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We propose a new test to detect change points in financial risk measures, based on the cumulative sum
(CUSUM) procedure applied to the Wilcoxon statistic within a popular class of loss functions for risk
measures. The proposed test efficiently captures change points jointly in two risk measure series: Value-
at-Risk (VaR) and Expected Shortfall (ES), estimated by (semi)parametric models. We derive the asymp-
totic distribution of the proposed statistic and adopt a stationary bootstrapping technique to obtain the
p-values of the test statistic. Monte Carlo simulation results show that our proposed test has better size
control and higher power than the alternative tests under various change point scenarios. An empirical
study of risk measures based on the S&P 500 index illustrates that our proposed test is able to detect
change points that are consistent with well-known market events.
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This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Measuring market risk plays a central role not only in the
area of risk management but also in the broader context of finan-
cial markets. Value-at-Risk (VaR) and Expected Shortfall (ES) are
two prevalent risk measures dominating in contemporary finan-
cial regulation (Leung et al., 2021). VaR provides financial insti-
tutions with a loss level that occurs in the worst situations at a
given confidence level; ES, as an alternative to VaR, is the expec-
tation of losses, conditional on their realization lying below VaR.
As for the estimation of these two measures, Engle & Manganelli
(2004) distinguish three main categories: nonparametric, paramet-
ric, and semiparametric approaches. In a univariate framework,
some of the models for financial risk measures include General-
ized AutoRegressive Conditional Heteroskedasticity (GARCH) fam-
ily models (Bali & Theodossiou, 2007), score-driven models (Patton
et al,, 2019), and CAViaR-ES models (Taylor, 2019).!

It is worth mentioning that the presence of change points
in time series may cause misleading statistical inference under
the assumption of stationarity (Clements & Hendry, 1996; Diebold
& Inoue, 2001; Loschi et al., 2007; Mikosch & Starica, 2004;

* Corresponding author.
E-mail addresses: e.lazar@icmacentre.ac.uk (E. Lazar),
shixuan.wang@reading.ac.uk (S. Wang), x.xue@pgr.reading.ac.uk (X. Xue).
1 This class of semiparametric models has been extended to incorporate the in-
traday or high-frequency information (Gerlach & Wang, 2020; Lazar & Xue, 2020;
Meng & Taylor, 2020) and combine with networks (Bonaccolto et al., 2022).
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Stock & Watson, 1996). Related empirical evidence has been ex-
tensively documented, especially in stock returns (Pastor & Stam-
baugh, 2001), volatility (Inclan & Tiao, 1994), correlation dynamics
(Barassi et al., 2020), and macroeconomic time series (Pesaran &
Timmermann, 2007). There is a vast literature on tests for change
points in time-series; some of these detect changes in a historical
dataset (Aue et al.,, 2009; Csérg6 & Horvath, 1997), whereas oth-
ers monitor changes in a sequential manner (Berkes et al., 2004;
Dette & Gosmann, 2020; Horvath et al., 2020a). Also, these tests
can differ in terms of their objective function given by, e.g., the
likelihood for volatility models (Chen & Hong, 2016) and copula
models (Ye et al., 2012) or the loss function for quantile regres-
sions (Qu, 2008). We refer the readers to Aue & Horvath (2013) for
a detailed literature review.

In addition to the theoretical contribution, a large section of the
literature concerns the practical application of change points detec-
tion, particularly in economics and finance. Regarding applications
in macroeconomics, Andersson et al. (2006) discuss a large num-
ber of studies on the detection of turning points in business cycles.
Horvath et al. (2020a) propose a sequential monitoring scheme and
apply it to detect the changes in real US GDP series. A noteworthy
application in the housing markets is provided by Horvath et al.
(2022). In the finance literature, several studies investigate the fi-
nancial contagion between markets during the subprime crisis by
implementing a change point analysis in tail risk, e.g., Ye et al.
(2012). A sequential monitoring procedure is employed by Ji et al.
(2020) to detect left-quantile changes in asset returns in order to
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search for safe-haven assets during the COVID-19 pandemic. By de-
tecting change points in the distributions of the daily returns of the
constituent stocks of the S&P 500 index, Horvath et al. (2021) asso-
ciate the detected change points with well known financial events,
e.g., the subprime mortgage crisis and COVID-19 pandemic.

In applications of risk management, the existence of change
points can cause estimation errors for VaR and ES, as argued
in Hoga (2017, hereafter Hoga) and Fan et al. (2018, hereafter
FGP). These papers use an innovative self-normalized estimator a
la Zhang & Lavitas (2018) to detect change points when the risk
measures are estimated in a nonparametric way. Specifically, Hoga
investigates change points in the VaR process, and FGP consider
changes in the ES process. Since regulatory capital requirements in
Basel Committee on Banking Supervision (2019) are linked to ES
estimates, it would be prudent to detect change points in this pro-
cess. Also, if change points are detected in the ES series alone, then
the effect of VaR on ES is ignored. Since ES is elicitable only jointly
with VaR,? it is meaningful to detect change points in the (VaR, ES)
tuple.

To fill this gap, our study extends the current literature by
proposing a test to detect change points in the VaR and ES series
simultaneously, which are estimated by (semi)parametric models.
We construct this test using the FZ loss functions proposed by
Fissler & Ziegel (2016). Since the FZ loss functions are minimized
for the true values of VaR and ES, changes in the parameter values
of the model cause breaks in the process of the VaR and ES esti-
mates, which will result in changes in the loss series. Our frame-
work of detecting change points in the VaR and ES series based
on loss values is general and can accommodate for any type of
(semi)parametric estimation models.

Our first contribution is to propose a test to detect change
points in both VaR and ES risk measures simultaneously, based
on the FZ loss functions. The general framework is closely related
to the likelihood ratio test to detect changes in volatility, and the
test for structural changes in quantile regressions proposed by Qu
(2008). Due to the dominance of the indicator term in the FZ loss
functions, the presence of extreme values (spikes), when returns
exceed VaR, is one of the main characteristics of the loss series.
However, the commonly used cumulative sum (CUSUM) test can be
affected by the presence of outliers (Fearnhead & Rigaill, 2019). To
address this problem, we adopt a more suitable alternative, namely
the Wilcoxon test (Dehling et al., 2013) to detect change points in
the loss process.> We call this procedure the loss-based Wilcoxon
test, and we shed light on its advantages in detecting joint change
points in time series of VaR and ES simultaneously.

Secondly, our paper contributes to the current literature by de-
riving the asymptotic behavior of our test statistic under weak de-
pendence. Also, to improve the finite sample performance of the
proposed test, we adopt a stationary bootstrap method based on
Politis & Romano (1994), which follows the strand of literature in
the area (HuSkova & Kirch, 2008; Quaedvlieg, 2021). Furthermore,
we prove that the stationary bootstrap is valid for the loss-based
Wilcoxon test.

Thirdly, we use Monte Carlo (MC) simulations to show that
our proposed test has good size control and higher power in fi-
nite samples than the alternatives. Additionally, our study on risk
measures of the S&P 500 index returns provides an empirical ap-
plication to demonstrate the practical usage of our proposed test.
We present evidence that the loss-based Wilcoxon test can detect
change points that are consistent with well-known market events.

2 There is no (strictly) consistent loss function for ES that does not also contain
VaR (Fissler & Ziegel, 2016).

3 In order to construct the Wilcoxon test statistic, we initially obtain the ranks of
loss values and then feed the ranks into the CUSUM procedure. More details can be
found in Section 2.2.

[m5G;April 14, 2023;12:29]

European Journal of Operational Research xxx (XXxx) Xxx

The paper is structured as follows: Section 2 briefly discusses
the established methods for change point detection in risk mea-
sures, introduces the FZ family of loss functions and the Wilcoxon
test statistic, and presents some theoretical results related to
the asymptotic distribution and the validity of bootstrapping;
Section 3 shows the simulation results; Section 4 contains an em-
pirical application based on the S&P 500 index; Section 5 con-
cludes the paper.

2. Test statistic for change point detection

This section briefly presents the literature on existing tests for
change point detection in risk measures. To enrich the literature,
we propose a test to detect change points in (VaR, ES) risk mea-
sures simultaneously based on the FZ loss functions introduced by
Fissler & Ziegel (2016). In this section, we formulate the test prob-
lem and derive the asymptotic theorem for our test statistic. For
finite samples, we apply the stationary bootstrap method to obtain
the p-values of our test. Also, we verify the validity of the boot-
strap method.

2.1. Established methods for change point detection in risk measures

Detecting change points in risk measures has attracted re-
cent attention from academia. Here we summarize some of the
most related studies. Hoga (2017) proposes a test to retrospec-
tively detect change points in extreme quantiles of time series.
The main intuition behind the proposed test is to compare the
extreme quantiles, estimated by a nonparametric method, namely
Weissman’s estimator, over different time periods. It is a difficult
task to choose a bandwidth parameter for the long-run variance
estimator, and sometimes a data-dependent bandwidth can lead to
non-monotonic power of the test (Shao & Zhang, 2010; Vogelsang,
1999; Zhang & Lavitas, 2018). In order to confront the challenge of
the estimation of asymptotic long-run variance, Hoga’s test is built
on the self-normalization framework proposed by Shao & Zhang
(2010). In a subsequent study, Fan et al. (2018) develop a change
point test for nonparametric ES estimates for weakly dependent
time series. Their proposed test is based on monitoring changes
in the tail structure and uses self-normalization.

The tests discussed above are designed for detecting changes
in unconditional risk measures (which are estimated over different
time periods). On the other hand, our proposed tests are for condi-
tional risk estimates obtained via (semi)parametric risk models. To
run the test, we first calculate the loss series associated with the
estimated (semi)parametric risk measures. Our test is inspired by
the Wilcoxon test proposed by Dehling et al. (2013), which now is
based on the loss series. This test is general and can accommodate
for any type of (semi)parametric joint estimation methods for VaR
and ES. Another advantage of our proposed test is that it can iden-
tify changes in VaR and ES jointly, instead of detecting changes in
single risk measure, which is in line with the requirements of the
Basel Committee on Banking Supervision (2019).

