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Abstract: Tropical cyclones (TCs) seriously threaten the safety of human life and property especially
when approaching a coast or making landfall. Robust, long-lead predictions are valuable for man-
aging policy responses. However, despite decades of efforts, seasonal prediction of TCs remains a
challenge. Here, we introduce a deep-learning prediction model to make skillful seasonal prediction
of TC track density in the Western North Paci�c (WNP) during the typhoon season, with a lead time
of up to four months. To overcome the limited availability of observational data, we use TC tracks
from CMIP5 and CMIP6 climate models as the training data, followed by a transfer-learning method
to train a fully convolutional neural network named SeaUnet. Through the deep-learning process
(i.e., heat map analysis), SeaUnet identi�es physically based precursors. We show that SeaUnet has a
good performance for typhoon distribution, outperforming state-of-the-art dynamic systems. The
success of SeaUnet indicates its potential for operational use.

Keywords: tropical cyclone; track density; seasonal prediction; deep learning

1. Introduction
A tropical cyclone (TC) is a weather system mostly formed over a tropical ocean.

The associated strong winds and torrential rain pose a serious threat to the lives and
property safety of people under its in�uence. The Western North Paci�c (WNP) is the
most active region for TCs, accounting for about 30% of the global TCs [1]. The long-
term TC activity in the WNP is affected by both atmospheric and oceanic factors [2],
with signi�cant variation from seasonal to decadal timescales [3�6]. These factors include
sea-surface temperature (SST) anomalies in the Paci�c Ocean, in particular the El Niæo�
Southern Oscillation (ENSO) [7,8], SST anomalies in the Indian Ocean [9], SST anomalies
in the Atlantic Ocean [10], subtropical high [6], Paci�c decadal oscillation (PDO) [11], and
interdecadal Paci�c oscillation (IPO) [12], among others.

TC activity on the seasonal timescale is mainly controlled by slowly evolving SST
conditions and large-scale atmospheric circulation, which provide potential sources for TC
seasonal prediction [2,13]. The techniques in TC seasonal prediction mainly include statisti-
cal models [14�16], dynamic models [17�20], and hybrid statistical�dynamic models [21,22].
Although dynamic models are better than statistical models in physical interpretability,
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statistical models are still a mainstream choice today because of the initial condition er-
rors and uncertainty of physical-process representation in dynamic models [23]. Hybrid
statistical�dynamic models, which integrate the advantages of both dynamic and statistical
models, can have better prediction skills [15]. The existing approaches have focused on
the interannual variation of TC frequency (TCF) and accumulated cyclone energy (ACE)
at basin wide or regional scales [14,17,19,24]. There are no prediction techniques tailored
for the spatial distribution of TCs, due to the limited understanding and prediction of the
complicated dynamic processes for local TC activity [18,20].

Seasonal climate prediction is considered nonlinear behavior [25] and due to the
shortcomings of the aforementioned methods in solving nonlinear problems, the annual TC
spatial distribution has not been predicted effectively previously. Deep learning, a new data-
driven technology, shows unprecedented capability in understanding and reconstructing
geophysical �elds [26,27]. Using the explosive amount of General Circulation Model (GCM)
outputs, deep learning technology can signi�cantly improve both weather and climate
predictions, such as the ENSO [28,29], Asian summer monsoon [30], and Arctic sea ice [31]
predictions. Lower computational cost compared with traditional dynamic models is an
advantage of deep learning. In this study, we introduce a new framework of SeaUnet,
which is a fully convolutional neural network architecture, to predict the seasonal spatial
track density of typhoons.

2. Data and Methods
Our SeaUnet model uses monthly maps of 500-hPa geopotential height (H500), which is

linked with TC moving [32], subsurface ocean temperature (average temperature of 300-m
sea water below the sea surface, SubSST), which provides energy for the development of
TC [33], and zonal vertical shear (difference between 200- and 800-hPa zonal winds, ushear),
which is related to the large-scale atmospheric circulation [34], in three consecutive months
before the start time (e.g., three consecutive months of March�April�May before the start
time of June) to identify predictors. The predictand is the TC track density over WNP in
the typhoon season of June to November. We also test the performance of SeaUnet for the
total number of typhoons in the WNP.

