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Abstract

Understanding how a physical system responds to external stimuli is fundamental in every
area of science. To this end, the diverse theories of response in statistical physics come
into play in order to predict the change in the average behaviour of a system undergoing
perturbations. The general goal of this thesis is to apply the theory of response into the
modelling and conceptual understanding of Earth’s climate system.

Perturbation theory of operator semigroups shall be employed to derive response for-
mulas in a variety of contexts. Under a stochastic framework, we shall study the effects of
adding external forcing in terms of the unperturbed regime, following the spirit of linear
response theory. Furthermore, the yielding response formulas are shown to decompose
according to the spectral features of the generator of the transfer operator semigroup,
allowing to simplify the expressions.

Finite dimensional representations of transfer operators lead to stochastic matrices
whose properties give useful information about the system up to finite precision. Thus, it
is possible to define a coarse-grained linear response, whose conditions for well-posedness
and computability are investigated. This methodology is applied to an Ornstein-Uhlenbeck
process and the Lorenz 63 atmospheric convection model, whose linear responses are
calculated in agreement with observed simulations of the systems.

Reduced-order equations are derived using operator expansions. The latter provide
non-Markovian closures that preserve the statistical properties of the model in question
and are proved to posses the structure of multilevel stochastic models. Such structure is
also present in the Empirical Model Reduction (EMR), which constructs non-Markovian
models out of partially observed data. This analogy is illustrated in a conceptual climate
model, suggesting a formal link between the response theoretic methodology and the EMR
data-driven protocol.
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Chapter 1

Introduction

The mathematical framework to understand the evolution of planet Earth’s atmosphere and
oceans is rapidly growing towards higher levels of precision. The complexity of planetary
motion in all its vastness and heterogeneity demands new and almost exclusive theoretical
techniques that, in many cases, entail unveiling concepts in mathematics. This thesis
precisely investigates mathematical tools useful to understand the physics of our climate’s
response and modelling. The lines that follow in this chapter will be devoted to introducing
motivating elements arising from climate science and defining the mathematical setting
for what remains of the dissertation.

The Earth’s climate is a forced, dissipative and chaotic complex system. In this sense,
the climate is out of thermodynamic equilibrium due to the inhomogeneous absorption
of solar radiation, whereby latitudes around the Equator are heated more in comparison
with the poles. To a large extent, the resulting global circulation is defined as the system
of winds necessary to reduce temperature gradients. Moreover, while the atmosphere is
heated from below, the oceans are so from above, thus provoking intrinsically different
mechanisms and scales of motion in every component, whose expected state is what we
precisely understand as climate. Consequently, the climate system can be seen as an
imperfect engine able to transform potential energy arising from temperature differences
into kinetic energy in the form of winds and oceanic currents resulting in a wide range of
dynamical processes.

The Earth climate system consists of a large network of non-linearly interacting phe-
nomena. This multiscale character is due to a combination of the following factors: the
nature of the external forcings, the inhomogeneity of the properties of the system’s vari-
ous components, the complexity of the coupling mechanisms between the latter, and the
variety of instabilities, dissipative processes and feedbacks acting at different scales. It is
well-nigh impossible, therefore, given our current scientific knowledge and our available
or even foreseeable technological capabilities, to create a numerical model able to directly
simulate the climate system in all details for all the relevant timescales, which span a range

1



Page 2 2

of over fifteen orders of magnitude [PO92]; [GL20]. In many cases, both the theoretical
understanding of such systems and the formulation of numerical models for simulating
their properties are based on focusing upon a reduced range of large spatial and long
temporal scales of interest, and upon devising an efficient way to capture effectively the
impact of the faster dynamical processes acting predominantly in the neglected smaller
spatial scales [PS08]; [PW09]. Hence, one has to focus on a specific range of scales
through suitably developed, approximate evolution equations that provide the basis for the
numerical modelling. Such equations are derived from the fundamental laws of planetary
motion through systematic asymptotic expansions that are based on imposing an approx-
imate balance between the forces acting on geophysical flows. These balance relations
lead to removing small-scale, fast processes that are assumed to play a minor role at the
scales of interest by filtering out the corresponding waves [HH13]; [Val06].

In climate science, parametrisation schemes have been traditionally formulated in such
a way that one expresses the net impact on the scales of interest all processes occurring
within the unresolved ones via deterministic functions of the resolved variables, as in the
pioneering work on the parametrisation of convective activity by Arakawa and Schubert
[AS74]. Gravity waves, albedo, vegetation, urban areas and cloud microphysics are some
other features that are currently parametrised in weather and climate models [PO92];
[PW09]. At a theoretical level, however, one would still seek for a model that is capable of
explaining the nature our climate’s variability, upon making physically sound assumptions
on the equations of motion. This is the scope taken in [Has76], where climate is assumed
to evolve in an infinitely slower manner compared to weather disturbances, thus allowing
to parametrise the latter in shape of random, noisy fluctuations. This modelling angle is
also justified at a mathematical level where, in the limit of infinite timescale separation,
white noise fluctuations appear out of a multiscale system [PS08]. Climate is, thus,
regarded as a Brownian particle embedded in a pool of small fluctuating molecules that
represent weather, albeit out of thermodynamic equilibrium. This point of view allowed
to, for the first time, explain the observed continuous spectrum of climate’s variability out
of internal processes rather than based on external forcing agents like solar irradiance or
other astronomical phenomena.

A clear-cut separation of timescales is, however, defied by Stommel diagrams which do
not only reveal the already mentioned variability at a huge range of temporal scales, but
also at spatial ones up to the order of approximately 104km [Sto63]. This amounts to having
a vast collection of internal feedbacks that adjusts climate’s response to disturbances, but
that can also transfer energy across scales. The hypothesis of infinite timescale separation
is, thus, purely academic. The intertwined spectrum of variability makes the presence of
delayed effects an inevitable product of neglecting any physical constituent in a dynamic
model. Mathematically, this is a well known consequence of projecting variables onto
reduced-dimension phase spaces where self-intersecting trajectories no longer lead to

2
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periodic motion, i.e. the semigroup property of the flow is lost. Consequently, the
earlier consideration of climate being a “non-equilibrium Brownian particle” is no longer
justified, unless the friction term is let to have memory on the past states. In this sense,
the generalised Langevin equation (GLE) describes the evolution of Brownian particles
embedded in a thermal reservoir, and consists of a stochastic integro-differential equation
for the momentum variable containing the integral of a memory kernel and random forcing
[Zwa01]; [Pav14].

Efforts should, therefore, be invested in constructing parametrisations with suitable
memory kernels in addition to the stochastic forcing. To this end, the theories of statistical
physics come to our aid in finding simplified equations that (a), describe the time evolution
in reduced phase spaces and (b), incorporate the statistical responses due to coupling
physical processes. While item (a) was briefly mentioned in the previous paragraph and
stems from the classical theory of Langevin particles [Zwa61], item (b) aligns with more
recent advances on the mathematical foundations of modern response theory [WL12].
When a system is forced with another, response theory provides parametrised equations that
model the variables of interest without making reference to the coupled steady state, hence
providing explicit stochastic and memory corrections. The price to pay is that the accuracy
is weighted by the coupling strength between the processes: strong couplings lead to less
accurate parametrisations. On the other hand, the derivation does not invoke timescale
separations, clearly in line with the climatological phenomenology. On a practical note,
one can treat the subgrid processes as the forcing element of the large scale circulation
[VL18a]. For instance, one can regard the upper layers of the atmosphere as a subgrid
forcing to the lower counterpart and oceans, while still preserving memory effects [DV17].

More recently, it has been recognised also on empirical grounds, that parametrisations
should involve stochastic and non-Markovian components [Fra+15]; [PW09]. Indeed, the
availability of data brings the opportunity of developing models that, while constructed out
of a partially observed system, it allows to emulate its statistical behaviour. Along these
lines of thought, one would aim at finding a data-driven approximation of the ultimate
theoretical target of the GLE. Successive regressions of empirically obtained tendencies
allow to write explicit stochastic equations with general time-correlation properties, albeit
without memory in the GLE sense [Wil05]. Extending phase space, on the other hand, is a
straightforward manner of incorporating memory, yielding an empirical model reduction
(EMR) of the problem’s dimensionality [KKG05]. In fact, the EMR procedure resem-
bles the Markovian representation of the GLE and, hence, it is regarded as data-driven
approximation of such equation [KCG15]. Thus justifies the success of EMR in capturing
the multimodality and variability spectra out of observational input. Further along the
data-driven methodologies, machine learning techniques have been proposed as the next
frontier of parametrisations, e.g. [Gen+18]; [WDC20], able to deliver a new generation
of Earth system models [Sch+17]; see, though, the caveats discussed by [HV18].

3
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Disentangling free from forced variability is at the core of climate sciences. We have so
far briefly mentioned how internal processes are likely to explain the spectrum of motion,
although forced variability cannot be neglected. Indeed, at an astronomical level, the solar
radiation, Earth’s eccentricity and translation are outside factors that heavily condition our
planet’s climate. On the opposite end, endogenous or terrestrial forcings can be largely
gathered as those affecting the composition of Earth’s atmosphere and can have natural or
anthropogenic origin. Volcanic eruptions, for instance, entail a dramatic input of aerosols
into the atmosphere in the form of ash together with sudden releases of trapped CO2.
More importantly, variations in the land use and greenhouse gas emissions due to human
activity are yielding changes in Earth’s climate, which is projected to experience a global
increase of up to +2◦C average surface temperature by 2050 relative to the end of the
nineteenth century [IPC14]; see also the latest IPCC report [IPC21]. Climate sensitivity
is, hence, understood as a measure of robustness of climatic variables in the presence of
a external stimulus. One way of estimating the latter is by resorting to global circulation
models (GCMs) that can be solved parallelly to obtain a projection of climate into the
future with certain probability. This is what it is, in essence, done in the recent IPCC
reports. However, the coarse resolution of GCMs leads to a lack of internal variability that
smudges out non-linear processes that can trigger drastic changes on averaged climatic
quantities [Ghi15].

Climate’s sensitivity to external forcings has to, therefore, be approached by using raw
numerical simulations of comprehensive GCMs, but also tackled at a fundamental level
where physical and mathematical tools are useful to explain the nature of smooth, sudden
or rough changes in the climate system. Investigations of basic principles for climate’s
response follow the need of a hierarchy of models which can enhance our understanding of
what we mean by changing climate [Hel05]. While globally averaged surface temperature
suggests our moving to a new climatological regime due to increasing carbon dioxide
emissions, other localised phenomena are susceptible of experimenting abrupt changes
as a product of external stimuli. For example, it has been noted that the sea surface
temperature (SST) anomaly due to the El Niño Southern Oscillation possesses statistics—
spread and skewness of the distribution, to be exact— that depend roughly on the travel
time of equatorial waves [Che+14]. This means that there are intervals in which the
moments of the SST vary smoothly with the tuning of equatorial wave travel time, but
others where changes are wildly saw-toothed. Not less interestingly, such a behaviour was
associated with a failure of the system’s linear response as a product of small spectral
gaps of empirically learned Markov matrices. This link comes from the modern spectral
theory of dynamical systems which will be visited in this thesis.

Exploring parameter space to understand different forcing scenarios is the straightfor-
ward way of assessing future climates, although this methodology entails several difficul-
ties. First, long and computationally expensive trajectories need to be integrated (for each
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value of the forcing parameter) in order to avoid pathological statistics, like multivalued,
regime dependent means [LAH00]. Adjoint methods are also examined in such work,
where it is concluded that these do not serve to calculate statistical sensitivities of climate
models. The reason being that adjoint techniques heavily depend on initial conditions and
long chaotic trajectories provoke diverging estimates of statistical sensitivities, although
recent work along these lines has to be mentioned [Wan13]; [NW17]. Hence, one is
obliged to find ways of predicting the robustness of a system to perturbations. In this
regard, fluctuation-dissipation theorems of statistical physics grant us a means of relating
the response of a system with its natural fluctuations in the shape of correlation functions.
Such a theoretical framework gives a recipe where, by examining the present climatology,
one can predict its response to a prescribed forcing without examining the forced sce-
nario [Lei75]. The validity of this theorem, though, is restricted to conservative systems
and those which possess smooth statistics, possibly due to the presence of a stochastic
component that spreads the noise to all model variables.

Recent advances regarding the fluctuation-dissipation theorem clarified that such ap-
proach is not so restrictive after all, even for dissipative systems like the climate, if one
imposes conditions on the applied forces and the underlying dynamics are sufficiently
chaotic [Rue09]; [GC95]. A major consequence is that linear response theory can exten-
sively be exploited with great flexibility since it allows to compute statistical response out
of empirically learned Green functions of the unperturbed model [LV07]; [LS11], and it
gives a (mathematically) natural definition of climate sensitivity [RLL16]. Moreover, such
theory disentangles forcing from time-modulation and, consequently, the methodology can
be applied in parallel for a variety of scenarios. More concretely, this approach has been
applied to a fully coupled ocean-atmosphere GCM for instantaneous and progressive CO2

doubling to predict the increase of globally averaged near-surface temperatures but also
the intensification of the Antarctic Circumpolar Current, which certainly is a large-scale,
yet more localised phenomenon [LLR20].

