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ABSTRACT: Tropical cyclones are high-impact weather events that have large human and economic effects, so it is
important to be able to understand how their location, frequency, and structure might change in a future climate. Here, a
lightweight deep learning model is presented that is intended for detecting the presence or absence of tropical cyclones
during the execution of numerical simulations for use in an online data reduction method. This will help to avoid saving
vast amounts of data for analysis after the simulation is complete. With run-time detection, it might be possible to reduce
the need for some of the high-frequency high-resolution output that would otherwise be required. The model was trained
on ERA-Interim reanalysis data from 1979 to 2017, and the training was concentrated on delivering the highest possible
recall rate (successful detection of cyclones) while rejecting enough data to make a difference in outputs. When tested
using data from the two subsequent years, the recall or probability of detection rate was 92%. The precision rate or success
ratio obtained was that of 36%. For the desired data reduction application, if the desired target included all tropical cyclone
events, even those that did not obtain hurricane-strength status, the effective precision was 85%. The recall rate and the
area under curve for the precision–recall (AUC-PR) compare favorably with other methods of cyclone identification while
using the smallest number of parameters for both training and inference.

KEYWORDS: Artificial intelligence; Deep learning; Machine learning; Neural networks; Postprocessing;
Tropical cyclones

1. Introduction

Tropical cyclones (TCs) are extreme weather events that
can leave devastating effects on human populations; for exam-
ple, Hurricane Irma impacted the Caribbean Islands and the
southeast United States in September 2017 causing 47 direct
deaths, 82 indirect deaths, hundreds of injuries, and an esti-
mated monetary damage of around USD 50 billion (Cangialosi
et al. 2018). Climate models can be used to understand how the
properties of TCs and other meteorological phenomena might
evolve in a changing climate, but such global circulation models
(GCMs) produce large amounts of data. A method to reduce
the data volumes in order to target analysis would be useful,
and such a method is presented here that is based on a deep
learning model that detects the presence of tropical cyclones in
simulation output. Simulated time steps are split into eight re-
gions that the deep learning model uses to infer the presence or
absence of TCs. The method is intended for eventual de-
ployment online (i.e., while a simulation model is running)
to preclude the need to output data that does not include
TCs (at least for the situation where TCs are the product of
interest). Hence, the ability to not miss TCs is more impor-
tant than maximum data reduction, as any analysis would
be impaired if TC occurrences are missed. The method

presented here is lightweight, with relatively short training
and inference times when tested offline (i.e., after the mete-
orological data are output), and requires no explicit a priori
thresholds in meteorological variables. It is also shown to
perform similarly to other more standard, and more com-
plex, deep learning models.

Motivation

Data volumes from climate simulations are huge. The cur-
rent phase of the Climate Model Intercomparison Project
(CMIP6; Eyring et al. 2016) comprises hundreds of different
model simulations and was projected to produce 18 PB of
data (Balaji et al. 2018). While it may not reach that volume,
it will be close, and that total does not include the data that
was produced and analyzed in the production of the archived
data. Whether in or out of the CMIP archive, such data are
costly to store and maintain and the volume makes analysis
difficult.

A method of automatically detecting interesting phenomena
in a model before saving the data could have two major benefits:

1) a fast way of finding and tabulating summary data (without
writing out the actual data used), or

2) a method for reducing the need to write all the data to
disk for subsequent analysis}for example, only data from
a specific region and time where an event was present
could be saved.

In both cases, this would likely have increased scientific
productivity in that there would be significant savings in
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time and data volume saved}leading to more efficient sci-
ence (efficient in time saved, storage costs, and storage en-
ergy consumption).

The possibility of efficiencies arises because although many
simulations are carried out to target multiple use cases, some
are carried out to investigate specific phenomena (e.g., when
checking the impact of resolution on simulated TCs as in
Roberts et al. 2015). In these cases, data relating to other
phenomena might not be needed. However, currently in or-
der to be able to retrieve the data for specific phenomena,
the simulation will store sufficient data for postprocessing
analysis at fixed intervals. The first postprocessing step then
involves the retrieval of relevant data only, the other data
are not used.

To select the correct data for analysis, it is important to
have confidence in the method used for identifying the feature
of interest. There is sometimes a conflict between the abstract
notion of the feature of interest (in this case, a TC) and the
practical implementation of a definition for a TC}the latter
is intimately related to the tool for discovering it; for example,
if the practical definition of a TC is the same as the metric for
detecting it, of course we have confidence in it}but this
definition may miss (or include) things we would abstractly
consider to be TCs (or detect phenomena we would not con-
sider to be TCs but that fall inside a poorly drawn definition).
This could be seen in the differentiation between a TC of
category 1 on the Saffir–Simpson scale and a tropical storm.
Both show similar properties, but the main difference is the
strength of the associated 10-m wind speeds, hence two defi-
nitions of a TC, one that includes 10-m wind strength and
another that does not, would not produce the same out-
come. Many previous techniques for TC identification in
numerical data generally conflate the detection method
with the definition. Deep learning can avoid this conflation
as the definition needs to be clearly laid out before any
deep learning work is undertaken, so understanding the dis-
tinction is important.

Although our initial interest is in detecting TCs, the con-
ceptual method is expected to be extensible to other impor-
tant phenomena such as fronts and atmospheric rivers.

2. Previous work

Several methods used to detect TCs have been developed.
Most operate by using thresholds set for a few meteorological
variables to determine the presence of a tropical cyclone. The
use of thresholds leads to two problems: setting such thresh-
olds involves scientific subjectivity and the combination of
method and threshold may not be transferable across differ-
ent models, data, or climates effected by climate change.
More recently, deep learning has been used, and while deep
learning may suffer from aspects of the transferability prob-
lem, it should be possible to avoid subjectivity.

a. TC detection using conventional techniques

Conventional techniques for identifying TC centers usually
work by applying various thresholds to the available data. A

few examples of such methods follow, with a tabular summary
in Table 1.

Vitart et al. (1997) used the closest minimum of mean sea
level pressure (MSLP) to a local maximum of relative vortic-
ity at 850 hPa over 3.5 3 1025 s21 as a storm center. A warm-
core check is performed to classify the storm center as a TC.
This requires that the closest local maximum of the average
temperature between 550 and 200 hPa must be within 28 of
the storm center, and the temperature must decrease by at
least 0.58C for at least 88 latitude in all directions. Also, the
closest maximum thickness between 1000 and 200 hPa must
be within 28 of the storm center, and the thickness must de-
crease by at least 50 m for at least 88 latitude in all directions.

Camargo and Zebiak (2002) introduce a detection method
that uses vorticity at 850 hPa, surface wind speed and a verti-
cally integrated temperature anomaly as variables on which to
impose basin-dependent thresholds.

Kleppek et al. (2008) use multiple thresholds to identify the
TC centers. The first is that a local minimum of sea level pres-
sure (SLP) needs to be observed within a neighborhood of an
8 3 8 square of grid points. This is assigned as the storm cen-
ter. For it to be designated a TC center, there needs to be a
maximum relative vorticity at 850 hPa above 5 3 1025 s21 at
the storm center. The presence of vertical wind shear between
850 and 200 hPa of at least 10 m s21 is also required, as well
as an event lifetime of 36 or more hours. Finally, if the storm
center is over land, the relative vorticity condition has to be
fulfilled or the wind speed maximum at 850 hPa needs to be
inside 250 km from the TC center.

