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Abstract. Advanced data assimilation (DA) methods, widely
used in geophysical and climate studies to merge observa-
tions with numerical models, can improve state estimates and
consequent forecasts. We interface the deterministic ensem-
ble Kalman filter (DEnKF) to the Lagrangian neXt gener-
ation Sea Ice Model, neXtSIM. The ensemble is generated
by perturbing the atmospheric and oceanic forcing through-
out the simulations and randomly initialized ice cohesion.
Our ensemble–DA system assimilates sea ice concentra-
tion (SIC) from the Ocean and Sea Ice Satellite Applica-
tion Facility (OSI-SAF) and sea ice thickness (SIT) from
the merged CryoSat-2 and SMOS datasets (CS2SMOS).
Because neXtSIM is computationally solved on a time-
dependent evolving mesh, it is a challenging application for
ensemble–DA. As a solution, we perform the DEnKF anal-
ysis on a fixed and regular reference mesh, on which model
variables are interpolated before the DA and then back to
each member’s mesh after the DA. We evaluate the impact
of assimilating different types of sea ice observations on the
model’s forecast skills of the Arctic sea ice by comparing
satellite observations and a free-run ensemble in an Arc-
tic winter period, 2019–2020. Significant improvements in
modeled SIT indicate the importance of assimilating weekly

CS2SMOS SIT, while the improvements of SIC and ice ex-
tent are moderate but benefit from daily ingestion of the OSI-
SAF SIC. For most of the winter, the correlation between SIT
and SIC is weaker, which results in little cross-inference be-
tween the two variables in the assimilation step. Overall, the
ensemble–DA system based on the stand-alone sea ice model
demonstrates the feasibility of winter Arctic sea ice predic-
tion with good computational efficiency. These results open
the path toward operational implementation and the exten-
sion to multi-year assimilation.

1 Introduction

Sea ice is a critical component of the Earth’s climate system.
The evident loss of Arctic sea ice both as sea ice extent (SIE)
and volume (SIV) over recent decades has been abundantly
discussed (e.g., Meier, 2017). Predicting the Arctic sea ice
conditions from near-term to decadal timescales is becoming
increasingly important due to their importance for both the
Earth’s climate and local human activities such as shipping
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1736 S. Cheng et al.: Arctic sea ice data assimilation

that require accurate sea ice forecasts (Bertino and Holland,
2017; Wagner et al., 2020).

Like other climate system components, sea ice forecast-
ing relies on numerical models and observational data. Sea
ice models are sensitive to both initial and boundary condi-
tions, which can be constrained by observations using data
assimilation (DA, e.g., Carrassi et al., 2018). Satellite obser-
vations are critical in polar regions that offer homogeneous
and dense spatial and temporal coverage; in contrast, in situ
measurements are relatively sparse and generally collected
in the summer. Satellite-based observations of sea ice con-
centration (SIC) have been available since the 1970s and
have been widely used to calibrate coupled ocean–ice mod-
els (Lisæter et al., 2003; Stark et al., 2007; Posey et al., 2015;
Zhang et al., 2021). Those studies have shown that assimilat-
ing SIC alone with a multivariate DA scheme improves the
short-term forecast of SIC, SIE, sea ice thickness (SIT), and
sea surface temperature (SST) (Lisæter et al., 2003; Mas-
sonnet et al., 2015). Furthermore, assimilation of SIC in a
coupled climate model was also beneficial to seasonal scales
(Kimmritz et al., 2019). Contrary to SIC data, the satellite
record of SIT products is shorter. Although these products
are still affected by significant errors, satellite-retrieved SIT
measurements have nevertheless been assimilated in recent
years with some success (Xie et al., 2018; Allard et al., 2018;
Fritzner et al., 2019). For example, Xie et al. (2018) assim-
ilated the SIT observations of SMOS & CryoSat-2 Sea Ice
Data Product Processing (CS2SMOS) (Ricker et al., 2017),
which combines observations from the Cryosat-2 altimeter
(Laxon et al., 2013) and the Soil Moisture and Ocean Salinity
(SMOS) radiometer (Kaleschke et al., 2016), into TOPAZ4
(version 4 of a coupled ocean–sea ice data assimilation sys-
tem for the North Atlantic and Arctic, Sakov et al., 2012).
They recommended the assimilation of SIT to improve SIT
and sea ice drift (SID) in the reanalysis. Fritzner et al. (2019)
found that assimilating SIT improved the prediction of SIT,
SIC, and snow depth in the coupled ocean–ice model ROMS-
CICE, which is composed of the Regional Ocean Modeling
System (ROMS, Shchepetkin and McWilliams, 2005) and
the Los Alamos sea ice model (CICE, Hunke et al., 2010).

This study presents a novel application of the ensem-
ble Kalman filter (EnKF, Evensen, 2003), used to assim-
ilate satellite-based SIC and SIT data in the Lagrangian
neXt generation Sea Ice Model (neXtSIM, Rampal et al.,
2016b, 2019). Our work builds upon and extends the pre-
liminary DA study with neXtSIM from Williams et al.
(2021). They introduced the deterministic forecasting plat-
form neXtSIM-F, whereby the Ocean and Sea Ice Satellite
Application Facility (OSI-SAF) SIC observations (bright-
ness temperatures measured by the Special Sensor Mi-
crowave Imager Sounder – SSMIS and Advanced Microwave
Scanning Radiometer 2 – AMSR2) were assimilated by a
simple DA method – “direct insertion”. Direct insertion has
been used for short-term operational forecasting as part of
the Copernicus Marine Services. Improvements in forecast-

ing SIE were substantial, but overestimation of SIT was
evident during the 2019–2020 winter. Following this line,
we study the impact on sea ice forecast skill determined
by a state-of-the-art ensemble–DA method, the determinis-
tic EnKF (DEnKF; Sakov and Oke, 2008), and focus on the
2019–2020 winter. The advantages over direct insertion are
multiple, including the account of both model and observa-
tional errors when computing the analysis, its multivariate
character such that observations influences are not limited to
their spatial locations and measured variable, and its provi-
sion of an ensemble of model trajectories prone to proba-
bilistic predictions. In the present study, we investigate dif-
ferent configurations for assimilating the two most important
model variables (SIC and SIT). Given that both SIT and SIC
are measured over the entire domain, the multivariate charac-
ter of the DA becomes relevant when only a single observed
variable is assimilated. This aspect will be important when
performing ensemble–DA with neXtSIM in a coupled model.

The ensemble for the DEnKF is constructed by simulta-
neously perturbing model external forcing and one of its in-
ternal parameters, following the sensitivity studies and prob-
abilistic predictions from Rabatel et al. (2018) and Cheng
et al. (2020). In particular, Rabatel et al. (2018) demon-
strated that the external atmospheric forcing is the primary
driver of prediction uncertainty in neXtSIM and thus con-
trols the diversity of the ensemble members: predicting sea
ice strongly depends on the atmospheric forcing. In previous
studies, neXtSIM used the elasto-brittle and Maxwell elasto-
brittle (MEB) rheology for the sea ice internal stress, whose
main control parameter is the ice cohesion, determining sea
ice damage. As shown in Cheng et al. (2020), it is conve-
nient to perturb the (internal) ice cohesion together with the
(external) wind forcing to enhance the ensemble dispersion.
Although we use the latest version of neXtSIM that employs
a slightly different sea ice rheology (see Sect. 2.1), we can
still adopt their strategy to construct ensembles.

There is an intrinsic challenge in applying ensemble–DA
to the neXtSIM. The neXtSIM is solved on a Lagrangian
mesh in which nodes move following the ice velocity fields
and are periodically removed or added at “remeshing” steps
to keep the mesh geometry within prescribed tolerances.
Consequently, the mesh node locations and their total num-
bers change with time, which differ between ensemble mem-
bers. These numerical features, increasingly present in the
wider computational physics area (e.g., Alam and Lin, 2008),
render the application of EnKF-like methods cumbersome:
particular adaptations of the algorithm are needed. Although
Lagrangian vertical coordinates in an ocean model can be
handled correctly (Wang et al., 2016), the horizontal 2D
problem is more complex because there is no unique order-
ing of the mesh. A natural and straightforward solution is
to adopt a reference mesh on which the mean and error co-
variance matrices of the ensemble can be calculated. Such a
strategy was first, to the best of our knowledge, carried out
by Du et al. (2016) for an ocean model on an adaptive mov-
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ing mesh. Super-meshing techniques were developed by Far-
rell and Maddison (2011) and used in the paper by Du et al.
(2016) as well as, in a slightly different way, by Jain et al.
(2018). Super-meshing can reduce the interpolation error. At
this point, the use of a reference mesh can be considered the
standard and time-tested method for dealing with an ensem-
ble whose members each live on a different grid.

