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Abstract

Using multiple Inertial Measurement Units (IMU) in movement analysis will not

only be useful in increasing the classification accuracy of the movement data, but

also reduce the computational complexity in classification algorithms as there is no

need to process an increased number of features generated from a single sensor. How-

ever, wearing sensor devices every day on the same place with the same orientation

is a key requirement for the data analysis purpose. To facilitate this, sensor devices

can be mounted into clothing, as it is an ideal platform to cater these miniature de-

vices. There are research studies conducted with sensors mounted into clothing such

as smart garments, tight-fitting clothing and loose clothing (everyday wear cloth-

ing). Data validations are available between tight-fitting clothing-mounted sensor

data and body-mounted sensor data, focusing mainly on limited set of activities or

sensors.

The main focus of this research was to investigate the possibility of using loose

clothing-mounted sensors in monitoring human movement patterns in a home based

healthcare monitoring system, while validating how the loose clothing-mounted sen-

sor data correlate with body-mounted sensor data with respect to different activities.

In order to quantify and understand human movements in this research, time syn-

chronised wearable sensors were mounted into loose clothing. This whole research

was based on three datasets and they were used to conduct four sub analyses based

on different types of human movement patterns to achieve the main goal. First

analysis was based on data collected from Actigraph sensors from both body and
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clothing and the sensors were near waist, thigh and ankle/ lower-shank. This study

validated the data between clothing and body mounted sensor data across various

static and dynamic activities with respect to each sensor pairs. These validations

were based on correlation coefficient values with respect to the accelerometer data

pairs for different activities i.e. ‘standing’, ‘sitting’, ‘sitting on a bus’, ‘walking’ and

‘running’. Promising correlations were observed (especially with static activities)

with this dataset and the second dataset was collected from body and clothing-

mounted lightweight IMU sensors. These data were analysed based on correlation

coefficient values with respect to the inclination angle changes over ‘gait’ cycles. In

addition to the correlation coefficient values, the data were analysed using different

types of plots such as phase portraits and 3D plots. From these plots, it was noted

that important features such as Mid-Stance (MS), Initial Contact (IC) and Toe Off

(TO) points can be recognised by clothing data and they can be used to analyse

‘walking’ data in detail. Moreover, the third semi-natural dataset was collected from

clothing-mounted sensors to check whether they can be used to implement posture

and activity classifiers. These classifiers that were based on both Machine Learn-

ing (ML) and Deep Learning (DL) approaches with relevant selected features, also

showed reasonably high classification accuracies. By taking into account all these

promising observations, this thesis can be concluded that loose clothing-mounted

sensor data can be used productively in movement analysis.
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Chapter 1

Introduction

As wearable sensors have become smaller, more lightweight with reduced power

consumption and increased accuracy, the popularity of these sensors has increased,

particularly in their usage in wearable devices [1, 2]. Especially, the usage of wearable

Commercial Off The Shelf (COTS) sensors have become popular nowadays because

these devices, that are being widely used in healthcare and sports sectors, are capable

of monitoring day-to-day activities [3, 4, 5]. As such, it can be anticipated that long-

term activity monitoring systems in hospitals could also be replaced by wearable

sensor devices [6, 7]. Then, it would be a solution to two main problems in the

healthcare sector. Firstly, it could help in reducing the annual cost which is allocated

for long-term health monitoring as it is considered to be a larger amount [8, 9].

Secondly, the other thing is, the sensor readings could be used in diagnosing patients

like Patients with Parkinson’s (PwP) as clinicians have no other clinical criteria for

analysing the health condition of such patients. The severity of the PwP is assessed

by using rating scales such as the Unified Parkinson’s Disease Rating Scale (UPDRS)

and Hoehn and Yahr (HY) rating scale [10, 11, 12, 13] depending on patients’ verbal

descriptions.
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Section 1.1 Page 2

1.1 Motivation

In many countries the ageing population is increasing annually. The population over

60 years from 2015 and 2030 is projected to increase by 23.1% in Europe and by

40.5% and 70.6% in Northern and Latin America respectively. In Asia it is expected

to increase by 66.3% and 63.5% in Africa [14]. When comparing the data between

2015 to 2030 with the countries’ income rate (i.e. high income, middle income, low

income), the percentage of older adult population is projected to increase rapidly by

2030 in high and middle income countries while that low income countries projected

to have a slightly low increment compared to the other countries [15]. Healthcare

systems in each country must be able to cater to these increasing number of older

adults’ needs [14] and there is a high demand for care dependency in each country

with the increment of the older population [15]. Even in Organisation for Economic

Co-operation and Development (OECD) countries have seen an annual increment

of 4.8% of the cost allocated for long-term monitoring from 2005 to 2011 and also

it is predicted that the cost as at 2015 would be doubled by 2060 [16].

As a solution for the increasing cost that has to be allocated for long-term health-

care, the usage of assistive technology has been introduced as a cost effective long

term monitoring model instead of care dependence of adults [17]. A study done

by Global coalition on aging [18] has proven some instances where Remote Care

Delivery (RCD) (such as video conferencing with healthcare providers, tablet-based

patient education, software applications which are tracking diet, exercise and med-

ication) helped to reduce the heart failure patients’ hospitalization rate by 40% in

2018 in the UK. Other than the above mentioned assistive technologies, there are

many other facilities that are being used in uplifting the older adults quality of life,

such as electronic sensors usage to identify smoke and heat and to switch on lights

when it is dawn/dusk, video-monitoring, pressure mats, speaking clocks, portable

devices to manipulate some items remotely in addition to simple techniques like hav-

ing grab rails, walking frames and doorbell amplifiers [19]. In recent years the usage
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and popularity of wearable devices have risen substantially [20] and it is predicted

to increase at a compound annual growth rate of 38.8% from 2017 to 2025 1.

Activities in Daily Life (ADL) are fundamental properties that are considered when

enhancing senior citizens’/ patients’ quality of life of under the domain of healthcare

systems. The five main ADL are personal hygiene, dressing, eating, maintenance

of continence and mobility2. The main target is to monitor the fine movements

while assuring that the patient can do his/her work independently. Yet, above all,

mobility plays a major role in ADL [21] and often more priority is given to analyse

human movement patterns.

Wearable sensors can be used in healthcare systems in various aspects such as in

rehabilitation, monitoring the fine movements of the patients who suffer from chronic

diseases like Parkinson’s or Dementia, real time monitoring of heart failure patients,

falls detection and sports medicine. The usage of sensors in long-term monitoring in

patients has benefits in various aspects in addition to cost effectiveness. The patients

who are unable to travel frequently, do not need to visit the clinicians frequently

if the clinicians can access the data files of the patients and analyse their behavior

even without seeing them. The other benefit is that when the diagnosis is based

on patients’ own verbal descriptions where there are no clinical criteria to measure

diseases like Parkinson’s, the clinicians would be able to rely on the sensor data

which is more reliable than the patients’ diaries.

1.1.1 The Use of Wearable Sensors in Five Main Sectors

Grand View Research Report1 categorised the wearable sensors into 5 sectors i.e.

Consumer, Defense, Healthcare, Industrial and Other. The global sensor market-
1 Research, Grand View. 2018. “Wearable Sensors Market Size, Share & Trends

Analysis Report By Sensor Type, By Device (Smart Watch, Fitness Band, Smart
Glasses, Smart Fabric), By Vertical, By Region, And Segment Forecast, 2018 - 2025.
“https://www.grandviewresearch.com/industry-analysis/global-wearable-sensor-market”

2 Paying for senior Care. “What Are the Activities in Daily Life (ADL)”,2018.
https://www.payingforseniorcare.com/longtermcare/activities-of-daily-living.html
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share for each category in the year 2016 is depicted in Figure 1.1.

Industrial

Others

Healthcare

Defence

Consumer

Figure 1.1: Global wearable sensor market demand in 2016 under each category 1

By looking at Figure 1.1, it can be said that after the high demands in consumer

(mobile phones, cameras, gaming devices and media players) and defense sectors

(surveillance, navigation, weapons-locating systems, tracking a soldier’s location

and vitals, chemical detection, sensing the quality of food and water, camera sen-

sors, infrared sensors and sensors in Aerospace Applications), sensors are being most

highly used in the healthcare sector. These wearable sensors can be used in health-

care systems not only in long term monitoring, but also in real time monitoring.

IMU continue to dominate when compared with other sensors [22]. The sensors

that are used in fitness, entertainment, gaming, in animal tracking and monitoring

fall under the ‘Other’ category in Figure 1.1.

In addition, the Grand View Research Report1 also has analysed the way of increas-

ing the market size depending on each sensor type such as accelerometer, gyroscope,

magnetometer, inertial sensor, heart rate monitors, temperature sensors and sleep

monitoring sensors. They have predicted that the market size will be increasing

highly from 2014 to 2025 and the main reason for this growth is the rapid usage of

sensors in health and fitness monitoring systems 1.
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1.1.2 Importance of Wearable Sensor Devices in the Health-

care Sector

Wearable sensor devices can be defined as electronic devices that can be worn in

such a way that they are able to monitor and record the corresponding activity data

in an unobtrusive way [23]. People use commercially available wearable devices

such as smart watches, fitness bands, smart glasses, smart fabric, smart footwear

and smart rings to maintain a healthy life style or to self-monitor their fitness levels

[24, 25]. Most of these devices are used to track human motion and they can be used

in sectors like health and sports. For example there are wrist bands and watches

that can be used as activity trackers (based on step counting, daily calorie intake,

sleep and wake up patterns), sport watches (based on Global Positioning System

(GPS), heart rate monitor and swimming), running watches (log running), and

smart watches [24, 25]. These devices come under various famous brands such as

Garmin3, Fitbit4, Misfit5, Apple fitness products 6 and Actiwatch7 [24, 26]. These

devices can be used to monitor the daily workout and can give an insight into

monthly or daily workout targets easily without manually entering data. However,

usually people wear a single device from each wearable type, at a time, hence, these

devices might not be able to provide an accurate picture of the wearer with the

limited set of data [27]. For example, most of the wearable devices come as wrist

bands with triaxial accelerometers and algorithms that are designed to classify the

motion patterns calculating the step count and other movements. These motion

patterns are categorised into activities based on the threshold values set up by the

device. However, sometimes the activities may be misclassified when it detects some

signals which are above or lower than the expected threshold values of the device.

For example, at sometimes Fitbit devices overcount the steps when the wearer rides
3https://www.garmin.com/en-GB/
4https://www.fitbit.com/uk/home
5https://misfit.com/
6https://www.apple.com/uk/shop/watch/watch-accessories/health-fitness
7http://www.actigraphy.com/
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on bumpy roads, at the same time, if the expected acceleration is not met with, it

does not count the steps as required 8.

In order to improve algorithms and to mitigate these types of uncertainty, it is better

to have multiple sensors on a single person, especially in medical applications where

there is a need for reliable data in decision making. As in medical applications,

the data should be able to be used in predictions, anomaly detection and diagnosis

support.

Bao et al. [28] and Foerster et al. [29] have demonstrated how the activity recog-

nition can be improved by using multiple sensors. As the usage of multiple sensors

can improve the classifier performance, there exist a significant amount of research

studies carried out with multiple sensors [30, 31, 32].

Usage of multiple sensors in activity/ posture recognition not only improves classi-

fication accuracy but also the efficiency of the algorithms. Gao et al. [33] explained

that there is a trade-off between using a single wearable sensor data to extract a

considerable amount of data on heuristic features that train complex classifiers and

using multiple sensors with less number of features with light-weight algorithms.

Wearable sensors that are used in healthcare can be categorised into two main

types, namely bio-mechanical sensors and physiological sensors. They can be further

categorised into sub categories depending on the measurements of the sensors as

shown in Table 1.1. Moreover, Table 1.1 indicates that all the kinematics related

bio-mechanical sensors to be used in monitoring the human movements, can be

mounted on or near the body.
8https://help.fitbit.com/articles/en_US/Help_article/1141
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1.2 Problem Statement

It is hard to come to a proper conclusion regarding the movements based on data

collected from a single limb. In order to make a proper analysis of the movement

patterns of people in health applications, increasing the number of sensors/sensor

fusion could be a better solution [28, 29]. Increasing the number of sensors would

allow more data to be gathered and to facilitate a more comprehensive analysis.

Hence, rather than depending on a single device, it is assumed that it would be

beneficial to have multiple sensors on different places on the body.

Wearing the sensors on the same place on a daily basis, with the proper orientation,

is crucial for the data analysis process and so the sensors need to be placed with

special care. As suggested, strapping multiple sensor devices every day on the

limbs of a patient/elderly person can be an additional burden or exacerbated to

the carers or the patients themselves when the sensor design expects good dexterity

from the wearers. Another shortcoming is the usage of the strapping bands because

the sensors might have a tendency to move with respect to the limb owing to the

non-rigid characteristic of the bands.

To make the process of wearing the sensors in a consistent location and orientation

easier, one approach is to attach lightweight sensor devices to the clothing that peo-

ple/patients wear every day [49, 50]. This benefits both the subject and the data

analyser because the subject can wear multiple sensors in one or two attempt/(s)

(sensors on top and sensors on trousers or skirts) and the data analyser can get

a good picture of the activity taking into account the whole body of the subject.

There exists research carried out with multiple body-mounted sensors [51, 52, 53]

and clothing-mounted sensors [50, 54]. Most of the clothing mounted sensor based

research were carried out with tight fitting garments as loose clothing might add

additional movements to the sensors. However, tight fitting clothing are not com-

fortable to be worn for an extended period of time [55] especially when the purpose
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is to monitor movements in long-term healthcare systems. People who are in need

of home-based long-term monitoring systems are either people with movement dis-

orders or older adult people. Hence, using loose clothing that people wear everyday

would be beneficial for these cohort of people instead of having to wear tight fitting

clothing.

There are only a limited number of research studies in validating clothing-mounted

sensor data. One such work validated the association between tight fitting clothing-

mounted readings and body-mounted sensor readings with respect to a single ac-

tivity (dead-lifting) [54] and another work proved that sensors attached onto fabric

produced better signal variations that could be used with activity classification [56].

However, the second research collected data mimicking clothing-mounted sensor data

by attaching sensors to three different fabric materials which were then attached to

a pendulum [56].

As such, a systematic analysis needs to be carried out to assess, up to what extent

these everyday wear clothing-mounted sensor data can be used in movement analysis

systems and activity classifiers.

1.3 Research Question

This thesis aims to investigate the possibility of using loose clothing-mounted sensors

in monitoring human movement patterns with a view to eventually using them in a

home based healthcare monitoring system. For that, there should be a systematic

validation between the clothing-mounted sensor data and body-mounted sensor data

with respect to different daily activities and have to check whether the clothing data

can reveal any movement related data.

In order to achieve these targets, this work addressed the following two main research

questions.
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1. How well does the clothing-mounted sensor data correlate with the body-

mounted sensor data?

2. Is there a possibility of extracting enough information about human movement

through the clothing-mounted sensor data?

1.4 Aims and Objectives

The broader aims of the research were to quantify and understand human movements

over extended periods by using multiple clothing-mounted wearable sensor devices

and to implement posture and activity classifiers with these data.

To achieve the above mentioned aims, five main objectives were identified and they

are to:

1. quantify how strongly sensors mounted onto body and clothing correlate with

each other depending on different activities and clothing types, by calculating

correlation coefficient values of accelerometer data between signal pairs.

2. make publicly available a semi natural dataset collected from clothing-mounted

lightweight IMUs for an extended period of time.

3. use the clothing-mounted lower body of the body sensor data in posture clas-

sification.

4. collect a supplementary dataset covering the lower body with 6-9 lightweight

IMUs to quantify the correlation between body-mounted and clothing-mounted

sensor data with respect to ‘walking’ data. Further to check whether there is a

possibility of extracting useful information related to ‘gait’ from clothing data

(lateral side of the clothing-mounted sensor data), similar to the frontal side

of the body mounted sensor data as body-mounted sensors mount usually on
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the frontal side of the body and it is convenient for the wearer to have sensors

on the seam of clothing.

5. implement an activity classifier to classify activities such as walking, climbing

up and down stairs and making turns based on clothing-mounted sensor data.

1.5 Contributions

The main contributions of this thesis are as follows.

1. Demonstrated that clothing-mounted sensors’ performance were as acceptable

as body-mounted sensors, across different types of activities (static postures

and walking) using sensor pairs (clothing and body-mounted) mounted near

waist, thigh and ankle/ lower-shank. This was done by analysing correlation

coefficient values with respect to the accelerometer data and inclination angles

estimated by using accelerometer, gyroscope and magnetometer data.

2. A dataset, collected from 6 clothing-mounted sensors covering the lower body

along with the video ground truth data and diary data for semi natural activi-

ties. The dataset consisted of 15 participant-days worth of data collected from

5 participants (Even though the data were collected from 12 sensors, only the

data collected from 6 sensors mounted on the lower body, were analysed in this

research). To my knowledge this is the first published database consisting of

data collected from loose clothing-mounted IMUs. This dataset is likely to be

of interest to researchers studying human postures and movements in natural

settings, particularly that the sensors are worn unobtrusively in loose-clothing

rather than on the body and also that the data includes measurements of the

waist, thigh and ankle on both the left and right sides.

3. A posture classifier with a high accuracy (100%), implemented by extracting

a single feature from multiple sensors. The classifier was implemented based
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on three clothing-mounted sensors (placed near waist, thigh and ankle/ lower

shank) and used a single feature so that the computational intensity would be

minimised and accuracy would be increased.

4. Demonstrated that a reasonable accuracy can be achieved in activity classifi-

cation by using selected number of sensible features with DL approach rather

than feeding all the raw data to train a network.

1.6 Outline of the Dissertation

This thesis is organised as a collection of papers. After this introduction in Chap-

ter 1, Chapter 2 reviews the literature related to movement analysis by using wear-

able sensors, examining the optimal sensor placement in movement analysis, how

multiple sensors can enhance the accuracy of classification, suitable data sampling

rate to collect data, sensor orientation correction mechanisms, common features that

can be used in Human Activity Recognition (HAR), and how sensor fusion could be

used in classification and analyses based on clothing-mounted sensors.

This research mainly consists of one feasibility study and three main data analyses.

Before collecting data for the main data analysis from loose clothing-mounted sen-

sors, the feasibility of collecting data with clothing-mounted sensors were checked

and scrutinized the data to check how well the clothing data correlated with body-

mounted sensor data. To accomplish this, a single person study was carried out as

a feasibility study with four to six Actigraph devices 7 (a commercially available

sensor). These sensors were mounted onto different types of clothing (loose slacks,

a pencil skirt and a knee length frock) covering lower body (waist, thigh and ankle)

to collect data based on different types of activities (walking, running and sitting).

Chapter 3 compares these clothing-mounted data with body-mounted sensor data

based on correlation coefficient values correcting for time lags (time lag between
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body-mounted sensor reading and clothing-mounted sensor reading) in sensor pairs

across all the activities and clothing types based on cross correlation of the signals.

Further, this chapter analyses how well these data could be used in activity clas-

sification. Based on all the results, this chapter concludes that clothing-mounted

sensor data were well correlated with body-mounted sensor data in slow activities

compared to walking and running data. Also, this study suggests that the correla-

tion and the accuracy of activity classifier could be improved by using lightweight

sensors as Actigraph sensor weighs 19 g. This chapter covers objective 1 that is

mentioned in Section 1.4.

As there was an insight that the accuracy could be enhanced in activity classifica-

tion with lightweight sensors, this research collected data from 5 participants with

lightweight sensors across 1-4 days for 5-8 hours. Chapter 4 describes a dataset of

everyday activities collected from loose clothing mounted IMUs from lower body.

The chapter describes the procedures followed in the main data collection, the pre-

processing techniques and the usage of the dataset. This chapter addresses objective

2 of this research. The data collection procedure was reviewed by the research ethics

committee of the School of Biological Sciences, University of Reading, UK and given

a favourable ethical opinion for conduct (reference SBS 19- 20 31). The correspond-

ing documents for ethical approval can be found under Appendices as Appendix A.1

and A.2.

Based on the chapter 3 results, it was noted that the clothing-mounted data were

well correlated with body-mounted data in slow activities/postures, hence the data

mentioned in chapter 4 were used in implementing a posture classifier while focus-

ing on how different sizes of time windows could be used in feature extraction in

different scenarios in training purposes. Further, posture classifier outputs were

compared along with the diary data of the participants where there were no video

ground truth data. Hence this chapter 5 accomplishes the third objective of the

research. Supplementary material related to Chapter 5 can be found in Appendices
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as Appendix B.1-B.3.

Based on chapter 3 observations it was noted that the correlation between sensor

pairs for activities like walking and running could be enhanced by using lightweight

sensors. Hence, another six data sets were collected from 3 participants placing 6-9

sensors on lower body (on body and clothing) to examine ‘walking‘ data. Chapter 6

analyses these body-mounted and clothing-mounted sensor pairs based on ‘walking’

data and examines what information could be extracted from clothing-mounted data

by using phase portraits. This chapter 6 concludes that the clothing-mounted data

correlate well with the body-mounted sensor data with respect to the ‘walking’ data.

Objective 4 of the research is achieved by this chapter 6. Supplementary material

related to Chapter 6 can be found in Appendices as Appendix C.1 and C.2.

Chapter 7 examines the feasibility of using clothing-mounted lower body data in

classifying activities such as walking, climbing up stairs, climbing down stairs and

turning. Heuristic and non-heuristic data were used in examining how well these

data could be used in training activity classifiers based on both machine learning and

deep learning approaches. Further, phase portraits for each activity were compared

with respect to the angles each sensor makes in the sagittal plane with the vertical

axis. Chapter 7 covers the fifth objective of the research. Supplementary material

related to Chapter 7 can be found in Appendices as Appendix D.1.

Chapter 8 is a general discussion based on all the analyses conducted throughout

this research based on clothing-mounted sensor data in movement analysis.

Finally, this dissertation concludes with Chapter 9 with the conclusions and possible

future work that can be carried out based on this research.

The associations between the chapters are depicted in Figure 1.2. The datasets and

chapters that depend on the conclusions of previous studies are marked in the same

colour in Figure 1.2.
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Chapter 3 and chapter 6 used separate datasets and they are coloured in orange and

blue, while the other three chapters’ ‘data’ columns are coloured in green to indicate

that chapter 5 and chapter 7 used the data from chapter 4.

The conclusion that is highlighted in cyan gave the insight to chapter 4 and chapter

6. Chapter 5 was conducted based on the conclusion that is highlighted in yellow

in chapter 3. Finally, chapter 7 was carried out upon a conclusion that was derived

from chapter 6.



Section 1.6 Page 16

Figure 1.2: Associations between the chapters. Chapter 3 and chapter 6 used sep-
arate datasets and they are coloured in orange and blue, while the other three
chapters’ ‘data’ columns are coloured in green to indicate that chapter 5 and chap-
ter 7 used the data from chapter 4.
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Chapter 2

Literature Review

2.1 Introduction

This literature review analyses previous work that supports the main research, fo-

cusing on long-term movement analysis with clothing-mounted multiple wearable

sensors. The literature was mainly reviewed under seven areas i.e. to examine the

optimal places to wear sensors to monitor movements, how multiple sensors can

improve accuracy of classification, suitable data sampling rate to collect data, sen-

sor orientation correction mechanisms, common features that can be used in activity

recognition, sensor data fusion methods and clothing-mounted wearable sensor read-

ings in activity monitoring. At the end of each section, there is a brief explanation

how the previous literature is incorporated in this research.

There are various possible mechanisms that can be used in long-term movement

monitoring, outside of clinical or laboratory settings. When proposing home-based

monitoring systems, there are some factors to be considered with respect to relia-

bility and security. These monitoring approaches should be reliable to measure real

time data, safe to use with elderly people or patients who are having mobility issues

and have the computational power to deal with the complexity of the algorithms
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in the programmes, the area covered by the monitoring system, the cost and the

energy management [1].

These approaches can be categorised into 3 main groups i.e. non-wearable sensors,

wearable sensors and hybrid systems that combines both wearable and non-wearable

sensors [2]. These non-wearable sensor approaches are supported by image process-

ing techniques and floor sensors [2]. Image processing techniques can apply to data

capture from two types of sources i.e. analogue/digital cameras and other cameras

that come with optic sensors (laser range scanners, time-of-flight) which can be

again categorised into subgroups based on the usage of the markers [2].

Motion capture systems/ commercialized tracking systems and camera systems

along with force plates are the most commonly used reliable movement/gait moni-

toring systems [3]. However these approaches are expensive, the monitorable area is

confined to a limited area and the lighting conditions need to be maintained properly

in order to get proper results [3].

For elderly people or patients who are under rehabilitation stages from movement

difficulties or people who are suffering from chronic movement disorders, their homes

are considered as their rehabilitation places [4]. Usage of sensor devices gives an op-

portunity to capture data on people’s everyday activities more easily and in an

economical way outside of clinical environments [2]. As this research focuses on col-

lecting data from people for extended period of time, it was decided to use wearable

sensors. However, both these wearable and non-wearable approaches have pros and

cons of theirown.

Table 2.1 describes them with respect to long-term monitoring.



Section 2.1 Page 26

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es

N
on

-w
ea

ra
bl

e
ap

pr
oa

ch

N
o

re
st

ric
tio

ns
in

en
er

gy
/p

ow
er

Si
nc

e
th

es
e

sy
st

em
s

m
us

t
ha

ve
go

od
lig

ht
in

g
co

nd
iti

on
s

w
ith

ou
t

sig
na

lb
ar

rie
rs

,i
t

is
un

ab
le

to
be

us
ed

in
ho

m
e-

ba
se

d
en

vi
ro

nm
en

ts
N

o
ne

ed
to

at
ta

ch
de

vi
ce

s
to

th
e

pe
op

le

C
ap

ab
ili

ty
of

ge
tt

in
g

m
ul

tip
le

m
ea

su
re

m
en

ts
an

d
co

m
pl

ex
an

al
ys

is
O

w
in

g
to

th
e

co
nfi

ne
d

ar
ea

,t
he

no
rm

al
be

ha
vi

ou
r

ca
nn

ot
be

ca
pt

ur
ed

Le
ss

in
te

rfe
re

nc
es

be
ca

us
e

of
th

e
co

nfi
ne

d
sp

ac
e

Ex
pe

ns
iv

e
M

ea
su

re
m

en
ts

ca
n

be
co

nt
ro

lle
d

in
re

al
tim

e
Tr

ac
k

th
e

re
al

tim
e

m
ov

em
en

ts
an

d
no

tif
y

th
e

ca
re

rs

W
ea

ra
bl

e
ap

pr
oa

ch

T
he

ab
ili

ty
of

m
on

ito
rin

g
da

ily
ro

ut
in

e
fo

r
a

lo
ng

tim
e

En
er

gy
co

ns
er

va
tio

n
is

a
m

aj
or

iss
ue

C
he

ap
er

th
an

ot
he

r
sy

st
em

s
Su

sc
ep

tib
le

to
m

an
y

ex
te

rn
al

fa
ct

or
s

su
ch

as
no

ise
s,

fre
qu

en
ci

es
et

c.
T

he
ab

ili
ty

of
de

pl
oy

m
en

t
in

an
y

so
rt

of
en

vi
ro

nm
en

t
H

av
e

to
in

te
rp

re
t

da
ta

to
ge

t
a

m
ea

ni
ng

fu
li

de
a

ba
se

d
on

th
e

da
ta

T
he

av
ai

la
bi

lit
y

of
va

rio
us

m
od

el
s

an
d

ty
pe

s
of

se
ns

or
s

T
he

pa
tie

nt
s

ha
ve

th
e

au
to

no
m

y
to

m
ak

e
de

ci
sio

ns
an

d
do

hi
s/

he
r

ac
tiv

iti
es

W
ire

le
ss

co
m

m
un

ic
at

io
n

Ta
bl

e
2.

1:
C

om
pa

ris
on

of
W

ea
ra

bl
e

Sy
st

em
s

w
ith

N
on

-W
ea

ra
bl

e
Sy

st
em

s
[2

]



Section 2.2 Page 27

Potential unobtrusive sensor types that can be used in long-term monitoring are

listed below [4].

• Biomechanical sensors

– Accelerometer, Gyroscope, Magnetometer, Bed sensor, Scale, Pressure

sensor, Vibration sensor

• Electro-magnetic

– Contact sensor, Electrocardiography (ECG) sensor, Power meter, Radar

• Optical

– PIR (Passive infrared) motion sensor, Infrared camera, Video camera,

Depth camera

• Air-relevant

– Gas/dust sensor, Humidity sensor, Thermometer

• Acoustic

– Microphone, Ultrasonic sensor

• Unclassified

– Water flow sensor, Computer monitoring (software), Phone monitor

The data collected from the above mentioned sensors can be analysed under three

main topics i.e. physiology, behaviour and environment [4]. This research focuses

on analysing behaviour patterns such as the time spent on activities, time spent on

static postures and gait parameters. Hence, this research has used biomechanical

sensors including accelerometer, gyroscope and magnetometer.

The next section discusses past research on how the sensor placement can be done

in order to capture human body movements in an optimal way.
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2.2 Optimal Places to Mount Sensors

Gemperle et al. [5] defined a set of design guidelines for implementing wearable

sensors. The first guideline was based on sensor placement that needs an unobtrusive

mechanism. They suggested that the most suitable areas for the sensors to be placed

on the human body should be based on the following criteria:

1. areas that are approximately similar in size to every adult

2. areas that are resistant to movements while the body is moving

3. areas that have a larger surface area

Following the above mentioned criteria, Gemperle et al. [5] defined eight optimal

areas to place sensors and they are collar area; rear upper arm; forearm; rear, side

and front rib-cage; waist and hip;thigh; shin; top of the foot as shown in Figure 7.1.

Yang et al. [6] mentioned in their study that waist is considered as a better place

to mount a sensor in gathering data about human movements as ‘waist’ is close to

the center of the mass.

Montoye et al. [7] investigated how hip, thigh and wrists (left and right) mounted ac-

celerometer data could be used in identifying the intensity of physical activities (PA)

such as sedentary behaviour (lying down and sitting: reading and computer use),

light intensity PA (standing, doing laundry, sweeping, biceps curls, slow walking)

and moderate-to vigorous-intensity PA (fast walking, jogging, cycling, stair climbing

and squats). They trained an artificial neural network (ANN) by using 10th, 25th,

50th, 75th, and 90th percentiles extracted from 30 second windows. Altogether they

used 15 features (= datafrom 3 axes×5 percentiles) in the training process. Mon-

toye et al. concluded their study observing more than 99% accuracy in identifying

sedentary behaviour, light intensity PA and moderate-to vigorous-intensity PA with

the thigh sensor [7]. Further, they observed that the non-dominant wrist data also
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Figure 2.1: Unobtrusive places where wearable sensors can be mounted. [5]
.

classified sedentary behaviour with high accuracy while having misclassifications in

classifying light intensity PA and moderate PA. Moreover they observed that the

non-dominant hand data was useful in PA classification compared to the dominant

hand data. Finally, they mentioned that hip and dominant hand worn data classified

the activities at the lowest accuracy.