A final example is that of Roberts et al. (2015) who use the
method explained by Hodges (1995, 1996, 1999) and Bengtsson
et al. (2007), where a TC is identified by a maximum of
850-hPa relative vorticity in data that have been spectrally
filtered to keep features greater than 250 km in scale, and a
warm-core check similar to that performed by Vitart et al.
(1997) using features larger than 180 km using the 850-,
500-, 300-, and 200-hPa levels.

b. TC detection using deep learning

A newer crop of algorithms has been developed to detect
and track TCs using deep learning methods. These are sum-
marized in Table 2.

Liu et al. (2016) used an image cropped in such a way that if
a TC was present, it was centered in the image. They used
eight different meteorological variables: surface level pressure,
meridional and zonal wind speed at 850 mb (1 mb 5 1 hPa)
and at the lowest available model level, temperature at 200
and 500 mb, and total vertically integrated precipitable water.
They then predicted whether the image was one of a TC or
not. The model obtained a 99% accuracy with a relatively sim-
ple model, but the preprocessing cropping step involved signif-
icant noise reduction that would have helped obtain good
performance.

Racah et al. (2017) created a method where a deep learning
model takes in a snapshot of the world simulated by the
CAM5 climate model with 16 different meteorological varia-
bles and created bounding boxes around the detected TCs.
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The variables used were total precipitation rate, surface pres-
sure, sea level pressure, reference height humidity, tempera-
ture at 200 and 500 mb, total vertically integrated precipitable
water, reference height temperature, radiative surface tem-
perature, meridional and zonal wind speed at 850 mb and at
the lowest available model level, and geopotential at 100 and
200 mb and the lowest model level height. The architecture
used was that of an autoencoder with three smaller networks
using the bottleneck layer to draw a box around a suspected

TC. Given the size of the inputs and number of kernels used
in the convolution layers, the model presented was expected
to be time consuming to train. It certainly required supercom-
puting: an adaptation of this deep learning model was trained
by Kurth et al. (2017) using 9622 nodes of 68 cores each with
a peak throughput of 15.04 petaflops (PF) s21 and reached a
sustained throughput of 13.27 PF s21, although the total time
to train was not reported. The accuracy for this model was
specified as the percentage of overlap between the predicted

TABLE 1. Overview of thresholds applied to meteorological variables for detecting and tracking tropical cyclones with the
conventional techniques given.

Authors Variable Threshold

Vitart et al. (1997) Relative vorticity at 850 hPa Local maximum more than 3.5 3 1025 s21

MSLP Minimum closest to relative vorticity local maximum taken as storm center
Average temperature between

550 and 200 hPa
Closest maximum within 28 of the storm center and the temperature

decreases by at least 0.58C for at least 88 latitude in all directions
Maximum thickness between

1000 and 200 hPa
Closest maximum within 28 of the storm center and the thickness

must decrease at least 50 m for at least 88 latitude in all directions

Camargo and Zebiak
(2002)

Relative vorticity at 850 hPa More than twice the vorticity standard deviation in each basin
Surface wind speed More than the sum of wind speed standard deviation in each basin

and the global average oceanic wind speed in a 7 3 7 box
centered around the relative vorticity maximum

SLP A local minimum is present in a 7 3 7 box centered around the
relative vorticity maximum

Temperature anomaly Anomaly averaged over a 7 3 7 box centered around the relative
vorticity minimum and over the 300-, 500-, and 700-hPa pressure
levels more than the basin standard deviation

Anomaly averaged over a 7 3 7 box centered around the relative
vorticity minimum is positive in all three of 300-, 500-, and 700-
hPa pressure levels

Anomaly averaged over a 7 3 7 box centered around the relative
vorticity minimum is greater at 300 hPa than at 850 hPa

Wind speed Wind speed averaged over a 7 3 7 box centered around the relative
vorticity minimum is greater at 850 hPa than at 300 hPa

Distance traveled Storm center}defined as the relative vorticity maximum}must not
have traveled a distance greater than 5.68 if 6-hourly output or 8.58
if daily output

Event time At least 1.5 days if 6-hourly output or 2 days if daily output

Kleppek et al. (2008) SLP Local minimum in a neighborhood of eight grid points
Relative vorticity at 850 hPa More than 5 3 1025 s21 s and positioned at SLP minimum
Vertical wind shear between

850 and 200 hPa
More than 10 m s21

Event time More than 36 h
SLP minimum position If over land, relative vorticity at 850 hPa more than 5 3 1025 s21 s

and positioned at SLP minimum; otherwise, wind speed maximum
at 850 hPa needs to be inside 250 km from the TC center

Roberts et al. (2015) Relative vorticity More than 6 3 1025 s21 at 850 hPa
Reduction of at least 6 3 1025 s21 in vorticity between 850 and

250 hPa at T63 resolution
Positive vorticity center at all available levels between 850 and 250 hPa

Wind speed Wind speed averaged over a 7 3 7 box centered around the relative
vorticity minimum is greater at 850 hPa than at 300 hPa

Event time At least 1.5 days
Average temperature between

550 and 200 hPa
Closest maximum within 28 of the storm center and the temperature

decreases by at least 0.58C for at least 88 latitude in all directions
Maximum thickness between

1000 and 200 hPa
Closest maximum within 28 of the storm center and the thickness

must decrease at least 50 m for at least 88 latitude in all directions

GA L EA E T A L . 3JULY 2023

Brought to you by UNIVERSITY OF READING | Unauthenticated | Downloaded 08/07/23 11:09 AM UTC



box and the box given as the ground truth}an intersection of
union (IOU)}which was created using the Toolkit for Ex-
treme Climate Analysis (TECA) (Prabhat et al. 2012, 2015).
This is a collection of climate analysis algorithms aimed for
extreme event detection and tracking. The model had 24.74%
of the predicted boxes having an overlap of at least 10% with
the ground truth, while 15.53% of the predicted boxes had an
overlap of at least 50% with the ground truth.

Mudigonda et al. (2017) created a deep learning model that
used integrated water vapor (IWV) snapshots and image seg-
mentation techniques to classify whether each pixel in an im-
age was a part of a TC. It used an adaptation of the Tiramisu

model, which applies the DenseNet architecture to semantic
segmentation. The labels were created using TECA and
Otsu’s method (Otsu 1979). It was trained and tested on im-
ages in which at least 10% of the pixels were part of a TC and
an accuracy of 92% was obtained.

Similarly, Kumler-Bonfanti et al. (2020) used a U-net net-
work to perform image segmentation for TCs using the total
precipitable water field from a weather forecast model: the
National Centers for Environmental Prediction (NCEP) Global
Forecast System (GFS). A U-net network is very similar to an
autoencoder network, with the difference being that connections
between the two branches of the network are used to convey

TABLE 2. Previous deep learning models that detect and track tropical cyclones.

