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a b s t r a c t 

We propose a new test to detect change points in financial risk measures, based on the cumulative sum 

(CUSUM) procedure applied to the Wilcoxon statistic within a popular class of loss functions for risk 

measures. The proposed test efficiently captures change points jointly in two risk measure series: Value- 

at-Risk (VaR) and Expected Shortfall (ES), estimated by (semi)parametric models. We derive the asymp- 

totic distribution of the proposed statistic and adopt a stationary bootstrapping technique to obtain the 

p-values of the test statistic. Monte Carlo simulation results show that our proposed test has better size 

control and higher power than the alternative tests under various change point scenarios. An empirical 

study of risk measures based on the S&P 500 index illustrates that our proposed test is able to detect 

change points that are consistent with well-known market events. 

Crown Copyright © 2023 Published by Elsevier B.V. 
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. Introduction 

Measuring market risk plays a central role not only in the 

rea of risk management but also in the broader context of finan- 

ial markets. Value-at-Risk (VaR) and Expected Shortfall (ES) are 

wo prevalent risk measures dominating in contemporary finan- 

ial regulation ( Leung et al., 2021 ). VaR provides financial insti- 

utions with a loss level that occurs in the worst situations at a 

iven confidence level; ES, as an alternative to VaR, is the expec- 

ation of losses, conditional on their realization lying below VaR. 

s for the estimation of these two measures, Engle & Manganelli 

2004) distinguish three main categories: nonparametric, paramet- 

ic, and semiparametric approaches. In a univariate framework, 

ome of the models for financial risk measures include General- 

zed AutoRegressive Conditional Heteroskedasticity (GARCH) fam- 

ly models ( Bali & Theodossiou, 2007 ), score-driven models ( Patton 

t al., 2019 ), and CAViaR-ES models ( Taylor, 2019 ). 1 

It is worth mentioning that the presence of change points 

n time series may cause misleading statistical inference under 

he assumption of stationarity ( Clements & Hendry, 1996; Diebold 

 Inoue, 2001; Loschi et al., 2007; Mikosch & St ̆aric ̆a, 2004 ;
∗ Corresponding author. 

E-mail addresses: e.lazar@icmacentre.ac.uk (E. Lazar), 

hixuan.wang@reading.ac.uk (S. Wang), x.xue@pgr.reading.ac.uk (X. Xue) . 
1 This class of semiparametric models has been extended to incorporate the in- 

raday or high-frequency information ( Gerlach & Wang, 2020; Lazar & Xue, 2020; 

eng & Taylor, 2020 ) and combine with networks ( Bonaccolto et al., 2022 ). 
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tock & Watson, 1996 ). Related empirical evidence has been ex- 

ensively documented, especially in stock returns ( Pástor & Stam- 

augh, 2001 ), volatility ( Inclan & Tiao, 1994 ), correlation dynamics 

 Barassi et al., 2020 ), and macroeconomic time series ( Pesaran & 

immermann, 2007 ). There is a vast literature on tests for change 

oints in time-series; some of these detect changes in a historical 

ataset ( Aue et al., 2009; Csörg ̋o & Horváth, 1997 ), whereas oth- 

rs monitor changes in a sequential manner ( Berkes et al., 2004; 

ette & Gösmann, 2020; Horváth et al., 2020a ). Also, these tests 

an differ in terms of their objective function given by, e.g., the 

ikelihood for volatility models ( Chen & Hong, 2016 ) and copula 

odels ( Ye et al., 2012 ) or the loss function for quantile regres-

ions ( Qu, 2008 ). We refer the readers to Aue & Horváth (2013) for

 detailed literature review. 

In addition to the theoretical contribution, a large section of the 

iterature concerns the practical application of change points detec- 

ion, particularly in economics and finance. Regarding applications 

n macroeconomics, Andersson et al. (2006) discuss a large num- 

er of studies on the detection of turning points in business cycles. 

orváth et al. (2020a) propose a sequential monitoring scheme and 

pply it to detect the changes in real US GDP series. A noteworthy 

pplication in the housing markets is provided by Horváth et al. 

2022) . In the finance literature, several studies investigate the fi- 

ancial contagion between markets during the subprime crisis by 

mplementing a change point analysis in tail risk, e.g., Ye et al. 

2012) . A sequential monitoring procedure is employed by Ji et al. 

2020) to detect left-quantile changes in asset returns in order to 
cle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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earch for safe-haven assets during the COVID-19 pandemic. By de- 

ecting change points in the distributions of the daily returns of the 

onstituent stocks of the S&P 500 index, Horváth et al. (2021) asso- 

iate the detected change points with well known financial events, 

.g., the subprime mortgage crisis and COVID-19 pandemic. 

In applications of risk management, the existence of change 

oints can cause estimation errors for VaR and ES, as argued 

n Hoga (2017 , hereafter Hoga) and Fan et al. (2018 , hereafter 

GP). These papers use an innovative self-normalized estimator à

a Zhang & Lavitas (2018) to detect change points when the risk 

easures are estimated in a nonparametric way. Specifically, Hoga 

nvestigates change points in the VaR process, and FGP consider 

hanges in the ES process. Since regulatory capital requirements in 

asel Committee on Banking Supervision (2019) are linked to ES 

stimates, it would be prudent to detect change points in this pro- 

ess. Also, if change points are detected in the ES series alone, then 

he effect of VaR on ES is ignored. Since ES is elicitable only jointly 

ith VaR, 2 it is meaningful to detect change points in the (VaR, ES) 

uple. 

To fill this gap, our study extends the current literature by 

roposing a test to detect change points in the VaR and ES series 

imultaneously, which are estimated by (semi)parametric models. 

e construct this test using the FZ loss functions proposed by 

issler & Ziegel (2016) . Since the FZ loss functions are minimized 

or the true values of VaR and ES, changes in the parameter values 

f the model cause breaks in the process of the VaR and ES esti- 

ates, which will result in changes in the loss series. Our frame- 

ork of detecting change points in the VaR and ES series based 

n loss values is general and can accommodate for any type of 

semi)parametric estimation models. 

Our first contribution is to propose a test to detect change 

oints in both VaR and ES risk measures simultaneously, based 

n the FZ loss functions. The general framework is closely related 

o the likelihood ratio test to detect changes in volatility, and the 

est for structural changes in quantile regressions proposed by Qu 

2008) . Due to the dominance of the indicator term in the FZ loss 

unctions, the presence of extreme values (spikes), when returns 

xceed VaR, is one of the main characteristics of the loss series. 

owever, the commonly used cumulative sum (CUSUM) test can be 

ffected by the presence of outliers ( Fearnhead & Rigaill, 2019 ). To 

ddress this problem, we adopt a more suitable alternative, namely 

he Wilcoxon test ( Dehling et al., 2013 ) to detect change points in

he loss process. 3 We call this procedure the loss-based Wilcoxon 

est, and we shed light on its advantages in detecting joint change 

oints in time series of VaR and ES simultaneously. 

Secondly, our paper contributes to the current literature by de- 

iving the asymptotic behavior of our test statistic under weak de- 

endence. Also, to improve the finite sample performance of the 

roposed test, we adopt a stationary bootstrap method based on 

olitis & Romano (1994) , which follows the strand of literature in 

he area ( Hušková & Kirch, 2008; Quaedvlieg, 2021 ). Furthermore, 

e prove that the stationary bootstrap is valid for the loss-based 

ilcoxon test. 

Thirdly, we use Monte Carlo (MC) simulations to show that 

ur proposed test has good size control and higher power in fi- 

ite samples than the alternatives. Additionally, our study on risk 

easures of the S&P 500 index returns provides an empirical ap- 

lication to demonstrate the practical usage of our proposed test. 

e present evidence that the loss-based Wilcoxon test can detect 

hange points that are consistent with well-known market events. 
2 There is no (strictly) consistent loss function for ES that does not also contain 

aR ( Fissler & Ziegel, 2016 ). 
3 In order to construct the Wilcoxon test statistic, we initially obtain the ranks of 

oss values and then feed the ranks into the CUSUM procedure. More details can be 

ound in Section 2.2 . 
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The paper is structured as follows: Section 2 briefly discusses 

he established methods for change point detection in risk mea- 

ures, introduces the FZ family of loss functions and the Wilcoxon 

est statistic, and presents some theoretical results related to 

he asymptotic distribution and the validity of bootstrapping; 

ection 3 shows the simulation results; Section 4 contains an em- 

irical application based on the S&P 500 index; Section 5 con- 

ludes the paper. 

. Test statistic for change point detection 

This section briefly presents the literature on existing tests for 

hange point detection in risk measures. To enrich the literature, 

e propose a test to detect change points in (VaR, ES) risk mea- 

ures simultaneously based on the FZ loss functions introduced by 

issler & Ziegel (2016) . In this section, we formulate the test prob- 

em and derive the asymptotic theorem for our test statistic. For 

nite samples, we apply the stationary bootstrap method to obtain 

he p-values of our test. Also, we verify the validity of the boot- 

trap method. 

.1. Established methods for change point detection in risk measures 

Detecting change points in risk measures has attracted re- 

ent attention from academia. Here we summarize some of the 

ost related studies. Hoga (2017) proposes a test to retrospec- 

ively detect change points in extreme quantiles of time series. 

he main intuition behind the proposed test is to compare the 

xtreme quantiles, estimated by a nonparametric method, namely 

eissman ’s estimator, over different time periods. It is a difficult 

ask to choose a bandwidth parameter for the long-run variance 

stimator, and sometimes a data-dependent bandwidth can lead to 

on-monotonic power of the test ( Shao & Zhang, 2010; Vogelsang, 

999; Zhang & Lavitas, 2018 ). In order to confront the challenge of 

he estimation of asymptotic long-run variance, Hoga’s test is built 

n the self-normalization framework proposed by Shao & Zhang 

2010) . In a subsequent study, Fan et al. (2018) develop a change 

oint test for nonparametric ES estimates for weakly dependent 

ime series. Their proposed test is based on monitoring changes 

n the tail structure and uses self-normalization. 

The tests discussed above are designed for detecting changes 

n unconditional risk measures (which are estimated over different 

ime periods). On the other hand, our proposed tests are for condi- 

ional risk estimates obtained via (semi)parametric risk models. To 

un the test, we first calculate the loss series associated with the 

stimated (semi)parametric risk measures. Our test is inspired by 

he Wilcoxon test proposed by Dehling et al. (2013) , which now is 

ased on the loss series. This test is general and can accommodate 

or any type of (semi)parametric joint estimation methods for VaR 

nd ES. Another advantage of our proposed test is that it can iden- 

ify changes in VaR and ES jointly, instead of detecting changes in 

ingle risk measure, which is in line with the requirements of the 

asel Committee on Banking Supervision (2019) . 

An alternative test that we can compare our proposed test with 

s based on Rényi-type statistics. Traditional CUSUM-based tests 

an be ineffective when changes occur near the start or the end 

f a sequence of observations; this has been addressed by Horváth 

t al. (2020b) , who propose change point detection methods which 

ely on weighting or trimming schemes based on Rényi-type statis- 

ics. We consider a variant of our test that uses Rényi-type statis- 

ics, which we call the “Rényi-type test”. This is a joint test for 

hanges in VaR and ES risk estimates, and is based on the FZ loss 

unction. In this test, instead of using the Wilcoxon statistic, we 

alculate the test statistic relying on a trimmed sample, i.e., after 

emoving subsamples at the start and at the end of the entire sam- 

le, leading to high power for the change point detection near the 
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Table 1 

Loss functions in the FZ family with different degrees of positive homogeneity b. 

b FZ loss function 

0 L FZ0 (r, v , e, θ;α) = − 1 
αe ( θ) 

1 [ r ≤ v ( θ)] · [ v ( θ) − r] + 

v ( θ) 
e ( θ) 

+ log (−e ( θ)) − 1 

−1 L FZ1 (r, v , e, θ;α) = 

1 
e ( θ) 2 

{
1 
α 1 [ r ≤ v ( θ)] · [ v ( θ) − r] − [ v ( θ) − e ( θ)] 

}
+ 

1 
e ( θ) 

0.5 L FZ2 (r, v , e, θ;α) = 

1 

2 
√ 

−e ( θ) 

{
1 
α 1 [ r ≤ v ( θ)] · [ v ( θ) − r] − [ v ( θ) − e ( θ)] 

}
+ 

√ 

−e ( θ) 
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eginning and end of the sample. More details can be found in 

ection 3.2 . 