On the contrary, Cleland et al. [8] claimed that the hip data showed the highest

accuracy in their activity classifier compared to the other five sensor placements on

lower back, wrist, foot, chest and thigh, and even higher than the accuracy that

obtained by combining all the sensor data. They used heuristic features extracted

from accelerometer data and energy based on fast Fourier Transformation values

collected from Shimmer sensors 1. They used decision trees (DT), Naïve Bayes

(NB) and neural network for their classifiers based on Weka software 2 that is based
1https://shimmersensing.com/
2 https://www.cs.waikato.ac.nz/ml/weka/
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on Java language. Gjoreski et al. [9] used four accelerometers on chest, waist, thigh

and ankle to detect postures (standing, sitting, lying down and sitting on the floor)

and falls detection. Their conclusion was, to detect falls, chest or waist sensors could

be used and they recommended a ‘waist’ sensor over a ‘chest’ sensor as it is easier

to mount. They noticed a higher posture classification accuracy when combining a

chest or waist sensor with an ankle sensor.

Lützner et al. [10] claimed that the different sensor placements affect the accuracy

in step counting and stair climbing. They used five credit card size commercial

accelerometer devices (activPAL™ 3) on different positions on the leg i.e. frontal

and lateral sides of upper thigh, frontal side of middle shank and frontal and lateral

sides of the lower shank. They compared the observed number of steps with each

sensor and recommended that mounting a sensor on the frontal side of the shank

would be the best place to count steps.

Boerema et al. [11] examined the optimal place to mount a waist sensor by using

five ProMove2 4) sensors on an elastic belt and letting the participants walk on

a treadmill at different speeds. They calculated the integral of the modulus of the

accelerometer output and compared the differences among sensor placements. Their

conclusion was that mounting the sensor at the most lateral part of the waist is the

most effective place and better results can be observed when the sensor were tightly

fitted onto the belt [11].

Some of the recent analyses based on selecting the optimal sensor placements are

shown in Table 2.2. Based on these results, it was realized that the ‘thigh’ is a

better place to mount a sensor in classifying postures and some physical activities

[7]. As this research focused on cyclic movements like walking, climbing stair up

and down, sensors were placed on both ankles/ lower-shanks as well [10]. As most

of the posture classifiers were based on waist/ chest data, two sensors were mounted
3 https://www.palt.com/
4 https://inertia-technology.com/product/motion-capture-promove-mini/
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on the most lateral part of the waist on both sides [6, 9, 11]. According to the

sensor placements suggested by Gemperle et al. [5], in this research two sensors

were mounted near the rear collar area and another two were mounted on the upper

arms as shown in the Figure 7.1. Finally, as the wrist is the most common place

to mount a wearable device [12], two sensors were also mounted onto both wrists in

this research.

2.3 Multiple Sensors in Activity Classification

Gao et al. [15] explained that there is a trade off between using a single wearable

sensor data to extract a considerable amount of data on heuristic features that train

complex classifiers and using multiple sensors with light-weight algorithms. In order

to use multiple sensors (Shimmer sensors1) for their study, they attached Shimmer

sensors on chest (sternum) and left under-arm on to a garment, waist sensor on a

belt while a thigh sensor was placed in the pocket of the trousers. They compared

the classification accuracy with a single sensor vs. multiple sensors. From a single

sensor they extracted features based on time domain, frequency domain and other

heuristic features and used complex algorithms with NB, ANN and decision trees.

On the other hand, from multiple sensors they extracted simple features based on

time domain data and used light-weight algorithms. They concluded their analysis

claiming that a reasonable accuracy could be achieved with multiple sensors with

basic time domain features extracted from accelerometer data.

There are publicly available datasets such as WISDM (Wireless sensor data mining)

[16] and UCI HAR (University of California Irvine Human Activity Recognition)

dataset [17] and those data were collected from a single accelerometer based on a

smartphone. UCI HAR database consisted of data gathered from 30 participants

and this database contains 561 features altogether with the row accelerometer data

values. There are significant number of single sensor based research studies carried
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out based on the above mentioned databases [17, 18, 19, 20, 21, 22, 23] and based on

data collected by other sensors [16, 24, 25, 26]. Some of the research studies pointed

out the drawbacks of using a single sensor such as using an excessive number of

features in training. Yazdansepas et al. [27] used a single triaxial accelerometer

on a smartphone to classify 25 activities based on 176 features extracted from time

domain features and frequency domain features. They mention that when compro-

mising with the battery life of the phone by reducing the training dataset, they

noticed that it impacted on the accuracy. Similarly, Lu et al. [28] used Arduino

based sensor on a wrist to recognise six different activities based on hand move-

ments with 160 time domain and frequency domain features. Ignatov et al. [19]

used data from WISDM database and there feature vector consisted of 60 features.

They claimed that in order to reduce the computation cost and time it would have

been better to take smaller time windows in the analysis.

Further, Bao et al. [29] demonstrated how the activity recognition could improved

by using five biaxial accelerometers while showing how the accuracy dropped when

using two accelerometers. Moreover, Foerster et al. [30] also demonstrated how

the multiple sensors gave support in enhancing the classification accuracy in their

posture and activity classifier. There exist a significant amount of research studies

carried out with multiple sensors since they improve the performance by analysing

orientation of each body segment [31, 32, 33].

In this research, multiple sensors were used, as a clear picture of overall body move-

ments could be achieved by covering both the upper body and lower body with

sensors, taking into account the details mentioned in the Section 2.2.

2.4 Data Sampling in Activity Classification

Data collection from IMUs were acquired in different sampling rates taking into

account the factors like saving energy and acquiring enough data [34].
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Meng et al. [35] have demonstrated that common cyclical movements such as walk-

ing, running, jumping and skipping can be captured with an upper limit of 10 Hz, by

analysing the power spectral of such data collected from an optical motion capture

system.

Antonsson et al. [36] have analysed frequency content of gait using force plates and

claimed that gait related frequencies lie between 0 and 20 Hz while 98% of the energy

is below 10 Hz. Hence, Karantonis et al. [37] have used 45 Hz as their sampling

rate in real time ambulatory monitoring classifier with triaxial accelerometers and

Abbate et al. [38] have used 50 Hz as their sampling rate in fall detection system.

Further, Abbate et al. [38] have mentioned that 50 Hz sampling rate was a good

trade-off in saving energy while collecting enough accelerometer data in order to

detect falls. Many other gait related studies [39, 40] and activity classifiers based

on wrist data [41] have been carried out setting the data sampling rate based on

Antonsson et al.’s [36] frequency analysis.

Most of the other activity classification studies (some of them have listed in Table

2.3) have used frequencies between 10 Hz and 100 Hz.

Hemmatpour et al. [42] have collected data at 10 Hz sampling rate as they have

focused on falls detection and they have accomplished that identifying postural

changes. Anjum and Ilyas [43] have classified simple activities such as walking,

running, climbing up and down stairs, cycling, driving and inactive by collecting

data at a 15 Hz sampling rate. Other studies [44, 45, 46, 48] that have collected

data at 20 - 30 Hz sampling rate, have analysed common simple daily activities such

as sitting, standing, walking, climbing up and down stairs, cycling and lying down.

Mehrang et al. [47] also have collected data at 25 Hz. Even though they have

collected data from simple activities and complex activities such as dish washing

and table cleaning, they have classified all the complex household related activities

as a single activity while classifying the other simple activities.
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Anguita et al. [49] have claimed that 50 Hz sampling rate was sufficient to capture

human movements and they have classified the activities into simple activities such

as standing, sitting, lying down, walking, climbing up and down stairs. Saputri et al.

[50] have used 50 Hz sampling rate in classifying data into activities such as running,

walking, climbing up and down stairs, hopping and jogging based on Fahim et al.’s

study [54]. Fahim et al. [54] have claimed that 50 Hz sampling rate was a suitable

frequency to recognise dynamic activities at an acceptable accuracy.

Dernbac et al. [51] have analysed complex activities such as cleaning (wiping the

kitchen top and sink), cooking, medication, sweeping, washing hands and planting

water other than the simple activities (sitting, standing,lying, walking, running,

climbing stairs, and driving). That might be the reason for them to use 80 Hz as

the sampling rate. Similarly, Hsu et al. [52] have used 100 Hz as the sampling rate.

They have also analysed complex activities such as drinking and taking elevator

other than the simple activities mentioned in Dernbac et al.’s [51] study. Reiss et

al. [53] have also used 100 Hz as the sampling rate and analysed complex activities

such as watching tv, computer work, folding laundry, cleaning, ironing other than

the simple daily activities.

In this study, it was decided to collect data at 50 Hz sampling rate, as simple human

activities can be captured and classified at an acceptable accuracy with that rate,

based on the results of the other studies [49, 50, 54].

2.5 Sensor Orientation Correction Mechanisms

As sensor orientation may not be able to be maintained consistently everyday, there

should be a way to correct the orientation throughout the data analysis process.

That would make the data analysis procedure meaningful. In order to tackle this

issue, there are two commonly followed approaches. The first approach is using the

orientation invariant features and the second approach is calibrating the data based
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on a known/predefined position [55].

Following the first approach, some researchers conducted their analyses with the

magnitude of the acceleration values so that the orientation of the sensor/device

would not be affected in the classifications [56]. Hur et al. [57] also used the

magnitude of the variation of acceleration without considering the orientation of the

sensor. Foerster et al. [30] and Steinhoff et al. [58] also used orientation independent

features in their studies by applying a calibration method to correct the position at

the beginning of the data collection and using principal component analysis (PCA)

to find the motion axis of the subject respectively.

Wu et al. [55] corrected the orientation by using two steps. Their first step was to

detect the walking segments using magnitude of accelerometer data since magnitude

did not vary with the orientation. In the second step, the training data templates

(data that they collected from each participant inside the clinic) were compared with

the identified walking segments to calculate the rotation matrix to fix the data. They

applied this rotation matrix to the whole dataset in order to correct the orientation.

Henpraserttae et al. [59] suggested a projection-based technique to correct the

orientation. First they normalised the raw data with the mean and the standard

deviation of the data and next found the vertical acceleration by using the mean of

the dynamic segment of the signal. Separation of the dynamic and static segments

were identified by using the variance of the magnitude of the signal. Next, the

anterior-posterior axis was computed using the principal axis of the data on the

plane perpendicular to the vertical axis of the global coordinate system assuming

that the most of the dynamic activities happen in the anterior-posterior axis. For

that, first the data were projected to the plane that was perpendicular to the vertical

axis and computed the principal axis of the data. The second step was performing an

Eigenvalue decomposition on the covariance matrix of the data that were projected

to the vertical axis to find the other two axes of the acceleration.
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Friedman et al. [60] corrected the orientation based on the ‘standing upright’ data

of the wearer. They assumed that when the sensor was attached to the body firmly

and the wearer was ‘standing upright’, the perpendicular axis to the gravity axis

should measure 0g (0 gravity). Based on this property they calculated the rotation

matrix to correct the orientation.

In this research the ‘standing upright’ data was used to align the vertical axis of the

sensor to the gravity axis and then to correct the other two axes that were perpen-

dicular to the gravity axis by using an activity that occurs in the sagittal plane, by

considering the above mentioned mechanisms regarding orientation correction.

2.6 Common Features used in HAR

In order to achieve high accuracy within a reasonable time, it is better to feed high

quality features to the classifiers [61]. When creating a feature vector with a high

dimension, there can be redundant data and this may cause performance deterio-

ration in the classifiers [62]. In most of the activity classifiers, statistical heuristic

features are used as the feature vectors. Statistical features that can be derived

from IMU data are mean, median, standard deviation, variance, root mean square,

average derivatives, skewness, kurtosis, interquartile range, zero crossing rate, mean

crossing rate, pairwise correlation, spectral entropy, minimum and maximum for

accelerometer and gyroscope data for each axis or magnitude for the selected time

window [17].

Zhang et al. [61] introduced a feature set called physical features that are relevant

to the physical movements of the activities in addition to the statistical features and

they are listed below.

• Movement intensity based on the magnitude of the acceleration

• Normalised signal magnitude area
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• Eigenvalues of dominant directions based on the covariance matrix of the ac-

celeration along each axis of acceleration

• Correlation between acceleration along gravity heading directions

• Average velocity along heading direction

• Average velocity along gravity direction

• Average rotation angles related to gravity direction

• Dominant frequency based on the Fast Fourier Transform (FFT)

• Energy based on the FFT

• Average acceleration energy

• Average rotation energy

Even though some of the studies used both time and frequency based features in their

activity classifiers, Chong et al. [63] claimed that subsets from time-domain features

are sufficient to classify the accelerometry into activities even without analysing

frequency domain features. They examined 206 time and frequency-based features

with different types of classifiers (Artificial Neural Networks (ANN)), Support Vector

Machines (SVM) and Random Forests (RF)) in activity classification with a single

accelerometer mounted on the right hip [63].

As Chong et al. [63] suggested, only time based features were used in feature vectors

including both statistical and physical features as suggested by Zhang et al. [61], in

training activity recognition classifiers, in this research.

2.7 Data Fusion Methods

Data fusion can be divided into three main categories such as sensor level fusion,

feature fusion and classifier fusion [64].
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Banos et al. [65] and Nweke et al. [64] explained how the sensor fusion could increase

the reliability, robustness and generalisation ability of a classifier. Sensor level fusion

means combining raw data from multiple sources (from the same or different types)

[64, 66]. For example, Chen et al. [67] and Qi et al. [68] discussed about fusion of

video and IMU sensor data in human activity recognition in increasing the accuracy,

while Wang et al. [69] explored fusing wearable sensor data with ambient sensor

data. Most of the other studies carried out with the data collected from IMUs

that are consisted of accelerometers, gyroscopes and magnetometers [66, 70, 71, 72].

Wang et al. [73] used Kalman filter [74], the most common method in data fusion to

fuse accelerometer and gyroscope data. Nweke et al. [64] compared the importance

of fusing accelerometer data with gyroscope and magnetometer data as these data

could be used not only in removing noise but also in correcting the orientation.

Nweke et al. [64] further discussed about fusing IMU data with physiological signals,

pressure insole, infrared, camera, GPS, and acoustic sensor data in human activity

recognition.

Orientation estimation can be done using multisensor fusion which may not an

easy task in practical situations [75]. Gyroscope data can be used to estimate the

orientation from a known position by using the integration [76]. However, gyroscopic

data with additional noise lead to drifting problems as these errors get multiplied

with the integration. Accelerometer data can be fused with the gyroscope data

to correct pitch and roll estimations. Further, magnetometer data can be used in

correcting yaw movements [75].

Sensor fusion works well with stationary and magnetically clean situations [75] and

in order to overcome the practical issues such as linear translation of accelerometer

data and magnetic interference, MARG sensor fusion algorithms combine all these

sensor data.

Most commonly used MARG sensor fusion approaches are complementary filter 5,
5https://ahrs.readthedocs.io/en/latest/filters/complementary.html
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Kalman filter6 and gradient descent (Madgwick) filter 7.

Complementary filter uses weighted sums from accelerometer and gyroscope data.

The weights are based on the reliability of the measurements depending on the fre-

quency. This is an efficient filter with respect to computational intensity. However,

with the noise, the accuracy may get inhibited.

Kalman filter uses a recursive function taking into account the current input, previ-

ous input and the previous state prediction when the situation is a linear problem

and if it is not a linear problem (object with movements) extended Kalman filter

can be used to linearise the parameters. This approach works well when it is tuned

properly, but with a high computational intensity.

Madgwick algorithm calculates the difference between predicted and observed sensor

output and minimises the difference with two gradient decent calculations. How-

ever, it was noted that the accuracy of the Madgwick algorithm hinders due to the

magnetic disturbances [75]. Further, when having two gradient descent calculations,

those gradients may not be perpendicular in the n-dimensional space and may affect

the convergence time. The algorithm uses the horizontal component of the magnetic

field to identify the magnetic north and the vertical component causes a deviation

(magnetic inclination) from 0 to π/2 at the magnetic equator and magnetic poles.

This may also affect the gravity vector and it may also vary from 0 to π/2. Hence,

when these vectors are not perpendicular, the calculations based on yaw movements

may slow down while roll direction calculations may happen faster than that.

Madgwick algorithm was modified by Wilson et al. [75], addressing the previous

issues by decoupling roll and pitch from magnetic interference. Throughout this

study it was decided to use this latest version of Madgwick algorithm 8.

Feature fusion means combining multiple sensor data extracted especially from het-
6https://ahrs.readthedocs.io/en/latest/filters/ekf.html
7https://ahrs.readthedocs.io/en/latest/filters/madgwick.html
8https://github.com/xioTechnologies/NGIMU-Software-Public
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erogeneous sensors, using machine learning algorithms [64, 66, 73]. Most of the stud-

ies used handcrafted features based on time domain and frequency domain [64, 66]

such as statistical features extracted from time domain signals, signal magnitude

area, correlation coefficient, skewness, kurtosis and energy level of time windows

[77, 78] while some studies were based on features extracted from video frames

[79, 80, 81].

Classifier fusion means combining several classifiers to enhance the accuracy of the

classifiers [64, 66]. There are methods that can be used to fuse data at the decision

level such as bagging, soft margin multiple kernal learning, stacking, voting and

hierarchical methods [82].

Even though most of the studies used data fusion in their studies, Webber et al. [66]

found at their investigation that there was no evidence about the optimal level to

apply sensor fusion. They noted that the computational complexity vary in different

fusion levels. They observed several points through their study e.g. an improvements

can be seen with accuracy and processing time when using the Kalman filter at the

sensor level fusion, Bagging and stacking classifier level fusion methods are the best

way to optimize fusion at classifier level fusion despite the processing time.

Throughout this research, as mentioned in the following list, it was decided to fuse

the data from the sensors mounted on different places, and heterogeneous data

from IMU sensors, feature fusion as well as classifier fusion following a hierarchical

method.

• Sensor fusion/ sensor level

– Using video recorded data to synchronise the IMU sensor data

– Combining accelerometer data, gyroscope data and magnetometer data

to estimate orientation

• Feature fusion / feature level
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– Homogeneous sensor fusion

∗ Waist sensor to vertical axis angle

∗ Thigh sensor to vertical axis angle

∗ Lower-shank/ankle to vertical axis angle

– Heterogeneous sensor fusion

∗ Combining accelerometer data, gyroscope data and magnetometer

data in orientation calculation

• Classifier fusion / Decision level

– Static vs dynamic movement classifier - hierarchical method

– Posture classifier (for static data)

– Activity classifier (for dynamic data)

2.8 Clothing-Mounted Wearable Sensors in Ac-

tivity Monitoring

As mentioned in Chapter 1, the bio-mechanical sensors can be either placed on/near

the body or can be used as a transcutaneous sensor. The sensors that can be placed

on/near the body segments can be attached with a strap, belt, or kept in shoes

or attached into clothing [83]. Attachment of sensors into clothing can be done

in two ways i.e. using smart textiles with electronic interconnections with sensors

[84, 85, 86, 87, 88] and attaching sensors into ordinary clothing [15, 89]. However,

there are some smart textile sensing approaches done with loose clothing [90].

Fabric that can sense and react to its environmental changes are defined as ‘smart

textiles’ [91]. They can be divided into three types as passive, active and ultra

smart textiles. Passive smart textiles are said to be the fabric that can change their

features based on its environmental stimulation such as colour changing, waterproof



Section 2.8 Page 44

and breathable textile. Active smart textiles can be defined as the fabric with

sensors and actuators that can react to the environmental changes while passing the

messages. Ultra smart textile go ahead with an additional step and can respond to

the environmental changes as it consists of a brain node in addition to the sensors

and actuators [92].

To embed sensors into the fabric, there are different techniques such as knitting,

weaving, embroidery, coating methods and printing methods [93]. Each method

has its advantages and disadvantages. Major disadvantages include having complex

manufacturing processes, high production cost, limited choices in selecting fabric

material and methods such as printing works better on flat surfaces [93].

However, this research focuses on long-term healthcare monitoring and only speaks

about sensors mounted into ordinary clothing assuming that clothing that people

wear everyday is comfortable and easy to maintain rather than using smart textile

made with conductive fiber yarn [94] or conductive paint [95].

Gleadhil et al. [89] mentioned that usually tight fitting garments are being used to

attach sensors, as casual clothing are loose fitting that might cause having additional

movement details in the sensor readings. Further, Gleadhil et al. [89] noticed that

there is little or no research to validate the measurements of IMU which are attached

to the clothing (in 2018). They validated the temporal motion from the sensors

attached to the clothes. They used a tight fitting vest and a tight jacket and five

inertial sensor devices (weighing 23 g, with dimensions 55 mm × 30 mm × 13

mm) in their study. Two of the sensors were strapped onto the Cervical vertebra

segment(C7)9 and Thoracic vertebrae segment (T12) 10, one was placed on a jacket

at C7, and the other two sensors were sewn into two pockets of a tight fitting elastic

heart rate monitor vest. They focused only on dead-lifting. Using the anterior-

posterior acceleration, they compared the raw error, Cohen scale, correlation and
9 Seventh Cervical Vertebra

10 Twelfth thoracic vertebra
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mean difference of the data sets. They noticed a high similarity between the sensor

values with the clothing mounted data for dead-lifting.

Most of the studies used tight fitting garments to mount sensors to collect data from

multiple sensors. Gao et al. [15] used a tight fitting vest and a belt in their data

collection to attach shimmer sensors to compare the activity classification accuracy

with a single sensor vs multiple sensors. Most of other research studies mounted

sensors onto the belts or vests of the wearer in activity classification [96, 97], At-

tention deficit hyperactivity disorder (ADHD) identification [98] and falls detection

[99].

Further, Thu et al. [100] mounted stretch sensors on the wearer’s garment near

the knee and Tsirtsi et al. [101] mounted IMUs onto a vest to implement activity

classifiers. On the other hand MCGrath et al. [102] used a sports vest to mount an

IMU to detect fast bowling in cricket and Smith et al. mounted an IMU on a sports

vest to detect locomotion of athletes [103].

However, tight fitting clothing are not comfortable to be worn for an extended period

of time [90]. It is also uncomfortable, especially for elderly people and people with

movement disorders. Even though, the usage of loose clothing can address this issue,

there would be a trade off with the sensor reading accuracy as the sensors might get

disoriented and can add additional movement data to the sensor reading [90].

In 2002, Laerhoven et al. [104] described how they achieved a higher activity recog-

nition rate when using 30 accelerometers. They formed a harness with 16 sensors

and mounted them on the legs. The rest of the sensors were mounted covering the

upper body and those sensors were attached onto loose clothing using velcro.

Michael et al. [105] conducted their study as a simulation of collecting data from

loose clothing. Instead of collecting data from people, they collected data from a

pendulum with tri-axial accelerometers mounted into three different fabric materials

(denim, jersey and roma). The fabric was attached to the end of the pendulum.
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Three accelerometers were attached in such a way that one was at the tip of the

pendulum, the second one was at the middle of the fabric and the last one at the end

of the fabric. After attaching the calibrated sensors, the pendulum was released from

the horizontal position and data collected for 10 seconds. The experiment was done

with and without using an additional weight at the end of the pendulum to check

whether there was an affect to the data with that additional weight. Michael et al.

revealed that the sensors mounted onto the clothes instead of strapping them with

non-rigid bands might give a better signal variation that would make the activity

recognition procedure easier [105].

Chiuchisan et al. [106] mounted an Arduino Nano board with an IMU into a loose

pair of trousers on the thigh area. They called it the ‘wearable recovery pants’

as they intended to use them for the elderly or people with disabilities in their

rehabilitation time periods to detect movements. They analysed the data collected

from the sensors and concluded that there is potential for using such loose clothing

with sensors in clinical rehabilitation.

Jia et al. [107] used a device called eButton which can be mounted onto the wearer’s

top so that the device could touch the wearer’s chest. They have successfully used

the IMU readings of the eButton which can be mounted onto everyday wear clothing

to observe ballistocardiogram (BCG) signals.

Yudantoro et al. [108] mounted 10 IMUs on to a shirt to detect falls in real time

and they focused mainly on the passing of messages in real time when they detect

a fall.

To date, there are a few studies that were carried out analysing how the loose

clothing mounted sensor data vary from body mounted sensor data. One such study

was based on the upper body mounted sensor data in a loose garment [90]. Harms

et al. [90] performed this study under a shoulder rehabilitation programme and

they calculated the orientation error between a simulator output and the clothing,
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for 10 different postures. Then they enhanced their simulator with the calculated

orientation errors and validated their simulation. They concluded that they noticed

an increment in posture classification accuracy by 18% when they corrected the

simulation.

It was identified that there should be a systematic way of analysing how clothing-

mounted sensor readings would differ from body-mounted sensor data. Further, it

was noted that, almost all the other studies based on loose clothing, mounted the

sensors on top of the clothing other than the study conducted by Chiuchisan et al.

[106]. Their research investigated how the sensors mounted inside the lateral part

of the everyday wear clothing, support in activity classification [106].

2.9 Discussion and Conclusion

This research uses multiple IMU sensors consisting of accelerometer, gyroscope and

magnetometer in order to analyse the movement patterns of people. In order to

make the donning and doffing of sensors easier, the sensors would be mounted onto

clothing. The optimal places to have the sensors to track the movements of people

have been discussed under Section 2.2, and accordingly this research covers both the

upper body and lower body with sensors.

During the data collection, sensors might not be able to keep the same orientation

across all days and the sensor placement might change after the participant wore

the clothing. Hence, a sensor orientation correction mechanism was used in this

research.

According to the literature, this research uses time based statistical and physical

features to train the activity classifiers. Data, features and classifier outputs fuse

where necessary as described in Section 2.7 to enhance the output of the classifiers.

Even though some studies used loose clothing in their data collections, there seem
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to be a gap in the validation of loose clothing data with respect to different ac-

tivities. Hence, this research focuses on quantifying the use of loose clothing data

and understanding human movements based on clothing data with respect to basic

postures and gait parameters.
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Chapter 3

Comparing Clothing-Mounted

Sensors with Wearable Sensors for

Movement Analysis and Activity

Classification

This chapter addresses the first aim of this research and it was to quantify how

strongly sensors mounted onto body correlate with sensors on clothing depending

on different activities and clothing types.

In order to achieve this aim, a single person study was conducted with 4-6 Actigraphy

sensors1 across three days. The sensors were mounted as pairs near waist, thigh

and ankle depending on clothing type (loose slacks, pencil skirt and knee length

dress). The participant performed multiple daily activities such as walking, running,

sitting and riding a bus. The main analysis was based on comparing the Similarities

between accelerometer signal pairs (on body and clothing) by calculating correlation

coefficients for different activities and clothing type.
1http://www.actigraphy.com/
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By conducting this analysis, three main conclusions were able to derive. Higher

correlation values were observed while the person was in static postures and slightly

lower correlations were observed while the person was performing dynamic activities

such as running and walking. Further, the activity classification accuracy of cloth-

ing mounted data were compared with body-mounted data as the ground truth

and noted that the clothing dataset also has g a reasonable accuracy in activity

classification.

Methodology, discussion and conclusions are explained in detail on the attached pa-

per titled “Comparing Clothing-mounted Sensors with Wearable Sensors for Move-

ment Analysis and Activity Classification”.

Publication status: Full paper has been published by Sensors special issue ‘Data

Analytics and Applications of the Wearable Sensors in Healthcare’ as:

U. Jayasinghe, W. S. Harwin, and F. Hwang. “Comparing Clothing-mounted Sen-

sors with Wearable Sensors for Movement Analysis and Activity Classification”.

Sensors, 20(1):82, 2019.

The following is the final version of the published paper.
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Abstract: Inertial sensors are a useful instrument for long term monitoring in healthcare. In many
cases, inertial sensor devices can be worn as an accessory or integrated into smart textiles. In some
situations, it may be beneficial to have data from multiple inertial sensors, rather than relying on a
single worn sensor, since this may increase the accuracy of the analysis and better tolerate sensor
errors. Integrating multiple sensors into clothing improves the feasibility and practicality of wearing
multiple devices every day, in approximately the same location, with less likelihood of incorrect
sensor orientation. To facilitate this, the current work investigates the consequences of attaching
lightweight sensors to loose clothes. The intention of this paper is to discuss how data from these
clothing sensors compare with similarly placed body worn sensors, with additional consideration
of the resulting effects on activity recognition. This study compares the similarity between the
two signals (body worn and clothing), collected from three different clothing types (slacks, pencil
skirt and loose frock), across multiple daily activities (walking, running, sitting, and riding a bus)
by calculating correlation coefficients for each sensor pair. Even though the two data streams are
clearly different from each other, the results indicate that there is good potential of achieving high
classification accuracy when using inertial sensors in clothing.

Keywords: actigraph; body worn sensors; clothing sensors; cross correlation analysis; healthcare
movement sensing; wearable devices

1. Introduction

In many countries, a significant increase can be seen in the number and proportion of older adults
year on year. The population of people over 60 years old is projected to increase in Europe, Northern
and Latin America, Asia and Africa from the year 2015 to 2030 [1]. The number of people who have
noncommunicable diseases is also projected to increase significantly by 2030 [2]. Generally older
people are more prone to noncommunicable diseases [2] resulting in high care costs in each country.
In OECD (Organisation for Economic Co-operation and Development) countries, an annual increment
of 4.8% of the cost allocated for long-term monitoring from 2005 to 2011 was seen. It is predicted that
this cost will double in the period from 2015 to 2060 [3].

