐𝑜𝑙𝑑 are the median values extracted on the endmember 805 

pixels of each variable. The selection of endmember pixels is detailed in section 2.3.  806 

𝜆𝐸𝑇ℎ𝑜𝑡/𝑐𝑜𝑙𝑑 is the term incorporated in the computation of H in the endmember pixels given by the 807 

Priestley-Taylor (1972) equation, according to Singh and Irmak (2011) and French et al. (2015): 808 

𝜆𝐸𝑇ℎ𝑜𝑡/𝑐𝑜𝑙𝑑 = (𝑅𝑛ℎ𝑜𝑡/𝑐𝑜𝑙𝑑 − 𝐺ℎ𝑜𝑡/𝑐𝑜𝑙𝑑) × 𝑓𝑐 × 𝛼𝑝𝑡 × [
∆

∆ + 𝛾𝑐
] (A.25) 

where 𝛼𝑝𝑡 is the empirical Priestley-Taylor coefficient, nominally set to 1.26, but here adjusted 809 

according to local conditions, i.e. we adopted the 𝛼𝑝𝑡 values (0.55 for hot/dry and 1.75 for cold/wet 810 

pixels) based on Ai and Yang (2016). ∆ is the slope of the saturation vapor pressure-air temperature 811 

curve (kPa/ºC) and 𝛾𝑐 is the psychrometric constant (kPa/ºC). 812 

The actual daily evapotranspiration (mm/day) was obtained by means of the following relationship: 813 

𝐸𝑇24ℎ =
86400

(2.501 − 0.00236 × 𝑇𝑎) × 106
×

𝜆𝐸𝑇

𝑅𝑛 − 𝐺
× 𝑅𝑛24ℎ (A.26) 

where 𝑇𝑎 is the mean daily air temperature (°C), λET is derived from Eq. A1, and 𝑅𝑛24ℎ corresponds 814 

to the daily net radiation (W/m2); in this study both driving variables were obtained with data from the 815 

ERA5-Land product. 816 
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