Authors Data used Ground truth Architectures Results

Liu et al. (2016) CAM5.1 climate model 1979–
2005 3-hourly 0.238 3 0.318
resolution

TECA
Manual expert
labeling

Conv: 5 3 5 @ 8
Pool: 2 3 2
Conv: 5 3 5 @ 16
Pool: 2 3 2
Dense: 50
Dense: 2

99%

ERA-Interim climate model
1979–2011 3-hourly
0.258 3 0.258 resolution

Twentieth-century reanalyses
1908–48 daily 18 3 18
resolution

NCEP–NCAR reanalyses
1949–2009 daily 18 3 18
resolution

Images cropped to
32 3 32 pixels

Racah et al.
(2017)

CAM5 climate model
1979–2005 3-hourly 25-km
resolution image size of
768 3 1158 pixels
16 channels

TECA Encoder: IOU 5 0.1: 25%
Conv: 8 (layers) 3 384 (height)

3 576 (width) @ 64 (kernels)
IOU 5 0.5: 16%

Conv: 8 3 192 3 288 @ 128
Conv: 8 3 96 3 144 @ 256
Conv: 8 3 48 3 72 @ 384
Conv: 8 3 24 3 36 @ 512
Conv: 8 3 12 3 18 @ 640
Decoder:
Conv: 8 3 12 3 18 @ 640
Conv: 8 3 24 3 36 @ 512
Conv: 8 3 48 3 72 @ 384
Conv: 8 3 96 3 144 @ 256
Conv: 8 3 192 3 288 @ 128
Conv: 8 3 384 3 576 @ 64

Training set: Time steps during
1979

Box locator:
Conv: 4 3 12 3 18 @ 4
Class probabilities:

Testing set: Time steps during
1984

Conv: 4 3 12 3 18 @ 4
Objectiveness probabilities:

Conv: 4 3 12 3 18 @ 2

Mudigonda et al.
(2017)

CAM5 climate model
1996–2015

TECA
Otsu’s method

Adaptation of Tiramisu model 92%

Images cropped to
96 3 144 pixels

Kumler-Bonfanti
et al. (2020)

GFS weather model IBTrACS U-net of 6 layers IOU 5 1: 75%
720 3 361 pixels
0.58 resolution
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any information missed while creating the dense representation
of the inputs at the end of the encoder branch of the network.
The inputs used also take in a measure of time as two snapshots
are given to the deep learning model, one approximating the
state of the atmosphere at the time the inference was initiated
and another having the forecasted state of the atmosphere three
hours in the future. Labels of areas belonging to a TC were gen-
erated by creating a 25 3 25 pixel box, approximating 300 km2,
around a latitude and longitude pair obtained from the Interna-
tional Best Track Archive for Climate Stewardship (IBTrACS;
Knapp et al. 2010, 2018) dataset. This model managed to obtain
an IOU of 75% but it should be noted that the labeling boxes,
taken as the ground truth, were of the same size, so it is possible
that the value for the IOU is inflated.

3. Deep learning model

This section presents the data used to train the deep learn-
ing model, the model architecture, and summarizes the
method used to develop it. Full details of the training appear
in the appendices.

a. Data

The deep learning model TCDetect uses meteorological
data from a region to detect the presence of a TC. An output
higher than 0.5 would signify that a TC was detected while a
value of 0.5 or lower will imply the absence of a TC. TCDe-
tect was trained, tested, and validated on data extracted from
the ERA-Interim reanalysis dataset (Dee et al. 2011), with
the validation data used for manual hyperparameter tuning as
described in appendix B. The testing set was used for produc-
ing the final testing statistics and for interpreting the results
produced by the trained model.

Five 6-hourly fields from 1 January 1979 until 31 July 2017
were used: MSLP, 10-m wind speed, and relative vorticity at 850,
700, and 600 hPa, each at a spatial resolution of ’0.78 3 0.78.
These fields were chosen because they had been used in previous
TC detection algorithms and produced the best-performing deep
learning model during hyperparameter tuning, as shown in
appendix B. Also, the results obtained from TCDetect are

compared to those obtained from a non–machine learning
(ML) algorithm in a companion paper (Galea and Lawrence
2023, manuscript submitted to Artif. Intell. Earth Syst.); hence,
the choice of inputs makes the comparison more faithful.
Spherical filtering was performed on each field to reduce some
of the smaller scale features. For the MSLP and 10-m wind
speed fields, spherical harmonic filtering is performed to keep
wavenumbers between 5 and 106. The vorticity fields were
spherical harmonic filtered between wavenumbers 1 and 63.
These field and spherical filtering options were chosen to
match those used in the TC tracking algorithm developed in
Hodges (1995, 1996, 1999).

Each field was further split into eight regions as shown in
Fig. 1. These regions were loosely based on those used by the
IBTrACS dataset. The regions were collected into a single da-
taset that TCDetect was then trained on. Thus, the entire data-
set included 450 944 individual regions (14 092 days 3 4 time
steps per day 3 8 regions per time step), each with an 86 3

114 gridpoint domain with 5 channels.
Labels for these cases were derived from the IBTrACS da-

taset. IBTrACS contains temporal information, including cat-
egory, latitude, and longitude of the storm center, for all
major storms across the globe. The labels were set up in such
a way that each case was labeled according to the presence or
absence of a TC recorded in IBTrACS. At the end of the la-
beling process, 22 826 (5.06%) positive labels were generated
as well as 428 118 (94.94%) negative labels.

This dataset was used for training and validation; it was split
by taking data from 1979, 1986, 1991, 1996, 2001, 2006, 2011,
and 2016 to make up the validation set and the rest of the data
to make up the training set. This method of splitting the avail-
able data was chosen so that the possible effects of a changing
climate were taken into consideration, so that any hyperpara-
meter tuning performed would not be skewed.

After splitting the available data, the training set had a total
of 357 408 cases; 17 862 (5%) with a TC and 339 546 (95%)
without. The validation set had a total of 93 504 cases, 4853
(5.19%) with, and 88 651 (94.81%) without a TC.

Additional data from 1 August 2017 until 31 August 2019
were used as a testing set. This had a total of 24 352 cases,

FIG. 1. Time step split into eight equal regions.
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1342 (5.51%) with and 23 010 (94.49%) without a TC. Table 3
shows how the splits are made and that the split between posi-
tive and negative cases is similar across training and testing.

All data were preprocessed to reduce resolution to 1/16 of
the original ERA-Interim resolution by taking the mean value
of all data points inside a 4 3 4 box, reducing the dimension-
ality of each case to 22 3 29 gridpoint domain and 5 channels.
This reduction of resolution was arrived at during hyperpara-
meter tuning. For each channel (variable), standardization
was employed on each individual field according to

field 5
field 2 mfield

sfield
, (1)

where mfield and sfield are the mean and standard deviations
of the values in that field for that case. The resulting stan-
dardized fields have a mean of 0 with a standard deviation
of 1.

Figure 2 shows an example of the data used, before and af-
ter preprocessing, from the time when Hurricane Katrina ob-
tained its maximum strength, 1800 UTC 28 August 2005.

b. Architecture

TCDetect uses a convolutional base attached to a fully con-
nected classifier that outputs a value between 0 and 1, with
any values larger than 0.5 signifying that the model detects a
TC. A more detailed explanation of the model architecture
can be found in appendix A, while a graphical view is shown
in Fig. 3.

To arrive at the model architecture presented, stepwise
manual hyperparameter tuning was used to determine which
changes to the architecture performed well (see appendix B).
Various metrics could have been used to determine how the
architecture should be changed to produce a better-performing
model. Accuracy, defined by

accuracy 5
TP 1 TN

TP 1 FP 1 TN 1 FP
3 100,

where TP is the number of true positives, FP is the number of
false positives, TN is the number of true negatives and FP is
the number of false positives, was considered, but was not
suitable due to the large class imbalance present in our train-
ing set. Had accuracy been the chosen metric, the model
would learn to infer “no TC” for all cases. This leads to TN
being a high number, producing a high accuracy, but a model
with no skill.

Given that obtaining the highest possible number of TCs is
important for the use of the developed model, recall, defined
by

recall 5
TP

TP 1 FN
,

could have been used, as a high value would indicate that the
number of false negatives, that is, not detected TC cases, is
small. However, this would not have considered the need to
detect non-TC cases as such. For this, precision, defined by

precision 5
TP

TP 1 FP
,

could be used as a high value would indicate that the number of
false positives, that is, non-TC cases inferred as TC cases, is small.