As preliminary work of developing suitable EnKF strate-
gies for neXtSIM, Aydoğdu et al. (2019) studied 1D models
that involve the velocity-based mesh movement and remesh-
ing procedure to mimic the specific features of neXtSIM.
In that work, some challenges in applying DA to adaptive
meshes are briefly reviewed, and the different techniques
to overcome the issue in the simplified 1D models (Burg-
ers and Kuramoto–Sivashinsky equations) with Eulerian and
Lagrangian synthetic observations are discussed. In their ap-
proach, at each analysis step, the individual ensemble mem-
bers are mapped onto the fixed reference mesh on which
the algebra of the analysis update is performed and then
mapped back on the individual meshes (unaltered by the
analysis). Finally, their methodology proposes an upper and
lower limit for the resolution of the fixed reference mesh us-
ing the remeshing criteria intrinsic to the adaptive-moving-
mesh methodology. The method was further developed by
Sampson et al. (2021) so that the individual mesh of each
ensemble member is also informed at the analysis steps: this
led to better predictions, particularly in the proximity of steep
gradients in the physical quantities. In both cases, the fixed
reference mesh (and its upper and lower resolution bounds) is
chosen based on the aforementioned geometric tolerances of
the model mesh, then kept fixed and used throughout the en-
tire duration of the experiments. For simplicity, in the present
2D neXtSIM context, we adopt the method originally pro-
posed by Aydoğdu et al. (2019).

In this study, the ensemble for the DEnKF is constructed
by simultaneously perturbing model external forcing and
one of its internal parameters, following the sensitivity stud-
ies and probabilistic predictions from Rabatel et al. (2018)
and Cheng et al. (2020). In particular, Rabatel et al. (2018)
demonstrated that the external atmospheric forcing is the pri-
mary driver of prediction uncertainty in neXtSIM and thus
controls the diversity of the ensemble members: predicting
sea ice is more of a boundary condition than an initial value
problem. In previous studies, neXtSIM used the elasto-brittle
and Maxwell elasto-brittle (MEB) rheology for the sea ice
internal stress, whose main control parameter is the ice cohe-
sion, determining sea ice damage. As shown in Cheng et al.
(2020), it is convenient to perturb the (internal) ice cohe-
sion together with the (external) wind forcing to enhance the
ensemble dispersion. Although we use the latest version of
neXtSIM that employs a slightly different sea ice rheology
(see Sect. 2.1), we can still adopt their strategy to construct
ensembles.

The paper is organized as follows. Section 2.1 describes
neXtSIM and its setup. It follows with a description of the

observation products used in this study in Sect. 3. Section 4
presents the ensemble–DA framework for neXtSIM with the
DEnKF for sea ice forecasting and a brief introduction of
DEnKF. Section 5 describes the experiment setup. In Sect. 6
the resulting sea ice quantities are evaluated among differ-
ent DA strategies. Discussion and conclusions are given in
Sect. 7.

2 Numerical model and configuration

2.1 neXtSIM

The neXtSIM is a full dynamic–thermodynamic sea ice
model (Rampal et al., 2016a, b, 2019). The latest version of
neXtSIM uses a brittle Bingham–Maxwell (BBM) rheology
(Olason et al., 2022) that corresponds to a combination of
the Bingham–Maxwell constitutive model (Bingham, 1922)
and the Maxwell elasto-brittle rheology (Dansereau et al.,
2016). This rheology controls how sea ice mechanically re-
sponds to applied external forces, mainly winds and currents.
The neXtSIM has been extensively evaluated against several
sets of observations of sea ice concentration, thickness, drift,
and deformation and shows good performances (e.g., Rabatel
et al., 2018; Rampal et al., 2019). Moreover, the brittle rhe-
ologies fit for the scaling and multifractality of ice deforma-
tions (Bouchat et al., 2022). The neXtSIM with the MEB rhe-
ology generally reproduces better linear kinematic features
than the (elastic–)viscous–plastic rheologies in simulations
at the same resolution (Hutter et al., 2022). With the BBM
rheology, neXtSIM simulations show more small structures
in the sea ice deformation field, capture fracture propagation,
and overcome the excessive thickening in MEB rheology
(Olason et al., 2022). The model equations are solved on an
adaptive Lagrangian triangular mesh using a finite-element
method with remeshing to avoid extreme mesh distortion.
Using a Lagrangian mesh saves computational costs from the
stiff advection processes and helps preserve the sharp and re-
alistic gradients in sea ice fields. Such gradients emerge from
the dynamical behavior obtained with the BBM rheology,
which corresponds to the formation of leads and ridges, for
instance. SIC, SIT, snow thickness, sea ice damage, sea ice
velocity, and sea ice stress are included as prognostic vari-
ables (Rampal et al., 2019; Olason et al., 2022). Note that
SIT in neXtSIM is defined as the sea ice volume divided by
the grid-cell area, and it is commonly denoted as “effective
sea ice thickness”. The neXtSIM also incorporates thermo-
dynamic processes among the mechanisms responsible for
ice formation and melting. The model includes three “ice”
categories: open water, young ice, and old ice. The young ice
category represents newly formed ice and presumes that ice
can only be transferred from the young to the old ice cate-
gory. Note that the young ice and old ice here correspond to
the thin and thick ice categories in Rampal et al. (2019), re-
spectively. The ice categories are renamed in the latest model
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version for a more accurate description because the ice cate-
gories are classified by stages of sea ice development rather
than ice thickness.

Sea ice processes are influenced by atmospheric and ocean
boundary conditions. It is worth noting that neXtSIM is used
in a stand-alone (or uncoupled) sea ice configuration in this
study, whereby a slab ocean layer beneath the ice accounts
for SST and sea surface salinity (SSS); obviously, this does
not constitute a full ocean model. The SST and SSS are prog-
nostic variables of neXtSIM updated in the exchange of heat
and salinity fluxes by thermodynamics, constrained by the
ocean data via Newtonian nudging. The thickness of the slab
ocean layer is assigned as the local mixed layer depth of the
ocean data.

2.2 Model setup

We run neXtSIM on a Lagrangian mesh covering the Arctic.
This resolution corresponds to a nominal triangle side length
of 10 km, with the distance from one vertex of a triangle to
its opposite side being 7.5 km. The time step of the model
is 900 s. The ocean bathymetric data are adopted from the
ETOPO2 (2 arcmin global relief model) (National Geophysi-
cal Data Center, NESDIS, NOAA, U.S. Department of Com-
merce, 2001) for the basal stress parameterization on sea ice
(Lemieux et al., 2015).

The model is forced by the atmospheric analyses from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) Integrated Forecasting System (IFS) operational
analysis product with lead time 0 (Cycle 45r1, 0.1◦, 9 km
resolution) (Owens and Hewson, 2018), including the 10 m
wind velocity, 2 m air temperature, 2 m dew point tempera-
ture, mean sea level pressure, downward longwave and short-
wave radiation, and total precipitation and snowfall. The
forcing data are interpolated onto the model mesh linearly
in time and bilinearly in space every 6 h at run time.

The ocean forcing is from the TOPAZ4 operational analy-
ses from the Copernicus Marine Services. The product has a
horizontal resolution of 12.5 km. Specifically, we use daily
analyses produced at 00:30 UTC each day. The neXtSIM
uses the sea surface height, near-surface ocean velocity at
30 m depth, the mixed layer depth, SST, and SSS from the
TOPAZ4 product, which is the average of a 100-member en-
semble interpolated onto the model mesh linearly in time and
bilinearly in space at run time.

It is worth noting that the model is forced by analyzed
atmospheric and ocean data and therefore does not provide
forecasts in the operational sense. However, we will hereafter
refer to “forecast skills” of the model in the DA vocabulary
and call the last model run before the DA analysis the “fore-
cast”.

As mentioned in Sect. 2.1, neXtSIM adjusts the SST and
SSS according to the heat fluxes across the atmosphere–ice–
ocean and is nudged toward the TOPAZ4 forecast product.
The SST and SSS strongly influence the sea ice properties

and can thus severely affect the DA outcome. The relax-
ation timescales are tuned using 3-month-long runs to min-
imize the SIC error between the model runs and the OSI-
SAF SIC observations (not shown). By testing the relaxation
timescales from 5 to 60 d, we found that 5 d provided the best
agreement with OSI-SAF SIC observations, which is smaller
than the nudging timescale (15 d) in Williams et al. (2021).

3 Observations

We assimilate the CS2SMOS SIT observations and the Eu-
ropean Organisation for the Exploitation of Meteorologi-
cal Satellites (EUMETSAT) OSI-SAF SIC observations. In
the interest of studying the feasibility of the DEnKF with
neXtSIM, and because of the lack of proper independent pan-
Arctic observations for validation, we primarily use the same
observations products that are assimilated. As a complement,
we shall also use the OSI-SAF SID as an independent vali-
dation dataset.

