
And the first runner-up is...: comparing 
winner selection procedures in multi-
winner Tullock contests 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Chowdhury, S. M., Mukherjee, A. ORCID: 
https://orcid.org/0000-0001-7566-6526 and Turocy, T. L. 
(2022) And the first runner-up is...: comparing winner selection
procedures in multi-winner Tullock contests. Review of 
Economic Design. ISSN 1434-4750 doi: 10.1007/s10058-022-
00315-5 Available at https://centaur.reading.ac.uk/111448/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1007/s10058-022-00315-5 

Publisher: Springer 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Review of Economic Design
https://doi.org/10.1007/s10058-022-00315-5

ORIG INAL PAPER

And the first runner-up is...: comparing winner selection
procedures in multi-winner Tullock contests

Subhasish M. Chowdhury1 · Anwesha Mukherjee2 · Theodore L. Turocy3

Received: 30 April 2021 / Accepted: 12 October 2022
© The Author(s) 2022

Abstract
We characterise the strategic equivalence among k-winner contests using simultane-
ous and sequential winner selection. We test this prediction of strategic equivalence
using a series of laboratory experiments, contrasting 1-winner contests with 2-winner
contests, varying in the latter whether the outcome is revealed sequentially or in a
single stage. We find that in the long run, average bidding levels are similar across
strategically-equivalent contests. However, adaptation in 2-winner contests is slower
and less systematic, which is consistent with the property that simultaneous winner
selection results in outcomes that are more random than in the 1-winner case.
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1 Introduction

Many contests result naturally in more than one contestant “winning.” Universities
admit a subset of the students who apply each year; only some athletes trying out
for a sports team will “make the cut”; and many academic conferences accept only
some of the papers submitted.1 In most of these cases the final outcome is stochastic
instead of deterministic, and therefore the framework initiated by Tullock (1980) is
appropriate. However, although in these settings each contestant chooses an “effort”
level once, the same effort can be used for multiple selection draws (e.g., Clark and
Riis 1996; Fu et al. 2014), and unlike Tullock’s original model, more than one of them
are successful.

For the case of a single-winner contest, Tullock (1980)’s model sets the ratio of
the probabilities that any two contestants i and j win the contest to be the ratio of
their respective effort levels. Several different approaches have been proposed which
extend this contest success function to the case in which there are k ≥ 1 of prizes with
equal value. Berry (1993) was the first to propose such an extension. Berry (1993)’s
approach can be thought of as a contest among all subsets of contestants of size k.
Specifically, for each subset of k players, the effort of that subset is given by summing
the efforts of the players comprising the subset. These group efforts are then the inputs
into Tullock’s contest success function. The “contestants” in Berry’s model are thus
not the individual players, but the possible subgroups of winners, and the winners are
determined as a joint selection as a group. In the case of k = 1 it is immediate that
Berry’s mechanism reduces to Tullock’s.

Berry (1993)’s description of this extension to the Tullock contest success func-
tion therefore has an unusual feature: contestants are ultimately successful as a group,
but each chooses their efforts individually and independently. Loosely speaking, in
an n-contestant contest, their efforts contribute to the chances of winning of

(n−1
k−1

)

“teams” with different compositions. Chowdhury and Kim (2014) proposed an alter-
native mechanism which does not express the chances of success in terms of groups:
their survivor selection mechanism ranks players from last up to first, eliminating one
player at each stage using a Tullock-style contest failure function, and so unfolds over
(up to) n − 1 stages.

There are a few experimental studies looking at the relative optimality of different
types of multi-winner contests vis-á-vis the single-winner contest. For example, Her-
bring and Irlenbusch (2003) andMuller and Schotter (2010) report that multiple prizes
generate higher effort than a single prize in perfectly discriminating all-pay contests,
whereas, Chen et al. (2011), Sheremeta (2011), and Shupp et al. (2014) study multiple
prizes in imperfectly discriminating contests. In particular, Chen et al. (2011) study
the provision of an additional prize in a rank-order tournament with heterogeneous
players, and Sheremeta (2011) and Shupp et al. (2014) compare a single-winner con-
test with multi-winner contests where the multiple winners are selected via a sequence
of single-winner draws as in Clark and Riis (1996).

1 See (Sisak 2009) for a complete survey on multi-winner contests.
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In this paper, we provide a first experimental study in contest design inmulti-winner
Tullock-style contests.2 We generalise the analysis of Chowdhury and Kim (2014) to
show that, in the case in which there are k winners who each receive a prize of the
same value, the survivor selection mechanism produces the same distribution over
prize allocations as Berry (1993)’s joint selection, for all configurations of contes-
tants’ efforts. This result proposes a null hypothesis that these mechanisms should be
equivalent in principle, and will elicit comparable levels of efforts from the partici-
pants. This equivalence is important to note. As shown in Fu and Lu (2009), under
a sequential winner selection process, a grand contest provides higher level of effort
than a set of small contests. However, Chowdhury and Kim (2017) show that this
result is reversed when a sequential loser elimination process is employed. Hence, the
equivalence noted above also means that a simultaneous winner selection should be
accompanied with a set of small contests.

Another attractive feature of survivor selection is that, as noted by Fu et al. (2014),
it mirrors the way that contest outcomes are sometimes revealed, with the announce-
ment of the elimination of unsuccessful candidates first.3 Because Berry (1993)’s rule
requires consideration of the chances of winning across

(n−1
k−1

)
teams while survivor

selection takes only up to n − 1 stages to resolve the prizes, a possible benefit of
survivor selection is that it might be more learnable. Contestants might find it easier
to follow the logic of how their efforts map into chances of winning a prize because
the process of determining the successful contestants is not expressed across many
possible teams.4

However, survivor selection breaks a symmetry in Berry (1993)’s expression of the
contest success function, in which not only the k winning places are indistinguishable
from each other, but the n −k unsuccessful places are likewise indistinguishable.5 The
equivalence between joint selection and survivor selection would fail if contestants
distinguished among the unsuccessful places due to behavioural reasons such as joy
of winning (Sheremeta 2010) or, conversely, preferences over the sequence of losing
out.

We develop the concept of the effective prize value of a Tullock-style contest using
the survivor selection mechanism for any arbitrary set of prize values. The effective
prize value is defined as the value of the prize of a single-winner Tullock contest
which would generate the same best response function for a risk-neutral contestant.
This allows us to calibrate our comparisons of the performance of both multi-winner
mechanisms against the familiar and well-studied single-winner case. We show that
efforts in the survivor selection mechanism would be lower if participants valued
finishing as the “first runner-up”.

2 See Corchón and Serena (2018) for a discussion on the theory of contests and Dechenaux et al. (2014) for
a thorough survey of contest experiments. Mealem and Nitzan (2016) and Chowdhury et al. (2020) revisit
design issues in contests.
3 This practice, which is alluded to in this paper’s title, in part led to the (in)famous confusion at the 2015
Miss Universe pageant, in which host Steve Harvey mistakenly announced the first-runner up as the winner.
4 Whereas learning in contests is documented earlier in terms of uncertainty and contest size (Fallucchi
et al. 2021), ability (Krähmer 2007), feedback (Ederer 2010), no previous study has investigated the effects
of winner selection on learning.
5 de Palma and Munshi (2013) make a similar observation.
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We investigate, for the first time in the literature, the contest design questions of
equivalence and learnability of these mechanisms in a laboratory experiment in which
we extend the ticket-based implementation of Tullock contests developed in Chowd-
hury et al. (2019) to the Berry (1993) and Chowdhury and Kim (2014) mechanisms.
Our results are broadly supportive of both equivalence and learnability. In the long run
average bids are similar in 1-winner and 2-winner contests, and in the sequential and
simultaneous implementations of 2-winner contests. However, we observe somewhat
slower adaptation in the 2-winner contests, which would be consistent with the link
between effort and success being more random in these 2-winner contests than the
1-winner counterpart.

Section 2 provides a self-contained analysis of the mechanisms of Berry (1993) and
Chowdhury and Kim (2014), generalising the results from both and introducing the
concept of the effective prize value as a sufficient statistic measuring the incentives
to give effort in these mechanisms. Section 3 outlines the experimental design we
developed for evaluating the performance of contestswhich are strategically equivalent
under standard assumptions. We report our data and results in Sect. 4, and conclude
with a brief discussion in Sect. 5.