To get the right balance between the two functions of the
model, the area under curve for the precision–recall curve
(AUC-PR) was used. This gives a single value that takes into ac-
count the two important functions of the model. This value can
still be slightly obscure as the same value could be produced for
high precision and low recall rates, high recall and low precision
rate or average recall and precision rates. However, as the model
was being developed primarily to identify data for further post-
processing, false negatives would be a bigger problem than false
positives, so improvements caused by different values for hyper-
parameters in recall were favored over those in precision if
AUC-PR varied only marginally or the balance between recall
and precision needed to be addressed as a change was assessed.

The training of the deep learning model was done using a
NVIDIA Volta 100 GPU on a node having 32 GB of RAM and
32 CPU cores. Some initial tests were performed on a cloud in-
stance provided by Oracle, while the main model development
was performed on the Joint Analysis System Meeting Infrastruc-
ture Needs (JASMIN) platform (Lawrence et al. 2012). The soft-
ware packages used were Python 3.6.8 and Tensorflow, version
2.20 (Abadi et al. 2015). The training set was traversed 21 times
for the model to converge to a solution with a total time to train
of 12 min. Although the time taken to train the final model was
relatively short, much more time was taken up in progressing
through the various optimizations detailed in appendix B, mainly
due to the use of tenfold cross validation.

4. Results

The resulting deep learning model, TCDetect, was evalu-
ated using the test set described above. The inferences ob-
tained were also investigated to understand how the model
generates its results. We present these results in this section.

a. Model statistics

TCDetect correctly classified 1231 (91.73%) of the 1342
cases as having a TC and 20 844 (90.59%) of the 23 010

TABLE 3. Dataset split.

Partition Years included Positive cases Negative cases

Training 1980–81, 1982–85, 1987–90, 1992–95, 1997–2000,
2002–05, 2007–10, 2012–15, 2017

17 862 (5.00%) 339 546 (95.00%)

Validation 1979, 1986, 1991, 1996, 2001, 2006, 2011, 2016 4853 (5.19%) 88 651 (94.81%)
Testing 2017–19 1342 (5.51%) 23 010 (94.49%)
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without. It misclassified 111 (8.27%) TC cases and 2166
(9.41%) non-TC cases. These are summarized in the confu-
sion matrix in Table 4.

These results result in an accuracy of 90.65%, a recall rate
of 91.73% and a precision rate of 36.24%. Hyperparameter
tuning was performed to maximize AUC-PR. This resulted in

a high recall rate and a sufficiently high precision rate for this
model to be used in a data reduction method.

The outcome could have been further varied by changing
the value that is the boundary between a positive and a nega-
tive prediction, currently 0.5. Figure 4 shows the AUC-PR
curve for the model with the values at each point signifying

FIG. 2. An example of the data that were used to train TCDetect. The data are from the reanalysis at the point
where Hurricane Katrina obtained its maximum strength (1800 UTC 28 Aug 2005). (left) The original data from
ERA-Interim and (right) how these data are transformed after preprocessing. The rows are as follows (in reverse
order of height above the surface): MSLP, 10-m wind speed, and the vorticity at 850, 700, and 600 hPa.
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the boundary at which the corresponding recall and precision
rates are obtained.

b. Comparison with standard models

There are many existing deep learning standard models, so
it is reasonable to ask whether any of those do better than the
model developed here.

To test this, the convolutional base, that is, the part of the
network that learns spatial patterns, from a variety of standard
model architectures were used in conjunction with the classi-
fier developed here and compared. The convolutional bases of
the following standard architectures were used: DenseNet121,
DenseNet169, and DenseNet201 (Huang et al. 2017); Incep-
tionResNetV2 (Szegedy et al. 2017); InceptionV3 (Szegedy
et al. 2016); MobileNet (Howard et al. 2017); ResNet101,
ResNet101V2, ResNet152, ResNet50, and ResNet50V2 (He
et al. 2016a,b); VGG16 and VGG19 (Simonyan and Zisserman
2014); and Xception (Chollet 2017). The weights of all of these
bases were obtained by training on the ImageNet dataset
(Deng et al. 2009). These were then frozen and the weights of
the classifier were retrained on data from all regions with the
presented model’s learning rate, momentum value and L2 nor-
malization factor.

Given that these convolutional bases required inputs of at
least 75 pixels 3 75 pixels with 3 channels, some changes to
the inputs were required. First, as an input with only 3 chan-
nels is required for most of the above architectures, the fields
retained were those of relative vorticity at 850 hPa, relative
vorticity at 600 hPa, and MSLP. This choice was made as these
three fields were deemed the most important for the model be-
ing presented by tests detailed in section 5a. Second, the input

size was extended fivefold from 223 29 to 1103 145 pixels by
interpolating any intermediate values.

Of the standard architectures tested, none managed to ob-
tain better AUC-PR or loss values on the test set (Fig. 5). Ta-
ble 5 compares the complexity of some of these more standard
models and their performance metrics with TCDetect. All of
the more standard models had far higher complexity in terms
of the number of parameters used than TCDetect, and the lat-
ter also outperforms the others in terms of AUC-PR, precision
rate and loss. While the recall rate obtained by TCDetect does
not outperform all of the other models, it is in the top third of
the list.

This shows that standard image processing models that are
pretrained on a benchmark dataset did not perform very well
when applied to meteorological data. This is expected as the
latter has different properties than, for example, images of an-
imals, and the standard models had not been trained with any
meteorological data. Therefore, the previous analysis was
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FIG. 3. Visual representation of the architecture of TCDetect. The inputs, having 22 rows, 29 columns, and 5 fields, are passed through a
23 2 convolution window whose weights are learnt producing 8 feature maps, but losing one row and column. The resulting feature maps
are passed through a MaxPool window, of size 2 3 2, which takes the maximum value in its window. This further reduces the feature
maps’ size by a row and a column, to 20 rows and 27 columns. This is repeated three more times, with each step producing more feature
maps. The final ones are combined and reshaped into one long array. This array is used as the input to a fully connected layer of 128 nodes,
each of which output a single value. Hence, 128 values are now obtained and are used as inputs to the next layer. This is repeated three
more times, ending with the final value.

TABLE 4. Confusion matrix resulting from inference on the
testing dataset.

TCDetect

Yes No

Labeled Yes 1231 111
No 2166 20 844

FIG. 4. Precision–recall curve for final trained model evaluated on
the testing dataset.
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redone}this time with the whole network retrained, not just
the fully connected classifier. When this is performed, a differ-
ent result is obtained. As can be seen in Fig. 6 and tabulated
in Table 6, the AUC-PR and loss values for all models are
much closer. Similarly, the recall and precision rates are very
close across the different models. Encouragingly, TCDetect is
only outperformed by 1% for recall rate but the maximum
precision obtained is 44% by ResNet50, 8% higher than
TCDetect. This shows that standard models pretrained on
standard image processing benchmark datasets are not opti-
mized for meteorological data. This analysis also shows that
TCDetect is comparable is standard deep learning architec-
tures when these are trained on the same meteorological

dataset, despite having less complexity in terms of the number
of parameters used in the network.

c. Comparison with threshold-based method

It is reasonable to ask what, if any, value deep learning
adds beyond simple threshold-based methods. To address
this, and recognizing that most existing threshold-based meth-
ods usually use the meteorological parameter of relative vor-
ticity at 850 hPa as one of the criteria when detecting and
tracking TCs, we use this variable for a simple comparison.

As we discussed in section 2, the value of a cutoff for such
threshold is subjective and can be data dependent, and so we
investigate a range of possible thresholds. A case is classified

FIG. 5. Test AUC-PR (bars) and test loss (points) for standard convolutional bases, pretrained
on the ImageNet database, attached to the fully connected classifier developed in the presented
model. The classifier was retrained for each convolutional base with data from all regions.