Response theories of any sort, to which the fluctuation-dissipation theorem belongs,
cannot predict statistical changes that result from a bifurcation point; where these refer
to any substantial and non-smooth change in the dynamical behaviour of a physical
system. These are, in fact, attributed to mathematically rigorous changes in a model’s
trajectories’ stability and topological features [ER85]; [Ash+12]. In physical terms, the
failure of response theories in this situation is expected since, in the language of the already
mentioned work [Lei75], climate’s response is determined by the free fluctuations which,
by definition, cannot predict radically different unexplored climatological regimes. As
a matter of fact, bifurcations in climate science are, to some extent, considered as non-
equilibrium phase transitions that can lead to drastic changes in the atmospheric conditions
incompatible with life. Far from being academic lucubrations, such critical transitions do
occur, for instance, as a result of the well-established Earth’s multistability. Indeed, the
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climate system supports two stable states, the Warm state, which corresponds to the one
we currently live in and the Snowball state, referring to a glaciated planet with an average
surface temperatures of 200 to 220K [Ghi76]; [Mar+21]. These stable states alternate
with each other as a result of fluctuations in solar radiation intake, mainly affected by
the ice-albedo feedback [Bud69]. One can view the Warm and Snowball states as the
two competing ends of a tug-of-war where middle-point or Melancholia state [LB17]
separates the two basins of attraction, similarly to Brownian particles in a double well
potential [LB19]. One is, therefore, inclined to device early warning signals for critical
transitions. The failure of linear response is an indicator at an abstract level, although
this can materialise in other computable quantities, like the observed slowing down of the
decay of correlations in the Warm-to-Snowball transitions [Tan+18]. Along these lines,
although in broader generality, the divergence of dynamic susceptibility function [ZLP21]
or the enhancement of Lagrangian mixing [NPGR21] are recent features observed in
systems undergoing a critical transition.

1.1 Dynamical Systems Perspective

Some fluid mechanical systems display periodic patterns, while many others behave in
a chaotic, haphazard way. It is now well known that such an irregular behaviour is not
due to inaccurate computations or long transient aperiodicity, but it can be an intrinsic
property of the system especially those leading to turbulent fluid flows [Lor84]. A defining
characteristic in this respect refers to the sensitive dependence on initial conditions where
nearby trajectories on phase space separate substantially from each other in finite time
[Lor63]; [ER85]. This is believed to be the agent responsible for preventing accurate
weather predictions beyond ten days and the justification of why climate refers to the
expected state of Earth’s components, regardless of its initial configuration. The dynamical
system’s perspective focuses on the long-term dynamics of the Earth system and aims at
determining the probability of encountering its constituents at a certain state. In this
regard, it is less important whether the model under study is deterministic or stochastic
since, loosely speaking, they will be indistinguishable from the viewpoint of averages and
probabilities. In the paragraphs that follow in this introduction, we shall introduce and
motivate the key concepts in the ergodic theory of dynamical systems, that will be crucial
to develop the main contents of the present dissertation.

In general, the Navier-Stokes equation for the conservation of momentum constitutes
the base for any weather or climate model. While the well-posedness of its solutions is
an open problem, the two-dimensional version has been shown to, asymptotically, display
its dynamics around a finite dimensional attractor, whose fractal dimension is inversely
proportional to the kinematic viscosity [Rob01]. Hence, systems of deterministic ordinary
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differential equations may be used to represent forced dissipative hydrodynamic flows not
only out of procedural reasons, but also out of a fundamental result. Dynamical systems
can be defined as the solutions of ordinary differential equations (ODEs) on smooth
manifolds X ⊆ Rd of integer dimension d [KH95]; [Tes12]. In our context, X will
be equipped with the Euclidean topology so the usual notions of continuity, opennes or
compactness can be invoked. Specifically, let x : R −→ X ⊆ Rd satisfy the following
ODE:

ẋ = F(x), (1.1)

where F : X −→ X is a continuously differentiable and globally Lipschitz vector field. If
an initial condition x0 in X is prescribed to Eq. (1.1), so that x(0) = x0, then, by virtue of
classical existence results, x is the only function satisfying Eq. (1.1) with the said initial
condition. Moreover, such solution x is well defined for every time in R, since we are
taking a sufficiently regular vector field F. Then, the dynamical system or flow {ϕt}t∈R

associated with the ODE (1.1) is defined as follows for each t in R:

ϕt : X ⊆ Rd −→ X
x0 7−→ x(t),

(1.2)

where x0 in X is the initial condition for which x is the unique solution to Eq. (1.1).
The regularity of ϕt in time and space variables is inherited from that of x. The physical
interpretation of the flow ϕt at time t, is the function that maps initial conditions to their
respective location on phase space after t time units have passed. Notice that we are
allowing for negative values of time, which refer to the inverse function, whose existence
is guaranteed because for each t > 0, ϕt is a diffeomorphism. Consequently, the flow
{ϕt}t∈R enjoys the group property with respect to time.

Physical experiments with dynamical systems exhibit transient behaviour before enter-
ing an asymptotic regime in an attractor which determines the dynamics in the long term
[ER85]; [Tes12]. In this sense, a global attractor is the maximal compact invariant set,
such that points in any bounded set of X get arbitrarily close to it [Rob01]. The geometry
of the attractor is fundamental in the understanding of the nature of the dynamics. For in-
stance, flow trajectories determined by uniformly hyperbolic attractors [KH95] experience
an average stretching and folding that automatically confers the already mentioned sensi-
tive dependence to initial conditions. However, in order to tackle climatological questions,
trajectory-wise approaches to the investigation of dynamical systems have to be replaced
by a statistical interpretation. Along these lines, the initial condition mentioned earlier is
substituted by ensembles or distributions that are evolved in time under the action of the
dynamical system {ϕt}t∈R associated to Eq. (1.1). Consequently we require the notion of
measurability. Let A denote the Borel σ-algebra on X . It follows from the properties of
the flow {ϕt}t∈R, and ultimately from the regularity of F, that ϕt is measurable for every t
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in R and its action on measurable sets is defined element-wise. A probability measure µ
is said to be invariant, relative to the dynamical system {ϕt}t∈R if the following condition
is satisfied:

µ
(
ϕ−t (A)

)
= µ (A) for all A ∈ A. (1.3)

Notice that the composition of the measure with the flow at time −t is the so-called
pushforward formula which, in general, transfers the probability measure µ to µ ◦ f−1 for
a given measurable, not necessarily invertible function f acting on X .

The invariant measure is an object of crucial importance in the study of dynamical
systems, since depending on its nature it can tell us the probability of finding the state
of trajectories on phase space when the initial condition is not known. Heuristically, if a
typical, long trajectory is able to explore the regions of X where the invariant measure µ
is non-zero, then we expect that it will serve as a gauge for the average behaviour of the
system in the long term. In fact, this intuition can formally be gathered in terms of ergodic
measures. An invariant measure µ is said to be ergodic if for any measurable set A in A
such that ϕ−t(A) = A for any t in R, µ(A) = 0 or µ(X \ A) = 0. For ergodic measures,
we have the following theorem:

Theorem 1.1.1 (Birkhoff). Let {ϕt}t∈R be a dynamical system acting on the measure
space (X ,A, µ) and let µ be an ergodic invariant measure relative to {ϕt}t∈R. Then, the
following limit holds

lim
T →∞

1
T

∫ T

0
Ψ
(
ϕt(x)

)
dt =

∫
X

Ψ(x)µ(dx), (1.4)

for any integrable function Ψ and µ-almost every x in X .

This equality states the conditions for time averages to be interchangeable with phase
integrals, and the assumption of its applicability to physical systems constitutes one of
the cornerstones of statistical mechanics, namely, the ergodic hypothesis [KG14]. The
function Ψ in Theorem 1.1.1 represents a physically measurable function of state or
observable. Thus, evaluating Ψ after ϕt, has to be seen as successive snapshots of
the dynamics filtered through a suitable observable [KG14]. The almost-everywhere
formulation of Birkhoff’s theorem is restrictive if the invariant measure of the system
is singular with respect to Lebesgue. In this case, it is operationally impossible to
sample a dynamical system from a set of Lebesgue-volume equal to zero. However, some
systems do seem do posses agreeing statistics for randomly initialised initial conditions.
This suggests the possibility of extending Birkhoff-type averages to initial conditions not
necessarily sampled from the invariant measure which, in most cases, is not known. The
sort of measures where Theorem 1.1.1 can be concluded for Lebesgue-almost every x in
X are called physical measures [ER85]; [GC95].

8
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In general, ergodicity allows to establish Césaro-convergence results, where limits are
taken in the mean sense [Hal17]. When such limits hold also for non-averaged quantities,
the dynamical system in question possesses the property of mixing [LM94]; [Hal17].
Formally a dynamical system {ϕt}t∈R is mixing if the limit

lim
t→∞

µ
(
ϕt(A) ∩B

)
= µ(A)µ(B), (1.5)

holds for any pair of A-measurable sets A and B. It can be shown that mixing implies
ergodicity and, in this respect, the former is stronger than the latter. Moreover, one
of the characteristic properties of mixing systems is that correlation functions decay in
time [LM94]; [Rue86]. Correlations are defined between two observed quantities and
measure their statistical relationship over time, as well as indicating the loss of memory
of a dynamical system with respect to its initial state. Formally, the correlation function
between two observable functions Ψ and Φ at time t is defined as:

CΨ,Φ(t) =
∫

X
Ψ(x)Φ(x(t))µ(dx) −

∫
X

Ψ(x)µ(dx)
∫

X
Φ(x)µ(dx). (1.6)

Even if our setting is that of chaotic dynamical systems, the presence of periodic behaviour
can be found when correlation functions do not decay with time. If they decay sufficiently
fast so that the Wiener-Khinchin theorem can be invoked, regarding Eq. (1.6) in Fourier
domain with Ψ = Φ gives the power spectra of the state-function Ψ, capable of indicating
the periodic or quasiperiodic behaviour of the system [ER85]. More importantly, one is
able to extract the peaked dominant frequencies which might stand out in a broadband
spectrum typical of noisy systems.

1.1.1 Stochastic Systems

By and large, the trajectory-based study of dynamical systems should be replaced by the
statistical point of view as a result of not having full knowledge of the initial conditions. If
one furthermore adds uncertainty into the driving fields, one is lead to stochastic differential
equations (SDEs) whereby noise acts as an intrinsic part of the motion on phase space. This
procedure has now become fundamental in the Earth science community where, as noted
at the beginning of this Introduction, despite there not being a clear-cut scales separation,
climate variability can be framed as the overall response to short-term, weather-type
disturbances or arising from subgrid processes [PW09].

Noise is not only added on the basis of model uncertainty or parametrisation purposes,
but it is also understood from physical principles. Indeed, Brownian particles embedded in
a fluid (or heat bath) experience frictional and fluctuating forces arising from the interaction
with the environment that give rise to the Langevin stochastic equations. Those forces are,
furthermore, related to each other by the first form of the fluctuation-dissipation theorem
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we mentioned earlier in the Introduction, which relates the fluctuating and frictional terms
[Ris89]; [Zwa01]. In this sense, fluctuations of Brownian particles are understood as
sporadic collisions which, in spite of being deterministic, on average they are exactly
represented by SDEs.

We consider a d-dimensional dynamical system induced by an Itô SDE of the following
form:

ẋ(t) = F(x(t))dt+ Σ(x(t))dWt, (1.7)

where the drift component is determined by the the vector field F : X ⊆ Rd −→ Rd

and the stochastic part of Eq. (1.7) consists of the d × d covariance matrix ΣΣ⊤ and the
d-dimensional Wiener process Wt. We shall assume therefore that x(t) lives in X for
every non-negative value of t. Since Eq. (1.7) allows for non-linear drift vector fields
and covariance matrices, we shall require a global Lipschitz and growth condition that
ensures the existence of a solution globally in time that continuously depends on the
initial condition x(0) = x0 in X 1. We highlight that the unbounded character of the
noise can force X = Rd, although for generality we shall stick to X for the phase space
notation. Notice that while the flow generated by Eq. (1.1) consists of diffeomorphisms,
the stochastic flow emanating from Eq. (1.7) is, in general, not reversible and, hence,
not univocally defined for negative times. In this sense, the addition of noise naturally
introduces a form of diffusion [Pav14].