An alternative test that we can compare our proposed test with
is based on Rényi-type statistics. Traditional CUSUM-based tests
can be ineffective when changes occur near the start or the end
of a sequence of observations; this has been addressed by Horvath
et al. (2020b), who propose change point detection methods which
rely on weighting or trimming schemes based on Rényi-type statis-
tics. We consider a variant of our test that uses Rényi-type statis-
tics, which we call the “Rényi-type test”. This is a joint test for
changes in VaR and ES risk estimates, and is based on the FZ loss
function. In this test, instead of using the Wilcoxon statistic, we
calculate the test statistic relying on a trimmed sample, i.e., after
removing subsamples at the start and at the end of the entire sam-
ple, leading to high power for the change point detection near the
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Table 1

Loss functions in the FZ family with different degrees of positive homogeneity b.
b FZ loss function
0 L(rv.e6a)=—tn1lr <v®)] [v(8) — ]+ 19 +log(~e(6)) -1

-1 e b)) = Gr{ilr=v@)]- @) -1 - [v@) - e} + 5

05 LF2(rv.e 6;a)= —2L
2/ e®)

{310 =v(@®)]-[v(0) -] - [v(6) —e@O)]} + /—e(®)

beginning and end of the sample. More details can be found in
Section 3.2.

As benchmarks, we consider two further tests, specifically
the self-normalized CUSUM test for VaR and the self-normalized
CUSUM test for ES. These are based on the self-normalized change
point test proposed by Shao & Zhang (2010) and use conditional
risk measures estimated by (semi)parametric risk models. These
tests are described in more detail in Section 3.2.

2.2. Loss functions

Let {rf}tT:1 be a series of observed returns measured over an ar-
bitrary frequency, such as daily. (Semi)parametric models can be
used to estimate the corresponding conditional risk measures, VaR
and ES, denoted by {v;(6)}T_; and {e;(8)}]_,, at a specified sig-
nificance level «, where 6 denotes the parameter vector of the
model. Some major results about the consistency of model param-
eter estimators for selected (semi)parametric models can be found
in Francq & Zakoian (2015) and Patton et al. (2019). We summarize
these results in the Supplemental Appendix.

Fissler & Ziegel (2016) introduce the FZ family of loss functions
stated below, used to evaluate the (VaR, ES) tuple of risk measures:

LFZ(rt, Ve, e, 0; o)

= {111 =0 ®)] - a}[G1 1 (®) - G (1) + U O)G2(e:0))]

R ACON F A A BACON (1)

where G; is weakly increasing, G, is strictly increasing and strictly
positive, and ¢/, = G,.*

For the specification function Gy in (1), we use G (z) = 0, which
follows the reasoning of Nolde & Ziegel (2017). We consider the
second specification function G, with different degrees of posi-
tive homogeneity> b= —1, b=0, and b= 0.5, which follow the
choices of Dimitriadis & Bayer (2019), specified as: G,(z) = —%,
Gy (z) = —log(—2z), and G,(z) = —/—z, respectively, where z must
be negative.

In our study, we use the three loss functions corresponding to
the above specifications, detailed in Table 1, to compute the time
series of loss values.

To provide some intuition, LFZ9 can be reformulated as:

LF(r,v,e,0; o)

[~ v®) — 11+ X8+ log(—e(8)) — 1, if r < (@),
T 42 +1og(—e0)) -1, it 1> v(8).

The probability of the first outcome is «, and the probability of
the second one is 1 — «. Thus, the distribution of the loss value
can be generally considered as a mixing distribution with mixing
parameter o.

4 Using the FZ loss function for estimation and forecast evaluation requires choos-
ing G; and G,. The selection of a proper set of (G;, G;) remains an open question.
For a more elaborate discussion on this, see Patton et al. (2019).

5 A loss function L is called positively homogeneous of degree b if for all r, v and
e, L(cr, cv, ce) = cPL(r, v, e), for all ¢ > 0.

To get a better understanding of the time series properties of
the risk measures and loss series, we test, using simulations based
on a GARCH(1,1)-skewed t data generating process (DGP), for the
presence of (1) autocorrelation, (2) conditional heteroskedasticity,
(3) unit root, and (4) outliers against the normal distribution in
these series.’ The results show that the loss series possibly has
weak autocorrelation, but we found no evidence of conditional het-
eroskedasticity. Also, in our setup we found that the loss series is
stationary and it is affected by outliers (rejecting normality) which
can be linked to VaR exceptions (causing spikes in the loss series).

2.3. Hypotheses and test statistic

The distribution of {r}]_, and the values of {1 (§)}[_, and
{er (0)}{=1 all depend on the model parameter vector which can
be time varying, hence it will be denoted by 6;. Thus, in this
case, a procedure for detecting a change point can be conducted
by testing the null hypothesis: #; = ... = 61, against the alterna-
tive hypothesis that there is one unknown change point k*, that
is: 01 = ... =04 # 04,4 =...= 0. The true values of VaR and ES
will lead to the minimal loss values for the given returns. If there
is a change point, the parameter values estimated using the time
period between 1 and k* will be different from the parameter val-
ues estimated from the whole sample, so the VaR and ES estimates
based on the parameters obtained from the whole sample will de-
viate from the true values, leading to an increase in their loss val-
ues.

We can formulate a test for the hypotheses above using the loss
series. In this framework, the loss values can be expressed as:

ifl<t<k*

ifk*+1<t<T,

L = M0+8[a
=
Ma + Et,

where (g and p, are unknown parameters and E[e;] =0 for 1 <
t < T. The null hypothesis of no change point in the loss series can
be written as:

Hp : o = ta,

versus the alternative hypothesis’ of one change point in the loss
series:

Hy @ o # pa-

The CUSUM test is commonly used to detect change points
of a process. However, this test has the limitation that it can be
disturbed by the presence of outliers or extremely heavy-tailed
noise (Fearnhead & Rigaill, 2019; Gerstenberger, 2018). As shown
in Section 2.1, outliers (against normality) commonly exist in the
loss series, due to the VaR exceptions, and thus making the CUSUM
test less suitable to be applied directly on the “raw” loss series. As
highlighted by Gerstenberger (2018), the Wilcoxon test statistic is
a rank-type statistic and has the inherent advantage that it is not

6 The simulation setup and results are reported in Table S.1 of the Supplemental
Appendix. We use the Ljung-Box test, Engle’s ARCH test, the Augmented Dickey-
Fuller (ADF) test and Grubb’s test.

7 For simplicity, in this study we consider the alternative hypothesis that there
exists only one change point k* occurring in the series.
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affected by outliers. Therefore, we employ the Wilcoxon test to de-
tect change points in the rank of the loss series. The general form
of the Wilcoxon test statistic is defined as:

k T
. where Wy := Y "R — I%ZR,-, (2)

i=1 i=1
where R; = rank(L;) = ¥y {L; < Lj}, for i=1,....T. Inspired by
Betken (2016), our test statistic based on ranks is given below:

Wr := max |Wk.T
1<k<T ’

k

k T k T 1
W= max 3R - 7 3R = max |30 3 {1l 5
i=1 i=1 i=1 j=k+1
(3)

Definition 2.1. The estimator for the time of a change point ky is
defined as the value that maximizes the loss-based Wilcoxon test
statistic,

fw = kw (T) := min {k : |W, | = Wy} (4)

2.4. Theoretical results and stationary bootstrap

In this section, we investigate the asymptotic distribution of our
proposed Wilcoxon-type statistic in (3). This can be treated as a U-
statistic (Csorgd & Horvath, 1988; Dehling et al., 2017) with the
kernel:

hW(X,Y)zl[XsY]—%. (5)

We can define the U-process as below:

LzT] T LzT] T 1
U= ¥ mtlp=y ¥ fuusyi-5).
i=1 j=|tT]+1 i=1 j=|tT]+1

(6)
where 0 <t <1, and |-] denotes the integer part of a number.

Thus the Wilcoxon change point test statistic in (3) can be writ-
ten as:

Wr = max |UT(r)|. (7)

The kernel hy, (X,Y) is antisymmetric, so it satisfies:

hw (X, Y) = —hy (Y, X). (8)
In this case, E[hw (L;,Lj)] =0 and similarly to the symmetric case
we let Ay (X) = E[hy (X, L;)]. Following Csorgd & Horvath (1988), it
is reasonable to assume that:

0 <E[h (L, Lj)] <oo and 0 <oy =E[hZ (L)] < co. (9)

To derive the asymptotic distribution of the process Ur(t), we
consider the following assumptions.

Assumption 2.1.

(A) The process {rt}tT:1 is strictly stationary and satisfies E[r;] =0,
and E[|r¢]¥] < oo, for some s > 2;

(B) The loss series {L[}tT:1 is strictly stationary and ergodic, and it
satisfies E[|L;|Y ] < oo, for some y > 0;

(C) For any integer 1 <t < T, the cumulative distribution function
F of L; is continuous on the real line with a density f that is
bounded;

(D) hw (Lq,Ly) given in (5) is an antisymmetric kernel, such that for
ad>0 M=>0:

[ [ 1 @12 PP LR @) < M,

Vi e N : f I (L. L) PPOdP(Ly L) < M

[m5G;April 14, 2023;12:29]
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(E) {rt,vt(0),et(0)}tT=] is strong mixing («-mixing) with

a(T) =0(T-@2/4) for some q>2; {L(re,ve(6),ec(0)}_,

is strong mixing with the coefficient «(T) =0(T?) for a
3y8+5+5y+2
P>=""55 -

Assumption 2.1 (A) is a standard moment and stationarity
condition for the loss series. Assumption 2.1 (B) is the condi-
tion on the continuous and bounded density of the loss se-
ries. Assumption 2.1 (C) requires the moment bound for the
given kernel hy (L, Ly), which is consistent with Borovkova et al.
(2001) and Dehling & Wendler (2010). Patton et al. (2019) pro-
vide the same dependence condition as Assumption 2.1 (D) for
{rt,vt(a),e[(ﬂ)}tT:] to support the central limit theorem for the
loss series; if the first half of Assumption 2.1 (D) holds, the se-
quence of loss L;(r, v¢(0),e:(0)) is a-mixing with a decay rate
at least as fast as that of {rt, v:(0), er(t‘))}tT=1 (Patton et al., 2019).
Thus, it is reasonable to assume the mixing condition for the loss
series with the coefficient provided by Dehling & Wendler (2010).