Home-based monitoring potentially offers a cost-effective mechanism for prevention of disease
and promotion of healthier lifestyles. A number of factors have to be taken into account when using a
long-term monitoring system, such as whether these systems are reliable for measuring real time data,
are safe to use with patients, have high power efficiency, and provide clinically useful data. Wearable
sensors have the capability to provide efficient monitoring of daily routines for a long period in a cost
effective way [4].
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A growing interest in health monitoring has led to the commercial availability of a number of
wearable sensors for self-monitoring. Consumer products for self-monitoring generally comprise a
single device, often wrist worn, which may hinder the accuracy of the data analysis and classification.
In contrast, in research work, multiple sensor devices are often used in order to achieve a higher
accuracy in activity classification. However, there are feasibility issues with the wearing of multiple
sensors on a daily basis in a residential environment. There are also challenges in maintaining a
consistent sensor orientation and approximate location with respect to the body during the data
collection periods. Further, in healthcare the patient or research participant may not have the patience,
or abilities to attach multiple sensors each day. Embedding sensors into the clothing may, to some
extent, address both issues of wearing multiple sensors every day and managing the sensor orientation
and approximate location.

This study considers the quality of data that would arise from inertial sensors embedded into
clothes that people wear on a daily basis.

It examines whether these sensor devices would be able to provide data as accurate as that
collected by sensors attached to the person. In particular, can the data be used to predict the actions
and behaviour of the individual and allow activity classification?

The aim of this research is to investigate and quantify to what extent the data obtained from the
clothing sensors can be used in characterising activities, as compared with body worn sensor data.
To achieve this, sensor data were collected from body worn sensors and sensors attached to three
different clothing types, across a range of daily activities. The correlation coefficients were calculated
between the clothing-embedded and worn data to check how much they agree with each other across
a range of daily activities and different styles of clothes.

2. Related Work

Research relating to the use of wearable sensors with older adults has largely been in three areas –
indoor tracking, activity classification and real-time vital sign monitoring [5]. Activity classification
using body worn inertial sensor data in long-term monitoring is a well-established approach [6].
Accelerometers are being used as the key instrument, while gyroscopes and barometric pressure
sensors are also used in some studies. Out of those studies some are using a single sensor while others
are using multiple sensors for activity recognition. For example, a single sensor, i.e., a sensor only on the
waist, thigh, lower-back and thigh, in activity classification of the whole body can be seen respectively
in [7–10]. Other studies, using multiple sensors, investigate the accuracy of activity classification
compared across placement of the sensors on the wrist, hip, neck, knee, chest, lower arm, lower
back, upper arm and ankle. Montoye et al. [11] observed high accuracy in activity classification for
three levels of physical activities, i.e., SB (sedentary behaviour), LPA (light-intensity physical activity)
and MVPA (moderate-to vigorous-intensity physical activity) based on thigh data, high accuracy in
classifying SB based on (non-dominant) wrist data, and low accuracy in classifying physical activities
based on (dominant) wrist and hip data. Hence, they concluded that it is better to use thigh data or
non-dominant wrist data in analysing different levels of physical activities. Cleland et al. [12] found
that, of chest, wrist, lower back, hip, thigh and foot sensor data, hip data scored the highest accuracy
in activity classification. However, they [12] also noted that further studies should be carried out in
order to find the optimal sensor placement across multiple activities, since their study focused only
on activities such as walking, lying and sitting. As both upper body and lower body movements
contribute to locomotion [13], it is better to investigate movements from both sides of the body, rather
than just one side.

Analysis of above mentioned sensor data related to activities may seek to find patterns of activities
or movement quality. In most of the studies, pattern recognition algorithms were used in activity
classification, such as decision trees ([10,14,15]), KNN (k-nearest neighbours algorithm) ([15–17]), SVM
(Support Vector Machine) ([9,18,19]) and other algorithms (C4.5, RF (Random Forest), NB (Naive
Bayes), Bayesian).
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Even though there are numerous research studies on activity classification with sensor data, very
few have been conducted on sensors attached to everyday clothes. One study highlighted that there
was little to no research validating the measurements of IMUs (Inertial Measurement Unit) attached to
loose clothes [20]. Their research aimed to validate the temporal motion from the sensors attached
to the clothes. As the clothes, a tight fitting vest and a tight jacket were used. Their main intention
was to validate the sensor readings by calculating four parameters, i.e., raw error, standardised error
(Cohen scale), Pearson’s correlation and mean difference. Five inertial sensor devices (weighing 23 g,
with dimensions 55 mm × 30 mm × 13 mm) were used, where two were strapped onto the Cervical
vertebrae segment(C7) and Thoracic vertebrae segment (T12), one was placed on a jacket at C7, and the
other two sensors were sewn into two pockets of a tight fitting elastic heart rate monitor vest so
that they were posterior to the C7 and T12 sensors. The study focused on only one activity, that is,
dead-lifting. When comparing the raw error, Cohen scale, correlation and mean difference of the data
sets, only the anterior-posterior acceleration was used. They were able to see a high similarity between
the sensor values that were obtained from both mechanisms, owing to the single activity that they
conducted with the tight clothes.

A second research study reported that sensors mounted onto clothes, instead of strapping them
onto a structure with rigid bands, gives a better signal variation so that it may make the activity
recognition procedure easier [21]. For their data collection, a pendulum and three different fabric
materials (denim, jersey and roma) and three tri-axial accelerometers were used. The fabric was
attached to the end of the pendulum and three accelerometers attached such that one was at the tip
of the pendulum (fixed in place with a rigid band), a second one was in the middle of the fabric,
and a third was at the edge of the fabric. After attaching the calibrated sensors, the pendulum was
released from a horizontal position and data was collected for 10 seconds. The experiment was done
with and without an additional weight at the end of the pendulum. The Euclidean distance and
one-way analysis of variance were calculated when calculating the similarity of the signals (data from
sensors attached with rigid bands as compared with sensors attached to different fabric materials).
The objective was to predict whether the pendulum was swinging with or without a weight attached
to the end. For this prediction, SVM and DRM (Discriminative Regression Machines) were used.
The conclusion of their research work was that the fabric’s nature of deforming movements in various
directions makes it easier to predict the motion, compared with the sensor data obtained from the
sensors attached with the rigid bands.

Hence it can be concluded that more information is needed to assess the true value of embedding
sensors into clothing to allow better representation of human movement and activity classification.

3. Materials and Methodology

The aim of the present study is to compare and contrast how clothing sensor data patterns
correlate/deviate from body worn sensor data, across three different types of clothing.

3.1. Data Collection Procedure

Data were collected from one participant (the first author) over three normal working
days. On each day, the participant wore a different type of clothing (loose slacks, pencil skirt,
and frock/knee-length dress), and multiple sensors were worn in pairs on the clothing and the
body. The sensors and their placement are described further in the next section. An activity log was
kept and used to annotate the data files. The main activities were walking, running, sitting as well as
other daily activities including riding on a bus.

3.2. Sensor Placement

Actigraph tri-axial accelerometers (wGT3X-BT, weighing 19 g and measuring 4.6 cm × 3.3 cm ×
1.5 cm, as shown in Figure 1) were worn in pairs, such that one sensor was strapped onto the body
and the other was sewn to the clothes in a similar location to the body-worn sensor. As the optimal
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places to mount sensors are not yet well defined [12], we mounted one sensor pair on the waist to track
upper body movements, and two other sensor pairs on the upper thigh and ankle to track lower body
movements [13]. Hence, sensor pairs were placed at the participant’s waist and upper-thigh for the
pencil skirt (41 cm long, with a 38 cm inch perimeter at the thigh) and the frock (48 cm inch perimeter
at the thigh). For loose slacks, a further pair of sensors was worn on the ankle and hem of the slacks.
The body worn sensors were always placed just below the sensors on the clothes, as shown in Figure 2.
The participant was 152 cm in height, and wore UK women’s size 6 clothes. The orientation of the
sensors was set such that the y-axis was aligned most closely to the axis of acceleration from gravity.
Table 1 shows the duration of data collection, type of clothing and sensor placement.

Figure 1. Coordinate frame of the Actigraph device. (Image from Actigraph website https://www.
actigraphcorp.com).

Figure 2. Sensor placement on subject and on subject’s clothes.

The sensor devices were initialised with the Actilife (https://www.actigraphcorp.com/support/
software/actilife/) software to synchronise their internal clocks. Additionally, at the start of each
day of data collection, the participant performed a jump in order to create a distinctive marker in the
accelerometry data that could be used to further check the synchronisation. Furthermore, each pair of
sensors (one in clothes and one on the body) were tapped synchronously four times to ensure data
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from sensor pairs could be time-aligned. At the end of each data collection period, another jump was
performed to identify the point where the data collection was completed, and provide an indication of
any potential sensor time drift.

Table 1. Sensor placement over three days and three types of clothing.

Day 1 Day 2 Day 3

Clothes Loose slacks Pencil skirt Frock (knee-length dress)

Duration 5 hours 3 hours 3 hours

Frequency 50 Hz 50 Hz 50 Hz

Sensor
placement

on Body
Waist Waist Waist

Right thigh Right thigh Right thigh

Right ankle n/a n/a

on Clothes
Waist band of slacks Waist band of skirt Waist band of frock

On seam of slacks near thigh On seam of skirt near thigh On seam of frock near thigh

Hem of slacks near ankle n/a n/a

3.3. Data Analysis

The data were analysed in terms of sensor pairs, in order to compare the body worn with the
clothing worn data. Comparisons were also made across different activities and the different clothing
types. The data were analysed in MATLAB.

3.3.1. Preprocessing the Data

The data from both sensors in a pair were first time-aligned, based on the “jump” and the
“tap” markers. Next, the time lag between the two sets of sensor readings for each activity was
estimated using a cross correlation, because there can be time lags between the body-worn and the
clothing-mounted sensor readings owing to factors such as the stiffness of clothing material (which
causes swing) and cloth dynamics for each activity. The maximum cross correlation value was then
used to determine the lag between the two signals, and this lag was adjusted in order to bring the two
signals into alignment.

Secondly, an orientation correction was applied to both sets of data. When attaching the sensors
onto the body and to the clothes, there may be discrepancies in the orientations between the two
sensors in a pair. Hence in order to maintain a reasonably similar orientation for each sensor pair, each
data set was rotated along a common axis so as to align the principal direction of gravity with the
y-axis of the sensor. This correction can be computed easily using Rodrigues’ rotation formula [22] and
identifying the axis of rotation as being perpendicular to both the gravity vector and the y-axis, and the
rotation about this axis is therefore the angle between these two vectors. Data where this rotational
correction has been applied is termed the ‘rotated data set’.

These preprocessing techniques were carried out in order that the data from the two sensors in
each pair could be meaningfully compared.

3.3.2. Activity Extraction

Using the activity log, data segments corresponding to four activities (walking, running, sitting,
bus ride) were extracted for each day/clothing type. From these segments, three shorter instances
(30–40 s/1500–2000 data points) of each activity were identified and extracted for further analysis.

3.3.3. Comparing the Similarity of the Body-Worn and Clothing-Mounted Sensors

After establishing the normality of the data [23], Pearson’s correlation coefficient was calculated
for each sensor pair to assess the strength of the linear relationship between the two signals [24].
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3.3.4. Activity Classification

We also wished to investigate the possibility of using the clothing sensor data in activity
classification as productively as the body worn sensors. For this purpose, the data were categorised into
four classes: walking/running, transition of a movement, sitting and standing. The analysis examined
only the ’thigh’ sensor data. When a subject is sitting, the thigh is often in a perpendicular posture
with respect to the standing posture, hence sitting and standing would be more easily distinguished
with thigh sensor orientation data as compared with waist or ankle sensor data.

Furthermore, the y-axis accelerations (gravity axis) were used for the classification, because this
axis exhibited the most noticeable differences across activities in acceleration values. When a subject
is standing, the gravity axis acceleration is (following alignment) close to the y-axis value. When the
subject is sitting, the y-axis is now perpendicular to the gravity vector so values are close to zero. When
the subject is moving, the y-axis values are changing significantly based on the additional accelerations
that result from these movements.

The features used for classification were chosen to emphasise information about posture and
movement, including movement transitions. Transitions include sit-to-stand/stand-to-sit activities
which would cause the y-axis acceleration to increase/decrease suddenly, sit-to-walk/run could again
increase the acceleration suddenly, and walk/run-to-stand would cause a sudden reduction of the
acceleration. Two features were used in this classification. To track postural changes, the y-axis
acceleration values were used, while the moving variance of the y-axis acceleration values was
calculated to track these transitions. A window size of 250 milliseconds was chosen to ensure that
even the acceleration changes in short periods were captured.

A decision tree was implemented to classify the data into activities by defining threshold values,
based on visual inspection, for the y-axis (gravity) acceleration and the y-axis moving variance values.
Threshold values were estimated for both body-worn and clothing-mounted sensor data.

Both body worn and clothing data files were then classified into activities by using the decision
tree. Finally, a confusion matrix was created to observe how the classification outputs differed from
body worn data and clothing sensor data, by considering the classifications of body worn sensor data
as the benchmark data set.

4. Results

4.1. Activity-Wise Time-Alignment

Figure 3 illustrates the cross correlation values plotted over time for one of the running data
segments. The point at which the cross correlation reaches a maximum value indicates the lag between
the two signals. The graph shows Day 3 (Frock) running data from the thigh sensor, and for this
specific activity, the lag was 38 data points (approximately 0.76 s delay).

After adjusting for the delay based on the cross correlation maximum value, the time-aligned
signals are as shown in the right-hand plots in Figure 3, with a maximum cross-correlation now
appearing at 0 s, indicating that the delay between the two signals was minimised after applying this
technique. When the correlation coefficient is calculated without considering this time lag, for this
running instance, the value was 0.4136 and after the lag was corrected the correlation coefficient
value was 0.6345. Likewise, the time lag between body worn and clothing worn data set for each
activity segment was calculated and corrected before examining the correlation coefficient values for
each activity.
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Figure 3. (a): Left side 3 plots: Tracked time lag between body worn and clothing sensor data for
running when the subject was wearing a frock, (b) Right side 3 plots: Signals after the alignment using
cross-correlation value. (b) After alignment, maximum cross correlation was observed at 0 s.

4.2. Descriptive Analysis of Acceleration Data

Figure 4 illustrates walking data extracted from thigh and ankle sensor pairs when the subject
was wearing slacks. The sensors were on the right leg, thus two peaks can be interpreted as a single
stride (2 steps) as indicated. According to the data it was calculated that typical stride (two steps) time
here was approximately 0.7 s.

Figure 4. Walking from Day 1 (slacks). (a): Data from thigh worn sensor, (b): Data from seams of slacks
near thigh, (c): Data from ankle worn sensor, (d): Data from hem of slacks near ankle. Red axis: vertical
acceleration, Blue axis: anterior-posterior acceleration, yellow axis: mediolateral acceleration. Note the
similarity of signals between clothing and body worn sensors for walking
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Figure 5 shows running data from the sensor pairs that were on (and over) the thigh when the
subject was wearing a pencil skirt (left graphs) and frock (right graphs) respectively. According to
these data it can be seen that typical stride time (two steps) for running was approximately 0.3 s. Even
though the acceleration values of pencil skirt data have relatively similar values with body worn
sensor data, the frock data in contrast comprise higher acceleration values with sharp peaks when
compared to body worn data.

Figure 5. Running data from Day 2 (Skirt; left graphs) and Day 3 (Frock; right graphs). (a): Day 2
data from thigh, (b): Day 2 data from seams of skirt near thigh, (c): Day 3 data from thigh, (d): Day
3 data from seams of frock near thigh. Red axis: vertical acceleration, Blue axis: anterior-posterior
acceleration, yellow axis: mediolateral acceleration. Note the similarity of signals between clothing
and body worn sensors for skirt data verses the high accelerations present in frock data.

4.3. Correlation Coefficient Value Analysis

When examining the correlation coefficient values, five different sets of data were compared to
determine from which data set the maximum correlation coefficient could be found. The five different
data sets were the original data set, the time aligned data set, rotated data along the gravity axis,
time-aligned and rotated data and finally the time-aligned, rotated and activity wise time-aligned data.
After comparing all the values, it was noted that for activities like walking and running, maximum
correlation coefficient values were found after applying a rotation matrix and activity-wise alignment.

Table 2 shows correlation coefficient values for each activity (multiple walking, running and
sitting segments) after applying a rotation matrix and activity-wise alignment. They are listed by
clothing type (slacks, skirt and frock) for both waist and thigh sensor data.

From Table 2, the waist sensor data had the highest correlation coefficients, irrespective of clothing
type. However, thigh data also showed reasonable correlation values for each activity depending on
the clothing type.
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Table 2. Median correlation coefficient values for different activities for different clothes based on
the ‘Waist’ and ‘Thigh’ sensors. Where there were multiple instances of the same activity in a day,
the correlation coefficient was calculated for each instance, and the median and variance of the multiple
instances is shown. There was a good correlation between body-worn and clothing sensors, apart from
the sensor pair on the thigh and seam of the frock.

Slacks Skirt Frock

Waist Thigh Waist Thigh Waist Thigh

Walking 0.985± 0.022 0.945± 0.013 0.991± 0.006 0.973 ± 0.013 0.978 ± 0.018 0.921 ± 0.059
Running 0.811 ± 0.065 0.802 ± 0.067 0.926 ± 0.0007 0.835 ± 0.094 0.901 ± 0.008 0.642 ± 0.014
Sitting 0.993 ± 0.014 0.967 ± 0.001 0.999 ± 0.0002 0.995 ± 0.004 0.974 0.705

Bus Ride 0.988 0.987 - - - -

4.4. Activity Classification

Figure 6 shows a segment of the output of the activity classifier, based on both body worn and clothing
sensors (thigh data on the slacks). This classifier attempted to identify activities i.e., walking/running,
transitions, sitting and standing, as denoted on Figure 6. In addition to the classification results,
the activities performed by the participant as recorded in the diary are indicated on both graphs.

Figure 6. Activity recognition using a decision tree: Day 1 (slacks) data from body worn (top graph)
and clothing sensors (bottom graph) were classified into one of four activities i.e., Walking/Running,
Transitions of activities, Sitting and Standing. This figure shows a segment of the day’s data. The gravity
axis acceleration is plotted in grey, and the outputs of the classifier are denoted in different colours. Red:
Walking/Running, Green: Transitions, Cyan: Sitting, Purple: Standing. The participant’s activities
according to the diary data are also shown in yellow. The outputs of the classifier are similar in both
data files, with minor mismatches.

Section 3.4 Page 73



Sensors 2019, 20, 82 10 of 13

As the main intention of this research was to examine how the classifier outputs for the clothing
sensor data compared with those from the body worn sensor data, and not to calculate the “true”
activity classification accuracy, a confusion matrix (Table 3) was created considering the classifications
from the body worn data set as the true class. For example, the first cell (row 1, column 1) of Table 3
indicates that 88.0% of the data that was classified as “walking” based on the body worn sensor are
also classified as walking based on the clothing worn sensor. Similarly, 9.5% of the data classified as
walking based on the body worn sensor are classified as transitions based on the clothing worn sensor.

Table 3. Confusion matrix showing the level to which activity classification based on the clothing sensor
data was in agreement with classification based on the body worn sensor data (Day 1 data: when the
subject was wearing slacks). Green boxes show when the highest value was expected and also achieved,
Yellow boxes indicate where a high value was expected, but a lower value than expected was observed.

Classification Data from the Body
Worn Sensor as the “True” Class

Classification Data from Clothing Worn Sensor against Body Worn Data

Walking Transitions Sitting Standing

Walking 88.00% 9.50% 0.70% 1.8%
Transitions 16.10% 45.58% 11.42% 26.90%

Sitting 0.32% 0.26% 88.37% 11.05%
Standing 1.20% 9.58% 0.08% 89.14%

5. Discussion

When using correlation coefficients to compare the data sets, it was important to perform a data
alignment for all the sensors, as the correlation was affected by time lags between the sensors’ starting
times. Orientation correction at this level is also important as the sensors can become misplaced while
the subject is moving and it can mislead the comparisons of data sets. The long term goal is to eliminate
the need for time lag and orientation correction by embedding the sensors more effectively in the
clothes and engineering synchronous data readings.

The first analysis was done calculating correlation coefficient values for both data files. Table 2
was prepared with a summary of all data from the four common activities that were conducted on
three days for waist and thigh sensors. It was clear that thigh data were less correlated than waist
sensor data sets. Yet, these values were also significantly correlated with each other. The frock data
indicate the possibility of considering clothing dynamics in the sensor data as the frock was a loose
dress. Thus the frock could swing with the movements of the leg when the subject was running and
walking. Further, when the subject was sitting on a chair, it was noted that the sensor on the clothes
near the thigh tended to shift with respect to the sensor worn on the thigh itself. Typically the sensor
on the frock would fall away from the leg and onto the chair thus losing a strong relationship to the
underlying limb. In addition to the swinging attribute of the frock, the weight of the sensor device
(Actigraph) emphasised the movement of the clothing rather than the body. Even though there are no
established measures of the looseness of clothes relative to body size, clothing sensor readings would
allow these concepts to be explored.

The final analysis was the comparison of the outputs of the activity classifiers. Based on the
confusion matrix (Table 3), it was noted that all the activities except the transitions were identified in a
high true positive rate, i.e., more than 80%, where the classifier output based on the body-worn sensor
was considered as “true”. Hence it can be taken as a positive indication that this would work more
accurately when an advanced classifier would be used in activity classification. The findings of [21],
mentioned that the accuracy of activity recognition was higher when the sensors were mounted onto
clothes. However, they collected the data from a cloth attached to a pendulum. When it comes to
data collection from a human with actual clothes, it could be said that our evidence demonstrates a
more complex relationship. However, it should be noted that owing to the weight and the size of the
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Actigraph devices, the correlation of data could have been decreased, and it is better to use smaller,
lightweight sensors in a study like this.

When clothing worn sensor data is used for activity classification, it is reasonable to expect that
the results will depend on factors that include subject characteristics (e.g., size, gender) as well as
clothing styles (looseness, placement). However this study is intended to assess the viability of this
approach and hence considers only a single subject across three different clothing types. In future
studies, if the sensor positions may vary slightly from day to day due to different positioning of the
clothes on the body, this issue can be minimised by rotating the three axis sensor readings along a
common axis so as to align the principal direction of gravity with the y-axis of the sensor. Moreover,
the data distribution for each activity is expected to be the same for x, y and z axis acceleration for
sensor readings from different positions. Out of the three types of clothing, the pencil skirt data had
the highest correlation as it was the tightest fitting of the clothing used in the study. Moreover, as the
clothing waist sensors were more tightly attached to the waist with the clothes, waist sensor data were
significantly correlated with each other irrespective of the clothing type.

6. Conclusions

This study aimed to assess the suitability of clothing sensor data for use in activity recognition
when compared to similarly placed body worn sensors. In this study the clothing sensor data are shown
to be well correlated with body worn sensor data as indicated by an analysis of correlation coefficient
values. Furthermore the classification results from the clothing sensors are promising when compared
to body worn sensors. This is a first study reporting data from sensors embedded into loose clothing
in everyday activities. Results indicate that this approach has good potential for daily monitoring,
for example in healthcare applications, and that this is an area worthy of further investigation.

This was a single person study intended to gain insight into how data might vary across three
different clothing types across a range of likely daily activities. As such the study does not consider
benefits of the wide range of different algorithms that could be used for classification. Rather the study
checks whether it is possible to collect meaningful data from clothing worn sensors compared to body
worn ones. Future studies are now encouraged to improve activity classifiers based on clothing types
and supporting the use of multiple lightweight sensors that are networked and time synchronised.

All data used in the paper is available at 10.5281/zenodo.3597391.
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Chapter 4

Loose Clothing Mounted IMU

Data From Lower Body for

Everyday Activities

This chapter explains the data collection protocol followed in the main data collec-

tion of this research. This covers the second aim of the research i.e. collecting a

semi-natural dataset from loose clothing-mounted lightweight IMUs and making it

a publicly available dataset so further research can carry out with the dataset.

5 healthy adults took part in this data collection and each participant wore the

clothing with sensors for 1-4 days for 5-8 hours. The data collection is consisted of

15 participant-days worth data and it is roughly 90 hours of data. Even though the

data were collected from both upper and lower body, the database is consisted of

data collected only from the lower-body.

This data collection protocol was approved by the ethics committee at the School

of Biological Sciences, University of Reading, UK (SBS 19- 20 31 and SBS 21- 22

18) and the approvals are attached under Appendices (Appendix A).
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As these IMU data contains data from accelerometers, gyroscopes and magnetome-

ters, there is an opportunity of creating more handcrafted features in improving clas-

sifier accuracies. Further, as the dataset includes data for activities such as ‘sitting-

to stand’, ‘turning’ and ‘leg raising’, researchers who are interested in analysing

transitional activities and postures can use these data in analysing them.

Methodology, protocol, data storing, decoding and wrangling approaches are ex-

plained in details on the attached paper titled “Inertial Measurement Data From

Loose Clothing Worn on the Lower Body During Everyday Activities”.

Publication status:

The following paper has been submitted to the ‘Scientific Data’ journal as:

U. Jayasinghe, F. Hwang and , W. S. Harwin. “Inertial Measurement Data From

Loose Clothing Worn on the Lower Body During Everyday Activities”. Scientific

data. 2023.

The following is the author final manuscript of the submitted paper.



Inertial Measurement Data From Loose Clothing
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ABSTRACT

Embedding sensors into clothing is promising as a way for people to wear multiple sensors easily, for applications
such as long-term activity monitoring. To our knowledge, this is the first published dataset collected from sensors
in loose clothing. 6 Inertial Measurement Units (IMUs) were configured as a ‘sensor string’ and attached to casual
trousers such that there were three sensors on each leg near the waist, thigh, and ankle/lower-shank. Participants
also wore an Actigraph accelerometer on their dominant wrist. The dataset consists of 15 participant-days worth
of data collected from 5 healthy adults (age range: 28 - 48 years, 3 males and 2 females). Each participant wore
the clothes with sensors for between 1 and 4 days for 5-8 hours per day. Each day, data were collected while
participants completed a fixed circuit of activities (with a video ground truth) as well as during free day-to-day
activities (with a diary). This dataset can be used to analyse human movements, transitional movements, and
postural changes based on a range of features.

Background & Summary

Inertial measurement units (IMUs) have seen increasing popularity as wearable sensors in the healthcare1–3 and
sports sectors4–6. In healthcare, wearable sensors offer a way to capture data about people’s everyday activities easily
and in an economical way, both within and outside clinical environments7. Mosenia et al.8 noted that wearable
sensors in health monitoring can reduce the costs of long-term care in hospitals. These sensors can be used in
different types of movement analyses such as human posture classification9, 10, activity classification11, 12, gait
analysis13, 14, transitional movement analysis15, 16, sleep monitoring17, 18 and falls detection9, 19.

While a number of studies investigate the use of a single wearable sensor (e.g. on the wrist or on the lower
back), increasing the number of sensors can help with improving the accuracy of monitoring systems and capture a
more complete view of the body’s movements. Though multiple sensors increase the accuracy of human activity
recognition20–24 (HAR), putting on and wearing multiple sensors can be a tedious or laborious task for the wearer.
There are also potential challenges with ensuring the sensors are placed in appropriate locations and orientations. One
approach to improving the process of wearing multiple sensors is to embed these sensors onto clothing25–28. Most
previous studies have experimented with tight-fitting clothes29–32 to help ensure the sensors stay close to the limbs
without moving during data collection. In a healthcare context where tight-fitting clothes may not be appropriate
nor desirable, attaching multiple sensors to loose-fitting, everyday clothing offers comfort and convenience28, 33, 34,
without the burden of needing to strap on sensors one-by-one and adjusting them. This research investigates sensors
in loose-fitting, everyday clothing so the wearer can have them on for longer periods in a comfortable way.

There are already publicly-available databases of Human Activity Recognition (HAR)-related wearable sensor
data. These include data collected from a waist-mounted smartphone with accelerometer and gyroscope sensors35–38,
a waist-mounted IMU39, an ankle-mounted IMU with a stretch sensor40 and 17 Magnetic, Angular Rate, and Gravity
(MARG) sensors mounted on the head, shoulders, chest, arms, forearms, wrist, waist, thighs, shanks, and feet41.
Further, databases are available for gait analyses such as Luo et al.’s42 study with 6 body-worn IMUs, Lencioni et
al.’s43 study using camera motion, force plates and electromyography (EMG) and Loose et al.’s44 study using Xsens
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sensors on both feet, shanks, thighs and pelvis.
The present database has loose clothing-embedded IMU data from the lower body, alongside video recordings

and diaries as ground truth data. The data were recorded from semi-natural activities i.e. a video-recorded pre-defined
set of activities (standing, sitting, lying down, sitting with legs outstretched, walking, climbing up and down stairs
- approximately 20 minutes in total) and participants’ usual day-to day activities during the rest of the day along
with diary data for 5 to 8 hours. Data were collected from five healthy participants for between 1-4 days per person,
for a total of 15 participant-days’ of data. To our knowledge this is the first published database consisting of data
collected from loose clothing-embedded IMUs. This dataset is likely to be of interest to researchers studying human
postures and movements in natural settings, particularly that the sensors are worn unobtrusively in loose-clothing
rather than on the body and also that the data includes measurements of the waist, thigh and ankle on both the left
and right sides.

We have previously published a paper45 based on this dataset where a posture classifier was implemented using
a single feature (the inclination angle estimated from the accelerometer data) from three sensors (waist, thigh and
ankle). Four postures (standing, sitting, lying down and sitting on the floor with legs outstretched) were classified
with a high level of accuracy, demonstrating that the data from the sensors embedded in clothing can be used
productively in posture classification. With this earlier paper, we published some of the processed data, specifically
the inclination angles from a subset of the sensors. The aim of the present paper is to make available a more detailed
dataset from the clothing on the lower-body, which includes data from six IMUs (accelerometers, gyroscopes, and
magnetometers) and from a wrist-worn sensor, along with videos, diaries, and annotations of the activities, which
we anticipate will enable further research and analysis.

Methods

Materials
The data46 presented in this paper were collected as part of a larger dataset from sensors in the clothing on both the
upper and lower-body, as well as a wrist-worn sensor (not attached to clothing). Here, we present the data from the
lower body only; we intend to publish the data from the upper-body at a later date.

The sensing system in the clothing consisted of 12 IMUs (based around the Bosch Sensortec BMI160 smart
IMU), all using a differential serial bus, connected via flat ribbon cable forming a “sensor string”. The 12 bespoke
sensors were approximately 15×12×7 mm each (see Figure 1 (b)) and weighed 18g in total while the inter-connecting
cables weighed 146g. The string was connected to a Raspberry Pi where the data were stored. The battery pack
enabled continuous mobile data collection for more than 12 hours (10000 mAh output : 5V, 2.1 A). Data were
sampled at 50 Hz. The range of the accelerometers was +/- 16 g with 12-bit resolution. The BMI160 IMU includes
a gyroscope with a range of 1000 degrees per second and magnetometer, which were also recorded along with
accelerometer readings. Since accelerometer, magnetometer, and gyroscope data were all recorded from each sensor,
a time division multiplexing bus protocol running at 500K baud was used.