Invariant measures in stochastic systems have to be understood in the sense of Birkhoff
averages like that in Eq. (1.1.1), where, now the system is stochastic [DZ96]. Related
concepts like ergodicity and mixing are analogous extensions from deterministic flows
[Tan+20]. Additionally, the introduction of noise, has a smoothing effect in the sense that
it forces the trajectories to explore wider regions of phase space and long term evolution
of volumes are likely to posses non-vanishing Lebesgue measure. However, since we
have not made any assumptions on the covariance matrix ΣΣ⊤, we cannot guarantee
smoothness of the transition probabilities between states. The idea is that if noise spreads
out through all the variables of the system, chances are that the transition probabilities
between states are determined by smooth probability densities. To this end, Hörmander’s
condition is invoked so that at any point of phase space X , the tangent linear can be
recovered by the the directions generated by second order differential operator in Eq. (1.7)
stemming from the noise. Hence, the smoothness and boundedness of the coefficients of
Eq. (1.7) together with Hörmander’s condition [Hör67] ensures the existence of smooth
transition probabilities solving Eq. (2.16) and the invariant measures µ possesses a density
representation with respect to Lebesgue measure [Pav14, Chapter 6].

1For well posedness and stability results for SDEs, the reader is referred to [Gar09] for a quick intro-
duction and [DZ96] for more general results.
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1.1.2 Response Theory

When forcing is introduced in a system, its behaviour will automatically change and
evolve towards a new regime or statistical steady state. This amounts to noting that
applying extraneous fields into Eq. (1.1) or Eq. (1.7), will result in a change of the
system’s climatology or invariant measure; see Eq. (1.3). When one cannot afford to
explore all the possible outputs of a system due to applied forces, one would benefit from
having a formula capable of describing the induced statistical changes in terms of the
unperturbed regime; hence, gaining predictive skill.

If the vector field on the RHS of Eqs. (1.1) and (1.7), is heuristically perturbed in the
form of F 7→ F + εG, for some vector field G : X −→ X and a small real number ε,
response theory in a technical sense aims at determining the mathematical properties of
the following map:

ε 7−→
∫

X
Ψ(x)µε(dx), (1.8)

for some generic observable Ψ and invariant measure µε. In particular, one is interested
in understanding in what sense the response map (1.8) could be differentiable so that
statistical averages would change smoothly with respect to the parameter ε. Contrarily,
the lack of smoothness implies a rough dependence of model statistics and it could,
furthermore, be attributed to the presence of a bifurcation point provoking drastic changes
in the systems attractor [Bal14].

The first result on response theory was already pointed out earlier by making reference
to the fluctuation-dissipation theorem [Kub66], by which the derivative of the response
map (1.8) can be recast as the integral of a correlation function in the unperturbed regime;
see [Kub57] for the non-rigorous, yet physically meaningful derivation in the context of
equilibrium systems subject to time-dependent external fields. Ever since, linear response
theory became a pillar or modern statistical physics; see [Mar+08] for a review. With
the extension to non-equilibrium systems, correlation formulas no longer explained the
system’s response, in view that invariant measure µε lacks the regularity that would make
the response map differentiable in the usual sense. It is, nevertheless, useful to find a
formal derivative of the response map with respect to epsilon [Rue98]; [Rue09]:

d
dε

∫
X

Ψ(x)µε(dx)|ε=0 =
∫ ∞

0

∫
X

G(x) · ∇ (Ψ(x(t)))µ(dx)dt, (1.9)

although this formula is not rigorously proven to converge in general, unless we impose
further stability conditions on attractor that would make its topology and the supported
invariant measure more robust to changes in ϵ.

In order to achieve convergence, of Eq. (1.9) the idea is that the external field within
the integral on the RHS of Eq. (1.9) is decomposed in into elements that carry different
dynamical information, and this can only be attained by imposing a finer geometric
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structure to phase space. Indeed, if the underlying attractor is uniformly hyperbolic
[KH95], the tangent map Tx at each point x has a continuous invariant splitting Tx =
Es(x) ⊕ Ec(x) ⊕ Eu(x) with constants χ, λ > 0 such that

∥∥∥Txϕ
tu
∥∥∥ ≤ χe−λt∥u∥; (1.10a)∥∥∥Txϕ

−tv
∥∥∥ ≤ χe−λt∥v∥, (1.10b)

for every u inEs and v inEu, and, additionally,Ec(x) is one-dimensional. The norm ∥ ·∥
comes from a suitably defined Riemannian metric on X [Rue97]; [Bal14]. While uniformly
hyperbolic systems posses sensitive dependence with respect to initial conditions, they are
structurally stable conferring robustness to perturbations in a topological sense [KH95].
Whether such structural stability translated into a statistical sense was not ascertained
until the 90s when D. Ruelle, found that the smoothness of the invariant measure along the
unstable manifold ensured the convergence of the linear response formula (1.9) [Rue97].
Indeed, having the splitting (1.10) at hand, one can decompose the perturbation vector
field so that G = Gs + Gc + Gu, where, in fact, Gc = fF for some scalar function of
X , f . Then, the contributions from the stable and unstable directions are disentangled
[Rue98]; [Rue09]:

d
dε

∫
X

Ψ(x)µε(dx)|ε=0 =
∫ ∞

0

∫
X

[(
Txϕ

t
)

Gs(x)
]

· ∇Ψ(x)µ(dx)dt (1.11a)

+
∫ ∞

0

∫
X

[−F · ∇f(x)] Ψ
(
ϕt(x)

)
µ(dx)dt (1.11b)

+
∫ ∞

0

∫
X

[−∇u · Gu(x)] Ψ
(
ϕt(x)

)
µ(dx)dt, (1.11c)

where ∇u· indicates the divergence on the unstable directions [Rue97]. The convergence
of the LHS of Eq. (1.11a) now depends on how quickly t 7→ (Txϕ

t) Gs(x) vanishes and
the correlation functions of Eqs. (1.11b) and (1.11c) decay at infinity. Consequently,
the fluctuation-dissipation theorem is recovered and correlation functions survive non-
equilibrium backgrounds, albeit in a different form. It will be discussed later in this thesis
that the poles of their Fourier transforms constitute a building block for the establishment
of linear response— in the sense of Eq. (1.11)— but, more importantly, they are related
to the physically relevant measurable quantities of correlation spectra [Rue86]; [BL07].

Positive results in achieving linear response beyond uniform hyperbolicity exist [Dol04],
although it seems that the physical applicability of formulas like Eq. (1.9) can reach as far
as analytically intractable flows, as with the applications to climate sensitivity [RLL16] and
change [LLR20], both cases in coupled atmosphere-ocean models. In order to reconcile
theory and observations, one is obliged to adopt the chaotic hypothesis [GC95], by which
dynamics filtered through generic observables behave, at a practical level, like uniformly
hyperbolic systems. This way, Boltzmann’s ergodic hypothesis is refined by further
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requiring a degree of structural stability both in a topological and metric sense. Under
this framework, numerous works have managed to provide numerical evidence of linear
response for non-uniformly hyperbolic systems [Rei02]; [LS11]; [WG19], to name a few.

1.2 This Thesis

In this thesis we shall apply the response theory for general dynamical systems to the
analysis of climate response in a variety of contexts. Perturbations are here studied
first, as an externally applied field and secondly, as the product of coupling two physical
processes together. These two formats are in line with Earth’s climate phenomenology
depicted earlier in this Introduction, where it was clarified that any model should account
for forced variability due to exogenous agents as well as internal variability due to non-
linear interactions between multiple feedbacks. A probabilistic and statistical treatment of
dynamical systems will be taken, delving into the analytical derivations but also aiming at
identifying when the elementary results of response theory can be applied to conceptual
climate models.

In Section 1.1, we explained that climatologies of dynamical models boil down to
the determination of the invariant measure which is defined equally for deterministic and
stochastic systems. In this sense, the evolution of probability measures in deterministic
systems is the departing point, for which the Liouville equation for conservation of proba-
bility provides a consistent framework of study. Such equation can be understood in terms
of operator semigroup theory [EN00]; [Paz12], as will be detailed in Chapter 2. We, fur-
thermore, claim alongside many works, that the perturbation theory of operators is of great
use to derive linear response relations. The modern spectral theory of dynamical systems
suggest that the functional properties of the Liouville equation and its stochastic Fokker-
Planck analogue provide valuable statistical information of the underlying system [Bal00];
[Tan+20]. This, together with the classical perturbation theory for linear operators— see,
e.g., [Kat66]— will serve to find analytical formulas of response which translate to phys-
ical properties of the underlying system. It will be seen how the linear response formula
Eq. (1.9) is recast into an operator equation which, in addition, decomposes into eigen-
pairs when the associated Fokker-Planck equation generates a quasi-compact semigroup
[EN00]. The operator formulation will allow to treat time-dependent forcings allowing to
recover the fluctuation-dissipation theorem, as well as the Green function which provide
the leading order changes in the statistics. Furthermore, we shall systematically calculate
the response due to stochastic perturbations in a seemingly equal way, establishing that
the associated Green function formulation— see [Luc12]— can only be employed when
noise is interpreted in the Stratonovich sense. The general aim of Chapter 2 is, therefore,
twofold. First, we establish the functional analytical basis for what will follow in this
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thesis and, second, we hope to convince the reader that operator semigroup point of view
is valuable for the study of response in generic dynamical systems.

Since the Liouville equation provides a consistent framework for the treatment of
probabilities in dynamical systems, it makes the associated transfer operator theoretically
instrumental when dealing with the uncertainty in meteorological [Ehr94] and climatolog-
ical forecasts [Has76]2. However, the high number of degrees of freedom of a truncated
atmospheric model translates into, practically, intractable dimensionalities under the trans-
fer operator scope. Hence, we require efficient ways of approximating the transfer operator
that go beyond discretising the Liouville equation. This problem is tackled in Chapter 3,
where we project the transfer operator onto an amenable basis of functions, following the
so-called Ulam’s method [Ula64]; for comprehensive surveys, see [Fro98]; [Fro01]. The
resulting Markov chain approximations recasts the problem of response into the pertur-
bation theory of stochastic matrices, as initiated in [Luc16] and extended in [ADF18];
[SGL20]. At such level, response formulas will be derived, providing finite-dimensional
analogues of the linear response of Eq. (1.8) and other dynamical quantities of interest.
In this setting, we shall also derive the numerical algebraic conditions for constructing
the linear response, giving stability and conditioning results for general stochastic matri-
ces. An application of this methodology is done to the celebrated Lorenz 63 atmospheric
convection conceptual model [Lor63], which will be perturbed by external fields. By
working on phase space and sampling the unforced statistics, the perturbation theory for
finite Markov chains will allow us to compute the linear response and sensitivities of
such system, despite it possessing a singularly hyperbolic attractor [Tuc02], hence being
ill-posed in the sense of Ruelle’s response theory.

In Chapter 4 we address the question of how response theory allows to treat weakly
coupled systems following [SG+21]. When two physical processes interact in a weak
way, one can regard each of them as a perturbation of the other. Along these lines,
response theory gives the model that captures the leading order statistical behaviour of the
model of interest, hence parametrising the remaining one [WL12]. More concretely, the
yielding parametrised Wouters-Lucarini (WL) equation provides stochastic and memory
corrections that account for the neglected process. This point of view is a natural device
to identify the non-Markovian effects that one gets when no strict separation of timescales
is present [VL18a]. The WL equation thus provides a method to construct a model that
captures the coupled statistics without necessarily sampling the full system. Such response
theoretic model will be here derived from expansions of the Liouville equation, in lines
with the previous chapters and extending the departing work of [WL13]. It will be noted,
that having a spectral decomposition of the Liouville equation— in the spirit of Chaper 2—
allows to recast the WL equation into an extended Markovian model with the structure of

2In [Has76], the author takes, rather, the stochastic extension of the Liouville equation, namely, the
Fokker-Planck equation.
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an Multilevel Stochastic Model (MSM) [KCG15], where the memory effects are explained
by a hierarchy of linearly driven variables which arise from the spectral decomposition of
the response due to the coupling. Interestingly, in the theory of the already cited empirical
model reduction (EMR) [KKG05], multilevel regressions from partially observed data
provide reduced-order equations with the MSM structure [KCG15]. In views of this
analogy between the WL equation and the EMR protocol, we shall draw a conceptual link
between them, further claiming that the convergence of the data-driven methodology is
strongly linked to the spectral properties of the underlying Liouville operators.

Finally, the results of chapters 2, 3 and 4 will be broadly summarised in Chapter 5,
along with the main conclusions. Although the theory of response is the backbone of
the present dissertation, its investigation in the various contexts here exposed required the
diversion onto some general branching problems that have been partially addressed. Some
instances are: the spectral theory of stochastic matrices, the loss of semigroup property of
projected transfer operators and the data-driven construction of non-Markovian models.
Thus, in Chapter 5 we hope to give an outlook of the applicability, limitations and future
research along the lines of this thesis.

Appendices are included in order to avoid the reader diverting from the main topics.
They contain supporting calculations, but also supplementary content. In Appendix A
an homogeneous equation for the linear response is calculated, revisiting the work of
[Ken71]. As an extension of Chapter 3, Appendix B is devoted to calculating the leading
order changes in the stationary vector of a stochastic matrix subject to atomic perturbations
that only affect one state. For completeness, Appendix C applies Itô convolutions to
solve a system of equations coupled to a linear stochastic differential equation. Finally,
the aforementioned EMR data-driven protocol is applied in Appendix D to the coupled
Lorenz 84 [Lor84] and Lorenz 63 [Lor63] systems to asses the problem of convergence
under changes in (i), coupling strength and, (ii) the timescale separation.