3.1 CS2SMOS sea ice thickness for assimilation

The CS2SMOS provides a daily SIT product that merges
weekly Cryosat-2 altimeter data with daily Soil Moisture
and Ocean Salinity (SMOS) radiometer data. The Cryosat-2
SIT is retrieved from the freeboard (the ice and snow height
above sea level) and measured by altimetry satellites, which
can only detect thick ice. In contrast, the SMOS SIT is more
reliable for thin ice. It is derived from microwave bright-
ness temperatures in the L band. The two datasets are pro-
jected on the Equal-Area Scalable Earth 2 (EASE2) 25 km
grid (Brodzik et al., 2012) by optimal interpolation. The
CS2SMOS data provide mapping errors as uncertainty esti-
mates, including the uncertainty of ice thicker than 1 m from
Cryosat-2 and the uncertainty of ice thinner than 1 m from
SMOS. Thick multi-year ice usually shows high uncertainty.
The existence of sea ice is marked by the OSI-SAF ice-
type product in CS2SMOS. We use the reprocessing mode
CS2SMOS version 203 product, which uses the OSI-SAF
OSI-430-b ice concentration product to identify grid cells
filled with more than 15 % ice, and separate the first-year ice
from multi-year ice. The dataset is available for the Arctic
winter from October to April, whereas it is unavailable for
the melting summer season due to wet surface interference
in both Cryosat-2 and SMOS.

As a merged dataset, the CS2SMOS is subject to differ-
ent interpretations because Cryosat-2 provides the absolute
thickness over the ice cover, defined as the sea ice volume
divided by the ice-covered area fraction in the grid cell. In
contrast, SMOS provides the “effective” thickness, similar to
the state variable used in neXtSIM for SIT. In some studies
(e.g., Mu et al., 2018), CS2SMOS data have been treated as
an effective thickness with the awareness of potential uncer-
tainties. In this study, we interpret CS2SMOS as an abso-
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lute thickness estimate (R. Ricker, personal communication,
2021).

3.2 OSI-SAF sea ice concentration for assimilation

The EUMETSAT OSI-SAF includes daily SIC products re-
trieved from the SSMIS data (OSI-401-b) and AMSR2 data
(OSI-408) (Tonboe et al., 2017). We use the OSI-401-b prod-
uct for assimilation and validation, which has daily averaged
SIC coverage under a polar stereographic grid with a hori-
zontal resolution of 10 km.

3.3 OSI-SAF sea ice drift for validation

As an independent dataset, we use the OSI-SAF OSI-405
SID product to validate the SID forecast. The product is a
daily product obtained from the measurements of passive
and active microwave instruments that have a horizontal res-
olution varying from 10 to 15 km in the Arctic. The SID
is retrieved by the continuous maximum cross-correlation
method (Lavergne et al., 2010) and is provided on a po-
lar stereographic regular grid of 62.5 km resolution every
48 h. We only validate the model ice drift against this prod-
uct when uncertainties in the observation-based estimates are
lower than 2.5 km every 2 d in the winter period. The dis-
carded high-uncertainty observations are primarily located
near the North Pole due to fewer observations and near the
ice edge where ice drifts so fast that it reaches the limit that
the continuous maximum cross-correlation method can han-
dle.

4 Ensemble-based data assimilation system

In this section, we describe the components of the ensemble–
DA system: the ensemble perturbations, the statistical mod-
els of the observational errors (i.e., its error covariances),
selected model states passed to the DA, and the analysis
scheme (DEnKF). A schematic flowchart of the system is
shown in Fig. 1.

4.1 Perturbations of atmosphere, ice, and ocean forcing

As a crucial component of the ensemble–DA system, the
forecast ensemble is generated by neXtSIM through ran-
domly perturbed atmospheric forcing and model parameters
(ice cohesion in the present case), plus randomly perturbed
oceanic forcing. The former two perturbations have been in-
vestigated in the Cheng et al. (2020) study, which shows
that the modeled SID is less sensitive to the initial model
state than to the atmospheric forcing applied throughout the
run. In addition, uncertainties from the ocean processes (the
TOPAZ4 data) are also considered in this study.

In the atmospheric forcing dataset, we perturb the hori-
zontal 10 m wind velocities, the downward longwave radia-
tion, and the snowfall rate that are considered to be domi-

nant factors for a winter period. In the ocean forcing dataset,
the SSS and SST are perturbed since they are known to im-
pact SIC and SIT through thermodynamic processes. Us-
ing the same perturbation system as TOPAZ4 (Sakov et al.,
2012), the perturbations are spatiotemporally correlated with
a decorrelation timescale of 2 d and a horizontal decorrela-
tion length scale of 250 km, with the random field genera-
tor introduced by Evensen (2003). The random perturbation
fields have standard deviations of

√
3 m s−1 for wind speed,√

50 W m−2 for the longwave radiation, 100 % for snowfall
rate (using an unbiased lognormal distribution), 0.1 ◦C for
SST, and 1 PSU (practical salinity unit) for the SSS. To limit
the impact of SST on the ice formation around the ice edge,
we multiply the SST perturbations by the open-water fraction
in a grid cell. Following Sakov et al. (2012), the perturba-
tions of horizontal wind velocities are derived from a surface-
level pressure perturbation with a non-divergent constraint.
The non-divergent constraint prevents the sea ice cover from
breaking up excessively.

In addition to perturbing the upstream forcing dataset, the
ice cohesion field is initialized as a heterogeneous random
field following a uniform distribution between 20 and 40 kPa
without spatial correlation (Cheng et al., 2020), which is dif-
ferent for each ensemble member. The cohesion field is kept
constant unless a remeshing occurs, in which case the cohe-
sion on the newly created model grid cells is given as the
average of their nearest neighbors.

4.2 Observation uncertainties

The OSI-SAF SIC product provides an estimate of the instru-
ment uncertainty to which we must add the related represen-
tation error (Janjić et al., 2018). The latter is notably chal-
lenging to evaluate and is usually computed based on prag-
matic choices. Following Sakov et al. (2012), we estimate
the total observation error variance (sensor and representa-
tion errors) σ 2

obs,SIC as a function of SIC,

σ 2
obs,SIC = 0.01+ (0.5− |0.5− c|)2, (1)

with c being the SIC. A visual comparison (not shown)
between the error variances from Eq. (1) and those speci-
fied in OSI-SAF SIC confirms that they agree qualitatively
but that Eq. (1) gives slightly higher uncertainties in cer-
tain areas as aimed for. Due to the difficulties of retrieving
SIT from remote sensing, the uncertainty of the CS2SMOS
SIT product is relatively high. The uncertainty contains the
sensor errors, the inverse model representation error, diag-
nosed observation errors, and the bias (inconsistency) be-
tween the CryoSat-2 and SMOS observations. Instead of us-
ing the CS2SMOS built-in uncertainty, we define the obser-
vation error variance σ 2

obs,SIT, referring to the empirical for-
mula of Xie et al. (2018), as an increasing function of ice
thickness hice:

https://doi.org/10.5194/tc-17-1735-2023 The Cryosphere, 17, 1735–1754, 2023



1740 S. Cheng et al.: Arctic sea ice data assimilation

Figure 1. Flowchart of the ensemble–DA platform. DEnKF: analysis step; neXtSIM: model forecast step; OSI-SAF SIC/CS2SMOS SIT
observation: assimilated observations; TOPAZ forecasts and ECMWF forecasts: upstream forcing data for neXtSIM; field perturbations: see
Sect. 4.1; fixed and regular reference mesh: forecast and analysis state variables are exchanged on a pre-defined regular mesh.

σ 2
obs,SIT =

{
min(0.2,0.02e1.8(hice−3)), hice > 3m,

max(0.02,0.1e−1.5hice), otherwise.
(2)

The coefficients in Eq. (2) are fine-tuned based on a 3-year-
long dataset of observations.

4.3 Multivariate analysis update

Previous studies have shown that multivariate DA can im-
prove the SIT even when the SIC alone is assimilated (Mas-
sonnet et al., 2015; Zhang et al., 2018; Mu et al., 2020).
Hence, in this study, the SIT and SIC are included among
the updated state variables in the analysis steps. At least
one state variable (either SIC or SIT) in our state vector
has observations in the following DA experiments. More-
over, because the freezing and melting of sea ice are strongly
driven by the ocean boundary conditions in winter, we also
include the SSS and SST among the analyzed variables. Be-
cause SSS and SST are prognostic variables in the slab ocean
of neXtSIM, this implies that the DEnKF shall adjust the
ocean state variables following the change in sea ice via the
cross-covariances of these analyzed variables. Nevertheless,
in view of the simplicity of the slab ocean model, this does
not constitute a truly coupled data assimilation setup; see
Penny and Hamill (2017). To summarize, the state vectors
for DA (i.e., the quantities to be updated at analysis steps)
are absolute SIT, SIC, SST, and SSS.