Theorem 2.1. Under the null hypothesis, assume that (8), (9), and
Assumption 2.1 hold. Then as T — oo, we have:

—5Ur(t) —owBr(7)| = 0p(1),

where Br(t),0 <t <1 is a sequence of Brownian bridges, and:

o =Var(F(L)) +2)_ Cov(F(Ly), F(L)).
j=2

The proof of Theorem 2.1 is provided in Appendix A. One way
to implement such a test is by estimating the long-run variance
and using the asymptotic limit to obtain the p-values. The detailed
procedure is described in the Supplemental Appendix. However, as
often found in the literature, the empirical size obtained when re-
lying on the asymptotic limit in finite samples may differ signif-
icantly from the prespecified significance level. The Supplemental
Appendix shows that the loss-based Wilcoxon test based on the
asymptotic distribution with two long-run variance estimators is
generally oversized, especially for small samples. As such, instead
of estimating the long-run variance aﬁ, above, we are going to
use bootstrapping to obtain the p-values. In the following, we will
elaborate the bootstrapping algorithm.

It is well known that bootstrap methods have been widely used
to avoid the finite sample size distortions (see Barendse & Patton,
2022; Chen & Hong, 2016; Chen & Fang, 2019, for more exam-
ples). Thus, we propose to obtain the p-value of the test statistic
Wr by using stationary bootstrapping in the following way. For a
given return series {rt}thl, we calculate the test statistic Wy using
(7). Then, we adopt the stationary bootstrap method of Politis &
Romano (1994) to generate Nz bootstrapped return series {rf rT=1
using the expected block length ¢.8 For each bootstrapped series,

we estimate the bootstrapped VaR and ES denoted by {U;‘(@;)}L1
and {e} (9;)}{=], where 9; is the parameter vector estimated from
the bootstrapped returns {r;}"_,. Then we compute the loss se-

ries denoted by {L} rT=1' Applyir;g (6) and (7) for each bootstrapped
series j, we compute the bootstrapped U-process, U;(j) and the
bootstrapped statistic WT*(D. Then, we define the set of the boot-
strapped statistics Wy = {W{f(]), s W{.‘(NB)}. After that, we calcu-
late the frequency that the statistic Wt is below W;‘ ) and this is

8 In this study, we follow Hoga to set the expected block length as 0.08T, which
can consistently produce satisfactory results in various settings. It is possible to se-
lect the optimal block length for stationary bootstrapping, please see Politis & White
(2004) and Patton et al. (2009) for more details.
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the bootstrapped p-value. The detailed procedure can be found in
Algorithm 1.

Algorithm 1: Bootstrap procedure
bootstrap({rt}_;, Wr, Ng).

Input: {r;}]_, Wr, Ny
Output: p-value ( p)
Initialization: j =
repeat//Bootstrap ]//
j=j+1
Generate the bootstrapped returns ~{r[*}tT:1 using the stationary bootstrap
Estimate the bootstrapped risk measure series {11;‘(9;)}[7:1 and
(e B,
Compute the bootstrapped loss series {L; {:1
Compute the bootstrapped statistic W,/
until j = Ng;
Using (W;@,..
return p.

to obtain p-value,

Wi} compute p= £ ¥ WY > wr]

To verify the validity of the bootstrap method, we obtain the
asymptotic distribution of the bootstrapped statistic W*, which is
computed based on (7) using the bootstrapped data. Then we show
that it asymptotically converges to the limit distribution of the
statistic Wr under the null hypothesis. To conduct the verification,
we consider the following proposition, which is needed for the
proof of our results.

Assumption 2.2. {r} }t , is generated by the stationary bootstrap
with geometric block lengths with success probability pr = cT~¢,
where a,c € (0, 1).

Proposition 2.1 (Politis & Romano, 1994). If Assumption 2.1 (A)
holds, and additionally Assumption 2.2 holds, then the pseudo time
series {r*}T | Is stationary.

This proposition implies that the stationary bootstrapping en-
sures the stationarity of the process. In this study, we resample the
return series {r;}_, instead of resampling the loss series {L;}I_,
directly.” The followmg theorem states the asymptotic behavior of
the statistics of the bootstrapped loss series.

Theorem 2.2. Under the null hypothesis, assume that (8), (9),
Assumptions 2.1 and 2.2 hold. Let ¢ be the expected block length with
¢ — oo and also T/t — oo as T — oo. Then we have the following
convergence result for the bootstrapped process Uf obtained with ex-
pected block length ¢:

\Var* (T=32U3 (1)) — Var(T~*2Ur (1))| > 0, (10)

sup |P*(T~3/2Uf (1) < x) — P(T>2Ur (1) < %)| = 0, (11)

XeR
where Var* and P* denote the variance and probability with respect
to the probability measure induced by the stationary bootstrap.

The proof of this theorem can be found in Appendix B.

Recall that W*] 1 < j < Ng, denotes the bootstrapped statistic
calculated 51m11arly to Wr defined in (7). Next, we show that the
asymptotic distribution of the bootstrapped statistic W} coincides
with the asymptotic distribution of Wy under the null hypothe51s
The empirical distribution function of Wy U is calculated as:

Qrn; (W) =

Z 1w, <w], weR (12)

N 1<j<Np

9 We found that resampling the loss series {L;(r;)}I_; directly would lead to a
higher empirical size, especially for small sample sizes (the related simulation re-
sults can be found in Table S.3 of the Supplemental Appendix).
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Based on Egs. (7) and (12), as well as Theorems 2.1 and 2.2, we
obtain the following result:

Corollary 2.1. If the assumptions of Theorem 2.2 hold, then under Hy
we have:

sup [P(Wr <w) — Qrn,(W)| L 0, where Ng - occand T — oo.

weR

(13)

This corollary demonstrates that the proposed bootstrap
methodology is appropriate to be used to obtain the p-value of the
loss-based Wilcoxon test statistic. In the next section, we imple-
ment a simulation study to show that the bootstrap methodology
has the correct size under the null hypothesis and has high power
under the alternative hypothesis.

3. Simulation analysis

Based on the test framework proposed above, we implement
a comprehensive simulation study to evaluate the performance of
the loss-based Wilcoxon test under the null and alternative hy-
potheses. In the following, we present the simulation design and
analyse the simulation results.

3.1. Simulation design

We perform a simulation study to investigate the size and
power of the proposed test in finite samples. Under the null hy-
pothesis, the DGP of the return series is a univariate GARCH pro-
cess as given below:

It = orllg, Uy ~i.i.d. skewed t (vi, A1),
of =wr+piot +nrty, t=1,...T, (14)
where r; is the simulated return process generated by the prod-
uct of ut, which follows the standardized skewed t distribution of
Hansen (1994), with Degrees of Freedom (DoF) v; and skewness
A1, with the density function given by:!°

—(v+1)/2
1 (buta)?
bC|:1+m(1uj}fl) ] s

—(v+1)/2
bc[l + i(b”“’)z] ., ifu>—ayb,

if u < —ayb,
g(ulv, A) =

1+2

and conditional volatility o; given by a GARCH(1,1) specifica-
tion. For the simulations, we choose the sample sizes of T e
{1000, 3000} to study the finite sample properties and conver-
gence of the test.!!

Under the alternative hypothesis, the DGP of the returns is the
process 1y = oty with:

ue ~ i.i.d. skewed t (vi,1q),
ur ~ i.i.d. skewed t (v, Ay),

ifl1<t<|nT],
if |[#T| <t <T,

(15)

where one of the parameters changes its value after |7 T] which
is the location of the change point in the process. In this study,
we consider 7 € {0.5,0.75}."> This change in the return series will
eventually cause a change point in the VaR and ES as well, and
our main purpose is to investigate the detection of change points
in the VaR and ES processes at o = 1%.1°

2 2 2
mz =w + /310[2_1 +y r’z‘l’
o = wy + Prof | + Va4,

10 In the density function, 2 < v < oo, and —1 < A < 1. The constants a, b and ¢

2 _ 2_ g2, (gt
2),p2 =1+302—q andc_ml_w/z).

11 These sample sizes are in line with the sample sizes used in the literature on
risk measurement (see Patton et al., 2019).

12 We follow Hoga (2017) in selecting these two locations for the change point.

13 Results for o = 5% are consistent with the results reported here, and are avail-
able upon request.

are given by a = 4ic(4%
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Regarding parameter values, we set (w1, fB1,¥1,V1, 1) =
(0.05,0.9,0.05,16.5, -0.5). Under the null hypothesis,
(W2, B2, V2, V2. X2) = (w1, B1, y1. V1, A1) in (15), meaning no
change points in the process. For the alternative hypothesis, we
consider six different scenarios of change points to evaluate the
empirical power of the proposed test. Each break consists of a
change in the value of one parameter as follows:

. H’l‘“: an increase of 0.04 in the volatility persistence parameter,
i.e. B, =0.94;

. H{‘zz a decrease of 0.04 in the volatility persistence parameter,
i.e. B, =0.86;

. Hf1: an increase of 0.04 in the volatility reaction parameter, i.e.
y2 = 0.09;

D Hfzz a decrease of 0.04 in the volatility reaction parameter, i.e.
y2 = 0.01;

o HE!: a decrease of 13.5 in the DoF parameter, i.e. v, = 3;

* H{2: a decrease of 14 in the DoF parameter,' ie. v, = 2.5.

