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Abstract. Quantifying regional water and energy fluxes
much more accurately from observations is essential for as-
sessing the capability of climate and Earth system models
and their ability to simulate future change. This study uses
satellite observations to produce monthly flux estimates for
each component of the terrestrial water and energy budget
over selected large river basins from 2002 to 2013. Prior to
optimisation, the water budget residuals vary between 1.5 %
and 35 % precipitation by basin, and the magnitude of the
imbalance between the net radiation and the corresponding
turbulent heat fluxes ranges between 1 and 12 W m−2 in the
long-term average. In order to further assess these imbal-
ances, a flux-inferred surface storage (Sfi) is used for both
water and energy, based on integrating the flux observations.
This exposes mismatches in seasonal water storage in addi-
tion to important inter-annual variability between GRACE
(Gravity Recovery and Climate Experiment) and the storage
suggested by the other flux observations.

Our optimisation ensures that the flux estimates are con-
sistent with the total water storage changes from GRACE
on short (monthly) and longer timescales, while also balanc-
ing a coupled long-term energy budget by using a sequen-
tial approach. All the flux adjustments made during the op-
timisation are small and within uncertainty estimates, using
a χ2 test, and inter-annual variability from observations is
retained. The optimisation also reduces formal uncertainties
for individual flux components. When compared with results
from the previous literature in basins such as the Mississippi,
Congo, and Huang He rivers, our results show better agree-
ment with GRACE variability and trends in each case.

1 Introduction

The terrestrial water cycle largely determines the Earth’s cli-
mate and causes much of the natural climate variability. Vari-
ations in and long-term changes to the water cycle can have
profound impacts on regional agriculture, ecosystems, and
society. The surface energy budget is a key driver of the
global water cycle, in addition to having a large influence
over atmosphere and ocean dynamics and a variety of sur-
face processes. Despite the fundamental importance to our
understanding of climate and climate change, there remain
some key challenges to quantifying the regional water and
energy cycling rates. In particular, observations of the flux
and storage terms tend to have large uncertainties and are in-
consistent with budget considerations, while model estimates
are internally consistent but usually show some mismatches
to observations (e.g. Dong et al., 2020).

We assume the water balance by the following:

P −E−Q=
dS
dt
. (1)

This states that the precipitation (P ) falling over an area,
combined with the loss of water to the atmosphere through
evaporation (E) and the horizontal loss of water through
runoff (Q), is balanced by the change in water storage dS

dt in
the area. The availability of GRACE (Gravity Recovery and
Climate Experiment) satellite gravitational measurements of
total water storage anomalies (S) since 2002 Tapley et al.
(2019) has provided a valuable constraint to aid our under-
standing of the other water budget components. The previous
literature has used the budget equation to test the accuracy
of observations (Reeves Eyre and Zeng, 2021) and to vali-
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date model estimates (Long et al., 2015). Several studies also
exist which use the budget equation to estimate one compo-
nent while using observations for the other terms (Chen et al.,
2020; Wang et al., 2015; Sheffield et al., 2009). For instance,
Chen et al. (2020) provide a new estimate of seasonal and
yearly river runoff changes for the Amazon basin by using
the water budget closure method, and Rodell et al. (2011)
use budget closure to estimate evaporation.

Recent developments in satellite retrievals have meant that
budget closure can be assessed purely from remotely sensed
data sources (Sheffield et al., 2009). However, water fluxes
are still affected by considerable uncertainties, which have
been highlighted in many water budget studies when inde-
pendent products are combined. For example, Sheffield et al.
(2009) used the budget equation, taking Q as a reference
variable, and found significant errors that were larger than
the observedQ taken from in situ measurements. A common
approach among previous water budget assessments is to use
a range of products for each flux component and evaluate the
ability of different combinations to close the water budget.
For example, Lehmann et al. (2022) investigated the budget
closure at catchment scales using 11 precipitation, 14 evap-
oration, and 11 runoff datasets together with GRACE. The
study concluded that no single combination of data sources
can close the budget well for all regions. It was also high-
lighted that, in regions for which selected data sources did
close the budget reasonably well, this could be as a result of
the cancellation of errors. The multi-source strategy has the
potential to compensate for the limitations of each individual
estimation method in terms of its accuracy and spatiotempo-
ral coverage. However, combining multiple sources can in-
troduce a new challenge of how to allow for discrepancies
between the different data products. Lehmann et al. (2022)
determined uncertainties for each flux based on the inter-
product spreads, which is the common way to treat uncertain-
ties when multiple products have been used (e.g. Abolafia-
Rosenzweig et al., 2021). Resolving the uncertainty among
the various estimates for a specific variable remains an under-
lying challenge when using both in situ measurements and
remote sensing observations (Pan et al., 2012).

Non-closure errors can come from the complexities of de-
riving energy and water fluxes from remote measurements.
This process involves independent algorithms that use dis-
tinct observations and assumptions which can be subject to
both random and systematic errors (L’Ecuyer et al., 2015).
Since each flux dataset may be developed in isolation, valu-
able energy budget and water cycle closure information is
lost. Then, reintroducing budget closure as a constraint may
help to reduce biases in these datasets.

There are several studies in existence which produce best
estimates for all components in order to close the budget
(e.g. Sahoo et al., 2011). Different techniques are seen to im-
pose closure constraints, such as Kalman filters (Pan et al.,
2012; Zhang et al., 2018), post-filtering (Munier et al., 2014;
Aires, 2014), and variational methods (Rodell et al., 2015;

Hobeichi et al., 2020). Abolafia-Rosenzweig et al. (2021)
focused on the human impacts on the water cycle and pro-
duced a remotely sensed ensemble of the terrestrial water
budget (REESEN) containing 60 unique realisations of the
water budget for basins between 50◦ N and 50◦ S, over Oc-
tober 2002–December 2014. Three different closure tech-
niques were applied to all ensemble members in order to pro-
duce three ensembles of corrected budget estimates. Zhang
et al. (2018) produced a climate data record (CDR) for the
period 1984–2010, which provides monthly 0.5◦ resolution
global estimates of each flux component, while closing the
budget using a constrained Kalman filter.

Typically, these methods produce new monthly estimates
for each flux by adjusting input observations according to
defined errors either in order to achieve complete budget clo-
sure (Aires, 2014) or to achieve a budget residual within al-
lowed errors (Hobeichi et al., 2020). Errors are often based
on inter-product spread (Abolafia-Rosenzweig et al., 2021)
or based on discrepancies with non-satellite data (Sahoo
et al., 2011). Crude approximations are also sometimes used
when representing errors; for example, Munier et al. (2014)
supposed constant errors for P and E of 10 cm and 10 % of
the mean discharge for Q. Such assumptions are made due
to the absence of any comprehensive study that quantifies er-
rors at the global or regional scales for each of the datasets
used (Munier and Aires, 2018).

Zhang et al. (2018) adjust fluxes according to the devi-
ation from the ensemble mean of all data sources for the
same budget variable. In a post hoc adjustment, Zhang et al.
(2018) also remove any long-term storage trend by redis-
tributing the non zero mean dS/dt between the precipitation
and the evaporation in a way that maintains budget closure.
However, most other studies that close the water budget on
a monthly timescale fail to consider total water storage over
longer timescales. The GRACE time series does provide wa-
ter storage information on all timescales longer than 1 month,
and so, when only using monthly changes as input, informa-
tion can be lost. Post hoc detrending (Zhang et al., 2018) is
also incorrect for regions where GRACE does detect a trend
in storage; for example, Wang et al. (2015) found significant
trends in water storage in 11 out of the 19 basins studied. In
addition, GRACE data often reveal interesting inter-annual
variations in basin water storage which will not necessarily
be reproduced by most previous approaches (examples will
be shown later). One key aim of this study will be to produce
balanced water budgets which agree with the inter-annual
variability and long-term trends observed by GRACE. Since
the other fluxes of P , E, and Q are linked to dS

dt via Eq. (1),
the use of the additional information given by GRACE stor-
age should also provide more accurate constraints on these
fluxes. The problem considered here involves only linear
budget equations, which means that there will always be a
unique monthly solution that will not depend on the choice
of the optimisation algorithm. The advance we present comes
from the constraints imposed, and alternative optimisation al-
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gorithms should give the same results. To the authors’ knowl-
edge, no previous efforts have been made to fully fit flux es-
timates to GRACE during budget closure.