Recall that neXtSIM includes the so-called effective SIT
instead of the absolute SIT among its prognostic variables.

To assimilate the observed absolute SIT, we would need
to modify the observation operator to include the nonlinear
mapping from the effective SIT to the absolute SIT. Instead,
we opted to transform the effective SIT in the model out-
put into the absolute SIT before applying assimilation. This
choice allows for maintaining a linear observation operator
in the DA algorithm.

As mentioned in Sect. 2.1, the model has three ice cate-
gories: open water, young ice, and old ice. Instead of using
a multi-category update as in Massonnet et al. (2015), SIC
and SIT in our state vector are both a sum of young and old
ice, and we redistribute the analysis updates in the respec-
tive categories via a post-process whose details are given in
Sect. 4.5.3.

4.4 Mapping model states onto the fixed and regular
reference mesh

At the analysis steps, the state vector indicated in Sect. 4.3
is mapped from the individual Lagrangian mesh of the mem-
bers onto a fixed and regular reference mesh. The fixed and
regular reference mesh has a horizontal resolution of about
12 km over the Arctic Ocean, extracted from the global tripo-
lar grid with a 0.25◦ resolution, referred to as ORCA-R025
(Bernard et al., 2006). The mapping is accomplished by a
bilinear interpolation. The analysis state vector is then inter-
polated back to the corresponding Lagrangian mesh of the
ensemble members for the subsequent forecast step follow-
ing Aydoğdu et al. (2019). Once the updated values of the
physical quantities in the state vectors are projected back on
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each member’s mesh, they evolve with the forecast run in
which the Lagrangian meshes move according to the ice ve-
locity fields.

4.5 The deterministic ensemble Kalman filter (DEnKF)

We use the DEnKF (Sakov and Oke, 2008) to assimilate
the SIT and SIC observations. Unlike the stochastic EnKF,
the DEnKF does not require the observations to be per-
turbed to avoid filter divergence. DEnKF is also conceptually
more straightforward compared to other transform-based de-
terministic EnKFs (see Carrassi et al., 2018, for the differ-
ences between various EnKF flavors). The open-source DA
software, EnKF-C version 2.8.0 (Sakov, 2014), is adopted to
perform the DA. The EnKF-C provides the functionality for
automated quality control as well as ensemble inflation and
localization, which are briefly outlined below.

4.5.1 Preprocessing and quality control

EnKF-C provides a toolbox to preprocess and perform ob-
servation quality control. Observations within our model do-
main are selected and interpolated onto the fixed and regular
reference mesh (see Sect.4.4) by its built-in operator. Addi-
tionally, observations within 50 km of the coastline are re-
moved to avoid spurious effects known to be present in these
satellite-derived products near the coasts.

When the forecast and observation uncertainties do not
overlap (i.e., innovations larger than expected by the EnKF),
the assimilation responds by giving large analysis incre-
ments, which may cause model imbalances in the subsequent
forecast run. To reduce the impact of those large innova-
tions, EnKF-C uses an adaptive quality control method intro-
duced by Sakov and Sandery (2017) and artificially inflates
the observation variance by an adjustable K factor without
removing the observations. The effect of this adaptive qual-
ity control method has been studied in Sandery et al. (2020,
Fig. 1) by comparing the original and modified observation
error spread. In the case of severe model biases, K can be
set to 1, while in our case, as demonstrated by the free run
in Williams et al. (2021), we do not expect severe bias in
neXtSIM and found that the default value K = 2 maintains
adequate analysis ensemble spread.

4.5.2 Inflation and localization

Idealized studies by Zhang et al. (2018) show that infla-
tion and localization are necessary to improve sea ice fore-
cast in the DA cycles. To correct the underestimation of
sample variances, covariance inflation can be introduced in
a multiplicative way (e.g., Anderson and Anderson, 1999;
Anderson, 2007; Anderson et al., 2009). Inflating the ob-
servation variance can reduce the observation effect in DA
and thus maintain the spread from the ensemble forecast.
However, the Arctic has very variable observation coverage.
Some interior regions have very sparse observations, while

some model variables are not directly observed. In such ar-
eas and for these variables, multiplicative covariance infla-
tion will inflate the ensemble anomalies and spread exponen-
tially, which also amplifies the biases in the observed vari-
ables in the case of multivariate assimilation. An alternative
use of inflation is to act only where observations are assim-
ilated (Sakov et al., 2012; Xie et al., 2017). The DEnKF in-
cludes a kind of additive inflation by its algorithm construc-
tion, explained in Sect. 3, as well as the R-factor inflation of
the anomaly update (Sakov and Oke, 2008). We also draw
attention to the point that in our experiments, besides er-
rors in the forcing, we have model errors that are sometimes
omitted in the literature and compensated for by multiplica-
tive inflation. We believe that explicit stochastic model errors
are preferable and make more physical sense (e.g., Scheffler
et al., 2022). Moreover, in our experiment, both the atmo-
sphere and ocean forcings are perturbed throughout the sim-
ulation, maintaining an ensemble spread for our DA system.
This partially allows us to avoid additional multiplicative in-
flation.

Therefore, we intentionally multiply the observation vari-
ance for all observations by a factor of 2, but we do not
use any other multiplicative inflation. Following Sakov et al.
(2012), we use a localization radius of 300 km for sampling
both SIC and SIT observations. This corresponds to an effec-
tive e

1
2 -folding radius of about 90 km.

4.5.3 Post-processing of nonphysical analyses

As stated in Sect. 4.3, we simultaneously update the SIC,
SIT, SST, and SSS by the DEnKF. The important, albeit gen-
erally nonlinear, ocean and sea ice interactions might not be
fully captured by the error covariances that in turn determine
the DEnKF updates, resulting in nonphysical model states.
To mitigate this potential issue, we apply a sequence of post-
processing steps as follows. Firstly, as a sanity check, the
ocean variables are capped by the SSS between 5 and 41 PSU
and the SST between the freezing point (−0.057×SSS) and
35 ◦C, far away from reasonable values. Secondly, the post-
processing handles the analysis update of the total SIC. To
remove the effect of unreliable observations, SIC is set to
zero wherever the analysis SIC<= 15 % and SIC is capped
by 100 %. We assume the model uncertainty of SIC arises
mainly from the young ice. Hence, the SIC increment, which
is the difference between the analysis and the background to-
tal SIC, is first applied to update the young ice. The SIC of
young ice is capped by 100 % in the case of a positive incre-
ment. If the young ice is completely removed by a negative
increment, the rest of the negative increment is removed from
the old ice. If SIC is removed altogether, SIT, ridge ratio, and
snow depth are all set to 0 for a no-ice situation.

After processing the SIC increment, we make a selective
update for SIT. In the experiments wherein SIT is assimi-
lated, the SIT in the entire domain is updated by the analysis.
On the other hand, if only the SIC is assimilated, the SIT
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updated by multivariate covariances is applied in a limited
region where the analysis SIC<= 90 %. This is done to re-
move possible unrealistic multivariate updates of SIT in the
pack ice; high SIC values reaching the upper bound of 100 %
do not fit the Gaussian assumption and sometimes lead to
problematic bivariate error covariances with SIT. Our selec-
tion relieves the problematic updates in the DEnKF but re-
tains the multivariate assimilation for intermediate SIC val-
ues. Then, the SIT of young ice and old ice is redistributed
proportionally to the analysis fractions of young and old SIC.
For “new” ice added by data assimilation, we assign 0.25 m
SIT to the young ice and keep the old ice at zero. If the up-
dated SIT of either young ice or old ice falls thinner than
0.01 m, we remove that category by setting the relevant ice
quantities to zero.

These updated sea ice quantities then go through a final
consistency check to be used in the model run. Young ice SIT
and snow depth, in particular, are proportionally reduced if
the SIC needs to be reduced from over 100 %, in which case
the reduction is applied only to young ice SIC. The internal
ice temperature of new ice is updated based on the updated
SIT, SIC, snow thickness, and water-freezing temperature.
Internal ice temperature must be at the freezing point for re-
gions without old ice. For open-water areas without any ice,
the consistency check ensures the SIT, SIC, and snow depth
are all zero for both ice categories with the freezing point
temperature of water. Similarly, for young ice areas, the SIT,
SIC, and snow depth of old ice are all zero, and ice tempera-
ture is at the freezing point of ice salinity.

5 Experiment setup

We carry out four ensemble–DA experiments to investigate
the impact of different observation products and assimilation
frequencies. Details are summarized in Table 1 together with
a free ensemble run for reference.