In addition to the above alternatives,’® we follow Andreou &
Ghysels (2002) to examine whether the presence of outliers affects
our test results under the null hypothesis. We conjecture that the
existence of outliers should not lead to the rejection of the test, i.e.
an effective test would not mistakenly consider outliers as change
points:

e HY: (w3, B2, V2. V2, A2) = (w1, B1.¥1, V1. A1), when 12 ran-
domly selected returns in the simulated process are multiplied
by 5.

In the simulation, we consider the eight DGPs detailed
above. For the estimation of VaR and ES, we use the follow-
ing three (semi)parametric models: GARCH(1,1)-skewed t (G-Skt),
GARCH(1,1)-Gaussian (G-G) and the Generalized Autoregressive
Score (GAS) model in a hybrid framework (Hybrid).!6 In terms of
the loss function, we choose loss functions with three different de-
grees of positive homogeneity: LFZ0, [FZ1 and [FZ2, given in Table 1.

For each combination of (DGP, estimation method, loss func-
tion), we compute the rejection rates of the proposed test accord-
ing to the procedure explained below. For each simulation i, we
simulate return series of length T, denoted by {r:}!_,."” We then
estimate the VaR and ES series using the given model, and we de-
note the estimated risk series as {vt(aT)}[T:l and {et(aT)}thl. Fol-
lowing this, we calculate the loss series {Lt}tT=1 for the given loss
function. Then, based on (7) we compute the loss-based Wilcoxon
statistic Wy for the loss series. By calling the bootstrap procedure
in Algorithm 1 with Np = 1000, we obtain the p-value of simula-
tion i, denoted by p(i). If p(i) is below the significance level a,
then the null hypothesis is rejected for simulation i.'® By repeating
this simulation N = 1000 times, we obtain the rejection rate ¢ as
the frequency of p(i) being lower than a in the total number of
simulations. The detailed procedure can be found in Algorithm 2.

In terms of the simulation results, we expect that the empirical
size converges to a, the significance level under the null hypothe-
sis, as the number of observations increases. Under the alternative
hypothesis, the expectation is that the empirical power is high and

14 We are aware that these values of v, mean that the fourth moment of the sim-
ulated returns does not exist. Nevertheless, these values of v, are useful for illus-
trative purposes. The literature considers DGPs with less than four finite moments,
such as in Berkes et al. (2003).

15 These values are chosen so that the first two moments of the simulated returns
still exist.

16 More details about the models can be found in Table S.4 of the Supplemental
Appendix.

17 For simplicity, we disregard the dependence on i in the notation for {rt}[Tzl,
(v (O}, {ec(@r)}]_; and {L}]_,.

8 Here, we only consider the case of a = 5%; the results for other values of a are
available on request.
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Algorithm 2: Monte Carlo simulation procedure for loss-based
Wilcoxon test.

Input: N, N3, T, a

Output: rejection rate (¢)

Initialization: i =0
repeat//Simulation i//
i=i+1

Simulate {r;}!_, using the specified DGP with sample size T
Estimate the risk measure series {vt(ér)}le and {er(ér)}f=1
Calculate the loss values {L;}T_,

Calculate:

Wr = max
k

>3 == 1]

c=1d=k+1

Obtain p-value by calling Algorithm 1:p(i) = Bootstrap({r:}I_,, Wr, Np).
until i = Ng;
Using the p-values: {p(1),...,p(Ns)} compute the rejection rate
= X 1pG) <a]
return (.

converges to 1 with the sample size. When adding outliers to the
process without change points, the empirical rejection rate should
be close to a if the change point test is not sensitive to outliers.
Our setup allows us to explore the sensitivity of the test to the
choice of risk estimation model, loss function, type and location of
change point and sample size.'?

3.2. Simulation results

The simulation results commence with the evaluation of the
proposed loss-based Wilcoxon test in identifying change points in
risk measures when the underlying process is generated from the
DGP in (14) and (15) with the parameter values given in Sec-
tion 4.1. Table 2 shows the size and power of the test based on
the bootstrapping procedure at 5% significance level. In the table,
the panel for Hy shows the empirical sizes under the null hypoth-
esis. As expected, all of the empirical sizes for the Wilcoxon test
are close to the significance level. As the sample size increases, the
empirical size gets closer to 5% in general.

For the alternative hypotheses, we consider the change points
detailed in Section 4.1. The results in Table 2 reveal that our test
has a strong power in detecting change points in the volatility pa-
rameters (Hfl, Hfz, Hfﬂ Hfz) and reasonable power in detecting
change points in the DoF (Hfl, chz). The power of the test im-
proves when T increases from 1000 to 3000 for all DGPs and loss
functions. The table also shows that the power of the test is sen-
sitive to the location of change point. The rejection rate modestly
falls when the location of change point moves to |0.75T]. How-
ever, as the sample size increases, the test can successfully de-
tect the change point that occurs even at |0.75T |. Also, the results
show that our test is not sensitive to the presence of outliers (H(’)J).

In the following, we compare our proposed loss-based Wilcoxon
test with five alternative tests in terms of size and power, un-
der the same simulation settings and hypotheses as detailed be-
fore. For the first two alternative tests, we consider (i) the self-
normalized CUSUM (SN-CUSUM) test for VaR and (ii) the SN-
CUSUM for ES, which detect change points in the VaR and ES pro-
cesses individually. Following Shao & Zhang (2010), the two test
statistics are defined as:

R . 2
[T*% SEveOr) — kT v (0T)]
Vf = sup

CT [ S (L) + Tl Sk +1.T)]

: (16)

[N

19 If model misspecification risk is present, then the ordering of models is affected
by the choice of loss function (Patton, 2020); in this case, the size and power prop-
erties of our proposed test might be affected by the choice of loss function.
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Table 2
Empirical size and power of the loss-based Wilcoxon test for a change point.

7 =05 7 =0.75

T =1000 T =3000 T = 1000 T =3000

G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid
Hy: Univariate GARCH(1,1)-skewed t, with (w1, y1, B1, V1, A1)=(0.05, 0.05, 0.9, 16.5, —0.5)
LF20 0.045 0.044 0.030 0.047 0.063 0.039 0.045 0.044 0.030 0.047 0.063 0.039
LF4 0.045 0.044 0.030 0.047 0.064 0.039 0.045 0.044 0.030 0.047 0.064 0.039
LFz2 0.045 0.044 0.030 0.047 0.064 0.038 0.045 0.044 0.030 0.047 0.064 0.038
H{': An increase of 0.04 in the volatility persistence parameter, i.e. 8, = 0.94
LF20 0.992 0.992 0.923 1.000 1.000 1.000 0.788 0.769 0.326 0.996 0.975 0.919
LF2 0.992 0.992 0.923 1.000 1.000 1.000 0.788 0.770 0.326 0.996 0.975 0.918
LF22 0.992 0.992 0.923 1.000 1.000 1.000 0.788 0.773 0.328 0.996 0.975 0.918
H4{2: A decrease of 0.04 in the volatility persistence parameter, i.e. 8, = 0.86
LF20 0.627 0.623 0.373 0.988 0.963 0.770 0.232 0.220 0.118 0.712 0.695 0.355
LF2 0.627 0.623 0.373 0.988 0.963 0.770 0.232 0.220 0.117 0.712 0.695 0.354
LF22 0.627 0.623 0.373 0.988 0.963 0.770 0.232 0.221 0.117 0.712 0.695 0.355
HB': An increase of 0.04 in the volatility reaction parameter, i.e. y» = 0.09
LF20 0.912 0.911 0.715 1.000 1.000 0.985 0.608 0.605 0.225 0.939 0.898 0.747
LF2 0.912 0.911 0.715 1.000 1.000 0.985 0.608 0.604 0.225 0.939 0.898 0.747
LF22 0.912 0.911 0.715 1.000 1.000 0.985 0.608 0.604 0.225 0.939 0.898 0.747
HB2: A decrease of 0.04 in the volatility reaction parameter, i.e. y, = 0.01
LF20 0.529 0.524 0.350 0.987 0.951 0.731 0.196 0.194 0.114 0.694 0.644 0.363
LF2 0.529 0.524 0.349 0.987 0.951 0.731 0.196 0.194 0.114 0.694 0.643 0.363
LFz2 0.528 0.524 0.349 0.987 0.951 0.730 0.196 0.194 0.113 0.694 0.643 0.363
HS': A decrease of 13.5 in the DoF parameter, i.e. v, =3
LF20 0.293 0.290 0.176 0.777 0.758 0.283 0.164 0.159 0.092 0.393 0.354 0.169
LF2 0.293 0.290 0.176 0.777 0.758 0.281 0.165 0.159 0.093 0.393 0.354 0.169
LF2 0.293 0.290 0.176 0.776 0.757 0.282 0.166 0.159 0.093 0.393 0.354 0.169
H{2: A decrease of 14 in the DoF parameter, i.e. v, = 2.5
LF20 0.636 0.627 0.358 0.996 0.988 0.449 0.330 0.326 0.164 0.593 0.552 0.389
LF2 0.636 0.627 0.357 0.996 0.987 0.448 0.331 0.324 0.165 0.593 0.552 0.389
LF2 0.636 0.627 0.358 0.996 0.987 0.448 0.331 0.324 0.164 0.593 0.552 0.389
HY: 12 randomly selected returns in the simulated process multiplied by 5
LF20 0.041 0.042 0.041 0.035 0.052 0.039 0.041 0.042 0.041 0.035 0.052 0.039
LF2 0.041 0.042 0.040 0.035 0.052 0.039 0.041 0.042 0.040 0.035 0.052 0.039
LF2 0.041 0.042 0.041 0.035 0.052 0.039 0.041 0.042 0.041 0.035 0.052 0.039

Note: Empirical size and power, for a = 5%, of the loss-based Wilcoxon test under various hypotheses via 1000 simulations, for three types of risk measures (GARCH(1,1)-
skewed t, GARCH(1,1)-Gaussian and GAS-Hybrid) and three FZ loss functions with different degrees of positive homogeneity. VaR and ES are jointly estimated at 1% level.
We consider two sample sizes: 1000 and 3000, and different locations of the change point at |7 T| with 7 = 0.5 and 0.75.