The surface energy balance can be described by the in-
coming energy from downwelling shortwave and longwave
radiation (DSR and DLR, respectively), the outgoing energy
from the longwave flux (ULW), and reflected shortwave flux
(USW) and the turbulent heat fluxes latent and sensible heat
(LE and SH, respectively). Fluxes are taken to be positive
when directed towards the surface. Therefore, the energy
budget can be written as follows:

DSR+DLR−USW−ULW−LE−SH= NET, (2)

where NET is the total energy absorbed by the surface.
The water and energy cycles are coupled due to the ex-

changes of latent heat that occur during precipitation and
evaporation, and so we will also include a regional coupled
energy budget closure in our analysis, with a particular focus
on seasonal to inter-annual variability, and the interactions
with the water cycle.

Without limitations on water availability, evaporation in-
creases with increasing temperature which must be balanced
by an increase in precipitation. Additionally, warmer air can
hold more moisture, about 7 % more water vapour for each
degree Celsius of warming, and so evaporation and precip-
itation are projected to intensify as a consequence of the
changes in the Earth’s energy balance (IPCC, 2013).

The coupling between the water and energy budgets en-
ables them to provide constraints on one another; how-
ever, most previous studies have performed water or en-
ergy budget analyses independently. The NASA Energy and
Water cycle Study (NEWS) derived an optimised coupled
global–continental-scale budget, with Rodell et al. (2015) fo-
cusing on the water and parallel energy budget (L’Ecuyer
et al., 2015), for the period 2000–2010, focusing on satellite-
derived data as far as possible. Thomas et al. (2020) extended
the NEWS coupled approach, focusing on improving ocean
basin fluxes. Hobeichi et al. (2020) then developed a regional
coupled approach over land areas, producing the Conserving
Land–Atmosphere Synthesis Suite (CLASS), which solves
for monthly water and energy budgets at 0.5◦ grid scale from
2003–2009.

Data-driven global flux estimates are subject to uncertainty
due to the lack of energy balance closure. In order to mitigate
this, some data sources look to account for energy balance
within their products. For example, FLUXCOM products un-
dergo three different energy balance closure corrections for
LE and SH (Jung et al., 2019).

This study aimed to produce a new optimisation method-
ology which is able to account for both short and long
timescales. Using this new methodology, this study produces
optimised estimates for each of the water and energy bud-
get components, based on observations. It aims to ensure
that the estimates are consistent with GRACE on a monthly

timescale, in addition to being in agreement with any inter-
annual and long-term storage trends, and that the total energy
lost or absorbed by the ground over this time period is small.
The estimates are also constrained to close the monthly water
budget, while accounting for the uncertainties in the obser-
vations. The paper is organised as follows: Sect. 2 describes
the data used as input for the optimisation, Sect. 3 describes
the methodology used in the study, and results are shown in
Sect. 4. Optimisation uncertainties are included in Sect. 5,
and a discussion is included in Sect. 6, before concluding in
Sect. 7.

2 Data

Each of the datasets described in this section has a monthly
resolution and has been interpolated at a 0.5◦ spatial resolu-
tion and then masked and spatially averaged over different
basins chosen in this study. Flux datasets represent the aver-
age flux over each calendar month and therefore are consid-
ered to represent the flux mid-month. The input data sources
used are summarised in Table 1. For this study, data for each
variable were downloaded for each month between Octo-
ber 2001 and December 2013.

Other water budget studies have often used an ensemble
of products to represent input observations in the absence of
any widely accepted “best dataset”. In this study, we use only
a single data product for each component, which we account
for in our uncertainty calculations. We aimed to use Earth
observation data where possible and sought global gridded
products to ensure the uniformity of the uncertainties across
all basins. Overall, the specific datasets chosen were not criti-
cal, as our primary goal was to evaluate our new optimisation
methodology and its ability to bring independent products
into consistency.

2.1 GRACE

Water storage data are taken from the Gravity Recovery and
Climate Experiment (GRACE). GRACE measures changes
in the Earth’s gravity field, which is directly correlated to
the change in surface mass and is indicative of water storage
change. The water mass anomalies are expressed in terms
of equivalent water thickness and represent the deviations
of mass in terms of vertical extent of water in centimetres.
All water storage compartments, including snow, surface wa-
ter, soil moisture, and deep groundwater, are accounted for
(GravIS, 2021).

The GRACE data were processed using an advanced mass
concentration (mascon) approach that enables improved sig-
nal resolution relative to the standard spherical harmonic
technique (Rodell et al., 2018). It acts across coarse spatial
and temporal scales and requires filtering prior to being in-
terpreted. The processing chain of GRACE data involves a
large number of corrections and uncertainties that introduce
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Table 1. Data sources.

Data source Variable Dataset type Spatial Key references
resolution

CERES EBAF_Ed4.1. Radiative fluxes Satellite 1◦ Wielicki et al. (1996)
GRACE-JPL Mascon CRIv01 Water storage anomaly Satellite 0.5◦ Wiese et al. (2016)
FLUXCOM Sensible heat, latent heat Merged product 0.5◦ Jung et al. (2019)
GPCPv2.3 Precipitation Merged product 2.5◦ Adler et al. (2003)
GRUNv1.0. Runoff Merged product 0.5◦ Ghiggi et al. (2019)

errors and impose restrictions on its use (Swenson and Wahr,
2006). One of the most important errors is the signal leak-
age between neighbouring grid cells caused by the truncation
of spherical harmonics and Gaussian filtering (Landerer and
Swenson, 2012). The version used here is the Jet Propulsion
Laboratory (JPL) Mascon RL06_v2, which uses a coastline-
resolution improvement (CRI) filter applied to separate the
land and ocean portions of mass within each land or ocean
mascon in a post-processing step. The relative magnitude of
ocean and land leakage errors is primarily a function of how
the mascon placement conforms to the coastline. The CRI
filter acts to reduces leakage errors across coastlines. Wiese
et al. (2016) quantify the associated errors in determining
mass variations for different basins. On average, measure-
ment errors dominate leakage errors (mean error of 8.3 mm
versus 5.1 mm), particularly for larger basins, as the fraction
of fully contained mascons in the basins increases.

The data are provided with 0.5◦ resolution grids and time
given as days since 1 January 2002 (00:00:00 Z). Storage val-
ues are provided per calendar month, but these must be con-
verted into storage changes, dS, over each month. In the lit-
erature, several different methods have been used, such as
centred difference schemes (Zhang et al., 2018), backwards
difference schemes (Hobeichi et al., 2020), and fourth differ-
ence schemes (Reeves Eyre and Zeng, 2021). Here we use
simple centred differences, dS[i]

dt = (S[i+1])−S[i−1])/2t ,
for month i.

There were a small number of months with missing data
which were filled with monthly climatology plus the tempo-
ral interpolation of monthly storage anomalies.

2.2 GPCPv2.3

Precipitation data are taken from the Global Precipitation
Climatology Project (GPCP) version 2.3 (see Adler et al.,
2016a). GPCP provides monthly precipitation data from
1979–present and aims to provide a globally coherent dataset
of precipitation (Adler et al., 2003). It combines observations
and satellite precipitation data into 2.5◦ global grids. The
product employs precipitation estimates from the 06:00 and
18:00 LT low-orbit satellite Special Sensor Microwave Im-
ager (SSM/I) and Special Sensor Microwave Imager/Sounder
(SSMIS) passive microwave data to perform a calibration
of infrared data from the international collection of geosta-

tionary satellites in the latitude band 40◦ N–40◦ S. The satel-
lites include the Geostationary Operational Environmental
Satellites (GOES) from the National Oceanic and Atmo-
spheric Administration (NOAA), and the calibration varies
by month and location (Adler et al., 2016a). Absolute mag-
nitudes are considered reliable, and inter-annual changes are
robust. Precipitation may be underestimated in mountainous
areas; however, version 2.3 has improved on this compared
to previous versions (Adler et al., 2016a).