In particular, in two of the experiments, hereafter referred
to as SIC7 and SIT7, we assimilate observations of only one
quantity, either SIC or SIT, respectively, with the last digit
indicating the weekly DA frequency. These experiments are
intended to reveal the effect of multivariate assimilation on
the observed and non-observed sea ice variables. Similar to
previous studies (see, e.g., Xie et al., 2018), we investigate
the joint assimilation of both SIC and SIT in two further
experiments. In experiment SIC7–SIT7, we assimilate SIC
and SIT simultaneously on a weekly cycle. Recalling that the
SST and SSS in the slab ocean component of neXtSIM are
nudged towards the daily ocean surface forcing of TOPAZ4
with the relaxation timescales set as 5 d (see Sect. 2.2), the
SST and SSS updated by weekly multivariate analysis are
gradually “overwritten” in neXtSIM by the TOPAZ4 values.
Hence, we increase the assimilation frequency and conduct
the additional experiment SIC1–SIT7, whereby SIC is as-
similated daily and SIT is assimilated weekly, following the

Table 1. Summary of the ensemble experiments. For all the exper-
iments, the simulation period is from 18 October 2019 to 16 April
2020, and the ensemble size is 40.

Exp. Assimilation frequency, day(s) Post-processing

Name OSI-SAF SIC CS2SMOS SIT

free run – –
SIC7 7 – Limited update SIT∗

SIT7 – 7
SIC7–SIT7 7 7
SIC1–SIT7 1 7 Limited update SIT∗

∗ When only SIC is assimilated, SIT in the model is updated with analysis SIT only
if the analysis SIC<= 90 % – see Sect. 4.5.3.

satellite data availability. In this experiment, the effect of
ocean nudging should be mitigated and the impact of SIC
observations intensified. Moreover, the higher observational
frequency may damp the nonlinearity in the error evolution in
subsequent analyses, potentially avoiding the violation of the
Gaussian assumption at the basis of the DEnKF (see Bocquet
and Carrassi, 2017, for a discussion on the effect of observa-
tion frequency and accuracy on the error evolution). Natu-
rally, the downside of high-frequency assimilation is the in-
creased computational cost (Lange and Craig, 2014; He et al.,
2020). More frequent assimilation of SIT was not considered
in view of the limited daily coverage of CryoSat-2 data in
the ice pack. As a reference, we produce a free ensemble ex-
periment without DA constraints, referred to as the free run
hereafter.

Because the CS2SMOS product is only available in the
ice-freezing season, all the experiments are conducted from
18 October 2019 to 16 April 2020 (182 d). The initial con-
ditions of the experiments are generated from an ensemble
spin-up run from 3 September to 17 October 2019 (45 d).
The spin-up run is initialized from the neXtSIM-F forecasts
(Williams et al., 2021) and integrated with different pertur-
bations for each ensemble member as described in Sect. 4.1.
All the DA experiments and the spin-up run use 40 ensemble
members. The ensemble size is chosen after evaluating the
spread of a larger free-run ensemble of 100 members during
the spin-up period, noticing that the spread becomes almost
insensitive to the ensemble size when the latter exceeds 40.
This behavior is typical of deterministic EnKF such as the
DEnKF adopted here (see Carrassi et al., 2022).

6 Results

In this section, we present the results from the model fore-
casts of the experiments in Table 1 from 18 October 2019
to 16 April 2020, validated by the observations before the
sea ice variables are assimilated. Although assimilated into
the experiments, the CS2SMOS SIT and OSISAF SIC ob-
servations are used in the validation of model forecasts be-
fore each assimilation step with the awareness of potential
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dependency. Independent validation is also performed using
the OSISAF SID observations. The section is structured to
show results for different quantities: SIC and SIE in Sect. 6.2,
SIT in Sect. 6.3, and SID in Sect. 6.4.

6.1 Definition of metrics and overall performances

We use several metrics to validate the ensemble forecasts
against the observations, thus evaluating the forecast skills
of our system. All metrics are defined in observation space,
i.e., in the observation grid onto which the model states are
interpolated.

Bias and root mean square difference (RMSD) between
the ensemble mean and the observations are utilized to assess
the forecast skill, the definitions of which follow Williams
et al. (2021). For a scalar variable field, such as SIC and
SIT, the ensemble mean vector at time t is defined as x(t)=
1
n

E(t)1, where x(t) ∈ Rm, m is the vector length, n is the en-
semble size, E(t) ∈ Rm×n is a matrix containing the ensem-
ble members along its columns, and 1= (1, . . .,1)T ∈ Rn.
The bias of a scalar variable is – contrary to the innovations
– defined as model-minus-observations d(t)= 〈H (x(t))−
y(t)〉, where the operator 〈·〉 represents the spatial average of
over ice-presented pixels, y(t) ∈ Ro is the observation vec-
tor, and H is the observation operator mapping from model
states with two sea ice categories to the observations of to-
tal SIC and total absolute SIT on the observation grid. In our
analysis, we define a “robust” bias by removing grid points
outside the [2 %, 98 %] quantiles of bias on the domain. This
makes d ∈ Ro′ with o′ ≤ o.

The RMSD is defined as ‖ d(t) ‖, where ‖ · ‖ is the Eu-
clidean norm, with outliers removed. We also compute the
temporal average of the bias over the time period [t1, t2],
which is 1

t2−t1

∫ t2
t1

d(t)dt .
For vector quantities such as the SID, the vector of the en-

semble mean at time t is defined as x(t)= (x1(t),x2(t))
T
=

1
n

E(t)1, where x1(t) and x2(t) ∈ Rm represent the two hor-
izontal orthogonal components, E(t) ∈ R2m×n is the en-
semble matrix with the first m rows representing the first
orthogonal component of the quantity, the rest of the m
rows represent the second orthogonal component, and 1=
(1, . . .,1)T ∈ R2m. The relevant observation vector y(t)=
(y1(t),y2(t))

T
∈ R2o has o number of observations with its

horizontal orthogonal components y1(t) and y2(t) ∈ Ro. The
spatially averaged bias of a vector variable can be defined
as the error of the magnitude of speed: d(t)= 〈|H(x(t))| −
|y(t)|〉. RMSD is the error in speed ‖ d ‖, where |·| is defined

as |z| =
√∑2

i=1zi ◦ zi , where ◦ is a component-wise product,
with√ being the vector component-wise square root. In the
vector case, the outliers are not removed. We also compute
the vector RMSD (VRMSD), ‖H(x(t))− y(t) ‖, which ac-
counts for errors in speed and direction. Note that the metrics
defined above follow Williams et al. (2021) with adjustments
for ensembles.

We evaluate the SIE by adopting the integrated ice-edge
error (IEEE, Goessling et al., 2016) and the spatial proba-
bility score (SPS, Goessling and Jung, 2018). The IIEE indi-
cates the mismatch of SIE between the model outputs and ob-
servations usually occurring around the sea ice edge, which
is designed to evaluate deterministic forecasts. Moreover, the
IIEE can easily be decomposed into overestimation and un-
derestimation of SIE. Using the ensemble mean, we compute
the IIEE overestimated and underestimated components, O
and U. The SPS is an extension of the IIEE for ensemble
forecasts. However, the SPS does not provide information
on overestimation or underestimation. Hence, we utilize both
metrics in the SIE assessment. Formulas of the relevant met-
rics can be written as

O=
∫
A

max
(
c
(
H (SICf)

)
− c (SICo) ,0

)
dA,

U=
∫
A

max
(
c (SICo)− c

(
H (SICf)

)
,0
)

dA,

IIEE= O+U, (3)

where A is the area of the model domain, and c(x) is a sea
ice indicator function such that c(x)= 1 for x > 15 %; other-
wise, c(x)= 0, where x represents ice concentration, and the
subscripts o and f stand for the observed and forecast concen-
trations, respectively, while H (SICf) indicates the ensemble
mean of the overall SIC forecast in the observation space.
Note that only the 15 % concentration isoline is used by the
IIEE and a large share of the concentration information is not
taken into account. Finally,

SPS=
∫
A

{P [c (H (SICf))] − c (SICo)}
2dA, (4)

where P is the ensemble probability of SIE of each model
grid point.

Before discussing the skills in each of the considered vari-
ables in detail, we summarize their performances by provid-
ing the grid-weighted spatial and temporal averages of the
bias, RMSD, and VRMSD in Table 2. The best result per
variable and metric is highlighted in bold.