~ ~ 2
(774 2k e — Ll
VF = sup

T2 S (1 k) + T S (k+1.T)]

: (17)

[N

where vt(@)T) and et(éT) are the estimated VaR and ES, and
Sut (k) = Shojlvn@r) = Uil Djuc = g eo;ve@r), as well

as Se,t (_], k) = ZZ:j[eh(HT) — éj,k]’ éj.k = k*}ﬁ Zf:] et (07") Table 3
presents the empirical size and power simulation results of the SN-
CUSUM tests for VaR and ES. The sizes of the SN-CUSUM tests are
close to the significance level, but their powers are generally less
than the power of our test for all loss functions considered.

One disadvantage of the standard CUSUM test is the low power
in detecting change points occurring in relatively early or late
segments of the sample period. As an alternative, Horvath et al.
(2020b) propose a Rényi-type statistic for change point detection
to mitigate this problem. However, when the change point happens
around the middle of the sample period, the detecting power of
the Rényi-type test is relatively low. The Rényi-type test works un-
der the assumption that there is no change point occurring within
the two trimmed domains, at the beginning and at the end of the

sample defined by the trimming parameter 7y. Thus, we consider
the alternative test (iii) a Rényi-type test based on the rank of loss
values. Specifically, the test statistic is a Rényi-type formulation of
the loss-based Wilcoxon test statistic:

k T
1 1
Dy := max - Ri— —— R; 18
T l7oT]<k<T—|70T] k ; ! T—k i;l ! ( )

with trimming parameter ;.

In addition to these, we consider the following two recently de-
veloped tests: (iv) the change point test for VaR of Hoga, and (v)
the change point test for ES of FGP.2! These two tests are based on
the self-normalized variance estimator of Shao & Zhang (2010).

Table 4 presents the simulations results for alternative tests (iii)
to (v) (in columns Rényi, Hoga, and FGP, respectively). The results

20 We use the FZ0 loss function to compute the loss values for GARCH(1,1)-skewed
t risk estimates. We implement the stationary bootstrapping based MC simulation
for the Rényi-type loss-based Wilcoxon test, instead of applying the asymptotic dis-
tribution that assumes normally distributed loss values.

21 We choose the historical quantile to estimate VaR and ES, in line with FGP,
instead of applying the Weissman estimator for VaR used by Hoga. Based on our
simulations, the critical value at 5% significance level is 80.21 for 7o = 0.2, which is
very close to the one given by Hoga.
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Table 3
Empirical size and power of the SN-CUSUM test for a change point in VaR and ES.

w =05 w =0.75
T = 1000 T =3000 T = 1000 T =3000
G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid G-Skt G-G Hybrid

Hy: Univariate GARCH(1,1)-skewed t, with (w1, y1, B1, V1, A1)=(0.05, 0.05, 0.9, 16.5, —0.5)

VaR 0.034 0.034 0.037 0.066 0.066 0.044 0.034 0.034 0.037 0.066 0.066 0.044

ES 0.034 0.034 0.043 0.066 0.066 0.043 0.034 0.034 0.043 0.066 0.066 0.043

H{': An increase of 0.04 in the volatility persistence parameter, i.e. 8, = 0.94

VaR 0.629 0.629 0.548 0.772 0.772 0.765 0.724 0.724 0.595 0.924 0.924 0.884
ES 0.629 0.629 0.546 0.772 0.772 0.765 0.724 0.724 0.600 0.924 0.924 0.884

H{‘Z: A decrease of 0.04 in the volatility persistence parameter, i.e. 8, = 0.86

VaR 0.361 0.361 0.307 0.783 0.783 0.676 0.100 0.100 0.104 0.353 0.353 0.317
ES 0.361 0.361 0.305 0.783 0.783 0.675 0.100 0.100 0.100 0.353 0.353 0.313

H{”: An increase of 0.04 in the volatility reaction parameter, i.e. Y, = 0.09

VaR 0.372 0.372 0.362 0.558 0.558 0.847 0.518 0.518 0.421 0.776 0.776 0.744
ES 0.372 0.372 0.361 0.558 0.558 0.847 0.518 0.518 0.421 0.776 0.776 0.743

HE2: A decrease of 0.04 in the volatility reaction parameter, i.e. y, = 0.01

VaR 0.295 0.295 0.303 0.769 0.769 0.683 0.091 0.091 0.092 0.338 0.338 0.296
ES 0.295 0.295 0.296 0.769 0.769 0.687 0.091 0.091 0.093 0.338 0.338 0.297

H{!: A decrease of 13.5 in the DoF parameter, i.e. v; =3

VaR 0.161 0.161 0.208 0.268 0.268 0.225 0.076 0.076 0.155 0.171 0.171 0.226
ES 0.161 0.161 0.210 0.268 0.268 0.223 0.076 0.076 0.157 0.171 0.171 0.225

H$2: A decrease of 14 in the DoF parameter, i.e. v, = 2.5

VaR 0.392 0.392 0.352 0.606 0.606 0.322 0.180 0.180 0.225 0.337 0.340 0.303
ES 0.392 0.392 0.341 0.606 0.606 0.319 0.180 0.180 0.223 0.337 0.340 0.302

HY: 12 randomly selected returns in the simulated process multiplied by 5

VaR 0.033 0.033 0.047 0.046 0.046 0.048 0.033 0.033 0.047 0.046 0.046 0.048
ES 0.033 0.033 0.047 0.046 0.046 0.047 0.033 0.033 0.047 0.046 0.046 0.047

Note: Empirical size and power, for a = 5%, of the SN-CUSUM test for VaR and ES, considered individually, under various hypotheses via 1000 simulations, for three types of
risk measures (GARCH(1,1)-skewed t, GARCH(1,1)-Gaussian and GAS-Hybrid). VaR and ES are jointly estimated at 1% level. We consider two sample sizes: 1000 and 3000,
and different locations of the change point at |7 T] with 7 = 0.5 and 0.75.

Table 4
Empirical size and power of alternative tests for a change point.
T =05 T =0.75
T = 1000 T = 3000 T = 1000 T = 3000
Rényi Hoga FGP Rényi Hoga FGP Rényi Hoga FGP Rényi Hoga FGP

Hy: Univariate GARCH(1,1)-skewed t, with (w1, y1, B1, v1, A1)=(0.05, 0.05, 0.9, 16.5, —-0.5)

0.045 0.148 0.104 0.044 0.107 0.105 0.045 0.148 0.104 0.044 0.107 0.105

H{1: An increase of 0.04 in the volatility persistence parameter, i.e. B, = 0.94

0.966 0.602 0.596 1.000 0.736 0.749 0.967 0.758 0.728 1.000 0.934 0.924

H{*Z: A decrease of 0.04 in the volatility persistence parameter, i.e. 8, = 0.86

0.396 0.318 0.291 0.854 0.507 0.465 0.391 0.186 0.137 0.934 0.208 0.162

HE': An increase of 0.04 in the volatility reaction parameter, i.e. y» = 0.09

0.794 0.488 0.486 0.968 0.617 0.644 0.799 0.631 0.646 0.988 0.863 0.863

HEB2: A decrease of 0.04 in the volatility reaction parameter, i.e. y, = 0.01

0.338 0.344 0.290 0.851 0.559 0.529 0.337 0.164 0.134 0914 0.213 0.172

H{!: A decrease of 13.5 in the DoF parameter, i.e. v, =3

0.193 0.209 0.211 0.461 0.194 0.264 0.268 0.200 0.244 0.648 0.196 0.348

H{2: A decrease of 14 in the DoF parameter, i.e. v, = 2.5

0.445 0.263 0.210 0.833 0.210 0.220 0.576 0.196 0.243 0.907 0.173 0.279

H(’)J: 12 randomly selected returns in the simulated process multiplied by 5

0.044 0.144 0.115 0.039 0.104 0.099 0.044 0.144 0.115 0.039 0.104 0.099

Note: Empirical size and power, for a = 5%, of three alternative tests (iii), (iv) and (v) under various hypotheses via 1000 simulations. We consider two sample sizes: 1000
and 3000, and different locations of the change point at |7 T| with 7 = 0.5 and 0.75. For the Rényi-type test, we choose the loss values computed by the FZ0 loss function
with 1% VaR and ES estimated by the GARCH(1,1)-skewed t model.



JID: EOR

E. Lazar, S. Wang and X. Xue

1.001.00

0.70.77
0.75
0.74.