2.3 GRUNv1

Runoff data are taken from the Global Runoff Reconstruc-
tion (GRUN) dataset. GRUN provides a global gridded re-
construction of monthly runoff, covering the period 1902–
2014 at a 0.5◦ spatial resolution (Ghiggi et al., 2019). The
dataset uses a global collection of in situ streamflow obser-
vations to train a machine learning algorithm that predicts
monthly runoff rates based on antecedent precipitation and
temperature from an atmospheric reanalysis. The precipita-
tion and temperature data are obtained from the Global Soil
Wetness Project Phase 3 (GSWP3) dataset version 1.05 (Kim
et al., 2017). The in situ runoff observations are derived from
the Global Streamflow Indices and Metadata archive (GSIM;
Do et al., 2018), which consists of 35 002 streamflow sta-
tions. Model validation is based on cross-validation experi-
ments, using datasets such as the Global Runoff Data Centre
(GDRC) reference dataset (GRDC, 2020) and runoff simula-
tions from the Inter-Sectoral Impact Model Intercomparison
Project (ISIMIP; Warszawski et al., 2014). Different metrics
are used to assess the skill of the runoff reconstruction. For
large GDRC river basins, the relative bias (which has an op-
timal value of 0) had a median of 0.047, the squared corre-
lation coefficient, R2, had a median of 0.738, and the ratio
of the standard deviations (optimal value of 1) had a median
of 1.004. Overall, the agreement is said to be satisfactory, al-
though there is a tendency to underestimate runoff rates when
the magnitude increases (Ghiggi et al., 2019).

2.4 FLUXCOM

Latent and sensible heat data come from FLUXCOM, us-
ing the remote sensing plus meteorological/climate forcing
(RS+METEO) setup. FLUXCOM uses machine learning to
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merge energy flux measurements from FLUXNET eddy co-
variance towers with remote sensing and meteorological data
to estimate net radiation, latent and sensible heat, and their
uncertainties. Using three different machine learning algo-
rithms, energy balance closure correction constraints, and
climate forcing data from various sources as predictors, a
large ensemble of gridded flux products is generated (Flux-
Com, 2021). A lack of energy balance closure of around 20 %
was observed across FLUXNET sites, which was addressed
using three different approaches based on hypotheses regard-
ing the primary cause of the energy balance closure gap. Clo-
sure corrections include the Bowen ratio correction, which
assumes that the ratio of sensible and latent heat is accurately
measured, and a residual approach, which reallocates miss-
ing energy to other flux components (Jung et al., 2019). The
data are provided on 0.5◦ global grids. FLUXCOM ensem-
ble products provide uncertainties per grid cell and time step.
Uncertainties can arise from empirical upscaling, the choice
of machine learning algorithm, and the predictor variables.

2.5 CERES

This study takes radiative flux data from the Clouds and Earth
Radiative Energy System (CERES), a multi-satellite mea-
surement programme for monitoring radiation. CERES in-
struments were designed to provide accurate measurements
for the long-term monitoring of Earth’s reflected shortwave
and emitted longwave radiances, as part of its radiation en-
ergy budget (Loeb et al., 2016). Seven CERES instruments
on five satellites have been launched (TRMM, Terra, Aqua,
S-NPP, NOAA-20). Each CERES instrument has three chan-
nels, namely a shortwave channel to measure reflected sun-
light, a longwave channel to measure Earth-emitted thermal
radiation in the 8 to 12 µm window region, and a total channel
to measure all wavelengths of radiation. Calibration sources
on board include a solar diffuser, a tungsten lamp system
with a stability monitor, and a pair of blackbodies that can be
controlled at different temperatures (Wielicki et al., 1996).
The CERES record is highly stable and has twice the spa-
tial resolution and improved instrument calibration compared
to the Earth Radiation Budget Experiment (ERBE) record
(Acker et al., 2014). Here we use the latest version (CERES
Energy Balanced and Filled (EBAF) Ed4.1). This version
uses new clear-sky fluxes determined for the total region to
determine top-of-atmosphere (TOA) and surface cloud radia-
tive effects (CREs). Uncertainties are primarily determined
by comparing EBAF surface fluxes with observations at sur-
face sites over land and buoys over ocean (Kato et al., 2018).

2.6 Initial uncertainties

Many previous water budget studies have dealt with uncer-
tainties by solving for multiple data products for each com-
ponent and using the spreads as a measure of uncertainty.
We have only used single data products here, although the

uncertainties applied are based on prior studies that have
taken multiple products to estimate uncertainties, in partic-
ular the NEWS analysis (L’Ecuyer et al., 2015; Rodell et al.,
2015). Product uncertainties are very hard to estimate on re-
gional scales because of unknown spatial error covariances.
In situ, calibration-based errors may be correlated on small
spatial scales but are likely to be uncorrelated on larger spa-
tial scales. In addition, many product errors may scale with
flux amplitudes, and some previous studies have therefore
assigned uncertainties as a percentage of flux amplitudes.

Here, in order to give a traceable method, we have taken
the continental-scale uncertainty estimates from the NEWS
papers above and downscaled them to river basin scales,
while assuming that errors are uncorrelated between river
basin scales and continental scales. This leads to the follow-
ing relationship between basin-scale and continental-scale
flux uncertainties:

σf =
√
(f/F ) · (A/a) ·6F, (3)

where σf is the basin-scale uncertainty for flux f over basin
area a, and 6F is the continental-scale uncertainty for flux F
over continental area A. If the errors were assumed to corre-
late between scales, then the simpler uncertainty scaling as a
percent of flux amplitudes would apply.

However, GRACE does not measure a flux but rather the
strength of the gravitational field anomaly. To calculate the
dS uncertainties, we use the basin values proposed by Wiese
et al. (2016) for the JPL GRACE Mascon RL05M solution.
Their method combines measurement uncertainty (εm) and
leakage uncertainty (εl) to produce an uncertainty for stor-
age (σS). We then calculate uncertainty in storage change be-
tween any 2 months (σdS), assuming errors are uncorrelated
from 1 month to another, as follows:

σS =

√
ε2

m+ ε
2
l , σdS =

√
2σS. (4)

We show examples of both input and optimised uncertain-
ties later in the paper.

2.7 Study area and period

For this study, we focus on large river basins (see Fig. 1). The
Mississippi, the Amazon, the Huang He (Yellow River), the
Congo, and the Amur river basins are selected for more de-
tailed analyses in this paper, based on storage trends seen in
GRACE and overlapping regions with other studies to en-
able comparisons. Additional results for a larger range of
basins are shown in the Appendix. This study is carried out
for 2002–2013, due to the availability of the selected data
products.

The basins selected capture a range of imbalances in their
observed budgets from the initial data, including basins with
strong inter-annual variability, basins from a variety of lat-
itudes, and basins that have other optimised flux products
already mentioned in the literature. We are also restricted
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Figure 1. Location of 20 selected large basins. Colouring is associated with basin size.

to larger basins, preferably with simple basin boundaries, as
these will have smaller GRACE storage errors, as described
in Wiese et al. (2016).

3 Methods

3.1 Inferred storage from observations

For both water and energy budgets, we find it useful to cal-
culate a surface storage anomaly, which we call the flux-
inferred storage (Sfi), which is a time integral of the total
fluxes in and out of a region. This quantity highlights flux im-
balances, seasonal cycles, inter-annual variability, and trends
very clearly and will also be used for developing the opti-
misations. For example, for water, we generate Sfi,w, using
observations from the right-hand side of Eq. (1).

If we have an initial storage anomaly, then we can gener-
ate a storage by integrating dS

dt with respect to time. For wa-
ter, we take S[0] to be equal to the GRACE storage anomaly
from 1 January 2002 and use this to initialise the Sfi,w time
series.

