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A B S T R A C T   

Urban land surface temperature (LST) from satellite earth observation (EO) varies with sensor view angle. Where 
these variations are not accounted for, urban LST products are inconsistent through time, limiting their use in 
urban weather and climate model evaluations and process studies (e.g. urban heat island, building energy bal-
ance, human thermal comfort). Obstacle-resolving numerical models (ORM) of urban form and radiation ex-
changes are being used to: (a) understand relations between EO view angle, the 3-dimensional urban surface, and 
the surface temperatures from urban land surface models, and (b) evaluate parameterisations (parametric 
models) that aim to account for LST angular effects for the next operational satellite products. Most ORM are 
limited to simplified buildings (e.g. cuboids) and surface temperatures by lack of datasets. Novelly, we use both a 
realistic urban form model and observed surface temperatures to assess the impact of simplifying the urban form 
and temperature on the modelled LST anisotropy. We test various sets of assumptions in central London by 
combining ground-based thermal camera observations and the state-of-the-art Discrete Anisotropic Radiative 
Transfer (DART) model. The high resolution realistic model (< 1 m) includes thermal (surface temperatures 
varying by sun-surface geometry, shadow history and materials every 30 min) and geometry (sloped roofs, 
chimneys and vegetation) data. These data are used to simulate brightness temperatures of EO pixels to quantify 
LST view angle variations. 

During daytime, a change of view angle of 47◦ off-nadir corresponds to a difference in LST of up to 5.1 K for 
the realistic building model. The intermediate-complexity landscape (easily obtainable building geometry/ 
footprints and more idealised surface temperature distributions driven only by shadow patterns) gives the best 
agreement in simulated LST to the realistic landscape. The directional variations are still captured in total 
(daytime mean absolute error 0.44 K) when using an idealised ORM representation of the same landscape 
(cuboid buildings, simplified surface temperature) except for roofs which are near-isotropic. Results suggest that 
geometry assumptions used in current ORM are suited for evaluation of parametric models used to develop and 
verify operational LST sensor view angle corrections. Future work should consider more realistic materials and 
scattering processes including low emissivity glass and metals with challenging specular properties.   

1. Introduction 

Surface temperature is a central variable in the surface energy bal-
ance. Satellite-derived land surface temperature (LST) can provide a 
spatially continuous, global product that has been used to map surface 
urban heat islands (Yang H et al., 2020; Miles and Esau, 2020) and urban 
air temperature (Venter et al., 2020) for an improved understanding of 
the effects of cities on the climate and heat stress of populations. Urban 
land surface models increasingly use LST for model evaluation (Gian-
naros et al., 2013; Hu et al., 2014). However, any remote sensing (RS) 

observation is limited to a two-dimensional view of the surface-leaving 
radiance to determine LST (Jiang et al., 2018). Urban three-dimensional 
(3D) morphology and complex surface materials create directionally 
variable (i.e. anisotropic) surface-leaving radiance (Krayenhoff and 
Voogt, 2016). Surface-leaving radiance sampled by a remote sensor can 
therefore change depending on the view angle. For example, an obser-
vation viewing directly downward (i.e. nadir) is biased towards the 
surface-leaving radiance from horizontal surfaces (Roth et al., 1989; 
Voogt and Oke, 1997; Hu and Wendel, 2019), missing the large wall area 
contributing to the “complete” surface temperature across all surfaces 
(Jiang et al., 2018; Yang J et al., 2020). Anisotropy of surface-leaving 
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radiance across urban canopies is defined as an “effective” thermal 
anisotropy, to differentiate from the thermal anisotropy exhibited by 
individual surface components (Voogt and Oke, 1998a) caused by the 
non-Lambertian properties of real-world surfaces, including specular 
reflections from glass and metals. Effective thermal anisotropy in urban 
areas can give rise to directional variations in LST of over 10 K 
(Lagouarde et al., 2010) and is unaccounted for in current LST retrievals. 
This can confound estimates of surface urban heat island intensity 
through time and is considered a major source of model evaluation 
inconsistency between observed and modelled LST (Hu et al., 2014), 
along with cloud contamination. Further, it reduces LST climate record 
consistency, which is crucial if LST is to be considered a viable essential 
climate indicator or variable (WMO, 2016; ESA, 2019) or to be used 
routinely in data assimilation. 

Future operational LST retrievals will convert angular LST to nadir or 
hemispherical temperature products by including models which 
normalise the angular variations (Cao et al., 2019) or “complete” surface 
temperature weighted across the full urban envelope (Voogt and Oke, 
1997; Jiang et al., 2018; Yang J et al., 2020). The proposed models are 
semi-empirical parametric models (PM) that are computationally effi-
cient and do not rely on complex inputs of land surface type, structure or 
component temperature distribution (Cao et al., 2019). PM describe the 
underlying processes of angular LST using kernels for (e.g.) emissivity, 
sun angle and shadow distributions. These are analytically expressed 
using multi-angular LST datasets, e.g. overlapping GOES-E and GOES-W 
measurements (Vinnikov et al., 2012) or combined geostationary and 
polar orbiters (e.g. Jiménez et al., 2012). Recently proposed PMs 
consider urban building/road geometry (Wang et al., 2020) and urban 
vegetation geometry (Cao et al., 2021; Jiang et al., 2021). 

Using concurrent multi-angle LST for implementation of PM presents 

challenges. Observations from different satellites have spatial and tem-
poral mismatches and have systematic product/instrumentation un-
certainties (Ermida et al., 2014). Only ASTR and SLSTR sensors operate 
with two observation angles (Liu et al., 2020). Even differences in 
capture time for a multi-angle and multi-instrument observations (e.g. 
~10 min) can have an effect as urban facets exhibit large fluctuations in 
surface temperature at short time scales (Christen et al., 2012). Quan-
tifying these uncertainties requires detailed evaluation from high- 
resolution observations and simulations. 

3D models (hereafter “3DM”) or obstacle resolving models (ORM) 
offer a detailed, physical basis to evaluate PMs and multi-angle LST 
through explicit definition of the observed surface geometry and tem-
perature distribution. However, available ORM approaches also vary in 
terms of building complexity and representation of real-world surface 
temperature variability. For example, Jiang et al. (2018) evaluate the 
PM of Vinnikov et al. (2012) and simulate scenarios when multi-angular 
LST were unavailable using an ORM (CoMSTIR) with idealised surface 
temperatures and cuboid buildings. Wang et al. (2020) evaluated the 
GUTA PM using the DART ORM (Wang et al., 2018) configured with 
repeating idealised buildings. It is the overarching objective of this study 
to quantify the implications of assumptions during the ORM setup. This 
is vital so that ORM can then be used to assess uncertainties inherent in 
PM used to support the next generation of LST retrievals. 

ORM require a 3D description of the surface of interest to determine 
upwelling radiance (e.g. DART – Discrete Anisotropic Radiative Trans-
fer, Gastellu-Etchegorry et al. (2015)), surface temperature fields (e.g. 
TUF-3D – Temperature of Urban Facets, Krayenhoff and Voogt (2007)) 
or to interpret sensor view (e.g. SUM - Surface-sensor-sun Urban Model, 
(Soux et al., 2004)). The idealised geometries greatly simplify model 
setup and input parameters. Improving geometry and surface 

Abbreviations 

Symbol/ acronym Description [unit] 
3DM Three-dimensional model 
DART Discrete Anisotropic Radiative Transfer model 
EO Earth observation 
i Surface component index 
ILU 3D Ts distribution using DART solar illumination approach 
Λ Maximum Tb

EO difference between two view angles [K] 
LA Leaf area density 
LOD Level of detail 
LST Nonspecific land surface temperature 
M21 3D Ts distribution using (Morrison et al., 2021) approach 

MAE Mean absolute error 
MBE Mean bias error 
ORM Obstacle resolving model 
PAI Plan area index 
PM Parametric model 
Pn nth percentile 
Tb Brightness temperature [K] 
Tb

EO Earth observation directional brightness temperature [K] 
Ts Skin surface temperature [K] 
x, y Image pixel coordinates 
ΔTb

EO Off-nadir - nadir Tb
EO difference [K] 

θ Azimuth angle [◦] 
ϕ Zenith angle [◦]  

Fig. 1. Study area: (a) height of all surfaces above sea level (asl) from Google Earth imagery (Morrison et al., 2020) with building footprints (black lines, from Evans 
et al. (2011)), (b) orthorectified RGB image from a mosaic of Google Earth (Google, 2019) images (c) looking south east from 76 m roof centre of scene. Coordinate 
Reference System WGS84 UTM grid zone 31 N. 