The 12 IMUs were positioned in the clothing so that there were three sensors along the lateral side of the upper
limbs (wrist, upper arm, and shoulder/neck) and lower body (ankle, thigh, waist), on both the left and right sides
(Figure 1). To attach the sensors to the clothes, the sensors were taped securely along the seams of the clothes in
the chosen positions as shown in Figure 1 (b) and cotton bias binding was taped on top of the sensor string using
double-sided tape for fabric. In this way, the sensors were not outwardly visible and also not in contact with the
skin. That helped to make the outfit with sensors more comfortable for the wearer. In addition to the clothing worn
sensors, an Actigraph, device was strapped onto the wrist of the dominant hand of the participant as a reference,
body-worn sensor. The Actigraph sampling rate was also set to 50 Hz.

Data Collection Procedure
Five healthy participants (age range: 28-48 years old; 3 males and 2 females) took part in this study. Each person
selected a pair of trousers and a hoodie jacket in their usual size, and the researcher attached the sensors to the
clothes. Four participants wore cotton-blend fleece jogging trousers, and one wore loose cotton slacks. (One of the
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Figure 1. Sensor placement on the clothing (a) and set up of the sensor strings (b). The sensor placements are
indicated with stickers in (a). The measurements used to position the sensors are shown in (b), where l is the leg
length. Ankle sensors were placed near the hem of the trousers (sensors 1 and 4 as marked in Figure 1 (b)). The
thigh sensors were placed at l ×2/3 (two-thirds of l) above the ankle sensor (sensors 2 and 5 as marked in Figure 1
(b)). The IMUs connected to the battery-powered Raspberry Pi are shown in (c), where a one penny coin is included
for scale. The present paper focuses on only the data from the 6 sensors on the lower-body.
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male participant’s trousers were baggy at the thigh, compared to the other participants’ trousers.) Participants were
asked to wear the clothes over multiple days for 5-8 hours per day of data collection. The protocol was approved
by the ethics committee of the School of Biological Sciences, University of Reading, UK (SBS 19- 20 31 and
SBS 21- 22 18). The study was conducted in accordance with this approved protocol and the relevant guidelines
and regulations. All participants provided written informed consent to take part in the study and to have the data
published openly.

The Raspberry Pi and the battery pack were kept in a pouch on the waist of the participant. Once the Raspberry Pi
was powered on, it started recording data. Further, to check that the data were being recorded, the Raspberry Pi could
be accessed with a mobile phone via SSH (secure shell). Figure 1 (a) shows a participant with the clothing-embedded
sensors with the the Raspberry Pi on the waist. The sensors were not visible from the outside of the clothing, other
than the waist bag with the Raspberry Pi.

On each day of data collection, participants were asked to perform a set of predefined activities, and these
activities were video-recorded to provide a ground truth. Ground truthed data were recorded for the following set of
activities (in order):

1. Standing still for 2 minutes

2. Sitting (on a chair) for 2 minutes

3. 5 cycles of raising the legs while sitting down

4. 5 Sitting-to-standing cycles

5. Walking back and forth for 2 minutes

6. Climbing up and down stairs for 2 minutes

7. Lying down for 1-2 minutes

8. Sitting on the floor with legs outstretched for 1-2 minutes

After the predefined activities, the participants were asked to continue with their usual activities for the rest of
the day (5 to 8 hours). During that time, the participants were requested to keep a diary of their activities and the
times of those activities. This data repository consists of data from 15 days across five participants (see Table 1),
with each participant contributing between 1 and 4 days’ of data.

Data Workflow
Data Storing and Decoding
Data from the IMUs were serialised onto a twisted pair RS423 bus using ’base64’ and saved on the Raspberry Pi
through the serial port. Once a participant had completed their part in the study, these files were transferred to a PC,
decompressed and analysed in MATLAB. Following a data cleaning and alignment process the data were saved as
MATLAB ‘MAT’ files.

Data Cleaning
There were some signal losses owing to power supply issues during the data collection. Those points were identified
by synchronising the dominant hand’s ‘wrist’ clothing-sensor data with the Actigraph data and replacing missing
segments with 0s.
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Day (name)
Activities in ground truth video Start

time

End

time
Duration Notes

Standing Sitting Walking
Climbing

up stairs

Climbing

down stairs

5 leg

raises

5 sit-to

stands

Lying

down

Sitting on

the floor

P1

Day 1 (P1D1) X X X X X X X X X 09:40 18:20 8 h 40 m Jogging

trousers (baggy)Day 2 (P1D2) X X X X X X X X X 11:15 19:20 8 h 05 m

Day 3 (P1D3) X X X X X X X X X 11:30 20:00 8 h 30 m

P2

Day 1 (P2D1) X X X X X X X X X 10:50 17:10 6 h

Loose cotton

slacks

Weekend

Day 2 (P2D2) X X X X X X X X X 12:15 18:45 6 h 30 m

Weekend

30 mins data

missing

Day 3 (P2D3) X X X X X X X X X 12:15 17:20 5 h

10 star jumps,

3 burpees

20 mins data

missing

Day 4 (P2D4) X X X − − X X X X 10:10 15:50 ∼6 h
one hour data

missing

P3 Day 1 (P3D1) X X X X X X X X(1 min) X(1 min) 07:50 12:30 ∼4 h Jogging trousers

P4

Day 1 (P4D1) X X X X X X X X(1 min) X(1 min) 09:10 14:55 ∼6 h Jogging

trousersDay 2 (P4D2) X X X X X X X X(1 min) X(1 min) 09:40 16:56 6 h 30 m

Day 3 (P4D3) X X X X X X X X(1 min) X(1 min) 08:40 15:51 7 h

P5

Day 1 (P5D1) X X X X X X X X X 14:00 18:40 6 h
Jogging

trousers
Day 2 (P5D2) X X X X X X X X X 14:00 19:10 5 h

Day 3 (P5D3) X X X X X X X X X 10:20 16:10 6 h

Day 4 (P5D4) X X X X X X X X X 10:22 16:10 ∼6 h

Table 1. Data catalogue. There are two minutes of data for standing, sitting, walking, climbing up/ down stairs ,
lying down and sitting on the floor (marked with a ‘X’) unless otherwise indicated (‘−’ indicates missing data). The
start time and the end time of the data collection at the end of each day are given in the table, along with special
notes such as whether the data were collected on a weekend, if special activities were performed, and which type of
trousers they were wearing.

Pre-processing
All sensors used to collect data were individually calibrated against the magnitude and direction of the gravity vector
so that a homogeneous transform matrix for each sensor could be calculated. This matrix then allowed corrections
for scaling and axis orthogonality errors for each sensor.

Data were then processed to align the sensors to each limb as the orientation of the sensors inside the clothing
was uncertain. Two rotation transforms were calculated to orient the data from each sensor relative to the presumed
axis of the limb and then to the principal plane of movement of that limb. Thus the first rotation changes the
data from the sensor frame {S} to an intermediate frame {I} and the second rotation changes the data from the
intermediate frame to the final frame {F}.

The first rotation was applied to align the z-axis of the sensor to the the direction of gravity (superior-inferior).
Following application of this rotation to the data, the z-axis of the intermediate frame {I} was closely aligned with
the gravity vector g. A period when the participant was standing still and the limb could be assumed to be vertical
was chosen from the data and m points were sampled. The rotation matrix I

SR was calculated by determining an angle
and axis for the rotation. (Note the notation here indicates that vectors in the {S} frame were, after multiplication by
I
SR, the same vectors but now expressed in the intermediate {I} frame).

Since there is no movement during this ‘standing still’ period, the sensors collected m data vectors that represent
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Sg ' Sak where 1 ≤ k ≤ m, i.e. the coordinates of the gravity vector in the sensor frame {S}. The magnitude of
this vector should be approximately 9.81 ms−2 if the sensors are calibrated in metric units or 1 if calibrated in
gravitational units. For convenience gravitational units are assumed for this section. Equation 1 calculates the
average value of acceleration during period m from the individual measurements a j,k

Sa =
[

Sa1
Sa2

Sa3
]T where Sa j =

1
m

m

∑
k=1

a j,k for j = 1,2,3 referring to the x, y and z axes (1)

This estimate can be readily converted to a unit vector that approximates Sg in gravitational units using the ‘hat’
notation in equation 2.

Sg' Sâ = Sa/|a|, where |a|=
√

a2
1 +a2

2 +a2
3 (2)

The first rotation converted Sg to Ig where it was assumed that Sg' Sa. This was achieved by using the basis

vector for the sensor z-axis Sẑ =
[
0 0 1

]T .
The axis of rotation r1 was chosen to be perpendicular to both Sa and I ẑ so could be estimated as

r1 =
Sa× Sẑ

(r1 has the same elements in both the {S} and the {I} coordinate frames)
To work correctly as an angle axis representation r1 should be redefined to be a unit vector and this was done

using equation 2.
The angle of the rotation was estimated from the dot product between Sa and Sẑ since the definition of the dot

product is

Sa · Sẑ = |Sa|cos(θ1)

If Sâ is the unit vector aligned with Sa, then θ1 could be computed simply as

θ1 = acos(Sâ · Sẑ)

Both the angle and the axis were then available to compute the rotational transform using Rodrigues’ formula as
suggested by Chakraborty et al.47 One form of Rodrigues’ equation is shown in Equation 3 where K is a skew
symmetric matrix derived from r1. This ‘K’ (Equation 3) can be expressed with the elements of the r1.

I
SR = I + sinθ1K +(1− cosθ1)K2 (3)

where K =




0 −r1(3) r1(2)
r1(3) 0 −r1(1)
−r1(2) r1(1) 0


 and I is the 3×3 identity matrix.

The first rotation matrix was thus calculated from equation 3 using the data from the individual sensor accelerom-
eters. Thereafter the same rotational matrix was then applied to the gyroscope and magnetometer data and the data
from the sensors converted to this intermediate frame.

After applying the first rotation, any movements of the limb in the sagittal plane can be used to reorientate the x
and y axes to the final coordinate frame {F}. The z-axis remains the same for both the intermediate {I} and the final
{F} coordinate frames. The concept was to choose the direction of the lowest principal component of acceleration
as the direction for the final x-axis.

For this paper ‘sitting to stand’, ‘walking’ and ‘leg raising while seated’ were selected as movements that happen
in the sagittal plane from the perspectives of the waist, thigh and ankle respectively. Data for each of these segments,
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once converted to the intermediate frame, was selected to define the second rotation from the intermediate to the
final coordinate frame.

The second rotation was computed and applied to make sure that the sagittal plane motions (i.e. sitting to stand,
walking and leg raising while seated) would be be in the y-z plane of the final coordinate frame such that the y-axis
aligns with the anterior-posterior direction in the sagittal plane and the x-axis with the medial-lateral direction
perpendicular to the sagittal plane.

Chakraborty et al.47 defined the plane-of-motion to be a plane perpendicular to the direction of minimum
acceleration. Alternative methods to identify the plane of principal movement are possible, for example identifying
a unit vector that aligns with any reasonably large angular velocity. However the preference in this case was to
use the same IMU sensor, the accelerometer, to estimate both rotational transforms. A suitable data segments with
movements in the sagittal plane were selected from the accelerometer for each IMU sensor. The eigenvectors of the
covariance matrix of the centred data segment gives direction of maximum and minimum accelerations that align
with the x and y axis of the final frame. These Eigenvectors are known to be orthogonal and can be readily computed
either directly as Eigenvectors or from the singular value decomposition of the segmented data.

The second rotation occurs around the z-axis of the intermediate frame, which will also become the z-axis of the
final frame. The direction of the vector Im̂ corresponding to smallest singular value or smallest Eigenvalue was used
to identify the axis orthogonal to the z-axis of the intermediate frame. This vector was assumed to be orthogonal to
most movements in the sagittal plane.

After finding the axis of lowest principal component in the intermediate frame (Im̂), the second axis (I f̂) (forward-
backward acceleration) was confirmed by using vector cross product in equation 4 so that it was perpendicular to the
axis of minimum acceleration.

I f̂ =I ẑ×I m̂ where Im̂ = Im/|m| (4)

vectors m, f, and Iz were then associated with the directions of the x y and z axis of the final frame respectively
and used to calculate the final rotation matrix F

I R.
By using Rodrigues’ rotation formula again (as described in Equation 3), a second rotation was applied (using

Equation 4 and Equation 5) so that the transformed y-axis is aligned with the anterior-posterior direction and the
transformed x-axis is aligned with the medial-lateral direction perpendicular to the sagittal plane.

r2 =
I f̂× I ŷ where I ŷ =

[
0 1 0

]T and θ2 = acos
(

I f̂ · I ŷ
)

(5)

Annotation
To annotate the data, the videos were synchronised with the sensor data using ELAN software48. The start and end
points for each different posture and activity were manually identified by the first author, and those segments were
annotated and saved in a file.

Data Records
The final labelled dataset comprises 15 participant-days of data across the 5 participants, with 6 video-ground truthed
activities per participant per day. The data are organised in folders with a naming convention of ‘PXDY’ where X
is the participant ID and Y indicates the day of the data collection (e.g. P1D1- Participant 1 Day 1). Each folder
contains 5 items. The detailed version of the folder structure is given in Figure 2.

The file "PXDY.MAT" loads all the pre-processed data (orientation corrected) from each position/sensor along
with the annotations (groundTruth). All the variable names are given in Table 2.

The file "PXDYDiary.txt" has approximate start and end times for activities and a brief description of the
activities. In addition to the diary entries, the file contains a description with details of the date, start and end times
of the data collection and whether or not there are missing data (i.e. if there was a power failure).
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Figure 2. Data structure of the data repository. The repository contains 15 folders. Each folder contains 2 MAT
files, 1 text file (diary data), 1 MATLAB file (video annotation file) and a folder with video files. The naming
convention is ‘PXDY’where X is the participant ID and Y is the day of the data collection (e.g. P1D1- Participant 1
Day 1).
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Sensor Side Variable name

Accelerometer
data Gyroscope data Magnetometer

data

Average gravity
measured by

the sensor

Waist
Left WaistL gyroWaistL magWaistL gWaistL

Right WaistR gyroWaistR magWaistR gWaistR

Thigh
Left ThighL gyroThightL magThighL gThighL

Right ThighR gyroThightR magThighR gThighR

Ankle
Left AnkleL gyroAnkleL magAnkleL gAnkleL

Right AnkleR gyroAnkleR magAnkleR gAnkleR
Actigraph

Wrist-worn
Dominant

hand
WristRActi − − gWristRActi

− − groundTruth: 1- standing, 2- sitting, 3- lying down, 4- sitting on the floor, 5- walking,
6- climbing up stairs, 7- climbing down stairs, 8- sit-to-stands, 99- not defined

Table 2. Variable names for a full-day dataset, including all the data from the pre-defined activities as well as the
"rest of the day activities" of a participant. The Actigraph sensor has only accelerometer data (it does not have
gyroscope and magnetometer data, as indicated by a ‘−’.)

Technical Validation
Visual Representation of Data
After applying the rotation matrices described in the “Pre-processing” section, the accelerometer signals were
low-pass filtered with a second-order Butterworth filter with a 3 Hz cut-off. The filter was run on the data both
forwards and backwards to minimise phase distortions. ‘Standing’ data before and after the orientation correction
can be seen in Figure 3 a(i) - a(iii) and Figure 3 (b(i)-b(iii)) respectively. Those figures indicate that the z axis
measures 1 g while the x and y axes measure 0 g as the person was not moving while standing upright.

The sensor angles with respect to the vertical axis are shown in Figure 3 c(i) - c(iii). These inclination angles
were estimated from the inverse cosine of the acceleration due to gravity as measured on the z-axis. The inclination
angles were 0◦ for all the sensors when the participant was in the upright ‘standing still’ position, as the sensors were
all aligned with vertical through the first step in the alignment process. In comparison, when the participant was in
the ‘sitting’ and ‘sitting on the floor with legs outstretched’ positions, the angle for the waist was about 25◦ - 40◦ as
the participant was leaning forward/backward and the angle for the ‘thigh’ was approximately 90◦ as the thigh came
to a horizontal position. These two postures can be distinguished by using the ankle sensor (sensor 1 in Figure 1 (b)).
For ‘sitting’, the ankle was around 10◦ as the legs were inclined/reclined.When the participant was in the ‘sitting on
the floor’ position it could be expected that ankle would be horizontal, however, the ankle angle was approximately
110◦. This may be related to a shift in the clothing relative to the body, or possibly that the participant let their leg
relax into a comfortable position, resulting in the toes facing outwards.

When calculating the sensor to vertical angle using the inverse cosine function (acos), the value ranges are limited
from 0◦ to 180◦. Hence, to calculate the angles for dynamic activities, rotation matrices were used in the calculation
of the sensor to vertical angles. First, the inertial data from each sensor was used to estimate quaternions using
Madgwick’s algorithm49 (https://github.com/xioTechnologies/NGIMU-Software-Public, ac-
cessed on 21 September 2021) and the sensor-to vertical angles were estimated by calculating the angle between the
forward pointing vector and the gravity vector (as described in50). The angles based on the lower-body sensors for
walking, climbing up stairs and down stairs are shown in Figure 4.

Usage Notes
Corresponding MATLAB scripts are provided to access, reuse and visualize the data. The MAT files are readable
not only in MATLAB but also in Python with packages such as ‘scipy’. Further, along with the data, video files and
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Figure 3. Orientation correction and sensor to vertical angles across different activities. The top plots(a(i)-a(iii))
indicate that the sensors were not initially aligned with gravity. The standing data, after applying the rotation
matrices, are shown in the middle set of plots (b(i)-b(iii)). The z axis of each sensor measures the acceleration due to
gravity (1 g) as it aligns with the superior-inferior axis while x and y axes measure 0 g as the person was standing
still. The bottom plots c (i) - c (iii) show the angles of each sensor with respect to the vertical axis (superior-inferior)
for (1) standing, (2) sitting, (3) leg raises while sitting and sit-to stands, (4) lying down and (5) sitting on the floor
with legs outstretched. These data were from the right side from the Participant 1 Day 2 dataset.
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Figure 4. The "sensor to vertical" angles for the waist, thigh and ankle for different activities for Participant 1 Day
1. Angles for walking, climbing up and down stairs, from the right leg (‘blue solid line’) and the left leg (‘red dotted
line’) are shown.
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annotation files are given with a descriptive ‘readme’ file.

Code availability
Data and MATLAB scripts are available in figshare46. Further, csv files of the MATLAB variables and Python
scripts to read the MAT files directly are also available in figshare46.
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Chapter 5

Classification of Static Postures

with Wearable Sensors Mounted

on Loose Clothing

This chapter explains the way how the third aim of the research was achieved.

Chapter 3 concluded that the clothing-mounted sensor data correlate well with static

postural data than the dynamic activity data. Hence, the aim of this chapter was

to implement a posture classifier using the clothing-mounted sensor data (Chapter

4 : IMU Data From Loose Clothing Worn on the Lower Body During Everyday

Activities data).

A classifier was implemented to recognise four main postures i.e. standing, sitting,

lying down and sitting on the floor with legs outstretched, using a single feature

(inclination angle) from three points of the body (waist, thigh and ankle). As the

machine learning technique KNN algorithm was used. Using the classifier, the usual

activities of the participants were analysed and interpreted the classifier output

crosschecking the features and diary data of the participants.
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Methodology, data analysis, discussion and conclusions are explained in detail on

the attached paper titled “Classification of Static Postures with Wearable Sensors

Mounted on Loose Clothing”.

More figures that explain the feature selection procedure are listed as Appendix

B.1 and B.2. Further, analyses carried out with all the participants are listed as

Appendix B.3.

This analysis explained how different window sizes can be used in different scenar-

ios in generating features to train classifiers. Further, it was shown that a pos-

ture classifier with higher accuracy (100%) can be implemented by using multiple

clothing-mounted sensors with a minimum number of meaningful features.
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Classification of static postures 
with wearable sensors mounted 
on loose clothing
Udeni Jayasinghe 1,2*, Balazs Janko 3, Faustina Hwang 1,4 & William S. Harwin 1,4

Inertial Measurement Units (IMUs) are a potential way to monitor the mobility of people outside 
clinical or laboratory settings at an acceptable cost. To increase accuracy, multiple IMUs can be used. 
By embedding multiple sensors into everyday clothing, it is possible to simplify having to put on 
individual sensors, ensuring sensors are correctly located and oriented. This research demonstrates 
how clothing-mounted IMU readings can be used to identify 4 common postures: standing, sitting, 
lying down and sitting on the floor. Data were collected from 5 healthy adults, with each providing 1–4 
days of data with approximately 5 h each day. Each day, participants performed a fixed set of activities 
that were video-recorded to provide a ground truth. This is an analysis of accelerometry data from 3 
sensors incorporated into right trouser-leg at the waist, thigh and ankle. Data were classified as static/ 
dynamic activities using a K-nearest neighbour (KNN) algorithm. For static activities, the inclination 
angles of the three sensors were estimated and used to train a second KNN classifier. For this highly-
selected dataset (60000–70000 data points/posture), the static postures were classified with 100% 
accuracy, illustrating the potential for clothing-mounted sensors to be used in posture classification.

Maintaining correct posture in daily life is important and brings benefits such as maintaining good blood circula-
tion and reducing the risk of chronic  diseases1,2. When it comes to healthcare monitoring systems, for example in 
rehabilitation settings, it is important to monitor posture as well as the daily activity intensity of an  individual3,4. 
Such monitoring allows both the person and the healthcare professional to assess the condition and the effects of 
any interventions, thereby helping to avoid injuries such as those arising from falls and to improve the physical 
condition of the  patient5. For example, in stroke rehabilitation, posture evaluation can be done in the clinic using 
the Postural Assessment Scale for Stroke Patients (PASS)6 and can be used to measure the progress of patients’ 
 recovery7. The availability of a PASS-like measurement with a finer graticule and greater accuracy can provide 
better insight into this recovery.

Mosenia et al.8 noted posture identification and posture correction as some of the main applications of wear-
able medical sensors. Commercially-available wearable sensors are popular in activity monitoring in free-living 
environments as they can be used as self-monitoring devices. Consumer products typically contain all their sen-
sors in a single housing designed to be worn in one body location, for example, on the wrist. However, research 
into activity-4,9,10 and posture-classification11–13 has demonstrated that the use of multiple sensors increases 
classification accuracy. Further, there is a trade-off between having multiple sensors with light-weight algorithms 
and having a single sensor to extract multiple heuristic features to feed into a complex algorithm.

For the end user, putting on multiple sensors can be a tedious or laborious task, and this can be exacerbated 
when the physical process of attaching the sensor to the body is difficult, for example due to motor impairment 
or due to a design requiring good manual dexterity. Furthermore, analysis of the sensor data can be complicated 
if sensors are incorrectly placed, or if they slip off the limb during the day. One approach to make it easier for 
the end user to wear multiple sensors is to embed the sensors into  garments13–15. In 2002, Laerhoven et al.16 
emphasised the importance of mounting sensors into clothing. They claimed that as clothing gives a larger space 
to mount multiple miniaturised IMUs, clothing is an excellent platform to collect more data without disturbing 
the wearers. Most prior work on smart garments investigates tight-fitting garments in order to hold the sensors 
in-place close to the body. Our research investigates sensors in loose-fitting, everyday clothing that is likely to 
be more comfortable for the wearer, easier to don on and off and more appropriate for everyday use.
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This work is novel in a number of ways. Most prior work in smart garments investigates tight-fitting garments, 
whereas here we investigate loose clothing which is likely to be more comfortable for everyday use. Other stud-
ies investigating loose clothing have examined specific activities (shoulder  movements17) or specific clothing 
items (hospital  garments18), whereas here the sensors are embedded into participants’ own everyday clothing 
and capture data relating to a range of everyday activities/postures. Our study was conducted in a semi-natural 
setting over an extended period (hours and days), compared with  others15,17–19 which look at shorter time periods 
(e.g. on the order of minutes) under controlled conditions. Finally, this study demonstrates that a single feature 
from each of multiple sensors is enough to achieve a high level of classification accuracy.

Related work
Work by Lyons et al.12 describes a method of calculating the inclination angles of the thigh and trunk for different 
postures. Dual axis accelerometers were strapped onto the person over their clothing. Data analysis distinguished 
activities into dynamic and static activities based on the standard deviation of the magnitude of the thigh accel-
erometer data over a 1 second window. Lyons et al. used a pre-defined threshold value to assign the data into the 
two categories (static and dynamic)12. Vipul et al.11 used both waist and thigh sensor data (right hand side) to 
classify data into dynamic and static activities. They investigated two features, the integral of the signal magnitude 
over 1 s windows and a continuous wavelet transform of the filtered raw acceleration. Fida et al.20 described how 
the window sizes contribute in identifying static/ dynamic/ transition activities. Their conclusion was that larger 
window sizes (e.g. 1.5–3.0 s) gave higher accuracy in identifying long duration activities and smaller window sizes 
(e.g. 0.5 s), gave higher accuracy in identifying short duration activities such as  transitions20. Fida et al. used a 
single triaxial accelerometer mounted on the waist and a feature vector consisting of 22 time-based components, 
including means, standard deviations, skewness, and kurtosis for all window sizes (0.5 s, 1s, 1.5 s and 3 s). Chong 
et al.21 examined 206 time and frequency-based features with different types of classifiers (Artificial Neural Net-
works, Support Vector Machines and Random Forests(RF)) in activity classification with a single accelerometer 
mounted on the right hip. The study indicated that subsets from time-domain features are sufficient to classify 
accelerometry into activities even without analysing frequency domain  features21.

Other than the above mentioned studies with body-mounted sensors and smart-textile data, Chiuchisan 
et al.18 used a pair of loose-fitting trousers with an Arduino Nano board with 2 inductive sensors and an IMU. 
The sensor was placed near the knee. From their data, they concluded that there was potential to use these data 
from loose-fitting trousers for identifying different movement patterns in clinical  rehabilitation18.

In addition to the studies based on data from the lower-body, data from the upper body has also been 
investigated in posture classification. Lin et al.19 and Harms et al.17 implemented posture classifiers with sensors 
mounted in loose-fitting jackets. The study conducted by Lin et al. was based on four low-cost strain sensors 
mounted on the shoulder, elbow, abdomen and  waist19. They used Long Short-Term Memory (LSTM) networks 
in implementing three classifiers with their sensor output which was a single voltage value. First, they classified 
the data into three static postures (standing, sitting and lying) and two dynamic activities (walking and run-
ning). Secondly, they detected static postures with random arm movements and finally, they classified the data 
into sitting and two different slouch  positions19. Harms et al. attached accelerometers onto the forearm and 
upper arm of a loose-fitting garment to classify the data into ten postures that are useful in shoulder and elbow 
rehabilitation. They implemented a simulation with a body model and corrected the orientation error based on 
empirical samples of data. Finally, they concluded that there was a possibility of increasing the classifier accuracy 
based on the correction of the  simulation17.

To perform posture classifications,  both11  and12 calculate inclination angles of the waist and thigh sensors 
relative to the direction of gravity. Skach et al.15 use woven pressure sensors on trousers to categorise postures. 
These sensors were near the person’s thigh and buttocks during a set of video-recorded, controlled postures 
involving the thigh and shank (e.g. leg-crossing postures). They used a RF classifier to classify the data into 
 postures12  and15 both relied on thigh data in posture classification.

In11,12 the sensors were strapped onto the body over the clothing and  in15 the sensors were woven into the 
clothing. In our present study, the sensors were attached to the inside of loose clothing. Prior to the work reported 
here, an earlier study verified how well loose clothing-mounted sensor data correlated with body-worn sensor 
 data22 and concluded that clothing sensor data were reasonably correlated with body worn sensor data, especially 
with static postures. Hence, there is good potential of using clothing-mounted sensor data in activity/posture 
classification.

The above mentioned studies which used lower-body data in posture  classification11,20,21 used multiple features 
from each sensor to train the classifiers. Even though Lin et al.19 used only a single feature from each sensor, they 
used an LSTM (deep learning approach) network in their study. Rather than using a deep learning approach 
which usually trains classifiers on the raw data, our study uses a machine learning approach with a meaning-
ful single feature (inclination angle). As the inclination angles of body parts are used as the feature vector, the 
features can be easily represented by a stick figure for an intuitive interpretation of the classifier output. Vipul 
et al.11 (waist and thigh) and Lyons et al.12 (trunk and thigh) used two body-mounted sensors in their studies. 
However, an additional ankle sensor, as studied here, can improve classification accuracy as it helps to differenti-
ate postures that depend on the lower leg. Further, Lyons et al. pre-defined threshold values for the inclination 
angles to classify the data into different postures, whereas the present study uses a machine-learning approach 
to define the classes, rather than hard coding the threshold values. See supplemental files for a table comparing 
prior studies with the present work.
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Methodology
Materials. Our sensing system consisted of 12 IMUs (based on the Bosch Sensortec BMI160 smart IMU), all 
using a differential serial bus, connected using flat ribbon cable forming a “sensor string”. The 12 bespoke sensors 
were approximately 15×12×7 mm each (see Fig. 1a) and had a combined weight of 18g. The inter-connecting 
cables weighed 146 g. The sensor string was connected to a Raspberry Pi where the data were stored (Fig. 1a). A 
battery pack enabled continuous mobile data collection for more than 12 hours (10,000 mAh output : 5V, 2.1A). 
Data were sampled at 50 Hz. The range of the accelerometers was ± 16 g with 12-bit resolution. The BMI160 IMU 
includes a gyroscope and a magnetometer, which were also used to record data, alongside the accelerometers. 
The sensors use a time division multiple access (TDMA) based protocol, where each start-of-frame character 
allows the IMUs to trigger the acquisition of the next sample, thus resulting in a tightly-synchronised sensor 
network.

The 12 IMUs were positioned in the clothing so that there were sensors along the lateral side of the upper 
limbs (wrist, upper arm, and shoulder/neck) and lower body (ankle, thigh, waist), on both sides (Fig. 1b). To 
attach the sensors to the clothes, the sensors were taped securely along the inner seams of the clothes in the cho-
sen position, and cotton bias binding was taped on top of the sensor string using double-sided tape for fabric. In 
this way, the sensors were not outwardly visible (see Fig. 1c) and also not in contact with the skin which helped 
to make the system more comfortable for the wearer.