TABLE 5. Comparison of total parameters used and performance metrics for TCDetect and similar networks using more standard
convolutional bases.

Convolutional base Total parameters AUC-PR Recall Precision Loss

TCDetect 3 789 977 0.7173 92% 36% 0.2650
DenseNet121 8 620 865 0.5409 83% 25% 0.4865
DenseNet169 15 209 281 0.5307 93% 13% 0.6612
DenseNet201 21 821 601 0.4940 88% 20% 0.6248
InceptionResNet v2 55 526 881 0.4874 83% 20% 0.5095
Inception v3 23 386 145 0.5184 90% 18% 0.5651
MobileNet 4 812 225 0.5139 88% 17% 0.6264
MobileNet v2 5 545 281 0.4461 86% 18% 0.5182
ResNet101 47 911 553 0.5397 89% 17% 0.5560
ResNet101 v2 47 879 937 0.4955 88% 21% 0.5381
ResNet152 63 624 321 0.5430 84% 23% 0.5364
ResNet152 v2 63 585 025 0.4765 83% 27% 0.4928
ResNet50 28 841 089 0.4949 95% 11% 1.0428
ResNet50 v2 28 818 177 0.5447 89% 19% 0.4766
VGG16 15 511 617 0.5369 97% 11% 0.9542
VGG19 20 821 313 0.5187 95% 11% 0.9527
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as having a TC present if the threshold is exceeded by any
value in that area at that time. The results of this exercise are
tabulated in Table 7 and similar results were observed for the
training and validation datasets (not shown).

Clearly this is a fast method, and it is capable of getting either
good accuracy or good recall, but it struggles with precision (as
do all techniques). Given for our use case we want the best pos-
sible recall, the precision rate of 6% at high recall values is far
below that which can be achieved with deep learning (36%).

One might then ask, what about more sophisticated thresh-
old and tracking methods, and what is it about the meteorol-
ogy that drives these results? We address these issues in a
companion paper (Galea et al. 2023, manuscript submitted to
Artif. Intell. Earth Syst.), which compares TCDetect with a

more sophisticated method, and investigates the interaction
of the meteorology with the detection technique.

5. Model explainability

Deep learning outcomes can be inscrutable and arise from
unexpected aspects of the inputs and so in order to trust the
inferences, it is helpful to try and explain aspects of the out-
comes in terms of the inputs and the process. In this section,
four aspects are investigated: feature importance, to deter-
mine which inputs influence the inferences most; feature
strength, how the strength of a TC influences the results; how
results are influenced by regional location; and how the size
of the training dataset used affects the model’s performance.

FIG. 6. Test AUC-PR (bars) and test loss (points) for standard convolutional bases attached to
the fully connected classifier developed in the presented network. The whole network was re-
trained for each convolutional base with data from all regions.

TABLE 6. Comparison of total parameters used and performance metrics for TCDetect and similar networks using more standard
convolutional bases.

Convolutional base Total parameters AUC-PR Recall Precision Loss

TCDetect 3 789 977 0.7173 92% 36% 0.2650
DenseNet121 8 620 865 0.6626 93% 38% 0.2924
DenseNet169 15 209 281 0.7249 93% 35% 0.2426
DenseNet201 21 821 601 0.7204 91% 36% 0.2171
InceptionResNet v2 55 526 881 0.7170 92% 41% 0.2390
Inception v3 23 386 145 0.6735 93% 43% 0.2305
MobileNet 4 812 225 0.7121 91% 39% 0.2347
ResNet101 47 911 553 0.7030 91% 38% 0.2073
ResNet101 v2 47 879 937 0.6988 93% 42% 0.2085
ResNet152 63 624 321 0.7220 90% 36% 0.2365
ResNet50 28 841 089 0.6927 93% 44% 0.2014
ResNet50 v2 28 818 177 0.7072 89% 33% 0.2695
VGG16 15 511 617 0.7067 92% 39% 0.1999
VGG19 20 821 313 0.6912 91% 37% 0.2049
Xception 26 060 329 0.7306 90% 35% 0.2513
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In the discussion that follows, it is important to remember
that the data used as input to TCDetect is ERA-Interim,
which is itself an inaccurate representation of reality. It does
not give a perfect reconstruction of history due to physical
processes that are not able to be simulated, so there will inevi-
tably be an element of discrepancy that can be explained by
the data used as input, and not the deep learning tools them-
selves. Also, as a reanalysis dataset, ERA-Interim is a com-
promise between observations and modeling. This is most
notable in the strength of 10-m wind speeds, which do not
match reality (since they represent values over a larger spatial
scale than the observations). This introduces noise in the data
that may inhibit TCDetect from obtaining better perfor-
mance. Finally, not all TCs that occurred are part of IB-
TrACS and strength classification might not be correct due to
a lack of observational data.

a. Input feature importance

It is possible to quantify the relative impact of each input
field importance to the learned output. Two methods are em-
ployed for this: the Breiman method (Breiman 2001) and the
Lakshmanan method (Lakshmanan et al. 2015).

The Brieman method, sometimes called the single-pass per-
mutation test, involves permuting the data from one field
across all the test cases and then retesting the model with this
modified dataset. A decrease in the model’s performance is
expected, with the most important field obtaining the largest
decrease in performance.

The Lakshmanan method, sometimes called the multipass
permutation test, involves several steps: First, to permute the
data as in the previous method for one field. Once the field
with the most importance, that is, the field that produces the
largest decline in performance, is found, it is kept permuted,
while the other fields are permuted individually. The next
most important field is now found by repeating the algorithm
on the remaining fields. This process is repeated until all the
fields are permuted.

Both methods were performed 30 times each using the test-
ing dataset and an average was taken to make sure of consis-
tent and robust results: Fig. 7 shows the results. The most
important field was found to be that of relative vorticity at
850 hPa, similar to what Roberts et al. (2015) found, with the
Breiman method showing a decrease in AUC-PR from 0.7173
to 0.0936. Then, the Breiman method shows the rest of the
ranking for the most important field as follows: MSLP, rela-
tive vorticity at 600 hPa, relative vorticity at 700 hPa and 10-m
wind speed. The Lakshmanan method shows a slightly differ-
ent ranking, with MSLP demoted from being the second-most
important field to the fourth-most important field. Not much
should be read into this slight change as the difference in
AUC-PR values is minimal.

FIG. 7. Feature importance using the (top) Breiman and
(bottom) Lakshamanan methods for model trained and tested on
data from all regions.

TABLE 8. Number of cases having a TC and associated recall
rate stratified by TC category when using test data.

Category 1 2 3 4 5

No. 484 307 258 224 69
Recall 88% 92% 94% 95% 100%

TABLE 7. Classification metrics when using a threshold on the
field of relative vorticity at 850 hPa.

Cutoff
(1024 s21)

Accuracy
(%)

Recall
(%)

Precision
(%)

F1
(%)

1 6 100 6 10
2 24 88 6 11
3 69 50 9 15
4 88 23 14 17
5 93 8 19 11
6 94 3 30 6
7 94 1 30 2
8 94 0 8 1
9 94 0 0 0

10 94 0 0 0

TABLE 9. The IBTrACS classification seen for the 3397 cases
where TCDetect inferred the presence of a TC.