W. Morrison et al.                                                                                                                                                                                                                              
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Fig. 2. Variability of surface characteristics in central London between grid-cells (n = 81, each 420 m × 420 m) compared to the study area (red) with (upper) maps 
and (lower) histograms with nth percentiles (Pn) of P25 → P75 (dashed lines), P50 (solid line), with solid red line the study area value. (a) Land cover (4 m resolution) 
with extent of maps (white dashed box) in b – l and a sample MODIS M*D11A1 pixel (orange box). Surface characteristics: (b) plan area fraction of tall vegetation (>
2 m) (c) plan area fraction of grass (d) plan area fraction of buildings (i.e. plan area index), (e – h) building height, (i – l) sky view factor (Dozier and Frew, 2002) 
calculated in R (R Core Team, 2017) with the “horizon” package (Van Doninck, 2018), and (g, l) standard deviation of the respective parameter. Maps oriented to grid 
north (WGS84 UTM grid zone 31 N). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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temperature characterisation requires rarely available detailed datasets 
(Masson et al., 2020) or more complex model design (i.e. beyond 
frequently used plane-parallel building grids such as in TUF-3D; ENVI- 
met, Gál and Kántor (2020)). 

A range of urban characteristics have not yet been addressed by 
previous thermal anisotropy modelling applications:  

i. With cuboid buildings and flat surfaces, sub-facet scale (e.g. < 1 
m) shadowing is not accounted for. Sub-facet shadows can reduce 
a wall’s mean surface temperature by 1–7 K (Hilland and Voogt, 
2020), whereas roof shape (pitch and structure) can cause vari-
ations of over 20 K (Morrison et al., 2021). Prior ORM studies of 
LST anisotropy without micro-scale 3D structure hence tend to 
underestimate the anisotropy (Lagouarde et al., 2010; Krayenhoff 
and Voogt, 2016).  

ii. Urban vegetation is often a large fraction of the urban surface 
(Small and Lu, 2006) and generally much cooler than impervious 
surfaces (Meier and Scherer, 2012). To our knowledge only Dyce 
and Voogt (2018) have used ORM with urban vegetation to 
simulate directional LST, but using plane-parallel building and 
vegetation canopies (see i.). 

iii. Surface temperatures from ORM are very sensitive to model pa-
rameters that describe the surface composition (e.g. material 
thickness, heat capacity, albedo, emissivity). Still, to date neither 
these parameters nor the ORM surface temperatures are exten-
sively evaluated as the necessary observations are both chal-
lenging to obtain and have limited spatial and temporal 
footprints (Pigeon et al., 2008). Ground-based observations, such 

as those across a residential area (Adderley et al., 2015), an 
idealised scale model (Morrison et al., 2018) or the New York city 
skyline (Ghandehari et al., 2018), do not cover the full 
complexity and diversity of realistic urban geometries. Although 
airborne observations (e.g. Sugawara and Takamura, 2006; 
Lagouarde and Irvine, 2008) and vehicle transects (Voogt and 
Oke, 1998a) have greater spatial extent, and hence represent 
higher complexities, they are snapshots in time.  

iv. Urban materials are generally unknown at high spatial (facet 
scale), spectral (short and longwave) and angular (e.g. specular 
reflectivity) resolution. Thus, ORM are typically prescribed with 
bulk and Lambertian optical properties. In stark contrast, real 
urban areas have extremely complex material distributions and 
spectral responses (Kotthaus et al., 2014), with plastic signatures 
(Guo and Li, 2020) and specularly reflecting glass and metal 
claddings (Kotthaus et al., 2014). “Cool” LST islands detected 
around tall buildings (Agathangelidis et al., 2020) may hence be 
anomalies associated with LST retrieval uncertainties caused by 
the influence of specific materials (e.g. high glass fraction) on the 
anisotropy (Crawford et al., 2018). 

To assess such sources uncertainty in common ORM configurations 
and to quantify the relative impact of simplifying the urban form and 
temperature, respectively, this study uses a uniquely detailed model 
accounting for those characteristics (i.-iv.) commonly simplified else-
where. This allows us to model urban thermal anisotropy, with varying 
degrees of complexity in the underlying processes whereby the impli-
cations of various assumptions can be quantified. Realistic urban form 
and surface temperatures that are neither often nor easily available are 
combined to simulate a heterogeneous urban area. The micro-scale 
surface structure of 3D buildings is here resolved to individual pitched 
roofs, chimneys, balconies. Building facets, ground surfaces and vege-
tation are assigned component surface temperatures derived from high- 
resolution thermal infrared camera observations. Using a state-of-the-art 
radiative transfer model, a “realistic baseline” simulation of urban 
anisotropy is performed that then serves as a refence to asses simplified 
model setups. The complex landscape is incrementally simplified to 
obtain descriptions similar to previous studies to and the ability to 
characterize angular LST variability is compared to the “realistic 

Table 1 
Study area (Fig. 1a, 420 x 420 m) land cover fractions and variability of heights 
(Morrison et al., 2020) and sky view factor (Gál and Unger, 2014; Dorman, 
2021).   

Trees & Shrubs Building Grass 

Plan area fraction 0.17 0.37 0.17 
Percentiles Height (m) Height (m) Sky view factor 

P25 6.82 6.9 0.41 
P50 10.01 13.49 0.57 
P75 15.21 19.1 0.75  

Table 2 
Central London study area is represented as three-dimensional model landscapes with variations in: surface geometry level of detail (LOD), surface temperature 
distribution (Ts

3D) and vegetation leaf area density (LAD). Landscapes are implemented in the DART radiative transfer model to simulate directional land surface 
temperature.  

Landscape feature Code Description Basis 

Surface geometry level of detail 
description (summary in Fig. 3) 

LOD2 Realistic buildings (e.g. pitched roofs, chimneys) and 
vegetation >2 m tall 

Most realistic geometry directly from Google Earth (Morrison 
et al., 2020), including sub-facet scale features 

LOD1 Extruded building footprints. Same vegetation as in LOD2 Most widely available and easy to use format for 3D building 
morphology. 

LOD0 Randomly oriented cuboid buildings. No trees. Assumed in parametric models (e.g. GUTA) and a constraint in 
many common 3D models (e.g. TUF-3D’s plane-parallel cubes) 

Surface temperature distribution 
(Ts

3D) (details in Table 4) 

M21 
Ground-based observations (Morrison et al., 2021) stratified 
by sun-surface geometry, shadow history and high/low 
albedo 

Most detailed description available from observed surface 
temperature variation (Morrison et al., 2021) 

ILU Same as M21 but no shadow history 
A simpler scheme accounting only for sun-surface geometry; 
used in other models (e.g. Wang et al., 2018) 

Leaf area density of trees/shrubs 
uniformly applied to all vegetation 

LAD0 No vegetation (trees/shrubs) 
Typical assumed in other models (except Dyce and Voogt 
(2018)) 

LAD0.15 Uniform LAD = 0.15 m2 m− 3 (Krayenhoff et al., 2020) upper range 

LAD0.7 Uniform LAD = 0.7 m2 m− 3 (Lalic and Mihailovic, 2004a) lower range; also near ( 
Klingberg et al., 2017) ~ 0.6 lower range 

LAD1.6 Unform LAD = 1.6 m2 m− 3 
(Lalic and Mihailovic, 2004a) upper range; 
used in London, UK (Jeanjean et al., 2017); within (Klingberg 
et al., 2017) upper range (1.5–2)  

W. Morrison et al.                                                                                                                                                                                                                              
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baseline” to understand which details are most relevant for future 
comparisons to PM implemented in LST retrievals. 

2. Methods 

2.1. Modelling satellite LST variation by view angle 

The Discrete Anisotropic Radiative Transfer (DART) model (Gastellu- 
Etchegorry et al., 2012) (Section 2.1.2) can simulate satellite-derived 
urban LST as brightness temperatures (Tb

EO) for different “landscapes” 
(Section 2.1.1). As DART can model Tb

EO for any zenith (ϕ) and azimuth 
(θ) view angles (◦), this allows variations across different landscapes to 
be assessed. Taking nadir sampled temperatures [Tb

EO(ϕ = 0), i.e. 
“straight down” EO view] as reference, the difference (ΔTb

EO) to off nadir 
[Tb

EO(ϕ, θ)] is: 

ΔTEO
b = TEO

b (ϕ, θ) − TEO
b (ϕ = 0) (1) 

The overall Tb
EO range (i.e. maximum (max) to minimum (min)) for 

distribution of temperatures at a given view angle is (Krayenhoff and 
Voogt, 2016): 

Λ = max
[
TEO

b (ϕ, θ)
]
–min

[
TEO

b (ϕ = 0)
]
. (2)  

2.1.1. Model landscape 
In this study, the term “landscape” describes a 3D model of urban 

form and surface temperature. Here, the urban form includes the 
buildings, ground, and vegetation, overlaid with a 3D surface temper-
ature field with 1 m × 1 m × 1 m resolution voxels (Appendix A). Each 
voxel holds a data point (here surface temperature) for a given volume. 
Landscapes are created (Section 2.3) and then implemented in DART 
(Section 2.1.2) to simulate Tb

EO. 