1.2.1 Contributions

The contributions of this thesis are concisely listed below together with their relative
publications:

Chapter 2. A decomposition of the Green function associated with a stochastic differen-
tial equation is presented in terms of the spectrum of quasi-compact Fokker-Planck
semigroups. Such is the main content of Section 2.3. Applied fields are later
generalised to be stochastically modulated in Section 2.3.1, and it is shown that
the Green function formalism is equally employed although it implicitly assumes a
Stratonovich interpretation of the noise. This is proved in Proposition 2.3.1. In this
context, the linear response of correlation functions and power spectra is deduced
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using the resolvent perturbation expansion, thus extending the study of [LW17].
These results are yet to be reported in an article.

Chapter 3. The suitability of stochastic matrices for calculating the linear response is in-
vestigated at a linear-algebraic level. Results regarding well-posedness, conditioning
and stability are given in the propositions of Section 3.2.1. As an application of
this theory, two low-dimensional non-equilibrium systems are investigated. Finite
differences are then employed as a model for the probability fluxes entailed by pre-
scribed perturbations and shown to be valid to predict the linear response of a given
state function, even for the dissipative Lorenz 63 system. The main results in this
chapter are gathered in [SGL20].

Chapter 4. In this chapter, systems of coupled equations are treated in a perturbative
way. The operator relations of Chapter 2 are used to derive the WL equation—
see [WL12]—, which captures the response of a system forced by another, hence
extending the preliminary formulas of [WL13] to more general coupling laws.
Furthermore, the memory kernel of the WL equation is spectrally decomposed (cf.
Section 2.3), allowing to Markovianise said equation in a hierarchy of successively
fast variables arranged in a multilevel stochastic model; see Theorem 4.2.1. An
analogy is presented with the EMR methodology is drawn and suggested that its
convergence depends on the spectral structure of the underlying Fokker-Planck
operator, as indicated by the theory. Both techniques, the WL equation and the
EMR are then applied to a conceptual climate model found in, e.g., [KCG15] to
analyse their numerical performance. These results can be found in [SG+21].
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Chapter 2

Operator Semigroups and Response

The realisation that a general system of ODEs can be regarded as a linear operator acting
on function spaces dates back to the early 1930s when B. O. Koopman proved that
change in state functions (observables) obeyed a unitary transformation in Hamiltonian
systems [Koo31]. More importantly, it was then found that the spectral properties of
such transformations could be linked to mechanical features of the system in question.
The work with J. von Neumann extended the study of such transformations and linked
their spectrum to the presence of chaotic motion [KN32]. Specifically, the existence of a
continuous spectrum revealed that “the motion of any setM of Ω becomes more and more
spread out into an amorphous, everywhere-dense chaos”. Which heavily reminds of the
concepts of ergodicity and mixing introduced in Section 1.1.

A probabilistic interpretation of chaotic flows, on the other hand, focuses on the
evolution of density functions on phase space and, to this regard, the primary result is
due to Liouville whose theorem states that conservative systems preserve the Lebesgue
measure indefinitely; volumes are not contracted over time [KG14]. Such theorem is based
on the continuity equation for the conservation of probability, whose solution generates
the so-called transfer operator semigroup, to be defined precisely later. The preservation
of probability and its non-negativity makes the transfer operator enjoy the properties of
positive operators which inherit the consequences of the operator version of the Perron-
Frobenius theorem [LM94]. Most important of the latter being that the invariant measure
of the system— see Eq. (1.3)— is characterised by the spectral properties of the leading
(unit) eigenvalue of the transfer operator.

The extension to general non-Hamiltonian systems far away from equilibrium makes
the treatment of the Liouville operator substantially more difficult since usual function
spaces do not contain the measures describing the statistical properties of the systems.
This is due to the fact that an average contracting of phase space volumes provokes the
invariant states to be supported in zero-volume sets making them singular with respect
to the Lebesgue measure [Rue09] and hence not having a Radon-Nikodym derivative.
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It seemed, thus, necessary to extend the functional setting so that the transfer operator
semigroup could be used in such systems to extract dynamical information. It was not
until the 2000s where more general Banach spaces of distributions where considered so
that singular distributions were also taken into account in the transfer operator formalism
[GL06]. This way, the initially conjectured power of the spectral theory of chaotic flows
became mathematically available for a wider range of dynamical systems.

When the system under study experiences external perturbations, it is of interest to study
and predict the smooth or abrupt effects on its average behaviour. To this end, the transfer
and Koopman operator semigroups served to formulate the first results in the context of
weakly forced equilibrium systems [Kub57]. Such a discovery allowed to link the response
and robustness of the system to its natural fluctuations in the limit of infinitesimal, yet
time-dependent forcings. This link is no longer available for non-equilibrium systems,
at least, not in the usual way due to the lack of density representations of the invariant
measure. It was not until the 1990s again when the smoothness of statistical steady states
was established for structurally stable systems possessing uniformly hyperbolic attractors
[Rue97]; [Rue98]. These results were, furthermore, achieved in the modern transfer
operator framework giving evidence of the power of the methodology. Particularly, the
subunitary eigenvalues (point spectra) reveal the dominating rates of decay of correlations
[Rue86] as well as giving a tool to prove linear response rigorously [HM10]; [Bal14]. In
this regard, the cornerstone result is due to G. Keller and C. Liverani, who demonstrate
that the spectral features of the transfer operator are preserved under a wide range of
perturbations which include stochastic forces and numerical discretisations [KL99].

The effectiveness of the transfer operator to provide dynamical and statistical informa-
tion about a system motivates the rest of the chapter. More particularly, we want to apply
the perturbation theory for strongly continuous semigroups to the transfer and Koopman
operators to derive formulas that describe the statistical properties of a dynamical sys-
tem subject to static, time-dependent and randomly applied fields. With the adequate
functional setting in hand, the matter of investigation here is to determine the role of the
spectral structure of such operators in quantifying the sensitivity of the system and finding
its relaxation rates. Although the main results here concern stochastic systems, analogies
with deterministic flows will be drawn since they are virtually indistinguishable from the
operator point of view.

The rest of this chapter is structured as follows. In Section 2.1 the transfer and
Koopman operators are introduced and their main properties are given for deterministic
flows. This approach is suitably extended for stochastic systems in Section 2.1.1. Response
to static forcings is investigated in Section 2.2 and linked to the spectrum of the Fokker-
Planck semigroup in Section 2.2.1. An extension to time-dependent perturbations is done
in Section 2.3 where the particular case of stochastically forced deterministic systems
is included in Section 2.3.1. In Section 2.4, we revisit V. M. Kenkre’s homogeneous
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response formula [Ken71] under a stochastic a stochastic framework. Finally, a summary
and overview is given in Section 2.5.

2.1 Transfer Operators: definition and properties

Departing from the dynamical system {ϕt}t∈R induced by the ODE in Eq. (1.1), we are
interested in how probability density functions evolve on phase space X as opposed single
trajectories. One heuristic way of visualising this would be to initialise system (1.1) with
a distribution of initial conditions and ask what such a distribution is going to look like
after some time under the action of the flow. To this end, we introduce the Borel σ-algebra
A of open sets in X and a probability measure µ, as previously done in Section 1.1. For
every A in A, we define the transfer operator Pt : L1

µ(X ) −→ L1
µ(X ) as:

∫
A

Ptρ(x)µ(dx) =
∫

ϕ−t(A)
ρ(x)µ(dx), (2.1)

for every t in R, A in A and ρ in L1
µ(X ). The equation above defines an operator

uniquely since the functionsϕt are non-singular [Hal17]; [LM94]. Linearity, positivity and
conservation of probability of the transfer operator follow immediately from the definition
above. More interestingly, the family of operators {Pt}t∈R satisfies the semigroup property
in the same way {ϕt}t∈R does. Indeed, for every t, s in R, and A in A, we have:∫

A
Pt+sρ(x)µ(dx) =

∫
ϕ−(t+s)A

ρ(x)µ (dx) =
∫

ϕ−s(ϕ−t(A))
ρ(x)µ(dx) (2.2a)

=
∫

ϕ−t(A)
Psρ(x)µ(dx) =

∫
A

PtPsρ(x)µ(dx). (2.2b)

Furthermore, since the transformation ϕt is invertible, {Pt}t∈R is, in fact, a group, although
we shall nevertheless call it a semigroup for the sake of uniformity. The transfer operator
can be defined for a wide range of dynamical systems that need not arise from an ODE,
although in the latter case it can be written as a change-of-variable formula involving the
Jacobian of the flow [LM94]. Hence, if ρ is continuous with compact support on X , limits
of t → 0 can be taken uniformly on x to conclude that:

lim
t→0

∥Ptρ− ρ∥ = lim
t→0

∫
X

|Ptρ(x) − ρ(x)|µ (dx) = 0. (2.3)

A density argument extends this result to L1
µ(X ). Equation (2.3) not only exploits the

explicit form of the transfer operator for ODEs, but it also shows that the semigroup of
transfer operators {Pt}t∈R is a strongly continuous semigroup, for which there exists an
extensive literature of results [Paz12]; [EN00]. As we shall see later, strong continuity is
not a mathematical nicety, but it will allow us to regard the transfer operator semigroup as
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a solution to an abstract initial value problem which will greatly facilitate its investigation.
While L1

µ(X ) is the natural space for density functions (with respect to µ), observable
functions are their dual counterpart and are taken in L∞

µ (X ) on which it is possible to
define the dual operator semigroup {Ut}t∈R, known as the Koopman semigroup:

UtΨ(x) = Ψ
(
ϕt(x)

)
, (2.4)

for every t in R and Ψ in L∞
µ (X ). It is not trivial to show that this operator is the dual of

Pt, but the proof involves the pairing by which duality is defined for ρ in L1
µ(X ) and Ψ in

L∞
µ (X ). This way, the transfer operator and the Koopman operator are related via

⟨Ptρ,Ψ⟩ =
∫

X
Ptρ(x)Ψ(x)µ(dx) =

∫
X
ρ(x)UtΨ(x)µ (dx) = ⟨ρ,UtΨ⟩ . (2.5)

The Koopman operator family {Ut}t∈R also constitutes a strongly continuous semigroup.
One of the primary results in the theory of strongly continuous semigroups allows to

regard them as solutions to abstract initial value problems in suitable Banach spaces, by
means of generalising the concept of exponential function. This procedure is achieved by
identifying a generating operator densely defined on the set where all strong derivatives
of the semigroup exist. In general, if {Pt}t∈R is a strongly continuous semigroup on the
Banach space B, its generator L : D(L) ⊆ B −→ B is defined as:

Lρ = lim
t→0

Ptρ− ρ

t
, (2.6)

where D(L) is the set of all functions in B where the limit in Eq. (2.6) exists in the strong
sense [EN00]. In the case of ODE-induced dynamical systems is specially handy, since it
can be written in terms of the vector field F, which is usually prescribed to the problem. To
see this, the idea is to take continuously differentiable observables with compact support
in C1

0(X ) and apply Eq. (2.6) to the Koopman operator Ut defined in Eq. (2.4). Finally,
one obtains a the generating operator L∗ : C1

0(X ) −→ C1
0(X ) defined as:

L∗Ψ =
d∑

i=1
[F]i ∂xi

Ψ = F · ∇Ψ, (2.7)

for every Ψ inC1
0(X ) and x in X . The generator formulation allows to view the non-linear

ODE (1.1) as a linear partial differential equation (PDE) in an equivalent way. More
precisely, if we— making a slight abuse of notation— define Ψ(x, t) = Ψ(x(t)), it solves
the following equation:

∂tΨ(x, t) = L∗Ψ(x, t), (2.8)

for every x in X and t in R. The solution to Eq. (2.8) is precisely the Koopman semigroup
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{Ut}t∈R and due to its analogy to finite dimensional linear ODEs, such semigroup can
be denoted as {etL∗}t∈R, where the usual exponential multiplication relations hold. The
adjoint relation of the Koopman and transfer operator semigroups can be further exploited
to show that {Pt}t∈R also satisfies an evolution equation like Eq. (2.8), where in this case
the generator is denoted by L and defined as:

Lρ = −
d∑

i=1
∂xi

([F]i ρ) = −∇ · (ρF) , (2.9)

for functions ρ in C1
0(X ). The evolution equation associated with the transfer operator is

the Liouville equation [KG14]:

∂tρ(x, t) = Lρ(x, t), (2.10)

where ρ(x, t) is the probability of encountering the system in x at time t. Notice that
Eq. (2.10) is a conservation law that models the fact that probability is not created or
destroyed. The generators for the Koopman and transfer operator semigroups were deduced
for functions in C1

0(X ) which is dense in L1
µ(X ) although not so in L∞

µ (X ) which are
the natural spaces where these semigroups are defined. Therefore, if the semigroups act
on integrable or bounded functions, any reference to the generator will assume that the
functions involve have the necessary regularity or compactness of their support.