Al
H Wilcoxon

1.00

0.90

0.80

0.70

e o
O o
o =]

Rejection rate

o
>
o

0.30

0.20

0.110,11
0.10

0.060.06
0.040.04,

No break

0.00

0.99
.5
0.720.78
Nos1
N 046
A2

M Renyi-type

B1

VaR

[m5G;April 14, 2023;12:29]

European Journal of Operational Research Xxx (XXxx) Xxx

0.7%0.77

0,53 0.50.54

0.27.27  0.26

02022

0-1%.10

0.04.040%0:05

B2
NES

c1
Hoga

(o)
FGP

Fig. 1. Size and power of the loss-based Wilcoxon test and alternatives. Note: Empirical size and power of the loss-based Wilcoxon test with five alternative tests (i)-(v)
under various hypotheses described in Section 4.1 at 5% significance level when the change point occurs at [0.5T]. For the Wilcoxon test and Rényi-type test, we use the
FZ0 loss function to compute the loss values. For all tests except Hoga and FGP, 1% VaR and ES are estimated by the GARCH(1,1)-skewed ¢t model.

highlight that our test outperforms tests (iv) and (v) in all cases.
We outperform the Rényi-type test (iii) when the change point
occurs at |0.5T], but when the change point occurs at |0.75T],
test (iii) has better power properties than our test. This meets our
expectation that the Rényi-type test has high power in detecting
change points occurring relatively early or late in the sample, but
has lower power in the middle. For our simulation setup, we find
the Hoga and FGP tests to be oversized under the null hypothesis
and to have less power than the Rényi-type loss-based Wilcoxon
test.2?

To offer a visual demonstration, Fig. 1 compares the loss-based
Wilcoxon test using the FZ0 loss function with tests (i) to (v), from
the point of view of size and power. The five alternatives are de-
noted by VaR, ES, Rényi-type, Hoga, and FGP, respectively. For the
loss-based Wilcoxon test and alternative tests (i)-(iii), the VaR and
ES are obtained using the GARCH(1,1)-skewed t model. The tests
are performed at 5% significance level, and we assume that the
change point occurs at |0.5T| under the alternative hypotheses.
Based on the empirical sizes of the Hoga and FGP tests under Hy
and Hg, it can be concluded that these tests are oversized for the
DGP considered. The loss-based Wilcoxon test has higher power
than the alternatives for all scenarios of change points correspond-
ing to the different alternative hypotheses. The SN-CUSUM tests
work relatively well when volatility changes, but have lower power
when the DoF parameter decreases. Overall, our proposed test can

22 In Table S.5 of the Supplemental Appendix, we show that the loss-based
Wilcoxon test has strong power in detecting the change point in the series of VaR
and ES estimated by historical simulations. In Figure S.2 we present the power
curves of this test for three (semi)parametric models with alternative tests to show
the detection power in terms of the marginal change in parameters. Figure S.3
compares our test with alternative tests in terms of size and power for AR(1) and
ARCH(1) processes, which are the DGPs used by FGP. Our results are consistent with
the results in Tables 2 and 4.

identify change points in the risk measures of time series with the
correct size and stronger power than all five alternatives consid-
ered.??

3.3. Simulation study for the location of change point estimator

In this section, we perform two simulations. The first one inves-
tigates the accuracy of the estimator for the location of a change
point based on the loss-based Wilcoxon test. In the second study,
in order to provide new insights of practical relevance and decision
support, we evaluate how quickly after the event the estimator can
identify the change point (the delay in detection).

We consider a univariate GARCH(1,1) skewed t process as the
DGP of the returns series, as demonstrated in (15). This model
is used to build the risk measures. For the simulations, we con-
sider a sample size of T = 1000 and we assume that the change
occurs at |0.5T]. We consider one of the scenarios listed in
Section 3.1 where after the change point, the volatility persistence
parameter B, increases from 0.90 to 0.94. We apply our proposed
loss-based Wilcoxon test and the Rényi-type test, as well as two
benchmark tests to identify the location of the change in the risk
measures. Figure 2 shows the estimated locations of the change
points obtained via these tests. The values on the x-axis represent
the difference between the estimated change point and the actual
change point. In these histograms, the red lines indicate the 5%,
95% quantiles and the median of the estimated locations. The 90%
confidence interval (around from —25 to 50) of the estimated lo-
cation of change point obtained via the loss-based Wilcoxon test is
narrower than the one generated by the other tests. This leads to

23 In Figure S.4 of the Supplemental Appendix we present the results when the
change point occurs at |0.75T].
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Fig. 2. The histogram of estimated relative location of change point kw (1000) for
7 = 0.5. Note: The estimated location of change point relative to the actual change
point obtained via the loss-based Wilcoxon, Rényi-type, Hoga and FGP tests at 5%
significance level with T = 1000 when the change point occurs at [0.5T]. In the
simulation, we use the GARCH(1,1)-skewed t model to generate the return process
and to obtain 1% VaR and ES estimates. For the Wilcoxon test, we use the FZ0 loss
function to compute the loss values. The red lines indicate the 5% and 95% quantiles
and the median of the estimators. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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the conclusion that the loss-based Wilcoxon test has more accurate
detection than the benchmark tests.

In order to evaluate the delay in the detection of a novel change
point, we propose an expanding window procedure, as detailed
below, following Smith & Timmermann (2021). Starting with a
change point detection based on the first half of observations, the
detection window is sequentially expanded by five days forward
and the detection procedure is re-implemented until the end of
the sample is reached. We consider the same DGP setup as the one
used in the in-sample simulation with the change point occurring
in the middle of the sample. We use a sample size of T = 3000 to
ensure the asymptoticity of the test, and we sequentially apply the
Rényi-type loss-based Wilcoxon test, which is more powerful for a
change point occurring towards the end of sample. Figure 3 shows
the histogram of the delay of detection for a new change point ob-
tained by the Rényi-type Wilcoxon test. The blue bars indicate the
frequencies of delays for a novel change point, with the red line in-
dicating the 95% quantile of detection delays. Following Harvey &
Liu (2020), the testing performance is gauged by two metrics: the
test power (1-Type II error rate) and the test size (Type I error
rate). Thus, to evaluate the probability of a false discovery, we re-
peat the above procedure under the null hypothesis of no changes
in risk measures. In Fig. 3, the orange bars represent the frequen-
cies of false detections under the null hypothesis. By mitigating
the overlapping areas of the blue and orange bars, we have the
corrected performance of the detection delay by considering both
false and missed discoveries. Practically, we require roughly 50 to
100 observations (two to four trading months) to identify a novel
change. This is reasonable given that the object of the forecasts is
VaR and ES at 1% level.

4. Empirical application

In this section, we apply our proposed Wilcoxon change point
test to S&P 500 index daily log returns. The index data is collected
from Datastream and spans the period from January 2, 1990 to
December 31, 2019, in total 7559 observations. We apply the pro-
posed loss-based Wilcoxon test to detect change points in the 1%
VaR and ES risk measures estimated by the GARCH(1,1)-skewed t
model. Based on our simulations above that consider the Wilcoxon
tests based on loss functions with different degrees of positive ho-
mogeneity, it can be concluded that our test is not sensitive to
the choice of loss function. As such, in the empirical section we
only use the FZO0 loss function to compute loss values, following
Patton et al. (2019) and Dimitriadis & Schnaitmann (2021). In or-
der to see the usefulness of change point detection, we compare i)
the average FZ0 loss values obtained when the change points are
taken into consideration with ii) the average FZ0 loss values when
change points are ignored. We will show that by detecting change
points, superior risk estimates are obtained, which will highlight
the practical relevance of detecting change points in VaR and ES
series.

In order to find change points in the risk measures, we first
compute the loss-based Wilcoxon test statistic Wr. Then, we boot-
strap the return process 1000 times via the stationary bootstrap
method with the optimal block length (Patton et al., 2009; Politis
& White, 2004), obtain the empirical distribution of the Wilcoxon
statistic and get the 95% critical values. If the test statistic Wy
is larger than the critical value, we reject the null hypothesis of
no change. In such cases, a change point is detected, and we fol-
low the binary segmentation method discussed by Inclan & Tiao
(1994) and Ye et al. (2012) to find further change points. Specifi-
cally, the data can be split into sub-periods according to the loca-
tions of the detected change points until no further change point
can be found. The detailed algorithm and procedure of detecting
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Fig. 3. The histogram of the delay of detection for a new change point by the Rényi-type Wilcoxon test. Note: The blue histogram is for the delay of detection for a new
change point obtained via the Rényi-type Wilcoxon test at 5% significance level with T = 3000. The orange histogram is for the false detections under the null hypothesis. In
the simulation, we use the GARCH(1,1)-skewed t model to generate the return process and to build 1% VaR and ES estimates. For the Rényi-type Wilcoxon test, we use the
FZ0 loss function to compute the loss values. The red line indicates the 95% quantile of the estimated delay. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

multiple change points can be found in Figure S.5 of the Supple-
mental Appendix.

Based on our test, the earliest change point we detect in the es-
timated risk measures occurred in June 1992 (following the early
1990s recession in the United States). The second change point oc-
curred in December 1996 (the start of the dot-com bubble). Then
another change point is identified in June 2003 (after the burst of
the dot-com bubble), and the following change points are in July
2007 (the beginning of the subprime mortgage crisis), September
2008 (the bankruptcy of Lehman Brothers), July 2009, and January
2012 (the start and end of the European debt crisis). We also suc-
cessfully detect change points associated with the 2015-16 stock
market selloff?* and the 2018 cryptocurrency crash?®. Figure 4
presents the returns as well as the risk estimates, highlighting the
detected change points. Additionally, we apply this test for other
estimation approaches (GAS-Hybrid and historical simulations) and
compare the empirical results with alternative tests applied for the
same sample (more details can be found in Tables S.6 and S.7 of
the Supplemental Appendix).