2.1.2. DART radiative transfer model 
DART (here version 5.7.5) is a computer model that simulates radi-

ative transfer in heterogeneous 3D landscapes. Using a ray tracing 
approach, DART determines the emission and multiple scattering of 
individual longwave infrared (LWIR) rays across a landscape. The result 
can be a 2D image of a landscape’s surface-leaving thermal radiance 
[Lsurf(x, y, ϕ, θ, i, λ, Ω), W m− 2 sr− 1 μm− 1] across a horizontal plane at 
the top of the landscape (the bottom of atmosphere – BOA) (Yin et al., 
2015; Wang and Gastellu-Etchegorry, 2020) at a given wavelength (λ, 
μm), with (x, y) the image pixel indexed by surface component(s) i (e.g. 
roof and/or wall), ϕ and θ (◦) the zenith and azimuth propagation an-
gles, and Ω (sr) the solid angle. Hereafter for brevity, Ω and λ are no 
longer stated explicitly as simulations are performed at a single selected 
wavelength and use uniform solid angle. For each timestep, 116 2D 
images are computed for directions θ = 0 → 360◦. To reduce computa-
tion time, the number of image files, and the data stored, only images for 
φ < 50◦ are simulated. 

To determine a landscape’s view angle variation in upwelling radi-
ance, Lsurf(x, y, ϕ, θ, i) is resampled to obtain a landscape mean surface- 
leaving radiance typical for EO resolutions: 

Lsurf(ϕ, θ) =
1
n
∑n

(x,y)

Lsurf(x, y,ϕ, θ, i) (3) 

Fig. 3. Digital surface model (DSM) level of detail (LOD) variations in the model landscapes. Highest detail (LOD2) from Morrison et al. (2020) uses Google Earth Pro 
data (Google, 2019), simplified (LOD1) as extruded building footprints (Evans et al., 2011) and idealised (LOD0, schematic) using study area building height, 
number, and plan area (Table 1). 

Table 3 
Uncertainty range used in morphometric parameters for the lowest level of 
detail (LOD0) geometry description of the London study area. EO indicates earth 
observation techniques are used.  

LOD0 Uncertainty Details 

Plan area index 
(PAI) 

± 10% > 90% accuracy [EO building masks in European 
cities] (Esch et al., 2020) 

Mean building 
height 

± 3 m Mean bias error [EO in Germany] = 3 m (Frantz 
et al., 2021) 

Building 
spacing 

± 25% Real-world cities have irregular building spacing 
(Chen et al., 2017)  

W. Morrison et al.                                                                                                                                                                                                                              
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with n the number of image pixels. Lsurf(ϕ, θ) then relates to Tb
EO(ϕ, θ) by 

inversion of the Planck function (Bλ
− 1) at the simulation wavelength 

(λ, μm): 

TEO
b (ϕ, θ) = B− 1

λ

[
Lsurf(ϕ, θ)

]
. (4)  

Here λ = 11.02 μm is used, corresponding to the centre of MODIS 
(Moderate Resolution Imaging Spectroradiometer) band 31. A split 
window (Zhengming Wan and Dozier, 1996) or other (e.g. Islam et al., 
2017) LST retrieval would then use Lsurf at different bands and consider 
neither the view angle or facet (i) level radiative exchange processes. 

2.1.3. DART vs. previous sensor view modelling of anisotropy 
Previous sensor view modelling of thermal anisotropy to derive 

Tb
EO(ϕ, θ) has determined the weighted contribution from various sur-

face types (e.g. sunlit/shaded wall, roof, ground) for different view an-
gles (e.g. Lagouarde et al., 2010): 

TEO
b (ϕ, θ)4 =

∑ni

i
fi(ϕ, θ)

(
Tb,i

)4 (5)  

where fi(ϕ, θ) is the view fraction of surface component i within the 
sensor field of view determined by a sensor view model (e.g. Soux et al., 
2004), Tb,i is the surface component brightness temperature from ob-
servations or energy balance modelling, and ni is the total number of 
surface components. Surface components act independently and are 
typically opaque; but have included tree crowns (Dyce and Voogt, 
2018). 

DART surface components can instead have radiative contributions 
from anisotropic scattering, transmission through turbid media (e.g. 
vegetation) and the (cloud-free) sky and are not constrained to idealised 
geometry (cuboid buildings, plane-parallel surfaces, smooth facets, 
etc.), bulk facet-level surface temperatures, or Lambertian emission. 

2.2. Study area and observation period 

The central London (UK) 420 m × 420 m study area has a mix of 
vegetation, high- and low-rise structures (Fig. 1). The analysis uses 
ground-based surface temperature observations taken in the area 
(Morrison et al., 2020; Morrison et al., 2021) for a mainly clear-sky 
summer day (27th August 2017). 

To assess how representative the study area is of central London and 

a single EO pixel (e.g. MODIS/Sentinel) at a resolution of ~1 km × 1 km, 
the morphometric and land cover characteristics are analysed for a ~ 4 
km × 4 km area around the site (Fig. 2a). South and east of the site is the 
central business district. Both average building height and plan area 
index (PAI, fractional area covered with buildings) decrease northwards, 
while vegetation fraction increases in more residential areas. The study 
area PAI is similar to the surroundings (Fig. 2), but there is more 
vegetation (> 75th percentile of the extended area, Table 1 cf. Fig. 2b, c) 
associated with a park (Fig. 1b, centred at grid coordinates 284,500, 
5,712,850). 

As earlier ground-based thermography studies were undertaken in 
less built-up areas, our site’s median building height (13.5 m, Table 1) is 
greater than both (Adderley et al., 2015) area-weighted building height 
of 6.23 m and (Morrison et al., 2018) 1.5 m cubes. From visual inspec-
tion, the vegetation fraction is lower than in the (Meier and Scherer, 
2012) study area. 

2.3. Model landscapes of the study area 

The study area surface geometry, vegetation and temperature are 
simulated to create a series of model landscapes (Table 2, more details in 
Appendix A). Digital surface models (DSM) are used to represent the 3D 
geometry of each landscape. Their resemblance to the “real world” are 
indicated by their level of detail (LOD), where LOD2 (Fig. 3) has the 
most realistic building features (e.g. sloped roofs, chimneys, and bal-
conies) and LOD0 the most idealised. In LOD1, the building footprints 
Evans et al. (2011), Fig. 1a) are vertically extruded (using “3Dfier”, 
(Commandeur, 2020) to create 3D buildings with flat roofs and walls. As 
building footprints are widely available (e.g. Microsoft’s Open Street 
Map (Heris et al., 2020)) LOD1 models are relatively easy to produce 
and hence most commonly used. 

In LOD0 (Fig. 3), cuboid buildings are used with random orientations 
constrained so each wall angle has the same weight in an effective 
thermal anisotropy (Wang et al., 2018) estimate. The baseline LOD0 has 
regularly spaced cubes of randomly assigned heights (informed by the 
LOD2’s building height inter quartile range) with both the PAI and 
number of buildings from the LOD1 building footprint. As LOD0 requires 
the least input information and pre-processing, it could potentially 
parameterise urban geometry globally; although coarsely and less 
accurately than higher LOD datasets. A range of LOD0 geometries are 
derived (hereafter “LOD0 ensemble”) to account for uncertainties in the 

Table 4 
Surface properties used to both stratify surface temperature observations and allocate them to a 3D landscape. Surface temperatures variation method M21 (Morrison 
et al., 2021) and ILU (Table 2). Acronyms see list at start of paper. Note as a BRF is relative to the illumination of a flat surface, a vertical surface (e.g. a wall) facing the 
sun is illuminated more than the reference flat surface, hence a BRF ratio is >1.  

Surface property 
name 

Obtained in 3D using Surface property description Surface property 
stratification 

Used in 

Orientation and 
material 

Blender (Blender, 2018) 3D modelling, 
airborne hyperspectral data 
(Morrison et al., 2020) 

Cardinal facing wall orientation. Boolean high/low albedo roof 
separation for LOD2 geometry (constant low albedo for LOD1 
and LOD0) 

Roof (low 
albedo) 
Roof (high 
albedo) 
Ground 
(impervious) 
Ground (grass) 
North facing 
East facing 

South 
facing 
West 
facing 
Down 
facing 

M21, ILU 

Sun-surface 
geometry 

DART shortwave simulation Bidirectional reflectance factor (BRF) Lambertian BRF: 
0 (shaded) → 2 (most sunlit) 
[Δ0.25 steps] 
(unitless) 

M21, 
ILU: boolean 
sun or shade 

Shadow history DART shortwave simulation shadow 
tracking through time (Morrison et al., 
2021). 