Sfi,w[t] =

t∫
0

(
dS
dt

)
dt+S[0] =

t∫
0

(P −E−Q)dt+S[0] (5)

If the initial fluxes were consistent with GRACE, then this
should produce the GRACE time series, which prior to op-
timisation it does not. Also, if there are any persistent im-
balances in the fluxes, then this shows up as a strong trend
in Sfi,w. We also produce a detrended flux-inferred storage
(SD

fi,w) in order to help emphasise imbalances in the seasonal
storage cycle relative to GRACE.

A similar energy flux-inferred storage anomaly can also be
generated from the energy balance (Eq. 2).

Sfi,e[t] =

t∫
0

(NET)dt =

t∫
0

(DSR+DLR−USW

−ULW−LE−SH)dt (6)

Again the Sfi,e will show up any seasonal cycle in surface
warming, inter-annual variations, and long-term imbalances
very clearly. A detrended flux-inferred energy storage (SD

fi,e),
which assumes the long-term NET to be zero, is also used in
the optimisation to implement the long-term constraint.

3.2 Optimisation

Through an optimisation approach, we produce monthly es-
timates of the water and energy budget components aim-
ing to satisfy the following: (1) minimise the distance from
observed fluxes according to their relative uncertainties,
(2) close the monthly water budget and long-term energy
budget, (3) ensure the water and energy components are con-
sistent, and (4) ensure the total water storage implied from
our optimised fluxes has good agreement with the total wa-
ter storage from GRACE. The reasoning behind step (4) and
methods to achieve this are described in detail in Sect. 3.2.1.

When combining observations from independent data
products described in Sect. 2, we see an imbalance in the
monthly water budget (Eq. 1). For the energy budget (Eq. 2),
we generally do not have a monthly estimate of NET against
which to assess imbalances, although we do have an expec-
tation that the long-term mean NET= 0; however, consider
for the moment that monthly NET is also constrained. If we
write the monthly water and energy budget variables in a col-
umn vector F obs, where subscript “obs” denotes observed
values, then Eqs. (1) and (2) can be expressed as a linear
function of F obs. Let A and B represent the water and en-
ergy budgets, respectively.
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AF obs = rw 6= 0 (7)
BF obs = re 6= 0 (8)

rw represents the water budget residual, and re represents the
energy budget residual, which we will also write together as
the residual vector R (appearing later). The optimisation acts
to adjust the observed fluxes to close the budgets by redis-
tributing rw and re to obtain R = 0. We aim to find a new
column vector F containing the optimised estimates we seek.

F = F obs+ a, (9)

where a is a vector of the same size as F containing ad-
justments, such that Aa =−rw and Ba =−re. In order to
calculate F for month k, a cost function is set up as follows:

J [k] =
1
2
(F −F obs)S

−1
obs(F −F obs)

T
+λAF+µBF . (10)

Closure constraints are imposed via the Lagrangian multi-
pliers (λ and µ). Sobs is a covariance matrix containing flux
variances on the diagonals. The off-diagonal elements would
represent error covariance between input fluxes. In nearly all
of the previous literature (Sheffield et al., 2009; Abolafia-
Rosenzweig et al., 2021; Hobeichi et al., 2020), the covari-
ance matrix is assumed to be diagonal (as shown in Eq. 11),
although correlated errors may well be present due to the
structural assumptions used for deriving Earth observation
(EO)-based surface fluxes. We will discuss the potential im-
pact of such error covariances in Sect. 6.

Sobs =


σ 2

P 0 . . . 0
0 σ 2

Q . . . 0
...

...
. . .

...

0 0 . . . σ 2
NET

 (11)

The cost function is minimised by setting the derivative with
respect to each variable (F , λ, and µ) to zero. This results in
the following constraints:

(F −F obs)S
−1
obs+ λA+µB = 0 (12)

AF = 0 (13)
BF = 0. (14)

These constraints are then used to calculate values for µ and
λ and solve for F via the least squares method.

The equations above allow us to balance water and en-
ergy budgets each month and can be solved independently
every month, as has been done in the previous literature
(Pan et al., 2012; Abolafia-Rosenzweig et al., 2021; Hobeichi
et al., 2020). However, the resulting solutions will not neces-
sarily give sensible longer timescale water or energy budgets.
The optimised values of dS would not integrate to give a sen-
sible trend or follow the observed variations in GRACE on
longer timescales. Similarly, there is nothing to ensure that
the integrated NET energy flux would remain realistically
small, even if a monthly NET flux prior were available to
use in the optimisation.

3.2.1 Sequential method for water budgets

One approach to imposing longer timescale constraints on
the solution would be to make a single optimisation over all
months together, simply by extending the F vector and in-
cluding additional constraints on the sum of all the monthly
water and energy storage changes. This may work well for
energy where the only long-term constraint is on the NET en-
ergy flux, and this is the approach used by NEWS (L’Ecuyer
et al., 2015); however, it would still not allow us to follow
seasonal to inter-annual water storage information present in
the GRACE data.

Instead, we opt for a sequential monthly approach. The
monthly budget solutions are then not independent but take
stock of previous optimisations in addition to the observed
GRACE storage change from the start of the period up
to the present time. The optimisation acts to minimise the
distance of the Sfi,w generated from optimised fluxes with
GRACE storage change at the end of each month, according
to GRACE uncertainties. This constraint requires a term in
the cost function of the following form:(
Sfi,w[k] − S[k]

)2
σ−2

dS , (15)

which must be adapted in order to solve for dS
dt . For an arbi-

trary month k, the optimised Sfi,w will be equal to the opti-
mised Sfi,w for month k−1 plus the optimised dS

dt for month k,
as follows:

Sfi,w[k] = Sfi,w[k− 1] +
dS
dt
[k]. (16)

By using Eq. (16)to rewrite Sfi,w[k], we produce a term com-
patible with our cost function (Eq. 10) in order to impose the
constraint described by Eq. (15), while solving for dS

dt [k], as
follows:(

dS
dt
[k] −

(
S[k] − Sfi,w[k− 1]

))2

σ−2
dS . (17)

Note that implementing this constraint only requires adapting
the F obs vector in the cost function. This requires Sfi,w[k−1]
to be known when solving for month k, which is only possi-
ble when solving sequentially. The optimisation is performed
for all months between January 2002 and October 2013. Fig-
ure 2 gives an overview of these steps.

The optimised fluxes are then integrated to produce the
surface storage anomalies that they would imply, as de-
scribed in Sect. 3.1, and are labelled as our “Optimised Stor-
age” in the figures below.
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Figure 2. Overview figure of the methodological steps.

3.2.2 Sequential method for energy budgets

Returning to Eq. (2), we note that, generally, we have no
monthly constraints on either the surface energy storage or on
the NET energy flux that could be used in a monthly optimi-
sation. Although local measurements of ground heat flux are
available from some flux tower sites which have been used in
previous energy budget studies (Hobeichi et al., 2020), these
NET fluxes are very poorly observed, associated with large
uncertainties (even locally), and not available at basin scales.
We have chosen not to use any independent NET prior and
will comment on the consequent variability in the surface en-
ergy storage results.

We do apply a minimal constraint to the prior monthly en-
ergy fluxes, which aims only to give a small, long-term NET
energy storage change during optimisation. To do this, we
make use of the Sfi,e. When combining the observed energy
fluxes to obtain NET and averaging over the whole time pe-
riod, we see large imbalances, varying by basin (shown in
Fig. 3). Therefore, when integrating NET over time to infer
the Sfi,e, large trends are generally found (see Fig. 9).