Table 5 reports the GARCH(1,1)-skewed t parameter estimates
and standard errors obtained by the QMLE method for each sub-
period, the average VaR and ES estimates, and the average loss
values. Firstly, it can be seen that the volatility parameters and the
DoF estimates experience large changes across the sub-periods,
which leads to change points in the VaR and ES processes as
well. For instance, after the burst of the dot-com bubble, we can
observe a decline in the level of the volatility. Moreover, we can
see a large reduction in the value of the DoF parameter from 11.1
to 6.5 during the European debt crisis period. Secondly, during a
crisis or a crash period, VaR and ES are high in absolute values,
as can be seen in the 2007-2008 financial crisis and the European
debt crisis. The average loss values are also found to be generally
higher during crisis periods than during stable periods. Finally,

24 Between August 2015 and early 2016, the S&P 500 and DJIA dropped more than
10% twice.

25 The S&P 500 index dropped almost 20% between September and December
2018.

1

we calculate the average FZ0 losses for each subsample based
on the parameter values estimated within sub-periods (denoted
by “Loss”) and average FZO losses based on the parameter values
estimated within the whole sample period (denoted by “Loss_NC”),
respectively. When change points are taken into consideration, the
FZ0 loss values are typically lower than the ones computed when
the change points are ignored (this can be seen comparing “Loss”
and “Loss_NC” in Table 5), which means that the risk values esti-
mated based on the change points are superior to the risk values
that do not take the change points into account. According to our
findings, it can be concluded that risk management practitioners
can improve on the risk estimates by first identifying change
points in the loss series of risk measures and then computing
model parameter values based on the identified change points.

Another essential concern of risk managers is how quickly
a test is able to identify a novel change point in risk measure
estimates, which would enable them to adjust the parameters of
their risk model in a timely manner. To address this issue, we
implement an expanding window procedure to highlight the speed
of change detection based on the test proposed in Section 3.3.
Starting with the initial window of the first 3000 observations of
our data, the detection window is sequentially expanded forward
by one month and the detection procedure is repeated until the
end of the sample is reached. We apply the proposed loss-based
Wilcoxon test and the binary segmentation method to detect
multiple change points in the 1% VaR and ES risk measures esti-
mated by the GARCH(1,1)-skewed t model. To further support the
decision-making of risk managers, we implement a “traffic light”
approach built on the loss-based Wilcoxon test for the detection
of change points in the risk measure estimates. According to this,
“Green” means that there is no change point on that day, “Yellow”
means that there is a change point on that day detected at 10%
significance level, and “Red” means that there is a change point
on that day detected at 5% significance level.

Figure 5 shows the change point dates estimated via the ex-
panding window procedure above, at 5% and 10% significance lev-
els, respectively. The vertical solid line denotes the initial window
for estimating risk measures and implementing the test for change
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Fig. 4. Daily S&P 500 index returns and risk estimates at 1% level. Note: Daily S&P 500 index returns and 1% VaR and ES estimates obtained by the GARCH skewed t model.
The vertical dash lines are at the estimated change points.

Table 5

GARCH(1,1)-skewed t estimation results.

Panel A: Whole sample estimation results

Parameters

w

14

B

v

A

Estimates

0.009 (0.002)

0.087 (0.007)

0.910 (0.008)

6.479 (0.495)

—0.078 (0.014)

Panel B: Subsample estimation results

1990/01-1992/05

1992/05-1996/12

1996/12-2003/06

2003/06-2007/07

2007/07-2008/09

w 0.031 (0.012) 0.013 (0.006) 0.084 (0.022) 0.021 (0.007) 0.153 (0.075)

y 0.037 (0.013) 0.039 (0.013) 0.092 (0.017) 0.031 (0.014) 0.032 (0.036)

B 0.924 (0.023) 0.925 (0.024) 0.862 (0.024) 0.924 (0.023) 0.881 (0.032)

v 7.343 (1.992) 5.567 (0.817) 9.943 (2.264) 11.137 (4.338) 14.078 (11.435)

A 0.001 (0.002) ~0.008 (0.039) ~0.042 (0.037) ~0.076 (0.030) ~0.081 (0.066)

VaR ~2237 ~1.491 ~3.270 ~1.719 —3.424

ES —2.805 -1.952 —4.000 —2.097 —4.095

Loss 1.038 0.747 1431 0.702 1.244

Loss_NC 1.135 0.736 1475 0.815 1.400
2008/09-2009/07 2009/07-2012/01 2012/01-2016/07 2016/07-2018/01 2018/01-2019/12

w 0.012 (0.154) 0.036 (0.013) 0.075 (0.016) 0.059 (0.052) 0.042 (0.012)

y 0.063 (0.059) 0.119 (0.028) 0.170 (0.034) 0.047 (0.089) 0.181 (0.042)

B 0.930 (0.072) 0.860 (0.024) 0.723 (0.041) 0.692 (0.276) 0.773 (0.038)

v 11.378 (9.630) 6.736 (1.683) 8.019 (1.819) 3.814 (0.684) 6.189 (1.830)

A —0.047 (0.067) —0.151 (0.042) —0.089 (0.035) 0.113 (0.059) ~0.211 (0.062)

VaR ~7.044 ~3223 ~2.074 ~1.071 ~2.532

ES —8.517 -4.138 ~2.601 ~1517 -3.299

Loss 1.973 1270 0.916 0.748 1.181

Loss_NC 2.109 1362 1.011 0.827 1.435

Note: Estimated parameter values and standard errors for @, B, y, v, and A in the GARCH(1,1)-skewed ¢ model: o2 = w+,80[{1 + yufﬁ,,ut ~i.i.d. skewed t (v, ) for the
S&P 500 index. Panel A shows the estimated values and standard errors of parameters in the GARCH(1,1)-skewed t model over the whole sample period. Panel B presents
the estimated parameter values and standard errors in 10 sub-periods. We also report the average VaR and ES at 1% level and the associated average FZO loss values
using the parameters estimated within the sub-periods (Loss) and the average FZ0 loss using parameters estimated over the whole sample period without consideration

of change points (Loss_NC).

points detection. The solid line with slope denotes the points at
which a change point could first be detected with a delay of zero.
The red and yellow bubbles on the plot mark the change point
dates as estimated in the expanding window procedure at 5% and
10% significance levels, respectively, with horizontal bands of bub-
bles indicating that the change points are detected in subsequent
windows. In the figure, to add clarity, we add green bubbles only

12

for the change points which are confirmed by red bubbles in sub-
sequent windows. Thus, the length of the green bands shows the
delay in detecting change points at 10% level, whilst the joint
length of the green and yellow bands shows the delay in detecting
change points at 5% level. In this study, we define the delay as the
number of months between the point when a change point is first
detected and the change point. The isolated bubbles outside the
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Fig. 5. Traffic light plot for the loss-based Wilcoxon test for 1% (VaR, ES) of daily S&P 500 index returns. Note: The 1% VaR and ES estimates of daily S&P 500 index returns
are obtained by the GARCH skewed t model. The vertical solid line denotes the end point of the initial estimation period, the x-axis shows the estimation date, and the
y-axis shows the dates of the estimated change points. The red (yellow) bubbles mark the change point dates estimated at 5% (10%) level. The length of green bands shows
the delay in the change detection at 10% level. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Histograms of the delay of change detection in the 1% (VaR, ES) of daily S&P 500 index returns. Note: The 1% VaR and ES estimates of daily S&P 500 index returns are
obtained by the GARCH skewed t model. This plot displays the histograms the delay in detecting change points, for the loss-based Wilcoxon test at 5% and 10% significance

levels.

horizontal bands are treated as “false discoveries”. Figure 6 shows
the distribution of the delay in detecting change points (until first
detection) at 5% and 10% significance levels. Overall, at 5% level,
the length of delay is up to six months in about 70% of the cases,
consistent with the results shown in Fig. 3.

5. Conclusions

We propose a new test, named the loss-based Wilcoxon test,
to detect change points in the series of VaR and ES risk mea-
sures considered jointly. Our test is based on the Wilcoxon test
(Dehling et al., 2013) applied to the FZ loss functions proposed by

13

Fissler & Ziegel (2016). The framework of our test is general and
can accommodate for any type of (semi)parametric estimation
methods for VaR and ES. We perform extensive simulations based
on various types of change point scenarios, including different lo-
cations for the change points and different changes in the volatility
and DoF parameters. Our results show that the proposed test has
better size under the null hypothesis and higher power properties
under the considered alternative hypotheses, compared with five
different alternative tests. We present an application of the loss-
based Wilcoxon test on the S&P 500 index returns. The empirical
results show that the test can detect the change points associated
with well-known financial events.
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Appendix A. Proof of Theorem 2.1

Proof. In general, the Hoeffding decomposition can be applied to
a U-statistic with a kernel h(x,y), so that we have:

h(x,y) = Yo+ hi(x) + ha(y) +&(x, y),
where wo = E[h(xr Y)]r h] (X) = E[h(xs y) - Ipo]v h2 (y) =
E[h(X,y) — Yol and g(x,y) = h(x,y) — h1 (x) — ha(¥) — Yo.

We have the properties for these three terms:
E[h1(X)] = E[h2(X)] =0 (B.1)
and
E[gx,Y)] =E[g(X.y)] =0 (B.2)

The proof of Theorem 2.1 is based on a lemma introduced be-
low.

Lemma B.1 (Dehling & Wendler, 2010). Let h be a 2-Lipschitz-
continuous kernel with 2+38 moments for some § >0, {Xp}ney
be a stationary strong mixing process with E[|X;]|”] < oo for some

_ _ . 3y 842545y +2 _
y >0 and o(T) =0(T~") with p > B ma then for Vr(g) =

ﬁ_w Z1Si<]57g(x,-,xj), we have

E[TVZ(®)] < T(T—1)2 Y D Bl X,)g(X. Xl
1<iy<ip<T 1<iz<ig<T
4 T
< el Z |E[g(le, )g( iz» ‘4)” =0(T™)
iy,ip,i3,i4=1
where n:min{p% —1,1] > 0.

The proof of this lemma can be found in Dehling & Wendler
(2010) as the proof for Lemma 3.6.

Recall hy (L;, L) is antisymmetric with 1o =0. In order to
prove the asymptotic normality of this U-process, we use the Ho-
effding decomposition for the kernel hy (L;, L;):

hyw (Li, Lj) = hy (L) + ha(L;) 4+ 8(Li, ;).