2.1. Architecture of the SeaUnet Model
The architecture of the SeaUnet can be seen in Figure 1 and Figure S1 of Supplementary

Materials. SeaUnet introduces a SE attention module (Figure S1 in Supplementary Materials),
which can assign weights to feature maps of different channels. SeaUnet is composed of
a feature extraction network and feature fusion network. The feature extraction network
consists of two down-sampling layers, four residual layers, and three maximum pooling
layers. The kernel sizes of the convolution layer in the two down-sampling layers are 5 � 5
and 3� 3, respectively, and the stride is 1� 1. A residual layer is composed of two Attention
blocks (Figure S1 in Supplementary Materials). The feature fusion network consists of
three residual layers, a bottleneck layer, and three deconvolution layers. Each residual
layer contains two Attention blocks. The main output layer of the model is composed of
a convolution layer with kernel size of 1 � 1 and stride of 1 � 1, whose number of �lters
is 1. The secondary output layer of the model is composed of two fully connected neural
networks with 128 neurons and one neuron, respectively.

2.2. Pre-Training, Fine-Tuning, and Veri�cation
The biggest limitation of deep learning is the availability of suf�cient and reasonable

datasets to train the model. As observation data is not enough to meet the training
needs, we used the outputs of nine CMIP5 and six CMIP6 climate models for pre-training
SeaUnet, following the transfer learning methods in Ham et al. [28] and Tang and Duan [30].
Convolutional neural networks are sensitive to initialization, which determines whether
CNNs can converge [35]. Therefore, in this study the optimal pre-training network weights
were used to initialize the network model over the �ne-tuning period, and the network
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parameters were updated iteratively using the observation data from 1950 to 2020. Namely,
in this study, to ensure the model converges, we �rst trained the SeaUnet (a full CNN
model) using the CMIP5 and CMIP6 outputs, and then used the trained weights as initial
weights to formulate the �nal SeaUnet with the observation data (i.e., TC best-track data
and reanalysis data), which is named Transfer learning [28,30,36].
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Since there are few datasets available for the �ne-tuning period, we used the idea
of a leave-�ve-out cross validation to test the validation set. For example, in order to get
the 2001�2005 seasonal forecast results, we used the �ne-tuning set of years from 1950 to
2020 excluding the �ve years (i.e., 2001�2005). By analogy, we can obtain seasonal forecast
results for 2001�2020, which will be used to compare with the predicted results of some
numerical models in Section 3.2. The prediction factors are 500-hPa geopotential height,
SubSST, and vertical shear of the u component of wind in the previous three months. We
also explored the prediction effect of TC track density using data from different months,
including the previous December to February (D(�1)JF, for prediction starting in March),
January to March (JFM, for prediction starting in April), February to April (FMA, for
prediction starting in May), and March to May (MAM, for prediction starting in June).
For different start times, we used �ne-tuning results from 2001 to 2005 to determine the
number of iterations of the model during the �ne-tuning process (Figure S2). To ensure the
robustness and reproducibility of the results, we ran each prediction 10 times to obtain the
ensemble average.

Root-mean-square error (RMSE) was used as the loss function of the model, and
adaptive moment estimation (ADAM) was used as the optimizer. To avoid over-�tting, we
used the pre-stop method in the training process of the model. During the training, a total
of 64 samples were input into the model in each batch, and all input data and corresponding
labels were scrambled.
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2.3. Heat Map Analysis
In this study, the heat map indicates the contribution of the early signals in this region

to the occurrence and development of WNP TCs in subsequent seasons. A class activation
map (CAM), as a method for visualizing heat maps, was proposed by Zhou et al. [37]
to improve the interpretability of deep learning results. For example, when performing
the task of image classi�cation, the neural network pays different attention to different
positions of the image, so as to make corresponding judgments, while CAM will tell us the
value of the neural network’s attention to different positions of the image. Ham et al. [28]
and Tang and Duan [30] developed a heat map method based on a CAM [37]. For example,
if the heat map value of a region is larger, it indicates that the earlier signals in this region
contribute more to the occurrence and development of WNP TCs in subsequent seasons.
We adapted the heat map method to our SeaUnet as follows:

v(x, y)FC,m = ReLu
�

åLc
l=1 W(x, y)FC,l,mv(x, y)Conv,l +

bFC,m
MC NC

�
(1)

h(x, y) = ReLu
�

åM
m=1 v(x, y)FC,mWO,m +

bO
MC NC

�
(2)