First, we detrend the Sfi,e, which is equivalent to remov-
ing the mean NET flux, to close the long-term energy bud-
get, while preserving any inter-annual and seasonal variabil-
ity. This detrended Sfi,e (SD

fi,e) is then used as a sequential
monthly energy storage constraint in the same approach used
to constrain the long-term water storage changes to GRACE
in the previous section, using a cost function term during
month k on NET[k], as follows:(
NET[k] −

(
SD

fi,e[k] − Sfi,e[k− 1]
))2
σ−2

NET. (18)

This SD
fi,e, based on the original fluxes, plays a similar

role to the GRACE water storage change observations from
the start to the current month and ensures that the optimisa-
tion removes the NET energy trend over 2002–2013 without
providing any further constraints on monthly to inter-annual

variability for any of the component fluxes. The σNET un-
certainty we use here can be large, and we chose a value
equivalent to the combined component flux uncertainties ex-
pressed in Eq. (2). This has the advantage of ensuring that
the optimised energy fluxes do not lead to any divergence in
surface energy storage. However, it does assume that there is
no change in energy storage in this time period, which is not
backed by any additional data, such as land surface tempera-
ture, that might give more information about energy storage
anomalies.

3.2.3 Goodness of fit

The consistency of the optimisations with the uncertainties
provided is expressed by the χ2 measure. This represents the
value of the cost function (Eq. 10) and is calculated using the
following formula:

χ2
=

n∑
i=1

(F [i] −F obs[i])
2

σ 2
F [i]

, (19)

where n is the number of fluxes contained in vector F . Gen-
erally, χ2 should be smaller than the number of independent
variables being constrained (n).

3.2.4 Temporal smoothing

Tight closure constraints imposed during the optimisation
can result in high-frequency oscillations in the optimised flux
solutions (Pellet et al., 2019), particularly for the water bud-
get. Therefore, we applied some temporal smoothing to the
input observations to denoise the time series, although this
may also suppress some information. Pellet et al. (2019) use
a similar (although slightly smoother), filter and conclude,
after comparison with other filters, that it is a good compro-
mise between these two effects of smoothing.

GRACE and energy storage are smoothed with weights
1
8 , 3

8 , 3
8 , and 1

8 , which is equivalent to smoothing monthly
changes, dS, NET, with the central weights ( 1

8 , 1
4 , − 1

4 , and
−

1
8 ) used by Eicker et al. (2015). P ,Q, E, and energy fluxes

are smoothed using weights 1
22 , 1

4 , 9
22 , 1

4 , and 1
22 . This choice

of weights ensures that the amplitude of a sinusoidal signal
would be damped in exactly the same way as if being applied
to storage changes, so that the right and left sides of Eqs. (1)
and (2) would be treated the same (Eicker et al., 2015).

At the time of this study, all data were available to us from
January 2001 until December 2013. As this selected method
of smoothing requires values from 2 preceding and 2 follow-
ing months, our smoothed time series ends in October 2013.
Averages seen later in Sect. 4 include only complete years
(January 2002–December 2012).
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Figure 3. NET downward energy flux derived from CERES radiative fluxes and latent and sensible heat fluxes from FLUXCOM, averaged
over 2002–2013.

4 Results

4.1 Water fluxes

Figure 4 shows both the input and optimised water fluxes
over three large basins, namely the Amazon, Congo, and
Mississippi, on a monthly (right) and as a mean seasonal cy-
cle (left). The adjustments made by the optimisation in or-
der to balance the water budget are always small and usu-
ally within 1 SD (standard deviation) of initial uncertain-
ties. To give an idea of the imbalance, monthly residuals are
also shown, and the root mean square (rms) of these residu-
als is around 40 %–45 % of the rms of the GRACE storage
changes and around 5 %–15 % of the rms of precipitation for
each basin. Any inter-annual variability present in the obser-
vations is retained by the optimised fluxes.

Over the Amazon, the seasonal cycle in precipitation
largely converts directly into storage variations, with a
smaller seasonal runoff signal lagging by around 3 months,
reflecting the large basin size and slow runoff. Evaporation
is almost constant through the year, reflecting the constantly
moist rainforest conditions, with the very small adjustments
making E even more uniform. The residual in the water bud-
get also shows a regular seasonal cycle but is anti-correlated
to precipitation. The optimisation acts to increased P and de-
creasedQ from November–March when precipitation peaks,
while the adjustment is mainly an increase in Q from June–
August, which has the effect of prolonging the runoff peak,
where the adjustment occasionally exceeds 1 SD. For these
months, there are lower uncertainties for P and E; hence,
most of the residual has been distributed to Q.

The Congo’s precipitation is characterised by biannual
peaks as the Intertropical Convergence Zone (ITCZ) mi-
grates across the Equator. The primary maxima occur to-
wards the end of the year, and the secondary maxima occur in

May. The bimodal peaks are also seen in theQ and E fluxes.
There is also considerable inter-annual variability in the pre-
cipitation. The small optimisation adjustments are not easily
summarised in a regular seasonal pattern.

Unlike the other two basins, over the Mississippi the stor-
age changes are almost out of phase with the precipitation.
This reflects the dominance of storage in snow as a key con-
trolling mechanism. The maximum runoff then occurs be-
fore the peak precipitation, indicative of snowmelt followed
by early summer rains. Much of the seasonal precipitation
peak is balanced by evaporation, which exceeds precipita-
tion in July and also coincides with the largest reductions in
storage. There are some very low precipitation years, such as
2006 and 2012. Due to the larger role of evaporation in this
basin, the optimisation also shows a consistent E increase
from July–December in each year. We will look at this in
more detail when considering the coupling to the energy bud-
get.

It can be seen that monthly adjustments remain small rela-
tive to the uncertainties, and these flux products are not there-
fore being independently validated on these timescales. Any
validation of our products would require comparison with in-
dependent data that could be regarded as less uncertain than
the datasets we have used. However, the benefit of our ap-
proach is shown over longer timescales below.

4.2 Total water storage

Greater insight into the fitting process and the changes in-
volved are illustrated best by plotting the time history of sur-
face water storage for a number of basins (Fig. 5). This quan-
tity is very sensitive to flux imbalances, as small monthly
imbalances accumulate and can cause unrealistic long-term
storage changes. The left-hand plots show the GRACE stor-
age target variability (in orange) and the flux-inferred stor-
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Figure 4. Water budget fluxes. Observed values are shown by the dashed lines, and optimised values from our study are shown by the solid
lines. The shaded regions show uncertainty in the observed values. Observed fluxes and derived products shown here (and the plots in the
figures that follow) are all temporally smoothed, as described in Sect. 3.2.4. Mean seasonal cycles are shown on the left.

age (Sfi,w) from raw observations (dashed purple). For some
basins, these already match reasonably well (e.g. Congo), but
for others, the raw observations show large trends, and the
(Sfi,w) disappears off the plot. Further details can be seen
when looking at the (SD

fi,w) (solid purple). Here, the NET
water fluxes have been detrended (D) to be consistent with
the GRACE changes over the whole period but are other-
wise unaltered, which allows the plot to show differences
in the seasonal storage cycles. Over the Amazon, it is clear

that the seasonal storage cycle from the original fluxes is too
weak when compared with GRACE. Over the Amur, the flux-
derived seasonal cycle is, in contrast, too large compared to
GRACE. Several of the basins also show significantly differ-
ent inter-annual variability. A larger set of basin imbalances
can be seen in Fig. A1.

The plots on the right show that the storages based on
the optimised fluxes (our Optimised Storage) now sit very
clearly on top of the GRACE storage anomaly data, fit-
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ting both seasonal amplitudes and inter-annual variability in
all basins very well. The storage differences compared to
GRACE data are also shown, and these are always smaller
than the 1 SD uncertainties applied to GRACE during opti-
misation. The associated optimised fluxes in Fig. 4 are also
consistently within the uncertainty limits of the original flux
data and therefore can be considered an improved, GRACE-
consistent, product for describing water cycle variability on
both short and longer timescales.