An important consequence of the strong continuity of the semigroup generated by
Eq. (2.10) is that it provides a way of finding the invariant measure of the system by means
of the Hille-Yoshida theorem [LM94]; [EN00]. Indeed, if ρ is a density with respect to µ
for the invariant measure of the dynamical system generated by Eq. (1.1), then we have
Lρ ≡ 0 and consequently, etLρ = ρ. It has already been noted at the starting paragraphs
of the present chapter that such a density representation is not common when µ is the
Lebesgue measure because in many systems out of equilibrium, non-conservative forces
act on phase space so that volumes are slowly contracted making the resulting invariant
measure singular with respect to Lebesgue [ER85].

If the dynamical system is measure preserving, for instance, if µ is an invariant measure
of the system, the transfer operator Pt is an isometry in L1

µ(X ) [Hal17]. To see this, it is
enough to prove it for finite combinations of characteristic functions on measurable sets to
then extend it to non-negative functions by means of the monotone convergence theorem.
This way, since L2

µ ⊂ L1
µ whenever µ is finite, Pt is also an isometry in L2

µ, which enjoys
a Hilbert structure. Moreover, if the flow ϕt is invertible, which in fact we are assuming,
then Ut is also invertible. Hence, we conclude that Ut is an invertible isometry, for every t,
making it a unitary operator. This result was first obtained by Koopman [Koo31], although
a clear application into the dynamical systems theory was made by Von Neumann, where
he proved that the limiting behaviour of such unitary operator converged, in the mean and
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strong operator sense, to projections onto its fixed points [Neu32]. Such result is stated
for generic unitary operators, family to which the transfer and Koopman operators belong,
provided that they are defined in a suitable functional space [LM94].

Another consequence of the unitarity of the transfer operator semigroup is that its
spectrum lies exactly on the complex unit ball. In particular, the invariant elements under
Pt and Ut can be expressed as the set of eigenfunctions associated to the eigenvalue 1. In
fact, the nature of such eigenvalue carries information about the dynamical and statistical
features of the underlying system as illustrated in the following theorem [Hal17]:

Theorem 2.1.1. A measure-preserving dynamical system {ϕt}t∈R is ergodic if and only if
1 is a simple eigenvalue of the associated Koopman operator Ut with constant associated
eigenfunctions, for any t in R. Furthermore, if {ϕt}t∈R is ergodic, every eigenvalue of Ut

is simple and the set of eigenvalues forms a group on the complex unit circle with respect
to multiplication.

By the same token, mixing is characterised by the eigenvalue 1 being alone on the com-
plex unit ball with simple algebraic multiplicity, thus, giving another justification of why
mixing implies ergodicity [Hal17]; [LM94]. In practical terms, mixing is characterised by
correlation functions (see Eq. (1.6)) decaying at infinity, and this, furthermore, indicates
that the system approaches an invariant distribution [Liv95]. In fact, correlation functions
of two generic observables in L2

µ(X ) can be expressed in terms of the transfer/Koopman
operator:

CΨ,Φ(t) =
∫

X
PtΨ(x)Φ(x)µ(dx) =

∫
X

Ψ(x)UtΦ(x)µ(dx), (2.11)

assuming that
∫

X Ψdµ =
∫

X Φdµ = 0. If the system is chaotic, typical trajectories
will decorrelate in time and observables behave, to a large extent, as random variables.
However, since the spectrum of Pt and Ut do not display non-unitary eigenvalues by virtue
of Theorem 2.1.1, one cannot explain the decay rate of CΨ,Φ(t) at infinity. On this note,
for the already mentioned uniformly hyperbolic systems— see Section 1.1.2— correlation
spectra are rigorously shown to posses poles on a strip in the negative complex plane
associated with the leading decay rates and oscillations of CΨ,Φ [Rue86]; [Bal00]. In
the transfer operator language, the usual Lp domains should be extended to anisotropic
Banach spaces that capture the geometry of the attractor so that a non-trivial sub-unitary
point spectrum is present [GL06]. More importantly, the latter eigenvalues correspond to
the aforementioned poles in correlation spectra [BL07].

2.1.1 Stochastic Systems

In the previous section, we have seen that transfer and Koopman operator semigroups
provide a method for studying deterministic flows in which their spectral properties encode
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statistical information of the system. In stochastic processes, it is possible to extend the
definition of such operator semigroups so that the effects of the noise is taken into account.

The fundamental relation between stochastic flows, like that generated by Eq. (1.7),
and linear operators arises from the conservation probability in the same way the Liouville
equation stands for deterministic systems. In this sense, if ρ(·, t) denotes a probability
function on phase space X , its evolution under the stochastic system (1.7) is determined
by the Fokker-Planck equation [Ris89]; [Pav14]:

∂tρ(·, t) = Lρ(·, t) := −∇ · (Fρ(·, t)) + 1
2∇2 :

(
ΣΣ⊤ρ(·, t)

)
, (2.12)

where L : D(L) ⊆ B −→ B is a linear differential operator densely defined in a Banach
space B. Given an initial density ρ0, the solution at time t is provided by the exponential
operator ρ(·, t) = etLρ0. Furthermore, since the process Eq. (1.7) is Markovian, the family
of operators {etL}t≥0 satisfies the semigroup property and in this sense, the operator L is
said to be the generator of the semigroup. Notice that, as opposed to deterministic flows,
noisy systems are not invertible and the semigroup {etL}t≥0 cannot be extended to negative
times. This is also present in the Fokker-Planck formulation whereby the second-order
differential operator acts as a diffusing agent, preventing reversibility. Furthermore, the
existence of an invariant measure µ ensures that the semigroup generated by Eq. (2.12) is
strongly continuous in Lp

µ(X ) for every p ≥ 1 and, hence, the domain of definition D(L)
is the set of functions ρ in B = Lp

µ(X ) such that the limit in Eq. (2.6) exists in the strong
sense [Tan+20, Appendix A]. To see this, it is enough to consider Eq. (2.12) in a space of
sufficiently regular functions which allows to extend the definition of {et(L0+εL1)}t≥0 onto
Lp

µ(X ) using density arguments.
We recall that the smoothness of transition probabilities ρ(·, t) is guaranteed by Hör-

mander’s condition mentioned at the end of Section 1.1.1. In the language of generators,
the second-order diffusion operator is sufficiently strong so that its regularising properties
affect the solutions of Eq. (2.12); we refer the reader to [Pav14, Chapter 6]. Furthermore,
the invariant measure of the system will posses a density representation with respect to
the Lebesgue measure ρ0, which solves and is characterised by Lρ0 ≡ 0, in allusion to the
Hille-Yosida theorem.

The duality between densities and observable functions introduced in the previous
section is maintained in the context of stochastic systems. This dual representation is
taken in the L2 sense and results in the backward-Kolmogorov equation describing the
evolution of the expectation values of observable functions [Pav14]. Indeed, let Ψ be in
Cb(X )— continuous and bounded functions— and let its expectation value with respect
to ρ(·, t) be denoted by Ψ(·, t), then:

∂tΨ(·, t) = L∗Ψ(·, t) := F · ∇Ψ(·, t) + 1
2ΣΣ⊤ : ∇2Ψ(·, t), (2.13)
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for every t > 0. In the same way as the Fokker-Planck equation generates a strongly
continuous semigroup in Lp

µ(X ), so does the backward-Kolmogorov equation in Lq(X ),
where p and q are conjugate real numbers. In particular, if Ψ and Φ are zero µ-mean
observables in L2

µ(X ), we have that correlation functions can be expressed in terms of the
semigroup [Tan+20]:

CΨ,Φ(t) =
∫

X
etLΨ(x)Φ(x)µ (dx) =

∫
X

Ψ(x)etL∗Φ(x)µ (dx) . (2.14)

Because of the irreversibility induced by noise, correlations are in principle more likely
to decay in stochastic systems. In fact, under mild conditions the operator etL reveals
eigenvalues strictly within the unit ball which would imply that correlations decay at
infinity at an exponential rate [Tan+20]. This considerations will become fundamental in
the following sections and will be treated later with due detail.

Remark 2.1.1 (Notation). In what follows the subscript X for phase integrals
∫

X shall be
omitted when clear.

Summarising Section 2.1, semigroups arise naturally in deterministic and stochas-
tic flows out of the evolution of observables and probability density functions. While
the Fokker-Planck equation generates the stochastic version of the transfer operator, the
backward-Kolmogorov equation extends the Koopman semigroup to stochastic systems.
It has been observed that, once within the theory of semigroups, the ideas and alge-
braic manipulations follow equally for deterministic and stochastic systems, albeit with
functional analytical differences. Indeed, the singularity of invariant measures typical in
non-conservative deterministic flows is replaced by smooth densities as results from ap-
plying noise. In addition, while stochastic systems reveal non-trivial eigenvalues in usual
Lp spaces and are capable of explaining the decay of correlations, finding their determin-
istic analogues is much more complicated, see Theorem 2.1.1. In what follows, we shall
take the stochastic approach for the very last reasons, although reference to deterministic
systems will be made throughout the text.

2.2 Static Response

Static response refers to the leading order changes in the statistical properties of a system
as a result of time-independent forcing and its approach to a new steady state. The goal
of static response is, hence, twofold: (i) calculate the sensitivity to a prescribed field and
(ii), estimate the relaxation timescales. In static response the dynamical system of interest
is forced with a field that pushes the system to a new stationary state as time tends to
infinity. The key technical advantage is that the resulting system is autonomous and the
perturbation theory for semigroups can be conveniently applied; as will be detailed below.
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We consider the d-dimensional Itô SDE (1.7) where an external field G : X −→ X is
applied in the following form:

ẋ(t) = [F(x(t)) + εG(x(t))] dt+ Σ(x(t))dWt, (2.15)

where ε is a real parameter. The vector field G should be understood as the perturbation
applied to the process and ε as the parameter regulating its strength. We, thus, have that
when ε = 0 the process is unperturbed. The size of ε is not discussed just yet, although a
perturbative approach to studying Eq. (2.15) would require infinitesimal values of ε in the
spirit of linear response theory for equilibrium and non-equilibrium systems, see [Kub57];
[Kub66] and [Rue09] respectively. However, efforts in relating statistical response for
finite perturbations and equilibrium fluctuations have to be noted, see [Bof+03]; [Luc08].

The Fokker-Planck equation associated with Eq. (2.15) is now a perturbed version of
Eq. (2.12):

∂tρ(·, t) = Lρ(·, t) := −∇ · (Fρ(·, t) + εGρ(·, t)) + 1
2∇2 :

(
ΣΣ⊤ρ(·, t)

)
. (2.16)

Additionally, the operator L is divided into two operators L0 : D(L0) ⊆ B −→ B and
L1 : D(L1) ⊆ B −→ B so that L = L0 + εL1 and their domains are assumed to satisfy
D(L) = D(L0) = D(L1). These operators are defined as:

L0ρ = −∇ · (Fρ) + 1
2∇2 :

(
ΣΣ⊤ρ

)
; (2.17a)

L1ρ = −∇ · (Gρ) , (2.17b)

for every ρ inD(L). We immediately identify that L1 is the operator corresponding to the
perturbation introduced in Eq. (2.15) and hence, we refer to it as the perturbation operator.
The unperturbed counterpart, L0, is constituted by an advection due to the drift term and
a diffusion component arising from the noise.

Because the perturbed generating operator is time-independent, we can make use of a
wide range semigroup theoretic results to derive response formulas; we refer the reader
to [EN00, Chapter 9.c] for a detailed and technical discussion on the topic. The main
tool to be used is the Dyson expansion which expresses a perturbed semigroup as a
power series of the unperturbed generator. Such perturbative expansions were originally
introduced by Freeman J. Dyson in the context of quantum electrodynamics [Dys49] and
later formulated rigorously in mathematical terms in [Gil17]. The Dyson expansion of the
perturbed evolution operator is:

et(L0+εL1) =
∞∑

k=0
Pk(t), (2.18)
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where P0(t) = etL0 and

Pk+1(t) = ε
∫ t

0
e(t−s)L0L1Pk(s)ds = ε

∫ t

0
esL0L1Pk(t− s)ds, (2.19)

for k ≥ 0. The series in Eq. (2.18) is formal since the operator L1 is unbounded and a
direct norm-estimate cannot be taken to bound Pk. In case L1 is bounded, convergence
of Eq. (2.18) is attained in the operator norm and operator integrals are understood in
the strong operator topology; see [EN06] for more convergence and generation criteria.
Here we shall, nevertheless, use Eq. (2.18) after evaluation of an initial probability density
function ρ(·, 0) in D(L) to find its analogous at time t, namely, ρ(·, t):

ρ(·, t) =
∞∑

k=0
Pk(t)ρ(·, 0) = etL0ρ(·, 0) + ε

∫ t

0
e(t−s)L0L1e

sL0ρ(·, 0)ds+ O
(
ε2
)
. (2.20)

In the context of equilibrium classical systems governed by a perturbed Hamiltonian,
expansions can directly be applied to the Gibbs measure and partition function of the
system to obtain the leading order corrections to the statistics. Quantum Hamiltonians can
be treated almost equally taking into account that the perturbed distribution function has
to be expanded in the operator sense using Eq. (2.18) or resolvent expansions as done in
[Zwa01].