ReLu(x) =
�

x x > 0
0 x � 0 (3)

where v(x, y)FC,m denotes the mth fully connection layer’s neuron output at grid point
(x, y), while MC and NC are the dimensions of the feature map in the last convolutional
layer. In this case, MC is 8 and NC is 18. v(x, y)Conv,l is the lth feature map of the last
convolutional layer, and Lc is the number of feature maps. W(x, y)FC,l,m is the weight at
grid (x, y) between the lth feature map of the convolutional layer and the mth neuron in the
full connection layer, and bFC,m is the bias of the mth neuron in the full connection layer.
h(x, y) is the output of the heat map. bO and WO,m denote the bias and weight between the
full connection layer and the output layer, respectively. ReLU (linear recti�cation function)
is the activation function for nonlinear transformation, which is de�ned by Equation (3).

2.4. Data
To ensure suf�cient samples in the training set, we used the TC tracks and the afore-

mentioned three environmental variables (i.e., H500, SubSST, and ushear) of nine CMIP5
and six CMIP6 models to train the model in the pre-training process. Reanalysis data from
1950 to 2020 was used to train the convolutional neural networks (CNN) model in the
�ne-tuning period. It is well known that a CNN model is quite sensitive to the initialization,
which determines whether a CNN can converge [35]. Thereby, in this study, to ensure the
model converges, we �rst trained the SeaUnet (a full CNN model) using the CMIP5 and
CMIP6 outputs, and then used the trained weights as initial weights to formulate the �nal
SeaUnet with the observation data (i.e., TC best-track data and reanalysis data), which is
named Transfer learning [36].

The CMIP5 covers the time period of approximately 1950�2100, and includes Historical,
RCP4.5, and RCP8.5 experiments. In the training process, the relationship between the
variables (i.e., SubSST, H500, and ushear) and TC track density was built through a large
amount of training data. We assumed that this relationship will not change with climate
change. Thereby, the data of RCP4.5 and RCP8.5 scenarios were used to increase the amount
of training. The CMIP6 contains Historical experiments, roughly covering a time period of
1980�2015. All 15 models selected are described in Table S2 in Supplementary Materials.
In the pre-training process, the variables of H500, ushear, and SubSST were derived from
the CMIP models (nine CMIP5 models and six CMIP6 models in Table S2). While in the
�ne-turning process, the variables of H500 and ushear were derived from the �fth generation
ECMWF reanalysis product (ERA5), and SubSST was derived from the Hadley Centre
Integrated Ocean Database (HadIOD) of the UK Met Of�ce, covering 1950�2020. To ensure
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consistent input of the model, we used the Inverse Distance Weight (IDW) method to
interpolate the above data to a grid of 2.5� � 2.5�. The TC data in the �ne-tuning and
veri�cation periods were from the IBTrACS Version 4, which contains necessary variables,
such as TC intensity, and TC latitude and longitude, with a temporal resolution of 6 hr and
a spatial resolution of 0.1�. To compare with SeaUnet simulation results, we selected the
seasonal prediction results of four numerical models (i.e., CFSv2, SEAS5, GloSea5-GC2,
and Glosea6), which are described in detail in Table S1. Meridional and zonal winds at
10 m, 300 hPa, 500 hPa, and 850 hPa; temperatures of 200, 500, and 850 hPa; vorticity at
850 hPa; and sea-level pressure were used for identifying TCs from numerical models. The
TC identi�cation criteria are also shown in Supplementary Materials.