4.3 Storage comparison with other products

We found that the total water storage anomaly is also a use-
ful metric to compare against other products from the lit-
erature because it brings out low-frequency variations that
would not be seen by comparing monthly fluxes, which will
all lie within the uncertainty bounds of each other. We take
the monthly water storage change dS

dt products from three
different recent budget closure studies and calculate the to-
tal water storage anomaly that these imply. The CLASS
product (Hobeichi et al., 2020) provides a complete set of
balanced coupled water and energy budget components on
a global grid for the period 2003–2009, and we will later
also compare with the energy budget from this solution. The
CDR (Zhang et al., 2018), provides grid point estimates of
monthly closed water budget components from 1984–2010,
which includes a GRACE constraint over the later period.
The REESEN product (Abolafia-Rosenzweig et al., 2021)
used three different closure methods, and for this compar-
ison, we take the ensemble mean from the combined pro-
portional distribution (PR) method, which was described to
give the best results. Each of these three products consists of
optimised estimates which are consistent with GRACE on a
monthly timescale, but in this section, we aim to assess con-
sistency with GRACE over longer timescales. Hence, we do
not show a comparison of monthly P , E, and Q fluxes but
rather show the storage anomalies inferred from the fluxes.

We calculate the total water storage anomaly for the pe-
riod 2003–2009, based on the overlap of these three prod-
ucts, and plot these against GRACE and our optimised solu-
tion in Fig. 6. Each storage has been initialised with GRACE
for January 2003. It is clear that, while the other products
have quite similar storage variability over each year, they
all show some degree of divergence from GRACE storage
over longer timescales. In the corrected REESEN dataset,
mean product corrections show that the closure constraints
act to increase observed dS

dt by around 3 m per month on
average. This adjustment may result in an upward trend in
storage not observed by GRACE in some regions. For ex-
ample, the REESEN product shows an upward storage trend
over the Mississippi and Huang He basins, although over the
Congo the storage fits GRACE quite well. The CLASS prod-
uct shows an upward trend in water storage in all three basins
and therefore shows storage differences at the end, reaching
14 cm equivalent over the Congo. The CDR product proba-

bly does best in fitting the 7-year trends for all three basins,
as a long period water balancing correction is applied (Zhang
et al., 2018); however, it shows anomalously weak sea-
sonal variability in some years over the Mississippi and the
Huang He and also misses some of the inter-annual vari-
ability over the Congo. The constraint we apply of fitting
GRACE storage on all timescales can again be clearly seen.
Although these other studies may have used different ver-
sions of the GRACE product as constraints, after compari-
son, we find that all GRACE products are very similar, and
the differences shown here are coming from the optimisation
approach.

For the Mississippi, the CDR shows good agreement with
GRACE, although it shows reduced seasonal cycles after
2008. CLASS and REESEN show a slightly positive bias
compared to GRACE after 2005 but generally agree well
with the size of the seasonal cycle. Over the Huang He,
GRACE shows a large peak in water storage, followed by a
decrease in storage, amounting to around 10 cm of water loss
by 2009 (since the peak in 2003). All products capture the
initial peak to some extent but fail to detect the downwards
trend. The inter-annual variability in the seasonal cycle ob-
served by GRACE is represented well by the REESEN prod-
uct (such as the reduced seasonal cycle between 2006 and
2007 and the larger seasonal cycle in 2003). The timing of the
seasonal cycle also shows good agreement. REESEN is able
to detect the decline in storage 2004–2007 well; however, it
does not capture the decline during 2008–2009. The CLASS
product does not show good agreement with the overall trend
in water storage. By 2009, there is over 6 cm difference be-
tween GRACE and the CLASS storage, since the downwards
trend of GRACE was neither captured nor accounted for. The
CDR consistently shows reduced seasonal cycles. Some of
the inter-annual variability is captured, but it does not agree
with the long-term trend. Since the CDR imposes a constraint
which ensures dS = 0 over 1984–2010, it means that the stor-
age in 2010 must be the same as 1984, hence limiting the
ability to detect trends.

Overall, from Fig. 6 we can conclude that although each of
the other products are consistent with GRACE on a monthly
timescale, all products show inconsistencies with GRACE
storage anomalies on longer timescales, whereas our opti-
misation approach is able to guarantee consistency on all
timescales.

4.4 Energy fluxes

The optimised energy components in Fig. 7 show only small
differences from the observed fluxes used as input, although
the long-term NET energy budget is now closed through the
constraint coming from SD

fi,e. To see the adjustments more
clearly, Fig. 8 shows the seasonal mean adjustments to the
NET downward flux and the component fluxes in three of
the basins. The energy closure clearly requires a reduction in
the NET downward energy flux in each of these basins in all

https://doi.org/10.5194/hess-27-1723-2023 Hydrol. Earth Syst. Sci., 27, 1723–1744, 2023



1734 S. Petch et al.: Water and energy budgets on short and long timescales

Figure 5. GRACE storage compared with flux-inferred storage. On the left is the unadjusted Sfi,w (dashed red line) and the detrended SD
fi,w

(solid purple line), which is generated directly from observed fluxes. On the right, the “Optimised Storage”, based on the new fluxes from
our study, is seen to closely follow the GRACE storage, which is shown in orange on the same axes in both plots.

Hydrol. Earth Syst. Sci., 27, 1723–1744, 2023 https://doi.org/10.5194/hess-27-1723-2023



S. Petch et al.: Water and energy budgets on short and long timescales 1735

Figure 6. Water storage product comparisons from 2003–2009 inclusive. The “Optimised Storage” line is the result from our study.

months. Most flux components contribute fairly uniformly
to the NET change, except for some variations responding
to LE adjustments imposed through the water cycle. In all
three basins, the adjustments to LE modulate NET changes
through the year. In both the Amazon and the Mississippi,
the adjustments through the water cycle are having a small
dampening effect on the seasonal cycle in NET flux, as can be
seen in Fig. 7. If any independent data on monthly NET flux
or storage were to be available, then this would potentially

change these monthly flux adjustments considerably, as we
will discuss later.

4.5 Total energy storage

Total energy storage anomalies are used to demonstrate the
impact of our long-term constraint. We found, similar to the
case for water storage, that this is a useful metric because
small imbalances are not apparent when looking the monthly
NET fluxes. But over longer periods, these small imbalances
can be significant, which is captured by the total energy stor-
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Figure 7. Energy budget fluxes. Observed values are shown by the dashed lines and optimised values are shown by the solid lines. The
shaded regions show uncertainty in the observed values. Mean seasonal cycles are shown on the left.

Figure 8. Optimisation adjustments for the energy components. Optimised values minus observed values are shown for the Amazon (a),
Congo (b), and Mississippi (c) river basins.
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age metric. For comparison, we use results from the CLASS
product (Hobeichi et al., 2020), which is the only other study
to provide coupled regional water and energy budgets at a
monthly timescale. We compare both the inter-annual NET
ground heat flux and the implied surface energy storage for
several basins in Fig. 9. The assessment period covers Jan-
uary 2003 to December 2009, which is the time frame used
in the CLASS study. The energy storage plots (Fig. 9, right)
include the Sfi,e before the fluxes were detrended, in addition
to our optimised solution and the CLASS solution. One key
difference between our optimisation method and the method
used in CLASS is that CLASS enforces monthly closure by
using estimates of ground heat flux (equivalent to NET) as
input, whereas, in our optimisation, we choose only to im-
plement a long-term closure constraint which avoids using
ground heat flux observations as input.

In all basins, our initial NET energy fluxes are unbal-
anced and result in a strong storage trend (also seen in a
wider range of basins in Fig. A2). The CLASS solutions
also show smaller, but still potentially unrealistic, energy
storage trends in all basins, apart from the Mississippi, be-
cause CLASS does not account for energy imbalances on
timescales longer than 1 month. Both CLASS and our op-
timised fluxes show clear seasonal cycles of warming and
cooling in the mid-latitude basins of the Mississippi, Amur,
and Huang He rivers. There is much more variability in
our NET fluxes, while the CLASS fluxes are similar every
year, presumably reflecting the dampening effect of a ground
heat flux constraint in CLASS. Our optimised solutions show
more inter-annual flux and storage variability than CLASS,
although this does not amount to any trend when the time se-
ries are extended to 2013 (over which time we have used the
detrending energy constraint). This inter-annual variability is
inherent in the initial energy fluxes, in particular from the ra-
diation components, and is not in general being introduced
through water cycle coupling. We will return to discuss this
seasonal and inter-annual energy storage variability later.