6.2 Evaluation of sea ice concentration and extent

Figure 2a shows the temporal evolution of the area-weighted
average of the ensemble mean SIC from the experiments in
Table 1. The black curve indicates the OSI-SAF SIC ob-
servations. All experiments capture the observed increase
in SIC well. Nevertheless, although the free run is almost
indistinguishable from all the DA experiments, it shows a
slight overestimation from November onwards. Among the
DA runs, experiment SIC1–SIT7 (dashed purple line) shows
marginally better agreement with the observations than the
others.
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Table 2. Summary of the metrics for SIC, SIT, and SID: spatiotemporal averaged bias, RMSD, and VRMSD among the experiments. SIC is
validated against OSI-SAF SIC, SIT is validated against CS2SMOS SIT, and SID is validated against OSI-SAF SID. The best value of each
ice feature among the experiments is bolded.

Exp. SIC SIT (m) SID (km per 2 d)

Name Bias RMSD Bias RMSD Bias RMSD VRMSD

Free run 0.014 0.032 0.168 0.304 1.696 4.224 8.265
SIC7 0.015 0.031 0.123 0.247 1.680 4.210 8.254
SIT7 0.017 0.034 −0.051 0.118 1.400 4.944 7.099
SIC7–SIT7 0.017 0.033 −0.090 0.155 1.279 4.935 7.130
SIC1–SIT7 0.015 0.027 −0.113 0.173 1.296 4.925 7.115

Figure 2. Time series of spatially averaged SIC from the model forecast against OSI-SAF SIC from 18 October 2019 to 16 April 2020.
(a) Ensemble mean SIC; (b) bias; (c) RMSD; (d) ensemble spread (standard deviation).

Figure 2b and c display the time series of bias and RMSD
of SIC, respectively. Overall, all the experiments show ex-
cess sea ice with minor differences. The SIC bias is gener-
ally smaller when SIC is assimilated, as expected. The ex-
periment with daily SIC observations, SIC1–SIT7, generally
gives the smallest biases. We see, however, that the free run
has the smallest bias in the first weeks, occasionally in De-
cember 2019 and April 2020. The free run also shows the
(slightly) smallest average bias of 0.014 (see Table 2). This
undesired, albeit small, increase in bias in the DA experi-
ments is due to the asymmetric effect of DA in the cases of
local overestimation and underestimation. We shall clarify
this further when discussing Fig. 5 later.

In contrast to the bias, we see an obvious impact of DA
on the RMSD (panel c). In particular, SIC1–SIT7 shows the
lowest RMSD consistently throughout the whole period (av-
erage value of 0.027 in Table 2). This is a notable reduction
compared to the other experiments, which show very similar
values. The RMSD decreases mostly during fall 2019 (a rela-

tive reduction of up to 27 %) and then oscillates during spring
2020. The effect of DA becomes smaller after January 2020
when the sea ice covers the majority of the Arctic Ocean (see
the increase in SIC in Fig. 2a), and there is not much room
for action.

The DEnKF estimates the uncertainty via the ensemble
spread, a flow-dependent proxy for the forecast error stan-
dard deviation. Comparing the spread of ensemble–DA ex-
periments with the free run provides an estimate of how
much uncertainty is reduced by the DA. We show the time
series of the ensemble spread from all the experiments in
Fig. 2d. All experiments maintain a stable spread except
for an increase caused by the seasonal ice melt since mid-
March 2020; the assimilation reduces the ensemble spread
compared to the free run, although to a different degree de-
pending on the experiment. In the experiments with weekly
assimilation of either SIT or SIC, the spread decreases sig-
nificantly after 1 d forecasts from the analysis. However, it
then quickly builds up during the 2 following days of fore-
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Figure 3. SIC RMSD for 4 weeks of the moving-averaged forecast
regarding the assimilation time. Each line represents a different lead
time.

casts, reaching levels close to the free run from October 2019
to January 2020, showing that the assimilation of SIC has
a short memory compared to the assimilation window. The
weekly assimilation of SIC is slightly more efficient from
April onwards, consistent with Lisæter et al. (2003). How-
ever, only the daily SIC assimilation experiment can effi-
ciently reduce the SIC errors, SIC1–SIT7, showing a rela-
tively smaller spread across the full period. Both spread and
RMSD are reduced by about 0.005. Importantly, these re-
sults show that thanks to the continuous perturbations applied
to the external forcing, the ensemble system can maintain
spread even in the winter when the system’s internal vari-
ability is tiny.

To get a clearer picture of the improvements in the SIC
forecast skill by weekly assimilation, we present the SIC
RMSD from the perspective of the lead time in Fig. 3. Each
curve represents the temporal evolution of the moving aver-
age in a 4-week window of the analysis and forecast error
after 2, 4, and 7 d of lead time. The clustering and spread of
the curves at a specific time (viewing vertically) indicate the
growing forecast error with the increased lead time: we ob-
serve that both SIC7 (top row) and SIC7–SIT7 (bottom row)
show clear growth of the RMSD with increasing lead time,
while the forecast errors are independent of lead time in SIT7
(middle row). This is a result of the reduction of model error
in the analysis (after lead day 7) in SIC7 and SIC7–SIT7 with
increasing error in the subsequent model forecast (in lead day
1), which is not reflected in the daily averaged time series in
Fig. 2. We observe that the errors saturate in a range of 2 to 7
forecast lead days depending on periods, which we attribute
to the variability of weather conditions. This highlights the
improvements in the analysis due to the assimilation of SIC

but also reveals that the multivariate assimilation of SIT has
little influence on SIC. With the decreasing SIC RMSD over
time (viewing horizontally), the forecast errors among dif-
ferent lead times become similar to each other, showing the
reduced effect of the assimilation on the forecast in the win-
ter season.

The SIE is also evaluated against the OSI-SAF SIC prod-
uct from a domain-integrated view of the SIC. Figure 4
shows the time series of the (a) SPS, (b) IIEE, (c) overes-
timated component of IIEE, and (d) underestimated compo-
nent of IIEE (see Sect. 6.1). The SPS and IIEE are almost
identical for all runs. It is typical of a “healthy” ensemble
that the ensemble forecasts and the observations are statisti-
cally indistinguishable. The SPS and IIEE behave similarly
to the SIC RMSD (see Fig. 2c), which decreases to a steady
state around January 2020 with small and rapid variations af-
terward. The overestimated and underestimated components
of IEEE based on the ensemble mean give a different view
of the bias of SIE in the ensemble mean forecasts: the SIE
is primarily underestimated comparing Fig. 4c and d, which
seems counterintuitive when the biases were showing a gen-
eral overestimation of SIC. The discrepancy is likely caused
by local underestimated SIC in the Beaufort Sea versus gen-
eral overestimation over the Arctic, which will be further re-
viewed in Fig. 5.

The improvement of SIE due to DA is most visible in
SIC1–SIT7 compared to the others, highlighting the impor-
tance of frequent SIC assimilation. The underestimated com-
ponent of the IIEE is improved in the first months only, con-
sistent with the impossibility of adding more ice in a fully
packed Arctic. In contrast, the overestimation is improved
throughout the whole period due to the more frequent (daily)
assimilation of SIC. In absolute IIEE numbers, the impact of
assimilation is mostly on reducing underestimation, while in
relative terms, the overestimation may seem easier to correct
with daily assimilation.

To further demonstrate the effect of DA, Fig. 5 shows the
spatial distribution of the monthly SIC average bias in se-
lected months, representative of the SIC evolution. The top
row displays the observed SIC, and the SIC biases from the
different experiments are then shown below. The distribu-
tion of SIC bias is similar in all experiments, showing an
overall positive bias in the ice pack where concentrations are
high (> 80 %). High-bias regions are also located near the
marginal ice zone, in coastal seas, and east of Greenland.
The SIC bias in the marginal seas is visibly reduced in SIC1–
SIT7 compared to the free run and the other DA experiments,
among which there are no noticeable differences. These re-
sults agree with the time series of bias and RMSD of SIC and
SIE shown in Figs. 2 and 4.