3. Results
We compared the skills of SeaUnet in predicting WNP TC density with four numerical

models (i.e., CFSv2, SEAS5, GloSea5-GC2, and Glosea6). We focused on climate mean state
and year-to-year variabilities.

3.1. Climate-Mean Comparison
Figure 2 shows the climate mean predicted at the beginning of June for the WNP

TC track density from June to November by SeaUnet and the four numerical models.
Since the time range of the CFSv2 model is inconsistent with the other three numer-
ical models, SeaUnet selects the period of 2012�2020 for comparison with the CFSv2
model. The time range is 2001�2016 for the other three models. This is due to the
different time ranges of publicly available data. The observed WNP TC track density
has the largest values around Taiwan and Luzon Island (Figure 2a,d). The SeaUnet
can predict the large-value regions as observed. SeaUnet, CFSv2, and SEAS5 can well
reproduce the key regions, while Glosea5 and Glosea6 only capture the large-value re-
gions east of Luzon Island with lower values. The spatial correlation coef�cients in TC
track density between the models and the observation are 0.95 (SeaUnet, 2012�2020), 0.90
(CFSv2, 2012�2020), 0.97 (SeaUnet, 2001�2016), 0.96 (SEAS5, 2001�2016), 0.81 (Glosea5,
2001�2016), and 0.83 (Glosea6, 2001�2016). This indicates that the SeaUnet is the best,
followed by SEAS5.

3.2. Year-by-Year Comparison
In routine operation, seasonal prediction focuses on year-to-year variability rather than

the climate mean. In this study, area-averaged RMSE was used to evaluate the skills of each
model in predicting annual TC track density. Figure 3a�d shows the year-by-year evolution
of the area-averaged RMSE between the predicted TC track density and observations in
different starting months. As SEAS5, Glosea5, and Glosea6 can only make predictions seven
months in advance, only the prediction started in May and June can cover June�November
(Figure 3c,d), while CFSv2 can provide June�November predictions in March (Figure 3a),
which is why we chose CFSv2, even though it has a shorter available time period. In
terms of RMSE, SeaUnet gave similar trends to the four numerical models. Moreover,
SeaUnet’s prediction results are better than CFSv20s for both March and April predictions
(Figure 3a,b). Starting in May, SeaUnet’s prediction is worse than SEAS50s (Figure 3c). But
when starting in June, SeaUnet’s is signi�cantly better than SEAS50s, although in some
years SeaUnet’s is worse than SEAS50s. In addition, we evaluated our model using spatial
correlation coef�cients (Figure S5 in Supplementary Materials). As shown in Figure 3,
SeaUnet is superior to CFSV2, Glosea5, and Glosea6 at all lead times. As in Ham et al. [28],
the lead time is de�ned as the number of months between the latest available observation
data and the start of the six-month prediction target period. Compared to SEAS5, however,
the prediction skill of SeaUnet is a little lower in May.



Remote Sens. 2023, 15, 1797 6 of 13

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 2. Climate mean of WNP TC track density from June to November predicted in June. (a) 
Observation for the time range of 2012–2020; (b) predicted by SeaUnet; (c) predicted by CFSv2 for 
the time range of 2012–2020; (d) observation for the time range of 2001–2016; (e) predicted by 
SeaUnet; (f ) predicted by SEAS5; (g) predicted by Glosea5; (h) predicted by Glosea6 for the time 
range of 2001–2016. 