IBTrACS label No. cases

No meteorological system 506
Unknown 2
Posttropical systems 18
Disturbances 165
Subtropical systems 32
Tropical depressions 348
Tropical storms 1095
Category 1 TCs 426
Category 2 TCs 281
Category 3 TCs 243
Category 4 TCs 212
Category 5 TCs 69

GA L EA E T A L . 11JULY 2023

Brought to you by UNIVERSITY OF READING | Unauthenticated | Downloaded 08/07/23 11:09 AM UTC



Together these suggest the most important field is that of rel-
ative vorticity at 850 hPa and the second-most is that of relative
vorticity at 600 hPa. If this is because it is matching areas of
high relative vorticity at 850 and 600 hPa, then this would be
consistent with a physical interpretation that it is checking for
horizontal flow deformations associated with deep convection.

b. Performance by strength of tropical cyclone

A manual exploration of instances incorrectly classified by
the deep learning model being presented here indicated that
stronger tropical cyclones are detected with more success. To
provide quantitative support for this conclusion, the recall
rate stratified by the tropical cyclone category on the input
labels was examined. This allowed us to examine the propor-
tion of positively labeled cases being correctly classified as a
function of labeled cyclone strength.

Table 8 shows very high recall for all Saffir–Simpson scale
(Kelman 2013) categories, as recorded in the IBTrACS data-
base. The model has a recall rate of 88% for tropical cyclones
of category 1 (the weakest class of TC) and a perfect recall
rate for category 5 (the strongest). As expected, an increasing
trend of recall against category can be seen as higher category
cyclones are easier to detect.

A possible reason for this trend of increasing recall with
strength is that the deep learning model developed used data
at a 1/16 of ERA-Interim’s original resolution. This means
that the model was using data with a resolution of around
2.88, or around 280 km. While this value was chosen during
the manual hyperparameter search as detailed in appendix B,
and optimizes the overall results, it is likely to impact the rep-
resentation of the weakest features the most.

The hypothesis as to why the hyperparameter search se-
lected such averaging, is that the coarsening of the data fil-
tered out some of the noise present in the data while still
preserving the structure of any system present.

The nature of the cases labeled by TCDetect as TCs was also
investigated and compared to expectations in Table 9. It was
found that only 506 out of the 3397 cases that obtained a posi-
tive inference from the model were cases that had no meteoro-
logical system present. This suggests that the deep learning

model has learnt the required pattern but is mislabeling weaker
features as TCs, despite the averaging discussed earlier.

c. Impact of location

Having investigated the impact of the strength of the fea-
tures of interest and which fields influence the results the
most, the next question is to what extent the results are de-
pendent on regionality.

During development, due to time and computational con-
straints, the manual hyperparameter tuning was carried out
on only the western Atlantic and western Pacific (WAWP) re-
gions (see appendix B). When doing this, two linked assump-
tions were made: any change made to the architecture that
caused an improvement in performance would result in a sim-
ilar improvement when the architecture was trained and
tested on data from all regions; a model trained on data from
the WAWP regions would generalize well when tested on
data from all regions of the world.

The first and third columns of Table 10 show that the first
assumption holds, although it can be seen that the magnitude
of the improvements between the two models can vary. Also,
as shown in Table 11, the architecture has similar perfor-
mance when trained and tested only on data from the WAWP
regions and when trained and tested on data from all regions.

However, the second assumption was found not to hold.
The first two columns of Table 10 show that a model trained
on WAWP data decreased in performance considerably when
tested on data from all regions. This is mirrored when using
the final models, as shown in Table 11.

A possible reason for this is that the background meteoro-
logical state in the WAWP regions differs from that of the
whole world. Figure 8 shows the mean state from the WAWP
regions in the left column and the mean state of all regions in

TABLE 10. Results when using validation data.

Step
Model trained and tested

on WAWP
Model trained on WAWP
tested on whole world

Whole world
model

Choice of data 0.5830 0.0660 0.4928
Early stopping 0.7111 0.0815 0.5915
Normalization 0.7469 0.1772 0.6790
Resolution 0.7908 0.3690 0.6794
Dataset balancing 0.7721 0.2905 0.6856
Loss and optimizer 0.7849 0.3946 0.6733
Learning rate momentum 0.7980 0.6149 0.6646
Data augmentation 0.8038 0.4457 0.6901
Data augmentation rate 0.8035 0.6377 0.6759
Dropout position dropout rate 0.8091 0.6076 0.6832
L2 norm position L2 norm rate 0.8128 0.5331 0.6955
Batch size 0.8176 0.6315 0.6756

TABLE 11. Changes in AUC-PR with different training and
testing regions.

Model Training region Evaluation region AUC-PR

WAWP WAWP WAWP 0.7884
WAWP WAWP Global 0.6491
Global Global Global 0.7173
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FIG. 8. Mean case (left) for data originating only from the western Atlantic and
western Pacific regions and (right) for data originating from all regions. (first row)
MSLP, (second row) 10-m wind speed, (third row) vorticity at 850 hPa, (fourth row)
vorticity at 700 hPa, and (fifth row) vorticity at 600 hPa.
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the right column, with each row corresponding to each variable
used, that is, MSLP, 10-m wind speed and relative vorticity at
850, 700, and 600 hPa. The individual regions all differ signifi-
cantly, which yields to the noise seen in the average. These dif-
ferences could be confounding the results when the model is
trained on TCs seen only in one region.

To further understand how the model trained on WAWP
data differs from that trained on data from all regions, the re-
sults have been split by basin and shown in Table 12.

As expected, the model trained on WAWP data performs
best in the western Atlantic and western Pacific regions, with a
recall of 90.80% and 90.75%, respectively. It also performs
well in the eastern Pacific region with a recall of 80.15%. How-
ever, all other regions do not surpass the recall rate of 60%.

On the other hand, when the model trained on data from
all regions is used, all recall rates improve, some significantly.

The western Atlantic and western Pacific regions improve their
recall rates by 2.25% and 6% to 93% and 96.80%, respectively.
The most improved region is the one bounded by 1008E–1808 in
the Southern Hemisphere, with its recall rate increasing by more
than half from 58.41% to 92.92%. All but one region obtained a
recall rate of at least 80%, with many surpassing a recall rate of
90%. The region that did not do well was that bounded by 1808–
2608E in the Southern Hemisphere, which obtained a recall rate
of 42.31%. A possible reason for this to not perform as well as
the other regions is that a smaller number of cases with TCs are
available for this region, with only 26 in the test set.

d. Size of training dataset

Finally, though not strictly relevant for explaining the infer-
ences, it is interesting to address the impact of the size of the
training dataset on the results. To do this, the final architecture

TABLE 12. Evolution of accuracy during model development by basin (see text for explanation of rows).

Latitude 08–608N 08–608N 08–608N 08–608N 608–08S 608S–08 608S–08 608S–08
Longitude 208–1008E 1008E–1808 1808–2608E 2608–3408E 208–1008E 1008E–1808 1808–2608E 2608–3408E

No. of positive cases 72 400 267 250 214 113 26 0
Recall obtained by model

trained on WAWP data
56.94% 90.75% 80.15% 90.80% 53.74% 58.41% 30.77% }

No. of positively labeled
cases correctly classified
by model trained on
WAWP data

41 363 214 227 115 66 8 }

Recall obtained by model
trained on whole world
data

88.89% 93.00% 99.25% 96.80% 80.37% 92.92% 42.31% }

No. of positively labeled
cases correctly classified
by model trained on
whole world data

64 372 265 242 172 105 11 }

FIG. 9. Test AUC-PR and loss for model trained and tested on data from regions around
the world.
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was trained using varying amounts of the training dataset from
10% to 100%. When training using the entire global dataset
(all regions) it is seen that despite the fluctuations, (Fig. 9) the
AUC-PR is generally increasing, while the testing loss is mostly
flat, as more data are added. (The average testing loss essentially
measures bad predictions: lower is better; if it is flat while the de-
sired output is increasing, that is a good thing!) This suggests that
a larger training dataset would have been beneficial.