As benchmarks, we consider two further tests, specifically 

he self-normalized CUSUM test for VaR and the self-normalized 

USUM test for ES. These are based on the self-normalized change 

oint test proposed by Shao & Zhang (2010) and use conditional 

isk measures estimated by (semi)parametric risk models. These 

ests are described in more detail in Section 3.2 . 

.2. Loss functions 

Let { r t } T t=1 
be a series of observed returns measured over an ar- 

itrary frequency, such as daily. (Semi)parametric models can be 

sed to estimate the corresponding conditional risk measures, VaR 

nd ES, denoted by { v t ( θ) } T 
t=1 

and { e t ( θ) } T 
t=1 

, at a specified sig-

ificance level α, where θ denotes the parameter vector of the 

odel. Some major results about the consistency of model param- 

ter estimators for selected (semi)parametric models can be found 

n Francq & Zakoïan (2015) and Patton et al. (2019) . We summarize 

hese results in the Supplemental Appendix. 

Fissler & Ziegel (2016) introduce the FZ family of loss functions 

tated below, used to evaluate the (VaR, ES) tuple of risk measures: 

 

F Z (r t , v t , e t , θ;α) 

= 

{
1 [ r t ≤ v t ( θ)] − α

}[ 
G 1 (v t ( θ)) − G 1 (r t ) + 

1 

α
v t ( θ) G 2 (e t ( θ)) 

] 
−G 2 (e t ( θ)) 

{ 

1 

α
1 [ r t ≤ v t ( θ)] r t − e t ( θ) 

} 

− G 2 (e t ( θ)) , (1) 

here G 1 is weakly increasing, G 2 is strictly increasing and strictly 

ositive, and G ′ 2 = G 2 . 
4 

For the specification function G 1 in (1) , we use G 1 (z) = 0 , which

ollows the reasoning of Nolde & Ziegel (2017) . We consider the 

econd specification function G 2 with different degrees of posi- 

ive homogeneity 5 b = −1 , b = 0 , and b = 0 . 5 , which follow the

hoices of Dimitriadis & Bayer (2019) , specified as: G 2 (z) = − 1 
z , 

 2 (z) = − log (−z) , and G 2 (z) = −√ −z , respectively, where z must 

e negative. 

In our study, we use the three loss functions corresponding to 

he above specifications, detailed in Table 1 , to compute the time 

eries of loss values. 

To provide some intuition, L F Z0 can be reformulated as: 

 

F Z0 (r, v , e, θ;α) 

= 

{− 1 
αe ( θ) 

[ v ( θ) − r] + 

v ( θ) 
e ( θ) 

+ log (−e ( θ)) − 1 , if r ≤ v ( θ) , 
v ( θ) 
e ( θ) 

+ log (−e ( θ)) − 1 , if r > v ( θ) . 

he probability of the first outcome is α, and the probability of 

he second one is 1 − α. Thus, the distribution of the loss value 

an be generally considered as a mixing distribution with mixing 

arameter α. 
4 Using the FZ loss function for estimation and forecast evaluation requires choos- 

ng G 1 and G 2 . The selection of a proper set of ( G 1 , G 2 ) remains an open question. 

or a more elaborate discussion on this, see Patton et al. (2019) . 
5 A loss function L is called positively homogeneous of degree b if for all r, v and 

 , L (cr, cv , ce ) = c b L (r, v , e ) , for all c > 0 . 

A

F

e

3 
To get a better understanding of the time series properties of 

he risk measures and loss series, we test, using simulations based 

n a GARCH(1,1)-skewed t data generating process (DGP), for the 

resence of (1) autocorrelation, (2) conditional heteroskedasticity, 

3) unit root, and (4) outliers against the normal distribution in 

hese series. 6 The results show that the loss series possibly has 

eak autocorrelation, but we found no evidence of conditional het- 

roskedasticity. Also, in our setup we found that the loss series is 

tationary and it is affected by outliers (rejecting normality) which 

an be linked to VaR exceptions (causing spikes in the loss series). 

.3. Hypotheses and test statistic 

The distribution of { r t } T t=1 
and the values of { v t ( θ) } T 

t=1 
and

 e t ( θ) } T 
t=1 

all depend on the model parameter vector which can 

e time varying, hence it will be denoted by θt . Thus, in this 

ase, a procedure for detecting a change point can be conducted 

y testing the null hypothesis: θ1 = . . . = θT , against the alterna- 

ive hypothesis that there is one unknown change point k ∗, that 

s: θ1 = . . . = θk ∗ � = θk ∗+1 = . . . = θT . The true values of VaR and ES

ill lead to the minimal loss values for the given returns. If there 

s a change point, the parameter values estimated using the time 

eriod between 1 and k ∗ will be different from the parameter val- 

es estimated from the whole sample, so the VaR and ES estimates 

ased on the parameters obtained from the whole sample will de- 

iate from the true values, leading to an increase in their loss val- 

es. 

We can formulate a test for the hypotheses above using the loss 

eries. In this framework, the loss values can be expressed as: 

 t = 

{
μ0 + ε t , if 1 ≤ t ≤ k ∗

μA + ε t , if k ∗ + 1 ≤ t ≤ T , 

here μ0 and μA are unknown parameters and E [ ε t ] = 0 for 1 ≤
 ≤ T . The null hypothesis of no change point in the loss series can

e written as: 

 0 : μ0 = μA , 

ersus the alternative hypothesis 7 of one change point in the loss 

eries: 

 1 : μ0 � = μA . 

The CUSUM test is commonly used to detect change points 

f a process. However, this test has the limitation that it can be 

isturbed by the presence of outliers or extremely heavy-tailed 

oise ( Fearnhead & Rigaill, 2019; Gerstenberger, 2018 ). As shown 

n Section 2.1 , outliers (against normality) commonly exist in the 

oss series, due to the VaR exceptions, and thus making the CUSUM 

est less suitable to be applied directly on the “raw” loss series. As 

ighlighted by Gerstenberger (2018) , the Wilcoxon test statistic is 

 rank-type statistic and has the inherent advantage that it is not 
6 The simulation setup and results are reported in Table S.1 of the Supplemental 

ppendix. We use the Ljung–Box test, Engle’s ARCH test, the Augmented Dickey- 

uller (ADF) test and Grubb’s test. 
7 For simplicity, in this study we consider the alternative hypothesis that there 

xists only one change point k ∗ occurring in the series. 
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8 In this study, we follow Hoga to set the expected block length as 0 . 08 T , which 

can consistently produce satisfactory results in various settings. It is possible to se- 

lect the optimal block length for stationary bootstrapping, please see Politis & White 
ffected by outliers. Therefore, we employ the Wilcoxon test to de- 

ect change points in the rank of the loss series. The general form 

f the Wilcoxon test statistic is defined as: 

 T : = max 
1 ≤k ≤T 

| W k,T | , where W k,T : = 

k ∑ 

i =1 

R i −
k 

T 

T ∑ 

i =1 

R i , (2) 

here R i = rank (L i ) = 

∑ T 
j=1 1 { L j ≤ L i } , for i = 1 , . . . , T . Inspired by

etken (2016) , our test statistic based on ranks is given below: 

 T = max 
1 ≤k ≤T 

∣∣∣∣∣
k ∑ 

i =1 

R i −
k 

T 

T ∑ 

i =1 

R i 

∣∣∣∣∣ = max 
1 ≤k ≤T 

∣∣∣∣∣
k ∑ 

i =1 

T ∑ 

j= k +1 

{ 

1 [ L i ≤ L j ] −
1 

2 

} 

∣∣∣∣∣. 
(3) 

efinition 2.1. The estimator for the time of a change point ˆ k W 

is 

efined as the value that maximizes the loss-based Wilcoxon test 

tatistic, 

ˆ 
 W 

= 

ˆ k W 

(T ) : = min { k : | W k,T | = W T } . (4) 

.4. Theoretical results and stationary bootstrap 

In this section, we investigate the asymptotic distribution of our 

roposed Wilcoxon-type statistic in (3) . This can be treated as a U- 

tatistic ( Csörg ̋o & Horváth, 1988; Dehling et al., 2017 ) with the

ernel: 

 W 

(X, Y ) = 1 [ X ≤ Y ] − 1 

2 

. (5) 

e can define the U -process as below: 

 T (τ ) = 

� τT � ∑ 

i =1 

T ∑ 

j= � τT � +1 

h W 

(L i , L j ) = 

� τT � ∑ 

i =1 

T ∑ 

j= � τT � +1 

{ 

1 [ L i ≤ L j ] −
1 

2 

} 

, 

(6) 

here 0 ≤ τ ≤ 1 , and �·� denotes the integer part of a number. 

hus the Wilcoxon change point test statistic in (3) can be writ- 

en as: 

 T = max 
0 ≤τ≤1 

∣∣U T (τ ) 
∣∣. (7) 

he kernel h W 

(X, Y ) is antisymmetric, so it satisfies: 

 W 

(X, Y ) = −h W 

(Y, X ) . (8) 

n this case, E [ h W 

(L i , L j )] = 0 and similarly to the symmetric case

e let ˜ h W 

(X ) = E [ h W 

(X, L i )] . Following Csörg ̋o & Horváth (1988) , it

s reasonable to assume that: 

 < E [ h 

2 
W 

(L i , L j )] < ∞ and 0 < σ 2 
W 

= E [ ̃ h 

2 
W 

(L i )] < ∞ . (9)

To derive the asymptotic distribution of the process U T (τ ) , we 

onsider the following assumptions. 

ssumption 2.1. 

) The process { r t } T t=1 
is strictly stationary and satisfies E [ r t ] = 0 ,

and E [ | r t | s ] < ∞ , for some s > 2 ; 

B) The loss series { L t } T t=1 is strictly stationary and ergodic, and it 

satisfies E [ | L t | γ ] < ∞ , for some γ > 0 ; 

C) For any integer 1 ≤ t ≤ T , the cumulative distribution function 

F of L t is continuous on the real line with a density f that is

bounded; 

) h W 

(L 1 , L 2 ) given in (5) is an antisymmetric kernel, such that for

a δ > 0 , M > 0 : ∫ ∫ 
| h W 

(L 1 , L 2 ) | 2+ δ
d F (L 1 ) d F (L 2 ) ≤ M, 

∀ k ∈ N 0 : 

∫ 
| h W 

(L 1 , L 1+ k ) | 2+ δ
dP (L 1 , L 1+ k ) ≤ M;
(

4 
E) { r t , v t ( θ) , e t ( θ) } T 
t=1 

is strong mixing ( α-mixing) with

α(T ) = O 

(
T −(q −2) /q 

)
for some q > 2 ; { L t (r t , v t ( θ) , e t ( θ)) } T 

t=1 
is strong mixing with the coefficient α(T ) = O ( T −ρ ) for a 

ρ > 

3 γ δ+ δ+5 γ +2 
2 γ δ

. 

Assumption 2.1 (A) is a standard moment and stationarity 

ondition for the loss series. Assumption 2.1 (B) is the condi- 

ion on the continuous and bounded density of the loss se- 

ies. Assumption 2.1 (C) requires the moment bound for the 

iven kernel h W 

(L 1 , L 2 ) , which is consistent with Borovkova et al.