Recently shaded surfaces cool exponentially with time 
constant (τ, min); maximum interval 2τ (or until ambient 
temperature reached) 

2τ Roof = 86 min (fastest 
cooling) 
2τ Ground = 269 min 
2τ Walls = 347 min (slowest 
cooling) 
(Morrison et al., 2021) 

M21  
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Fig. 4. Study area surface-leaving radiance shown as brightness temperatures (Tb) simulated using three-dimensional (3D) surface temperature derived from ob-
servations and the DART model for 27th August 2017 at (left) 11:00 and (right) 14:00 for (top) nadir and (middle – bottom) off-nadir zenith (ϕ) angles. Black dashed 
box (top left) is the area shown in Fig. 6a-d. Images have orthographic sensor perspective projection with surface → sky view directions such that: θ = 0◦ is grid north 
and θ = 90◦ grid east (WGS84 UTM grid zone 31 N) and ϕ = 0◦ (ϕ = 90◦) is viewing directly upward from (parallel to) the surface. White areas are the view inside 
buildings at the edge of the domain and masked from subsequent analysis. 
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Fig. 5. Simulated thermal anisotropy for the study area with (polar plots) the difference in brightness temperature [ΔTb
EO(ϕ, θ)] from nadir temperature (Tb

EO(ϕ, θ) - 
Tb

EO(ϕ = 0◦)) with zenith angle (ϕ, dashed lines with intervals top left plot) ≤ 47◦ simulated using observationally derived “M21” three-dimensional (3D) Ts (Morrison 
et al., 2021) across LOD2 geometry (same as Fig. 4) (Table 4). DART is used to simulate surface-leaving radiance for discrete directions (coloured dots). ϕ = 0◦ is 
radiation propagating upward and perpendicular to flat ground; ϕ = 90◦ is propagation parallel to flat ground; θ = 0◦ is radiation propagating true north and θ > 90◦

is radiation propagating eastward (etc.). Absolute simulated values (inset) show (dot) nadir Tb (Tb
EO(ϕ = 0◦)), (black bar) the Tb

EO range across any direction up to 
47◦off-nadir, and (red bar) the range for near-nadir (e.g. Landsat) views (ϕ < 8.8◦ Tb

EO(ϕ, θ)). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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bulk parameters used (Table 3): PAI ±10% (Esch et al., 2020), building 
height ± 3 m (Frantz et al., 2021) and spacing of cubes randomly up to 
25% from the regular spacing distance. 

All DSMs are given a broadband emissivity of 0.93 based on observed 
mean impervious material values (Kotthaus et al., 2014). This is used by 
DART to simulate multiple scattering of longwave (λ = 11.02 μm, Sec-
tion 2.1.2) radiation between surface components. 

The vegetation in LOD1 and LOD2 are both the same, whereas for 
LOD0 there is no vegetation (Fig. 3). The vegetation is based on location 
of tall vegetation (i.e., non-grass) which includes trees and shrubs (> 2 m 
above ground level), hereafter vegetation canopy elements (VCE, Appen-
dix A). As the leaf area density (LAD) can vary with vegetation type and 
volume, we consider some different densities (Table 2) but for each case 
all VCE voxels are assumed to have the same characteristics. The 1 m3 

voxels are assumed to be turbid with a spherical angular distribution of 
leaves, constant LAD and “deciduous leaf” optical properties at 11 μm 
from the DART spectral database (leaf transmissivity = 0.0145, reflec-
tance = 0.0195). 

2.4. Model surface temperature 

Ground-based observations on a mostly cloud-free day at 30 min 
resolution are used to capture spatial and temporal variations of Ts that 
are known to vary over short distances (Lee et al., 2018; Aguerre et al, 
2019; Morrison et al., 2021). Previous ground-truth of urban Ts are often 
limited to single-point infrared thermometers (e.g. Mathew et al., 2018; 
Wang et al., 2018), whereas we use thermal infrared cameras to better 
resolve spatial variations in surface temperature (Christen et al., 2012; 
Adderley et al., 2015). Observed surface temperatures (Morrison et al., 
2021) are assigned to all landscape surfaces giving either a detailed 
distribution (“M21”, Table 2), or simply based on solar illumination 
(“ILU”, Table 2). The observed surface temperatures are corrected for 
atmospheric emission and absorption, and surface reflections, with un-
certainties as determined by Morrison et al. (2020). Each voxel (X = Y =
Z = 1 m) is assigned one Ts (Ts

3D(X, Y, Z)) in both methods (Appendix B). 
However, a voxel can contain more than one surface component; for 
example, a building corner may have both east and south facing walls, or 
a balcony a south, down and roof facing surfaces. In these cases Ts

3D(X, Y, 
Z, i) is set to the mean Ts(i) of all surface components involved. The 
surface temperature voxels are saved as a pre-processing product for 
input into DART, with the surface temperature distribution across the 
DSM triangles determined by the triangle-cell intersection. 

For M21, the thermal camera observations are stratified based on 
three surface properties i (Ts(i)) (Table 4) that drive surface temperature 
variation in urban areas (Morrison et al., 2021). These include: for 
example, a pitched roof’s Ts can vary with orientation to the sun; ma-
terials with higher albedos are associated with lower surface tempera-
ture through the lower absorption of solar radiation; and the effects of 
thermal inertia (Aguerre et al., 2019) are stratified by a combination of 
facet type and time in shade rather than using overall aggregates (e.g. 
Voogt and Oke, 1998b; Morrison et al., 2018). For ILU, Ts(i) is stratified 
using sunshine status, surface orientation, and material only (i.e. no 
shadow history, Table 4). 

Following the GUTA PM (Wang et al., 2018) evaluation using DART, 
a surface component Ts range is calculated for direct input to the model. 
The range of mean temperatures is defined by shaded (“lower”) and 

(caption on next column) 

Fig. 6. Detail of Fig. 4 (black dashed lines): (a) aerial RGB image with similar 
shadow patterns (EDINA Digimap, 2015), (b-e) simulated high-resolution nadir- 
view (i.e. zenith angle ϕ = 0◦) images to represent earth observation (EO) 
products (x, y, pixels; m) of brightness temperature (Tb

EO(x, y)) using DART 
across landscapes with varied descriptions of surface geometry level of detail 
(LOD; LOD2 highest, LOD0 lowest) and three-dimensional surface temperature 
(Ts

3D), where M21 is complex (Ts
3D = M21) (Morrison et al., 2021) and ILU is 

simplified (Ts
3D=ILU). Labels (Tb

EO (ϕ = 0◦)) are image averages (with 
Planck function). 
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sunlit (“upper”) limits. The “upper” limit Ts is prescribed in DART to any 
sunlit surface, and the “lower” Ts to any shaded surface. This gives 3D 
variations based on sun angle, DSM, and vegetation. 

While M21 is the best estimate of a realistic Ts, ILU is both more 
easily simulated as it requires fewer surface temperature components, 
and more representative of studies limited by observations availability 
(e.g. IRTs, thermocouples, Li and Li (2020)) or idealised 3DM with 
plane-parallel geometry. The ILU setup is already implemented in DART, 
meaning the landscape geometry can change without needing to 
manually pre-process and store the M20 landscape temperature in large 
5D numerical arrays (i.e., 3D space, shadow history timestep, surface 
class). 

As the brightness temperature observations for vegetation are 
unstratified by sun-surface geometry, all VCE are assigned the same Ts. 
This is the observed air temperature measured 1 km south east of the 
study area (Morrison et al., 2020). 

3. Results and discussion 

First, the highest detail landscape simulation, informed by observa-
tions and 3D modelling, is analysed (Section 3.1). Based on this, the best 

estimate of 2D satellite observations are derived. The simulations are 
unprecedented both in terms of spatial resolution (< 1 m) and temporal 
continuity (30 min resolution for a day post-sunrise). 

Second, this benchmark is used to study a comprehensive range of 
idealised landscapes (Section 3.2) based on similar assumptions used in 
previous simplified approaches to interpret effective thermal anisot-
ropy. These simplified models are required to verify any future opera-
tional corrections (e.g. based on GUTA, Wang et al. (2020)) for effective 
thermal anisotropy. 