2 Theoretical framework

2.1 A Tullock contest with discriminated prizes

There are n ≥ 2 players, indexed by i = 1, 2, . . . , n who compete in a contest for a
set of prizes {vr }n

r=1.
6 Each player i chooses a bid bi ∈ [0,∞), which is irrevocably

sunk, irrespective of the outcome of the contest. The outcome of the contest is a rank
ordering of the players (pr )

n
r=1, where pr is the index of the player assigned rank

r . Any given profile b = (bi )
n
i=1 of bids results in a probability distribution over

the set of possible rank orderings. Let ρir (b) denote the probability that player i is
assigned to rank r given bid profile b. The payoff to player i given profile b is then
ui (b) = ∑n

r=1 ρir (b)vr − bi .
A special case of this is the single-winner (or 1-winner) contest, in which v1 = w

and vr = 0 for 2 ≤ r ≤ n. In the model of Tullock (1980), the probability player i
wins the prize w is given by the contest success function

ρi1(b) =
{ bi∑n

j=1 b j
if

∑n
j=1 b j > 0

1
n if

∑n
j=1 b j = 0

Player i’s utility function is ui (b) = ρi1(b)w − bi . Assuming v1 > 0, that is, that
winning the single prize is a good thing, his best-response function if

∑
j �=i b j > 0 is

6 It would be natural to assume v1 ≥ v2 ≥ · · · ≥ vn ≥ 0, but interestingly our analysis depends neither on
non-negativity nor monotonicity of prizes. Non-monotonic prizes could result in the effective prize value ṽ

defined in Proposition 1 being non-positive, in which case zero effort would be expended in the equilibrium.
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b�
i (b−i ) = max

⎛

⎝
√

w
∑

j �=i

b j −
∑

j �=i

b j , 0

⎞

⎠ . (1)

In the contingency where
∑

j �=i b j = 0, the best response is not well-defined because
of the discontinuity in the payoff function at b = 0. Importantly, bi = 0 is not a
best response to b−i = 0, and therefore b = 0 is not an equilibrium. The unique
Nash equilibrium profile is symmetric, with b1W

i = n−1
n2

w for all bidders.7 To embed
Tullock (1980)’s model in our setting, any distribution over ranks for the remaining
n − 1 players can be chosen, insofar as prizes 2 to n are payoff-equivalent.

Turning to the general casewhere prizes are distinguished, onemethod for determin-
ing the rank ordering is the survivor selection mechanism proposed by Chowdhury
and Kim (2014), in which ranks are determined from the lowest rank (n) upwards in
sequence. We extend their analysis to allow for asymmetric bid profiles, and for any
sequence of prize values. There are n − 1 stages, which we number n, n − 1, . . . , 2
for convenience; at stage r , the identity of the player assigned to rank r and receiving
prize vr is determined. The final stage, stage 2, determines the player receiving prize
v2, with the last unassigned player receiving prize v1. Let Mr be the set of players still
active at the start of stage r . In this mechanism, the conditional probability of a player
i ∈ Mr being eliminated at stage r is a Tullock-type contest failure function,

ρir (b|i ∈ Mr ) =
⎧
⎨

⎩

∑
j∈Mr \{pr } b j

(r−1)
∑

j∈Mr b j
if

∑n
j=1 b j > 0

1
n if

∑n
j=1 b j = 0

(2)

Proposition 1 A risk-neutral player’s best response function in a contest with prizes
{vr }n

r=1 conducted using the survivor selection mechanism is the same as their best
response function in a single-winner Tullock contest in which the value of the single

nonzero prize is ṽ ≡ v1−
∑n

r=2 vr
n−1 . In particular, a risk-neutral player i’s best response

to any b with
∑

j �=i b j > 0 is

b�
i (b−i ) = max

⎛

⎝
√

ṽ
∑

j �=i

b j −
∑

j �=i

b j , 0

⎞

⎠ (3)

and the unique Nash equilibrium profile if all bidders are risk-neutral is

bN E
i =

{
n−1
n2

ṽ if ṽ > 0

0 if ṽ ≤ 0
(4)

for all bidders i .

7 In the case inwhichv1 ≤ 0, then theplayer canminimise his chances ofwinningbychoosingb�
i (b−i ) = 0.

The case of winning being a bad is usually not interesting and therefore generally not mentioned in the
single-winner case. In what follows we consider behavioural extensions with non-monetary values assigned
to specific rankings; we call attention to this case only insofar as it shows our subsequent analysis does not
require us to place any restrictions on those non-monetary values.
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Proof See Appendix A. �	
We refer to the quantity ṽ as the effective prize value for a given prize structure.8

2.2 Multiple winners with identical prizes

Distinguishing among the winners of different prizes is only essential when prizes
are distinct. In this section, we consider the case of a k-winner contest, in which the
top k prizes are identical to each other, v1 = · · · = vk ≡ w, and all other prizes
vk+1 = · · · = vn = 0. It is natural to refer to the players receiving the top k prizes as
the winners. In this setting the effective prize value is ṽ = n−k

n−1w.
Berry (1993) proposed a joint selectionmechanism, in which a subset of k players

is selected directly in one step to receive the top k prizes. Let Nk denote the set of
all subsets consisting of exactly k players. The probability a given subset K ∈ Nk of
players is selected to be the winners of the k prizes is

fK(e) =
∑

j∈K b j
∑

κ∈Nk

∑
j∈κ b j

. (5)

Proposition 2 Fix k ≥ 1, and let vr = w for r ≤ k and vr = 0 for r > k. For
each profile b of bids, the joint selection mechanism of Berry (1993) and the survivor
selection mechanism of Chowdhury and Kim (2014) produce identical distributions
of allocations of the prizes.

Proof See Appendix A. �	

2.3 Behavioural extensions

In the model as analysed so far, the utility function assumes that each prize has a value
which is measured in units of the cost of bids.9 The specific subjective values players
assign to prizes are not directly observable. In a laboratory setting, prizes are usually
set to be cash amounts, and the cash values of the prizes and the cost per unit effort
can be used to generate a predicted equilibrium effort level for risk-neutral players
using (4).

In laboratory experiments with 1-winner Tullock contests, bids frequently exceed
the (risk-neutral) Nash equilibrium. One factor which has been proposed to contribute
to high bids is that the value of receiving the prize is more than its cash value, for
example, due to a joy of winning (Sheremeta 2010; Astor et al. 2013; Herbst 2016;
Boosey et al. 2017). In the 1-winner case, one of the reasons a prize may be more

8 The expression of the effective prize value is a generalisation of an observation made by Clark and Riis
(1996). Mathematically, the mechanism can be expressed as awarding one prize according to the standard
1-winner Tullock success function, and all other prizes uniformly at random irrespective of bids.
9 We have used the term “bid” in our theoretical exposition because this is the terminology we use in our
experiment, following common practice in comparable experiments. A more general interpretation of the
theory is that the strategic choice is “effort” or “investment”, in which case the prize values are in units of
the cost of effort.
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highly valued is that it is unique; there is only one prize and only one player receives
it. In the k-winner contest, winning may still bring some joy, but the prize is no longer
unique. The absence of uniqueness would decrease the non-monetary component of
the value of the prize.

Hypothesis 1 Fix 1 < k < n, and consider a 1-winner and a k-winner contest which
have the same effective prize value ṽ when measured in monetary terms. Because the
prize is unique in the 1-winner contest, efforts will be higher in the 1-winner than the
k-winner when using the joint selection mechanism.

Justification If both contests have the same effective prize value in monetary terms,
then the uniqueness of the prize in the 1-winner contest implies it has a higher effective
prize value when taking into account non-monetary considerations. The best-response
function (3) shows that the effort level will therefore be higher for each given b−i in
the 1-winner contest than the k-winner contest. �	

In the k-winner contest setting, there is no need to distinguish among the ranks k−1
to n, insofar as all of those prizes are identical. Nevertheless, the survivor selection
mechanism could be useful in this setting for practical reasons; it might be easier for
players to understand, and echoes mechanisms for revealing results that are used in
real life, such as naming a “runner up” (and sometimes a “second runner up” and so
on). Suppose, as envisaged by Chowdhury and Kim (2014), we implement a k-winner
contest inwhich the survivor selection continues until the pointwhere k players remain,
and then terminates with the remaining players awarded the k winning prizes without
distinction among them. The information about the ordering of elimination of the
unsuccessful players is irrelevant in terms of the material outcomes of the mechanism,
in that all eliminated players receive identical prizes. Nevertheless, players might
attach additional significance to the rank ordering; for example, valuing being the
runner up by finishing in (k + 1)st place. This would be captured in the game by
assigning a value vk+1 > 0 to the (k + 1)st prize.