Data collection procedure. Five healthy participants (age range: 28–48 years old; 3 males and 2 females) 
took part in the study. Each person selected a pair of trousers and a hoodie jacket in their usual size, and the 
researcher attached the sensors to the clothes. Four participants wore cotton-blend fleece jogging trousers, and 
one wore loose cotton slacks. Participants wore the clothes on three or four days (with the exception of 1 partici-
pant who was only able to take part for one day) for 5–8 hours per day of data collection. The Raspberry Pi and 
the battery pack were kept in a bag on the waist of each participant as shown in Fig. 1c.

On each day of data collection, participants were asked to perform a set of predefined activities which were 
videoed to provide a ground truth. Thereafter they continued with their usual activities for the rest of the day. 
The ground truthed activities comprised two minutes of each of the following: (1) Standing still, (2) Sitting on a 
chair, (3) Lying on their back (supine position), (4) Sitting on the floor with legs outstretched, (5) Walking back 
and forth and (6) Going up and down stairs. For the rest of the day’s activities, participants were requested to 
keep a diary of their activities.

The study was reviewed by the research ethics committee of the School of Biological Sciences, University of 
Reading, UK and given a favourable ethical opinion for conduct (reference: SBS-19-20 31). The study was con-
ducted in accordance with this approved protocol and the relevant guidelines and regulations. All participants 
provided written informed consent.

Data processing work flow. In this section, we provide an overview of the data processing workflow. 
Further elaboration of particular steps in the workflow are in the subsections that follow.

Data from the 12 IMUs were logged onto the Raspberry Pi. Once the data collection was completed, the data 
were transferred to a PC and analysed using MATLAB. Although the IMUs provide accelerometer, gyroscope 
and magnetometer readings, the main focus of this analysis was the accelerometer data from the right side of 
the lower body (sensors 1, 2 and 3 as shown in Fig. 1b).

As the placement and orientation of the sensors relative to the body could vary slightly from day to day 
depending on the fit of the clothing, each day’s data were pre-processed to align all sensors to a common 

Figure 1.  (a) Components of the sensor system. (b) Sensor placement on clothes. (c) Sensor placement 
on trousers. 12 IMUs are connected to a synchronous bus via ribbon cable. The sensors are connected to a 
Raspberry Pi via a USB to RS485 converter, and the Pi was powered by a battery pack. Lights on the sensors 
provided assurance of the sensors’ operation but were not visible outside the clothing. The Pi and battery were 
worn in a waist-pouch attached with a belt, with 4-pin connectors connecting the bag components, the trousers 
and the top. The 12 sensors were sampled synchronously at 50Hz. Since accelerometer, magnetometer, and 
gyroscope data were all recorded from each sensor, this demanded a time division multiplexing bus protocol 
running at 500K baud.
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coordinate frame such that the z-axis is aligned with the direction of gravity  (Section ‘Data pre-processing’). 
The data were also low-pass filtered to remove noise. From the filtered data, the sensor-to-vertical angle was 
estimated as described in Section ‘Calculating sensor to vertical axis angles’.

A classifier was implemented to first classify the data into “static postures” or “dynamic movements” (Section 
‘Classifying static and dynamic activities (classifier 1)’). For data classified as “static postures”, a second classifier 
was implemented to classify the data into four specific postures (i.e. standing, sitting on a chair, lying down, 
sitting with legs outstretched) (Section ‘Classifying postures (classifier 2)’).

Data pre-processing. Data rotations. With the sensors embedded in the clothing, the initial orientation 
of the sensor relative to the limb and to the world is unknown. Hence, we apply a rotation to the accelerometer 
data to align the sensor’s z-axis with the direction of gravity. This rotation can be computed easily using Rod-
rigues’ rotation  formula23 by identifying the axis for rotation as being perpendicular to both the gravity vector 
and the z-axis. This is identified as the cross product between the gravity vector and the z-axis and the angle for 
rotation is the angle between these two vectors. To do this, we find a segment of ‘standing still’ data and assume 
that the limbs are all vertical and the only accelerations are those due to  gravity22.

There is a possibility of having a second rotation that transforms the data so that the transformed y-axis is 
aligned with the anterior-posterior direction and the transformed x-axis is aligned with the medial-lateral direc-
tion perpendicular to the sagittal plane. The rotation matrix can be estimated by finding suitable segments of 
data where there is rotation in the sagittal plane (e.g. walking, leg raising, sitting-to stand). However, the second 
rotation was not required for the present analysis.

Filtering. Accelerometer signals were then low-pass filtered with a second-order Butterworth filter with a 3 Hz 
cut-off as suggested  in12. The filter was run on the data both forwards and backwards to minimise phase distor-
tions at the expense of causality.

Calculating sensor to vertical axis angles. Estimation of the orientation of a wearable inertial sensor 
from gyroscope, accelerometer and magnetometer measurements is complex, with a variety of  approaches24. A 
common simplification is to estimate the sensor inclination angle with respect to the local gravity vector. This 
estimate can be made with only the accelerometer, but additional information from the gyroscope and mag-
netometer can be used to improve the estimate of the sensor inclination angle.

The acceleration measured by the accelerometer can be considered as a baseline gravitational acceleration g 
with a ‘dynamic’ acceleration a added. Thus the accelerometer sensor measurement is 

[
sx , sy , sz

]T
= Sg + Sa , 

where the two accleration components are measured in the sensor frame {S}25. It is fair to assume that the mag-
nitude of gravity is fixed in a world frame {W} , i.e. Wg ≈

[
0 0 9.8m/s2

]T and that for typical human movement 
the ‘dynamic’ acceleration will have a zero mean if estimated over a sufficiently long time window.

When subjected only to gravitational acceleration (that is, a = 0 ) the sensor will measure the components 
of g in the world frame along its three sensor frame axes as shown in Fig. 2. That is to say that the sensor will 
measure just the gravity vector so g = |g|

[
cos θx cos θy cos θz

]T.
Three methods are outlined to recover the sensor orientation with respect to gravity and hence the angle 

of a limb with respect to a vertical axis. The first of these (the arccos method), was used for subsequent results.

Estimating sensor inclination angle with arccos. If the sensor consists of only a 3-axis accelerometer, and we 
assume one of the sensor axes is aligned with the limb (it was assumed the sensor z-axis aligns with limb), then 
the inclination of the sensor is simply calculated as the arccos of the relevant sensor component on the assump-
tion that there is no dynamic (non gravitational) acceleration (Eq. 1).

(1)θz = arccos
( sz

|g|

)

Figure 2.  Orientation of the IMU with respect to a vertical axis represented by gravity ( g ) can be defined as the 
cosines of angles θx , θy and θz.
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Estimating sensor inclination angle with atan2. If the sensor is well positioned on the limb so that it is aligned 
with an anatomical plane (for example the y-axis lies in the sagittal plane with the x-axis perpendicular to the 
plane), then an atan2 function can give information relating to the limb angle (Eq. (2)). Using the atan2 function 
would allow a direct distinction of whether the person was leaning forward or backward, or lying in a supine 
position or prone position.

This method confines the result to be in the y − z plane that may move with respect to the sagittal plane if the 
sensor is able to twist on the clothing, hence was not used for this analysis.

Estimating sensor inclination angle with a rotation matrix. Sensor fusion algorithms such as MARG (Magnetic, 
Angular Rate, and Gravity) algorithms attempt to calculate an orientation matrix or quaternion relating the sen-
sor frame {S} to the world frame {W} , for example Mahony et al.26, Madgwick et al.27 and  Sabatini28. The orienta-
tion of the sensor is then simply the relevant column of the orientation matrix since the gravity vector would 
align with a world coordinate frame. A problem is that the sensor is defined with respect to a global coordinate 
frame (e.g. East, North, Up). The ‘horizontal’ (East and North) axis estimates tends to be poor as they suffer 
from problems such as integration drift or local distortions in the earth magnetic field. It then becomes difficult 
to align the global frame with the sagittal plane of the individual, hence the arccos method was considered the 
simplest and easiest method to use for this work.

Classifying static and dynamic activities (Classifier 1). Activity extraction. The ground truth vid-
eos were synchronised with the sensor data using ELAN  software29. The start and end points for each of the 
four static postures (standing, sitting, sitting on the floor with legs outstretched and lying down) and dynamic 
activities (walking, going up and down stairs) were manually identified and annotated by the first author, and 
those segments of the data were extracted for analysis. In this way the transitions in-between the activities were 
deliberately not included in the analysis. For postures and dynamic activities, data segments of approximately 
90 s were extracted from longer continuous data segments. The final labelled dataset comprised data collected 
over 15 participant-days across the 5 participants, with 6 video ground truthed activities per participant per 
day. Roughly 405,000 (= 6 activities × 90 s × 50 Hz × 15 days) data-points were used in the training process 
(data collection frequency was 50 Hz).

Static postures versus dynamic movements. The main intention of this study was to analyse the postures of the 
participants, hence the activities were first categorised into two classes: static postures and dynamic movements. 
We extracted three features which were moving standard deviation of the vertical axis of the ‘Thigh’ data and 
moving standard deviation of the magnitude of the ‘Thigh’ and of the ‘Waist’ data, according to the literature 
(11,12,15,21). Instead of defining threshold values to distinguish static vs dynamic activities as  in11,12, we compared 
the accuracy of classifiers in distinguishing the two classes with different combinations of features and with five 
different window sizes (0.5 s, 1 s, 1.5 s, 2 s and 3 s). The annotation files described in section ‘Classifying static 
and dynamic activities (classifier 1)’ were used to provide the ground truth for the classifier. The activities were 
labelled as static (standing still, sitting on a chair, lying on their back, sitting on the floor with legs outstretched) 
or dynamic (walking back and forth, going up and down stairs). Those labels, along with the three features, 
were then passed into MATLAB’s ‘Classification Learner App’. The data were trained with all the options avail-
able in MATLAB’s ‘Classification Learner App’. These included ‘Discriminant analysis’, ‘Naive Bayes’, ‘Decision 
trees’, ‘Support vector machines’, ‘K-nearest neighbour (KNN)’ and ‘Ensemble classifiers’. It was found that the 
‘Weighted KNN’ classifier achieved the highest accuracy in this classifier (Classifier 1). As such Weighted KNNs 
which use an Euclidean distance metric with 10 neighbours were used, and a further comparison to study the 
accuracy of the classifier with different combinations of features and window sizes was conducted. To evaluate 
the model, 5-fold cross-validation and leave-one-subject-out methods were used.

When analysing the data from the non-ground truthed (i.e. the rest of the day’s) activities, ‘Classifier 1’ out-
puts were checked for both the left and right legs separately, to account for the possibility that a person could be 
moving one leg while still being considered to be in a ‘static’ posture. Data were not classified as dynamic unless 
the ‘Classifier 1’ output indicated that there was dynamic movement in both legs.

Classifying postures (classifier 2). For each sensor, the accelerometer data were further filtered by taking 
the moving mean over a 1s window. The filtered acceleration values were used to calculate the inclination angle 
of each sensor using Eq. (1), where sz is the moving mean of the acceleration in the z-axis and g is the magnitude 
of the moving mean of the acceleration when the participant is ‘standing still’.

The inclination angles of the three lower body sensors (Waist, Thigh and Ankle) were extracted and, along 
with their annotations, were fed into MATLAB’s ‘Classification Learner App’ to train a KNN classifier (Classifier 
2). As mentioned earlier in "Static postures versus dynamic movements" section all the options in the ‘Clas-
sification Learner App’ were checked with the data and the classifier type which gave the highest accuracy was 
selected. The selected KNN classifier was a ‘Weighted’ KNN which uses a ‘Euclidean’ distance metric with 10 
neighbours. To evaluate the model, 5-fold cross-validation and leave-one-subject-out cross validation were used.

(2)θz = atan2
(

sy , sz

)
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Results and discussion
Classification of static and dynamic activities. The confusion matrices were examined for different 
combinations of features ((i) moving standard deviation of the magnitude of the thigh data alone, (ii) moving 
standard deviation of the magnitude of the thigh data combined with the moving standard deviation of the verti-
cal axis of the thigh data, and (iii) the previous two features combined with the moving standard deviation of the 
magnitude of the waist data) and window sizes (0.5 s, 1 s, 1.5 s, 2 s and 3 s). They showed that the false positive 
and false negative values were gradually decreased with additional features when the windows were 0.5 s and 1 s. 
However, when the windows were 1.5 s, 2 s and 3 s, the classification accuracies for all combinations of features 
were 100% with the given training dataset.

Further, it was noted that the moving standard deviation of the magnitude of the waist data and of the thigh 
data were strongly correlated. As the thigh can capture more information than the waist in postural changes, 
only the standard deviation of the magnitude of thigh data was selected to train Classifier 1.

It was noted that for the static postures, the moving standard deviation did not surpass ≈ 0.005 g, whereas 
for dynamic activities it was consistently above 0.1 g.

Figure 3 illustrates how the classification output varies with window size, over four sit-to-stand cycles. With 
window sizes of 0.5 s (left), 1 s, 1.5 s and 2 s, the classifiers identified periods of sitting and standing as static 
postures, and transitions between sitting and standing as dynamic movements. With a window size of 3 s (right), 
however, the classifier identified the whole segment where the participant was performing sit-to stands as a 
dynamic movement segment.

For this paper, the intention was to analyse the participants’ postural changes throughout the day and estimate 
the proportion of active (dynamic) movements relative to passive postures. Hence, the transition movements 
were not of primary interest, rather the focus was on identifying longer segments of static and dynamic activi-
ties. Therefore, the standard deviation of the magnitude of the ‘Thigh’ data for 3 s windows was selected as the 
only feature to train the classifier, based on the accuracy values as mentioned in section ‘Classification of static 
and dynamic activities’.

Classifier 1 was trained and evaluated with all 15 datasets across the 5 participants with 5-fold cross 
validation and the accuracy was 100%. Classifier 1 was further evaluated with a leave-one-subject-out 
approach. For each left-out participant, 3 days of data were used for testing, and roughly 90 seconds of data 
were taken from 4 static postures ( 4 postures× 90 s× 50 Hz× 3 days = 54000 ) and 2 dynamic activities 
( 2 activities× 90 s× 50 Hz× 3 days = 27000 ) to evaluate the classifier.

Classification of postures. The inclination angles for the waist, thigh, and ankle for each posture from 
all 15 datasets are shown in Fig. 4. Figure 5 shows the same data in a 3D representation, with the waist, thigh, 
and ankle inclination angles on the three axes. The plots show four clusters corresponding to the four postures.

Classifier 2 had a 100% classification accuracy for both 5-fold cross validation and leave-one-subject-out 
methods. The given confusion matrix in Table 1 was based on a 5-fold cross validation method.

All the analyses presented above were conducted with the ‘Right’ leg data. The same analyses were conducted 
with the left leg to examine if there were any differences. Similar accuracies were observed from both Classifiers 
1 and 2.

Analysis of “usual activities”. By combining both classifier outputs the data were categorised into five 
categories, the four static postures plus dynamic movements as a fifth category. Again we observed that the accu-
racy remained the same at 100% even after combining both classifiers with the given dataset.

The data collected from the participants’ “usual activities” for the rest of the day (i.e. non-ground truthed 
activities) were analysed to characterise the postural variations of the participants. Figure 6 shows one of the 
summary reports (‘Participant A’). Each day, ‘Participant A’ was wearing the sensors for more than 8 hours 
during daytime hours. Three of the days were weekdays when ‘Participant A’ was mainly working (in front of a 
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Figure 3.  Classification outputs for a 0.5 s window (left) compared with a 3 s window (right), trained using the 
standard deviation of the magnitude of the thigh data. The plots show the 3-axes of acceleration from a sensor 
on the thigh as one participant performs 4 sit-to-stand cycles. The classifier outputs are shown at the top of each 
plot. For a 0.5 s window, the classifier identifies periods of static postures and dynamic movements within each 
sit-to-stand movement. In contrast, for a 3 s window, the whole segment is classified as a dynamic movement.
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computer) and during the weekend-day, the participant was doing miscellaneous activities including shopping, 
according to the diary reports.

By comparing the weekday plots against the weekend plot (Fig. 6a,b.1,c and d), the sensor data capture that 
‘Participant A’ had been sitting and sitting with legs outstretched between 73% and 86% of the time throughout 
the data collection on weekdays. In contrast, on the weekend, the proportion of time spent sitting and sitting 
with legs outstretched was comparatively lower (35%). Moreover, the sensors captured a higher proportion of 
time spent lying down (14%) on the weekend, which corresponded to the participant having a nap and lying 
down on a sofa, according to their diary data. Further, during the weekend, the participant’s dynamic activities 
and standing durations made up a higher proportion of the activities (51%), compared to weekdays. During the 
weekdays the total dynamic and standing data were between 13% and 25%.

According to Fig. 6b.1, on Day 2, ‘Participant A’ had spent 45% of their day in a ‘sitting with legs outstretched’ 
posture and 41% of the time sitting. In order to check why ‘Participant A’ had been sitting with legs outstretched 
for a longer period than that of sitting, the data were analysed against the diary data. Figure 6b.2 shows the dis-
tribution of postures based on the classifier (b.1) as compared with the participant’s diary data (b.2). According 
to Fig. 6, it would appear that 28% of activity recorded in the diary as ‘sitting’ was classified as ‘sitting with legs-
outstretched’, and roughly 5% of dynamic movements from the diary data appear to be classified as ‘standing’ data.

In order to understand these discrepancies better, the classifier output and the diary data were plotted along-
side the corresponding angle data of the waist, thigh and ankle and the z-axis of acceleration from each sensor 
(Fig. 7).

Figure 7a shows a data segment where the classifier alternates between ‘sitting’ and ‘sitting with legs out-
stretched’ even though, that entire segment was recorded as ‘sitting’ in the diary. Within that segment, the ankle 
angles changed between 30◦ and 60◦ , resulting in the classifier distinguishing them as ‘sitting’ and ‘sitting with 
legs outstretched’. When ‘Participant A’ was asked about the data, they stated that during some segments their 
legs were in different positions and they might have stretched their legs while working. By considering all these 
factors it could be said that unconsciously the participant might have stretched out the ankles from the proper 
sitting posture without changing the waist or thigh, which could be the reason for the discrepancies in ‘sitting ’ 
vs ‘sitting with legs outstretched’ data between the classifier output and the diary data.

Similarly, Fig. 7b shows an instance where there was a discrepancy in standing and dynamic activities in clas-
sifier output versus diary data. The participant recorded a period of fidgeting (from 13:40) which was annotated 
as dynamic activity. Examination of the sensor data, however, indicated that the data also included periods of 
standing which were not noted in the diary, yet were classified by the classifier as standing. Figure 7b shows 

Figure 4.  Inclination angles for the waist, thigh, and ankle from all 15 datasets for (a) standing, (b) sitting, (c) 
lying down, and (d) sitting with legs outstretched. The stick figures are drawn using the median value of the 
inclination angles.
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one such fidgeting segment from the whole dataset. Not only by considering the classifier output, but also by 
examining the flat lines of the waist, thigh and ankle accelerometer signals, it can be said that there were static 
(standing) segments within that fidgeting segment.

This paper focused on analysis of static postures based on accelerometry. Further, this paper gives an insight 
as to how the different window sizes can be used in feature vectors in training classifiers under different scenarios. 
Both classifiers implemented in this study had 100% accuracy when trained and evaluated with an annotated 
dataset. This dataset was highly-selected and accuracies could decline with more naturalistic activities that 
include, for example, sitting with the legs crossed. Nevertheless, the results indicate that sensors embedded in 
loose clothing are significant as a way of capturing posture information. Comparison of the diary data and the 
posture classifier output indicates that a significant percentage of activity during a person’s days can be captured 
by postures that can be recognised with sensors only on the lower body (waist, thigh, ankle). Still, inclusion of 
upper body sensor data could be useful to understand whole body postures.

Even though this study is limited to the classification of data into four basic postures, further improvements 
are possible by using a different method for estimating the inclination angle. For instance, a rotation matrix 
approach as described in "Estimating sensor inclination angle with a rotation matrix" section could be used, 
which would allow estimation of angles from 0◦ to 360◦ (versus the arccos method which estimates angles 

Figure 5.  (a) 3D plot of the inclination angles. Shadows of the data are projected in grey onto the walls of the 
graph. Four clusters correspond to standing (blue ‘o’), sitting (red ‘x’), lying down (black ‘ △ ’) and sitting with 
legs outstretched (yellow pentagon). Projections of the data are shown in (b) ‘thigh’ vs ‘waist’, (c) ‘ankle’ vs ‘thigh’ 
and (d) ‘ankle’ vs ‘waist’.

Table 1.  Confusion matrix for Classifier 2 (posture classification) Posture 1: Standing, Posture 2: 
Sitting,Posture 3: Lying down, Posture 4: Legs outstretched. There were approximately 22.5 minutes (67,500 
samples) of data per activity (maximum of 90 seconds per posture per day x 15 participant-days).

True class

Posture 1 65785 0 0 0

Posture 2 0 69015 0 0

Posture 3 0 0 67175 0

Posture 4 0 0 0 58605

Posture 1 Posture 2 Posture 3 Posture 4

Predicted class
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between 0◦ and 180◦ ). With some adjustments to the method of estimating the inclination angles to be able to 
distinguish, for example, between “forward” and “backward” inclinations, there is a possibility of using these 
clothing-mounted wearable sensors in analysing ‘sleeping’ postures such as “supine position”, “prone position”, 
“right position”, “left position”, and “sitting position” as mentioned  in30.

We acknowledge that this study was conducted with a limited number of participants, nevertheless the data 
collection with each of the 5 participants was extensive (1–4 full days each, resulting in more than 90 hours of 
data) and systematic. Altogether, 15 datasets (i.e. 15 participant-days) were used to train and evaluate the clas-
sifiers, and we believe that this analysis is sufficiently robust to show that the clothing-mounted sensor data can 
be used productively in posture analysis.

Dynamic activity classification is as important as posture classification, and is an important direction for 
future work. One of the main benefits of looking at dynamic activities is the possibility of analysing the intensity 
of physical activities. Physical inactivity causes many health  issues31 and classification of dynamic activities 
could help provide insights that are relevant in healthcare monitoring. Another area for further work is to extend 
this study to analyse the upper body data, to improve the static posture and dynamic movement classifications.

Conclusion
Monitoring posture and classifying activities for long-term healthcare can be challenging. In order to achieve a 
reasonable level of accuracy, more sensors can help but can be difficult or cumbersome for the person to wear. A 
solution is to mount the sensors into everyday clothing, so the data collection is unobtrusive for the individual. 
This study analysed data from 3 sensors mounted along the lateral seam of both legs of loose-fitting trousers, 
corresponding to the waist, thigh, and ankle. Three features (inclination angles of the waist, thigh, and ankle) 
were used to implement a posture classifier, which achieved 100% accuracy. Hence, we conclude that sensors 
mounted on loose clothing can be used successfully for posture classification.

Standing  5% 

Sitting
46% 

Lying down 7% 

Legs 
 outstretched
32% 

Dynamic 10% 
Standing 4% 

Sitting
 41%

Lying down <1% 

Legs 
 outstretched
45% 

Dynamic 9%

Standing 10% 

Sitting
49% Lying down 3% 

Legs 
 outstretched
24% 

Dynamic 15% 
Standing 23%

Sitting
14%

Lying down 14%
Legs 
 outstretched 21%

Dynamic 28%

Standing <1% 

Sitting
 69%

Lying down <1% 

Legs 
 outstretched
17% 

Dynamic 13%

(a) Weekday 1

(c) Weekday 3 (d) Weekend

(b.1) Weekday 2

(b.2) Weekday 2: Diary data

Figure 6.  Four days’ activity summary report for ‘Participant A’, based on analysis of the sensor data (a, b.1, c 
and d) and activity percentages based on diary data for Weekday 2 (b.2). This includes three weekdays and one 
weekend day. Compared to weekdays, there was more standing and dynamic movements at the weekend. Also, 
the participant was sitting most of time during the weekdays with less time spent in dynamic movements.
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Chapter 6

Comparing Loose

Clothing-mounted Sensors With

Body-mounted Sensors in the

Analysis of Walking

Chapter 3 concluded that the clothing-mounted data highly correlate with body-

mounted sensor data during static postures than during the dynamic activities.

However, the sensors used in that comparison were a bit heavy (19 g). Hence, there

was a need to analyse how the lightweight body-mounted sensor data correlate with

lightweight clothing-mounted data with respect to dynamic activities.

This chapter covers the fourth aim of the research, i.e. collecting a supplementary

dataset covering the lower body with 6-9 lightweight sensors mounted on body and

clothing to quantify the correlation between the sensor pairs with respect to ‘walking’

data.

Data were collected from three healthy participants and each participant wore the

same clothing with sensors for 2 days. The correlation coefficient values were com-
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pared with respect to inclination angles of each sensor pair. The inclination angles

were calculated based on quaternions using the Madgwick MARG algorithm 1.

Quaternion representation of orientation

The following is a brief discussion about quaternions and their use as a compact

representation of rotation transformations. Quaternions can be considered as an

extension of complex numbers and were first described by sir William Hamilton2.

in 1843.

Quaternions are often identified as a quadruple of 4 real numbers q = (q0, q1, q2, q3)

with an arithmetic that extends the concept of a complex number but with three

complex variables i, j, k. The rules for quaternion arithmetical operations such as

addition, multiplication, conjugation and inverse are well defined and can be easily

programmed.

One useful notation of a quaternion quadruple is to present the 4 elements of the

quaternion as a scalar and a 3 element vector, so that q = (q0, q1, q2, q3) = (q0, q⃗v),

and q⃗v = (q1, q2, q3). This notation allows us to consider spatial 3 element vectors

as a subspace quaternions where q0 = 0.

Two important arithmetic operations are needed when using quaternions to repre-

sent a rotation, multiplication and the conjugation of a unit quaternion.

The multiplication of two quaternions q and r when in their “scalar plus vector” form

is then given by the following notation where (·) × (·) is the vector cross product.
1https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
2https://www.maths.tcd.ie/pub/HistMath/People/Hamilton/
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q ⊗ r =(q0, q⃗v) ⊗ (r0, r⃗v)

=(q0r0 − q⃗v.r⃗v, q0r⃗v + r0q⃗v + q⃗v × r⃗v)

The conjugate of a quaternion q = (q0, q⃗v) requires simply changing the sign of the

vector component, i.e.

q∗ = (q0, −q⃗v) (6.1)

A unit quaternion is usefully represented as

q = (cos
(

θ

2

)
, u⃗ sin

(
θ

2

)
)

Where u⃗ is a unit vector and θ is any angle, however, this will later represent the

angle of rotation or transformation of any vector about the unit vector u⃗ by an angle

θ.

A unit quaternion has a magnitude of 1, and the magnitude of a quaternion is the

square root of the sum of the squared elements, expressed with the notation used

here is then |q| =
√

q2
0 + q⃗v · q⃗v and now (for completeness) the quaternion inverse

can then be constructed as

q−1 = q∗

|q|

With these tools it is then possible to use the unit quaternion identified in equa-

tion 6.1 to compute the coordinate transformation of a vector r⃗ expressed in a sensor

frame {S} (notated as S r⃗) to a world frame {NWU(North, west, up)} (notated as
NWUr⃗). That is

NWUr⃗ = q ⊗ S r⃗ ⊗ q∗ (6.2)
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More correctly this transform can be expressed as

NWUr⃗ = q ⊗ S r⃗ ⊗ q−1

However, if q can be assured as a unit quaternion, it can be reverted to use it in the

conjugate form as given in equation 6.2.

Methodology, data analysis, discussion and conclusions are explained in detail on

the attached paper titled “Comparing Loose Clothing-mounted Sensors With Body-

mounted Sensors in the Analysis of Walking”.

Further analyses carried out with all the participants are listed as Appendix C.1

and C.2.

From this analysis, it was noted that the clothing data were able to represent gait

related information in a productive way.
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Abstract: A person’s walking pattern can reveal important information about their health. Mounting
multiple sensors onto loose clothing potentially offers a comfortable way of collecting data about
walking and other human movement. This research investigates how well the data from three sensors
mounted on the lateral side of clothing (on a pair of trousers near the waist, upper thigh and lower
shank) correlate with the data from sensors mounted on the frontal side of the body. Data collected
from three participants (two male, one female) for two days were analysed. Gait cycles were extracted
based on features in the lower-shank accelerometry and analysed in terms of sensor-to-vertical angles
(SVA). The correlations in SVA between the clothing- and body-mounted sensor pairs were analysed.
Correlation coefficients above 0.76 were found for the waist sensor pairs, while the thigh and lower-
shank sensor pairs had correlations above 0.90. The cyclical nature of gait cycles was evident in the
clothing data, and it was possible to distinguish the stance and swing phases of walking based on
features in the clothing data. Furthermore, simultaneously recording data from the waist, thigh, and
shank was helpful in capturing the movement of the whole leg.

Keywords: accelerometer; body-mounted sensors; clothing-mounted sensors; gait cycle; healthcare;
human movement; IMU; sensor to vertical angle; wearable devices

1. Introduction

Gait analysis can give a good indication about one’s health, as walking is a common
physical activity for many people, performed everyday, and it highly depends on the central
nervous system [1,2]. Hence, if there is any functional disorder in the central nervous
system, it is reflected in gait patterns [3]. The way gait could be affected by nervous
system disorders can be seen with dementia patients and people with Parkinson’s [4,5].
Furthermore, even healthy older adults with slow gait speed may experience deterioration
in cognitive function [4]. Hence, monitoring gait patterns could be a method for the early
diagnosis of musculoskeletal and central nervous system disorders [3].

Gait analysis technologies can broadly be divided into two categories, non-wearable
sensor and wearable sensor technologies [6]. Usually, non-wearable technologies, such
as camera-based systems and ground reaction force sensors (GRF), are used in laboratory
settings, whereas wearable sensor technologies, such as accelerometers, gyroscopic sensors,
magnetometers, force sensors, extensometers, goniometers, active markers, electromyo-
graphy, sensing fabrics and smartphones, can be used outside and inside the laboratory
setting [6]. However, due to having features such as usability, portability, low cost, low
power consumption, high sensitivity and small sizes, wearable sensors are commonly used
in gait and other movement analyses research [1,6]. In gait research, wearable sensors
have been mounted on feet/shoes [7–11], knees, thighs [12], ankles [5,13], shanks [14–16],
chests [13] and waists [13,17] to analyse the gait parameters such as stride velocity, stride
length, step length, cadence, step width, step angle, step time, swing time, stance time, gait
phase, joint angles and momentum [6].