Remark 2.2.1. By virtue of the stability and regularity criteria imposed to the SDE in
Eq. (2.15), L = L0 + εL1 automatically generates a strongly continuous semigroup. One
could, instead, ask whether L0+εL1 generates a strongly continuous semigroup regardless
of the underlying dynamic process. Since L1 is unbounded, Dyson operator expansions
like that in Eq. (2.18) cannot be rigorously applied, as already noted. However, it can be
shown that the perturbation operator L1 is L0-bounded, i.e., there exist non-negative real
numbers γ1 and γ2 so that ∥L1f∥ ≤ γ1∥L0f∥+γ2∥f∥ for every f inD(L). This condition
is enough to ensure that the sum L0 + εL1 generates a strongly continuous semigroup for
small values of ε. We refer the reader to [EN06, Chapter III.2].

Notice that each of the elements Pk of the perturbative series is written in terms of
the semigroup generated by L0 uniquely. In particular, the leading order term involves
a sole time integral, in the spirit of seminal works on linear response theory [Kub57].
Higher order terms involve multiple time integrals that result from the Dyson expansion
and they agree with formulas derived elsewhere; see [Luc08]. The drawback is that such
perturbative series works for infinitesimal values of ε or within a convergence interval.
This shall be commented on later.

If one initialises Eq. (2.16) with the invariant density of the unperturbed system ρ0,
one would obtain its evolution towards the new stationary statistical state. Then, since
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L0ρ0 ≡ 0, we have:

ρ(·, t) = et(L0+εL1)ρ0 =
∞∑

k=0
εkρk(·, t) = ρ0 + ε

∫ t

0
esL0L1ρ0ds+ O

(
ε2
)
, (2.21)

where we have introduced the successive corrections of the unperturbed invariant measure
ρk(·, t) which give the solution at time t and are weighted by εk. In particular, ρ1(·, t)
denotes the leading order term and, hence, the formal derivative of ρ(·, t) with respect
to ε. Notice that even if the perturbation operator is time-independent, treating it as
a inhomogeneous component of the Fokker-Planck equation naturally introduces time-
dependence via the integral convolutions. This dependence is only transient since the
perturbation in Eq. (2.15) induces a new autonomous system and, if it is let to evolve for
enough time, ρ(·, t) would arrive at a new stationary state ρε which solves (L0+εL1)ρε ≡ 0.
This way, letting t tend to infinity in Eq. (2.21) we get a perturbative formula for the
perturbed invariant measure ρε:

ρε =
∞∑

k=0
εkρk = ρ0 + ε

∫ ∞

0
esL0L1ρ0ds+ O

(
ε2
)
, (2.22)

where we have dropped the time-dependence of ρk. The leading order term
∫∞

0 esL0L1ρ0ds
is formally associated with the derivative of ρε with respect to ε and measures the sensitivity
of the unperturbed steady state.

With the application of the perturbation, expectation values of observables change
accordingly becoming time-dependent before they reach a new steady value. Let Ψ denote
an observable function. Then, its expectation value at time t satisfies the following chain
of equalities:

⟨Ψ, ρ(·, t)⟩ :=
∫

Ψ(x)ρ(x, t)dx =
∞∑

k=0
εkδ(k) [Ψ] (t) (2.23a)

= ⟨Ψ, ρ0⟩ + ε ⟨Ψ, ρ1(·, t)⟩ + O
(
ε2
)

(2.23b)

=
∫

Ψ(x)ρ0(x)dx + ε
∫

Ψ(x)
∫ t

0
esL0L1ρ0(x)dsdx + O

(
ε2
)

(2.23c)

=
∫

Ψ(x)ρ0(x)dx + ε
∫ t

0

∫
esL∗

0Ψ(x)L1ρ0(x)dxds+ O
(
ε2
)
, (2.23d)

where the successive correction terms δ(k)[Ψ](t) denote the kth order response and, par-
ticularly, δ(1)[Ψ](t) is the linear response. In Eq. (2.23d) we have used the generator of
the backward-Kolmogorov equation L∗ in Eq. (2.8), so that the expectation value of an
observable function Ψ evolves according to:

∂tΨ(·, t) = L∗Ψ(·, t) = (L∗
0 + εL∗

1) Ψ(·, t), (2.24)
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and the operators L∗
0 and L∗

1 are

L∗
0Ψ = F · ∇Ψ + 1

2ΣΣ⊤ : ∇2Ψ; (2.25a)

L∗
1Ψ = G · ∇Ψ, (2.25b)

in accordance with the discussion in Section 2.1.1. Moreover, if the perturbed statistical
steady state ρε is attained, the functions δ(k)[Ψ] become independent for every k ≥ 0. More
concretely, we can deduce the expectation value of Ψ in the perturbed regime ⟨Ψ, ρε⟩ in a
perturbative fashion by letting t go to infinity in Eq. (2.23c):

⟨Ψ, ρε⟩ =
∞∑

k=0
δ(k) [Ψ] = ⟨Ψ, ρ0⟩ + ε

∫ ∞

0

∫
Ψ(x)esL0L1ρ0(x)dxds+ O

(
ε2
)
, (2.26)

where the kth order response δ(k) [Ψ] is now time-independent. On a practical note, since
the invariant measure is often inaccessible, changes in a system has to be monitored through
suitable observables. In this sense, the scalar quantity

∫∞
0
∫

Ψ(x)esL0L1ρ0(x)dxdswould
be the formal derivative of the response map (1.8) and would equate to Eq. (1.9).

Remark 2.2.2. The existence of a density function ρ0 that accounts for the statistical
steady state allows to characterise the linear response δ(1) [Ψ] (t) in Eq. (2.23) in terms of
the unforced fluctuations of the system which take the shape of correlation functions. This
is the content of the fluctuation dissipation theorem [Kub66]. Indeed, one has:

δ(1) [Ψ] (t) =
∫ t

0

∫
esL0Ψ(x)L1ρ0(x)dxds (2.27a)

=
∫ t

0

∫
esL0Ψ(x)L1ρ0(x)

ρ0(x) ρ0(x)dxds =
∫ t

0
CΨ,Φ(s)ds, (2.27b)

where Φ = L1ρ0/ρ0 and CΨ,Φ(t) denotes the correlation function between Ψ and Φ at
time t, see Eq. (2.14). This result also holds for deterministic systems with an absolutely
continuous invariant measure.

As mentioned earlier, the time-dependence of the linear response δ(1) [Ψ] (t) comes
from the Dyson formula applied to the perturbation operator εL1 before the perturbed
system attains a steady state. Therefore, one can ask what the response looks like in the
spectral domain. To this end, linear response function is characterised spectrally in terms
of the generator L0, which is related by to the evolution operator etL0 via the resolvent
operator and the Laplace transform [EN00]:

R(z,L0)f := (z − L0)−1f = L [L0f ] (z) =
∫ ∞

0
e−ztetL0fdt, (2.28)

for every z in C such that Rez > 0. Recall that the resolvent operator is bounded
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and bĳective for every z in the resolvent set C \ σ(L0). When a perturbation like that in
Eq. (2.16) is introduced, the resolvent operator of the perturbed generator can be expressed
in terms of the unperturbed one [EN06]:

R(z,L0 + εL1) = R(z,L0) (1 − εL1R(z,L0))−1 = R(z,L0)
∞∑

k=0
εk (L1R(z,L0))k ,

(2.29)
for every z inC such thatRez > 0. Notice that convergence is here attained in the operator
norm since R(z,L0) and L1R(z,L0) are bounded. This way one would have to ensure
that ε∥L1R(z,L0)∥ < 1 in order for the expansion Eq. (2.28) to converge, introducing
a first explicit constraint to the the size of ε. Taking the Laplace transform of the full
response based on Eq. (2.23) we obtain:

L [⟨Ψ, ρ(·, t)⟩ − ⟨Ψ, ρ0⟩] (z) = ε
∫
R(z,L∗

0)L∗
1R(z,L∗

0)Ψ(x)ρ0(x)dx + O
(
ε2
)
,

(2.30)

where we have used thatR(z,L∗) = R(z,L)∗ for any operator L, because we are operating
on an observable rather than a density function. Truncating at second order in powers of
ε, the formula for linear response in complex frequency space is derived:

L
[
δ(1) [Ψ] (t)

]
(z) =

∫
R(z,L∗

0)L∗
1R(z,L∗

0)Ψ(x)ρ0(x)dx (2.31a)

=
∫

L∗
1R(z,L∗

0)Ψ(x)R(z,L0)ρ0(x)dx (2.31b)

= 1
z

∫
L∗

1R(z,L∗
0)Ψ(x)ρ0(x)dx, (2.31c)

where we have used the fact that ρ0 is an eigenfunction of L0 relative to 0 to conclude
that R(z,L0)ρ0 = ρ0/z. The introduction of a pole at z = 0 is a result of employing the
Laplace transform and applying a static external field. As we shall see later, such pole
at z = 0 will disappear when time-dependence is specified and physically restricted, in
accordance with general results in linear response theory [Rue09].

If Ψ and Φ denote two smooth observables with zero ρ0-mean, its correlation function
at time t was defined in Eq. (2.14). Taking the Laplace transform of Eq. (2.14) we obtain:

L[CΨ,Φ](z) =
∫ ∞

0
e−zt

∫
Ψ(x)etL0Φ(x)ρ0(x)dxdt (2.32a)

=
∫

Ψ(x)
∫ ∞

0
e−ztetL0Φ(x)ρ0(x)dtdx (2.32b)

=
∫

Ψ(x)R(z,L0)Φ(x)ρ0(x)dx, (2.32c)

which is valid for Rez > 0. Although the resolvent is well defined and bounded for every
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Rez > 0, peaks in L[CΨ,Φ] obtained from observed data would result from a meromorphic
extension onto the complex plane where the poles ofL[CΨ,Φ] correspond to the eigenvalues
(point spectrum) of L0, also known as the Ruelle-Pollicot resonances [Rue86]; [Rue09];
[Tan+20]. This topic will be developed later in the text where we explicitly invoke a
spectral decomposition of L0.

The effects of perturbations on correlation functions are deduced by examining CΨ,Φ

in Eq. (2.14) where now, the exponential operator involves the perturbation operator L1

and the invariant measure ρ0 is substituted by ρε, which is obtained from Eq. (2.22). The
leading order response of correlation functions involves two terms, where only one of
them can be recast in correlation form [LW17]. Indeed, denoting the perturbed correlation
function as Cε

Ψ,Φ and applying the Dyson expansion one gets:

Cε
Ψ,Φ(t) =

∫ ∞

0

∫
e(t+s)L∗

0Ψ(x)esL∗
0Φ(x)L1ρ0(x)dxds (2.33a)

+
∫ ∫ t

0
e(t−s)L∗

0L∗
1e

sL∗
0Ψ(x)Φ(x)ρ0(x)dsdx + O

(
ε2
)
, (2.33b)

in agreement with [LW17, Eqs. (11)-(14)]. While the integrand in the RHS of Eq. (2.33a)
takes the form of a correlation function with respect to L1ρ0, Eq. (2.33b) cannot be
rewritten in correlation form. Applying the Fourier transform to Cε

Ψ,Φ(t) would yield
the response in spectral domain, again following [LW17]. We can, however, exploit the
resolvent expansion Eq. (2.28) to obtain the perturbed correlation function in terms of the
unperturbed resolvent operator. By definition we have:

L[Cε
Ψ,Φ](z) =

∫
Ψ(x)R(z,L0 + εL1)Φ(x)ρε(x)dx, (2.34)

for Rez > 0. Expanding L[Cε
Ψ,Φ](z) in powers of ε we get:

L[Cε
Ψ,Φ](z) =

∫
Ψ(x)R(z,L0)Φ(x)ρ0(x)dx

+ ε
∫

Ψ(x)R(z,L0)Φ(x)ρ1(x)dx

+ ε
∫

Ψ(x)R(z,L0)L1R(z,L0)Φ(x)ρ0(x)dx + O
(
ε2
)
.

(2.35)

Hence, we can formally write

d
dεL[Cε

Ψ,Φ](z)|ε=0 =
∫

Ψ(x)R(z,L0)Φ(x)ρ1(x)dx

+
∫

Ψ(x)R(z,L0)L1R(z,L0)Φ(x)ρ0(x)dx.
(2.36)

This formula can be obtained by taking the Laplace transform of Eq. (2.33), although
the resolvent formalism makes the calculations substantially easier. We, thus, provide an
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explicit link between the response in frequency domain and the spectral properties of the
unperturbed generator L0 via the resolvent.