The figure offers a resolution of the apparent contradiction
between the overestimated SIC bias and the underestimation-
dominated IIEE decomposition: all experiments generally
predict smaller SIE (green curves) compared to the obser-
vation (red curves) near the open-water boundaries. This
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Figure 4. Metrics of sea ice extent validated against OSI-SAF SIC over time. (a) Spatial probability score (SPS) is calculated using the full
ensemble forecasts. (b) Integrated ice-edge error (IIEE) is calculated using the ensemble means and split between its overestimation and
underestimation components in panels (c, d), respectively, which indicate the amounts of overestimation and underestimation in modeled
SIE from the observations.

then causes the predominant underestimation of SIE seen in
Fig. 4, but within the 15 % isoline, most of the biases are
positive, summing up to a positive SIC bias in Fig. 2. In
November 2019 (left column), the large bias in the Beaufort
and Chukchi seas and the Kara Sea contributed to most of
the SIC RMSD seen in Fig. 2. As the sea ice freezes gradu-
ally, the SIC bias disappears as the ice expands to the Bering
Strait and the Siberian coasts. Meanwhile, the SIE bias de-
creases over time, as the SPS and IIEE indicate. Disagree-
ments between modeled and observed SIC and SIE remain in
the Nordic seas: the Greenland Sea, the Barents Sea, and the
Kara Sea in January and March 2020, which are only slightly
affected by the assimilation and likely biased towards their
ocean boundary condition. The delayed ice growth in the
model is mainly related to the warm ocean condition from
TOPAZ4 since the atmosphere temperature is commonly be-
low the freezing point. Because the SIC and SIE evolution
primarily depends on the underlying ocean boundary con-
dition, we argue that during the model forecast, the daily
TOPAZ4 data counteract the effect of weekly assimilation
on the ocean states. This is not the case in SIC1–SIT7, which
updates the analysis SST and SSS daily in the slab ocean
via DA. This argument is in agreement with the study by
Williams et al. (2021), which blamed the model for the un-
derestimation due to the lack of input of detached landfast
ice and fast melting in the seas. This phenomenon is further
discussed in Sect. 7.

6.3 Evaluation of sea ice thickness

We now examine the SIT forecast skill of our experiments.
Similar to Fig. 2, Fig. 6 shows the (a) spatial mean, (b)
bias, (c) RMSD, and (d) ensemble spread of SIT validated
against the CS2SMOS SIT product. We can see that all ex-
periments capture the mean SIT evolution in the measure-
ments. In particular, they track the SIT increase after a short
period of decrease in October 2019. Nevertheless, the free
run and SIC7 significantly overestimate the mean SIT (see
also panel b) from December 2019. It is worth mentioning
that, thanks to the multivariate assimilation of SIC, experi-
ment SIC7 is slightly better than the free run. As expected,
all the experiments in which SIT is assimilated show, in gen-
eral, much better skill in predicting SIT. Nevertheless, we
also observe a counterintuitive impact of assimilating both
SIC and SIT (i.e., experiments SIC1–SIT7 and SIC7–SIT7),
yielding poorer SIT than when assimilating SIT alone. The
differences among the DA experiments are more evident in
the bias (panel b) and the RMSD (panel c).

The free run shows the largest positive bias and RMSD
of SIT over time. Errors are reduced by all DA experi-
ments, with SIC7 being the least effective; see also Ta-
ble 2. Experiment SIT7 gives the lowest bias (close to zero)
and the smallest RMSD: the spatiotemporal averages for
the bias and the RMSD are −0.051 m and 0.118 m, respec-
tively (see Table 2). SIC7–SIT7 and SIC1–SIT7 show rela-
tively larger RMSD and similarly larger negative bias than
SIT7. We also note that assimilating SIC daily (experiment
SIC1–SIT7) gives both larger bias and RMSD than assimilat-
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Figure 5. Monthly average of SIC observations (first row) and SIC bias between the model forecasts and the OSI-SAF SIC product. Panels
from left to right are November 2019, January, and March 2020. Red and green lines are the sea ice edges (applying the classical threshold
of 15 % SIC) from the observations and the ensemble mean forecasts.
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Figure 6. Time series of spatially averaged SIT from the model forecast against CS2SMOS from 18 October 2019 to 16 April 2020.
(a) Ensemble mean SIT; (b) bias; (c) RMSD; (d) ensemble spread (standard deviation).

ing SIC weekly (experiment SIC7–SIT7). The time-averaged
bias and RMSD (see Table 2) are −0.113 and 0.173 m for
SIC1–SIT7 and −0.09 and 0.155 m for SIC7–SIT7, respec-
tively. Although this degradation seems to contradict the pos-
itive impact of SIC7 over the free run, we believe that the
slight reduction in SIT prediction skill is caused by artifacts
of the DEnKF update applied to SIT and SIC, whereas the re-
lationship between the two variables is nonlinear. A practical
remediation would be to attenuate the effect of SIC obser-
vations on SIT analysis. We will discuss this in Sect. 7. In
contrast to the similar SIC spread in Fig. 2d, the SIT spread
in Fig. 6d exhibits two groups. The top lines show a large in-
crease in the SIT spreads in experiment SIC7 and the free run
without SIT assimilation. The unconstrained free run shows
the largest spread, which is slightly reduced in SIC7. In the
lower lines, all the experiments assimilating SIT show much
smaller spreads with a slower increase toward the end of
the simulation period. SIC1–SIT7 shows the lowest spread,
slightly smaller than all other experiments. We attribute this
behavior to the lower variability of the SIT that is constrained
by the assimilation of SIT data.

Figure 7 shows spatial maps of the monthly average of the
SIT bias against CS2SMOS SIT data in November 2019, Jan-
uary 2020, and March 2020, from left to right. The first row
of panels shows the observed SIT, while the others present
the bias of the different experiments. The time evolution of
the bias pattern (from November 2019 to March 2020) de-
pends on the different assimilation strategies. The free run
has a negative SIT bias in November 2019 up to about 1 m
mainly in the Beaufort and Chukchi seas, the East Siberian
Sea, the Laptev Sea, and the Kara Sea. It also shows that the
positive bias is predominant in the rest of the Arctic, espe-

cially in the Canadian Archipelago and the northern coast of
Greenland (> 1 m). In January and March 2020, the positive
bias is predominant in the Arctic region except for the band
of negative bias from the Nansen Basin and the Laptev Sea
occurring in March 2020. SIT is overestimated near the coast
all over the Arctic, indicating too much ice ridging in the
model. SIC7 shows slightly reduced SIT bias from the free
run due to the multivariate assimilation of SIC, as discussed
in Fig. 6. In line with the results in Fig. 6, SIT7 has the small-
est bias. In particular, SIT7 successfully reduces most of the
large SIT bias in the Canadian Archipelago and the Green-
land, Barents, and Kara seas found in the other experiments.
The remaining SIT bias in SIT7 appears to be concentrated
near the coasts and ice edges. This is because of no DA ap-
plied within 50 km coast zones and the high SIT uncertainty
in the CS2SMOS data. By assimilating SIC and SIT obser-
vations, SIC7–SIT7 shows a similar pattern as SIT7 but a
more pronounced negative bias. The bias patterns of SIC1–
SIT7 and SIC7–SIT7 are similar overall, implying the weak
influence of assimilating SIC on SIT again.

6.4 Evaluation of sea ice drift

The drift of the sea ice, including its directions and speed,
is important for both operational forecasts and atmosphere–
ice–ocean interactions. The main physical mechanisms of sea
ice drift are the wind drag at the sea ice surface and the in-
ternal sea ice forces. We are thus interested in assessing how
our DA-based predictions reproduce the observed SID: this
is validated using the OSI-SAF SID product, which is not
assimilated in our experiments.
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Figure 7. Same as Fig. 5 but for monthly averaged SIT bias between the ensemble runs and the CS2SMOS SIT product.

https://doi.org/10.5194/tc-17-1735-2023 The Cryosphere, 17, 1735–1754, 2023



1750 S. Cheng et al.: Arctic sea ice data assimilation

The free run can already reproduce the observed drift vari-
ations without DA. This makes it challenging for DA to bring
visible improvements (Williams et al., 2021). From the spa-
tiotemporally averaged metrics in Table 2, the bias in SIC7–
SIT7 is the lowest with 1.279 km per 2 d. The VRMSD val-
ues in the SIT assimilation runs are similar with obviously
the lowest error compared to other runs. SIT7 has the best
VRMSD of 7.099 km per 2 d, which is slightly smaller than
SIC7–SIT7 (7.13 km per 2 d) and SIC1–SIT7 (7.115 km per
2 d). In contrast, the smallest RMSD is from SIC7 at 4.21 km
per 2 d and the free run, outperforming experiments with SIT
assimilation. Overall, we observe small improvements in the
modeled SID when we assimilate SIT.

7 Discussion and conclusions

We propose an ensemble-based data assimilation system for
the Lagrangian sea ice model, neXtSIM, to enhance its Arc-
tic sea ice forecast skill. The DEnKF is applied to work with
a time-dependent, non-conservative model mesh, following
the projected EnKF strategy introduced by Aydoğdu et al.
(2019). The Lagrangian nature of the model implies that each
ensemble member evolves on an independent adaptive mov-
ing mesh. At analysis times, we interpolate the ensemble
members onto a fixed and regular reference mesh, on which
the analysis is carried out. The analysis state variables are
then projected back to the individual member meshes. The
ensemble is generated by perturbing an internal model pa-
rameter and external forcings, namely the ice cohesion, the
atmospheric forcing (10 m wind velocities, longwave down-
welling radiation, and snowfall rate) from the ECMWF prod-
uct, and the oceanographic forcing (SST, SSS) from the
TOPAZ4 forecast. The system assimilates satellite-based sea
ice products (CS2SMOS SIT and OSI-SAF SIC) and updates
the state vector variables SIC, SIT, SSS, and SST by DEnKF.
The model decomposes the sea ice into age categories, but
the analysis is performed on the total ice. Therefore, empir-
ical post-processing steps are introduced to redistribute the
analysis of sea ice states into young and old categories and
avoid imbalances caused by nonphysical updates.