Hypothesis 2 Fix 1 < k < n, and consider a k-winner contest with the same prize
value w, implemented in one case using survivor selection and in another using joint
selection. Because being named a runner up (e.g. for the (k + 1)st place) may be
valued, efforts will be higher for each given b−i in the joint selection mechanism than
the survivor selection mechanism.

Justification In terms of themodel, valuing being named a runner up in the survivor
selection mechanismwould set vk+1 > 0 (and possibly other prizes between k +2 and
n − 1) while retaining vn = 0. The best-response function (3) shows that the resulting
effort level would be lower for each given b−i in the survivor selection mechanism
than in the joint selection mechanism. �	

Wenote that the comparative staticswhich generateHypotheses 1 and 2 are based on
inspection of the best-response function, and require neither equilibriumnor symmetry
in the idiosyncratic prize valuations across players.

We turn now to a consideration of how the dynamics of bidding across the experi-
ment might differ between 1-winner and k-winner contests. The potential learnability
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of the k-winner contests is relevant to assessing their suitability for practical implemen-
tation. On the surface, the description of both implementations of k-winner contests is
more complex than for the 1-winner counterpart. Berry’s formula for the simultaneous
selection of winners involves more terms, while eliminating contestants sequentially
means there are multiple stages that a contestant might need to reason through. This
assessment of the apparent complexity of the k-winner contest is based heuristically
on the description of the two k-winner mechanisms. In contrast, the two k-winner
mechanisms generate the exact same distributions over outcomes. This would sug-
gest that players who experience the mechanisms, reflecting on and reacting to the
expected payoffs associated with their bids, should find the mechanisms equally easy
(or difficult) to learn how to play.

There is, however, evidence that people respond more to the realised outcome of
the contest than to the expected outcome. Chowdhury et al. (2014) demonstrated
the dynamics of play converge more tightly around the Nash equilibrium when the
expected payoffs are realised using the share rule, and Lim et al. (2014), among
others, find that participants adjust their bids differently after winning a contest than
after losing one.

Hypothesis 3 Fix 1 < k < n, and consider a 1-winner and a k-winner contest which
have the same effective prize value. Bidders will adapt their bids less systematically
in the k-winner contest.

Justification The expression for the effective prize value shows that the k-winner
contests we consider are equivalent, in expected earnings terms, to conducting a
1-winner contest for one prize, and then allocating the remaining k − 1 prizes at
random. Even when the 1-winner and k-winner contests result in the same expected
earnings, the realised payoff from the k-winner contest is therefore more noisy. If
participants condition changes in their bid on the realised outcome of the contest,
the changes they make will be less systematic in the k-winner contest than in the
1-winner. �	

3 Experiment

3.1 Parametric design

We implement three contest environments in which the effective prize size is held
constant. In our experiments we choose n = 4, the most common number of players
in the literature of experimentswithTullock contests.Wedescribed the task as “bidding
for a reward.”10 We set the monetary value of the effective prize value to be 160,11

which means in the 1-winner (1W) treatment, the reward is 160. If prize uniqueness is
indeed relevant, we expect the maximum contrast would be between the 1-winner and
2-winner cases. Therefore, we implement 2-winner contests using both joint selection
(2J) and survivor selection (2S)mechanisms; to generate the samemonetary effective

10 The full instructions are included as Appendix B.
11 All monetary amounts are in UK pence. At the time of the experiments, 1 GBP ≈ 1.50 USD.
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prize value, in these settings the two winners each received rewards of 240. We follow
the most common convention in the literature and give each participant at the start of
each contest an endowment equal to the value of the reward.12 Aparticipant’smonetary
payoff from a single contest game was equal to their endowment minus their bid, plus
the value of the reward if they were selected to receive one.

3.2 Implementation of the contests

In eachgiven session, participants played30contest periods in oneof the environments.
The number of periods was announced in the instructions. The groups of participants
were randomly assigned at the start of a session, then held fixed throughout the session.
Within a group, members were referred to anonymously by ID numbers 1, 2, 3, and
4; these ID numbers were randomised after each period. All interaction was mediated
through computer terminals, using zTree. Fischbacher (2007)A participant’s complete
history of their own bids and their earnings in each period was provided throughout the
experiment. Formally, therefore, the 4 participants in a group play a repeated game of
30periods,with a commonpublic history.By standard arguments, the unique subgame-
perfect equilibrium of this supergame interaction is to play the Nash equilibrium of
30 in all periods.

A practical challenge in a controlled implementation of survivor selection and joint
selection is the translation of the selection probabilities (2) and (5), respectively, into
an accessible format. Our behavioural hypotheses are on the potential non-monetary
valuations associated with rankings that participants may have, which could be con-
foundedby themore complex calculation that is inherent in determining those selection
probabilities in the 2-winner case.

We therefore implemented the contests using an extension of the ticket protocol as
described and tested for the 1-winner contest in Chowdhury et al. (2019). At the start
of each period, each participant selected a bid, which could be any integer number of
pence from 0 up to v1, inclusive. These bids were translated into tickets of different
types.

Each virtual ticket was given a number from 1 up to the total number of tickets
created. The computer drew one of those ticket numbers at random, displayed the
ticket number drawn, and indicated the type of the ticket with that number.13 The
type of ticket determined which players received, or were eliminated from receiving,
a reward.

In the 1-winner (1W) treatment, for each player i there was a corresponding ticket
type Type i . The number of tickets of Type i was given by player i’s bid bi , resulting in
b1 +b2 +b3 +b4 tickets. The recipient of the reward was determined by a single draw
from the pool of tickets; if a Type i ticket was drawn, player i received the reward.

12 We maintain the endowment equal to reward size in parallel to the standard in 1-winner experiments.
Baik et al. (2020) show that bids in 1-winner contests are lower both when the endowment is lower than
the reward size as well as when it is higher, compared to the baseline of endowment equal to the reward.
13 In our data, at least one player made a positive bid in every group in every period. In the event there
had been a group with bids of zero from all players, one ticket type would have been drawn uniformly and
randomly to determine the outcome.
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In the joint selection (2J) treatment, for each pair of players (i, j) there was a
corresponding ticket type Type i& j . The number of tickets of Type i& j was given by
bi + b j , resulting in 3(b1 + b2 + b3 + b4) tickets. The recipients of the rewards were
determined by a single draw from the pool of tickets; if a Type i& j ticket was drawn,
players i and j received the rewards.

In the survivor selection (2S) treatment, the outcome was realised in two stages.
In the first stage, for each triad of players (i, j, k) there was a corresponding ticket
type Type i& j&k. The number of tickets of Type i& j&k was given by bi + b j + bk ,
resulting in 6(b1+b2+b3+b4) tickets. The survivors of the first stagewere determined
by a draw from this pool of tickets; if a Type i& j&k ticket was drawn, players i , j ,
and k survived to the second stage.14 The second stage is procedurally identical to
joint selection, except restricted to the three surviving players. A new pool of tickets
was then created. If players i , j , and k were the surviving players, then there would
be bi + b j tickets of Type i& j , bi + bk tickets of Type i&k, and b j + bk tickets of
Type j&k, for a total of 2(bi + b j + bk) tickets. The recipients of the rewards were
determined by a single draw from this pool of tickets.

3.3 Procedures

We report on four sessions for each treatment.15 There were 12 participants in each
session, who were randomly allocated into the fixed groups of four, in which they
remained for the entire experiment. There are therefore 12 independent groups in each
treatment. Sessions were conducted at the Centre for Behavioural and Experimental
Social Science (CBESS) at the University of East Anglia, using the participant pool of
student subjects maintained by hRoot. Bock et al. (2014) At the end of each session,
5 of the 30 periods were selected at random to determine earnings. Sessions lasted
between 60 and 90 min, with 2S sessions naturally lasting slightly longer due to the
two-stage realisation of the outcomes. Participants earned in 1W between £4.92 and
£12.76 (mean £8.64, SD £1.55); in 2J between £10.16 and £22.83 (mean £16.29, SD
£3.36); and in 2S between £9.73 and £24.05 (mean £16.15, SD £3.20).