Thus, based on (6), we have the decomposed U-process:

LT} T
T3/2UT(T) = T3/2 Z LX% [hl(Li) +hy(Lj) +g(Li,Lj)]
i=1 j=|tT|+1

1 [zT]
= 73| T—LtTD) Y- b (L) + LT}

i=1

T
> (L))

j=ltT]+1
|zT] T
+> > gLy

i=1 j=|7T]+1

By Lemma B.1, we have that for a given t €[0,1], the upper
boundary of the variance of T3/2 ZLT” ZJT-:LTTJH gL, Ly):

1
T3 > > |E[8(Li17Liz)g(LigﬁLi‘,)]‘
ip=1:[7T] is=1:[7T]
iy=|tT|+1:T ig=|tT|+1:T
1
=73 > > IElgi,. Liy)g(Ly,. L]
1<iy<i;<T 1<iz<iy<T
1 T
<73 > [Elg(Ly,. Ly)gLi,, L] = O(T"). (B.3)
i1,0p,13,i4=1
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Hence, the variance of — L Y i_er)+18(L;. Lj) vanishes as T
increases.
By (B.2) and (B.3), we have

LT} T
m sup Z Z g, Lp)| —
0=7<1 i1 j_|zT|+1

in probability.
Thus, by the Lemma of Slutsky, it is enough to show that the
sum of the first two terms

[ Ty 7T
T3/2

Z h](L) T3/2

converges in distribution to the limit process of Theorem 2.1. Be-
cause the kernel hy (L;, L;) is antisymmetric, we have that hy(L;) =
—hy(Lj). Thus, we can rewrite the representation as

j=ltT]+1

T
> hz(Lj):|
O<t<1

LzT] T
— |zT tT
T3L/2 J Zhl(l‘) |:1~3/2J Z hq (L)
i i=tT]+1
1 1TT] &

=mzh1(1~i) Zhl(L)
i1

To obtain the limit of the process, we state the theorem below,
which is a direct consequence of Theorem 4 in Borovkova et al.
(2001) and Theorem 3.1 in Davidson & De Jong (2000).

T3z

Theorem B.1. Let {Y,}..z be a L, near-epoch dependent (NED) with
respect to a strong mixing process. Also, suppose that E[Y;] =0 and
E[|Y;|4"%] < oo for some 8 > 0. Then, as T — oo,

1 & d
—ZY,- > N(0,02),
ﬁi:l

where 02 = Var(Yy) + 2332, Cov(Yy, Yy).

The proof of the theorem follows immediately from Borovkova
et al. (2001) and Davidson & De Jong (2000).

Based on Assumption 2.1 (B), applying Theorem B.1 on the par-
tial sum process and using similar arguments as in Chapter 4 of
Csijrgé & Horvath (1997) and Donsker’s theorem, it can be shown
that 1—/2 ZLT” hi(Ly) — % ZiT:1 hi(L;) converges to a limit pro-
cess aW[W(r) - tW(l)I]}ogg, where {W(7)}o<r<1 is a Wiener
process, and

O’VZV = Var(h1 (L] )) +2 Zcov(hl (Ll )a hl (Lk))
k=2

Additionally, we have that h;(x) = 5 — F(x). Thus,

=Var(F(Ly)) + 2 ZCov(F(h ), F(Ly)).

k=2
By the Lemma of Slutsky, we obtain that as T — oo, 5 Ur(7)
converges in distribution to {owB(T)}o<r<1, Where B(7)=

W(t)—-tW() is a Brownian bridge and 0V2V=Var(F(L1))+
2392, Cov(F(Ly),F(L)). O

Appendix B. Proof of Theorem 2.2
In the following, we discuss the £2-Lipschitz-continuity prop-
erty for the kernel hy, (X,Y).

Definition C.1. (#-Lipschitz-continuity) Let {X;};.y be a station-
ary process. A kernel h is called £2-Lipschitz-continuous if there is
a constant a > 0 with

E[|h(X.Y) —h(X". Y)[1[|X = X'| < €]] < ae.
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for every € > 0, every pair X and Y with the common distribution
2%, x, for ke N with k> 1 or 2, x Zx, and X" and Y also with
one of these common distributions.

To prove Theorem 2.2, we need the following preliminary re-
sult.

Proposition C.1. If Assumption 2.1 (B) holds, then the antisymmetric
kernel hy (X,Y) =1[X <Y] - % for the test statistic is 2-Lipschitz-
continuous.

The proof of this proposition can be found below.

Proof. The kernel hy, (X,Y) is £-Lipschitz-continuous, if there is a
constant a > 0, so that for all € > 0 and every common distribution
of X, X' and Y,

E[lhw (X, Y) = hw (X, Y)[1[IX = X'| < €]] < ae.
For random variables X, X’ and Y, we have:
E[lhw (X.Y) = hw X" V)[1[1X = X'| < €]]
=E[[1[X <Y]-1[X <Y][IX-X'| <€]].
We have:
E[MX <Y]-1[X" <Y][1[IX - X| <€]] < P(-e <X X' <e).

Based on Assumption 2.1 (B) on the continuous distribution
function, there exists a constant a = 2 sup(f) that satisfies the fol-
lowing:

PX' —e<X<X +e€)=FX +¢)

X'+e€ a
:/ f(t)dt < = -2€ =ae.
e 2

—F(X' —¢€)

Thus, based on Definition C.1, the antisymmetric kernel of the
Wilcoxon test statistic hy (X,Y) is £2-Lipschitz-continuous. O

Now, we can turn our attention to the proof of Theorem 2.2.

Proof. In order to obtain the asymptotic behavior of the boot-
strapped U-process, we use the Hoeffding decomposition for the
bootstrapped kernel hyy (L}, L*f):

hw (L}, L7) = hi(L}) + ha(L}) + &(L}. LF).

Thus, we have the decomposed bootstrapped U-process:

LT} T
1
732U (1) = m Yo > M) +ha@) +8. L]
i=1 j=|7T]+1
1 LzT] T
= 55| T=LTTD Mm@ +1eT] Y ha(t))
i=1 j=lTT]+1
LzT] T
+Y > gLy (C.1)
i=1 j=|tT]+1

In the following, we are going to use the result below:

Lemma C1 (Hwang & Shin, 2015). Let h be a 2-Lipschitz-
continuous kernel with 2 +§ moments for some & > 0, {X;}nen be
a stationary bootstrapped strong mixing process with E[|X;|"] < oo

for some y >0 and a(T) = O(T~*) with p > 37’6*5‘3% then for

Vi(g) = ﬁ_l) D1<icjer 8 XF):
E[TV;*(®)] =0(T™),
where n = min{p% - ],1} > 0.

The proof of this lemma can be found in Hwang & Shin
(2015) as the proof for Lemma 2.
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As shown in Lemma C.1, the variance of the last term in
(C.1) vanishes as T increases:

LzT] T
T3/2 > > sdiL
i=1 j=|tT]+1

Thus, by Lemma of Slutsky and the property of kernel shown in
(B 2), it is enough to show that

— LT}

T3/2

L77]

X ) + s

T3/2

j=|tT]+1

T
> h (L}")j|
0<t=<1

converges in distribution to the limit process of

T
> hz(Lj)} :
0<t=<1

j=ltT]+1

[7T]

E:hﬂL)+

Because the kernel hW(L;*,L}‘.) is antisymmetric, we have that
hy (L;) =—-h (L}f). Thus, we can rewrite the representation as:

- [7T]
T3/2

[T
T3/2

L77]

— [T} L2 .
T3/2 Z hl (L ) - T3/2 Z h] (Ll)
i i=[tT]+1
1 A (7T &

= Ti2 T372

> (L) - Z hy (L}).

i=1

To obtain the limit of the process, we restate the theorems of
Calhoun (2018).

Theorem C.. Let {Y}y.; be a L, near-epoch dependent (NED)
with respect to a strong mixing process. Additionally, suppose
that pnt — fin is uniformly bounded, where pn = E[Yn] and fin =
n=1 30 tne. Then we have:

P (VY —E*[Y]) <x) — P(Vn(Yy — E[Yn])<x)|—>0

sup
xeR

where ¥y = 1 S0 Yo, and Y = 130 v

Theorem C.2. Suppose that the conditions of Theorem C.1 hold and
let d be any distance function that metricizes weak convergence. Then
we have:

PH(d(Z:, oW) > 8) > 0, (C2)

for all positive 8, where Z:(t) = [ZL””( — E*[Y#]), and oW
denotes a Brownian motion scaled by the positive constant o. If, in

addition, supy_y _n |Mne — fln| = 0(1/4/n) and
Lyn]

n=' Y Cov(Yes, Yor) — 02y
s,t=1

for all y €]0,1], then
P*(d(Zy, o W) > 8) 5 0,
for any positive §, where Z,(t) = f ZLT"J (Yne — fin).

(C3)

Since both (C.2) and (C.3) hold, the distribution of bootstrapped
values Z} can be used to approximate the distribution of Z,, be-
cause they have the same distribution asymptotically.

The assumptions listed in Theorem C.1 of Calhoun (2018) are
satisfied under Assumptions 2.1 and 2.2 in our study. Applying
Theorem C.1 and Theorem C.2 for hy(L;), we have:

[T [TT] <
su hi(L}) <x | — hi(L;) <x 0
XEHE (T3/2 Z 1Ly = T3/2 Z 1(Lo)
1 |TT] 1 [zT] p
sup p mE:IH(L;*)SX -pP WZh1(Li>5x 5o,
i=1 i=1
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As such, based on the Lemma of Slutsky, we have:

1 [zT] LTTJ T
ilelnle? P T2 Z hi(Ly) - T2 zhl(L?) <x
i=1 i=1
[TT] T
1 T
[ m 2o mao LS iy <x)| Lo,
i=1 i=1

Thus, we obtain the convergence in probability in (11):

sup |P*(T-32U; (1) < x) — P(T-*2Ur (1) < x)| 5 0.

XeR

O

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.ejor.2023.03.033.
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