2001) and Dehling & Wendler (2010) . Patton et al. (2019) pro- 

ide the same dependence condition as Assumption 2.1 (D) for 

 r t , v t ( θ) , e t ( θ) } T 
t=1 

to support the central limit theorem for the

oss series; if the first half of Assumption 2.1 (D) holds, the se- 

uence of loss L t (r t , v t ( θ) , e t ( θ)) is α-mixing with a decay rate

t least as fast as that of 
{

r t , v t ( θ) , e t ( θ) 
}T 

t=1 
( Patton et al., 2019 ). 

hus, it is reasonable to assume the mixing condition for the loss 

eries with the coefficient provided by Dehling & Wendler (2010) . 

heorem 2.1. Under the null hypothesis, assume that (8) , (9) , and 

ssumption 2.1 hold. Then as T → ∞ , we have: 

sup 

 ≤τ≤1 

∣∣∣∣ 1 

T 3 / 2 
U T ( τ ) − σW 

B T (τ ) 

∣∣∣∣ = o P (1) , 

here B T (τ ) , 0 ≤ τ ≤ 1 is a sequence of Brownian bridges, and: 

2 
W 

= V ar ( F (L 1 ) ) + 2 

∞ ∑ 

j=2 

Cov 
(
F (L 1 ) , F (L j ) 

)
. 

The proof of Theorem 2.1 is provided in Appendix A . One way 

o implement such a test is by estimating the long-run variance 

nd using the asymptotic limit to obtain the p-values. The detailed 

rocedure is described in the Supplemental Appendix. However, as 

ften found in the literature, the empirical size obtained when re- 

ying on the asymptotic limit in finite samples may differ signif- 

cantly from the prespecified significance level. The Supplemental 

ppendix shows that the loss-based Wilcoxon test based on the 

symptotic distribution with two long-run variance estimators is 

enerally oversized, especially for small samples. As such, instead 

f estimating the long-run variance σ 2 
W 

above, we are going to 

se bootstrapping to obtain the p-values. In the following, we will 

laborate the bootstrapping algorithm. 

It is well known that bootstrap methods have been widely used 

o avoid the finite sample size distortions (see Barendse & Patton, 

022; Chen & Hong, 2016; Chen & Fang, 2019 , for more exam- 

les). Thus, we propose to obtain the p-value of the test statistic 

 T by using stationary bootstrapping in the following way. For a 

iven return series { r t } T t=1 
, we calculate the test statistic W T using

7) . Then, we adopt the stationary bootstrap method of Politis & 

omano (1994) to generate N B bootstrapped return series { r ∗t } T t=1 
sing the expected block length 	 . 8 For each bootstrapped series, 

e estimate the bootstrapped VaR and ES denoted by { v ∗t ( ̂ θ
∗
T ) } T t=1 

nd { e ∗t ( ̂ θ
∗
T ) } T t=1 , where ˆ θ

∗
T is the parameter vector estimated from 

he bootstrapped returns { r ∗t } T t=1 
. Then we compute the loss se- 

ies denoted by { L ∗t } T t=1 
. Applying (6) and (7) for each bootstrapped

eries j, we compute the bootstrapped U -process, U 

∗( j) 
T 

and the 

ootstrapped statistic W 

∗( j) 
T 

. Then, we define the set of the boot- 

trapped statistics W 

∗
T 

= { W 

∗(1) 
T 

, . . . , W 

∗(N B ) 
T 

} . After that, we calcu-

ate the frequency that the statistic W T is below W 

∗( j) 
T 

, and this is 
2004) and Patton et al. (2009) for more details. 
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10 In the density function, 2 < ν < ∞ , and −1 < λ < 1 . The constants a , b and c

are given by a = 4 λc 
(

ν−2 
ν−1 

)
, b 2 = 1 + 3 λ2 − a 2 , and c = 

�( ν+1 
2 ) √ 

π(ν−2) �( ν/ 2 ) 
. 
he bootstrapped p-value. The detailed procedure can be found in 

lgorithm 1 . 

Algorithm 1: Bootstrap procedure to obtain p-value, 

bootstrap ( { r t } T t=1 , W T , N B ). 

Input : { r t } T t=1 , W T , N B 
Output : p-value ( p) 

Initialization: j = 0 

repeat //Bootstrap j// 
j = j + 1 

Generate the bootstrapped returns ~{ r ∗t } T t=1 using the stationary bootstrap 

Estimate the bootstrapped risk measure series { v ∗t ( ̂ θ
∗
T ) } T t=1 and 

{ e ∗t ( ̂ θ
∗
T ) } T t=1 

Compute the bootstrapped loss series { L ∗t } T t=1 

Compute the bootstrapped statistic W 

∗( j) 
T 

until j = N B ; 

Using { W 

∗(1) 
T 

,…, W 

∗(N B ) 
T 

} compute p = 

1 
N B 

∑ N B 
j=1 

1 [ W 

∗( j) 
T 

> W T ] 

return p. 

To verify the validity of the bootstrap method, we obtain the 

symptotic distribution of the bootstrapped statistic W 

∗
T 

, which is 

omputed based on (7) using the bootstrapped data. Then we show 

hat it asymptotically converges to the limit distribution of the 

tatistic W T under the null hypothesis. To conduct the verification, 

e consider the following proposition, which is needed for the 

roof of our results. 

ssumption 2.2. { r ∗t } T t=1 
is generated by the stationary bootstrap 

ith geometric block lengths with success probability p T = cT −a , 

here a, c ∈ (0 , 1) . 

roposition 2.1 ( Politis & Romano, 1994 ) . If Assumption 2.1 (A) 

olds, and additionally Assumption 2.2 holds, then the pseudo time 

eries { r ∗t } T t=1 is stationary. 

This proposition implies that the stationary bootstrapping en- 

ures the stationarity of the process. In this study, we resample the 

eturn series { r t } T t=1 instead of resampling the loss series { L t } T t=1 
irectly. 9 The following theorem states the asymptotic behavior of 

he statistics of the bootstrapped loss series. 

heorem 2.2. Under the null hypothesis, assume that (8) , (9) , 

ssumptions 2.1 and 2.2 hold. Let 	 be the expected block length with 

 → ∞ and also T /	 → ∞ as T → ∞ . Then we have the following

onvergence result for the bootstrapped process U 

∗
T obtained with ex- 

ected block length 	 : 

 V ar ∗(T −3 / 2 U 

∗
T (τ )) − V ar(T −3 / 2 U T (τ )) | P −→ 0 , (10)

up 

x ∈ R 
| P ∗(T −3 / 2 U 

∗
T (τ ) ≤ x ) − P (T −3 / 2 U T (τ ) ≤ x ) | P −→ 0 , (11)

here V ar ∗ and P ∗ denote the variance and probability with respect 

o the probability measure induced by the stationary bootstrap. 

The proof of this theorem can be found in Appendix B . 

Recall that W 

∗( j) 
T 

, 1 ≤ j ≤ N B , denotes the bootstrapped statistic 

alculated similarly to W T defined in (7) . Next, we show that the 

symptotic distribution of the bootstrapped statistic W 

∗
T 

coincides 

ith the asymptotic distribution of W T under the null hypothesis. 

he empirical distribution function of W 

∗( j) 
T 

is calculated as: 

 T,N B (w ) = 

1 

N B 

∑ 

1 ≤ j≤N B 

1 [ W 

∗( j) 
T 

≤ w ] , w ∈ R . (12) 
9 We found that resampling the loss series { L t (r ∗t ) } T t=1 directly would lead to a 

igher empirical size, especially for small sample sizes (the related simulation re- 

ults can be found in Table S.3 of the Supplemental Appendix). 

r

a

5 
ased on Eqs. (7) and (12) , as well as Theorems 2.1 and 2.2 , we

btain the following result: 

orollary 2.1. If the assumptions of Theorem 2.2 hold, then under H 0 

e have: 

up 

w ∈ R 
| P (W T ≤ w ) − Q T,N B (w ) | P −→ 0 , where N B −→ ∞ and T −→ ∞ . 

(13) 

This corollary demonstrates that the proposed bootstrap 

ethodology is appropriate to be used to obtain the p-value of the 

oss-based Wilcoxon test statistic. In the next section, we imple- 

ent a simulation study to show that the bootstrap methodology 

as the correct size under the null hypothesis and has high power 

nder the alternative hypothesis. 

. Simulation analysis 

Based on the test framework proposed above, we implement 

 comprehensive simulation study to evaluate the performance of 

he loss-based Wilcoxon test under the null and alternative hy- 

otheses. In the following, we present the simulation design and 

nalyse the simulation results. 

.1. Simulation design 

We perform a simulation study to investigate the size and 

ower of the proposed test in finite samples. Under the null hy- 

othesis, the DGP of the return series is a univariate GARCH pro- 

ess as given below: 

r t = σt u t , u t ∼ i.i.d. skewed t (ν1 , λ1 ) , 
2 
t = ω 1 + β1 σ

2 
t−1 + γ1 r 

2 
t−1 , t = 1 , . . . , T , (14) 

here r t is the simulated return process generated by the prod- 

ct of u t , which follows the standardized skewed t distribution of 

ansen (1994) , with Degrees of Freedom (DoF) ν1 and skewness 

1 , with the density function given by: 10 

(u | ν, λ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

bc 

[ 
1 + 

1 
ν−2 

(
bu + a 
1 −λ

)2 
] −(ν+1) / 2 

, if u < −a/b, 

bc 

[ 
1 + 

1 
ν−2 

(
bu + a 
1+ λ

)2 
] −(ν+1) / 2 

, if u ≥ −a/b, 

nd conditional volatility σt given by a GARCH(1,1) specifica- 

ion. For the simulations, we choose the sample sizes of T ∈ 

 10 0 0 , 30 0 0 } to study the finite sample properties and conver-

ence of the test. 11 

Under the alternative hypothesis, the DGP of the returns is the 

rocess r t = σt u t with: 

σ 2 
t = ω 1 + β1 σ

2 
t−1 + γ1 r 

2 
t−1 , u t ∼ i.i.d. skewed t (ν1 , λ1 ) , if 1 < t ≤ � πT � , 

σ 2 
t = ω 2 + β2 σ 2 

t−1 + γ2 r 
2 
t−1 , u t ∼ i.i.d. skewed t (ν2 , λ2 ) , if � πT � < t ≤ T, 

(15) 

here one of the parameters changes its value after � πT � which 

s the location of the change point in the process. In this study, 

e consider π ∈ { 0 . 5 , 0 . 75 } . 12 This change in the return series will

ventually cause a change point in the VaR and ES as well, and 

ur main purpose is to investigate the detection of change points 

n the VaR and ES processes at α = 1% . 13 
11 These sample sizes are in line with the sample sizes used in the literature on 

isk measurement (see Patton et al., 2019 ). 
12 We follow Hoga (2017) in selecting these two locations for the change point. 
13 Results for α = 5% are consistent with the results reported here, and are avail- 

ble upon request. 
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Algorithm 2: Monte Carlo simulation procedure for loss-based 

Wilcoxon test. 
Input : N S , N B , T , a 

Output : rejection rate ( ζ ) 

Initialization: i = 0 

repeat //Simulation i // 
i = i + 1 

Simulate { r t } T t=1 using the specified DGP with sample size T 

Estimate the risk measure series { v t ( ̂ θT ) } T t=1 and { e t ( ̂ θT ) } T t=1 

Calculate the loss values { L t } T t=1 

Calculate: 

W T = max 
k 

∣∣∣∣∣
k ∑ 

c=1 

T ∑ 

d= k +1 

{ 
1 [ L c ≤ L d ] −

1 

2 

} ∣∣∣∣∣. 
Obtain p-value by calling Algorithm 1: p(i ) = Bootstrap ( { r t } T t=1 , W T , N B ). 

until i = N S ; 

Using the p-values: { p(1) ,…, p(N S ) } compute the rejection rate 

ζ = 

1 
N S 

∑ N S 
i =1 

1 [ p(i ) < a ] 

return ζ . 
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Regarding parameter values, we set (ω 1 , β1 , γ1 , ν1 , λ1 ) = 

0 . 05 , 0 . 9 , 0 . 05 , 16 . 5 , −0 . 5) . Under the null hypothesis,

ω 2 , β2 , γ2 , ν2 , λ2 ) = (ω 1 , β1 , γ1 , ν1 , λ1 ) in (15) , meaning no

hange points in the process. For the alternative hypothesis, we 

onsider six different scenarios of change points to evaluate the 

mpirical power of the proposed test. Each break consists of a 

hange in the value of one parameter as follows: 

• H 

A 1 
1 : an increase of 0.04 in the volatility persistence parameter, 

i.e. β2 = 0 . 94 ; 
• H 

A 2 
1 

: a decrease of 0.04 in the volatility persistence parameter, 

i.e. β2 = 0 . 86 ; 
• H 

B 1 
1 : an increase of 0.04 in the volatility reaction parameter, i.e. 