Sensors 2022, 22, 6605. https://doi.org/10.3390/s22176605 https://www.mdpi.com/journal/sensors
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In many research studies, gait parameters are extracted from multiple places, such as
the hip, knee and ankle joints, and researchers investigate combining the data collected
from the different sites [18] Furthermore, other studies have stated how results could be
enhanced by using multiple sensors in gait analysis and gait classification [19,20]. Gao et
al. have identified the benefits of using multiple sensors with light-weight algorithms as
compared with using single wearable sensors with computationally demanding processing
to train complex classifiers [21].

However, wearing multiple sensors on a long-term basis could be a cumbersome task
for the wearer. Moreover, if the sensors are not reliably worn in the same place in the same
orientation every time, the data would not be consistent, which makes the data analysis
process more complex. Clothing-mounted sensors and smart garments could potentially
address these issues. An important step toward the use of clothing-mounted sensors
for gait analysis and/or long-term monitoring, however, is to verify the reliability of the
data, for example, by validating the data from clothing-mounted sensors against those
from body-mounted sensors. There are only a limited number of research studies on this
topic. One such study validated the association between readings from sensors mounted
in tight-fitting clothing and sensors mounted on the body with respect to a single activity
(dead-lifting) [22]. Another work showed that sensors attached onto fabric produced
better signal variations compared with sensors attached with accessories (e.g., bands)
that could be used in activity classification [23]. There are research studies conducted
with loose clothing-mounted sensors in investigating movement and fall detection [24–26].
However, it was noted that these clothing data have not been validated/compared with
body-mounted sensor data with different activities. As such, there is a need for a systematic
analysis to assess the extent to which everyday wear clothing-mounted sensor data can be
used in movement analysis and activity classification.

In our previous work [27] conducted with Actigraph (https://actigraphcorp.com,
accessed on 15 November 2019) sensors, the correlations between clothing- and body-
mounted sensors in dynamic activities were found to be lower than the correlations ob-
served during static activities such as standing and sitting, due to the sensors being a bit
heavy (19 g). Hence, the present study investigates the use of light-weight sensors in the
clothing, specifically comparing how well the data from clothing correlate with data from
sensors mounted on the frontal side of the lower body in gait analysis. In contrast with
studies involving tight garments [13,28], in this study, we investigated everyday loose
clothing, as this is likely to be more comfortable and acceptable for wearers.

2. Background

A gait cycle consists of two main phases (stance and swing phases), and they are further
categorised into eight sub-phases [11,29,30]. Stance phase makes up approximately 60%
of a gait cycle, and it starts from initial contact (IC)/heel strike (HS), followed by loading
response (foot flat), mid-stance, terminal stance and toe-off (TO) [11,29,30]. The remaining
40% of the gait cycle consists of the initial swing, mid-swing (MS) and terminal swing.

A complete gait cycle is considered to be from one IC/HS to the next IC/HS with
the same foot [11,29–32]. A number of studies have used gyroscope data to track ‘HS’
and ‘TO’ in gait cycles from foot/shoe-mounted sensors [8,9,16,29,33] while others have
used either accelerometry alone or both gyroscope and accelerometer data combined.
With accelerometer data, MS [12], HS [10] and terminal contact (foot-off) [14] can be used
to track gait cycles. When using both accelerometer and gyroscope data, HS, TO, MS and
terminal stance can be used to track gait cycles [5,7].

The present study focuses on examining sensor-to-vertical angles as a measure of the
sensor’s orientation in space relative to vertical. As a first step, the orientation of each
sensor had to be calculated. There are many ways of estimating the orientation of inertial
measurement units (IMUs) and magnetic, angular rate, and gravity (MARG) sensors. While
an IMU (combination of an accelerometer and a gyroscope) can estimate attitude with
respect to the direction of gravity, MARG sensors can estimate orientation considering
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both the direction of gravity and the magnetic field of the earth [34]. Further, as IMU
data are susceptible to noise, sensor fusion techniques have been proposed as a reliable
way to estimate orientation [35]. Three possible ways to represent orientation are Euler
angles, quaternions and direction cosine matrices (DCM) [35]. In this study, we express
sensor orientation as quaternions. Commonly used algorithms that estimate orientation
with quaternions as outputs are described by Mahony et al. [36], Madgwick et al. [37] and
Sabatini [38]. For this study, the algorithm implemented by Madgwick et al. was used to
estimate the orientation quaternions.

Regarding data collection methodologies, many of the above-mentioned gait analysis
studies used body-mounted wearable sensors. There were a smaller number of studies using
clothing mounted sensors in gait analysis; however, the results were promising [13,39,40].
Cleland et al. [13]. used a harness around the chest and waist with three sensors to
compare step counting from body- and clothing-worn sensors Niazmand et al. [39] studied
accelerometers mounted in ordinary trousers to identify freezing of gait in people with
Parkinson’s, and their algorithm outputs were compared with a physician’s report. They
reported an 88.3% sensitivity. Cha et al. [40] investigated the use of piezoelectric sensors
mounted in loose trousers to recognise walking/periodic motion and concluded that it
was possible to detect walking segments from the data at 93% accuracy compared to an
algorithm developed by Cha et al. [41].

The present study aims to investigate how well the data from body-mounted sensors
correlate with that from clothing-mounted sensors in terms of their orientation angles dur-
ing walking and also what information can be extracted from multiple clothing-mounted
sensors on trousers. de Jong et al. [15] studied sensors placed on the frontal and lateral
sides of the upper shank during walking in terms of the shank-to-vertical angle, which is a
parameter commonly used to describe orthosis alignment. Our study also involves sensors
placed on the frontal (body) and lateral (clothing) sides, and we compare waist and thigh
sensor pairs in addition to shank sensor pairs. Further, as in Lee et al.’s analysis, which pre-
sented visualisations of gait characteristics based on multiple joint angle information [18],
we present the gait information in 3D plots incorporating information from multiple parts
of the body, as well as using phase portraits.

3. Materials and Methodology
3.1. Materials

Our sensing system consisted of between 6 and 9 IMUs (based on the Bosch Sensortec
BMI160 smart IMU) all using a synchronous bus and connected via flat ribbon cable to
form a “sensor string”. Our in-house PCB design was fabricated by a commercial company
at a cost of approximately 10 GBP per sensor. The bespoke sensors were approximately
15 × 12 × 7 mm each and had a combined weight of less than 14 g, and the inter-connecting
cables weighed approximately 110 g. This sensor string was connected to a battery-powered
Raspberry Pi, where the data were stored. The Pi and battery were worn in a waist
pouch attached using a belt (Figure 1). Data were sampled at 50 Hz. The range of the
accelerometers was ±16 g with a 12-bit resolution. The BMI160 IMU includes gyroscope,
accelerometer and magnetometer readings.

Two sets of IMUs were worn by participants. One set was mounted inside the clothing,
with three sensors along the lateral side of the lower body (waist, upper thigh and lower-
shank) on the right side. The second set of IMUs was taped to the skin on the frontal side
of the body at comparable positions to those of the sensors in the clothing, also on the right
side (Figure 1). To attach the sensors to the clothing, the sensors were taped securely along
the seams of the clothing in the chosen position, and cotton bias binding was taped on
top of the sensor string using double-sided tape for fabric. In this way, the sensors were
not outwardly visible and were also not in contact with the skin of the wearer. The body-
mounted sensors were also part of the ‘sensor string’, and those sensors were encased in
small woven pouches and taped to the skin/ body using microporous surgical tape to
minimise the movements of the sensors.
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Figure 1. Sensor placement. On the body, there were three sensors on the frontal side of the body
(BS1—waist, BS2—thigh, and BS3—lower-shank). On the clothing, there were three sensors along
the lateral side of the lower body (ClS1—waist, ClS2—thigh and ClS3—lower-shank) in comparable
positions to those on the body. Tape is used here to show the positions of the body-mounted and
clothing-mounted sensors; however, in practice, neither was visible from the outside.

3.2. Data Collection Procedure

Three healthy participants (age range: 35–36 years old; 2 males and 1 female) took
part in this study. Each participant provided a pair of their own trousers in their usual
size, and the researcher attached the sensors to the clothing. The male participants chose
cotton-blend fleece jogging trousers, and the female participant chose loose cotton slacks.
Even though both male participants wore jogging trousers, they were not of the same type.
One participant’s trousers were baggy at the thigh, compared to the other participant’s.
After placing/fixing the body-mounted sensor string, the participants were asked to put
on the trousers with sensors and to connect the strings together to start the data collection.

Each day, the participants were asked to perform a set of predefined activities that
included walking, with each activity contributing about 2 minutes’ data. The activities
were: (1) standing still, (2) sitting on a chair, (3) 5 sit-to-stand and stand-to-sit cycles, (4)
5 leg raises, and (5) walking back and forth. These activities were video recorded to serve
as a ground truth. Even though this analysis focuses only on walking data, ‘standing’,
‘sit-to stand’ and ‘leg raising’ data were also used for the sensor alignment as described in
Section 3.3.1.

The study was reviewed by the research ethics committee of the School of Biological
Sciences, University of Reading, UK and given a favourable ethical opinion for conduct
(reference SBS 19- 20 31).

3.3. Data Analysis

We analysed the data from the walking activity from three participants over two days
each. The data were first pre-processed (Section 3.3.1) and then segmented into individual
gait cycles (Section 3.3.3). For each gait cycle, the sensor-to-vertical angles were estimated
(Section 3.3.2) and used as the basis for comparing clothing-mounted with body-mounted
sensors (Section 3.3.4).
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3.3.1. Pre-Processing

The data were collected in a compressed format on the Raspberry Pi and were trans-
ferred to a PC, decompressed and analysed in MATLAB.

As the initial orientations of the sensors relative to the limbs and to the world were
not known, two rotation matrices were applied to each sensor dataset to transform the data
into a common coordinate frame. A first rotation matrix was applied to align the z-axis
of the sensor data with the direction of gravity. This rotation was derived from standing
data, assuming that while the participant was ‘standing upright’, the limbs were all vertical
and the only accelerations measured by the sensors were the accelerations due to gravity.
The rotation was computed using Rodrigues’ rotation formula [42] by identifying the axis
for rotation as being perpendicular to both the gravity vector and the z-axis.

A second rotation was applied to align the x-axis with the anterior-posterior direction
in the sagittal plane and the y-axis with the medial-lateral direction perpendicular to the
sagittal plane. The computation of the second rotation was based on finding the direction
of forward-backward accelerations during movements that lie primarily within the sagittal
plane, mentioned in Section 3.2 (e.g., sit-to stands, leg raising and walking). Figure 2 shows
the alignment of the lower shank sensor. After this process, the clothing-mounted and
body-mounted sensors can be assumed to be ‘axis’ aligned with the participant.

Figure 2. Location of sensors and corresponding coordinate frame {S}. Anterior-posterior accelera-
tions of walking are measured in the sagittal plane and are principally measured by the x and z-axis
in the sensor frame {S}. Angular velocities are principally measured by the y-axis of {S}. θ has a
negative value when the leg is inclined (back leg, left) and a positive value when the leg is reclined
(front leg, right).

The accelerometer and gyroscope data were low-pass filtered using a second-order
Butterworth filter with a 3 Hz cut-off. The filter was run on the data both forwards and
backwards to minimise phase distortions.

3.3.2. Sensor-To Vertical Angle Estimation

The primary accelerations of the leg and body segments during walking will be in or
parallel to the sagittal plane with the rotational velocity vectors considered perpendicular
to this plane. Following the pre-processing described in Section 3.3.1, it may be assumed
that the sensor coordinate frame as shown in Figure 2 aligns so that the x and z-axis are
contained in the sagittal plane. The y-axis is then aligned so as to measure the principal
angular velocities of movement.
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Inertial data from individual sensors placed on the clothing and attached to the skin
was converted to quaternions using Madgwick’s algorithm [37] (https://github.com/
xioTechnologies/NGIMU-Software-Public, accessed on 21 September 2021). The algorithm
returns an estimate q of the quaternion values that relate the sensor coordinate frame {S}
to a north (x-axis), west (y-axis), and up (z-axis) global frame {NWU}. These quaternions
were assumed to be a reasonable estimate of the sensor frame {S} orientations in this study.

Computing the sensor-to-vertical angle through the gait cycle is now possible by con-
sidering any vector in the sensor frame S~r and computing its coordinates in the NWU~r
frame using

NWU~r = q⊗ S~r⊗ q∗

Thus the x-axis of the sensor frame (S~r =
[
1 0 0

]T) and the z-axis (S~r =
[
0 0 1

]T)
have the respective coordinates

NWU~x =




q0
2 + q1

2 − q2
2 − q3

2

2q1q2 − 2q0q3
2q0q2 + 2q1q3


 and NWU~z =




2q1q3 − 2q0q2
2q0q1 + 2q2q3

q0
2 − q1

2 − q2
2 + q3

2




Since we are only interested in the sensor-to-vertical angle measurement, only the last
row of these two vectors is relevant, as they are the cosine of the angle between the sensor
x-axis or z-axis and up. The remaining terms are only relevant for estimating the absolute
orientation of the sagittal plane with respect to north.

Thus, the angle between the sensor x-axis and up is θx, and the angle between the
sensor z-axis and up is θz, where

θx = arccos(2q0q2 + 2q1q3)

θz = arccos(q0
2 − q1

2 − q2
2 + q3

2)

It may seem logical to use the angle between the z-axis and up as the sensor-to-vertical
angle; however, as this is an inverse cosine, it is not possible to determine if the limb is
leaning forward or backwards with respect to up while walking. An alternative solution
is to use the orientation of the x-axis with respect to up. During a normal gait cycle, this
angle will oscillate around 90◦ during walking, so an offset is subtracted from this angle,
and the eventual calculation is

θ = arccos(2q0q2 + 2q1q3)− 90◦ (1)

The estimate of the angular velocity is simply that of the gyroscope y-axis, which, due
to the preliminary processing, is also the axis perpendicular to the sagittal plane.

3.3.3. Extraction of Gait Cycles

To segment the data into individual gait cycles, the MS points (right before the foot
was at the terminal swing) were identified from the lower-shank accelerometry, following
the method described in [11]. That is, for each of the datasets, the peaks above 2 g and 1.8 g
within less than a 1 s window were identified from the acceleration magnitude from the
clothing-mounted and body-mounted sensors, respectively. These peaks were logged as
the MS points [11].

The duration of each individual gait cycle was then calculated as the time between
two MS points. For each participant for each day, the mean durations for clothing and
body sensors were calculated. The data were then segmented into individual gait cycles
using the MS point as the start of each gait cycle, and setting the length equal to the mean
duration in order that all gait cycles could have the same length (avoiding the need for
normalisation). The data from the waist and thigh sensors, which were synchronised with
the lower-shank sensors, could then be segmented into individual gait cycles using the
same start and end points determined from the lower-shank sensor.
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This process of gait cycle extraction was performed programmatically, and to check the
accuracy of the algorithm, the start and end points of each gait cycle were identified from the
video ground truth and checked against the points that had been programatically identified.

For each gait cycle, initial contact (IC) and toe off (TO) points were identified as the
local minima in the lower-shank gyroscope data around the medial-lateral axis (y-axis),
as used by Tjhai and O’Keefe [9].

3.3.4. Comparison of the Body-Mounted and Clothing-Mounted Sensor Angles

After verifying the normality of the data [43], the correlation (Pearson’s correlation
coefficient) between the sensor-to-vertical angles of the clothing- and body-mounted sen-
sors [44] was calculated for each individual gait cycle. In total, 465 gait cycles were analysed
from the 3 participants (i.e., 465 correlation coefficients). The mean correlation coefficient
value was calculated for each participant.

The difference between the angles of each sensor pair (subtracting the body-mounted
sensor angle from clothing-mounted angle) was also calculated for each participant for
2 min of standing and at two points in the gait cycle. During standing, the angle differences
were expected to be minimal, as the orientation correction performed during pre-processing
(Section 3.3.1) should ensure that the data from both sensors were aligned with vertical.

For walking, the angle differences were calculated at two different points. One value
was calculated at the IC point extracted based on the lower-shank sensor, with the rationale
that the difference between the two sensors could potentially be greatest at this point in the
gait cycle. A second value was calculated at the point where the lower-shank sensor on
the body was vertical during stance phase, with the rationale that the difference between
the two sensors could potentially be smallest at this point in the gait cycle. The angle
differences between the body-mounted and the clothing-mounted sensors was calculated
for each gait cycle at these two points, and the mean and standard deviation across all gait
cycles was calculated for each participant.

4. Results
4.1. Extracted Gait Cycles

Figure 3a–c shows the data from the clothing-mounted sensor on the lower-shank
for two gait cycles of one particpant, along with the extracted initial contact (IC), toe-off (TO)
and mid-swing (MS) points. The local minima for extracting the IC and TO points could
be clearly identified in the gyroscope data from the clothing-mounted sensor (Figure 3a).
Similarly, the local maxima for extracting the MS points could be clearly identified from
the accelerometer data of the clothing-mounted sensor ((Figure 3b). The same points (IC,
TO and MS) marked on the waist, thigh and lower-shank acceleration data are shown in
Figure 3(c.i–c.iii). Approximate MS points were extracted by using the peak values marked
on Figure 3b based on the magnitude of lower-shank/ankle accelerometer data. Comparing
with the MS points that were identified manually from the video, the programmatic
approach correctly identified the points from the clothing-mounted sensor data with 97.9%
accuracy, and at an accuracy of 99.7% in the body-mounted sensor data. Inaccuracies
seemed to have occurred in the clothing data when some ‘turning’ data were identified as
MS points by the algorithm. The analysis presented in the following sections considers
only the gait cycles with correctly identified MS points.
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Figure 3. Data from the clothing-mounted sensors for participant 1, day 2. Initial contact and toe-off
markers were extracted based on the gyroscope data (medial-lateral axis) from the lower shank (a),
and the mid-swing markers were extracted based on the magnitude of the accelerometer data from
the lower shank (b). In (c), the same timepoints are shown on the anterior-posterior accelerations for
the i. waist, ii. thigh, and iii. lower shank. Segment (1) bounded by purple dashed lines indicates the
‘stance’ phase, and segment (2) bounded by yellow dashed lines indicates the ‘swing’ phase.

4.2. Sensor-to-Vertical Angles

The sensor-to-vertical angles for the body- (right side) and clothing-mounted (left and
right sides) lower-shank sensors for Participant 2, day 1 are shown in Figure 4a. These
lower-shank angles were comparable with the shank-to vertical angle analyses presented by
Gujarathi and Bhole [30] and with the inverse angle values presented by de Jong et al. [15].
The signs for the present study are inverted to those of de Jong et al., as the authors used
positive angles to represent when the leg was inclined and negative angles when the leg
was reclined, while the convention was the other way around in the present study.

As described in Section 3.3.3, MS points extracted from the lower-shank acceleration
data were used as the starting point to also segment the gait cycles from the waist and thigh
sensors. In this study, 465 gait cycles were analysed across all participants. The mean for
67 gait cycles from one participant, for both body-mounted and clothing-mounted sensors,
is shown in Figure 4b–d.
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Figure 4. Body- vs. clothing-mounted sensor-to-vertical angle for Participant 2, day 2. (a) Exemplar
initial contact (IC), toe-off (TO), and mid-swing (MS) markers on the lower-shank sensor data of the
body (right leg) and clothing (left and right legs). (b–d) Mean gait cycles across 67 gait cycles for body-
mounted (red) and clothing-mounted (blue) sensors for the (b) waist, (c) thigh, and (d) lower-shank
sensors; shaded areas represent the standard deviation.

4.3. Waist, Thigh, and Lower-Shank Sensor-to-Vertical Angles

Figure 5 shows the sensor-to-vertical angles of the waist, thigh, and lower shank
plotted against each other over the course of multiple gait cycles. Both the data for the
body-mounted sensors (red) and for the clothing-mounted sensors (blue) are shown. Visual
examination shows that both datasets follow a similar shape with a slight offset. The
amount of offset may vary with clothing material. In this particular dataset, Participant 2
was wearing loose slacks, and hence, the lower-shank sensor might experience movement
from the clothing in addition to the leg movement.

The mean angle differences between the clothing and body sensors are shown in
Table 1. It can be noted that Participant 2’s mean angle difference (row 2, column 9) at the
IC stage was the highest compared to the other two participants.

Figure 6 illustrates how the angular velocity changes against the sensor-to vertical
angle over a gait cycle for each sensor by using phase portraits. The figure shows a typical
gait cycle which follows the shape of the mean gait cycle, as shown in Figure 4. Approximate
MS, IC and TO points are marked on each plot for body-mounted and clothing-mounted
sensors. This shows that the clothing-mounted sensor data experienced a wider range
of angles in walking, while having a similar body-mounted gait cycle shape in the phase
portrait. Further, it could be noted that the MS, IC and TO points identified from clothing
and body mounted sensors were close to each other (pair-wise).
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Figure 5. Sensor-to-vertical angles of the waist, thigh, and lower shank plotted against each other
for 53 gait cycles from Participant 2, day 1. (a) The angles for body-mounted sensors (red dots)
and clothing-mounted sensors (blue dots) plotted in a 3D space. (b) Two typical gait cycles from
body-mounted (red) and clothing-mounted (blue) sensors. ‘Green o’ s are the approximate starting
points of stance phases (Initial contact) and ‘yellow diamonds’ are the approximate end points of
swing phases (toe off). The arrows show the direction of angle changes over the course of a gait cycle.
(c–e) represent the angle data for ‘thigh’ vs. ‘waist’, ‘lower shank’ vs. ‘thigh’ and ‘lower shank’ vs.
‘waist’, respectively.
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Figure 6. Phase portraits for a typical gait cycle from body-mounted and clothing-mounted sensor
pairs from Participant 2, day 1. The angular velocity is plotted against the sensor-to-vertical angle
for the (a) waist sensor pair, (b) thigh sensor pair and (c) lower-shank sensor pair. ‘Red *’s denote
the starting points (mid-swing, MS), ‘green and cyan diamonds’ denote approximate initial contact
(IC) and ‘blue o’ s denote approximate toe-off (TO) for each cycle. These plots indicate that clothing-
mounted sensors had a wider range of angle changes and angular velocity changes than the body-
mounted sensors.
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Table 1. Mean correlation coefficient (corr. coef.) between each sensor pair and mean angle differences (subtracting body-mounted sensor angle from clothing-
mounted angle) with standard deviation values (denoted with ±). For standing, the angle differences were calculated over 2 min of data. For walking, the angle
differences were calculated at initial contact (IC) and at the point when the lower-shank body-mounted sensor was approximately vertical. P3 did not have a waist
sensor pair (indicated by ‘-’).

Clothing
Type

Waist Thigh Lower Shank

Corr.
Coef. Standing Walking

IC
Walking

Shank Vertical
Corr.
Coef. Standing Walking

IC
Walking

Shank Vertical
Corr.
Coef. Standing Walking

IC
Walking

Shank Vertical

P1 Jogging
trousers 0.77 0.03◦± 0.52◦ −1.95◦± 6.94◦ 2.11◦± 4.30◦ 0.93 0.06◦± 0.30◦ −14.57◦± 8.47◦ −8.82◦± 8.13◦ 0.97 0.14◦± 0.37◦ 2.12◦± 7.55◦ 2.83◦± 5.87◦

P2 Loose
slack 0.81 0.13◦± 0.34◦ 0.85◦± 2.45◦ −1.60◦± 2.83◦ 0.96 0.01◦± 0.28◦ −2.91◦± 7.60◦ −4.00◦± 7.23◦ 0.98 0.03◦± 0.23◦ 11.16◦± 7.72◦ 7.20◦± 4.06◦

P3 Jogging
trousers - - - - 0.91 0.12◦± 0.30◦ −6.27◦± 9.71◦ −2.21◦± 3.62◦ 0.97 −0.07◦± 0.30◦ 4.47◦± 8.88◦ 3.59◦± 4.76◦
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4.4. Correlation Coefficient Analysis

The distributions of correlation coefficients comparing the sensor-to-vertical angle
over individual gait cycles for body-mounted sensors vs. clothing-mounted sensors is
shown in Figure 7. The box plots in Figure 7a indicate that the ‘lower shank’ and ‘thigh’
sensor pairs maintained a higher correlation than the ‘waist’ sensor pairs.

The mean correlation coefficient values are reported in Table 1. Values ranged from
0.97–0.98 for the lower shank and from 0.91–0.96 for the thigh, whereas the values for the
waist were lower at 0.77 and 0.81.

In addition, there were notable outliers in the ‘waist’ sensor data from ‘Participant 1’
(Figure 7b).
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Figure 7. Correlations between the body-mounted sensor vs. clothing-mounted sensor in terms of
their sensor-to-vertical angles over the course of a gait cycle. The plots show Pearson correlation
coefficient values for (a) all 465 gait cycles, (b) Participant 1’s data, (c) Participant 2’s data and (d)
Participant 3’s data. P3 did not have a body-mounted ‘waist’ sensor.

5. Discussion

The main intention of this study was to examine how well data from multiple, frontal
body-mounted sensors correlate with the data from lateral side clothing-mounted sensors
with respect to ‘walking’ data and to find whether key gait related information can be
extracted from the clothing-mounted sensors. From the overall analysis, it was possible
to observe that even though the clothing data were not in full agreement with the body-
mounted sensor readings, clothing data could be used to estimate and track useful gait
information such as the IC, TO and MS points (Figure 3). Further, Figure 4, which shows the
sensor-to-vertical angles for the left and right clothing-mounted sensors and for the right
side body-mounted sensor on the lower-shank, shows that the lower shank gait information
related to gait cycles are in close proximity in both data streams. Moreover, by examining
Figure 4, it was noted that IC points from one leg (blue ‘square’) were approximately
aligned with TO (black ‘o’) points on the other leg.

By simultaneously observing the angle changes in the waist, thigh and lower-shank
sensors throughout the gait cycle as shown in Figures 4b–d and 5, the whole leg movement
can be captured by the three angles, which would not be possible with only a single sensor.
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Further, having the angles of the waist, thigh and lower-shank angles together can help with
visualising the trunk, thigh and tibia movements, respectively. As Gao et al. explained [21],
the angle information from the three sensors could potentially be sufficient for activity
classification without the need for multiple heuristic features.

Figure 6c indicates that from IC to TO, changes of angular velocity seem to decrease
slowly, while the angle along the vertical axis was being changed. This implies that this leg
(right) was on the floor and the other leg (left) might be in swing phase, moving the body,
which caused only the angle changes in the right leg. Figure 6b,c show quite similar changes
in both sensors on body and clothing at stance phase (from ‘green diamond’ to ‘blue o’).
This pattern was noticed with all the other datasets as well. However, Figure 6a shows
a slightly magnified shape of clothing-mounted phase portrait for body-mounted waist
phase portrait. With some of the datasets, this incident was noted in the other direction,
having a magnified phase portrait for clothing-mounted sensors.

From Table 1, it was noted that the body-mounted and clothing-mounted sensors
had a mean angle difference of around 0◦ while the participants were standing, and it
can be said that at the beginning of the data collection, the sensor pairs were at more
or less similar orientations. Further, angle differences at the ‘shank vertical’ stage were
comparatively lower than those at IC. This may have occurred as, at the ‘shank vertical’
stage, the clothing-mounted sensors were nearly at a resting state compared to the IC point,
where there was an additional acceleration of the clothing.

There were also differences in the angle differences across participants, possibly due
to differences in the clothing material and the fit of the clothing. For example, at IC,
we saw larger angle differences at the lower shank for Participant 2, who was wearing
loose cotton slacks, as compared with Participants 1 and 3, who were wearing jogging
trousers with elastic at the ankles. Additionally, Participant 1’s trousers were baggy at the
thigh compared with Participant 2’s, which could account for the larger angle difference
observed in Participant 1’s data at the thigh as compared with Participant 2’s. We also
noted that the orientation of the lower-shank sensors in the clothing could be affected
by whether or not the participants were wearing shoes, and so putting on or removing
shoes midway through data collection would affect the alignment between the body- and
clothing-mounted sensors.

Figures 4–6 also indicated that clothing-mounted sensor data have a higher range of
angle values than that of body-mounted sensor data. By observing the mean gait cycle
shapes in Figures 4d–d and 5b with respect to both sensors (body-mounted and clothing-
mounted), it can be further noted that clothing-mounted cycles had the same shape with
an amplitude of data comparable to body-mounted data. Figure 5a shows the regularity of
the walking pattern of this participant. Figure 5c–e also illustrates that each sensor pair
had a similar shape with a higher range of values in clothing sensors. Figure 5b was drawn
by taking into account the mean gait cycles from body- and clothing-mounted sensor data.
Approximate IC and TO points for cycles were marked on the mean gait cycles to examine
the stance and swing phases. Those angle variations could have happened due to looseness
of clothing, as this can add additional movements, especially at the ‘thigh’ and ‘lower
shank’ points when the person was walking with a higher acceleration. Even though an
orientation correction mechanism was applied to the sensor data based on standing and
walking segments (as mentioned in Section 3.3.1), sensors on clothing may have altered
their positions.

However, Pearson’s correlation coefficient analysis allowed interpretation of the data
in a different way. Mean correlation coefficient values (Table 1) revealed that the waist
sensor pair had the least correlation among all the participants, whereas lower shank and
thigh had higher correlation values of more than 0.97. Yet, the waist sensor pairs also had a
correlation above 0.76. These correlation coefficient values were further analysed based on
the box plots shown in Figure 7. It was recognised that there were a few outlier values in
waist sensor pairs. When examining the outlier data, it was noted that, at the point where a
gait cycle occurred with a negative correlation coefficient value, both body-mounted and
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clothing-mounted signals deviated from the mean ‘waist’ gait cycle. However, the other
two sensors had maintained the correlation at a higher level at that specific point. As both
‘waist’ signals had been changed at that point, it is possible that due to a hand movement
or due to the band of the ‘waist pouch’, a sudden displacement of the sensors might have
happened. Examining other outlier points, it was noted that clothing-mounted sensor data
agreed with the mean gait cycle, while the body-mounted sensor data deviated from the
mean gait cycle. This can be justified as the body-mounted sensor position might change
slightly owing to the movements of the waist band of the trousers and the waist pouch
because the trousers were worn nearly on top of the body-mounted waist sensor. Keeping
the ‘waist’ sensor on the waist line of the trousers and waist-pouch band around the waist
might have added additional movements or prevented the movements of the waist sensor.
This may have caused the slightly lower correlation coefficient with respect to the sensor-to
vertical axis angle than that of ‘lower shank’ and ‘thigh’ data. Hence, although the clothing-
mounted sensors may not be a perfect representation of gait, the same can be said with the
body-mounted sensors. Clothing- and body-mounted sensors have similar information
content when considering gait (Figure 3a,b).