4 Results

We begin with an overview of all of the bids in our sample. Figure 1 provides dotplots
for all bids made in each period. Overlaid are solid lines indicating the mean bid
in the period, and a shaded area which covers the interquartile range of bids for the
period. Broadly speaking, the dynamics of play over time are similar to those which
are typically found in Tullock contest experiments. Bids in the initial period are above
the Nash equilibrium. Over time the measures of central tendency of the bids move
towards the equilibrium, while dispersion around the mean or median persists.

14 Therefore, tickets were always labeled with the ID numbers of the players who were “successful” if that
ticket was drawn, where “success” in the first stage of survivor selection means not yet being eliminated.
15 The sessions for 1-winner (1W) are the UEA sessions reported as part of the ticket treatment in Chowd-
hury et al. (2019).

123



And the first runner-up is...: comparing winner selection…

Fig. 1 All bids by period, grouped by treatment. Each dot represents the bid of one participant in one period.
The solid line plots the evolution of the overall mean bid, and the shaded areas the interquartile range. The
horizontal dashed line indicates the Nash equilibrium bid of 30

Fig. 2 Distribution of groupmean bids by treatment. For each period, the vertical boxes plot the interquartile
range of average bids across groups. The black diamonds indicate the median of the group averages

Table 1 Descriptive statistics on average bids by group

Treatment N bN E All periods First half Second half

Mean Median SD Mean Median SD Mean Median SD

1W 12 30 40.4 42.3 9.0 45.1 48.3 10.5 35.6 37.7 9.8

2J 12 30 43.1 46.5 20.4 52.0 58.4 23.0 34.2 33.7 19.7

2S 12 30 43.1 42.7 15.6 50.0 48.3 16.9 36.1 32.0 20.4

Recalling that participants played in fixed groups for all 30 periods, we turn to
looking at the group as the unit of independent observation. For each group in each
period we compute the mean bid of the group, and, in Fig. 2, we present boxplots
capturing the distribution of these group mean bids across periods. This view of the
data tells a similar story to that of Fig. 1, while pointing out that for some periods late
in the 2-winner treatment, the median group actually bids slightly less on average than
the equilibrium prediction. Figures 1 and 2 also illustrate that there is one outlier, a
participant in 2S who consistently bid 150, resulting in the mean bid of their group
being consistently around 90. From this it can be seen that the other participants in
that outlier group bid on average about 20, which qualitatively is in the direction
recommended by the reaction function in the presence of a persistently high bidder.

Table 1 reports summary statistics of average bids across groups, using the group
as the unit of observation. When looking across the entire 30-period supergame, bids
are slightly higher in the 2-winner contests. Closer inspection reveals this is a game of
two halves. Higher bids in 2-winner contests are driven by behaviour in the first half
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Fig. 3 Distribution of average group bids, all periods. Each dot represents the average bid in one group.
The horizontal box indicates the interquartile range of each distribution

Table 2 Descriptive statistics for
first-period bids. The unit of
observation is the individual
bidder

Treatment N bN E Mean SD Quartiles

1W 48 30 60.1 44.4 (17.5, 60.0, 80.0)

2J 48 30 73.9 53.3 (40.0, 67.0, 100.0)

2S 48 30 94.6 74.7 (40.0, 80.0, 130.0)

of the supergame; in the second half, the average across groups is similar across all
treatments, and the median group bids are actually lower in 2-winner contests. Groups
in 2-winner contests, however, are more heterogeneous. Figure 3 plots the distribution
of group mean bids over the full supergame; more extreme groups, both with higher
and lower bids, tend to be observed in 2-winner treatments.

Result 1 First-period bids are higher in 2-winner contests.

Proof (Support) When looking at the first period, we are able to treat all bids as
independent as participants have had as yet no interaction. Table 2 provides summary
statistics of the distribution of first-period bids. AMann–Whitney–Wilcoxon (MWW)
test comparing bids in 1Wagainst those in 2-winner contests (2J and 2S pooled) rejects
the null hypothesis of equal distributions (p = 0.05, r = 0.40).16 If we are willing
also to attach significance to the magnitudes of the bids instead of only their relative
ranking, a two-sample t-test with unequal variances rejects the null hypothesis of equal
mean bids between 1W and 2-winner contests (p = 0.005). �	

Because this result goes so strongly in the opposite direction from the prediction of
Hypothesis 1, it deserves further comment. As an ex-post explanation, we propose this
result is driven by a naïve response of participants to the description of the environment.
In the first period, participants do not yet have experience with themechanisms, and, in
particular, the strategic importance of the fact that two participants receive the reward
in the 2-winner contests. Our theoretical development in 2 shows how to integrate
the number of winners and the value of the reward to determine the effective prize
value, which is sufficient to determine strategic responses. Participants only see the
raw information in the instructions, and, in particular, that the value of the prize is 240.
As a rough calculation, recall that the equilibrium effort is proportional to the effective
prize size. If participants neglected the fact of multiple winners in the 2-winner contest
and looked only at the headline prize value of 240, we might expect bids to be 50%
higher than in 1W, in which the prize value is 160. The grand average of first-period

16 We report the effect size r for MWW tests. This is the probability that a randomly-selected observation
in the first-named group is greater than a randomly-selected observation in the second-named group.
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bids across both 2-winner contests is 84.3, compared to 60.1 in 1W, an increase of
approximately 40%.

Our experiment was not designed to identify potential causes of this pattern of
first-period bids. However, these initial conditions are transient; experience with the
mechanism in all cases leads to similar average bidding behaviour.

Result 2 Mean bids across groups are not different across treatments in the second
half of the supergame.

Proof (Support) A Kruskal-Wallis test comparing the three treatments does not reject
the null hypothesis of equal distributions (p = 0.87). Pairwise comparisons of treat-
ments using MWW likewise show small effect sizes when comparing 1W to 2J
(p = 0.82, r = 0.53), 1W to 2S (p = 0.49, r = 0.58), and 2J to 2S (p = 0.86,
r = 0.48), as does comparing 1W to the pooled 2-winner contests (p = 0.59,
r = 0.56). �	

The ranking of 1W against the 2-winner contests is in the direction of Hypothesis 1,
but the effect sizes are negligible; we find no evidence in support of a hypothesis that
uniqueness of the prize is an important driver of behaviour after repeated experience
with themechanism.We also find no evidence that revealing outcomes simultaneously
or sequentially affects long-run behaviour, in contrast to Hypothesis 2.17

To address our hypotheses about the learnability of 2-winner contests, we follow
Chowdhury et al. (2019) by looking at the payoff space. Consider a group g in session
s of treatment m, and let bit be the bid submitted by bidder i in period t . This bid had
an expected payoff to i of18

πi t = bit∑
j∈g b jt

× 160 − bit + Km .

Let Bit = ∑
j∈g: j �=i b j t be the sum of the bids of others in the group, the ex-post best

response for bidder i , b̃i t , would be given by (3) if bidswere permitted to be continuous.
Bids are required to be discrete in our experiment; the quasiconcavity of the expected
payoff function ensures that the discretised best response b�

i t ∈ {�b̃�
i t�, b̃�

i t�} This
discretised best response generates an expected payoff to i of

π�
i t = b�

i t

b�
i t + Bit

× 160 − b�
i t + Km .

Wethendefine themeasure of disequilibrium for the group as εmsgt = mediani∈g{π�
i t−

πi t }. By construction εmsgt ≥ 0 with εmsgt = 0 only at the Nash equilibrium.

17 The structure of the 2-winner contests, in which a contestant can win even if bidding zero, suggests that
some participants might be tempted to “free-ride” by submitting a bid of zero. Our data show no evidence
of this: of the 1440 bids in each treatment, in 1W 100 (6.9%) of bids are exactly zero, compared to 111
(7.7%) in 2J and 103 (7.2%) in 2S.
18 Km is a treatment-specific constant. K1W = 160, accounting for the endowment. The 2-winner
treatments are equivalent to giving each player a non-contingent payment of 80, and then conducting a
single-winner Tullock contest for the effective prize value. Incorporating the endowment, we arrive at
K2J = K2S = 320.
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Fig. 4 Ex-post measure of disequilibrium within groups (εcsgt ), by period. Each dot indicates the value of
the measure for one group in the corresponding period. The solid line plots the evolution of the mean across
groups, and the shaded areas the interquartile range. The two arrows in 2S indicate one group in each of
periods 1 and 2 with εmsgt > 120

Fig. 5 Average value of disequilibrium measure ε in period t + 1, as a function of a group’s realised ε in
current period t

In Fig. 4 we show the evolution of the distribution of the disequilibrium measure ε

across groups over the experiment. Graphically this supports the assertion of Hypoth-
esis 3, insofar as in both 2-winner treatments we observe some groups playing strategy
profiles with large ε even in the periods at the end of the experiment. This plot how-
ever does not take into account across-group heterogeneity, and so to assess whether
adaptation is indeed systematically different across treatments a panel approach is
required.