γ2 = 0 . 09 ; 
• H 

B 2 
1 

: a decrease of 0.04 in the volatility reaction parameter, i.e. 

γ2 = 0 . 01 ; 
• H 

C1 
1 

: a decrease of 13.5 in the DoF parameter, i.e. ν2 = 3 ; 
• H 

C2 
1 

: a decrease of 14 in the DoF parameter, 14 i.e. ν2 = 2 . 5 . 

In addition to the above alternatives, 15 we follow Andreou & 

hysels (2002) to examine whether the presence of outliers affects 

ur test results under the null hypothesis. We conjecture that the 

xistence of outliers should not lead to the rejection of the test, i.e. 

n effective test would not mistakenly consider outliers as change 

oints: 

• H 

D 
0 

: (ω 2 , β2 , γ2 , ν2 , λ2 ) = (ω 1 , β1 , γ1 , ν1 , λ1 ) , when 12 ran-

domly selected returns in the simulated process are multiplied 

by 5. 

In the simulation, we consider the eight DGPs detailed 

bove. For the estimation of VaR and ES, we use the follow- 

ng three (semi)parametric models: GARCH(1,1)-skewed t (G-Skt), 

ARCH(1,1)-Gaussian (G-G) and the Generalized Autoregressive 

core (GAS) model in a hybrid framework (Hybrid). 16 In terms of 

he loss function, we choose loss functions with three different de- 

rees of positive homogeneity: L F Z0 , L F Z1 , and L F Z2 , given in Table 1 .

For each combination of (DGP, estimation method, loss func- 

ion), we compute the rejection rates of the proposed test accord- 

ng to the procedure explained below. For each simulation i , we 

imulate return series of length T , denoted by { r t } T t=1 
. 17 We then

stimate the VaR and ES series using the given model, and we de- 

ote the estimated risk series as { v t ( ̂ θT ) } T t=1 
and { e t ( ̂ θT ) } T t=1 

. Fol-

owing this, we calculate the loss series { L t } T t=1 
for the given loss

unction. Then, based on (7) we compute the loss-based Wilcoxon 

tatistic W T for the loss series. By calling the bootstrap procedure 

n Algorithm 1 with N B = 10 0 0 , we obtain the p-value of simula-

ion i , denoted by p(i ) . If p(i ) is below the significance level a ,

hen the null hypothesis is rejected for simulation i . 18 By repeating 

his simulation N S = 10 0 0 times, we obtain the rejection rate ζ as

he frequency of p(i ) being lower than a in the total number of

imulations. The detailed procedure can be found in Algorithm 2 . 

In terms of the simulation results, we expect that the empirical 

ize converges to a , the significance level under the null hypothe- 

is, as the number of observations increases. Under the alternative 

ypothesis, the expectation is that the empirical power is high and 
14 We are aware that these values of ν2 mean that the fourth moment of the sim- 

lated returns does not exist. Nevertheless, these values of ν2 are useful for illus- 

rative purposes. The literature considers DGPs with less than four finite moments, 

uch as in Berkes et al. (2003) . 
15 These values are chosen so that the first two moments of the simulated returns 

till exist. 
16 More details about the models can be found in Table S.4 of the Supplemental 

ppendix. 
17 For simplicity, we disregard the dependence on i in the notation for { r t } T t=1 , 

 v t ( ̂ θT ) } T t=1 , { e t ( ̂ θT ) } T t=1 and { L t } T t=1 . 
18 Here, we only consider the case of a = 5% ; the results for other values of a are 

vailable on request. 
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6 
onverges to 1 with the sample size. When adding outliers to the 

rocess without change points, the empirical rejection rate should 

e close to a if the change point test is not sensitive to outliers. 

ur setup allows us to explore the sensitivity of the test to the 

hoice of risk estimation model, loss function, type and location of 

hange point and sample size. 19 

.2. Simulation results 

The simulation results commence with the evaluation of the 

roposed loss-based Wilcoxon test in identifying change points in 

isk measures when the underlying process is generated from the 

GP in (14) and (15) with the parameter values given in Sec- 

ion 4.1. Table 2 shows the size and power of the test based on 

he bootstrapping procedure at 5% significance level. In the table, 

he panel for H 0 shows the empirical sizes under the null hypoth- 

sis. As expected, all of the empirical sizes for the Wilcoxon test 

re close to the significance level. As the sample size increases, the 

mpirical size gets closer to 5% in general. 

For the alternative hypotheses, we consider the change points 

etailed in Section 4.1. The results in Table 2 reveal that our test 

as a strong power in detecting change points in the volatility pa- 

ameters ( H 

A 1 
1 

, H 

A 2 
1 

, H 

B 1 
1 

, H 

B 2 
1 

) and reasonable power in detecting

hange points in the DoF ( H 

C 1 
1 

, H 

C 2 
1 

). The power of the test im-

roves when T increases from 10 0 0 to 30 0 0 for all DGPs and loss

unctions. The table also shows that the power of the test is sen- 

itive to the location of change point. The rejection rate modestly 

alls when the location of change point moves to � 0 . 75 T � . How-

ver, as the sample size increases, the test can successfully de- 

ect the change point that occurs even at � 0 . 75 T � . Also, the results

how that our test is not sensitive to the presence of outliers ( H 

D 
0 

).

In the following, we compare our proposed loss-based Wilcoxon 

est with five alternative tests in terms of size and power, un- 

er the same simulation settings and hypotheses as detailed be- 

ore. For the first two alternative tests, we consider ( i ) the self- 

ormalized CUSUM (SN-CUSUM) test for VaR and ( ii ) the SN- 

USUM for ES, which detect change points in the VaR and ES pro- 

esses individually. Following Shao & Zhang (2010) , the two test 

tatistics are defined as: 

 

v 
T = sup 

k 

[ 
T −

1 
2 

∑ k 
t=1 v t ( ̂  θT ) − k 

T 

∑ T 
t=1 v t ( ̂  θT ) 

] 2 
T −2 

[∑ k 
t=1 S 

2 
v ,t (1 , k ) + 

∑ T 
t= k +1 S 

2 
v ,t (k + 1 , T ) 

] 1 
2 

, (16) 
19 If model misspecification risk is present, then the ordering of models is affected 

y the choice of loss function ( Patton, 2020 ); in this case, the size and power prop- 

rties of our proposed test might be affected by the choice of loss function. 
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Table 2 

Empirical size and power of the loss-based Wilcoxon test for a change point. 

π = 0 . 5 π = 0 . 75 

T = 10 0 0 T = 30 0 0 T = 10 0 0 T = 30 0 0 

G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid 

H 0 : Univariate GARCH(1,1)-skewed t , with ( ω 1 , γ1 , β1 , ν1 , λ1 ) = (0.05, 0.05, 0.9, 16.5, −0 . 5 ) 

L FZ0 0.045 0.044 0.030 0.047 0.063 0.039 0.045 0.044 0.030 0.047 0.063 0.039 

L FZ1 0.045 0.044 0.030 0.047 0.064 0.039 0.045 0.044 0.030 0.047 0.064 0.039 

L FZ2 0.045 0.044 0.030 0.047 0.064 0.038 0.045 0.044 0.030 0.047 0.064 0.038 

H A 1 1 : An increase of 0.04 in the volatility persistence parameter, i.e. β2 = 0 . 94 

L FZ0 0.992 0.992 0.923 1.000 1.000 1.000 0.788 0.769 0.326 0.996 0.975 0.919 

L FZ1 0.992 0.992 0.923 1.000 1.000 1.000 0.788 0.770 0.326 0.996 0.975 0.918 

L FZ2 0.992 0.992 0.923 1.000 1.000 1.000 0.788 0.773 0.328 0.996 0.975 0.918 

H A 2 1 : A decrease of 0.04 in the volatility persistence parameter, i.e. β2 = 0 . 86 

L FZ0 0.627 0.623 0.373 0.988 0.963 0.770 0.232 0.220 0.118 0.712 0.695 0.355 

L FZ1 0.627 0.623 0.373 0.988 0.963 0.770 0.232 0.220 0.117 0.712 0.695 0.354 

L FZ2 0.627 0.623 0.373 0.988 0.963 0.770 0.232 0.221 0.117 0.712 0.695 0.355 

H B 1 1 : An increase of 0.04 in the volatility reaction parameter, i.e. γ2 = 0 . 09 

L FZ0 0.912 0.911 0.715 1.000 1.000 0.985 0.608 0.605 0.225 0.939 0.898 0.747 

L FZ1 0.912 0.911 0.715 1.000 1.000 0.985 0.608 0.604 0.225 0.939 0.898 0.747 

L FZ2 0.912 0.911 0.715 1.000 1.000 0.985 0.608 0.604 0.225 0.939 0.898 0.747 

H B 2 1 : A decrease of 0.04 in the volatility reaction parameter, i.e. γ2 = 0 . 01 

L FZ0 0.529 0.524 0.350 0.987 0.951 0.731 0.196 0.194 0.114 0.694 0.644 0.363 

L FZ1 0.529 0.524 0.349 0.987 0.951 0.731 0.196 0.194 0.114 0.694 0.643 0.363 

L FZ2 0.528 0.524 0.349 0.987 0.951 0.730 0.196 0.194 0.113 0.694 0.643 0.363 

H C1 
1 : A decrease of 13.5 in the DoF parameter, i.e. ν2 = 3 

L FZ0 0.293 0.290 0.176 0.777 0.758 0.283 0.164 0.159 0.092 0.393 0.354 0.169 

L FZ1 0.293 0.290 0.176 0.777 0.758 0.281 0.165 0.159 0.093 0.393 0.354 0.169 

L FZ2 0.293 0.290 0.176 0.776 0.757 0.282 0.166 0.159 0.093 0.393 0.354 0.169 

H C2 
1 : A decrease of 14 in the DoF parameter, i.e. ν2 = 2 . 5 

L FZ0 0.636 0.627 0.358 0.996 0.988 0.449 0.330 0.326 0.164 0.593 0.552 0.389 

L FZ1 0.636 0.627 0.357 0.996 0.987 0.448 0.331 0.324 0.165 0.593 0.552 0.389 

L FZ2 0.636 0.627 0.358 0.996 0.987 0.448 0.331 0.324 0.164 0.593 0.552 0.389 

H D 0 : 12 randomly selected returns in the simulated process multiplied by 5 

L FZ0 0.041 0.042 0.041 0.035 0.052 0.039 0.041 0.042 0.041 0.035 0.052 0.039 

L FZ1 0.041 0.042 0.040 0.035 0.052 0.039 0.041 0.042 0.040 0.035 0.052 0.039 

L FZ2 0.041 0.042 0.041 0.035 0.052 0.039 0.041 0.042 0.041 0.035 0.052 0.039 

Note: Empirical size and power, for a = 5% , of the loss-based Wilcoxon test under various hypotheses via 10 0 0 simulations, for three types of risk measures (GARCH(1,1)- 

skewed t , GARCH(1,1)-Gaussian and GAS-Hybrid) and three FZ loss functions with different degrees of positive homogeneity. VaR and ES are jointly estimated at 1% level. 