However, if the clothing is excessively loose or if the sensor is disoriented after doing
the alignment, the results would not be as accurate as the expected results. However, even
with that kind of subtle misalignment in the middle of the data collection, data would be
able to give gait characteristics in a reasonable way (Figure 5). Wearing trousers that are
not too loose-fitting near the lower shank/ankle and attaching the sensors firmly to the
fabric to firmly fix their orientation would minimise these issues.

Future work includes using clothing-mounted sensor data in activity classification,
using the structure of the gait as the feature that may improve the classification accuracy.
Assuming that the clothing-mounted sensors are a feasible way of collecting data from
people who have mobility disorders in an unobtrusive way, data could be collected for
a longer period to analyse how gait patterns change due to factors such as fatigue, gait
changes over extended periods of time, or changes of gait in response to a pharmaceutical,
surgical or rehabilitative intervention.

6. Conclusions

In this study, we have collected and analysed data from multiple lightweight, time-
synchronised sensors mounted into everyday loose clothing. Even though the data from
clothing-mounted sensors showed a larger range of angle variation compared to that from
the body-mounted sensors, the sensor pairs correlate well at key points in the gait cycle.
The results also indicate that the data from the clothing-mounted sensors can be used in
extracting and analysing the gait cycles in a productive way. Hence, we conclude that
sensors mounted in loose clothing are a promising way of studying human movement.
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Chapter 7

Classifying Walking, Climbing

Stairs and Turning using Loose

Clothing-mounted Lower Body

Sensor Data

As it was observed that the movement data were well correlated even with dynamic

activities, this chapter explores how informative are the data collected from clothing-

mounted sensors in activity classification by analysing data in different methods

(based on sensor-to-vertical angles and phase portraits) in detail and comparing

classification accuracies based on different features (heuristic i.e. sensor-to-vertical

angle and non-heuristic features i.e. raw accelerometer and gyroscope data) and

different classification approaches (machine learning and deep learning) for three

cyclic gait patterns (walking, climbing up stairs, climbing down stairs) and turnings.

More figures that show the activity wise summary reports for each participant are

listed as Appendix D.1.

Walking, climbing up and down stairs classifier accuracies were more than 90% in

128
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each approach while accuracy for turning classification were between 64.51% and

99.98%.

The results indicate that the loose clothing data are rich in information so that they

can be used to distinguish gait related activities in a promising way.

7.1 Introduction

Human Activity Recognition (HAR) is challenging, yet, a popular research area

which is widely being used in home-based health monitoring systems, video surveil-

lance, gait analysis, falls detection, fitness tracking in athletes and gesture recogni-

tion systems [1, 2, 3]. Further, HAR can be applied on data in real-time [4, 5] or

offline depending on the situation [6].

Mainly HAR systems obtain data from two sources, i.e. camera systems and sen-

sors [2, 3]. These sensors can be further categorised into three sections such as

body-worn sensors, object sensors (Radio-frequency identification (RFID) or ac-

celerometers mounted objects) and ambient sensors [2, 7]. Camera/ video data can

be analysed with computer vision techniques to recognise activities [3], while sensor

data can be analysed with machine learning algorithms. Further, both video data

and sensor data can be used to train Deep Learning (DL) models such as artificial

neural networks (ANN), recurrent neural networks (RNN), convolutional neural net-

works (CNN) and long short term memory networks (LSTM). Conventional machine

learning algorithms such as decision trees (DT), support vector machine (SVM),

naïve Bayes (NB), K-nearest neighbour (KNN) and random forest (RF) achieve a

significant progress in HAR [8]. Wearable body-worn sensor devices are popular in

data acquisition in home-based monitoring systems and fitness tracking systems as

they are capable of collecting data irrespective of where the person is, whereas video

footage data are limited to a certain area.
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Wang et al. [2] noted in their survey that most of the studies that were conducted

in analysing ‘Activities of daily living’ (ADL) and sports activities used wearable

sensors as they are capable of recording even slight movements with a higher sensi-

tivity. Most of the activity recognition studies use a single point mounted wearable

sensor [9, 10, 11] or smart phone [12, 13] in data collections.

However, Gao et al. [14] and Arif and Kattan [15] pointed out that the accuracy

can be increased by using multiple sensors and Maurer et al. [4] also concluded

their study in the same way as they used multiple e-watches on belt, shirt and

trousers’ pockets, back-pack and necklace in a real-time activity monitoring system.

To increase the data analysis accuracy by mounting the sensors roughly onto the

same place everyday and to make it easier for the wearer to put on multiple sensors

easily, we suggest that it is better to mount sensors onto everyday wear clothing.

Further, Van Laerhoven et al. [16] claimed that clothing is an optimal platform to

mount multiple inertial measurement units (IMUs) to collect data from people in an

unobtrusive way . Moreover, Michael and Howard [17] noted that sensors mounted

onto clothing instead of strapping them onto a structure with rigid bands, gives

better signal variations which helps to improve the activity recognition accuracy.

Taking into account the above mentioned arguments, this study investigates how

informative these clothing mounted sensor data are, by visually representing the dy-

namic cyclical activities and how the gait-orientated activity classification accuracies

work with shallow and deep learning algorithms.

7.2 Related Work

Conventional machine learning algorithms have successfully achieved a significant

accuracy in HAR [8]. When using conventional approaches, features need to be

extracted manually to train classifiers, whereas features will be automatically learnt

from data in deep learning networks. Some arguments are there regarding the limita-
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tions of conventional machine learning methods with respect to model generalisation

as the feature extraction highly depends on human domain knowledge for specific

settings [2]. These shallow features are usually based on statistical features such as

mean, average mean, standard deviation, average of standard deviation, skewness,

average of skewness, kurtosis, average of kurtosis, variance, frequency, amplitude

[2, 18] and such features usually work well with low-level activity classification [2].

Further, more labelled data are needed in training conventional models compared

to deep learning approaches. Wang et al. [2] pointed out that conventional models

work well with static data compared to dynamic activity data that should be taken

as a data stream in training the networks.

DL networks are developed with more hidden layers than that of traditional ANNs.

The more the hidden layers, the more the accuracy can be observed as the network

can learn more from the dataset [2]. Most of the DL approaches use original signal

directly in the network rather than extracting heuristic features [19, 20, 21, 22].

Even though DL networks are supposed to use raw data so that the network can

study the features by itself, some studies have used heuristic data in deep neural

networks [23, 24]. Vepakomma et al. [23] were able to categorise data into 22

activities at a reasonable accuracy, by using heuristic features extracted from a

wrist worn accelerometer (mean and variance of magnitude of acceleration, mean and

variance of first derivative of magnitude of acceleration, mean and variance of second

derivative of magnitude of acceleration for 2 second time windows), gyroscope (mean

and variance of magnitude of angular speed, mean and variance of first derivative of

magnitude of angular speed, mean and variance of second derivative of magnitude

of angular speed), ambient sensor and location (GPS) data. For their study they

had used a conventional feed forward ANN with two hidden layers and had achieved

more than 90% of accuracy for each activity classification. Walse et al. [24] had used

dimensionality reduced features by applying principal component analysis (PCA)

with an ANN i.e. 561 features generated by accelerometer and gyroscope data
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collected by a smartphone were reduced to 70 principal components. From this

study, Walse et al. [24] have noted that even though the accuracy dropped by 2%

compared to the ML approach with raw data, the training time was reduced when

using the dimensionality reduced features with the network.

Arif and Kattan [15] used three IMUs on dominant wrist, chest and ankle on 9

participants to collect data from lying down, sitting, standing, walking, running,

cycling, nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing

clothes and jumping rope. 12 heuristic features were extracted from each axis of

triaxial accelerometer data to do the classification in their analysis and a comparison

was made among the activity classification accuracies based on KNN, rotation forest

and back propagation neural network approaches. They concluded that rotation

forest classifier with data from all three sensors was the best classifier to classify the

activities.

Further, it is better to use a reasonable data sampling size for the training purposes

with respect to gait cycles. Anguita et al. [25] and BenAbdelkader et al.’s [26] point

was that the cadence (the number of steps per minute) for an ordinary person is 90

to 130 which results in a minimum of 1.5 (= 90/60) steps per second. Hence, they

claimed that it would be better to have a time window larger than 1.5 s so that

people with slower cadence should also get benefited in their analysis.

There are HAR studies conducted on clothing-mounted sensor data and some studies

had used tight-fitting garments while others were based on loose clothing activity

classification based on IMU data.

Gao et al. [14] had used multiple accelerometer based sensors in their study (clas-

sifying static activities, walking and transitions) and those sensors were fitted into

a tight garment so that the sensors were on chest, left under-arm, waist and thigh.

They compared the accuracy between single sensor and multiple sensors in HAR and

observed how the accuracy changed based on different ML algorithms and different
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features. They used different features in time domain (Mean, variance), frequency

domain (spectral energy, entropy) and other heuristic features (signal magnitude

area, tilt angle). They concluded that multiple sensors let them achieve a higher ac-

curacy with decision tree classifier with simpler features such as mean and variance

of the signal.

In order to mimic collecting data from clothing for HAR Michael and Howard [17]

used a pendulum and three different fabric materials (denim, jersey and roma) with

three tri-axial accelerometers were used. The fabric was attached to the end of the

pendulum and the three accelerometers were placed on three places such as one at

the tip of the pendulum with a rigid band, the second one on the middle of the

fabric and the third one at the end of the fabric. Then they collected data from

the pendulum attaching a weight at the end of the pendulum and also removing

that weight. They used SVM and discriminative regression machines (DRM) in

classifications. Their conclusion was that the clothing mounted sensor data resulted

in giving higher accuracy at the activity classification.

Gleadhill et al. [27] focused on the correlation of body-worn and tight fitting vest

mounted sensor data on dead-lifting activity. As they focused only on a single activ-

ity and were using tight fitting clothing, they observed a reasonably high correlation

between the body-worn and clothing-worn data.

Wu et al. [11] used a belt mounted waist accelerometer sensor in activity classifica-

tion. They collected data from activities such as jumping, sitting-down, standing,

running, walking, and falling from 7 subjects and used Discrete Wavelet Transform

(DWT) to analyse the feature vectors with SVM. Their classifier output varied from

91.7% to 97.6%.

Kantoch [28] used a smart shirt with three sensors to classify sedentary behaviour.

In their study, they used two features i.e. relative intensity of activity based on

heart rate and variance of acceleration. They compared the accuracy based on six
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ML approaches (linear discriminant analysis, SVM, KNN, NB, binary decision trees

and ANN) and claimed that smart shirt data worked well with ML algorithms in

recognising sedentary behaviour.

Using angle information in understanding gait related patterns is a common ap-

proach [29, 30, 31]. Wang et al. [30] analysed the plots for knee, thigh and shank

angle for walking, climbing up and down stairs using body worn sensors. De Jong

et al. [29] analysed the shank-to vertical axis angle in a study related to a foot

orthotic. Wang et al. [30] used knee and hip angles to track the starting and end

points of strides. In addition to them, Chen et al. [32] used phase portraits (sig-

nal as a function of its derivative) to observe the cyclic gait movement trajectories.

They emphasised that those phase portraits were a productive visualisation tool

that helped to observe the gait features such as regularity, stability and complexity

as those closed trajectories denoted the periodic nature of the gait cycles marking

sudden changes (sharp turnings) on them.

7.3 Materials and Methodology

7.3.1 Materials

The sensing system in this study consisted of 6 IMUs (based around the Bosch Sen-

sortec BMI160 smart IMU) all using a synchronous bus, connected via flat ribbon

cable forming a “sensor string”. Data collection procedure was described in earlier

analyses [33] as well. Bespoke sensors were approximately 15×12×7mm each and

had a combined weight of less than 18 g, and the inter-connecting cables weighed

approximately 73 g. This sensor string was connected to a battery powered Rasp-

berry Pi where the data was stored. The Pi and battery were worn in a waist-pouch

attached with a belt. Data were sampled at 50 Hz. The range of the accelerom-

eters was +/- 16 g with 12-bit resolution. The BMI160 IMU includes gyroscope,
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accelerometer and magnetometer readings.

The IMUs were attached inside clothing and on the body, so that there were six

sensors along the both lateral sides of clothing covering the lower body (waist, thigh

and lower shank). Sensors were taped securely along the seams of the clothing in

the chosen position, and cotton bias binding was taped on top of the sensor string

using double-sided tape for fabric as shown in Figure 7.1. In this way, the sensors

were not outwardly visible and also not in contact with the skin which helped to

make the system more comfortable for the wearer.

Figure 7.1: Sensor placement on clothing. There were six sensors along the lateral
side of the lower body on both legs (waist, thigh and lower shank). Sensor strings
were covered with bias binding as shown here in the right side.
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7.3.2 Data Collection Procedure

Data collection procedure was the same procedure followed in our previous studies

and it is explained in ([34]).Five healthy participants (age range: 28-48 years old; 3

males and 2 females) took part in the study. Each person selected a pair of trousers

and a hoodie jacket in their usual size, and the researcher attached the sensors to

the clothing. Four participants wore cotton-blend fleece jogging trousers, and one

wore loose cotton slacks. Participants wore the clothing on three or four days for

5-8 hours per day of data collection. The Raspberry Pi and the battery pack were

kept in a bag on the waist of the each participant.

On each day of data collection, participants were asked to perform a set of predefined

activities to provide a ground truth, after which they then continued with their usual

activities for the rest of the day. The ground truth activities comprised of two minute

activities such as, (1) Standing still, (2) Sitting on a chair, (3) Lying on their back

(supine position), (4), Sitting on the floor with legs outstretched, (5) Walking back

and forth and (6) Climbing up and down stairs. The ground truth activities were

video-recorded. For the rest of the day’s activities, the participants were requested

to keep a diary to log their activities.

7.3.3 Data Analysis

This study only focused on ambulatory related dynamic activities based on lower

body mounted sensors and categorised those dynamic activities into four categories

i.e. walking, climbing up stairs, climbing down stairs and turnings. For this analysis

only the right hand side leg data from the trousers were used.
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7.3.3.1 Pre-processing

Raw data were rotated twice using Rodrigues’ rotation formula [35] to correct the

orientations of the data so that the sensors were using right-handed coordinate sys-

tem following ENU (East-North-Up) coordinate frame following the data alignment

process described by Chakraborty et al. [36]. After the alignment correction the x, y

and z axes measured the medial-lateral acceleration, anterior-posterior acceleration

and the superior-inferior acceleration respectively. Then data were low pass filtered

using a second-order Butterworth filter with a 3Hz cutoff frequency.

7.3.3.2 Phase Portraits and 3D Representation of Data

As walking, climbing up and down stairs movements are basically periodic move-

ments, ‘phase portraits‘ were analysed to examine how well the clothing data reveal

these movements. To generate phase portraits, gyroscope data (angular velocity)

that represented movements in the sagittal plane were plotted against the sensor-

to-vertical angles. These phase portraits represent the signal as a function of its

derivative. That means the angular velocity (degrees per second) vs angle.

7.3.4 Activity Classifier

Activity classifiers were trained in both ways, i.e. with machine learning approach

as well as in deep learning approach. Taking into account the reasons mentioned by

Anguita et al. [25], data were sampled into 2 s time windows to train the networks.

Assuming that the significant movements in walking, climbing up and down stairs

happen in the sagittal plane, the sensor-to-vertical angles that were projected to

the vertical axis by the anterior-posterior axis of each sensor were used as the main

feature vector to train the classifiers. These angles were calculated based on quater-

nion values. Quaternion values were estimated by using accelerometer, gyroscope
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and magnetometer data by using Madgwick algorithm [37]. Next, the sensor-to-

vertical angles were calculated using the quaternion values following the algorithm

described in our previous work [38]. The angles were defined in such a way that, if

the leg is inclined, the angle will be negative, and if the leg is reclined, the angle is

positive, as followed by Wang et al. [30].

For machine learning classifications 18 features were used to train the networks and

the selected features were, moving variance of sensor-to-vertical angle for two sec-

ond data windows from each sensor (3 features) , moving variance of gyroscopic data

from the medial-lateral and superior-inferior axes for each sensor (2 axes×3 sensors

= 6 features) and moving variance of triaxial accelerometer data for each sensor

(3 axis × 3 sensors = 9 features). From all the three axes of gyroscopic data, only

the medial-lateral and superior-inferior direction gyroscopic data were used in the

training, as walking, climbing up and down stairs happens in the sagittal plane

around the anterior-posterior axis and turnings were expected to happen around

the superior-inferior axis. Using MATLAB ‘Classification learner’, 6 classifiers were

trained and they were decision trees, quadratic discriminant, Naïve Bayes, SVM,

KNN and Ensemble. Each classifier was evaluated by a 5-fold cross validation

method.

Under deep learning approach, recurrent neural network (RNN) type was used as

RNNs can work well with temporal features while CNNs can perform well with

spatial relationships [2]. Hence, LSTM network that is a type of RNN was used in

this study as the DL approach. Two LSTM networks were trained with different

sizes of feature vectors using raw accelerometer and gyroscope data and heuristic

features. For one LSTM, moving variance of accelerometer and gyroscope data

from waist, thigh and lower-shank were used. For the other LSTM network only

9 features were used, i.e. moving variance of sensor-to-vertical angle from each

sensor (3 features), moving variance of gyroscopic data from the medial-lateral and

superior-inferior axes for each sensor (2 axes × 3 sensors = 6 features). After that,
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data labelling was done for each activity i.e. walking, climbing up and down stairs

and turnings, by using the video-ground truth data.

Both these LSTM networks consisted of five layers i.e. sequence input layer, LSTM

layer, fully connected layer, softmax layer and classification output layer. LSTM

layer was specified with 150 hidden units and the mini batch size was 50. Optimizer

‘adam’ was selected as it seemed to update the network in a stable manner [1,

39]. Both networks were evaluated by two techniques, i.e. leaving-one-subject-out

method and using 25% of data in validation.

To examine the final output, in addition to this gait related activity classifier, an-

other posture classifier was used from our previous work [33]. First, the data were

classified into static and dynamic data based on ‘moving standard deviation for

magnitude of thigh data’ for 2 second windows. Next, the static activities were cat-

egorised into four static postures. The four static postures were standing, sitting,

lying down and sitting legs-outstretched. Three features were used in the posture

classifier and they were moving mean of sensor-to-vertical angles over 1 s window

from waist, thigh and lower-shank sensor [33]. The activity classifier was applied on

the dynamic data that were identified by the above mentioned first classifier.

7.4 Results

7.4.1 Phase Portraits

First, the sensor-to-vertical angles for walking, climbing up and down stairs based

on waist, thigh and lower-shank positions were examined to check how the clothing-

mounted sensor data were able to interpret the information about these activities

(Figure 7.2).

Next, phase portraits were analysed for three main periodic movements and Figure
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Figure 7.2: Sensor-to-vertical angle changes over different activities. Each plot shows
2 second data windows from each activity from each sensor on right leg (a(i)−a(iii)).
Stick figures in bottom three plots (b(i)−b(iii)) are drawn using the angles (marked
with a black dot ‘o’) from the top plots. Right leg angle changes in thighs are shown
in red lines and lower-shank in yellow colour lines while left leg angle changes are
shown in grey colour dotted lines.

7.3 depicts plots for walking, climbing up and down stairs with respect to waist,

thigh and lower-shank sensor wise.

7.4.2 3D representation of Data

Sensor-to-vertical angles from waist, thigh and lower-shank were used to represent

data in a 3D plot as shown in Figure 7.4. Four main postures are plotted on a 3D

plot to examine how well dynamic movements happen in between the main postures.

Figure 7.4 (a) shows 5 minutes of continuous data from video ground truthed data.

This specific dataset started from five leg-raises followed by five sit-to stand cycles,

lying down and sitting legs outstretched while sitting on the floor. Figure 7.4 (b)
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Figure 7.3: Phase portraits for different sensors for different activities i.e. walking,
climbing up and down stairs for Participant 1 Day 2 data. Each plot roughly has
10s data from each activity. For a single cycle, approximate initial contact points
(IC) in ‘black stars’ and toe-off (TO) points in ‘blue diamonds’ are marked on each
phase portrait.

shows how standing up data is surrounded by walking, climbing up and down stairs

data.

7.4.3 Representation of ‘Turning’ in Gyroscopic Data

Gyroscope data that represented movements along the sagittal plane provided in-

formation on walking, climbing up and down stairs. Further it was noticed that to

capture ‘turnings’, vertical axis of gyroscopic data could be used as it had significant

pattern changes at turnings. Figure 7.5 shows the data pattern relevant to turnings

with respect to different axes of gyroscope.
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Figure 7.4: 3D representation of sensor−to−vertical angles for main postures and
activities from Participant 1 Day 2 data. Four main postures standing, sitting,
lying down, sitting on the floor are marked on the 3D plot taking waist, thigh and
lower−shank angles as the x, y and z axes respectively. (a) shows five minutes of
data including 5 leg−raises while sitting one a chair (purple dashed line); 5 sit−to
stand and stand−to sit cycles (green line); transition from sit−to stand and then
lying down (orange dotted lines to black star); and lying down to sitting with legs
outstretched (cyan line). (b) i− b(iii) shows the raw accelerometer data from waist,
thigh and lower-shank for the activities on plot (a). Plot (c) shows roughly 15 s of
data from walking (purple dotted line), climbing up stairs (green dashed line) and
climbing down stairs (cyan line) on the 3D plot and it can be seen that they are
scattered around standing posture (blue dot).
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Figure 7.5: ‘Walking’ and ‘Turning’ on gyroscope data from Participant 2 Day 2
dataset. Each plot represent two second data from walking, clockwise turning and
anti-clockwise turning data with respect to gyroscope data. Plot (c) shows that
more details such as direction of turnings could be distinguished by the superior-
inferior/vertical axis (yellow line) of shank gyroscope data. Movements on the sagit-
tal plane such as walking could capture with medial-lateral gyroscopic data (blue
dashed line).

7.4.4 Activity Classifier Output

Accuracies for activity classifiers generated from ML and DL approaches are shown

in Table 7.1.

Figure 7.6 shows a visual representation of the final classification output obtained

by using the LSTM with 9 features for one of the datasets.
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Classifier Walking Climbing
up stairs

Climbing
down stairs Turning Overall

Accuracy
Fine tree 98.2% 97.00% 98.83% 89.54% 97.50%
Quadratic discriminant 99.2% 98.04% 98.50% 76.53% 97.00%
Naïve Bayes 94.92% 91.50% 96.13% 64.51% 91.70%
Cubic SVM 99.94% 99.90% 99.97% 97.38% 99.80%
Fine KNN 100% 99.97% 99.98% 99.91% 100%
Ensemble 99.99% 99.94% 99.98% 99.91% 100%
Deep Learning
LSTM with 9 features 99.37% 96.89% 94.01% 84.10% 97.01%
LSTM with all raw
accelometer and gyroscope data 99.53% 97.82% 94.00% 78.82% 97.01%

Table 7.1: Accuracy comparison for different types of activity classifiers. Leaving-
one-subject-out validation method was applied in calculating the accuracy of the
classifiers in preparing this table. Except for classifying ‘turnings’ with Naïve Bayes
classifier, other classifiers had accuracy levels greater than 78% for each activity.
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Figure 7.6: A zoomed out section from the activity classification output. Activity
classification outputs are marked on the top of the graph along with the lower-shank
acceleration values (grey-colour lines). A ‘climbing down stairs’ segment (blue line)
followed by a turning, standing up (waiting)) and climbing up stairs followed by
another turning and standing/waiting segment can be seen on the figure.

7.5 Discussion

As shown in Figure 7.2, thigh and lower-shank plots agreed with Wang et al.’s plots

[30]. Stick figures on bottom plots in Figure 7.2 were generated using the angles

on the top three plots in Figure 7.2. These stick figures resemble actual walking,

climbing up and down stairs patterns. Hence, it can be said that the clothing-

mounted sensors are also capable of capturing the movements up to a reasonable
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extent.

Phase portraits can also be provided promising results under three activities as

shown in Figure 7.3. When rough toe-off and initial contact points were marked

on lower-shank walking data following the methodology mentioned in [38], it was

noted that ‘walking’ phase portraits for shank presented by Chen et al. [32] agreed

with our plot. Compared to the shank phase portrait, the thigh phase portrait for

’walking’ lay between a smaller angle range which was sensible according to the

bio-mechanics of walking.

When comparing the average angle changes from all the 15 participant-days worth

dataset, it was noted that thigh angles ranged from −10.1◦ ± 7.0◦ to 25.9◦ ± 6.6◦

while lower-shank angles varied from −32.3◦ ± 8.7◦ to 36.7◦ ± 6.8◦. Waist sensor

data lay between 1.0◦ ± 4.5◦ and 10.2◦ ± 4.6◦ as waist slightly reclines from vertical

axis while walking.

When it comes to the ‘climbing up stairs’ data with ‘lower-shank’ data, it can be

clearly noticed that the angle range was between −33.9◦ ±9.5◦ and 1.4◦ ±6.3◦. That

indicated the inclined movement of the lower-shank with respect to the vertical axis.

Moreover, initial contact area can be noticed with a peak near 0◦. On the other

hand, thigh movement for ‘climbing up stairs’ ranged angles from −0.6◦ ± 3.7◦ to

47.1◦ ± 11.2◦ because, the thigh reclines with ‘climbing up stairs’ movement making

positive angles (Figure 7.2). Similar to ‘walking’ angle range at the waist, angle

changes in ‘climbing up stairs’ at the waist also vary in a smaller range i.e. from

−1.8◦ ± 5.0◦ to 11.7◦ ± 12.1◦.

It can be said that, the lower-shank phase portraits were also rich in information for

‘climbing down stairs’ movement. As expected, ‘climbing down stairs’ cycles con-

sisted of broader sensor-to-vertical angles and smaller reclining angles that ranged

from −42.9◦ ± 9.0◦ and 12.4◦ ± 9.2◦. Similar to ‘climbing up stairs’ data with thigh

sensor, ‘climbing down stairs’ data were also positive angles as the thigh reclines
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always when stepping down. Thigh does not move back and forth as in walking,

making positive and negative angles. The ‘thigh’ angle ranges were from 6.0◦ ± 3.7◦

to 33.2◦ ± 7.1◦ while the ‘waist’ sensor had a smaller angle range (from 4.0◦ ± 2.8◦

to 13.5◦ ± 3.6◦) for ‘climbing down stairs’ activity as well.

Plot (a) in Figure 7.4 shows five sit-to stands (green lines) and leg-raises (purple

dashed lines) (while sitting down) in a 3D plot. Clothing data could examine the

transitions between the standing posture (blue cluster) and the sitting posture (red

cluster) while the participant was performing the sit-to stands. Similarly, the leg-

raises while sitting down on a chair (purple dashed lines) data segments moved

from ‘sitting’ (red cluster) to ‘sitting legs outstretched’ (yellow cluster) posture.

Sit-to stands (green lines) ended somewhere closer to the red dot (roughly at −20◦)

indicating that the lower-shank was inclined as a result of keeping the legs in a

slanting position without keeping them in a vertical position.

Plot (c) in Figure 7.4 shows how walking, climbing up and down stairs can be

illustrated in a 3D plot using three clothing worn sensors. These periodic movements

are centred around the standing data (blue cluster) and these closed trajectories

demonstrate the regularity of the cyclic movements.

As depicted in Figure 7.5, ‘turnings’ were able to be clearly captured with vertical

axis of gyroscope data. Not only turnings, but also the direction where the turning

was made could be distinguished by the vertical axis of the lower-shank gyroscope

data. In Figure 7.5, lower-shank data shows how the ‘turnings’ are made clock-

wise (negative angular velocity) and anti-clockwise (positive angular velocity) with

respect to gyroscope data.

Finally, after observing the movement data based on different features, the activity

classifiers implemented with different approaches were compared. Under machine

learning concepts, six different accuracy levels were compared i.e. fine tree, quadratic

discriminant, Naïve Bayes, SVM, KNN and Ensemble and under deep learning con-
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cepts accuracy levels of two LSTM networks were compared. Table 7.1 shows the

accuracy levels in identifying each activity.

In each approach, walking, climbing up and down stairs achieved a reasonably high

accuracy levels than that of ‘turning’ classification accuracy. Most of the ‘turnings’

extracted to do the evaluation were not slow turnings and they were in between

walking back and forth data segments. To train the networks, two second time win-

dows were used and if there were sudden turnings while walking they were classified

as walking. That could be the reason for the misclassifications in identifying such

‘turnings’. However, if quick ‘turnings’ needed to be identified at a higher accuracy,

classifier training window sizes can be minimised as gyroscope data could clearly

distinguish ‘turnings’ from usual activities.

When training LSTM networks, it was noted that the LSTM with 9 features reached

the maximum accuracy in less than 60 epochs while the other network with more

features reached the maximum accuracy after 100 epochs. LSTM with 9 features

was also able to classify the activities up to a reasonable extent similar to the LSTM

trained with raw accelerometer and gyroscope data. Even though we are unable to

identify the best type of the classifier with this limited dataset, by analysing these

accuracies a conclusion can be derived as these clothing-mounted sensor data can

be used successfully in activity classification either with machine learning or deep

learning approaches with appropriate feature vectors.

Figure 7.6 shows how the classifier output worked on a dataset. At the beginning

of Figure 7.6, there was a segment of a climbing down stairs followed by a turn-

ing, climbing up stairs, turning and standing. Further, before the walking segment

(magenta colour line) at the end of Figure 7.6 there were turnings and ‘climbing up

stairs’ segments which were verified with the video data.
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7.6 Conclusions

Usage of bio-mechanical wearable sensors (including accelerometer, gyroscope, mag-

netometer, pressure sensor, and vibration sensor) is a usable technique to monitor

mobility of people outside clinical or laboratory settings at an acceptable cost. As

multiple sensors can be used in increasing the classification accuracy, multiple sen-

sors can be mounted into clothing, to make the sensor wearing process easier. This

study analysed three sensors attached to lateral seam of the trousers near waist, up-

per thigh and lower-shank to investigate how informative were the clothing data in

terms of classifying gait related activities, mainly based on sensor-to-vertical angles

as the main feature.

Even though the data were collected from loose clothing-mounted sensors, it was

noted that these data were rich in information as they were able to represent the

actual movements with stick figures by using sensor-to-vertical angles. Moreover,

phase portraits drawn with these data can be used in analysing high level details

of the quality and speed of the gait patterns and they can be used to check the

regularity of the cyclical movements.