To provide a view of the data which respects this panel structure, in Fig. 5 we plot
the average value of εmsg(t+1) as a function of εmsgt , where we round the latter value
to the nearest multiple of 10 for aggregation. In this graph, the 45-degree line indicates
no systematic adaptation in the sense defined by this measure; the farther below the
45-degree line, the more rapid the adaptation towards bids which leave less money on
the table. We observe that the 2-winner treatments are comparable to each other, but
lie not too far below the 45-degree line, indicating relatively slow adaptation, while in
the 1-winner treatment we observe adaptation which reduces ε more systematically.
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Table 3 Parameter estimates for
model (6) of evolution of εmsgt
over time

1W 2J 2S 2J+2S

Constant 7.646 7.291 6.202 7.166

(1.169) (1.199) (2.415) (1.601)

εmsgt 0.265 0.555 0.476 0.494

(0.099) (0.061) (0.094) (0.067)

Ngroups 12 12 12 24

Nobs 336 336 336 672

χ2(1) 7.11 81.72 25.29 53.61

Fixed point 10.4 16.4 11.8 14.1

Robust standard errors in parentheses

Result 3 Learning, as measured by ex-post amounts of money left on the table, is
generally more systematic in 1-winner than 2-winner treatments. The long run dise-
quilibrium level is higher in 2-winner treatments.

Proof (Support) For each treatment m, and for the 2-winner treatments pooled, we
estimate the dynamic panel model

εmsg(t+1) = αm + βmεmsgt , (6)

using the method of Arellano and Bond (1991), and report the results in Table 3.
Comparing 1-winner and 2-winner treatments in aggregate, we reject the hypothesis
that ε1W,sgt = ε2J+2S,sgt at the 10% level (p = .056 against two-sided alternative).
The evidence is more clear when comparing 1W to 2J (p = .013) than 1W to 2S
(p = .122).

We can use the point estimates of α and β to compute the implied fixed-point of
(6). This would be the prediction for the long-run value of the amount of money left
on the table ex-post. All the fixed points are above zero. �	

The analysis above indicates that, to the extent we can say play is converging over
time, it is a convergence not to the point prediction of theNash equilibrium, but towards
a distribution of play in some neighbourhood of the equilibrium in which the ex-post
suboptimality of bids in expected-payoff terms is small but persistent.19

19 Alternatively, one could take a directional-learning approach, and ask, at the level of individual par-
ticipants, whether they move in the direction of the myopic best response to the previous period’s play.
This can be done in two ways: in the strategy space (is |bi,t+1 − b�(b−i,t )| < |bi,t − b�(b−i,t )|?) or in
the earnings space (is ui (bi,t+1, b−i,t ) > ui (bi,t ,b−i,t )?). In the strategy space, this occurs 31.3% of
the time in 1W, 30.1% of the time in 2J, and 27.5% of the time in 2S; in the earnings space, this occurs
34.6% of the time in 1W, 34.2% of the time in 2J, and 30.6% of the time in 2S. These are broadly similar
in magnitude to data using this measure reported by Lim et al. (2014) for 1-winner contests with four
bidders. The analysis of the disequilibrium measure in the main text provides a more nuanced picture, as
it reflects that the bidding behaviours of the participants in a group co-evolve over time, and incorporates
the principle that the likelihood of adjusting a bid in an earnings-increasing direction is a function of the
potential earnings gains.
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5 Discussion

We provide one of the first experimental studies on selecting multiple winners in
Tullock-style imperfectly discriminating contests. We extend to the case of multiple
winners a lottery ticket paradigm to implement the random realisation of the outcome
of the contest. Our results provide some guidance for the practical implementation of
Berry’s extension of the Tullock contest to the selection of multiple winners. Theoret-
ical analysis, combined with previous behavioural results on how people adapt their
play over time in contests, suggested that the 2-winner contests would bemore difficult
for people to “learn”. Indeed we find evidence to support this hypothesis; adaptation is
indeed less systematic in themore noisy 2-winner contests, but nevertheless in the long
run bids on average in the 2-winner contests are similar to the strategically equivalent
1-winner contest.

Empirically studying the learnability of a mechanism is important because previous
experiments have reported that people do react to the ex-post outcome of the contest.
In the context of our controlled laboratory experiment, a heuristic of taking the contest
outcome into account for formulating strategy is not optimal for maximising payoffs.
We provide the full profile of bids in each period, and this is enough, in principle
at least, for a contestant to determine their best response, whether they wished to
maximise expected earnings, or if they wanted to take into account risk or explicitly
target probabilities of winning. The outcome of the contest contains no additional
information. Although reacting to the contest outcome is therefore not optimal in our
experiment, it would not at all naïve for someone playing a contest “in the wild”, in
which other’s bids may not be observed, or, in the case of contests where the bid is, for
example, an effort choice, even meaningfully observable. In that setting, one’s own
previous choices and the outcome of the contests may be all a contestant has to go on.
Therefore, the observation that adaptation is slower in the 2-winner contests could be
a relevant consideration for implementation.

There is a sense in which the 2-winner contests are more complex to implement
and, presumably, to understand solely from their description. In the 1-winner Tullock
contest, the probability of winning a prize is straightforward to operationalise, for
example using the instantiation of (virtual) tickets as in our experiment. It is less
straightforward to understand immediately from the description of the Berry CSF
how one’s chances of winning a prize in the 2-winner contest change as a function
of one’s own bid, given some arbitrary conjecture of bids by the other participants in
the group. As a crude counting-based measure of complexity, there are simply more
types of tickets in both of the the 2-winner contests than in the 1-winner contest, and
further there are two layers of ticket types in our exposition of the survivor selection
mechanism.

Although our analysis in Sect. 2 establishes strategic equivalence for contests with
the same effective prize value, the algebra in that section does not directly inform
how either of the 2-winner contests are implemented. To clarify this point, consider
a famous example of strategically equivalent mechanisms in the setting of auctions
for a single indivisible good when bidders have private values. It is well-known that
there is an equivalence in theory between the second-price sealed-bid auction, and an
ascending “clock” auction. In both cases it is a weakly dominant strategy to “bid one’s
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own value.” Experimentally, it is routinely found that many participants do not bid
their value in the second-price auction, while after a small amount of experience most
bidders do drop out at their value in the clock version. One reason for this is that the
clock auction takes the bidder through the chain of strategic reasoning that we use in
the game-theoretic analysis, making it transparent that the sensible thing to do is to
stay in the auction as long as the price is below their value, and exit as soon as it is
above; in effect it helps bidders reason contingency-by-contingency, which is exactly
how game theory says they ought to. Viewed this way, the ascending clock auction
translates game-theoretic reasoning into a procedure people find it easy to follow.

The parallel in imperfectly-discriminating contests using Berry’s success function
would be to transform to a 1-winner contest with the equivalent prize value, and
allocate the remaining prizes/payoffs randomly. As noted, this is not natural, or even
feasible in many situations in which prizes are not (only) amounts of money.20 It is
therefore an empirical question, whether people compete differently in multi-winner
contests when the procedure for realising the winner is described and implemented
differently. Themechanism in survivor selection is used in practice to communicate the
outcome of contests. This makes it a natural candidate for consideration; on the one
hand participants might find this implementation easier to understand, but survivor
selection necessarily creates a distinction among otherwise identical “non-winner”
places which could trigger idiosyncratic preferences for valuing, e.g., being the “first
runner-up.”We do not find significant differences between joint and survivor selection,
indicating that a contest designer is indeed free to choose either to suit their needs.21

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

20 This interpretation of the Berry success function was raised by Clark and Riis (1996); de Palma and
Munshi (2013) note that implementing the success function in this way would break the inherent indistin-
guishability of the winning prizes, and as such would not be applicable in all settings.
21 And, given the prevalence of survivor selection-type framing—perhaps not least because of the drama
it lends to the revelation of results—the hosts of pageants, and awards shows and dinners, will need to
continue exercising care as they read out results!
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A Proofs

A.1 Proposition 1

Before stating the proof of Proposition 1, we first establish two lemmas.