We consider two sample sizes: 10 0 0 and 30 0 0, and different locations of the change point at � πT � with π = 0 . 5 and 0.75. 
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20 We use the FZ0 loss function to compute the loss values for GARCH(1,1)-skewed 

t risk estimates. We implement the stationary bootstrapping based MC simulation 

for the Rényi-type loss-based Wilcoxon test, instead of applying the asymptotic dis- 

tribution that assumes normally distributed loss values. 
21 We choose the historical quantile to estimate VaR and ES, in line with FGP, 

instead of applying the Weissman estimator for VaR used by Hoga. Based on our 

simulations, the critical value at 5% significance level is 80.21 for τ0 = 0 . 2 , which is 

very close to the one given by Hoga. 
 

e 
T = sup 

k 

[ 
T −

1 
2 

∑ k 
t=1 e t ( ̂

 θT ) − k 
T 

∑ T 
t=1 e t ( ̂

 θT ) 
] 2 

T −2 
[∑ k 

t=1 S 
2 
e,t (1 , k ) + 

∑ T 
t= k +1 S 

2 
e,t (k + 1 , T ) 

] 1 
2 

, (17) 

here v t ( ̂ θT ) and e t ( ̂ θT ) are the estimated VaR and ES, and

 v ,t ( j, k ) = 

∑ t 
h = j [ v h ( ̂ θT ) − v̄ j,k ] , v̄ j,k = 

1 
k − j+1 

∑ k 
t= j v t ( ̂ θT ) , as well 

s S e,t ( j, k ) = 

∑ t 
h = j [ e h ( ̂ θT ) − ē j,k ] , ē j,k = 

1 
k − j+1 

∑ k 
t= j e t ( ̂ θT ) . Table 3

resents the empirical size and power simulation results of the SN- 

USUM tests for VaR and ES. The sizes of the SN-CUSUM tests are 

lose to the significance level, but their powers are generally less 

han the power of our test for all loss functions considered. 

One disadvantage of the standard CUSUM test is the low power 

n detecting change points occurring in relatively early or late 

egments of the sample period. As an alternative, Horváth et al. 

2020b) propose a Rényi-type statistic for change point detection 

o mitigate this problem. However, when the change point happens 

round the middle of the sample period, the detecting power of 

he Rényi-type test is relatively low. The Rényi-type test works un- 

er the assumption that there is no change point occurring within 

he two trimmed domains, at the beginning and at the end of the 
7 
ample defined by the trimming parameter τ0 . Thus, we consider 

he alternative test ( iii ) a Rényi-type test based on the rank of loss

alues. Specifically, the test statistic is a Rényi-type formulation of 

he loss-based Wilcoxon test statistic: 

 T : = max 
� τ0 T �≤k ≤T −� τ0 T � 

∣∣∣∣1 

k 

k ∑ 

i =1 

R i −
1 

T − k 

T ∑ 

i = k +1 

R i 

∣∣∣∣ (18) 

ith trimming parameter τ0 . 
20 

In addition to these, we consider the following two recently de- 

eloped tests: ( iv ) the change point test for VaR of Hoga, and ( v )

he change point test for ES of FGP. 21 These two tests are based on 

he self-normalized variance estimator of Shao & Zhang (2010) . 

Table 4 presents the simulations results for alternative tests ( iii ) 

o ( v ) (in columns Rényi, Hoga, and FGP, respectively). The results 
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Table 3 

Empirical size and power of the SN-CUSUM test for a change point in VaR and ES. 

π = 0 . 5 π = 0 . 75 

T = 10 0 0 T = 30 0 0 T = 10 0 0 T = 30 0 0 

G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid 

H 0 : Univariate GARCH(1,1)-skewed t , with ( ω 1 , γ1 , β1 , ν1 , λ1 ) = (0.05, 0.05, 0.9, 16.5, −0 . 5 ) 

VaR 0.034 0.034 0.037 0.066 0.066 0.044 0.034 0.034 0.037 0.066 0.066 0.044 

ES 0.034 0.034 0.043 0.066 0.066 0.043 0.034 0.034 0.043 0.066 0.066 0.043 

H A 1 1 : An increase of 0.04 in the volatility persistence parameter, i.e. β2 = 0 . 94 

VaR 0.629 0.629 0.548 0.772 0.772 0.765 0.724 0.724 0.595 0.924 0.924 0.884 

ES 0.629 0.629 0.546 0.772 0.772 0.765 0.724 0.724 0.600 0.924 0.924 0.884 

H A 2 1 : A decrease of 0.04 in the volatility persistence parameter, i.e. β2 = 0 . 86 

VaR 0.361 0.361 0.307 0.783 0.783 0.676 0.100 0.100 0.104 0.353 0.353 0.317 

ES 0.361 0.361 0.305 0.783 0.783 0.675 0.100 0.100 0.100 0.353 0.353 0.313 

H B 1 1 : An increase of 0.04 in the volatility reaction parameter, i.e. γ2 = 0 . 09 

VaR 0.372 0.372 0.362 0.558 0.558 0.847 0.518 0.518 0.421 0.776 0.776 0.744 

ES 0.372 0.372 0.361 0.558 0.558 0.847 0.518 0.518 0.421 0.776 0.776 0.743 

H B 2 1 : A decrease of 0.04 in the volatility reaction parameter, i.e. γ2 = 0 . 01 

VaR 0.295 0.295 0.303 0.769 0.769 0.683 0.091 0.091 0.092 0.338 0.338 0.296 

ES 0.295 0.295 0.296 0.769 0.769 0.687 0.091 0.091 0.093 0.338 0.338 0.297 

H C1 
1 : A decrease of 13.5 in the DoF parameter, i.e. ν2 = 3 

VaR 0.161 0.161 0.208 0.268 0.268 0.225 0.076 0.076 0.155 0.171 0.171 0.226 

ES 0.161 0.161 0.210 0.268 0.268 0.223 0.076 0.076 0.157 0.171 0.171 0.225 

H C2 
1 : A decrease of 14 in the DoF parameter, i.e. ν2 = 2 . 5 

VaR 0.392 0.392 0.352 0.606 0.606 0.322 0.180 0.180 0.225 0.337 0.340 0.303 

ES 0.392 0.392 0.341 0.606 0.606 0.319 0.180 0.180 0.223 0.337 0.340 0.302 

H D 0 : 12 randomly selected returns in the simulated process multiplied by 5 

VaR 0.033 0.033 0.047 0.046 0.046 0.048 0.033 0.033 0.047 0.046 0.046 0.048 

ES 0.033 0.033 0.047 0.046 0.046 0.047 0.033 0.033 0.047 0.046 0.046 0.047 

Note: Empirical size and power, for a = 5% , of the SN-CUSUM test for VaR and ES, considered individually, under various hypotheses via 10 0 0 simulations, for three types of 

risk measures (GARCH(1,1)-skewed t , GARCH(1,1)-Gaussian and GAS-Hybrid). VaR and ES are jointly estimated at 1% level. We consider two sample sizes: 10 0 0 and 30 0 0, 

and different locations of the change point at � πT � with π = 0 . 5 and 0.75. 

Table 4 

Empirical size and power of alternative tests for a change point. 

π = 0 . 5 π = 0 . 75 

T = 10 0 0 T = 30 0 0 T = 10 0 0 T = 30 0 0 

Rényi Hoga FGP Rényi Hoga FGP Rényi Hoga FGP Rényi Hoga FGP 

H 0 : Univariate GARCH(1,1)-skewed t , with ( ω 1 , γ1 , β1 , ν1 , λ1 ) = (0.05, 0.05, 0.9, 16.5, −0.5) 

0.045 0.148 0.104 0.044 0.107 0.105 0.045 0.148 0.104 0.044 0.107 0.105 

H A 1 1 : An increase of 0.04 in the volatility persistence parameter, i.e. β2 = 0 . 94 

0.966 0.602 0.596 1.000 0.736 0.749 0.967 0.758 0.728 1.000 0.934 0.924 

H A 2 1 : A decrease of 0.04 in the volatility persistence parameter, i.e. β2 = 0 . 86 

0.396 0.318 0.291 0.854 0.507 0.465 0.391 0.186 0.137 0.934 0.208 0.162 

H B 1 1 : An increase of 0.04 in the volatility reaction parameter, i.e. γ2 = 0 . 09 

0.794 0.488 0.486 0.968 0.617 0.644 0.799 0.631 0.646 0.988 0.863 0.863 

H B 2 1 : A decrease of 0.04 in the volatility reaction parameter, i.e. γ2 = 0 . 01 

0.338 0.344 0.290 0.851 0.559 0.529 0.337 0.164 0.134 0.914 0.213 0.172 

H C1 
1 : A decrease of 13.5 in the DoF parameter, i.e. ν2 = 3 

0.193 0.209 0.211 0.461 0.194 0.264 0.268 0.200 0.244 0.648 0.196 0.348 

H C2 
1 : A decrease of 14 in the DoF parameter, i.e. ν2 = 2 . 5 

0.445 0.263 0.210 0.833 0.210 0.220 0.576 0.196 0.243 0.907 0.173 0.279 

H D 0 : 12 randomly selected returns in the simulated process multiplied by 5 

0.044 0.144 0.115 0.039 0.104 0.099 0.044 0.144 0.115 0.039 0.104 0.099 

Note: Empirical size and power, for a = 5% , of three alternative tests ( iii ), ( i v ) and ( v ) under various hypotheses via 10 0 0 simulations. We consider two sample sizes: 10 0 0 

and 30 0 0, and different locations of the change point at � πT � with π = 0 . 5 and 0.75. For the Rényi-type test, we choose the loss values computed by the FZ0 loss function 

with 1% VaR and ES estimated by the GARCH(1,1)-skewed t model. 

8 
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Fig. 1. Size and power of the loss-based Wilcoxon test and alternatives. Note: Empirical size and power of the loss-based Wilcoxon test with five alternative tests (i)-(v) 

under various hypotheses described in Section 4.1 at 5% significance level when the change point occurs at � 0 . 5 T � . For the Wilcoxon test and Rényi-type test, we use the 

FZ0 loss function to compute the loss values. For all tests except Hoga and FGP, 1% VaR and ES are estimated by the GARCH(1,1)-skewed t model. 
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ighlight that our test outperforms tests ( i v ) and ( v ) in all cases.

e outperform the Rényi-type test ( iii ) when the change point 

ccurs at � 0 . 5 T � , but when the change point occurs at � 0 . 75 T � ,
est ( iii ) has better power properties than our test. This meets our 

xpectation that the Rényi-type test has high power in detecting 

hange points occurring relatively early or late in the sample, but 

as lower power in the middle. For our simulation setup, we find 

he Hoga and FGP tests to be oversized under the null hypothesis 

nd to have less power than the Rényi-type loss-based Wilcoxon 

est. 22 

To offer a visual demonstration, Fig. 1 compares the loss-based 

ilcoxon test using the FZ0 loss function with tests ( i ) to ( v ), from

he point of view of size and power. The five alternatives are de- 

oted by VaR, ES, Rényi-type, Hoga, and FGP, respectively. For the 

oss-based Wilcoxon test and alternative tests ( i )–( iii ), the VaR and

S are obtained using the GARCH(1,1)-skewed t model. The tests 

re performed at 5% significance level, and we assume that the 

hange point occurs at � 0 . 5 T � under the alternative hypotheses.

ased on the empirical sizes of the Hoga and FGP tests under H 0 

nd H 

D 
0 

, it can be concluded that these tests are oversized for the 

GP considered. The loss-based Wilcoxon test has higher power 

han the alternatives for all scenarios of change points correspond- 

ng to the different alternative hypotheses. The SN-CUSUM tests 

ork relatively well when volatility changes, but have lower power 

hen the DoF parameter decreases. Overall, our proposed test can 
22 In Table S.5 of the Supplemental Appendix, we show that the loss-based 

ilcoxon test has strong power in detecting the change point in the series of VaR 

nd ES estimated by historical simulations. In Figure S.2 we present the power 

urves of this test for three (semi)parametric models with alternative tests to show 

he detection power in terms of the marginal change in parameters. Figure S.3 

ompares our test with alternative tests in terms of size and power for AR(1) and 

RCH(1) processes, which are the DGPs used by FGP. Our results are consistent with 

he results in Tables 2 and 4 . 

c

9

c

c

n

c

9 
dentify change points in the risk measures of time series with the 

orrect size and stronger power than all five alternati ves consid- 

red. 23 

.3. Simulation study for the location of change point estimator 

In this section, we perform two simulations. The first one inves- 

igates the accuracy of the estimator for the location of a change 

oint based on the loss-based Wilcoxon test. In the second study, 

n order to provide new insights of practical relevance and decision 

upport, we evaluate how quickly after the event the estimator can 

dentify the change point (the delay in detection). 