Remark 2.2.3. The use of complex frequencies by means of the Laplace transform instead
of the Fourier domain comes out of convenience and accordance with the semigroup theory
literature. The connection is, nevertheless, straightforward by (formally) noticing that, if
ω denotes a real frequency, the one-sided Fourier transform of the correlation function
reads as:

F[CΨ,Φ](ω) =
∫ ∞

0
e−iωtCΨ,Φ(t)dt =

∫
Ψ(x)R(iω,L0)Φ(x)ρ0(x)dx. (2.37)

The discussion in Fourier space will expanded in the next section when time dependent
perturbations are investigated. We refer the reader also to [BL07].

2.2.1 Spectral Decomposition of the Response Function

The decomposition of correlation functions and power spectral densities in terms of the
functional features of Liouville operators, like L0 in Eq. (2.16), has been crucial to under-
stand why they decay in deterministic chaotic systems and to identify the conditions under
which such decay is exponential or subexponential [Liv95]. The eigenvalues responsible
for governing the system’s decay of correlations are known as Ruelle-Pollicot resonances
[Pol85]; [Rue86], and the barrier that prevents readily calculating such spectral features
stands in the choice of Banach space where the Liouville operators are defined [GL06],
which need to take into account the complex and possibly fractal geometries of phase
space that support singular invariant measures. In fact, the natural Lp spaces cannot
capture eigenvalues of L0 that explain the decay of correlations; we refer the reader back
to Theorem 2.1.1. Contrarily, Fokker-Planck equations do reveal non-trivial resonances
in Lp domains so that the natural assumptions on Eq. (2.15) allow to impose finer, yet
useful structures to L0, as done below and in previous works [Tan+20]. This, together
with the fluctuation-dissipation dissipation theorem of Remark 2.2.2 is suggestive that the
Ruelle-Pollicot resonances can also be used to decompose the linear response formulas
derived in Eq. (2.26). In this section, we shall investigate the linear response δ1[Ψ](t) in
terms of the spectrum of the generator of the Fokker-Planck semigroup.

In what follows, the setting of Eq. (2.15) stays practically the same, where it is assumed
that its associated strongly continuous semigroup {et(L0+εL1)}t≥0 generated by the Fokker-
Planck equation satisfies the conditions that guarantee the existence of a unique smooth
invariant measure [Pav14, Chapter 6]. To write the response in terms of the unperturbed
evolution, we shall further require the semigroup {etL0}t≥0 to be quasi-compact, this is,
it approaches the space of compact operators as t tends to infinity in the operator norm
[EN00]. Moreover, quasi-compact semigroups are constituted by operators having an
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essential spectral radius strictly less than one, implying that spectra with larger modulus
are eigenvalues of finite algebraic multiplicity, which are related to those of the generator
by means of the Spectral Mapping Theorem [EN00, Chapter IV]. Namely, if λj is an
eigenvalue of L0 with eigenfunction ψj , we have that:

L0ψj = λjψj ⇐⇒ etL0ψj = eλjtψj, (2.38)

making eλjt and eigenvalue of etL0 for every t. This way, the spectrum of L0 is divided into
a dominating point spectrum (eigenvalues) and an essential background with a boundary
determined by the essential growth bound ωess:

ωess = inf
t>0

1
t

log
∥∥∥etL0

∥∥∥
ess
, (2.39)

where ∥ · ∥ess is the essential norm1. Therefore, if {λj}M
j=1 are eigenvalues of finite

algebraic multiplicity such that λj > ωess the operator etL0 is decomposed as:

etL0 =
M∑

j=1
Tj(t) + R(t), (2.40)

where Tj(t) denotes the contribution relative to the eigenvalue λj and R is the operator
accounting for the essential spectrum. The operator Tj(t) is defined as:

Tj(t) =
aj−1∑
k=0

eλjt t
k

k! (L0 − λj)k Πj, (2.41)

where Πj denotes the spectral projector around the eigenvalueλj whose (finite) multiplicity
is counted by aj . For notational convenience, we shall further assume that λ0 = 0 >

Reλ1 ≥ Reλ2 ≥ . . .. The hope is that, as t tends to infinity the contributions from the
essential spectrum decay. In fact, if ω > sup{ωess} ∪

{
Reλ : λ ∈ σ(L0) \ {λ0, . . . , λM}

}
there exists a constant C > 0 such that:

∥R(t)∥ ≤ Ce−ωt, (2.42)

for all positive values of t. This ensures that, as time goes to infinity, the norm of the residual
operator decays to zero. The finiteness of the eigenvalues assumed here implies that all
of them, but for λ0 = 0, are contained in a strip of the complex plane that is at a distance
γ = −Reλ1 from the imaginary axis. Such eigenvalues translate as meromorphic poles

1The essential norm of an operator T on a Banach space B is:

∥T∥ess = inf {∥T − K∥ : K is compact in B} .
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of the resolvent operator R(·,L0) and correspond to the aforementioned Ruelle-Pollicot
resonances, albeit in a stochastic context [Tan+20]. The number γ is called the spectral
gap of L0 and it guarantees that correlations decay exponentially fast [Tan+20]; [Bal00,
§1.3]. More importantly, this quantity gauges the sensitivity of the system with respect
to external perturbations [KL99]. Namely, if 0 < γ ≪ 1 the linear response function
δ(1)[Ψ](t) will decay to a steady state very slowly and, consequently, its static version (2.26)
will be larger. It must be noted, though, that the point spectrum need not be finite, so that
it is possible that it accumulates around the leading zero eigenvalue. This pathological
case is responsible for subexponential decay rates [Rue86] and a signal of the system
approaching a critical point, as is the case of the pitchfork bifurcation [Gas+95].

Remark 2.2.4. If the spectrum of L0 consists only of simple eigenvalues, this is aj = 1
for all values of j, Tj(t) has a more explicit expression. Let us suppose that f is in L2

µ(X )
and projects entirely onto the point spectrum, then

etL0f =
M∑

j=0
Tj(t)f =

M∑
j=0

eλjtΠjf =
M∑

j=0
eλjt⟨f, ψ∗

j ⟩ψj, (2.43)

where ⟨·, ·⟩ is the L2-inner product with respect to ρ0. Here, we have exploited the
simplicity of the spectrum and the L2-dual representation of the eigenfunctions ψ∗

j .

When the observables of interest decompose suitably according to the eigenfunctions of
L∗

0, the dominant modes of variability encoded in its leading eigenvalues are susceptible
of explaining the decay of the response function at infinity. In order to see this, we
shall decompose the linear response function δ(1)[Ψ](t) in terms of the point spectrum of
the generator L∗

0. For that, let us suppose that Ψ projects entirely onto the span of all
eigenfunctions so that:

etL∗
0Ψ =

M∑
j=1

T ∗
j (t)Ψ + R∗(t)Ψ =

M∑
j=1

eλjtΠ∗
jΨ, (2.44)

where the action of the residual operator R∗ vanishes by assumption. The same equality
would hold if densities are considered instead, bearing in mind to take the dual represen-
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tation. Now, we expand the linear response of the observable Ψ:

δ(1) [Ψ] (t) =
∫ t

0

∫
Ψ(x)esL0L1ρ0(x)dxds =

∫ t

0

∫
esL∗

0Ψ(x)L1ρ0(x)dxds (2.45a)

=
∫ t

0

∫  M∑
j=0

T ∗
j (s)Ψ(x)

L1ρ0(x)dxds (2.45b)

=
∫ t

0

∫  M∑
j=0

aj−1∑
k=0

eλjs s
k

k! (L∗
0 − λj)k Π∗

jΨ(x)
L1ρ0(x)dxds (2.45c)

=
M∑

j=0

∫ t

0
eλjs

aj−1∑
k=0

sk

k!

∫
(L∗

0 − λj)k Π∗
jΨ(x)L1ρ0(x)dxds (2.45d)

=
M∑

j=0

∫ t

0
eλjs

aj−1∑
k=0

α
(k)
j

sk

k! ds (2.45e)

=
M∑

j=0

aj−1∑
k=0

k∑
l=0

cj,k,le
λjttl −

M∑
j=0

aj−1∑
k=1

cj,k,0, (2.45f)

where α(k)
j =

∫
(L∗

0 − λj)kΠ∗
jΨ(x)L1ρ0(x)dx and cj,k,l = (−1)k−l(l!)−1α

(k)
j λ

−(k−l+1)
j .

Since the semigroup {etL0}t≥0 is quasi-compact, it follows that the eigenvalues on the
imaginary axis are simple [EN06, Chapter V. §4] and one can exploit Remark 2.2.4 to
express the spectral projector around λ0 = 0 in easier terms to find:

α0 =
∫

Π∗
jΨ(x)L1ρ0(x)dx =

∫
⟨ψ0,Ψ⟩ψ∗

0(x)L1ρ0(x)dx (2.46a)

=
∫

⟨ρ0,Ψ⟩1(x)L1ρ0(x)dx = ⟨ρ0,Ψ⟩
∫

L∗
11(x)ρ0(x)dx = 0, (2.46b)

where we have used the fact that ρ0 and the constant function 1 are the eigenfunctions of
L0 and L∗

0 relative to λ0 = 0, respectively. This implies that the indexes j in Eq. (2.45)
range from 1 to M . Taking Laplace transforms of Eq. (2.45) for complex frequencies z
such that Rez > 0 we have:

L
[
δ(1) [Ψ]

]
(z) =

M∑
j=1

aj−1∑
k=0

k∑
l=0

∫ ∞

0
cj,k,le

−zteλjttldt−
M∑

j=1

aj−1∑
k=0

cj,k,0

∫ ∞

0
e−ztdt (2.47a)

=
M∑

j=1

aj−1∑
k=0

k∑
l=0

cj,k,l
l!

(z − λj)l+1 − 1
z

M∑
j=1

aj−1∑
k=0

cj,k,0. (2.47b)

Notice that a meromorphic extension onto the complex plane would reveal poles located
at the eigenvalues λj plus an extra resonance at z = 0 that results from the application of
the Laplace transform of an integral, which can be expressed as a convolution with the
Heaviside distribution. The same formula can be obtained by using the resolvent approach
and realising that L0 and R(z,L0) share the same eigenfunctions. In this case, for the
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fully simple point spectrum we have:

R(z,L0)ψj = (z − λj)−1ψj, (2.48)

for all j = 1, . . . ,M . Hence, taking the dual and substituting into Eq. (2.31c) we get:

L
[
δ(1) [Ψ]

]
(z) = 1

z

∫
L∗

1R(z,L∗
0)Ψ(x)ρ0(x)dx (2.49a)

= 1
z

∫
L∗

1

 M∑
j=1

(z − λj)−1Π∗
jΨ(x)

 ρ0(x)dx (2.49b)

=
M∑

j=1

αj

z(z − λj)
=

M∑
j=1

αj

λj(z − λj)
−

M∑
j=1

αj

λjz
, (2.49c)

which is the same as Eq. (2.47b) for k = l = 0.

Remark 2.2.5. Following Remark 2.2.2, the spectral decomposition of the transfer/Koop-
man operator can be applied to the correlation function CΨ,Φ(t) to get [Tan+20]:

CΨ,Φ(t) =
M∑

j=0

aj−1∑
k=0

tk

k!e
λjtβ

(k)
j ψj +

∫
R(t)Ψ(x)Φ(x)ρ0(x)dx, (2.50)

where the coefficients β(k)
j as opposed to α

(k)
j are now dependent on both observable

functions Ψ and Φ. Notice that the second term in the RHS of Eq. (2.50) is the contribution
coming from the essential spectrum which, in the case Ψ and Φ project entirely onto the
point spectrum, would vanish.