Lemma 1 Fix a profile of bids b with bi > 0 for at least one player i , and any
stage 2 ≤ r ≤ n. The probability that a given sequence (pn, pn−1, . . . , pr+1) is the
sequence of players eliminated prior to stage r is

(r − 1)!∑ j∈Mr
b j

(n − 1)!∑ j∈Mn
b j

(7)

Proof We prove the claim by induction. For the base case of r + 1 = n, Eq. (7)

simplifies to
(n−2)!∑ j∈Mn\{pn } b j

(n−1)!∑ j∈Mn b j
=

∑
j∈Mn\{pn } b j

(n−1)
∑

j∈Mn b j
, which is (2) for s = n as desired.

Now, fix a stage r and a sequence (pn, pn−1, . . . , pr+1, pr ), and assume the induc-
tion claim is true for (pn, pn−1, . . . , pr+1). The probability that pr is eliminated in
stage r , conditional on pn, pn−1, . . . , pr+1 being previously eliminated, is

(r − 1)!∑ j∈Mr
b j

(n − 1)!∑ j∈Mn
b j

×
∑

j∈Mr \{pr } b j

(r − 1)
∑

j∈Mr
b j

= (r − 2)!∑ j∈Mr \{pr } b j

(n − 1)!∑ j∈Mn
b j

= (r − 2)!∑ j∈Mr−1
b j

(n − 1)!∑ j∈Mn
b j

,

which is exactly the induction hypothesis with r − 1 replacing r . �	
Lemma 2 Fix a profile of bids b with bi > 0 for at least one player i . The probability
that a given player i is eliminated at a given stage 2 ≤ r ≤ n, and therefore receives
prize vr , is

ρir (b) =
∑

j �=i b j

(n − 1)
∑

j∈N b j
, (8)

which is independent of r .

Proof Fix a stage r , and let Mi
r be the set of subsets of players, which consist of

exactly r players, one of whom is player i . Fix one such subset Mr ∈ Mi
r . There are

(n − r)! sequences of prior eliminations of the players in Mn \ Mr that result in Mr

being the remaining set at the start of stage r . Lemma 1 shows that the probability of
each one of these sequences is identical, as the expression (7) does not depend on the
order of elimination. By a counting argument, the probability that the set Mr is the set
of players to survive elimination rounds n, n − 1, . . . , r + 1 is therefore

(n − r)! (r − 1)!∑ j∈Mr
b j

(n − 1)!∑ j∈Mn
b j

=
∑

j∈Mr
b j

(n−1
k−1

)∑
j∈Mn

b j
.
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The joint probability that Mr have survived to stage r and then i is eliminated in stage
r is

∑
j∈Mr

b j
(n−1

r−1

)∑
j∈Mn

b j
×

∑
j∈Mr \{i} b j

(r − 1)
∑

j∈Mr
b j

=
∑

j∈Mr \{i} b j

(n−1)!
(r−2)!(n−r)!

∑
j∈Mn

b j

=
∑

j∈Mr \{i} b j

(n − 1)
(n−2

r−2

)∑
j∈Mn

b j
. (9)

Only the numerator of (9) depends on Mr . Consider
∑

Mr ∈Mi
r

∑
j∈Mr \{i} b j . For each

other player j �= i , there are
(n−2

r−2

)
sets in Mi

r which also contain player j , and

therefore b j appears
(n−2

r−2

)
times in the double sum. Therefore, the total probability of

player i being eliminated at stage r is

∑

Mr ∈Mr

∑
j∈Mr \{i} b j

(n − 1)
(n−2

r−2

) ∑
j∈Mn

b j
=

(n−2
r−2

)∑
j �=i b j

(n − 1)
(n−2

r−2

) ∑
j∈Mn

b j
=

∑
j �=i b j

(n − 1)
∑

j∈Mn
b j

.

�	
Proof of Proposition 1 Fix a profile of bids b with bi > 0 for at least one i . Lemma 2
shows that the conditional Tullock-type failure function (2) results in all prizes other
than the first being awarded uniformly according to the unconditional Tullock-type
failure function (8). The probability of receiving the first prize v1 is therefore

1 − (n − 1)

∑
j �=i b j

(n − 1)
∑

j∈N b j
= bi∑

j∈N b j
,

which is exactly the standard Tullock-type success function. If, on the other hand,
b = 0, the probability of receiving v − 1 is 1

n , just as in the single-winner Tullock
game. Therefore the expected payoff to player i is

ui (b) =
⎧
⎨

⎩

bi∑
j∈N b j

v1 +
∑

j �=i b j∑
j∈N b j

·
∑n

r=2 vr
n−1 − bi if

∑n
j=1 b j > 0

1
n v1 + 1

n

∑n
r=2 vr if

∑n
j=1 b j = 0.

This is exactly equivalent to a single-winner Tullock contest in which all non-winners

receive a payoff of
∑n

r=2 vr
n−1 , and is therefore strategically equivalent to a single-winner

Tullock contest with w = v1 −
∑n

r=2 vr
n−1 as the prize. In particular, player i’s best

response to any b with
∑

j �=i b j > 0 is

b�
i (b−i ) = max

⎛

⎝

√√√√
(

v1 −
∑n

r=2 vr

n − 1

) ∑

j �=i

b j −
∑

j �=i

b j , 0

⎞

⎠
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and the unique Nash equilibrium is

bSS =
⎧
⎨

⎩

n−1
n2

(
v1 −

∑n
r=2 vr
n−1

)
if v1 −

∑n
r=2 vr
n−1 > 0

0 if v1 −
∑n

r=2 vr
n−1 ≤ 0.

Defining ṽ ≡ v1 −
∑n

r=2 vr
n−1 completes the result. �	

A.2 Proposition 2

Proof of Proposition 2 There are
(n

k

)
sets inNk . Each player j appears in exactly

(n−1
k−1

)

of those sets. Therefore

∑

κ∈Nk

∑

j∈κ

b j =
n∑

j=1

(
n − 1

k − 1

)
b j .

LetN i
k denote the set of all subsets consisting of exactly k players, one of which is

player i . There are
(n−1

k−1

)
sets inN i

k . Observe that each player j �= i appears in exactly
(n−2

k−2

)
of those sets. Therefore

∑

K∈N i
k

∑

j∈K
b j =

(
n − 1

k − 1

)
bi +

∑

j �=i

(
n − 2

k − 2

)
b j .

Player i receives one of the prizes valued at w if one of the sets in N i
k is selected,

which occurs with probability

∑

K∈N i
k

pK(b) =
∑

K∈N i
k

∑
j∈K b j

∑
κ∈Nk

∑
j∈κ b j

=
(n−1

k−1

)
bi + ∑

j �=i

(n−2
k−2

)
b j

∑n
j=1

(n−1
k−1

)
b j

= bi∑n
j=1 b j

+ k − 1

n − 1
·
∑

j �=i b j
∑n

j=1 b j
. (10)

We see immediately that (10) is exactly the probability of winning the first prize in
survivor selection, plus k − 1 times the probability (8) of winning any of the other
prizes. Therefore, for each contingency b, the probability of player i winning one of
the k prizes valued v is the same as in the survivor selection mechanism. �	
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B Instructions

Introduction (common to all treatments)

Welcome! You are about to participate in an experiment in the economics of decision-
making.

If you follow the instructions and make appropriate decisions, you can earn an
appreciable amount of money. At the end of today’s session you will be paid in private
and in cash.

It is important that you remain silent and do not look at other people’s work. If
you have any questions, or need assistance of any kind, please raise your hand and an
experimenter will come to you. If you talk, laugh, exclaim out loud, etc., you will be
asked to leave and you will not be paid. We expect and appreciate your cooperation.

Today’s session consists of two parts. The decisions you make in the two parts are
completely unrelated to each other. Your earnings for the session will be the total of
your earnings from the two parts.

Treatment-specific instructions for 1W

Part 2 of the session consists of 30 decision-making periods. At the conclusion of Part
2, any 5 of the 30 periods will be chosen at random, and your earnings from this part
of the experiment will be calculated as the sum of your earnings from those 5 selected
periods.

At the beginning of Part 2, you will be randomly and anonymously placed into a
group of 4 participants. Within each group, one participant will have ID number 1, one
ID number 2, one ID number 3, and one ID number 4. The composition of your group
remains the same for all 30 periods but the individual ID numbers within a group are
randomly reassigned in every period.