Ensemble–DA experiments are carried out from October
2019 to April 2020 (Table 1) with different assimilation
strategies. The results show that the forecast skill of sea
ice improves and benefits from the assimilation. The fore-
cast skills of SIC and SIE are the best in the SIC1–SIT7
experiment with daily assimilation of SIC (Figs. 2 and 4).
The daily assimilation reduces the model uncertainties,
e.g., in the SIC RMSD (Fig. 2) and spread (Fig. 3). The
underestimation of SIE is reduced in the Beaufort–Chukchi
Sea and the Kara–Barents Sea in SIC1–SIT7 (Fig. 5).
The IIEE is roughly comparable to those obtained by the
operational TOPAZ4 system, with a large part of the errors
caused by underestimation (see the validation time series for
sea ice at https://cmems.met.no/ARC-MFC/V2Validation/

timeSeriesResults/year-day-01/SItimeSeries_year-day-01.
html#OSI_xIIEE, last access: 12 August 2022). The similar-
ities of IIEE results are thus likely caused by areas of ocean
surface temperatures that are too warm. Nevertheless, we
also note that the IIEE may contradict the SIC statistics since
it only uses an isoline of the SIC. Moreover, we observe a
large reduction of the (both positive and negative) model SIT
biases by assimilating the CS2SMOS SIT data (Sect. 6.3).
Specifically, experiment SIT7 cuts the model SIT bias to
almost zero, and its corresponding RMSD is the lowest
among all experiments. The SIT errors are also reduced in
the joint SIC–SIT assimilation experiments, although to a
lesser extent; this implies that the apparent benefit of mul-
tivariate DA becomes detrimental when assimilating both
SIT and SIC, which is further discussed later. Furthermore,
small improvements on SIT are visible when assimilating
SIC only, SIT7, which agrees with the small effects from
multivariate DA found in the data assimilation framework
of the coupled ocean–ice model, ROMS-CICE (Fritzner
et al., 2019). Although the improvements on the SID are less
apparent, the model performs on par with the earlier results
with direct insertion (Williams et al., 2021) and outperforms
the TOPAZ system using an older sea ice rheology and the
DEnKF.

Three points in the results are further discussed as fol-
lows: firstly, assimilating SIC in the joint SIC–SIT assimila-
tion experiments (SIC1–SIC7 and SIC7–SIT7) causes more
negative SIT bias than in the SIT7, which assimilates only
SIT (see Figs. 6 and 7). This undesired effect arguably
comes from inadequate cross SIT–SIC error covariance in
the DEnKF. The modeled SIC and SIT are generally pos-
itively correlated in the ensemble (not shown), especially
when forming new ice at the ice edge. Given that the OSI-
SAF SIC data are systematically lower than the model in
most of the Arctic (see Fig. 5), this generally positive SIC–
SIT correlation implies that the analyzed thickness is also
generally thinner after SIC assimilation. Consequently, the
SIC assimilation tends to transfer the bias to the SIT. The in-
fluences of SIT–SIC cross-covariance get naturally stronger
with more frequent DA in SIC1–SIT7 compared with SIC7–
SIT7 (see Figs. 6 and 7), leading to a stronger underestima-
tion of SIT. This deterioration contradicts the case when SIC
alone is assimilated and improves the SIT over the free run,
but these improvements were most visible near the ice edge
(see Fig. 7) where the SIT–SIC covariance is more linear and
because a correct location of the ice edge indirectly improves
the thickness of newly formed ice.

The second point concerns a challenge inherent to
ensemble–DA methods. The observed–unobserved variables
in the sea ice are often nonlinearly related. This limits the ef-
ficacy of the EnKF schemes, particularly for small ensemble
size (e.g., Kimmritz et al., 2018). In our experiments, an issue
is that both SIT and SIC are bounded variables (positive and
less than 1 for SIC) and thus clearly non-Gaussian. Further-
more, by virtue of the two sea ice categories in the model,
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the local relationship between the modeled SIT and SIC is
often nonlinear. To mitigate the impact of wrongly computed
analysis corrections, we intentionally limited the SIT update
to regions where SIC < 90 % (see Sect. 4.5.3). As a side ef-
fect, it could reduce the impact of SIC7 on the SIT predic-
tion. Moreover, previous literature agrees that the influence
of assimilating SIC on SIE is significant but the influence on
SIT is diverse. Most studies demonstrated that SIC assimi-
lation only slightly affects SIT (Sakov et al., 2012; Zhang
et al., 2018; Kimmritz et al., 2018). Mathiot et al. (2012) ob-
served SIC improvement by combining the SIC and ice free-
board assimilation using EnKF, but mostly thanks to the ice
freeboard assimilation. Tietsche et al. (2013) improved the
spatial mean SIT by assimilating SIC and introducing mean
thickness analysis updates, proportional to SIC. Moreover,
Zhang et al. (2021) found that SIC assimilation causes SIT
degradation in the GFDL (Geophysical Fluid Dynamics Lab-
oratory) seasonal prediction system.

Thirdly, DA effectively reduces the uncertainty of the
quantities directly observed in practice when, e.g., SIT or
SIC is the sole observable. However, this benefit of DA is less
pronounced when multi-variables are jointly assimilated. For
example, assimilating SIT alone, SIT7 cuts the SIT bias by
61 % over the free run. In comparison, the improvement in
the SIT bias by jointly assimilating SIC and SIT is smaller.
Specifically, the bias is reduced by 49 % in SIC7–SIT7 and
43 % in SIC1–SIC7 from the free run. This reduction has
been a well-known effect since the early days of data as-
similation in weather forecasting: when more terms are in-
troduced in a cost function, the optimal solution becomes
the best compromise and fits each term less closely individ-
ually. So in our case, the SIT and SIC observations compete
with each other, and the joint assimilation performs some-
what more poorly than the assimilation of the SIT and SIC
individually.

This work suggests the feasibility of implementing an
ensemble-based assimilation method for a Lagrangian sea ice
model running on a moving adaptive mesh and shows that the
model benefits from data assimilation. It indicates a promis-
ing direction for the future development of the neXtSIM-F
forecast system distributed through the EU Copernicus Ma-
rine Environmental Monitoring Service for the Arctic using
an ensemble–DA framework instead of the current determin-
istic data assimilation approach. We suggest that it is suf-
ficient to assimilate the CS2SMOS SIT product weekly for
the Arctic winter sea ice forecasts to significantly enhance
the SIT forecast and slightly improve the SID forecast. How-
ever, the assimilation of SIC in a stand-alone model is limited
by the accuracy of the ocean boundary conditions, and our
attempt to include the slab ocean SST and SSS in the state
vector has not been successful.

In future work, in implementing the presented method in
the operational system, an evaluation will be carried out on
multi-season and multi-year forecasts. Indeed, this first study
focused on the winter season due to the limited availability

of CS2SMOS products. The situation would be more com-
plicated in the summer scenario since the sea ice dynamics
are much more active. In particular, we do not expect the free
run to be as skillful in predicting SIE as it is in the winter –
see Williams et al. (2021) – leaving more room for improve-
ments thanks to DA, and the assimilation of SIC could be
more effective. In agreement with the findings in Williams
et al. (2021), the overall increase in performance on pre-
dicting SID when using DA is insignificant; the free run al-
ready had an excellent fit to the observations. However, we
expect this could be improved by assimilating drift observa-
tions directly or indirectly through ice deformations and in-
cluding sea ice damage in the state vector. Additional modi-
fications to the state vector and observation operator may in-
clude the multi-categorized sea ice properties instead of the
total values. It would avoid the need for heuristic and em-
pirical choices on redistributing SIC and SIT into young and
old ice categories (Kimmritz et al., 2018). Moreover, the use
of a variable-based localization is another potential venue
for improvements. SIT very likely has a longer correlation
length than SIC (Blanchard-Wrigglesworth and Bitz, 2014).
Zhang et al. (2018) suggested a small localization to optimize
the performance of SIC assimilation and a larger localization
for assimilating SIT based on a series of perfect-model ob-
serving system simulation experiments with version 5 of the
CICE model and the EnKF.

The stand-alone sea ice data assimilation system inherits
warm biases from the ocean forcing, which limits the ef-
ficiency of SIC assimilation. This should be improved in a
coupled ice–ocean model to be pursued in further work.
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