We consider a univariate GARCH(1,1) skewed t process as the 

GP of the returns series, as demonstrated in (15) . This model 

s used to build the risk measures. For the simulations, we con- 

ider a sample size of T = 10 0 0 and we assume that the change

ccurs at � 0 . 5 T � . We consider one of the scenarios listed in

ection 3.1 where after the change point, the volatility persistence 

arameter β2 increases from 0.90 to 0.94. We apply our proposed 

oss-based Wilcoxon test and the Rényi-type test, as well as two 

enchmark tests to identify the location of the change in the risk 

easures. Figure 2 shows the estimated locations of the change 

oints obtained via these tests. The values on the x -axis represent 

he difference between the estimated change point and the actual 

hange point. In these histograms, the red lines indicate the 5%, 

5% quantiles and the median of the estimated locations. The 90% 

onfidence interval (around from −25 to 50) of the estimated lo- 

ation of change point obtained via the loss-based Wilcoxon test is 

arrower than the one generated by the other tests. This leads to 
23 In Figure S.4 of the Supplemental Appendix we present the results when the 

hange point occurs at � 0 . 75 T � . 
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Fig. 2. The histogram of estimated relative location of change point ˆ k W (10 0 0) for 

π = 0 . 5 . Note: The estimated location of change point relative to the actual change 

point obtained via the loss-based Wilcoxon, Rényi-type, Hoga and FGP tests at 5% 

significance level with T = 10 0 0 when the change point occurs at � 0 . 5 T � . In the 

simulation, we use the GARCH(1,1)-skewed t model to generate the return process 

and to obtain 1% VaR and ES estimates. For the Wilcoxon test, we use the FZ0 loss 

function to compute the loss values. The red lines indicate the 5% and 95% quantiles 

and the median of the estimators. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

t

d

p

b

c

d

a

t

u

i  

e

R

c

t

t

f

d

L

t  

r

p

i

c

t

c

f

1

c

V

4

t

f

D

p

V

m

t

m

t

o

P

d

t

t

c

p

t

s

c

s

m

&

s

i

n

l

(

c

t

c

10 
he conclusion that the loss-based Wilcoxon test has more accurate 

etection than the benchmark tests. 

In order to evaluate the delay in the detection of a novel change 

oint, we propose an expanding window procedure, as detailed 

elow, following Smith & Timmermann (2021) . Starting with a 

hange point detection based on the first half of observations, the 

etection window is sequentially expanded by five days forward 

nd the detection procedure is re-implemented until the end of 

he sample is reached. We consider the same DGP setup as the one 

sed in the in-sample simulation with the change point occurring 

n the middle of the sample. We use a sample size of T = 30 0 0 to

nsure the asymptoticity of the test, and we sequentially apply the 

ényi-type loss-based Wilcoxon test, which is more powerful for a 

hange point occurring towards the end of sample. Figure 3 shows 

he histogram of the delay of detection for a new change point ob- 

ained by the Rényi-type Wilcoxon test. The blue bars indicate the 

requencies of delays for a novel change point, with the red line in- 

icating the 95% quantile of detection delays. Following Harvey & 

iu (2020) , the testing performance is gauged by two metrics: the 

est power ( 1 −Type II error rate) and the test size (Type I error

ate). Thus, to evaluate the probability of a false discovery, we re- 

eat the above procedure under the null hypothesis of no changes 

n risk measures. In Fig. 3 , the orange bars represent the frequen- 

ies of false detections under the null hypothesis. By mitigating 

he overlapping areas of the blue and orange bars, we have the 

orrected performance of the detection delay by considering both 

alse and missed discoveries. Practically, we require roughly 50 to 

00 observations (two to four trading months) to identify a novel 

hange. This is reasonable given that the object of the forecasts is 

aR and ES at 1% level. 

. Empirical application 

In this section, we apply our proposed Wilcoxon change point 

est to S&P 500 index daily log returns. The index data is collected 

rom Datastream and spans the period from January 2, 1990 to 

ecember 31, 2019, in total 7559 observations. We apply the pro- 

osed loss-based Wilcoxon test to detect change points in the 1% 

aR and ES risk measures estimated by the GARCH(1,1)-skewed t

odel. Based on our simulations above that consider the Wilcoxon 

ests based on loss functions with different degrees of positive ho- 

ogeneity, it can be concluded that our test is not sensitive to 

he choice of loss function. As such, in the empirical section we 

nly use the FZ0 loss function to compute loss values, following 

atton et al. (2019) and Dimitriadis & Schnaitmann (2021) . In or- 

er to see the usefulness of change point detection, we compare i) 

he average FZ0 loss values obtained when the change points are 

aken into consideration with ii) the average FZ0 loss values when 

hange points are ignored. We will show that by detecting change 

oints, superior risk estimates are obtained, which will highlight 

he practical relevance of detecting change points in VaR and ES 

eries. 

In order to find change points in the risk measures, we first 

ompute the loss-based Wilcoxon test statistic W T . Then, we boot- 

trap the return process 10 0 0 times via the stationary bootstrap 

ethod with the optimal block length ( Patton et al., 2009; Politis 

 White, 2004 ), obtain the empirical distribution of the Wilcoxon 

tatistic and get the 95% critical values. If the test statistic W T 

s larger than the critical value, we reject the null hypothesis of 

o change. In such cases, a change point is detected, and we fol- 

ow the binary segmentation method discussed by Inclan & Tiao 

1994) and Ye et al. (2012) to find further change points. Specifi- 

ally, the data can be split into sub-periods according to the loca- 

ions of the detected change points until no further change point 

an be found. The detailed algorithm and procedure of detecting 
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Fig. 3. The histogram of the delay of detection for a new change point by the Rényi-type Wilcoxon test. Note: The blue histogram is for the delay of detection for a new 

change point obtained via the Rényi-type Wilcoxon test at 5% significance level with T = 30 0 0 . The orange histogram is for the false detections under the null hypothesis. In 

the simulation, we use the GARCH(1,1)-skewed t model to generate the return process and to build 1% VaR and ES estimates. For the Rényi-type Wilcoxon test, we use the 

FZ0 loss function to compute the loss values. The red line indicates the 95% quantile of the estimated delay. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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ultiple change points can be found in Figure S.5 of the Supple- 

ental Appendix. 

Based on our test, the earliest change point we detect in the es- 

imated risk measures occurred in June 1992 (following the early 

990s recession in the United States). The second change point oc- 

urred in December 1996 (the start of the dot-com bubble). Then 

nother change point is identified in June 2003 (after the burst of 

he dot-com bubble), and the following change points are in July 

007 (the beginning of the subprime mortgage crisis), September 

008 (the bankruptcy of Lehman Brothers), July 2009, and January 

012 (the start and end of the European debt crisis). We also suc- 

essfully detect change points associated with the 2015–16 stock 

arket selloff24 and the 2018 cryptocurrency crash 

25 . Figure 4 

resents the returns as well as the risk estimates, highlighting the 

etected change points. Additionally, we apply this test for other 

stimation approaches (GAS-Hybrid and historical simulations) and 

ompare the empirical results with alternative tests applied for the 

ame sample (more details can be found in Tables S.6 and S.7 of 

he Supplemental Appendix). 

Table 5 reports the GARCH(1,1)-skewed t parameter estimates 

nd standard errors obtained by the QMLE method for each sub- 

eriod, the average VaR and ES estimates, and the average loss 

alues. Firstly, it can be seen that the volatility parameters and the 

oF estimates experience large changes across the sub-periods, 

hich leads to change points in the VaR and ES processes as 

ell. For instance, after the burst of the dot-com bubble, we can 

bserve a decline in the level of the volatility. Moreover, we can 

ee a large reduction in the value of the DoF parameter from 11.1 

o 6.5 during the European debt crisis period. Secondly, during a 

risis or a crash period, VaR and ES are high in absolute values, 

s can be seen in the 20 07–20 08 financial crisis and the European

ebt crisis. The average loss values are also found to be generally 

igher during crisis periods than during stable periods. Finally, 
24 Between August 2015 and early 2016, the S&P 500 and DJIA dropped more than 

0% twice. 
25 The S&P 500 index dropped almost 20% between September and December 

018. 

o

p

e

f

11 
e calculate the average FZ0 losses for each subsample based 

n the parameter values estimated within sub-periods (denoted 

y “Loss”) and average FZ0 losses based on the parameter values 

stimated within the whole sample period (denoted by “Loss_NC”), 

espectively. When change points are taken into consideration, the 

Z0 loss values are typically lower than the ones computed when 

he change points are ignored (this can be seen comparing “Loss”

nd “Loss_NC” in Table 5 ), which means that the risk values esti- 

ated based on the change points are superior to the risk values 

hat do not take the change points into account. According to our 

ndings, it can be concluded that risk management practitioners 

an improve on the risk estimates by first identifying change 

oints in the loss series of risk measures and then computing 

odel parameter values based on the identified change points. 

Another essential concern of risk managers is how quickly 

 test is able to identify a novel change point in risk measure 

stimates, which would enable them to adjust the parameters of 

heir risk model in a timely manner. To address this issue, we 

mplement an expanding window procedure to highlight the speed 

f change detection based on the test proposed in Section 3.3 . 

tarting with the initial window of the first 30 0 0 observations of 

ur data, the detection window is sequentially expanded forward 

y one month and the detection procedure is repeated until the 

nd of the sample is reached. We apply the proposed loss-based 

ilcoxon test and the binary segmentation method to detect 

ultiple change points in the 1% VaR and ES risk measures esti- 

ated by the GARCH(1,1)-skewed t model. To further support the 

ecision-making of risk managers, we implement a “traffic light”

pproach built on the loss-based Wilcoxon test for the detection 

f change points in the risk measure estimates. According to this, 

Green” means that there is no change point on that day, “Yellow”

eans that there is a change point on that day detected at 10% 

ignificance level, and “Red” means that there is a change point 

n that day detected at 5% significance level. 

Figure 5 shows the change point dates estimated via the ex- 

anding window procedure above, at 5% and 10% significance lev- 

ls, respectively. The vertical solid line denotes the initial window 

or estimating risk measures and implementing the test for change 
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Fig. 4. Daily S&P 500 index returns and risk estimates at 1% level. Note: Daily S&P 500 index returns and 1% VaR and ES estimates obtained by the GARCH skewed t model. 

The vertical dash lines are at the estimated change points. 

Table 5 

GARCH(1,1)-skewed t estimation results. 