In each period, you may bid for a reward worth 160 pence. In your group, one of
the four participants will receive a reward. You begin each period with an endowment
of 160 pence. You may bid any whole number of pence from 0 to 160; fractions or
decimals may not be used.

If you receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment − your bid + the reward.

That is,

Your payoff in pence = 160 − your bid + 160.

If you do not receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment − your bid

That is,

Your payoff in pence = your endowment − your bid

The chance that you receive a reward in a period depends on how much you bid,
and also howmuch the other participants in your group bid. At the start of each period,
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all four participants of each group will decide how much to bid. Once the bids are
determined, a computerised lottery will be conducted to determine which participant
in the group will receive the reward. In this lottery draw, there are four types of tickets:
Type 1, Type 2, Type 3 and Type 4. Each type of ticket corresponds to the participant
who will receive the reward if a ticket of that type is drawn. So, if a Type 1 ticket
is drawn, then participant 1 will receive the reward; if a Type 2 ticket is drawn, then
participant 2 will receive the reward; and so on.
The number of each type of ticket depends on the bids of the corresponding participant:

• Number of Type 1 tickets = Bid of participant 1
• Number of Type 2 tickets = Bid of participant 2
• Number of Type 3 tickets = Bid of participant 3
• Number of Type 4 tickets = Bid of participant 4

Each ticket is equally likely to be drawn by the computer. If the ticket type that is
drawn has your ID number, then you will receive a reward for that period.

We will now work through an example of how the numbers of lottery tickets are
computed, and what you will see during a typical period of the session.

An example. Suppose participant 1 bids 80 pence, participant 2 bids 6 pence,
participant 3 bids 124 pence, and participant 4 bids 45 pence. Then:

• Number of Type 1 tickets = Bid of participant 1 = 80
• Number of Type 2 tickets = Bid of participant 2 = 6
• Number of Type 3 tickets = Bid of participant 3 = 124
• Number of Type 4 tickets = Bid of participant 4 = 45

There will therefore be a total of 80 + 6 + 124 + 45 = 255 tickets in the lottery. Each
ticket is equally likely to be selected. In each period, the calculations above will be
summarised for you on your screen, using a table like the one in this screenshot:

Interpretation of the table: The horizontal rows in the above table contain the
ID numbers of the four participants in every period. The vertical columns list the
participants’ bids, the corresponding ticket types, the total number of each type of
ticket (second column from right) and the range of ticket numbers for each type of
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ticket (last column). Note that the total number of each ticket type is exactly same as
the corresponding participant’s bid. For example, the total number of Type 1 tickets
is equal to Participant 1’s bid.

The last column gives the range of ticket numbers for each ticket type. Any ticket
number that lies within that range is a ticket of the corresponding type. That is, all the
ticket numbers from 81 to 86 are tickets of Type 2, which implies a total of 6 tickets of
Type 2, as appears in the ‘Total Tickets’ column. In case a participant bids zero, there
will be no ticket that contains his or her ID number. In such a case, the last column
will show ‘No tickets’ for that particular ticket type.

The computer then selects one ticket at random. The number and the type of the
drawn ticket will appear below the table. The ID number on the ticket type indicate
the participant receiving the reward.

At the end of 30 periods, the experimenter will approach a random participant and
will ask him/her to pick up five balls from a sack containing 30 balls numbered from
1 to 30. The numbers on those five balls will indicate the 5 periods, for which you
will be paid in Part 2. Your earnings from all the preceding periods will be throughout
present on your screen.

Treatment-specific instructions for 2J

Part 2 of the session consists of 30 decision-making periods. At the conclusion of Part
2, any 5 of the 30 periods will be chosen at random, and your earnings from this part
of the experiment will be calculated as the sum of your earnings from those 5 selected
periods.

At the beginning of Part 2, you will be randomly and anonymously placed into a
group of 4 participants. Within each group, one participant will have ID number 1, one
ID number 2, one ID number 3, and one ID number 4. The composition of your group
remains the same for all 30 periods but the individual ID numbers within a group are
randomly reassigned in every period.

In each period, you may bid for a reward worth 240 pence. In your group, two of
the four participants will receive a reward. You begin each period with an endowment
of 240 pence. You may bid any whole number of pence from 0 to 240; fractions or
decimals may not be used.

If you receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment − your bid + the reward.

That is,

Your payoff in pence = 240 − your bid + 240.

If you do not receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment − your bid

That is,

Your payoff in pence = your endowment − your bid

The chance that you receive a reward in a period depends on how much you bid,
and also how much the other participants in your group bid. At the start of each
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period, all four participants of each group will decide how much to bid. Once the
bids are determined, a computerised lottery will be conducted to determine which two
participants in the group will receive the rewards.

In this lottery draw, there are six types of tickets: Type 1&2, Type 1&3, Type 1&4,
Type 2&3, Type 2&4, and Type 3&4. Each type of ticket corresponds to the two
participants who will receive the rewards if a ticket of that type is drawn. So, if a Type
1&2 ticket is drawn, then participants 1 and 2 will receive the rewards; if a Type 1&3
ticket is drawn, then participants 1 and 3 will receive the rewards; and so on.
The number of tickets of each type depends on the bids of the corresponding two
participants:

• Number of Type 1&2 tickets = Bid of participant 1 + Bid of participant 2
• Number of Type 1&3 tickets = Bid of participant 1 + Bid of participant 3
• Number of Type 1&4 tickets = Bid of participant 1 + Bid of participant 4
• Number of Type 2&3 tickets = Bid of participant 2 + Bid of participant 3
• Number of Type 2&4 tickets = Bid of participant 2 + Bid of participant 4
• Number of Type 3&4 tickets = Bid of participant 3 + Bid of participant 4

Each ticket is equally likely to be drawn by the computer. If the ticket type that is
drawn includes your ID number, then you will receive a reward for that period.

We will now work through an example of how the numbers of lottery tickets are
computed, and what you will see during a typical period of the session.
An example. Suppose participant 1 bids 80 pence, participant 2 bids 6 pence, partic-
ipant 3 bids 124 pence, and participant 4 bids 45 pence. Then:

• Number of Type 1&2 tickets = Bid of participant 1 + Bid of participant 2 = 80 +
6 = 86

• Number of Type 1&3 tickets = Bid of participant 1 + Bid of participant 3 = 80 +
124 = 204

• Number of Type 1&4 tickets = Bid of participant 1 + Bid of participant 4 = 80 +
45 = 125

• Number of Type 2&3 tickets = Bid of participant 2 + Bid of participant 3 = 6 +
124 = 130

• Number of Type 2&4 tickets = Bid of participant 2 + Bid of participant 4 = 6 + 45
= 51

• Number of Type 3&4 tickets = Bid of participant 3 + Bid of participant 4 = 124 +
45 = 169

There will therefore be a total of 86 + 204 + 125 + 130 + 51 + 169 = 765 tickets in
the lottery. Each ticket is equally likely to be selected. In each period, the calculations
above will be summarised for you on your screen, using a table like the one in the
following screenshot.
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Interpretation of the table: The horizontal rows in the above table show the
different types of lottery tickets that are generated by the computer in every period.
The vertical columns list the participants’ bids, the total number of each type of
ticket (second column from right) and the range of ticket numbers for each type of
ticket (last column). Note that the total number of each ticket type is the sum of the
two corresponding participants’ bids. For example, total number of Type 1&2 tickets
is the sum total of Participant 1’s bid and participant 2’s bid. Therefore, the table
cell corresponding to Type 1&2 and Participant 4’s bid is kept blank, and so is the
table cell corresponding to Type 1&2 and Participant 3’s bid. Similarly, the table cell
corresponding to Type 2&3 and Participant 1’s bid is kept blank, and so is the one
corresponding to Type 2&3 and Participant 4’s bid.

The last column gives the range of ticket numbers for each ticket type. Any ticket
number that lies within that range is a ticket of the corresponding type. That is, all
the ticket numbers from 87 to 290 are tickets of Type 1&3, which implies a total of
204 tickets of Type 1&3, as appears in the ‘Total Tickets’ column. In case any three
participants all bid zero, there will be no ticket that contains those three ID numbers
together. In such a case, the last column will show ‘No tickets’ for that particular ticket
type.