3.2. Year-by-Year Comparison 

In routine operation, seasonal prediction focuses on year-to-year variability rather 
than the climate mean. In this study, area-averaged RMSE was used to evaluate the skills 
of each model in predicting annual TC track density. Figure 3a–d shows the year-by-year 
evolution of the area-averaged RMSE between the predicted TC track density and obser-
vations in di �� erent starting months. As SEAS5, Glosea5, and Glosea6 can only make pre-
dictions seven months in advance, only the prediction started in May and June can cover 
June–November (Figure 3c,d), while CFSv2 can provide June–November predictions in 
March (Figure 3a), which is why we chose CFSv2, even though it has a shorter available 
time period. In terms of RMSE, SeaUnet gave similar trends to the four numerical models. 
Moreover, SeaUnet’s prediction results are be�4er than CFSv2��s for both March and April 
predictions (Figure 3a,b). Starting in May, SeaUnet’s prediction is worse than SEAS5��s 
(Figure 3c). But when starting in June, SeaUnet’s is signiÞcantly be�4er than SEAS5��s, alt-
hough in some years SeaUnet’s is worse than SEAS5��s. In addition, we evaluated our 
model using spatial correlation coe�� cients (Figure S5 in Supplementary Materials). As 
shown in Figure 3, SeaUnet is superior to CFSV2, Glosea5, and Glosea6 at all lead times. 
As in Ham et al. [28], the lead time is deÞned as the number of months between the latest 
available observation data and the start of the six-month prediction target period. Com-
pared to SEAS5, however, the prediction skill of SeaUnet is a li�4le lower in May.  

 

Figure 2. Climate mean of WNP TC track density from June to November predicted in June.
(a) Observation for the time range of 2012�2020; (b) predicted by SeaUnet; (c) predicted by CFSv2
for the time range of 2012�2020; (d) observation for the time range of 2001�2016; (e) predicted by
SeaUnet; (f) predicted by SEAS5; (g) predicted by Glosea5; (h) predicted by Glosea6 for the time
range of 2001�2016.

To clearly show the evolution of the prediction errors of each model with different
starting times, we designed Figure 3e. Except for the predictions started in May, the
prediction error of SeaUnet becomes smaller with reduced lead time. However, this trend
is not clear in the four numerical models. SeaUnet’s prediction started in May has the
largest error, which also partly explains why SeaUnet in Figure 3c is weaker than those of
the numerical models started in May. However, SeaUnet outperforms the other models
in the other three start times (i.e., March, April and June). Note that SeaUnet has the best
prediction skills in June, and wins with a small margin compared with SEAS5.
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(TCTF), which is the sum of the TC track density over a certain area (e.g., the WNP). The 
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Figure 3. Area-averaged root-mean-square error (RMSE) between predicted TC track density results.
Annual RMSE of the predicted TC track density of SeaUnet, SEAS5, Glosea5, and Glosea6 ensemble
mean with respect to the observation in different starting months (i.e., (a) start in March; (b) start
in April; (c) start in May; and (d) start in June), with SeaUnet for the time range from 2001 to 2020,
CFSv2 for the time range from 2012 to 2020, SEAS5, Glosea5, and Glosea6 for the time range from
2001 to 2016. (e) RMSE of each model changing with starting time. The solid line represents the
average error of the ensemble mean of each model in the selected year, and the shading represents
the 25% variance of the ensemble members. To ensure the rationality of comparison, the time range
of the solid line for SeaUnet is from 2001 to 2016, and the time range of the dotted line is from 2012
to 2020; the time range for CFSv2 is from 2012 to 2020; and the time range for SEAS5, Glosea5, and
Glosea6 is from 2001 to 2016.

3.3. Physical Interpretation of SeaUnet Predictions
We used the heat map to interpret the physical meanings behind the SeaUnet pre-

dictions. SeaUnet’s main output (i.e., TC track density) is a network based on the fully
convolutional network architecture. Currently, there are few studies on the interpretability
of a fully convolutional network. Therefore, based on the main output network of SeaUnet,
we added a secondary output to predict the aforementioned WNP TC track frequency
(TCTF), which is the sum of the TC track density over a certain area (e.g., the WNP). The
TCTF is not only related to the frequency of TC, but also to the TC duration. The predicted
and observed WNP TCTFs from 2001 to 2016 were calculated (Figure 4a). By using H500,
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SubSST, and ushear in the boreal spring (using the MAM data) to train the SeaUnet, we show
that SeaUnet can accurately predict the TCTF. The time correlation coef�cient between the
TCTF of SeaUnet prediction and observation reaches 0.67 and passes the 95% signi�cance
test. In second place is SEAS5, which also passes the 95% signi�cance test with a correlation
coef�cient of 0.66. The correlation coef�cients of Glosea5 and Glosea6 do not pass the 95%
con�dence test.
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Figure 4. Physical interpretation of SeaUnet model TCTF predictions. (a) WNP TCTF predicted
by the four models and observations from 2001 to 2016. The number after the colon in the legend
represents the correlation coef�cient between the predicted and observed values. Note that the lines
of the three numerical models (SEAS5, GloSea5, and GloSea6) indicate their ensemble mean (see
Table S1 in Supplementary Materials). (b) The heat map of 2010. (c) The heat map of 2018. The results
are predicted by the SeaUnet with boreal-spring subsurface SST of the UK Met Of�ce, using H500
and vertical shear of the u component of wind of the ERA5 data as the predictors.