3.1. Highest detail landscape simulation 

3.1.1. Spatially resolved LST variations in response to satellite view angle 
To quantify variations in LST in response to the view angle across, 

high spatial resolution directional brightness temperature images 
(Tb

EO(x, y, ϕ, θ)), a combination of LOD2 geometry and M21 surface 
temperature observations (Table 4) is used. Depending on the view 
angle, different surfaces are captured in the image (Fig. 4) which creates 
unique brightness temperature distributions. Roof, ground, and vege-
tation are viewed from the nadir direction. Off-nadir view angles also 
have wall surfaces visible, many with complex Tb distributions. The sub- 

Fig. 7. Simulated satellite brightness temperature (Tb
EO) using DART and daytime ground-based observations across zenith view angles (ϕ) up to 47◦ off-nadir, shown 

as differences between nadir and off-nadir (ΔTb
EO) for a central London study area using a realistic (LOD2, Fig. 3) landscape geometry and dense vegetation (LAD1.6, 

Table 2). ΔTb
EO compared across two different three-dimensional (3D) surface temperature (Ts

3D) parameterisations derived from observations: Ts
3D = M21 varies by 

sun-surface geometry, facet type, shadow history, material. Ts
3D
=ILU varies by sun/shade/facet type only. (b) ΔTb

EO for (black) day (blue) night time off-nadir view 
angles for 08:00 → 22:00 27th August 2017 and (a) subset of view angles for (left) M21 and (right) ILU for all azimuth angles (θ, θ = 0◦ is UTM 31 N grid north, θ =
90◦ east, etc.) for (rows) three zenith view angles with (star) sun angle. Angle definitions (c) shows “upward” polar coordinate system used, i.e. angles measured with 
a ground to sky perspective, with (crosses) the discrete view angles, (coloured lines) the three zenith samples used in (a) and (stars) the 30 min upward sun angles 
from early morning (ϕ > 50◦, θ < 135◦) → midday (ϕ ≈ 40◦, θ ≈ 180◦) → late afternoon (ϕ > 50◦, θ > 230◦). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

W. Morrison et al.                                                                                                                                                                                                                              



Remote Sensing of Environment 293 (2023) 113579

11

facet wall geometry creates contrasting temperatures around sunlit 
portions and cooler shaded areas (e.g. wall recesses, from balconies) or 
with oblique sun-surface angles. With simple planar surface geometry, 
wall Tb would vary only because of building shadows and/or shadow 
histories. The complex roof geometry creates similarly complex shadow 
patterns. 

The colder vegetation creates Tb spatial patterns that contrast with 
warmer impervious surfaces. The generally homogeneous Tb (Ts pre-
scribed based on air temperature, Section 2.4) is due to the uniform leaf 
area density (LAD0.7, Table 2). 

3.1.2. Temporally resolved thermal anisotropy 
While airborne studies capture temporal snapshots of anisotropy, 

here the analysis is continuous at 30 min resolution between 2 h after 
sunrise (08:00) and 2 h after sunset (22:00), allowing for a time series 
evolution of anisotropy (Fig. 5) to be investigated. It reveals that at 
08:00, when Ts is similar between facet types (Appendix B), Tb

EO(ϕ, θ) is 
near-isotropic across all view angles up to ϕ = 47◦ (Λ = 0.7 K, maximum 
anisotropy, Eq. 2). 

Tb
EO(ϕ, θ) is greater for off-nadir view angles around the sun angle 

(hot spots). At 10:00 Tb
EO(ϕ, θ) peaks at 3.0 K warmer than nadir (301.2 

K) (Λ = 4.7 K). Λ reaches 4.9 K at 10:30. The hot spot being found near 
the sun direction is consistent with prior mid-latitude observations (Hu 
and Wendel, 2019). The near-nadir (e.g. Landsat) views (here ϕ < 8.8◦, 
Fig. 5, red bars) have lower Tb

EO(ϕ, θ) variation as expected (Λ ≤ 1.0 K, Λ 
= 1.0 K at 12:30) with minimum 0.2 K at 08:00 and 20:00. 

3.2. Effect of landscape simplification on thermal anisotropy 

To identify key inter-landscape differences in brightness temperature 
from an earth observation perspective (Tb

EO) for the different landscape 
configurations (Fig. 3, Fig. 4) we discuss a subset (Fig. 6a) of the study 
area. The highest detail Tb

EO (LOD2 geometry and M21 Ts
3D, Fig. 6b) has 

the greatest Tb
EO(x, y) variation (cf. Fig. 6c-e), particularly across roofs 

where sub-facet geometry (e.g. sloped roofs, chimneys) have diverse 
sun-surface geometries. 

In Fig. 6b, M21’s sun-surface geometry classification (BRF, Table 4) 
prescribes a range of Ts. For example, Tb

EO(x, y) across the sunlit pitched 
roof (centred x = 25, y = 370) has around 307 K → 316 K Tb

EO(x, y) 
difference between left (more east-facing) → right (more west-facing) 
sides. While the left side has a low sun illumination angle (low irradi-
ance and BRF), the right side is almost perpendicular to the sun angle 
(high irradiance and BRF). 

The parameterisation ILU (Fig. 6c) has Boolean “sunlit” and “shaded” 
temperatures across Ts

3D (Section 2.4). This results in the pitched roof 
being mostly homogeneous as it is prescribed “sunlit” roof Ts. Across 
other roofs, Tb

EO(x, y) ILU varies only if there is self-shadowing from 
micro-scale roof features. ILU’s lower micro-scale variation in roof 
temperature results in a Tb

EO(ϕ = 0◦) (308.0 K) that is 2.5 K higher than 
for the M21 (305.5 K) case. Similar micro-scale effects have been re-
ported for walls with ~20–40% self-shading (Hilland and Voogt, 2020). 

With flat roofs (LOD1) there is no micro-scale Ts variation (Fig. 6d). 
LOD1’s buildings are generally more pronounced given their flat facets 
with sharp right angles when roofs and walls intersect. Some buildings 

Fig. 8. Simulated satellite brightness temperature (Tb
EO) using DART and surface temperatures from daytime ground-based observations on 27th August 2017 (30 

min intervals) for (a-c) 08:00 → 18:00 and (d-f) timestep with maximum anisotropy (10:30) across zenith view angles (ϕ) up to 47◦ off-nadir (any of a-c have n points 
= 4360), shown as differences between nadir (ϕ = 0◦) and off-nadir (ΔTb

EO) compared for landscapes with different building geometry level of detail (LOD) for a 
central London study area. All comparisons have no vegetation. 3D surface temperatures distributed by solar illumination (Ts

3D=ILU). (b, c) Error bars are the range 
from LOD0 ensemble simulations (±3 m building height, ±10% PAI, ±25% building separation, Table 3). 
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are present in LOD1 but not in LOD2 (and vice versa) because of 
differing DSM data sources. LOD1, created around 2010, has buildings at 
x = 50, y = 390 and x = 0, y = 420 (Fig. 6) which are absent in LOD2 
(created 2018). However, manual inspection across the study area, 
suggests the LOD1 footprints generally agree well with the LOD2 
buildings (Fig. 1a). 

For vegetation, both the geometry and temperature descriptions in 
the LOD1 and LOD2 simulations are the same. Hence, the VCE have 
homogeneous Ts. However near the canopy edges, Tb

EO(x, y) varies 
where the canopy is often thinner (e.g. Fig. 6b) allowing radiation from 
the warmer ground below to penetrate. 

Although, the LOD0 cubes (Fig. 6e) have no micro-scale Ts variation 
and VCE are omitted, the Ts responds to the shadows cast on the ground 
creating the coolest regions. The cube roofs are warmest. The VCE are 

not included as the layout relative to real-world buildings (cf. cubes) is 
not matched. Using idealised cuboid vegetation to test the sensitivity of 
various vegetation and cube morphologies to thermal anisotropy (see 
Dyce and Voogt, 2018) is outside of this study’s aims. 

3.2.1. Surface temperature distribution 
The two different surface temperature distributions (M20, ILU, 

Table 2, Table 4) are compared to understand the contribution of 
shadow history and surface cooling through time impact on Tb

EO(ϕ, θ) 
variations. Tb

EO(ϕ, θ) is simulated using the simplified temperature 
across the landscape (Ts

3D=ILU, Table 2) and compared to results using 
the complex distribution (Ts

3D = M21; Table 2, Section 3.1). 
Across all off-nadir view angles through the day (08:00–22:00, 

Fig. 7b), the effective thermal anisotropy (defined here as the [off-nadir 

Fig. 9. View fraction f (Eq. C-4) of surface component (i) across simulated satellite perspective for (a-c) fi=Wall, (d-f) fi=Ground, and (g-i) fi=Roof. Satellite perspectives 
simulated are for zenith angles (ϕ) 0◦ → 47◦ (central points are ϕ = 0◦, black radial line grid spacing of 10◦) and azimuth angles (θ) 0◦ → 360◦ with (colours, polar 
plots) the view fraction for a given direction. Scatterplots (insets) compare all directions between LOD2 (x-axis) and LODN (y axis) with (red) 1:1 line. Landscapes 
based on different level of detail (LOD, see Fig. 3 for definitions): (a,d,g) LOD2 - most realistic urban geometry, (b,e,h) LOD1 – realistic building footprints, and (c,f,i) 
LOD0 idealised cube buildings. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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– nadir] difference, ΔTb
EO; (Eqn 1) mean bias error (MBE) between ILU 

and M21 landscapes is 0.2 K, caused by variations around the sun angle 
hot spot. Analysis of thermal anisotropy through time (Fig. 7a) draws 
out the hot spot in relation to the sun angle. ΔTb

EO(ϕ, θ, Ts
3D = M21) > 0 K 

across a wider range around the sun angle for all timesteps. 
As M21 resolves the thermal inertia with surface orientation (Sup-

plementary Material, Appendix D), ΔTb
EO(Ts

3D = M21) can reproduce an 
observed asymmetrical hot spot (Lagouarde et al., 2010) caused by the 
“lags” of the azimuth hot spot behind the sun angle hotspot. After sunset 
(Fig. 7a, without *) ΔTb

EO(Ts
3D = M21) maintains a positive bias into the 

night, with a thermal inertia hot spot signal of ΔTb
EO > 1 K around θ =

200 → 300◦ until 21:30. In contrast, as Ts
3D=ILU has no thermal inertia, 

ΔTb
EO(Ts

3D=ILU) has no evening warm bias and has less variation (− 0.5 
→ 0.5 K after sunset across all view angles). Across night-time intervals 
18:30–22:00, the MAE is 0.19 K (Fig. 7b, blue). 