Higher activity classification accuracies on both machine learning and deep learning

approaches in this study can be justified as sensor-to-vertical angles and gyroscope

data seemed to have distinguishable patterns for walking, climbing up and down

stairs and turnings.

By considering these factors we conclude that the sensors mounted onto loose cloth-

ing can be used successfully in activity classification as well as in extracting infor-

mation about periodic ambulatory movements.
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Chapter 8

General Discussion

The aim of this thesis was to investigate the possibility of using loose clothing-

mounted sensor data over extended periods with a view to eventually using them

as a home based healthcare monitoring system. In order to quantify and under-

stand the human movements, five key objectives were achieved i.e. validating how

loose-clothing mounted sensor data correlate with body-mounted sensor data by

using Actigraph sensors as a feasibility study, conducting the main data collection

that consists of a semi-natural dataset with clothing-mounted lightweight sensors,

implementing a posture classifier with multiple sensor data, validating how clothing-

mounted and body-mounted sensor data with respect to walking data and imple-

menting a gait related activity classifier based on the lower-body data. This chapter

discusses how these aims were achieved, while recapitulating the objectives of the

research. Further, this chapter discusses the limitations of the work.
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8.1 Discussion

8.1.1 Objective 1: Feasibility study for collecting data from

clothing mounted sensors

The first study was a feasibility study involving the use of COTS sensors to collect

data from the clothing. Actigraph sensors were used in this study as the COTS

sensors. The housing of the Actigraph sensors meant that they were easily wear-

able on the body with bands. In addition to that, they were also able to attach

into the clothing, sewing the bands into clothing, maintaining the same orienta-

tion approximately. This feasibility study paved the way for the understanding

that even though the body-mounted and clothing-mounted signals were different to

each other, a reasonable level of accuracy could be achieved in activity classifica-

tion with clothing-mounted sensor data. There were subtle misclassifications in the

activity classifier that could have been improved by applying an improved filtering

(low-pass) mechanism to the signals and using multiple sensor data in the classifier

feature vector.

Further, this study clearly indicated that when the clothing were not too loose,

a reasonable correlation could be observed between body-mounted and clothing-

mounted sensor data, even for dynamic movements such as ‘walking’. For static

postures such as standing and sitting, the correlations between the two signals were

usually higher for clothing which were not too loose. However, it was noted that it

would have been better to use light-weight sensors in clothing in order to increase

the accuracy of the data, as sometimes these sensors tended to drag the clothing

due to the weight of the Actigraphs (19 grams).

Moreover, the first pre-processing task performed here, was correcting for the time

lag between body-mounted and clothing-mounted sensors. The time lags may have

occurred due to two reasons i.e. there could be synchronisation issues with the in-
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ternal clocks of the Actigraph devices and additional movements that happen with

the clothing dynamics. It was supposed to correct only the time-lags that occurred

owing to the synchronisation of the internal clocks, in order to check whether cloth-

ing data had started capturing an activity before or after the body-mounted data.

However, both of the above mentioned time-lags were corrected at the same time,

as it was not feasible to correct them separately in this feasibility study. Hence,

in order to overcome the internal clock synchronisation issue, a set of synchronised

light-weight sensors were used in the main data collection in this research.

In addition to the above mentioned insights, this data collection performed with

Actigraph sensors were used to set up the minimum and maximum acceleration

range for the new set of light weight accelerometers that were planned to be used

in the next data collection so that they can be used to cover the accelerations that

are expected to measure during day-to day activities.

8.1.2 Objective 2: Main data collection that consists of a

semi-natural dataset based on clothing-mounted light-

weight sensors

One primary intention of this thesis was to investigate the potential of using loose

clothing-mounted sensor data in home-based long-term healthcare monitoring sys-

tems. Hence, the ultimate goal of this work was to check how reliable and feasible

the clothing-mounted multiple sensor data were, in interpreting without any ground

truth data for extended period of time.

Based on the conclusions derived on the previous analysis (Objective 1), bespoke

light-weight sensors were used in this data collection in relation to objective 2 and

they were connected to a Raspberry Pi via a flat ribbon forming sensor strings

so that all the sensors were time synchronised. The 12 IMUs were able to cover

the whole body of the participants. However, this thesis only describes the data
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collected from the lower body.

Currently, there are publicly available datasets that help in Human Activity Recog-

nition (HAR). Almost all these databases are based on smartphone data [1, 2, 3, 4]

and body-mounted sensor data [5, 6]. The present data collection was a semi-natural

dataset (data from predefined set of activities with video ground truth and data from

usual day-to-day activities along with diary data) collected from clothing mounted

IMUs.

Even though there were only 5 participants taking part in the data collection, al-

together in the end, there were 15 participant-days worth of data as they wore the

clothing with sensors for 1-4 days. These data were collected during the weekdays

and at weekends from some participants so that it could be clearly observed how

the activities would change at weekends compared to weekdays.

This main data collection contains data from accelerometers, gyroscopes and mag-

netometers. Hence, there is an opportunity for creating various handcrafted features

in improving classifier accuracies. Further, as the dataset includes ground truth data

for activities such as ‘sitting-to stands’, ‘turnings’ and ‘leg raising’, researchers who

are interested in analysing transitional activities and postures can use these data in

analysing them.

8.1.3 Objective 3: Postural classifier based on clothing-mounted

sensor data

The study conducted under Objective 1 found that the clothing-mounted data cor-

related well with the body-mounted sensor data with respect to static postures such

as ‘standing’ and ‘sitting’. Hence, a posture classifier was implemented using the

multiple clothing-mounted sensors. As the first step, the data were categorised into

static and dynamic activities based on the ‘thigh’ data. The waist, thigh and lower-
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shank/ ankle sensor to vertical axis angles were used as the feature vector for the

posture classifier.

This posture classifier had a 100% accuracy as the training and testing data points

were manually selected (highly-selected) by the researcher based on the video data

and this accuracy seemed to have declined with data from natural activities such as

sitting with the legs crossed and slouch positions. As three sensors were used in this

analysis, the data could visually be represented in a 3D plot considering waist, thigh

and lower-shank/ankle inclination angles as x, y and z axes of the plot respectively.

That plot was used to observe how the data-clusters corresponded to each posture

scattered on the 3D plot. As the clusters were in clearly separable sections, it

explains achieving a high accuracy in the posture classification with these features.

However, when the classifier output was compared with the diary data of the partic-

ipants, some mismatches were noted. Some segments of the data marked as ‘sitting’

on the diary data were classified by the classifier as ‘sitting on the floor with legs

outstretched’ posture. The reason for this was identified by observing the angle

changes across the sensors. It was noted that only the lower-shank/ankle data had

changed its inclination angles at these segments. When comparing those inclination

angles, it was obvious, why those data segments were classified as ‘sitting on the

floor’, because the lower-shank/ankle inclination angles were close to 70◦. When the

inclination angle goes beyond 70◦, that indicates the leg is inclined and it is almost

in the horizontal plane.

Further, it was observed that there was a notable percentage of a ‘lying down’ seg-

ment during a weekday for one of the participants. As this particular participant

was a sedentary office worker, it was unlikely to be a ‘lying down’ posture. When the

data was compared with the diary data, it was noted that the participant was ‘sit-

ting’ while keeping the legs on the desk. In this situation, all the angles (waist, thigh

and lower-shank/ankle) were beyond 65◦, indicating that the participant was ‘lying

down’. This type of misclassifications could have been corrected adding information
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from the upper-body.

Further, it was explained how different window sizes can be used in creating feature

vectors in different scenarios. As this study was totally based on posture classifica-

tion, sudden movements/transitional movements were neglected. Hence, a 3 second

window size was used in generating feature vectors for this study. However, it was

noted that when there is a requirement in identifying transitions, it is better to use

smaller window sizes as of 0.5 second or 1 second.

Finally, it can be said that a significant percentage of daily activities of ordinary

people (who do not engage much in physical activities) can be captured by postures

and they can be identified by the lower body data.

8.1.4 Comparing Body-mounted and Clothing-mounted Sen-

sor Data in terms of ‘Gait’ Data

The data from the feasibility study conducted with the Actigraph sensors indicated

that it would be better to use light-weight sensors in clothing as mentioned earlier.

As one aim of this work was to check how informative the clothing-mounted sensor

data with respect to human movement were, the correlation between the body-

mounted and clothing-mounted gait cycles were estimated to validate the data.

Frontal side body-mounted sensor data were compared with the lateral side clothing-

mounted sensor data to compare how the lateral side movements correlate with

respect to the frontal side. In this research, ‘mid-swing’ (right before the initial

contact) points were used as the starting point of a gait cycle. These ‘mid-swing’

points were identified by using the magnitude of the lower-shank/ ankle accelerom-

eter data. Although the algorithm could identify the ‘mid-swing’ points from the

body-mounted data at a 99.67% accuracy, the accuracy in identifying ‘mid-swing’

points with the clothing-mounted data was 97.87%. It was noted that some turning
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points were taken as ‘mid-swing’ points in clothing-mounted data. However, the

algorithm could have been improved by using gyroscope data to check whether the

identified ‘mid-swing’ points were ‘turnings’ or not (Chapter 6). When the correct

‘mid-swing’ points were identified, the Initial Contact (IC) and Toe Off (TO) points

could be identified correctly using the gyroscope data.

When visually comparing the left and right hand side angles changes of the lower-

shank/ankle for ‘walking’ data, it was noted that at the ICs the Sensor to Vertical

Angle (SVA) angles were positive and gradually the angles reached 0◦, indicating

that the foot was flat. After that, the angles became negative indicating that the leg

behind was having an inclination at the TO points. The IC points and TO points

in left and right hand legs could be seen having a synchronisation mimicking the

actual walking data as expected.

When comparing the angle differences between the two sensors when the participants

were stationary i.e. ‘standing up’, it was clear that the sensors were pretty well

aligned as the angle difference was less than 2◦. However, when the participants

were walking, the angle differences were higher, especially at the thigh and lower-

shank/ankle (7◦ - 20◦) while at the waist the angle difference was 6◦ - 8◦. However,

when the mean correlation coefficient values were compared between the sensor pairs,

it was noted that the ‘thigh’ and the ‘lower-shank’ sensor pairs were correlated more

strongly than the waist sensor pair. When further analysing these values with box

plots, it was noted that there were a few outliers in the waist sensor pair which might

have reduced the mean correlation value between waist sensor pairs. Such outliers

could potentially have been avoided if there was no waist pouch with a band on top

of the sensors. Either the Raspberry Pi and the battery pack could have been kept

in a pocket or a wireless data transmission technique could have been used instead

of using the Raspberry Pi around the waist.

Finally, by analysing the 3D representation of the data and phase portraits, it can

be clearly seen that even though the clothing-mounted sensor data were having a
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wider range of data than that of the body-mounted data, they both follow the same

shape. Further, it can be clearly seen that the mid-swing, IC and TO positions were

aligned with the body-mounted sensor data with a smaller gap, paving a way to

have a rich dataset to perform a productive ‘gait analysis’.

8.1.5 Activity Classifier Based on Lower Body Data

After establishing that the body-mounted and clothing-mounted sensor data are rea-

sonably well-correlated for ‘walking’ data, the clothing-mounted sensor data were

further analysed with respect to gait related activities i.e. ‘walking’, ‘climbing up

stairs’ , ‘climbing down stairs’ and ‘turnings’. These data were analysed using 3D

plots and phase portraits based on inclination angles and gyroscope data to exam-

ine how the Initial Contact (IC) and Toe Off (TO) points can be seen on the phase

portraits with respect to the bio-mechanics of walking. In addition to that, these

activities were classified with Machine Learning (ML) and Deep Learning (DL) tech-

niques with different types of heuristic (sensor-to-vertical angles) and non-heuristic

features (row accelerometer and gyroscope data).

It was noted that the inclination angles can be used to derive conclusions such as

whether the body/limbs were inclined or reclined with respect to the vertical axis.

Hence, these angles can be used to picture the postures of the people, for example,

whether the people have been sitting properly or in slouch positions with respect

to the waist, thigh and lower-shank/ ankle sensors. Moreover, Figure 2 in Chapter

7, was an example to indicate that these inclination angles were able to reflect the

movements of the people. Those stick figures seemed to be tallied with the bio-

mechanics of the relevant activities.

Further, it was noted that the phase portraits were useful in analysing the cyclic

movements, as they were able to clearly show whether the angles of the cyclic move-

ment had been constantly maintained throughout a walking/ going up stairs/ going
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down stairs phase. In addition to that, the marked IC and TO points on the cycles

can be explained with respect to the bio-mechanics of the movements. As phase

portraits can be used to check whether the same shape of the pattern could be

maintained constantly within the person to examine their walking pattern and this

approach was sensitive to detect angle changes between individuals as it has good

potential for detecting differences due, for example, to movement disorders.

In addition to the above mentioned 2D plots, the data were plotted on 3D plots

taking waist, thigh and lower-shank/ankle angles as the x, y and z axes respectively.

The 3D plots were able to show clearly how the movements happen in the 3D space

and the transitions happen changing from one posture to another. For instance,

‘walking’, ‘going up stairs’ and ‘going down stairs’ movements were scattered around

the standing posture while the ‘sit-to stand’ movements were changing the postures

from ‘sitting’ to ‘standing’ and ‘leg-raising’ movements were changing the postures

from ‘sitting’ to ‘sitting on the floor legs outstretched’ postures.

Besides the cyclic movements, ‘turnings’ were also analysed in this study using the

gyroscope data collected from the clothing-mounted sensors. It is promising to see

that these loose clothing-mounted data are rich in such information. Even though

the classifier accuracies were not high for the identification of turnings, it could be

due to the window size (2 s) used in this training dataset. For training purposes, 2 s

window sizes were selected in this study. However, most of the ‘turnings’ happened

during the ‘walking’ back and forth data segments and they seemed to have happened

in under a 1 s. In order to analyse more about turnings, the window size of the

training data can be adjusted.

Finally, by analysing the activity classifier accuracies, it can be said that, other than

the turnings, almost all the other activities had reasonably high accuracies (greater

than 94%) irrespective of the training mechanism (ML or DL). When comparing

the number of epochs needed to train the LSTM networks, it was noted that the

network that was trained with 9 features (inclination angles and gyroscope data)
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reached the highest accuracy in 60 epochs, while the other network which was trained

with all the accelerometer and gyroscope data needed 100 epochs. However, as this

study was conducted with data from 15 participant-days worth of data, a conclusion

cannot be derived to emphasise which set of features or which type of learning

mechanism was best to be used in the training purpose. Nonetheless, based on this

analysis, it can be concluded that these loose clothing-mounted data can be used in

activity classification as well to derive information to analyse data with respect to

movements.

8.2 Limitations

In this thesis, a few limitations were identified in several stages such as in the sensor

attachment process to the clothing, data pre-processing mechanism, data collection

equipment and data annotation process.

As the sensor strings were attached to the inner seam of the clothing, the initial

orientation of the sensor relative to the limb and to the world is unknown. Hence,

an orientation correction method was applied to the dataset. Orientation correction

is performed at the beginning of the data collection based on the standing up right

data segment. This set up had a possibility of disrupting the orientation of the

sensors if the clothing position was changed in the middle of the data collection.

For instance, there is a high chance of disrupting the orientation of the sensors,

especially the lower-shank/ ankle sensors, after wearing or removing the shoes. This

may affect the orientation correction mechanism and then the classifier accuracy.

When it comes to the data collection procedure, it was noted that some of the waist

sensor readings were affected by the waist band of the waist-pouch. Body-mounted

sensor position might change slightly owing to the movements of the waist band

of the trousers and the waist pouch because the trousers were worn nearly on top

of the body-mounted waist sensor. Keeping the ‘waist’ sensor on the waist line of



Section 8.2 Page 164

the trousers and waist-pouch band around the waist might have added additional

movements or prevented the movements of the waist sensor. Nevertheless, this issue

can be solved by adopting a wireless data transmission instead of having a battery

powered Raspberry Pi on the waist.

The number of participants can be also considered as a limitation in this research.

As this research was based on data from 5 participants it can be said that it would

have been better if more participants had been involved in this data collection. If so,

there would be more data from different sizes of people and wider range of data for

different activities could have been collected to train the classifiers. Nevertheless,

this data collection was conducted extensively and systematically and there were

more than 90 hours of data in the entire data collection.

When it comes to the usability of these clothing, when a user wants to wash the

clothing, it was found that it was easy to remove the sensor string and the piping in

one attempt. However, after washing the clothing, the sensors have to be attached

again placing the sensors on the correct positions. This process was not so difficult,

yet, it can be improved. There is a possibility of attaching smaller velcro strips on

the places where the sensors have to be mounted and can have velcro at the back of

the sensors too.
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Chapter 9

Conclusion and Future Work

The broader aim of this thesis was to investigate the possibility of using loose

clothing-mounted sensor data over extended periods with a view to eventually using

them as a home based healthcare monitoring system. The motivation behind this

was to investigate whether the loose clothing data was informative enough to analyse

people’s everyday movements by generating systematic reports so that eventually

such reports can be used by clinicians and wearers so they get benefited. This chap-

ter completes the thesis with an overall conclusion explaining the main contribution

and possibilities for future work.

9.1 Conclusions

Mounting wearable sensors into loose clothing is a reasonable move to establish home

based healthcare monitoring systems especially for people with movement disorders.

Mounting sensors on clothing can be explained as a controlled way of placing the

sensors as they can be kept in proportion to the limbs so that they will not be able

to slide down/ dislocate or cannot be worn upside down and the orientation will be

known up to a certain extent. In addition, some participants may find it easier to
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put on and take off loose clothing. Hence, sensors mounted in loose clothing would

be a practical and convenient way of analysing human movements. It is a favourable

and unobtrusive technique as clothing is an ideal platform to have multiple sensors

at once so that a clear picture of movements can be derived from the data. The first

intention of this study was to quantify these clothing data and next, to understand

the clothing data with respect to human movements.

This thesis was able to validate how the loose clothing-mounted sensor data correlate

with body-mounted sensor data with respect to static postures as well as dynamic

movements such as ‘walking’. Even though these clothing-mounted data seemed to

have higher accelerations than that of body-mounted data, as clothing dynamics

add additional accelerations to the movements, they correlate well with each other’s

signals. The results indicated that the clothing data also can be used in extracting

and analysing the gait cycles in a productive way.

In order to understand the human movements with these loose clothing data, mainly,

the sensor-to-vertical angles (sensor-to-vertical angles) of the sensors were studied

in this research. This research was based on a less number of heuristic features as

there were data from multiple sensors. Stick figures and 3D plots were drawn with

the data collected from these multiple sensors. Only using the lower-body mounted

sensors, the stick figures were able to reflect the whole body movements, representing

the trunk, thigh and tibia with the use of sensor-to-vertical angles with respect to

waist, thigh and lower-shank/ ankle respectively. This reveals how productively

these multiple sensor data can be used in reflecting human movements. Further,

these clothing data emphasise their reliability with the phase portraits that were

drawn to check the gait regularity.

By plotting all these data in a 3D space with respect to the sensor-to-vertical an-

gles of waist, thigh and lower-shank/ankle sensors, the transitions from one pos-

ture/activity to another such as sit-to stand and leg-raises (sitting to sitting legs

outstretched) could be observed clearly. Hence, it can be emphasised that these
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data can be used productively in analysing the human movements in between the

basic postures.

As these data showed high accuracies in classifying the data into static postures

and dynamic activities in both Machine Learning (ML) and Deep Learning (DL)

approaches, it can be said that these loose clothing-mounted sensor data can be

used effectively in activity/ posture classifications as well. Finally, a conclusion

can be arrived at that multiple loose clothing-mounted sensor data can be used

in quantifying and understanding human movements based on IMU data, as they

are capable of reflecting the movements with less number of meaningful heuristic

features such as sensor-to-vertical angles.

9.2 Future Work

Further analyses are possible with these data in many ways. First of all, even though

data were collected from both the upper and lower body, this thesis only analysed

the data from the lower body. There is the potential to classify a greater number of

activities, with the inclusion of the data from the upper body.

There are possible improvements that can be added to the existing analyses. For

example, the posture classification was limited to analysing only the angles dis-

regarding whether that was an inclining or a reclining movement with respect to

the vertical axis. Using a different method in calculating the angles, they can be

analysed within the range of 0◦ to 360◦. There is a possibility of extending this anal-

ysis even to study sleeping postures such as supine, prone, left and right positions.

Moreover, transitions and turns can be analysed by picking up smaller window sizes

from the data to analyse quick movements. When the window sizes of the data is

changed, different information can be extracted from them as shown in Chapter 5.

There is another possibility of analysing phase portraits for people with movement
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disorders to check their upper and lower limits of the sensor-to-vertical angles with

respect to their gait cycles. Following the same procedure, another dataset could

be collected from people with movement disorders and can produce the phase por-

traits. These portraits could provide insights about individual differences in walking

patterns, and how they progress over time.
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B.1 Moving standard deviation for waist vs thigh for different time windows.

Figure B.1: Moving standard deviation for Waist data against Thigh data for static vs dynamic activities for different window sizes. On
the top two plots, overlapping can be observed in static and dynamic clusters and on the other hand on the bottom two plots, it can be
noted that a decision boundary line can be drawn separating the two clusters.



B.2 Moving standard deviation for thigh data for each dataset for different time

windows



Figure B.2: Moving standard deviation for magnitude of Thigh data for static vs dynamic activities for different window sizes for all the
15 datasets. On the top four plots, overlapping can be seen and on the other hand on the bottom four plots no overlapping can be seen
with in the two clusters.



Posture classifier outputs for the “usual activities” for the rest of the day (i.e. non-

ground truthed activities) for each participant are given below.

B.3 Posture wise summary reports for the partic-

ipants

Standing

 15% 

Sitting

 57% 

Lying down

 2% 

Legs 

outstretched

9% 

Dynamic

17% Standing

22% 

Sitting

 51%

Lying down

1% 

Legs 

 outstretched

8% 

Dynamic

 17%

Standing

23% 

Sitting

57% 

Lying down

1% 

Legs 

 outstretched

7% 

Dynamic

12% 

Standing

38%

Sitting

18%

Lying down

4%

Legs 

 outstretched

13%

Dynamic

26%

(a) Weekday 1                                                                                                                   (b) Weekday 2

(c) Weekday 3                                                                                                                   (d) Weekend

Figure B.3: Four days’ activity summary report for ’Participant B’, based on analysis
of the sensor data. This includes three weekdays and one weekend day. Compared to
weekdays, there was more standing and dynamic movements at the weekend. Also,
the participant was sitting most of time during the weekdays with less time spent
in dynamic movements.



Standing

 10% 

Sitting

 69% 

Lying down

<1% 

Legs 

 outstretched

2% 

Dynamic

18% 

Standing

6% 

Sitting

 84%

Lying down

1<% 

Legs 

 outstretched

1% 

Dynamic

 9%

Standing

13% 

Sitting

74% 

Lying down

<1% 

Legs 

 outstretched

1% 

Dynamic

11% 

(c) Weekday 3

(a) Weekday 1                                                                                                         (b) Weekday 2

Figure B.4: Three days’ activity summary report for ’Participant C’, based on
analysis of the sensor data. This includes three weekdays. This participant was
sitting most of time during these days compared to the other participants.



Standing

 21% 

Sitting

 44% 

Lying down

7% 

Legs 

 outstretched

6% 

Dynamic

22% 

Standing

10% 

Sitting

 26%

Lying down

1% 
Legs 

 outstretched

37% 

Dynamic

 26%

Standing

12% 

Sitting

31% 

Lying down

<1% 

Legs 

 outstretched

31% 

Dynamic

25% 

Standing

12%

Sitting

26%

Lying down

2%
Legs 

 outstretched

41%

Dynamic

20%

(a) Weekday 1                                                                          (b) Weekday 2

(c) Weekday 3                                                                          (d) Weekday 4

Figure B.5: Four days’ activity summary report for ’Participant D’. This participant
took part in the data collection during four weekdays. Compared to the other
participants, this participant had been engaged in a higher proportion of dynamic
activities and standing (32% - 43%).



Standing

 9% 

Sitting

 54% 

Lying down

<1% 

Legs 

 outstretched

26% 

Dynamic

10% 

(a)  Weekday 1

Figure B.6: The activity summary report for ’Participant E’. The participant took
part in a single working day. The participant was sitting most of time during the
day.
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C.1 Mean gait cycles for the participants

Figure C.1: Mean gait cycles for waist, thigh and ankle sensors from ‘Participant 1-
Day1. Body-mounted (red) and clothing-mounted (blue). Shaded areas on figures
represent the standard deviation information.
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Figure C.2: Mean gait cycles for waist, thigh and ankle sensors from ‘Participant 1-

Day2. Body-mounted (red) and clothing-mounted (blue). Shaded areas on figures

represent the standard deviation information.

Figure C.3: Mean gait cycles for waist, thigh and ankle sensors from ‘Participant 2-
Day1. Body-mounted (red) and clothing-mounted (blue). Shaded areas on figures
represent the standard deviation information.

67 gait cycles and mean gait cycle from both body-mounted and clothing mounted

sensors from Participant 2 Day 2. Data are shown in Figure C.4. As mentioned

earlier (sub-section 3.3.2 in Chapter 6), Figure C.4 (c)-iii shows that the mean angle

changes in body-mounted lower-shank sensor shape agrees approximately with the

inverted shank-to vertical axis angle data presented in De Jong and et al.’s study [?

].



Figure C.4: Angle changes for 67 gait cycles and mean gait cycles for one of the par-
ticipants for both body-mounted and clothing mounted sensors. These graphs depict
angle changes for gait cycles of (a) i. waist body-mounted, (a) ii. waist clothing-
mounted, (a) iii. mean waist gait cycle for body-mounted (red) and clothing-
mounted (blue), (b) i. thigh body-mounted, (b) ii. thigh clothing-mounted, (b)
iii. mean thigh gait cycle for body-mounted (red) and clothing-mounted (blue), (c)
i. lower-shank body-mounted, (c) ii. lower-shank clothing-mounted, (c) iii. mean
lower-shank gait cycle for body-mounted (red) and clothing-mounted (blue). Shaded
areas on figure (a) iii, (b) iii and (c) iii represent standard deviation information.

C.2 3D representation of the gait cycles for the

participants



Figure C.5: Mean gait cycles for thigh and ankle sensors from ‘Participant 3- Day 1.
Participant 3 did not wear a waist sensor pair. Body-mounted (red) and clothing-
mounted (blue). Shaded areas on figures represent the standard deviation informa-
tion.

Figure C.6: Mean gait cycles for thigh and ankle sensors from ‘Participant 3- Day 2.
Participant 3 did not wear a waist sensor pair. Body-mounted (red) and clothing-
mounted (blue). Shaded areas on figures represent the standard deviation informa-
tion.



Figure C.7: As Participant 1’s trousers were baggy at the thigh area, as expected
the clothing data show a wider range of angles than that of the body-mounted
thigh data. (a) 3D representation of body-mounted sensor angles (red dots) and
clothing-mounted sensor angles (blue dots) for gait cycles for ‘Participant 1- Day
1’. (b) Angle changes for the mean gait cycle for body-mounted (red) and clothing-
mounted (blue) sensors for gait cycles shown in (a). ’Green o’ s are the approximate
starting points of stance phases (Initial contact) and ’yellow diamonds’ s are the
approximate end points of stance phases (Toe off). (c), (d) and (e) represent the
angle data for ‘thigh’ vs ‘waist’, ‘lower-shank’ vs ‘thigh’ and ‘lower-shank’ vs ‘waist’
respectively.



Figure C.8: (a) 3D representation of body-mounted sensor angles (red dots) and
clothing-mounted sensor angles (blue dots) for gait cycles for ‘Participant 1- Day
2’. (b) Angle changes for the mean gait cycle for body-mounted (red) and clothing-
mounted (blue) sensors for gait cycles shown in (a). ’Green o’ s are the approximate
starting points of stance phases (Initial contact) and ’yellow diamonds’ s are the
approximate end points of stance phases (Toe off). (c), (d) and (e) represent the
angle data for ‘thigh’ vs ‘waist’, ‘lower-shank’ vs ‘thigh’ and ‘lower-shank’ vs ‘waist’
respectively.



Figure C.9: (a) 3D representation of body-mounted sensor angles (red dots) and
clothing-mounted sensor angles (blue dots) for gait cycles for ‘Participant 2- Day
2’. (b) Angle changes for the mean gait cycle for body-mounted (red) and clothing-
mounted (blue) sensors for gait cycles shown in (a). ’Green o’ s are the approximate
starting points of stance phases (Initial contact) and ’yellow diamonds’ s are the
approximate end points of stance phases (Toe off). (c), (d) and (e) represent the
angle data for ‘thigh’ vs ‘waist’, ‘lower-shank’ vs ‘thigh’ and ‘lower-shank’ vs ‘waist’
respectively.
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D.1 Activity wise summary reports for the par-

ticipants

Standing 23%

Sitting 14%

Lying down 14%

Legs outstretched 21%

Walking 17%

Climbing stairs up 3%

Climbing stairs down 4%

Turning 4%

Standing  38%

Sitting 18%

Lying down 4%

Legs outstretched 13%

Walking 14%

Climbing stairs up 3%

Climbing stairs down 5%
Turning 4%

Participant A (Weekend) Participant B (Weekend)

Figure D.1: Summary reports from each participant for a single day when they
had the most dynamic activities.Participant A and B had a larger proportions of
dynamic activities (28% and 26% respectively) on weekends compared to the other
days.
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Standing  10%

Sitting 69%

Lying down <1%

Legs outstretched 2%

Walking 13%

Climbing stairs up 2%
Climbing stairs down <1%Turning 3%

Standing  10%

Sitting 26%

Lying down <1%

Legs outstretched 37%

Walking 20%

Climbing stairs up 3%

Climbing stairs down <1%Turning 3%

Participant C (Weekday 1) Participant D (Weekday 2)

Figure D.2: Summary reports from each participant for a single day when they had
the most dynamic activities. Participant C and D took part in the data collection
only on weekdays and they had 18% and 26% of dynamic activities as the maximum
values respectively.)

Standing  9%

Sitting 54% Lying down <1%

Legs outstretched 26%

Walking 6%

Climbing stairs up 1%
Climbing stairs down <1%

Turning 1%

Participant E (Weekday 1)

Figure D.3: Participant E took part in the data collection on a single day. The
proportions of dynamic activities and static postures can be seen in this pie chart.