5 Optimisation uncertainties

5.1 Goodness of fit

The χ2 values are summarised in Table 2. Each month, the
four water variables expressed in Eq. (1) are required to
balance. Although the energy budget in Eq. (2) is coupled
and must also balance in the long-term, without an indepen-
dent constraint on the NET monthly flux or energy storage
change, these variables contribute very little to χ2, and the
total χ2 values are only marginally larger than the water-only
values. It can be seen that the average values are always much
lower than 4 and remain smaller for the maximum value in
any individual month. We conclude that all the sequential
optimisations are providing solutions that are consistent and
well within the given uncertainties.

Table 2. The χ2 values for the optimisation include the total values,
including all the water and energy flux terms, and with only the
four water adjustment terms which are more strongly constrained
at monthly timescales. The time mean χ2 over all months and the
largest value for any individual month are also shown.

Basin Total Total Water Water
χ2 χ2 χ2 χ2

mean max mean max

Amazon 0.98 3.09 0.92 2.94
Congo 0.21 1.18 0.18 1.10
Mississippi 0.28 1.74 0.26 1.73
Amur 0.18 0.68 0.14 0.68
Huang He 0.11 0.39 0.08 0.36

5.2 Uncertainty estimates

By using multiple datasets to constrain each other through
budget closure, the uncertainty for the optimised estimates
will be less than the uncertainty for the raw observations.
The uncertainties for the new estimates are calculated us-
ing the same methods as the NEWS study, given by SF =

(KT S−1
R K+S−1

Fobs
)−1, where K is the Jacobian of R with re-

spect to F, and SR is the uncertainty for the residual con-
straint R= 0. Since we use a strong constraint to impose
budget closure, the uncertainty SR is small. The uncertain-
ties in the water budget terms before and after optimisation
are shown in Table 3.

It can be seen that uncertainties typically reduce by 10 %
for precipitation but by substantially larger amounts for
runoff and evaporation, where initial errors are larger. The
uncertainties in storage change are only marginally affected.
Of course, formally, post-optimisation uncertainties are cor-
related to reflect a closed water budget with no residual.

6 Discussion

The initial imbalances in the water and energy budgets vary
by basin. We found water budget residuals ranging between
1.5 % and 35 % of precipitation, which is comparable to
Abolafia-Rosenzweig et al. (2021), who found that residual
errors varied between 0.7 % and 30 % of precipitation. These
initial imbalances are dependent on the quality of the input
data, which differ according to the geophysical characteris-
tics of the basins.

The Amazon has the largest absolute water budget resid-
ual prior to optimisation, averaging 0.86 mm d−1, which is
equivalent to 14 % when expressed as a percentage of pre-
cipitation. Sahoo et al. (2011) also identified the Amazon as
having the largest non-closure error and suggested that this
could be as a result of the sparseness of in situ precipitation
measurements over the basin which are required for the cal-
ibration of satellite estimates. The Congo showed the lowest
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Figure 9. NET fluxes (left) and total energy storage Sfi,e anomalies (right) during 2003–2009. The CLASS solutions are compared with our
optimised solutions, with the Sfi,e also shown prior to optimisation (right).
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Table 3. Average monthly water budget component uncertainties (mm d−1) before (obs) and after the optimisation.

Basin σPobs σP σQobs σQ σEobs σE σdSobs σdS

Amazon 0.47 0.40 0.77 0.46 0.37 0.34 0.29 0.28
Congo 0.45 0.37 0.29 0.26 0.51 0.38 0.28 0.26
Mississippi 0.31 0.27 0.41 0.31 0.39 0.30 0.22 0.21
Amur 0.49 0.44 0.58 0.50 0.88 0.57 0.23 0.22
Huang He 0.65 0.60 0.79 0.70 1.35 0.84 0.32 0.31

initial imbalance of these basins, normalised with respect to
P , with a monthly average of 6 %. However, this result is not
necessarily due to good measurement coverage in this region.
Low water budget residuals can also occur from the cancel-
lation of errors or other characteristics of the basin. Further
investigation would be required to better understand the fac-
tors determining these imbalances.

The similarities in our results compared to previous budget
studies emphasise that our adjustments are of a similar size
to other studies and within the observational errors. How-
ever, our results achieve an improved long-term consistency
for water storage changes with GRACE, and therein lies the
difference in our results. In previous budget closure studies,
longer timescale constraints on the water budget have often
been applied (e.g. Abolafia-Rosenzweig et al., 2021; Hobe-
ichi et al., 2020), or generalised assumptions about total wa-
ter storage anomalies have been made (Zhang et al., 2018).
This can result in substantial misfits against the GRACE
storage time series, particularly for regions which show sig-
nificant trends and inter-annual variability. These previous
studies have failed to match the low-frequency variations in
GRACE storage anomalies, which are important to under-
stand through hydrological modelling. The sequential opti-
misation approach used here is beneficial, as it enables dS

dt
to be constrained by GRACE on all timescales and guar-
antees that the total water storage anomaly implied from
the optimised fluxes will track the inter-annual variability in
GRACE, in addition to avoiding any unrealistic trends.

However, the sequential solution method does not permit
flux adjustments across more than 1 month at a time. It is pos-
sible to make a whole period adjustment by closing the water
budget every month while imposing a small or zero trend in
the water storage from beginning to end of the time series.
This would allow adjustments across months to fit longer-
term changes, and this has been used for solving the sea-
sonal cycle in the NEWS solution of Rodell et al. (2015), for
example. However, this still does not guarantee a fit to the
inter-annual variability information present in the GRACE
time series. We made some comparisons, optimising for all
months together (results not shown), and this worked well for
some basins (e.g. Mississippi) and is then very similar to the
sequential solution results, but it works much less well for
other basins (e.g. Congo) when inter-annual variations are
seen in the GRACE time series.

Our method also allows the optimised energy fluxes to
be in good agreement with the initial energy flux observa-
tions, while also balancing the monthly water budget and
removing long-term energy trends. However, the lack of a
monthly NET energy constraint means that the energy budget
is only very weakly constrained on short timescales. Further
observational information, such as land surface temperatures,
along with a heat capacity, could be used to constrain the en-
ergy storage on these timescales. Liu et al. (2017) propose
NET heat flux estimates from ECMWF reanalyses, based on
surface temperatures and some land surface modelling. Al-
ternatively, some estimate of monthly NET ground heat flux
upscaled from flux tower measurements could be imposed,
as in Hobeichi et al. (2020). While we made some compar-
isons here, we have preferred to leave the monthly energy
budget fairly unconstrained, as other monthly NET energy
flux products have not been adequately validated for use as
independent data. This also allows the surface variability in-
ferred from other flux products to be clearly seen, such as in
Fig. 9.

We have noted above that the differences between our
NET energy fluxes and those reported by the CLASS product
are likely due to the CLASS product including a ground heat
flux product, G, in its formulation. G is the least well ob-
served of all the energy balance fluxes, with typical measure-
ments covering only very small areas. Consequently, large-
scale gridded products tend to contain high levels of uncer-
tainty due to errors in the representativity in the underlying
data and hence rely on modelling assumptions that can have
a strong influence on the resulting flux estimates. Conse-
quently, we chose not to include a dataset of G in our budget
modelling.

The results shown have all assumed that the initial errors
are uncorrelated. However, due to the procedures required to
derive some of the flux products, it is likely that not all fluxes
are fully independent. For example, the GRUN product partly
predicts runoff based on antecedent precipitation conditions,
and so any error in P may also be present in Q. Specifying
an error covariance (off-diagonal elements in Eq. 11) impacts
how the fluxes are adjusted during the optimisation and also
reduces the effective number of independent variables. We
performed some sensitivity tests, applying error covariances
through the covariance matrix (Sobs). To give an example,
consider the P and Q errors to be correlated. Adjustments
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needed to close the water budget in Eq. (1) would normally
require P andQ to be adjusted in opposite directions; for ex-
ample, a smaller P and largerQwould both reduce a positive
budget residual. However, correlated P and Q errors would
tend to inhibit an opposite adjustment of this sort. As a con-
sequence, imposing correlated P and Q errors will lead to
smaller adjustments in both P and Q and require the other
budget terms, E and dS

dt , to have larger adjustments in order
to close the budget. This is demonstrated in Sect. 4.