6. Summary

A deep learning method to identify the presence or absence
of tropical cyclones in simulation data is presented. Trained
on ERA-Interim data, the deep learning model}TCDetect}
obtained an AUC-PR of 0.7173 with a recall rate of 93% and
a precision rate of 36% on a test set, which was made up of
24352 cases. As TCDetect is intended to be used during a GCM
simulation, not missing TCs (i.e., recall) was deemed more impor-
tant than obtaining maximum data reduction (i.e., precision) as a
lack of recall would impair any future analysis of data output.

The performance of TCDetect is comparable to other stan-
dard (and more complex) models in terms of test loss and the
AUC-PR metric that takes into account both precision and
recall. It is relatively cheap to train and run the inference,
although there is a preprocessing stage that involves relatively
expensive spherical harmonic smoothing.

The architecture of the model was developed using manual
hyperparameter tuning on the western Pacific and western
Atlantic basins, two of the eight regions used for labeling the
presence or absence of tropical cyclones from the IBTrACS
dataset. While the model trained on those regions did not
generalize well to all regions, when that model architecture is
used with the global training set it does better. An analysis of
the impact of the size of the influence of the size of the train-
ing dataset suggests that even better results might be obtained
with more training data.

TCDetect performs best with the strongest events, with a
100% recall rate for category 5 TCs. The most important inputs
were found to be relative vorticity at 850 and 650 hPa, suggesting
that the key physical characteristic of the data the deep learning
has identified is the presence of strong deep convection. While
recall increases with storm strength, there are also many tropical
storms misidentified as TCs by TCDetect. While affecting perfor-
mance measured using deep learning metrics, the inclusion
of such storms is not a problem from an application point of
view}tropical storms are important for those studying dynamics
and can also wreak significant damage in their own right.

While the training data were obtained from ERA-Interim,
the ground truth used was IBTrACS, which introduces an ele-
ment of uncertainty in interpreting the results}is an incorrect
label (presence/absence) a consequence of the presence or ab-
sence of the TC in the ERA-Interim or IBTrACS data or an
issue with the deep learning? It is known that reanalysis data
cannot resolve the full strength of storms, and so will likely
undercount TCs, and hence depress the possible accuracy
rates. We discuss the impact of such uncertainties in a com-
panion paper (Galea et al. 2023, manuscript submitted to
Artif. Intell. Earth Syst.).

Future work includes attempting to improve TCDetect to
better handle TCs of a low category potentially via ideas im-
ported from other standard techniques or using different me-
teorological fields, as well as implementing an inference step
using a version of the model in a full general circulation
model to evaluate the pros and cons of avoiding data output.
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APPENDIX A

Model Architecture

Table A1 gives the details of the architecture that makes
up TCDetect: An input of dimensions 22 rows 3 29 columns 3
5 fields goes through five convolutional blocks, each made up
of a convolutional layer of 8, 16, 32, 64, and 128 kernels, re-
spectively, with weights initialized using the Glorot Uniform
method (Glorot and Bengio 2010) with ReLU activation
functions, each with strides of 1 and a kernel size of 2 3 2;
a dropout layer with a dropout rate of 10%; and a maximum
pooling layer with strides equal to 1. The resulting kernels
are flattened and passed through three fully connected
blocks, each made up of a dense layer of 128, 64, and
32 hidden nodes, respectively, with L2 normalization with a
normalization factor of 0.005, weights initialized by the
Glorot Uniform method and a dropout layer with a dropout
rate of 10%. TCDetect ends with another fully connected
layer of one node, this time using the sigmoid activation func-
tion with weights initialized by the Glorot Uniform method,
as well as L2 normalization with a normalization factor of
0.005 that outputs a prediction. The optimizer used was the
stochastic gradient descent (SGD) optimizer with a learning
rate of 0.01 and momentum of 0.8 with the loss function be-
ing that of binary cross entropy.

APPENDIX B

Hyperparameter Tuning

TCDetect was developed on data from the western At-
lantic and western Pacific regions. The developments used
the training set as described in section 3a to perform ten-
fold cross validation. Each fold was selected such that con-
secutive time steps, which are bound to be similar, are
mostly kept in singular folds to reduce data leakage across
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folds. Each fold was then evaluated using the validation set.
The metric used to assess whether a change improved the
model performance was the AUC-PR. Given the major
class imbalance in the dataset used and that as the model is
intended to be used as a filtering technique, this metric is
used because it weights both precision and recall equally.
Also, due to the metric chosen, it was ensured that each
fold used in the cross-validation process had a similar ratio
of positive cases to negative cases that represented that of the
full training set. Finally, as this model was being developed to
identify data for further postprocessing, false negatives are a
bigger problem than false positives, so improvements in recall
were favored over those in precision if AUC-PR varied only
marginally as a change was implemented.

Development and optimization using this value proceeded
as described below, with the final models being described
and evaluated using the testing dataset in sections 3b and 4,
respectively. Table B1 shows a summary of the steps taken
during hyperparameter tuning.

The initial architecture that was used as the starting point
for developing TCDetect consisted of an input of dimensions
84 rows 3 110 columns 3 2 channels that passed through

5 convolutional blocks, each made up of a convolutional
layer of 8, 16, 32, 64, and 128 kernels, respectively, with
weights initialized using the Glorot Uniform method with
ReLU activation functions, each with strides of 1 and a ker-
nel size of 2 3 2; and a MaxPooling2D layer with strides
equal to 1. The resulting kernels are flattened and passed
through three fully connected blocks, each made up of a
dense layer of 128, 64, and 32 hidden nodes, respectively, with
weights initialized by the Glorot Uniform method. The model
finishes off with another fully connected layer of one node, this
time using the sigmoid activation function with weights initial-
ized by the Glorot Uniform method that was used to output a
prediction. The optimizer used was the SGD optimizer with the
default learning rate of 0.01 with the loss function being binary
cross entropy. Finally, a batch size of 32 cases was initially used.

a. Choice of data

The first optimization made was to choose the number
and type of meteorological fields to supply as inputs to the
model. Four possible configurations were tested:

• MSLP and 10-m wind speed

TABLE A1. The architecture of TCDetect.

Layer (type) Layer (specification) Output shape
No. of

parameters

Input 22, 29, 5
Conv2D Glorot uniform weight initialization; ReLU activation function 8 kernels;

size 5 2 3 2; strides}(1, 1)
21, 28, 8 168

Dropout Dropout rate}0.1 21, 28, 8
MaxPooling2D Strides}(1, 1) 20, 27, 8
Conv2D Glorot uniform weight initialization; ReLU activation function 16 kernels;

size 5 2 3 2; strides}(1, 1)
19, 26, 16 528

Dropout Dropout rate}0.1 19, 26, 16
MaxPooling2D Strides}(1, 1) 18, 25, 16
Conv2D Glorot uniform weight initialization; ReLU activation function 32 kernels;

size 5 2 3 2; strides}(1, 1)
17, 24, 32 2080

Dropout Dropout rate}0.1 17, 24, 32
MaxPooling2D Strides}(1, 1) 16, 23, 32
Conv2D Glorot uniform weight initialization; ReLU activation function 64 kernels;

size 5 2 3 2; strides}(1, 1)
15, 22, 64 8256

Dropout Dropout rate}0.1 15, 22, 64
MaxPooling2D Strides}(1, 1) 14, 21, 64
Conv2D Glorot uniform weight initialization; ReLU activation function 128

kernels; size 5 2 3 2; strides}(1, 1)
13, 20, 128 32 896

Dropout Dropout rate}0.1 13, 20, 128
MaxPooling2D Strides}(1, 1) 12, 19, 28
Flatten 29 184
Dense Glorot uniform weight initialization; ReLU activation function 128 nodes;