3.2.2. Surface geometry 
To isolate the importance of building shape complexity, the land-

scape DSM is simplified (LOD2 → LOD1 → LOD0) with one Ts
3D 

parameterisation (Ts
3D=ILU). Vegetation is excluded in LAD0 (Table 2). 

DART brightness temperatures are compared (ΔTb
EO) between zenith 

view angles (ϕ) of up to 47◦ off-nadir and to nadir (ϕ = 0◦). 
Comparing across all 30 min time intervals (08:00–18:00) and ϕ 

settings, the anisotropy for the two lower LOD landscapes (Fig. 8 a-c, y 
axes) generally agrees well with LOD2. The planar facet geometry 
(ΔTb

EO(LOD = 1)) agrees better with the LOD2 anisotropy (Fig. 8a, y 
axis) (MAE = 0.16 K) than the cuboid geometry (ΔTb

EO(LOD0); MAE =
0.44 K; Fig. 8b). The linear regression (Fig. 8, green) slopes are lower for 
LOD0 (0.55) than LOD1 (0.87). Generally, a slope < 1 would indicate 
the more complex geometry (LOD2) is more anisotropic. The LOD2 ΔTb

EO 

range is greatest (larger positive values) around the sun angle (“hot 

spot”, Fig. 7) and has smaller negative values for azimuth angles 180◦

opposite the sun angle. Underestimation of anisotropy for LOD0 is 
consistent with prior low LOD modelling comparisons to observations 
(e.g. Krayenhoff and Voogt, 2016). 

As anisotropy from surfaces’ both view fractions (fi(ϕ, θ), Appendix 
C) and temperatures (Ts,i, Eq. 5) drives ΔTb

EO, these are explored to un-
derstand the differences in anisotropy in response to LOD (Fig. 8). LOD2 
has the smallest roof view fraction (fi=roof, Fig. 9g) as pitched roofs and 
awnings (etc.) with a deviation of >45◦ from horizontal are classified as 
a wall (Appendix A), with the lower roof fractions offset by higher 
fractions of wall. LOD2 fi=roof is the most anisotropic, decreasing from 
0.31 at nadir to 0.27 for a view of south-facing surfaces (ϕ = 47.1◦, θ =
214.1◦; Fig. 9g). At nadir the tops of any convoluted roofs are most 
visible, but with increasing view angles lower roof structures can be 
occluded by other roof features. Comparing across all azimuth angles at 
ϕ = 47.1◦, LOD2 fi=roof varies between 0.27 → 0.32. 

LOD1 and LOD0 fi=roof are near-isotropic (~0.02 range, Fig. 9h, i), 
consistent with assumptions made in most parametric models and ide-
alised 3DM. This makes fi=roof approximately same as the plan area index 
for any direction (Hu and Wendel, 2019; Wang and Chen, 2019). fi=-

ground is generally consistent across LODs (Fig. 9d-f). 
Ts

3D varies between LODs even when using the same surface tem-
perature distribution (Ts

3D=ILU), as differences in surface geometry 
translate into solar illumination patterns (e.g. through changes in sunlit 
and shaded fractions). To investigate these LOD effects, Tb

EO(ϕ, θ) is 
separated by component directional brightness temperatures (Tb

EO(ϕ, θ, 
i)). While Tb

EO(ϕ, θ) uses the radiance from all image pixels (Eq. 3, 4), 
Tb

EO(ϕ, θ, i) only uses the pixels that contain surface type i (Appendix C). 
Tb

EO(ϕ, θ, i) hence isolates the contribution of a given facet type to the 
variations in anisotropy. 

LOD2 roof component brightness temperatures (Tb
EO(ϕ, θ, i = Roof)) 

Fig. 10. Simulated satellite brightness temperature (Tb
EO) for different surface types i (e.g. i = Wall, i = Roof) for urban landscapes with different geometry level of 

detail (LOD) and surface temperatures (prescribed based on sun illumination, ILU) across view angles (ϕ, θ) up to 47◦ off-nadir showing (a) mean Tb
EO(ϕ, θ, i) and 

range (vertical lines) during the day (x-axis, UTC) for idealised cubes (LOD0) to realistic geometry (LOD2); and (b) contribution of surface components to anisotropy 
shown as [off nadir – nadir] differences (ΔTb

EO(i) Eq. (1). 
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vary most with view angle (Fig. 10a, green vertical bars; Fig. 10b x-axes 
red points). Their pitched, micro-scale structure gives a range (Λ) of 0.6 
K at 08:00, increasing to Λ = 2.3 K (09:00) with later maximum of Λ =
3.4 K (14:00). Whereas, LOD1 roofs maximum Λ is 1.5 K (14:00), while 
LOD0 roof Λ is always <0.3 K as there is no variation in the roof view 
fraction or surface temperature (i.e. fi=roof, Fig. 9, or Tb

EO(ϕ, θ, i = Roof), 
Fig. 10a). 

LOD2 roofs have a cool bias of over 5 K around midday. This is 
explained by high albedo “cool” surfaces (Appendix B, ~17.9% of total 
roof area, Morrison et al. (2021)) along with micro-scale geometry ef-
fects of self-shadowing, particularly from sloped surfaces towards/away 
from the sun (e.g. compare Fig. 6 b, d). 

For wall and ground components, all LODs have directional bright-
ness temperature variations (Fig. 10a) as for each view direction 
different shaded/sunlit fractions are seen. Brightness temperatures for 
LOD2 ground are lower – particularly at night – as LOD2 has a 0.17 grass 
fraction (Table 1) which has a relatively low surface temperature (Fig. B- 
1), whereas in the other LOD grass surfaces are unaccounted for. There is 
some unexplained azimuth variation in LOD1 wall and ground view 
fractions (Fig. 9b, e) perhaps from a bias in certain building orientations 
which, in central London, would be reduced when using a larger domain 
area containing more streets and buildings. 

The combined anisotropy from walls and ground of LOD2 (Fig. 10b, 
blue) is similar to that of LOD1 and LOD0 (MAELOD1 = 0.15, MAELOD0 =

0.26 K) and thus contributes less to the overall inter-LOD ΔTb
EO 

differences (Fig. 8). The generally high correlation between all land-
scapes (Fig. 8) is further understood through analysis of inter-landscape 
view fractions (Fig. 9) and facet temperatures (Fig. 10) which combined 
(e.g. Eq. (5) give rise to the observed anisotropy. 

3.2.3. Vegetation 
To investigate the impact of vegetation density on daytime anisot-

ropy (Fig. 11) we compare a baseline ΔTb
EO simulation with complex 

geometry but no vegetation (ΔTb
EO(LOD = 2, LAD = 0)) to cases with 

varying leaf area density (LAD). Generally, the baseline ΔTb
EO has the 

most variation through time and with view angle. 
Adding vegetation reduces the anisotropy (consistent with Dyce and 

Voogt (2018)) with greater reductions where ΔTb
EO > 0 K (Fig. 11, x- 

axes). For these viewing directions, the landscapes with LAD >0 have 
ΔTb

EO around 0.4–0.6 K less than the baseline. Once vegetation is 
accounted for, there is little sensitivity to LAD (Fig. 11, colours) and LOD 
(Fig. 11, columns). 