The same arguments apply for correlated errors in the en-
ergy fluxes. If upward and downward radiation flux errors
are positively correlated, then this will reduce the degrees
of freedom, reduce the adjustments in those fluxes, and in-
crease budget balancing adjustments to other fluxes. Corre-
lating sensible and latent flux errors (both upward fluxes),
however, as implied by eddy covariance studies, e.g. Twine
et al. (2000), will increase their adjustment contributions by
reducing their joint cost function impacts. As all adjustments
we found were well within error bounds in these regional
solutions, we did not find any inconsistencies when impos-
ing realistically correlated initial errors. However, it is worth
commenting that if flux component error correlations are
present, then they may be quite pervasive and would then im-
ply larger or smaller adjustments to large-scale energy fluxes.
This would end up changing, for example, the relative adjust-
ments to radiation compared with turbulent fluxes in global
inverse budgets (as described in L’Ecuyer et al., 2015).

7 Conclusion

This study has introduced a sequential optimisation approach
which is used to produce coupled estimates for the compo-
nents of the terrestrial water and energy budgets based on ob-
servations. The focus has been on several large river basins
over the period 2002 to 2013. The optimisation approach
differs from other studies which have used GRACE to con-
strain hydrological models, as it acts to close the monthly
water budget while at the same time matching the water bud-
get on longer timescales. This then achieves a good fit with
the GRACE surface water storage time series in each basin
when the optimised fluxes are integrated, whereas previ-
ous studies have failed to match low-frequency variations in
GRACE, which are important to understand through hydro-
logical modelling. The coupled energy budget is also solved
sequentially, while still guaranteeing a long-term energy bal-
ance. This is achieved using a detrended monthly energy
storage target SD

fi,e, based on the original fluxes, as a weak
constraint. Solving for the water and energy budgets simul-
taneously has allowed us to provide more observational con-
straints and ensure consistency in our final estimates, which
has only been done in a limited number of studies. All the
flux adjustments made during the optimisation are small and
within uncertainty estimates, and the inter-annual variabil-
ity from observations is retained. The optimisation also has

the benefit of reducing formal uncertainties for the individual
flux components.

We produce Sfi by using the observed fluxes in and out of
a region to infer the water and energy storage over time. This
gives a sensitive measure of the imbalances, seasonal cycles,
and inter-annual variability amplitudes implied by the fluxes
that can then also be compared with GRACE and with sev-
eral other products from the literature. For several basins, the
input water fluxes show weaker or stronger seasonal ampli-
tudes than suggested by GRACE, which are then corrected
during the optimisations.

The current study has focused on methods for budget-
balancing adjustments. We have not used a selection of dif-
ferent input data products to test the relative imbalance from
different choices. Also budgets are only balanced on a se-
lection of larger land hydrological basins. Figures relevant
to more basins are included in the Appendix. We have not
produced a gridded product of optimised fields, although this
could be done at some resolution consistent with the resolu-
tion of the input products, in particular the GRACE data.

Although the energy budget is coupled, the current solu-
tions are only constrained on long timescales. Flux compo-
nents adjust to a long-term surface energy balance, account-
ing for any mean changes in latent losses imposed through
the water cycle; otherwise, monthly energy components are
relatively unconstrained. Further work could seek to con-
strain the surface energy fluxes on shorter timescales by in-
troducing additional energy storage data, e.g. using land sur-
face temperatures either from EO or reanalysis products (Liu
et al., 2017).

Another direction of work could seek to include a coupled
water and energy budget for the atmosphere. This could be
built into a global solution, as in NEWS (Rodell et al., 2015;
L’Ecuyer et al., 2015), or else would need to include regional
boundary transport estimates in the atmosphere for both en-
ergy and water (Mayer et al., 2022).

Overall, this study has presented a methodological ad-
vancement in fully utilising the GRACE water storage ob-
servations to constrain regional water fluxes from monthly
to decadal timescales. The constraints imposed as part of this
study and the direction of future work are aimed at improving
the accuracy of water and energy cycle components, which
can ultimately help us gain a better understanding of climate
processes and improve the skill of climate models in predict-
ing future change.

Appendix A

The following figures illustrate the results for a wider selec-
tion of basins across the globe, with varying initial imbal-
ances.
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Figure A1. Monthly water storage variability in a selection of basins for January 2002–October 2013. GRACE data are shown (orange),
with the optimised water storage solution (dashed blue) overlaying it closely. The optimised differences to GRACE are also shown along
with the GRACE uncertainties, σS, varying near 0. The figure also shows two versions of flux-inferred storage (Sfi,w) from the input data.
The original Sfi,w (red) is the storage implied by integrating the input (P −E−Q) in time. This often diverges rapidly, demonstrating strong
initial imbalances (the basins are coloured according to this initial imbalance). The detrended SD

fi,w (mauve) simply detrends those original
fluxes to fit the mean GRACE storage trend. This reveals interesting details about the initial mismatch between water fluxes and GRACE,
for example, by showing an underestimate in seasonal SD

fi,w in the Amazon and a strong overestimate in seasonal storage in the high-latitude
rivers. Many basins also show mismatches in the inter-annual variations compared to GRACE, which are all removed in the optimisation
process.
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Figure A2. Monthly surface energy storage variability in a selection of basins for January 2002–October 2013. The original flux-inferred
storage Sfi,e (in red) is the storage implied by integrating the input (NET) in time. This always diverges rapidly, demonstrating strong initial
energy imbalances (the basin map is coloured according to these initial imbalances). The detrended SD

fi,e (green line) simply detrends the
original NET flux to give a 0 energy storage trend. This retains the details of both the seasonal and inter-annual surface energy variability.
The implied inter-annual variability in surface storage is large compared to seasonal variations and can mostly be traced to variations in
surface radiation fields. Such inter-annual variability may be unrealistic, but without the reliable observations of ground NET heat flux or a
measure of surface storage (e.g. from land surface temperatures), we have chosen to retain it during optimisation (see the text for details). The
optimised energy storage is also shown (dashed blue), and this broadly tracks the SD

fi,e, which is used as a monthly constraint. Any divergence
is confined to the first few months so that the energy budget is closely balanced throughout the period. The difference in the optimised storage
is also shown, along with the large uncertainty limits used σe (see text for details).

Code and data availability. The observational data used as
input are available from several different sources. GRUNv1
runoff data can be obtained from https://www.bafg.de/GRDC/
EN/04_spcldtbss/43_GRfN/refDataset_node.html (GRDC,
2020), GPCPv2.3 precipitation data can be obtained from
https://doi.org/10.7289/V56971M6 (Adler et al., 2016b), tur-
bulent heat flux data from FLUXCOM can be obtained from
https://doi.org/10.17871/FLUXCOM_EnergyFluxes_v1 (Jung,
2018), and CERES radiative flux data are available at https:
//ceres-tool.larc.nasa.gov/ord-tool/jsp/EBAFTOA42Selection.jsp
(Loeb et al., 2018). The CLASS product used as comparison in this
study is available from https://doi.org/10.25914/5c872258dc183
(Hobeichi et al., 2019), and the REESEN and basin-scale
CDR products are archived on Mendeley Data and available at
https://doi.org/10.17632/r24rdxt73j.3 (Abolafia-Rosenzweig and
Livneh, 2020).

The optimisation code developed in this study and
optimised data for several basins are available at
https://doi.org/10.5281/zenodo.7682197 (Petch, 2023). Data
for additional basins can be made available upon request to the
corresponding author.
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