L2 norm; factor 5 0.005
128 37 35 680

Dropout Dropout rate}0.1 128
Dense Glorot uniform weight initialization; ReLU activation function 64 nodes;

L2 norm; factor 5 0.005
64 8256

Dropout Dropout rate}0.1 64
Dense Glorot uniform weight initialization; ReLU activation function 32 nodes;

L2 norm; factor 5 0.005
32 2080

Dropout Dropout rate}0.1 32
Dense Glorot uniform weight initialization; sigmoid activation function 1 node;

L2 norm; factor 5 0.005
1 33
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• MSLP, 10-m wind speed and relative vorticity at 850, 700
and 600 hPa

• MSLP and 10-m wind speed with spherical harmonic filter-
ing between wavenumbers 5 and 106

• MSLP, 10-m wind speed with spherical harmonic filtering
between wavenumbers 5 and 106 and relative vorticity at
850, 700, and 600 hPa with spherical harmonic filtering be-
tween wavenumbers 1 and 63

The last option provided the best mean AUC-PR, that of
0.5309.

b. Early stopping

Next, it was noted that the model was overfitting as
Fig. B1a shows. Except for the first two epochs, the training
loss gets smaller while the validation loss gets larger with
an increasing number of epochs. Figure B1b shows similar
behavior to AUC-PR.

To overcome this issue, model training was stopped
when the training and validation AUC-PR started to di-
verge. A number of epochs of patience, that is, the num-
ber of epochs to wait until stopping to make sure that
training was not stopped too early, were trialed to get the
best possible performance. Patience values trialed were
of 2, 5, 10, and 20 epochs. That of 10 epochs obtained the
best mean AUC-PR of 0.6788.

c. Feature scaling

A few methods for normalization were trialed, namely
normalizing values to lie in the range from 0 to 1 or from
21 to 1, standardizing value to have a mean of 0 and a
standard deviation of 1 and a combination of normalization
and standardization. The method of standardization pro-
duced the best model performance with a mean AUC-PR
of 0.7404.

FIG. B1. Evolution of training and validation loss and AUC-PR across the training process. (a) Loss for model trained
and tested on data from the western Atlantic and western Pacific regions before applying early stopping. (b) AUC-PR
model trained and tested on data from the western Atlantic and western Pacific regions before applying early stopping.

TABLE B1. K-fold cross-validation results.

Step Choice K-fold CV score mean AUC-PR

Choice of data Filtered data, 5 fields 0.5309
Early stopping Patience 5 10 0.6788
Feature scaling Standardization 0.7404
Resolution 1/16 0.7842
Dataset balancing Undersampling with replacement 0.7839
Loss and optimiser Binary cross-entropy, momentum 0.7890
Learning rate momentum LR 5 0.01, momentum 5 0.8 0.7891
Data augmentation Roll in x direction, rotation by random angle, flip left–right 0.7988
Data augmentation rate 0.6 0.8018
Dropout position dropout rate Conv base, classifier rate 5 0.1 0.8104
L2 norm position L2 norm rate Classifier rate 5 0.005 0.8128
Batch size 8 0.8135
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d. Resolution

Resolution of the data used was checked next. The resolu-
tion used up to the current stage was that of the original
ERA-Interim dataset, but resolutions of 1.48 3 1.48, 2.18 3

2.18, 2.88 3 2.88, and 3.58 3 3.58 were tested. The resolution
of 2.88 3 2.88, which was obtained by taking the mean of ev-
ery four pixels of the image in both the x and y directions,
produced the best mean AUC-PR of 0.7842.

e. Dataset balancing

One problem that was known when starting hyper-parameter
optimization was that the dataset was heavily dominated
by negatively labeled cases. In fact, the training dataset
having data from the WAWP regions had 89.46% of the
cases negatively labeled, while that having data from all
regions had 95% of cases negatively labeled. This split of
data would inhibit the model learning the right pattern to
maximize its performance. Therefore, six ways of balanc-
ing the dataset were investigated:

• Naive oversampling}Making copies of the positively
labeled cases until the dataset is balanced.

• Undersampling without replacement}Undersample the
negatively labeled cases prior to training, therefore, some
data are not used.

• Undersampling with replacement}Undersample the nega-
tively labeled cases during training, so they change from ep-
och to epoch; possible overfitting on positively labeled
cases.

• Weighting the cases}Weighting the cases so that the nega-
tively labeled cases have less influence on the learning
process.

• Adding bias}Add a bias to the output layer to prevent the
model from learning the bias.

• Weighting the cases and adding bias}A combination of
the previous two options.

Undersampling with replacement produced the best per-
formance with a mean AUC-PR of 0.7839. It can be noted
that the model’s performance decreased marginally from
the previous step, but this was still selected as recall be-
came much more favored by the model, which is important
for the data reduction method in mind.

f. Loss and optimizer

The model so far used the binary cross-entropy loss function
with the SGD optimizer. All possible combinations of the
mean absolute error, mean standard error, and binary cross-
entropy loss functions and SGD, SGD with momentum using a
momentum parameter of 0.9 (Qian 1999), RMSProp,A1 Adam
(Kingma and Ba 2014), Adagrad (Duchi et al. 2011), Adamax
(Kingma and Ba 2014), and Nadam (Dozat 2016) optimizers
were examined.

Binary cross-entropy loss with the SGD optimizer with
momentum using a momentum parameter of 0.9 obtained
the best mean AUC-PR of 0.7890.

g. Learning rate and momentum

A grid search for the best learning rate and momentum
parameters was performed. The values for the learning rate
included were those of 0.0001, 0.0005, 0.001, 0.005, 0.01,
and 0.05 while those used for the momentum parameter
were in the range of 0.1–1 with a step of 0.1. The combina-
tion that produced the best-performing model was that hav-
ing a learning rate of 0.01 and a momentum of 0.8.

h. Data augmentation methods

Several techniques including random rolls, rotations, add-
ing random noise, flipping the input data along either the x
or y directions, and random cropping were evaluated. The
augmentation rate was set to 50%. The options that ob-
tained a comparative or better mean AUC-PR were rolling
the picture along the x direction, flipping the picture left to
right and rotating the image by a random amount. These
were all included in the model and the combined methods
produced a mean AUC-PR of 0.7988.

i. Data augmentation rate

The best data augmentation rate was also varied from
10% to 100% in steps of 10% to find the best possible rate.
The best-performing model with a mean AUC-PR of 0.8018
was that with an augmentation rate of 60%.

j. Dropout position and rate

Dropout was investigated next. It was trialed in three
places, namely the convolutional base only, the fully con-
nected classifier only and throughout the model with drop-
out rates varying from 10% to 100% in steps of 10%. The
model with the best AUC-PR, that of 0.8104, was that em-
ploying dropout with a rate of 10% throughout the model.

k. L2 normalization position and factor

L2 normalization was also investigated. It was trialed in
the same three places as in the previous optimization. The
normalization factors checked were 0.000 01, 0.000 05, 0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, and 0.5. The model that
produced the best performance with a mean AUC-PR of
0.8128 was that having L2 normalization in the classifier only
with a rate of 0.005.

l. Batch size

The final optimization tested was of that for the batch size.
Batch sizes of 8, 16, 64, 128, 256, 512, 1024, and 2048 were
tested with the first option producing the best-performing
model with a mean AUC-PR of 0.8135.

m. Others

Other optimizations tested that did not produce a model
with an improved performance included batch normaliza-
tion, varying the number of hidden layers and nodes, and

A1 Presented in http://www.cs.toronto.edu/;tijmen/csc321/slides/
lecture\_slides\_lec6.pdf.
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using different weight initialization methods and activation
functions.
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