Panel A: Whole sample estimation results 

Parameters ω γ β ν λ

Estimates 0.009 (0.002) 0.087 (0.007) 0.910 (0.008) 6.479 (0.495) −0.078 (0.014) 

Panel B: Subsample estimation results 

1990/01–1992/05 1992/05–1996/12 1996/12–2003/06 2003/06–2007/07 2007/07–2008/09 

ω 0.031 (0.012) 0.013 (0.006) 0.084 (0.022) 0.021 (0.007) 0.153 (0.075) 

γ 0.037 (0.013) 0.039 (0.013) 0.092 (0.017) 0.031 (0.014) 0.032 (0.036) 

β 0.924 (0.023) 0.925 (0.024) 0.862 (0.024) 0.924 (0.023) 0.881 (0.032) 

ν 7.343 (1.992) 5.567 (0.817) 9.943 (2.264) 11.137 (4.338) 14.078 (11.435) 

λ 0.001 (0.002) −0.008 (0.039) −0.042 (0.037) −0.076 (0.030) −0.081 (0.066) 

VaR −2.237 −1.491 −3.270 −1.719 −3.424 

ES −2.805 −1.952 −4.000 −2.097 −4.095 

Loss 1.038 0.747 1.431 0.702 1.244 

Loss_NC 1.135 0.736 1.475 0.815 1.400 

2008/09–2009/07 2009/07–2012/01 2012/01–2016/07 2016/07–2018/01 2018/01–2019/12 

ω 0.012 (0.154) 0.036 (0.013) 0.075 (0.016) 0.059 (0.052) 0.042 (0.012) 

γ 0.063 (0.059) 0.119 (0.028) 0.170 (0.034) 0.047 (0.089) 0.181 (0.042) 

β 0.930 (0.072) 0.860 (0.024) 0.723 (0.041) 0.692 (0.276) 0.773 (0.038) 

ν 11.378 (9.630) 6.736 (1.683) 8.019 (1.819) 3.814 (0.684) 6.189 (1.830) 

λ −0.047 (0.067) −0.151 (0.042) −0.089 (0.035) 0.113 (0.059) −0.211 (0.062) 

VaR −7.044 −3.223 −2.074 −1.071 −2.532 

ES −8.517 −4.138 −2.601 −1.517 −3.299 

Loss 1.973 1.270 0.916 0.748 1.181 

Loss_NC 2.109 1.362 1.011 0.827 1.435 

Note: Estimated parameter values and standard errors for ω, β , γ , ν , and λ in the GARCH(1,1)-skewed t model: σ 2 
t = ω + βσ 2 

t−1 + γ u 2 t−1 , u t ∼ i.i.d. skewed t (ν, λ) for the 

S&P 500 index. Panel A shows the estimated values and standard errors of parameters in the GARCH(1,1)-skewed t model over the whole sample period. Panel B presents 

the estimated parameter values and standard errors in 10 sub-periods. We also report the average VaR and ES at 1% level and the associated average FZ0 loss values 

using the parameters estimated within the sub-periods (Loss) and the average FZ0 loss using parameters estimated over the whole sample period without consideration 

of change points (Loss_NC). 
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c

n

d

oints detection. The solid line with slope denotes the points at 

hich a change point could first be detected with a delay of zero. 

he red and yellow bubbles on the plot mark the change point 

ates as estimated in the expanding window procedure at 5% and 

0% significance levels, respectively, with horizontal bands of bub- 

les indicating that the change points are detected in subsequent 

indows. In the figure, to add clarity, we add green bubbles only 
12 
or the change points which are confirmed by red bubbles in sub- 

equent windows. Thus, the length of the green bands shows the 

elay in detecting change points at 10% level, whilst the joint 

ength of the green and yellow bands shows the delay in detecting 

hange points at 5% level. In this study, we define the delay as the 

umber of months between the point when a change point is first 

etected and the change point. The isolated bubbles outside the 
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Fig. 5. Traffic light plot for the loss-based Wilcoxon test for 1% (VaR, ES) of daily S&P 500 index returns. Note: The 1% VaR and ES estimates of daily S&P 500 index returns 

are obtained by the GARCH skewed t model. The vertical solid line denotes the end point of the initial estimation period, the x -axis shows the estimation date, and the 

y -axis shows the dates of the estimated change points. The red (yellow) bubbles mark the change point dates estimated at 5% (10%) level. The length of green bands shows 

the delay in the change detection at 10% level. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Histograms of the delay of change detection in the 1% (VaR, ES) of daily S&P 500 index returns. Note: The 1% VaR and ES estimates of daily S&P 500 index returns are 

obtained by the GARCH skewed t model. This plot displays the histograms the delay in detecting change points, for the loss-based Wilcoxon test at 5% and 10% significance 

levels. 
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with well-known financial events. 
orizontal bands are treated as “false discoveries”. Figure 6 shows 

he distribution of the delay in detecting change points (until first 

etection) at 5% and 10% significance levels. Overall, at 5% level, 

he length of delay is up to six months in about 70% of the cases,

onsistent with the results shown in Fig. 3 . 

. Conclusions 

We propose a new test, named the loss-based Wilcoxon test, 

o detect change points in the series of VaR and ES risk mea- 

ures considered jointly. Our test is based on the Wilcoxon test 

 Dehling et al., 2013 ) applied to the FZ loss functions proposed by
13 
issler & Ziegel (2016) . The framework of our test is general and 

an accommodate for any type of (semi)parametric estimation 

ethods for VaR and ES. We perform extensive simulations based 

n various types of change point scenarios, including different lo- 

ations for the change points and different changes in the volatility 

nd DoF parameters. Our results show that the proposed test has 

etter size under the null hypothesis and higher power properties 

nder the considered alternative hypotheses, compared with five 

ifferent alternative tests. We present an application of the loss- 

ased Wilcoxon test on the S&P 500 index returns. The empirical 

esults show that the test can detect the change points associated 
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ppendix A. Proof of Theorem 2.1 

roof. In general, the Hoeffding decomposition can be applied to 

 U -statistic with a kernel h (x, y ) , so that we have: 

 (x, y ) = ψ 0 + h 1 (x ) + h 2 (y ) + g(x, y ) , 

here ψ 0 = E [ h (X, Y )] , h 1 (x ) = E [ h (x, Y ) − ψ 0 ] , h 2 (y ) =
 [ h (X, y ) − ψ 0 ] and g(x, y ) = h (x, y ) − h 1 (x ) − h 2 (y ) − ψ 0 . 

We have the properties for these three terms: 

 [ h 1 (X )] = E [ h 2 (X )] = 0 , (B.1)

nd 

 [ g(x, Y )] = E [ g(X, y )] = 0 . (B.2)

The proof of Theorem 2.1 is based on a lemma introduced be- 

ow. 

emma B.1 ( Dehling & Wendler, 2010 ) . Let h be a P-Lipschitz- 

ontinuous kernel with 2 + δ moments for some δ > 0 , { X n } n ∈ N 
e a stationary strong mixing process with E [ | X 1 | γ ] < ∞ for some

> 0 and α(T ) = O (T −ρ ) with ρ > 

3 γ δ+2 δ+5 γ +2 
2 γ δ

, then for V T (g) =
2 √ 

T (T −1) 

∑ 

1 ≤i< j≤T g(X i , X j ) , we have 

 

[
T V 

2 
T (g) 

]
≤ 4 

T (T − 1) 2 

∑ 

1 ≤i 1 <i 2 ≤T 

∑ 

1 ≤i 3 <i 4 ≤T 

| E [ g(X i 1 , X i 2 ) g(X i 3 , X i 4 )] | 

≤ 4 

T 3 

T ∑ 

i 1 ,i 2 ,i 3 ,i 4 =1 

| E [ g(X i 1 , X i 2 ) g(X i 3 , X i 4 )] | = O (T −η) 

here η = min 

{ 

ρ 2 γ δ
3 γ δ+ δ+5 γ +2 

− 1 , 1 

} 

> 0 . 

The proof of this lemma can be found in Dehling & Wendler 

2010) as the proof for Lemma 3.6. 

Recall h W 

(L i , L j ) is antisymmetric with ψ 0 = 0 . In order to

rove the asymptotic normality of this U-process, we use the Ho- 

ffding decomposition for the kernel h W 

(L i , L j ) : 

 W 

(L i , L j ) = h 1 (L i ) + h 2 (L j ) + g(L i , L j ) . 

hus, based on (6) , we have the decomposed U-process: 

1 

T 3 / 2 
U T (τ ) = 

1 

T 3 / 2 

� τT � ∑ 

i =1 

T ∑ 

j= � τT � +1 

[
h 1 (L i ) + h 2 (L j ) + g(L i , L j ) 

]

= 

1 

T 3 / 2 

[ 

(T − � τT � ) 
� τT � ∑ 

i =1 

h 1 (L i ) + � τT � 
T ∑ 

j= � τT � +1 

h 2 (L j ) 

+ 

� τT � ∑ 

i =1 

T ∑ 

j= � τT � +1 

g(L i , L j ) 

] 

y Lemma B.1 , we have that for a given τ ∈ [0 , 1] , the upper

oundary of the variance of 1 
T 3 / 2 

∑ � τT � 
i =1 

∑ T 
j= � τT � +1 g(L i , L j ) : 

1 

T 3 

∑ 

i 1 =1: � τT � 
i 2 = � τT � +1: T 

∑ 

i 3 =1: � τT � 
i 4 = � τT � +1: T 

| E 

[
g(L i 1 , L i 2 ) g(L i 3 , L i 4 )] 

∣∣

≤ 1 

T 3 

∑ 

1 ≤i 1 <i 2 ≤T 

∑ 

1 ≤i 3 <i 4 ≤T 

| E [ g(L i 1 , L i 2 ) g(L i 3 , L i 4 )] | 

< 

1 

T 3 

T ∑ 

i 1 ,i 2 ,i 3 ,i 4 =1 

| E [ g(L i 1 , L i 2 ) g(L i 3 , L i 4 )] | = O (T −η) . (B.3) 
14 
ence, the variance of 1 
T 3 / 2 

∑ � τT � 
i =1 

∑ T 
j= � τT � +1 g(L i , L j ) vanishes as T 

ncreases. 

By (B.2) and (B.3) , we have 

1 

T 3 / 2 
sup 

0 ≤τ≤1 

∣∣∣∣∣
� τT � ∑ 

i =1 

T ∑ 

j= � τT � +1 

g(L i , L j ) 

∣∣∣∣∣ → 0 

n probability. 

Thus, by the Lemma of Slutsky, it is enough to show that the 

um of the first two terms 
 

T − � τT � 
T 3 / 2 

� τT � ∑ 

i =1 

h 1 (L i ) + 

� τT � 
T 3 / 2 

T ∑ 

j= � τT � +1 

h 2 (L j ) 

] 

0 ≤τ≤1 

onverges in distribution to the limit process of Theorem 2.1 . Be- 

ause the kernel h W 

(L i , L j ) is antisymmetric, we have that h 2 (L j ) =
h 1 (L j ) . Thus, we can rewrite the representation as 

T − � τT � 
T 3 / 2 

� τT � ∑ 

i =1 

h 1 (L i ) −
� τT � 
T 3 / 2 

T ∑ 

i = � τT � +1 

h 1 (L i ) 

= 

1 

T 1 / 2 

� τT � ∑ 

i =1 

h 1 (L i ) −
� τT � 
T 3 / 2 

T ∑ 

i =1 

h 1 (L i ) . 

To obtain the limit of the process, we state the theorem below, 

hich is a direct consequence of Theorem 4 in Borovkova et al. 

2001) and Theorem 3.1 in Davidson & De Jong (2000) . 

heorem B.1. Let { Y k } k ∈ Z be a L 2 near-epoch dependent (NED) with 

espect to a strong mixing process. Also, suppose that E [ Y i ] = 0 and

 [ | Y i | 4+ δ] ≤ ∞ for some δ > 0 . Then, as T → ∞ , 

1 √ 

T 

T ∑ 

i =1 

Y i 
d −→ N (0 , σ 2 ) , 

here σ 2 = V ar(Y 1 ) + 2 
∑ ∞ 

k =2 Cov (Y 1 , Y k ) . 