Through the heat map in the deep learning visualization, we analyzed the contribu-
tions of different regions to the WNP TCTF. Because of the characteristics of the heat map,
the values of the shaded areas do not represent a positive or negative correlation, but only
the relative contribution to the prediction of the WNP TCTF. For easy comparison, we
calculated the normalized value of the heat map. We selected a minimum year (2010; Figure
S3 in Supplementary Materials) and a maximum year (2018; Figure S3 in Supplementary
Materials) for the heat map analysis. Note that year 2020 is also a minimum value year
(Figure S3 in Supplementary Materials). Since the prediction error is large in 2020, we
selected the second minimum value year (2010) with a smaller prediction error for the heat
map analysis.
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Although SeaUnet is an entirely data-driven statistical model, it can reveal certain
physical processes using the heat map method. For example, there are three regions
of high correlation in the tropical Paci�c, tropical and subtropical Indian Ocean, South
America, and in the pole in 2010 (Figure 4b); and two remarkable regions in the central
and western tropical Paci�c and Sea of Okhotsk in 2018 (Figure 4c). The high correlations
of these regions with the WNP TCTF are also evident in the correlation coef�cient map
(Figure S4 in Supplementary Materials).

There is a highly negative correlation between the boreal-spring SST in the eastern
Indian Ocean (75��100�E, 10�S�22.5�N) and WNP TCTF, which may be related to the
in�uence of the SST anomaly in the eastern Indian Ocean on the East Asian and western
Paci�c summer monsoons and equatorial Kelvin wave [38]. This region is also included
in the Indian Ocean large-value region in Figure 4b. The SST gradient between the Indian
Ocean and western Paci�c warm pool in spring can cause low-level negative vorticity,
strong vertical wind shear, and anticyclone anomalies at the low level in most areas of
the WNP, favoring a reduction of TC occurrence frequency [39]. The Spring Indian Ocean
Dipole (IOD) is also an important in�uencing factor. A positive SIOD can strengthen the
WNP monsoon trough in summer, conducive to more TC genesis [40].

The highly correlated sea areas in the central tropical Paci�c shown in Figure 4c are
due to the development of the ENSO. There have been many studies on ENSO’s in�uence
on WNP TC activities [41,42]. The temporal teleconnection between ENSO and WNP
TC may be related to the fact that the climate anomalies caused by El Nino can continue
into summer, which includes a warm SST over the tropical Indian Ocean, the warming
of troposphere in the tropics, and the anticyclonic anomalies over the subtropical region
of the WNP [43,44]. In addition to the ENSO, the sea-ice cover in spring near the Sea of
Okhotsk and the Bering Sea shows signi�cant negative correlations with the WNP SST, thus
affecting the activity of WNP TCs [45]. This is also consistent with the high contribution
areas in the mid and high latitudes in Figure 4c.

We used not only ocean thermal factors as predictors; some dynamic factors that can
re�ect large-scale circulations were also introduced into the model. Therefore, the heat
map was not limited to thermal factors. For example, the high correlation region of the
Southern Hemisphere’s subtropical regions, except the Atlantic Ocean (Figure 4b), may
be related to the subtropical high (see Figure S4e,f in Supplementary Materials), and this
mechanism may be linked to the in�uence of the Hadley circulation in boreal spring [46].
As a response to SST, the Arctic Oscillation (AO) associated with surface circulation in the
Beaufort Sea [47] is also an important precursor signal to the WNP TC frequency during
the boreal spring [48,49], which can be seen in Figure S4a�c in Supplementary Materials.