4. Conclusions 

Urban geometry and surface temperature data are used to simulate 
directional variations of satellite brightness temperature images - the 
effective thermal anisotropy. Three-dimensional (3D) modelling of urban 
form and thermal radiative transfer processes using the Discrete 
Anisotropic Radiative Transfer (DART) model are used to explore the 

Fig. 11. DART simulated satellite brightness temperature (Tb
EO) for daytime (08:00 → 18:00 27th August 2017, 30 min intervals) ground-based observations across 

zenith view angles (ϕ) up to 47◦ off-nadir, shown as differences between nadir (ϕ = 0◦) and off-nadir (ΔTb
EO) compared for landscapes with varied geometry level of 

detail (LOD) and leaf area density (LAD) for a central London study area with (scatterplots, x-axis) a baseline ΔTb
EO with no vegetation (LAD = 0, as Fig. 8c y axis) and 

high LOD geometry (LOD = 2, as Fig. 8a-b x-axis)) compared to (scatterplots, y axis, left) ΔTb
EO with (colours) various LAD and (scatterplots, y axis, right) simplified 

LOD (LOD = 1, planar roofs and walls) with (bottom row) boxplots binned (0.25 K bins) across the baseline ΔTb
EO showing absolute differences across the LAD and 

LOD variations. Boxplots show (box) inter-quartile range – IQR – (whiskers) 5 – 95th percentiles. 
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relative importance of the geometry description, surface temperature 
representation and presence of vegetation. The study demonstrates these 
processes for a mainly clear-sky summer day in central London when 
high-resolution measurements were available. 

For the first time, modelling of effective thermal anisotropy is not 
constrained to idealised descriptions of urban form and temperature. A 
realistic geometry with sub-facet features (e.g. pitched roofs and 3D 
vegetation canopies) is used as a reference standard to assess implica-
tions of using highly idealised urban geometry descriptions, such as 
repeating cube buildings, similar to what may be assumed in operational 
corrections of effective thermal anisotropy. 

The 420 m × 420 m study area is similar to the larger central city 
surroundings (3 km × 3 km around the study area), based on morpho-
metric parameters (e.g. building height, plan area) variability (defined 
here by interquartile range), except for tree cover (17%) that is within 
the 75th – 80th percentile. If similar detailed 3D model information and 
very high-resolution surface temperature data were available for a wider 
range of urban forms, the current simulations and analyses could be 
extended to capture a more representative diversity of intra- and inter- 
city variations in thermal anisotropy. However, such data do not yet 
exist for extensive areas. 

Simulations of satellite, or Earth Observation (EO), views of the 
surface are used to quantify the effective anisotropy, defined as the 
difference in brightness temperature (Tb) between a view direction that 
is off-nadir (oblique) and a nadir (downward) view direction. The sim-
ulations use classified surface temperatures observations, whose allo-
cation includes shadow state obtained from simulations considering 
either (1) known histories, or (2) instantaneous patterns. Although the 
anisotropy “hot spot” is generally broader if shadow history throughout 
the day is accounted for, both have close daytime agreement (MAE =
0.2 K). This allows the conclusion that instantaneous shadow patterns 
are a reasonable simplification when assigning surface temperatures in 
this urban setting in DART. 

With instantaneous shadows as the basis to assign the facet tem-
perature distributions, the role of the level of detail (LOD) of the 
building geometry on anisotropy is analysed based on three cases: 
realistic buildings (LOD2), planar roofs/walls (LOD1) and repeating 
cubes (LOD0). Consistent with earlier studies, anisotropy increases with 
increasing morphology detail. Simulated anisotropy using LOD1 is in 
closer agreement (daytime MAE = 0.16 K) to LOD2 than when using 
LOD0 (daytime MAE = 0.44 K). 

The contribution of each facet type (roof, wall, ground) to the 
effective anisotropy is quantified for the three LOD. Changes in roof 
geometry complexity between LOD2 and LOD1 become apparent but in 
general both LOD lead to similar directional variations in the fraction of 
wall, roof and ground “seen” by the satellite (view fraction). LOD2 roof 
temperatures are generally cooler (on average 5 K cooler around 
midday) because of micro-scale shadowing. This micro-scale shadowing 
cool bias is the same order of magnitude as prior observational analysis. 
LOD2 results have more anisotropy than the flat LOD1 (and LOD0) roofs. 
Daytime directional brightness temperatures for the LOD2 roofs have a 
maximum 3.4 K range (14:00) compared to 1.5 K (0.2 K) for LOD1 
(LOD0) (also at 14:00). The thermal anisotropy for the combined wall 
and ground facets are more consistent between LODs. 

Including vegetation (trees, shrubs taller than 2 m) reduces the 

anisotropy for the daytime hot spot directions by around 0.4–0.6 K. 
Anisotropy is generally insensitive to variation in leaf area density, but 
future work should use the 3D radiative transfer modelling capabilities 
to investigate additional vegetation parameters (sunlit and shaded dis-
tributions, optical properties, leaf angular distributions, tree trunks and 
branches). Overall, vegetation is less important than LOD variation. 

In this study, vegetation (median height = 10.01 m) is generally 
shorter than the buildings (median height = 13.49 m). Where vegetation 
frequently exceeds building heights (e.g. some residential settings) it 
may have greater implications on the effective thermal anisotropy 
because it would affect the roof fraction “seen” by the satellite. 

Surface temperatures are prescribed based on several micrometeo-
rological processes (solar illumination, shadow history, materials). 
Future studies should include broader spatial extents from airborne 
measurements that are spatially and temporally filled with facet-scale 
surface temperatures from energy balance models. Exploring the rela-
tive importance of geometry under different weather and climate con-
ditions requires more observations. For example, the sensitivity of roof 
geometry to sun angle may differ during low winter sun angles. 

This work has implications for how satellite based EO surface tem-
peratures should be interpreted within urban areas and how EO data 
could be used in data assimilation and model evaluation in the future. 
Modelled thermal anisotropy using the easily derived LOD0 data are 
shown to give rapid and reasonable estimates compared to the more 
realistic cases. However, care should be taken using these lower LOD 
urban forms without prior evaluation at higher LOD. Expansion of the 
methods across different geometry and material emissivity configura-
tions could test if the idealised LOD0 cases are applicable globally. There 
is scope for improving the material description of the realistic LOD2 
cases, using increasingly available surface emissivity datasets through 
airborne and high-resolution satellite products. Implications of using 
idealised bulk emissivities can be explored, given highly reflective and 
specular surfaces common in cities (e.g. metals, glass) are expected to 
play a role in LST view angle sensitivity. 
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Appendix A. Properties and description of the landscapes 

To characterize the landscape opaque surfaces (e.g. buildings, roads) a vector-based 3D digital surface model (DSM) consisting of a 3D mesh of 
triangles is used. The vegetation canopy elements (VCE, any vegetation taller than 2 m) are a voxel array with ΔX = ΔY = 1 m and ΔZ = 0.1 m 
resolution. 

The surface temperature and optical properties are resolved across voxels of uniform size in a 3D array at high resolution (ΔX = ΔY = ΔZ = 1 m). 
The spatial resolution of the landscape is the portion of digital surface model (DSM) triangles that occupies the volume of one surface voxel (a “surface 
element”). The voxel array stores the surface temperature distribution and a series of surface properties as a surface component (Table 4). Each surface 
element is assigned three properties: orientation and material (Σ), sun-surface geometry (bidirectional reflectance factor, BRF) and shadow history 
(time in shade, tshd, (units = min)) which are all used to inform the upscaling of observed surface temperatures. The three properties combine to a 
unique surface component i at timestep t resulting in a 3D voxel array of surface components. By using surface elements, surface features such as 
geometry, material, optical and temperature properties can be determined at a flexible spatial resolution, instead of at the triangle scale of the DSM (e. 
g. radiosity models of Emig (2017); Ghandehari et al. (2018)); SOLENE model of Hénon et al. (2012)). 

Optical properties at a wavelength of 11.02 μm are used, corresponding to the centre of MODIS (Moderate Resolution Imaging Spectroradiometer) 
band 31 (10.780–11.280 μm). For grass surfaces in LOD2 geometry, an emissivity based on the mean of all dry grass samples (ε11.02μm = 0.955) in the 
MODIS UCSB (University of California, Santa Barbara) spectral library (Wan et al., 1994; Snyder et al., 1997) is used. As the surface material and 
associated emissivity are not well known for other DSM elements, the mean spectral emissivity (ε11.02μm = 0.93; min = 0.900, max = 0.968, n = 60) 
from all non-metal and non-plastic impervious materials in the SLUM spectral library (Kotthaus et al., 2014) is used. 

The vegetation optical properties are parameterised using a spatially homogeneous turbid representation of leaves with a spherical angular dis-
tribution (Wang et al., 2007; Pisek et al., 2011) within each vegetation voxel. Leaves are given “deciduous leaf” optical properties from the DART 
spectral database (leaf transmissivity = 0.0145, reflectance = 0.0195) with a leaf area density [leaf area within voxel / voxel volume (m2 m− 3)] (Lalic 
and Mihailovic, 2004; Jeanjean et al., 2017). 