The computer then selects one ticket at random. The number and the type of the
drawn ticket will appear below the table. The two ID numbers on the ticket type
indicate the two participants receiving the rewards.

At the end of 30 periods, the experimenter will approach a random participant and
will ask him/her to pick up five balls from a sack containing 30 balls numbered from
1 to 30. The numbers on those five balls will indicate the 5 periods, for which you
will be paid in Part 2. Your earnings from all the preceding periods will be throughout
present on your screen.

Treatment-specific instructions for 2S

Part 2 of the session consists of 30 decision-making periods. At the conclusion of Part
2, any 5 of the 30 periods will be chosen at random, and your earnings from this part
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of the experiment will be calculated as the sum of your earnings from those 5 selected
periods.

At the beginning of Part 2, you will be randomly and anonymously placed into a
group of 4 participants. Within each group, one participant will have ID number 1, one
ID number 2, one ID number 3, and one ID number 4. The composition of your group
remains the same for all 30 periods but the individual ID numbers within a group are
randomly reassigned in every period.

In each period, you may bid for a reward worth 240 pence. In your group, two of
the four participants will receive a reward. You begin each period with an endowment
of 240 pence. You may bid any whole number of pence from 0 to 240; fractions or
decimals may not be used.

If you receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment − your bid + the reward.

That is,

Your payoff in pence = 240 − your bid + 240.

If you do not receive a reward in a period, your earnings will be calculated as:

Your payoff in pence = your endowment − your bid

That is,

Your payoff in pence = your endowment − your bid

The chance that you receive a reward in a period depends on how much you bid,
and also how much the other participants in your group bid. At the start of each
period, all four participants of each group will decide how much to bid. Once the
bids are determined, a computerised lottery will be conducted to determine which two
participants in the group will receive the rewards.

This lottery will be conducted in two phases. In the first phase, there are four types
of tickets: Type 1&2&3, Type 1&2&4, Type 1&3&4, and Type 2&3&4. Each type of
ticket corresponds to the three participants who will continue on to the second phase
if a ticket of that type is drawn. So, if a Type 1&2&3 ticket is drawn, then participants
1, 2, and 3 will continue to the second phase; if a Type 1&3&4 ticket is drawn, then
participants 1, 3, and 4 will continue to the second phase; and so on.

The number of tickets of each type depends on the bids of the corresponding three
participants:

• Number of Type 1&2&3 tickets = Bid of participant 1 + Bid of participant 2 + Bid
of participant 3

• Number of Type 1&2&4 tickets = Bid of participant 1 + Bid of participant 2 + Bid
of participant 4

• Number of Type 1&3&4 tickets = Bid of participant 1 + Bid of participant 3 + Bid
of participant 4

• Number of Type 2&3&4 tickets = Bid of participant 2 + Bid of participant 3 + Bid
of participant 4

Each ticket is equally likely to be drawn by the computer. If the ticket type that is
drawn includes your ID number, then you will continue to the second phase.
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In the second phase, there are three types of tickets. The types of tickets depend on
which three participants have continued on to the second phase:

• If Participants 1, 2, and 3 have continued, then the types will be Type 1&2, Type
1&3, and Type 2&3;

• If Participants 1, 2, and 4 have continued, then the types will be Type 1&2, Type
1&4, and Type 2&4;

• If Participants 1, 3, and 4 have continued, then the types will be Type 1&3, Type
1&4, and Type 3&4;

• If Participants 2, 3, and 4 have continued, then the types will be Type 2&3, Type
2&4, and Type 3&4.

Each type of ticket corresponds to the twoparticipantswhowill receive the two rewards
if a ticket of that type is drawn. So, if a Type 1&2 ticket is drawn, then participants
1 and 2 will receive the rewards; if a Type 1&3 ticket is drawn, then participants 1
and 3 will receive the rewards; and so on. The number of each type of tickets will
be computed using a formula similar to the one used in the first phase. Suppose, for
example, that in the first phase a Type 1&2&3 ticket was chosen, and Participants 1,
2, and 3 have continued to the second phase. Then, the number of tickets of each type
depends on the bids of the corresponding participants as follows:

• Number of Type 1&2 tickets = Bid of participant 1 + Bid of participant 2
• Number of Type 1&3 tickets = Bid of participant 1 + Bid of participant 3
• Number of Type 2&3 tickets = Bid of participant 2 + Bid of participant 3.

The formulas for the cases when a Type 1&2&4, Type 1&3&4, or Type 2&3&4
ticket is chosen in the first phase are similar. We will now work through an example
of how the numbers of lottery tickets are computed, and what you will see during a
typical period of the session.

An example. Suppose participant 1 bids 80 pence, participant 2 bids 6 pence,
participant 3 bids 124 pence, and participant 4 bids 45 pence. Then, in the first phase:

• Number of Type 1&2&3 tickets = Bid of participant 1 + Bid of participant 2 + Bid
of participant 3 = 80 + 6 + 124 = 210

• Number of Type 1&2&4 tickets = Bid of participant 1 + Bid of participant 2 + Bid
of participant 4 = 80 + 6 + 45 = 131

• Number of Type 1&3&4 tickets = Bid of participant 1 + Bid of participant 3 + Bid
of participant 4 = 80 + 124 + 45 = 249

• Number of Type 2&3&4 tickets = Bid of participant 2 + Bid of participant 3 + Bid
of participant 4 = 6 + 124 + 45 = 175

There will therefore be a total of 210 + 131 + 249 + 175 = 765 tickets in the
first phase lottery. Each ticket is equally likely to be selected. In each period, the
calculations above will be summarised for you on your screen, using a table like the
one in this screenshot:
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Interpretation of the table: The horizontal rows in the above table shows the
different types of lottery tickets that are generated by the computer in every period.
The vertical columns lists the participants’ bids, the total number of each type of
ticket (second column from right) and the range of ticket numbers for each type of
ticket (last column). Note that the total number of each ticket type is the sum of the
three corresponding participants’ bids. For example, total number of Type 1&2&3
tickets is the sum total of Participant 1’s bid, Participant 2’s bid and participant 3’s
bid. Therefore, the table cell corresponding to Type 1&2&3 and Participant 4’s bid is
kept blank. Similarly, the table cell corresponding to Type 2&3&4 and Participant 1’s
bid is blank. The last column gives the range of ticket numbers for each ticket type.
Any ticket number that lies within that range is a ticket of the corresponding type. That
is, all the ticket numbers from 211 to 341 are tickets of Type 1&2&4, which implies a
total of 131 tickets of Type 1&2&4, as appears in the ‘Total Tickets’ column. In case
any three participants all bid zero, there will be no ticket that contains those three ID
numbers together. In such a case, the last column will show ‘No numbers’ for that
particular ticket type.

The computer then selects one ticket at random. The number and the type of the
drawn ticket will appear below the table. The three ID numbers on the ticket type
indicate the three participants continuing to Phase 2.

Suppose a ticket of Type 1&2&3 is selected in the first phase. Then, in the second
phase, there will be Type 1&2, Type 1&3, and Type 2&3 tickets. The number of tickets
of each type will be:

• Number of Type 1&2 tickets = Bid of participant 1 + Bid of participant 2 = 80 +
6 = 86

• Number of Type 1&3 tickets = Bid of participant 1 + Bid of participant 3 = 80 +
124 = 204

• Number of Type 2&3 tickets = Bid of participant 2 + Bid of participant 3 = 6 +
124 = 130.

There will therefore be a total of 86 + 204 + 130 = 420 tickets in the second phase
lottery. Each ticket is equally likely to be selected.
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In each period, the calculations above will be summarised for you on your screen,
using a table like the one in the following screenshot.

The interpretation of this table is same as the table shown in phase 1. Since only three
participants survive for phase 2, this table contains three rows for the ticket types. The
columns and the interpretation of the cells are the same. Again the computer selects
one ticket at random. The number and the type of the drawn ticket will appear below
the table. The two ID numbers on the ticket type indicate the two participants receiving
the rewards.

At the end of 30 periods, the experimenter will approach a random participant and
will ask him/her to pick up five balls from a sack containing 30 balls numbered from
1 to 30. The numbers on those five balls will indicate the 5 periods, for which you
will be paid in Part 2. Your earnings from all the preceding periods will be throughout
present on your screen.
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C Feedback screen

Below is the screenshot of a typical feedback table for Treatment 2J. Similar screens
were used for 1W and 2S; in 2S, there were two such tables, one for each draw.
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