Due to the complexity of air�sea interactions, in some years some other factors may be
dominant in determining the WNP TCTF, such as tropical North Atlantic SST anomalies
in spring (Figure S4a�c in Supporting Information) [50,51], the SST gradient between the
southwestern Paci�c and western Paci�c warm pool in spring (Figure S4c in Supporting In-
formation) [52,53], northern Indian Ocean SSTs (Figure S4b in Supporting Information) [54],
etc. The heat map analysis also indicates that some other areas, which were not investigated
in previous studies on WNP TCs, contribute to the WNP TCTF. These areas also have a
high incidence of some typical weather processes (e.g., Ural Mountains blocking high).
Thereby, as an effective tool to solve nonlinear problems, the heat map provides a new way
for us to study the mechanisms behind the WNP TC seasonal prediction.

4. Conclusions
Based on deep learning, we developed a new model for seasonal prediction of WNP

TC track density, and proposed a method to study the nonlinear correlation between WNP
TC activity and precursors by using a heat map [28,30]. The SeaUnet performs well in pre-
dicting the WNP TC track density, and characteristics of TC activity from June to November
are predicted four months in advance. The area-averaged RMSE between the observed
and SeaUnet-predicted WNP TC track density is smaller than that between the observed
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and predicted WNP TC track density given by the dynamic models, except at the start
time in May (when the SeaUnet is only worse than SEAS5). However, SEAS50s prediction
is only two months in advance, whereas SeaUnet’s is four months in advance. Except
for the predictions started in May, the prediction error of SeaUnet becomes smaller when
the lead time becomes shorter. However, this trend is not clear in the results of the four
numerical models. To explore the regions with signi�cant contributions to the WNP TC
activities, we used the heat map method. Due to the characteristics of the heat map, we
predicted the WNP TCTF by using a secondary output of SeaUnet, which can re�ect their
frequency and life history. The correlation skill of the WNP TCTF can reach 0.67, which is
better than the correlation skills of the other numerical models. The regions with signif-
icant contributions match well with the key regions identi�ed by previous theoretical
studies [39�41,45,48,49] and are consistent with the correlation analysis (Figure S4 in
Supplementary Materials). The heat map was also used for regions with a high inci-
dence of typical weather processes, which was not studied previously, such as the Ural
Mountains blocking high. Different from traditional correlation and regression methods,
the heat map is a highly nonlinear model, which provides a new research tool for us to
study the seasonal prediction mechanism of WNP TC activity.

In this study, the main reasons for the better results of SeaUnet compared with the
results of numerical models are as follows: (1) SeaUnet is a CNN-based fully convolutional
neural network architecture, whose network backbone is ResUnet (a deep learning model
based on residual connectivity). The strong feature representation of ResUnet allows it
to show excellent performance in tasks such as image classi�cation, which is appropriate
for the prediction of TC track density; (2) SeaUnet uses a SE attention (Figure S1) module,
which considers that channels of the feature map contribute differently to the task and
assigns the corresponding weights. This attention mechanism allows the model to focus
more on the most informative channel features and suppress those that are not important,
which favors the improvement of forecast results; (3) The use of the transfer-learning
method makes CMIP, as a pre-training dataset, greatly increase the training set samples,
which in turn facilitates the convergence of the model and favors the improvement of
forecast results.

Although, to some extent, the SeaUnet is better than the numerical models, further
optimization of the model or adjustment of training strategy is needed. Although only
the seasonal prediction of WNP TCs was carried out in this study, the advantage of the
SeaUnet prediction also provides a good indication for other basins where TCs are active,
e.g., the Indian Ocean and North Atlantic. We plan to carry out seasonal TC predictions
in other ocean basins. We are also developing a uni�ed prediction of TC track density
distribution probability and TC frequency for operational prediction. In addition, part of
the information shown in the heat map is consistent with previous theoretical analysis.
Based on the nonlinear solution of the heat map, the in�uence of some unnoticed regions
with signi�cant contributions to TCs may need to be further studied in combination with
numerical models.
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