The downwelling longwave radiation across the landscape is assigned a predetermined isotropic source of downwelling spectral radiance received 
from a horizontal layer of the atmosphere that intersects the first vertical voxel layer above the landscape features (the bottom of atmosphere, BOA). 
The spectral radiance is determined from broadband longwave observations at the site (Morrison et al., 2020) 

Appendix B. Landscape-wide M21 surface temperature 

A surface temperature (Ts) of surface component i at timestep t [Ts(i, t)] is allocated to a 3D voxel array of surface temperature [Ts(X, Y, Z, i, t)]. An 
additional 3D voxel array that describes the surface components (i(X, Y, Z, t)) is used. Some surface component voxels can be ambiguous as they can 
contain DSM triangles with (e.g.) multiple surface orientations. For example, a voxel at the edge of a roof may contain a DSM triangle with both “roof” 
and “north” wall properties. In these cases, when determining Ts(X, Y, Z, i, t), the mean temperature of all surface components involved is allocated. 

B.1. Shadow history 

The time series of binned bidirectional reflectance factor (BRF) in three-dimensions (BRF(X, Y, Z, t)) is used to estimate the time a surface element 
(Appendix A) has spent in shade (tshd, min). BRF(X, Y, Z, t) is compared to the prior timestep [BRF(X, Y, Z, t – 5 min)]. If a surface element becomes 
shaded at time t, it has spent tshd(X, Y, Z, t) = 5 min in shade. For the timestep prior to this (t – 5 min), the surface element has spent zero minutes in 
shade and has tshd(X, Y, Z, t – 5 min) = 0 min. A surface element that continues to be in shade [i.e. BRF(X, Y, Z, t + 5 min) = -1] has tshd(X, Y, Z, t + 5 
min) = 10 min at the next timestep, etc. 

A surface element can be part sunlit and part shaded, even across multiple timesteps. However, each voxel is reassigned as fully sunlit or fully 
shaded if appropriate based on a 50 min window around each timestep. Otherwise, if a surface element has BRF(X, Y, Z, t) > -1, is sunlit at t – 25 min 
and shaded at t + 25 min, it is assumed the surface element could be partially sunlit. In these cases, the following threshold is used to determine if the 
surface element is more shaded than sunlit, and used to update tshd by: 

tshd(X,Y,Z, t) =
{

0 if BRF(X,Y,Z, t) < [0.75⋅BRF(X,Y,Z, t − 25 min) ]
5 otherwise . (B-1) 

When tshd(X,Y,Z, t) = 0, surface elements are allocated the maximum BRF(X, Y, Z) that occurred up to 5 timesteps prior (i.e. max{BRF(X, Y, Z, t – 
25 min → 0)}) to assign partially shaded surfaces with a fully sunlit status. 

Observations are aggregated based on their classification for the complete landscape surface to give a 3D surface temperature distribution [Ts
3D(X, 

Y, Z, t)]. The surface component i that combines the various surface properties (Table 4) use pixel-level thermal camera derived surface temperatures 
at timestep t (Ts(x, y, i, t) (Morrison et al., 2021) aggregated to give temperatures stratified by surface component [Ts(i, t)] (Fig. B-1). Where a given 
surface component was not observed, Ts(i, t) is gap-filled to ensure a temperature can be allocated to all surface elements. 

Initial per-pixel surface temperature aggregation uses Σ and BRF for each timestep [Ts(Σ, BRF, t)], excluding “mixed” and/or “masked” pixels. As 
there are more Ts(Σ, BRF, tshd, t) combinations than observed, a shaded temperature [Ts(Σ, BRF = -1, t)] is used. 
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Fig. B-1. Surface component temperatures used as input for the three-dimensional surface temperature (Ts
3D) parameterisations with the range (vertical lines) of 

possible sunlit and recently shaded values that are used in the M21 parameterisation (Table 4), according to sun-surface geometry and time in shade and their mean 
(green points), with the ambient or “well shaded” surface temperature (red points) used in M21 and ILU and the ILU sunlit temperature (blue points) for bidirectional 
reflectance factor (BRF) of 1 (i.e. surface temperature representative of horizontal surfaces). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

B.2. Gap-filling surface component temperatures 

As observations do not cover all possible facets of the entire study area (i.e. more surface component permutations exist in 3D than are observed) 
gap-filling is required. With no downward facing surfaces (e.g. underside of balconies) sampled by any camera, ‘all shaded walls’ observations are used 
for this class of per-pixel gap-filling. Further gap-filling details of the observed surface temperature are given in (Morrison et al., 2021). 

Appendix C. Calculation of surface component radiance and view fractions 

The fraction of surface type i seen within an image (fi) impacts directional variation in urban LST. If fi for a nadir viewed urban surface has a plan 
area index of 0.5 (i.e. fi=Roof = 0.5) and the remainder is ground, then fi=Ground = 0.5, (i.e. all seen types equal 1). These values and components will 
change with view angle. 

The simplest method to determine fi for a given view angle (fi(ϕ, θ)) is to sum the number of pixels per surface class i (e.g. Lsurf(x, y, ϕ, θ, i)) and 
calculate a fraction relative to the total image pixels. However, this is inaccurate if an image pixel has surface-leaving radiance contributions from 
more than one surface component: the view fraction can be double-counted. Approaches to address this include: sensor view “sub-patches” 
(Krayenhoff and Voogt, 2016) assuming all components of a “mixed” pixel has the same temperature; and sensitivity tests to a “counted” fi to the 
resolution of surface components derived from simulated RGB renders (Lagouarde et al., 2010). 

Here we adopt a radiative transfer and energy conservation approach to calculation of fi, using DART simulations. DART radiance images are 
calculated per surface component (Li

surf(x, y, ϕ, θ)) and have surface-leaving radiance contribution after all scattering iterations. Whereas, Lsurf (Eq. 3) 
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will always have the combined radiance contribution from all surface components. Li
surf(ϕ, θ) is related to Lsurf(ϕ, θ) by: 

Lsurf
i (ϕ, θ) =

1
npx

∑npx

(x,y)

Lsurf
i (ϕ, θ, x, y) (C-1)  

Lsurf(ϕ, θ) =
∑nimg

i
Lsurf

i (ϕ, θ) (C-2)  

i.e. the mean across all (npx) Li
surf image pixels is Li

surf(ϕ, θ) (Eq. C-1) and the sum of all (nimg) Li
surf images is Lsurf(ϕ, θ) (Eq. C-2). Li

surf pixels without 
surface component i have Li

surf(x, y, ϕ, θ) = 0. Li
surf pixels containing only a fraction of surface component i will have the associated fractional radiance 

contribution, which is more accurate than the aforementioned “simple approach” that resolves pixel-level view fractions. 
A DART simulation for each landscape LOD is run in the thermal domain (11 μm) with a known isothermal temperature across all surfaces (Ts

3D =

300 K). All Lsurf images have radiance B− 1(300 K, λ = 11 μm) = 9.57 W m− 2 sr− 1 μm− 1. With this total radiance contribution known and held constant, 
Li

surf(x, y) is then a fraction of Lsurf(x, y): 

fi(x, y,ϕ, θ) = Lsurf
i (x, y,ϕ, θ)/( Lsurf(x, y,ϕ, θ) = 9.57

). (C-3) 

Across a whole image with npx pixels, the view fraction of a surface component fi(ϕ, θ) is: 

fi(ϕ, θ) =
1

npx

∑npx

(x,y)

fi(x, y,ϕ, θ) (C-4)  

and the sum of n surface component fractions is unity: 
∑n

i
fi(ϕ, θ) = 1 (C-5) 

The post-processing of these DART simulations is done in R using the daRt package (Morrison and Benjamin, 2020). 

Appendix D. Satellite brightness temperature by surface component 

The surface component directional brightness temperature Tb
EO(ϕ, θ, i) considers the radiance contribution from image pixels of surface component 

i only. The DART radiance images Lsurf(x, y, ϕ, θ) are processed to have their pixels indexable by surface component i (Table 4) as Lsurf(x, y, ϕ, θ, i), 
which is first used to determine the image average radiance for a given surface component Lsurf(ϕ, θ, i): 

Lsurf(ϕ, θ, i) =
1
n
∑npx(i)

(x,y)

Lsurf(x, y,ϕ, θ, i). (D-1)  

Here npx(i) is the number of pixels in the image that have a majority radiance contribution from surface component i (fi(x, y, ϕ, θ) > 0.5, Eq. C-3). 
Finally, Tb,i

EO(ϕ, θ) is calculated from the inverse Planck function of Lsurf(ϕ, θ, i) at the simulation wavelength (Eq. 6). Note: Lsurf(x, y, ϕ, θ, i) differs from 
Li

surf(x, y, ϕ, θ) (Appendix C). 

Appendix E. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2023.113579. 
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