The proof of the theorem follows immediately from Borovkova 

t al. (2001) and Davidson & De Jong (2000) . 

Based on Assumption 2.1 (B), applying Theorem B.1 on the par- 

ial sum process and using similar arguments as in Chapter 4 of 

sörg ̋o & Horváth (1997) and Donsker’s theorem, it can be shown 

hat 1 
T 1 / 2 

∑ � τT � 
i =1 

h 1 (L i ) − � τT � 
T 3 / 2 

∑ T 
i =1 h 1 (L i ) converges to a limit pro- 

ess { σW 

[ W (τ ) − τW (1)] } 0 ≤τ≤1 , where { W (τ ) } 0 ≤τ≤1 is a Wiener 

rocess, and 

2 
W 

= V ar(h 1 (L 1 )) + 2 

∞ ∑ 

k =2 

Cov (h 1 (L 1 ) , h 1 (L k )) . 

Additionally, we have that h 1 (x ) = 

1 
2 − F (x ) . Thus, 

2 
W 

= V ar(F (L 1 )) + 2 

∞ ∑ 

k =2 

Cov (F (L 1 ) , F (L k )) . 

By the Lemma of Slutsky, we obtain that as T → ∞ , 1 
T 3 / 2 

U T (τ )

onverges in distribution to { σW 

B (τ ) } 0 ≤τ≤1 , where B (τ ) = 

 (τ ) − τW (1) is a Brownian bridge and σ 2 
W 

= V ar(F (L 1 )) +
 

∑ ∞ 

k =2 Cov (F (L 1 ) , F (L k )) . �

ppendix B. Proof of Theorem 2.2 

In the following, we discuss the P-Lipschitz-continuity prop- 

rty for the kernel h W 

(X, Y ) . 

efinition C.1. ( P-Lipschitz-continuity) Let { X t } t∈ N be a station- 

ry process. A kernel h is called P-Lipschitz-continuous if there is 

 constant a > 0 with 

 

[∣∣h (X, Y ) − h (X 

′ , Y ) 
∣∣1 [ | X − X 

′ | ≤ ε] 
]

≤ aε, 
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or every ε > 0 , every pair X and Y with the common distribution 

 X 1 ,X k 
for k ∈ N with k > 1 or P X 1 

× P X 1 
and X ′ and Y also with

ne of these common distributions. 

To prove Theorem 2.2 , we need the following preliminary re- 

ult. 

roposition C.1. If Assumption 2.1 (B) holds, then the antisymmetric 

ernel h W 

(X, Y ) = 1 [ X ≤ Y ] − 1 
2 for the test statistic is P-Lipschitz- 

ontinuous. 

The proof of this proposition can be found below. 

roof. The kernel h W 

(X, Y ) is P-Lipschitz-continuous, if there is a 

onstant a > 0 , so that for all ε > 0 and every common distribution

f X , X ′ and Y , 

 

[| h W 

(X, Y ) − h W 

(X 

′ , Y ) | 1 

[| X − X 

′ | ≤ ε
]]

< aε. 

For random variables X , X ′ and Y , we have: 

 

[| h W 

(X, Y ) − h W 

(X 

′ , Y ) | 1 

[| X − X 

′ | ≤ ε
]]

= E 

[| 1 [ X ≤ Y ] − 1 

[
X 

′ ≤ Y 
]| 1 

[| X − X 

′ | ≤ ε
]]

. 

e have: 

 

[| 1 [ X ≤ Y ] − 1 

[
X 

′ ≤ Y 
]| 1 

[| X − X 

′ | ≤ ε
]]

≤ P (−ε ≤ X − X 

′ ≤ ε) . 

Based on Assumption 2.1 (B) on the continuous distribution 

unction, there exists a constant a = 2 sup ( f ) that satisfies the fol- 

owing: 

 (X 

′ − ε ≤ X ≤ X 

′ + ε) = F (X 

′ + ε) − F (X 

′ − ε) 

= 

∫ X ′ + ε

X ′ −ε
f (t) dt ≤ a 

2 

· 2 ε = aε. 

hus, based on Definition C.1 , the antisymmetric kernel of the 

ilcoxon test statistic h W 

(X, Y ) is P-Lipschitz-continuous. �

Now, we can turn our attention to the proof of Theorem 2.2 . 

roof. In order to obtain the asymptotic behavior of the boot- 

trapped U-process, we use the Hoeffding decomposition for the 

ootstrapped kernel h W 

(L ∗
i 
, L ∗

j 
) : 

 W 

(L ∗i , L 
∗
j ) = h 1 (L ∗i ) + h 2 (L ∗j ) + g(L ∗i , L 

∗
j ) . 

hus, we have the decomposed bootstrapped U-process: 

1 

T 3 / 2 
U 

∗
T (τ ) = 

1 

T 3 / 2 

� τT � ∑ 

i =1 

T ∑ 

j= � τT � +1 

[
h 1 (L ∗i ) + h 2 (L ∗j ) + g(L ∗i , L 

∗
j ) 
]

= 

1 

T 3 / 2 

[ 

(T − � τT � ) 
� τT � ∑ 

i =1 

h 1 (L ∗i ) + � τT � 
T ∑ 

j= � τT � +1 

h 2 (L ∗j ) 

+ 

� τT � ∑ 

i =1 

T ∑ 

j= � τT � +1 

g(L ∗i , L 
∗
j ) 

] 

. (C.1) 

In the following, we are going to use the result below: 

emma C.1 ( Hwang & Shin, 2015 ) . Let h be a P-Lipschitz- 

ontinuous kernel with 2 + δ moments for some δ > 0 , { X ∗n } n ∈ N be

 stationary bootstrapped strong mixing process with E [ | X ∗
1 
| γ ] < ∞

or some γ > 0 and α(T ) = O (T −ρ ) with ρ > 

3 γ δ+2 δ+5 γ +2 
2 γ δ

, then for

 

∗
T (g) = 

2 √ 

T (T −1) 

∑ 

1 ≤i< j≤T g(X ∗
i 
, X ∗

j 
) : 

 

[
T V 

∗2 
T (g) 

]
= O (T −η) , 

here η = min 

{ 

ρ 2 γ δ
3 γ δ+ δ+5 γ +2 

− 1 , 1 

} 

> 0 . 

The proof of this lemma can be found in Hwang & Shin 

2015) as the proof for Lemma 2. 
15 
As shown in Lemma C.1 , the variance of the last term in 

C.1) vanishes as T increases: 

 ar ∗

( 

1 

T 3 / 2 

� τT � ∑ 

i =1 

T ∑ 

j= � τT � +1 

g(L ∗i , L 
∗
j ) 

) 

P −→ 0 . 

Thus, by Lemma of Slutsky and the property of kernel shown in 

B.2) , it is enough to show that 
 

T − � τT � 
T 3 / 2 

� τT � ∑ 

i =1 

h 1 (L ∗i ) + 

� τT � 
T 3 / 2 

T ∑ 

j= � τT � +1 

h 2 (L ∗j ) 

] 

0 ≤τ≤1 

onverges in distribution to the limit process of 
 

T − � τT � 
T 3 / 2 

� τT � ∑ 

i =1 

h 1 (L i ) + 

� τT � 
T 3 / 2 

T ∑ 

j= � τT � +1 

h 2 (L j ) 

] 

0 ≤τ≤1 

. 

Because the kernel h W 

(L ∗
i 
, L ∗

j 
) is antisymmetric, we have that 

 2 (L ∗
j 
) = −h 1 (L ∗

j 
) . Thus, we can rewrite the representation as: 

T − � τT � 
T 3 / 2 

� τT � ∑ 

i =1 

h 1 (L ∗i ) −
� τT � 
T 3 / 2 

T ∑ 

i = � τT � +1 

h 1 (L ∗i ) 

= 

1 

T 1 / 2 

� τT � ∑ 

i =1 

h 1 (L ∗i ) −
� τT � 
T 3 / 2 

T ∑ 

i =1 

h 1 (L ∗i ) . 

o obtain the limit of the process, we restate the theorems of 

alhoun (2018) . 

heorem C.1. Let { Y k } k ∈ Z be a L 2 near-epoch dependent (NED) 

ith respect to a strong mixing process. Additionally, suppose 

hat μnt − μ̄n is uniformly bounded, where μnt = E [ Y nt ] and μ̄n = 

 

−1 
∑ n 

t=1 μnt . Then we have: 

up 

x ∈ R 

∣∣P ∗( √ 

n ( ̄Y ∗n − E 

∗[ ̄Y ∗n ]) ≤ x ) − P ( 
√ 

n ( ̄Y n − E [ ̄Y n ]) ≤ x ) 
∣∣ P −→ 0 , 

here Ȳ n = 

1 
n 

∑ n 
t=1 Y nt , and Ȳ ∗n = 

1 
n 

∑ n 
t=1 Y 

∗
nt . 

heorem C.2. Suppose that the conditions of Theorem C.1 hold and 

et d be any distance function that metricizes weak convergence. Then 

e have: 

 

∗(d(Z ∗n , σW ) > δ) 
P −→ 0 , (C.2) 

or all positive δ, where Z ∗n (τ ) = 

1 √ 

n 

∑ � τn � 
t=1 

(Y ∗nt − E 

∗[ ̄Y ∗n ]) , and σW 

enotes a Brownian motion scaled by the positive constant σ . If, in 

ddition, sup t=1 , ... ,n | μnt − μ̄n | = o(1 / 
√ 

n ) and 

 

−1 

� γ n � ∑ 

s,t=1 

Cov (Y ns , Y nt ) → σ 2 γ

or all γ ∈ [0 , 1] , then 

 

∗(d(Z n , σW ) > δ) 
P −→ 0 , (C.3) 

or any positive δ, where Z n (τ ) = 

1 √ 

n 

∑ � τn � 
t=1 

(Y nt − μ̄n ) . 

Since both (C.2) and (C.3) hold, the distribution of bootstrapped 

alues Z ∗n can be used to approximate the distribution of Z n , be- 

ause they have the same distribution asymptotically. 

The assumptions listed in Theorem C.1 of Calhoun (2018) are 

atisfied under Assumptions 2.1 and 2.2 in our study. Applying 

heorem C.1 and Theorem C.2 for h 1 (L t ) , we have: 

up 

x ∈ R 

∣∣∣∣∣P ∗
( 

� τT � 
T 3 / 2 

T ∑ 

i =1 

h 1 (L ∗i ) ≤ x 

) 

− P 

( 

� τT � 
T 3 / 2 

T ∑ 

i =1 

h 1 (L i ) ≤ x 

) 

∣∣∣∣∣ P −→ 0 , 

up 

x ∈ R 

∣∣∣∣∣P ∗
( 

1 

T 1 / 2 

� τT � ∑ 

i =1 

h 1 (L ∗i ) ≤ x 

) 

− P 

( 

1 

T 1 / 2 

� τT � ∑ 

i =1 

h 1 (L i ) ≤ x 

) 

∣∣∣∣∣ P −→ 0 , 
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As such, based on the Lemma of Slutsky, we have: 

up 

x ∈ R 

∣∣∣∣∣P ∗
( 

1 

T 1 / 2 

� τT � ∑ 

i =1 

h 1 (L ∗i ) −
� τT � 
T 3 / 2 

T ∑ 

i =1 

h 1 (L ∗i ) ≤ x 

) 

− P 

( 

1 

T 1 / 2 

� τT � ∑ 

i =1 

h 1 (L i ) −
� τT � 
T 3 / 2 

T ∑ 

i =1 

h 1 (L i ) ≤ x 

) 

∣∣∣∣∣ P −→ 0 , 

Thus, we obtain the convergence in probability in (11) : 

up 

x ∈ R 
| P ∗(T −3 / 2 U 

∗
T (τ ) ≤ x ) − P (T −3 / 2 U T (τ ) ≤ x ) | P −→ 0 . 

�

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2023.03.033 . 
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