2.3 Time-dependent Forcing

The SDE (2.15) includes a perturbation vector field that does not vary in time, making
the forced system also autonomous with an associated invariant measure. Based on this
setting, classical results in the perturbation theory of semigroups were used to derive the
basic linear response formulas. This setting is no longer valid in case the external forcing
is modulated in time, since Dyson-like operator expansions (2.18) cannot be invoked and
the perturbative expansion of the resolvent operator (2.29) is not available. The aim of this
section is to show that one can, nevertheless, derive linear response formulas for external
perturbations with physically constrained time-dependence using the operator theoretic
approach. Hence, dynamic response, as opposed to static, aims at (i) determining the
leading order time-dependent corrections to the statistics as results of a perturbation and
(ii) disentangling the time-modulation from the calculation of the response via the Green
function.
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In this section, we consider the following time-dependent version of Eq. (2.15):

dx(t) = [F(x) + εg(t)G(x)] dt+ Σ(x)dWt, (2.51)

which generates a process x(t) in Rd for an initial condition at a certain value of time,
which is autonomous for ε = 0. When ε ̸= 0, a time-modulated forcing vector field G is
activated through the bounded function g. The associated Fokker-Planck equation is:

∂tρ = (L0 + εg(t)L1) ρ = −∇ · (Fρ) − εg(t)∇ · (Gρ) + 1
2∇2 :

(
ΣΣ⊤ρ

)
, (2.52)

where the generating operators L0 and L1 are defined as done previously and when ε = 0
we assume, as in the previous section, that there is an invariant density function ρ0 that
solves L0ρ0 ≡ 0. Because the SDE is non-autonomous, the density functions ρ are
dependent on the phase variable x at time t and the initial condition x0 at time s. If one,
instead, assumes that the initial condition x0 at time s = 0 is distributed according to the
unperturbed state ρ0 (ε = 0), we can understand the densities in Eq. (2.52) as

ρ(x, t) :=
∫
ρ(x,y, t, 0)ρ0(y)dy, (2.53)

so that ρ(x, t) determines the probability of encountering the process in x at time t for a ρ0-
distributed initial condition; see also [Pav14, Chapter 2] for more general considerations.
The goal now is to calculate the distribution function for the perturbed system i.e., when
ε ̸= 0. To this end, we shall use solve Eq. (2.52) for successive orders of ε. Let us assume
that a solution of Eq. (2.52) ρ can be written as:

ρ = ρ0 + ερ1 + ε2ρ2 + . . . (2.54)

While ρ0 is provided, ρ1 is obtained by plugging Eq. (2.54) into Eq. (2.52), gathering the
ε-order terms and applying the variation-of-parameters formula:

ρ1(·, t) =
∫ t

0
e(t−s)L0g(s)L1ρ0ds, (2.55)

which equals the static version obtained in Eq. (2.21) where now the time-modulation g
appears in the integrand. The kth order element of Eq. (2.54) is obtained analogously by
gathering εk-terms. Let Ψ be an observable, then the change of its expectation value with
respect to time is:

⟨Ψ, ρ(·, t)⟩ =
∞∑

k=0
δ(k) [Ψ] (t) =

∫
Ψ(x)ρ0(x)dx +

∫
Ψ(x)ρ1(x, t)dx + O

(
ε2
)
.

(2.56)
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Hence, the linear response accounting for the first order corrections is:

δ(1)[Ψ](t) =
∫ t

0
g(s)

∫
Ψ(x)e(t−s)L0L1ρ0dxds. (2.57)

The procedure for deriving Eq. (2.57) can be applied to the static case to deduce Eq. (2.23).
However, in the dynamic scenario, we shall impose the physical constraint of causality
[Rue09]; [Luc18], by which at negative times the response is zero. This amounts to
having that the function t 7→

∫
Ψ(x)etL0L1ρ0(x)dx is zero for t < 0. Furthermore, if

such function decays sufficiently quickly for large times, we can extend the integration
limits to all the real line so that the response formula is written in convolution form without
compromising convergence. In particular, the linear response operator would take the role
of a Green function G in the following form [Luc08]:

δ(1)[Ψ](t) = (g ∗ G) (t) =
∫ ∞

−∞
g(s)

∫
Ψ(x)e(t−s)L0L1ρ0(x)dxds. (2.58)

This implies that once the Green function is known, the linear response can be readily cal-
culated regardless of the time-modulation g. Higher order terms in Eq. (2.56) correspond
to the non-linear response and are obtained following [Kub57]; [Luc08] by gathering the
contributions at a given power of ε and can be formulated in terms of kth order Green
functions G(k):

G(k)(τ1, . . . , τk) =
∫

Θ(τ1) . . .Θ(τk − τk−1)L1e
(τk−τk−1)L∗

0 . . .L1e
τ1L∗

0Ψ(x)ρ0(x)dx.
(2.59)

Then, the kth order response of the observable Ψ at time t is given by:

δ(k) [Ψ] (t) =
∫ ∞

−∞
. . .
∫ ∞

−∞
G(k)(τ1, . . . , τk)g(t− τ1) . . . g(t− τk)dτ1 . . . dτk. (2.60)

Furthermore, the convolution structure allows to extend g to general distributions [Rud91].
Indeed, one can consider an impulse at initial time by taking g(t) = δ(t) to get

δ(1)[Ψ](t) =
∫ ∞

−∞
δ(s)G(t− s)ds = G(t) =

∫
Ψ(x)etL0L1ρ0(x)dx. (2.61)

Which says that, in the limit of small forcing strength ε, the observed response is exactly
the Green function. Gathering higher order terms according to Eq. (2.60) we inductively
find:

⟨Ψ, ρ(·, t)⟩ =
∞∑

k=0
G(k)(t, . . . , t) =

∞∑
k=0

εk
∫

Ψ(x)esL0Lk
1ρ0(x)dx. (2.62)

If a constant forcing is applied at t = 0, then g takes form of the Heaviside distribution
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Θ(t), for which the response reads as:

δ(1)[Ψ](t) =
∫ ∞

−∞
Θ(s)G(t− s)ds =

∫ t

0

∫
Ψ(x)e(t−s)L0L1ρ0(x)dxds. (2.63)

Notice that this formula is equal to that obtained using expansions in the static version;
see Eq. (2.23d). Higher order terms are more convoluted that the impulse perturbations,
so they shall be omitted.

The spectral decomposition introduced earlier in Section 2.2.1 for quasi-compact op-
erators allows us to naturally link the theory of the Green function with the eigenvalues of
the generator of the unperturbed Fokker-Planck semigroup. Indeed, we assume that our
observable of interest Ψ projects entirely onto the point spectrum of L0 in the same way
as we assumed in Eq. (2.45). This gives the following series of equalities:

δ(1) [Ψ] (t) =
∫ ∞

−∞
g(t− s)G(s)ds (2.64a)

=
∫ ∞

−∞
g(t− s)

∫
Θ(s)esL∗

0Ψ(x)L1ρ0(x)dxds (2.64b)

=
∫ ∞

−∞
g(t− s)

∫ Θ(s)
M∑

j=1
eλjsΠ∗

jΨ(x)
L1ρ0(x)dsdx (2.64c)

=
M∑

j=1

aj−1∑
k=1

α
(k)
j

1
k!

∫ ∞

−∞
g(t− s)Θ(s)eλjsskds (2.64d)

=
M∑

j=1

aj−1∑
k=1

α
(k)
j

1
k!
[
g ∗

(
Θeλj◦◦k

)]
(t), (2.64e)

where the coefficients α(k)
j are defined immediately below Eq. (2.45). At a practical level,

when a system is weakly forced so that its response is at the linear regime, δ(1)[Ψ](t) can be
observed from numerical simulations. In particular, if g(t) = δ(t), the perturbation would
be equivalent to an ε-sized shift in the initial condition of the unperturbed system. This
comment raises the question of using empirical measurements of the response δ(1) [Ψ] (t)
to find the decomposition of the Green function in terms of the point spectrum, which can
be thence convoluted against different time-modulations. In effect, Eq. (2.64) provides a
basis for the empirically observed response δ(1) [Ψ] (t) to project onto.

In Fourier domain, the convolution structure of δ(1) [Ψ] (t) is transformed into a product:

F
[
δ(1) [Ψ]

]
(ω) = F [g ∗ G] (ω) = F [g] (ω)F [G] (ω), (2.65)

whereω is a real frequency andF [G] is the susceptibility function which it is analytic in the
upper complex plane, by virtue of the causality constraint. Furthermore, if one assumes
polynomial decay of F [G] (ω), Kramers-Kronig relations can be derived, which link the
imaginary and real parts of the susceptibility function via Cauchy integrals [Luc09]. Under
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suitable integrability assumptions, one can, moreover, link the logarithm of the modulus
of the susceptibility with its real part, and then use Kramers-Kronig relations to find the
imaginary counterpart [Luc12].

Going back to the impulse force where g(t) = δ(t), it follows from Eq. (2.65) that the
linear response in frequency domain is exactly given by the susceptibility. If g(t) = Θ(t),

F
[
δ(1) [Ψ]

]
(ω) = F [Θ ∗ G] (ω) =

(
πδ(ω) − iP

( 1
ω

))
F [G] (ω), (2.66)

for the real frequency ω and where P denotes the Cauchy principal value of a singular
function.

Higher order terms in the frequency domain are obtained by computing the Fourier
transform of Eq. (2.59):

F
[
δ(k) [Ψ]

]
(ω) =∫ ∞

−∞
. . .
∫ ∞

−∞
F
[
G(k)

]
(ω1, . . . , ωk)g(ω1) . . . g(ωk)δ

(
ω −

k∑
i=1

ωk

)
dω1 . . . dωk,

(2.67)

where the delta-function forces the integrand to be non-zero only when the sum of the
Fourier frequencies sum up to the input ω.

The Fourier transform of the linear response has a more convenient representation in
terms of the information coming from a simple point spectrum of L0:

F
[
δ(1)Ψ(t)

]
(ω) =

M∑
j=1

αjF [g ∗ G] (ω) = F [g] (ω)
M∑

j=1

αj

iω − λj

. (2.68)

The susceptibility function F [G] can be meromorphically extended to all values of ω in
C such that Imω > ωess, where the poles correspond to those of the resolvent R(·,L0)
which are precisely given by the eigenvalues of L0 with the exception of that at ω = 0
by the observation made in Eq. (2.46). It is then clear that the location of the poles in
the susceptibility function depend, uniquely, on the underlying system and not on the
time-modulation function g or the observable in question. On the other hand, the spectral
coefficients αj also known as residues [Rue86], do depend on the observable. Comparing
Eq. (2.68) to Eq. (2.49c), we notice, once again, that the pole at z = 0 in Eq. (2.49c) is
solely due to the Laplace transforms taken there.

2.3.1 Stochastically Perturbed Deterministic Systems

The theory of random dynamical systems regards stochastic flows as transformations of
phase space parametrised in time but also in the noise realisation [Arn98]. In this sense,
one can view noise as the inhomogeneous component of an equation that makes it, loosely
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speaking, non-autonomous. Interestingly, when the noise component is relatively weak,
it can be regarded as a perturbation to the otherwise unperturbed deterministic system.
Consequently, the leading order modification to the system’s statistics is expected to be
captured by the linear response function, in the spirit of the previous sections where here,
instead, the perturbation vector field will be encoded in the covariance matrix. Indeed,
such is the case, although two main issues arise. First, the reference deterministic system
might not posses an absolutely continuous invariant measure with respect to Lebesgue
which prevents the use of density functions. Second, the Green function can be seamlessly
applied to derive realisation-dependent response formulas although these do not agree with
a perturbation expansion of the Fokker-Planck equation. This section, therefore, aims at
(i), determining the leading order correction to the statistics using operator relations and
(ii), proving that Green function and operator based response formulas are equal only
when the former is taken in the Stratonovich setting.

Stochastic perturbations to deterministic systems have been widely studied in the lit-
erature although such topic will not be reviewed here. Instead, the reader is referred to
[Gar09, Chapter 7]. We shall, nonetheless, follow previous work based on response theory
whereby, taking advantage of Ruelle’s formalism, [Luc12] deduces the effects of adding
noise to a deterministic system showing, additionally, how to understand Green’s function
in the stochastic sense. The same question is tackled in [Abr17], although the author re-
sorts to expanding the perturbed flow in terms of the tangent map leading to an apparently
different formula to that found in [Luc12]. These two formulas will be compared below.

From the operator point of view, the major background result concerns the stability of
the spectrum of the transfer and Koopman semigroups [BK98]; [KL99]. These results are
formulated for general transfer operators with a non-trivial point spectrum and conclude
that under small and generic stochastic perturbations, the point spectrum will experience
relatively small changes. In particular, if a system is exponentially mixing, small applied
fields wont change that character, cf. Proposition 3.2.3 in Chapter 3.

In this section we shall start by considering a stochastically perturbed system that obeys
the following Itô SDE:

dx(t) = F(x)dt+ εG(x)CdWt, (2.69)

where F : X −→ Rd is the drift, G : X −→ Rd×p is a perturbation matrix, andWt denotes
an independent p-dimensional Wiener process with p × p covariance matrix C2 = CC⊤.
The associated Fokker-Planck equation reads as:

∂tρ(·, t) =
(
L0 + ε2L2

)
ρ(·, t), (2.70)

where the operator L0 is the usual Liouvillian and the perturbation operator L2 above is
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defined for ρ in D(L0) as:

L2ρ = 1
2∇2 :

(
ρGC2G⊤

)
. (2.71)

This shows why ε is squared in Eq. (2.70) and justifies the subscript in L2. Equation (2.70)
describes the evolution of densities under the action of the stochastic flow, whereas expec-
tation values of observables Ψ evolve according to the backward-Kolmogorov equation:

∂tΨ(·, t) =
(
L∗

0 + ε2L∗
2

)
Ψ(·, t). (2.72)

While the operator L∗
0 was already defined in Eq. (2.25a), L∗

2 is:

L∗
2Ψ = 1

2
(
GC2G⊤

)
: ∇2Ψ, (2.73)

for Ψ in D(L∗
2). Here we immediately observe that stochastic forcing enters at second

order in powers of εwhen considering the operator representation of the stochastic process
(2.69). This is due to the timescale carried by the Wiener process, by which characteristic
times are

√
dt in Eq. (2.69) producing the squared ε that accompanies L2 and L∗

2. Using
Eq. (2.56) we can derive the leading order response of the steady state to the introduction
of noise:

δ(2) [Ψ] (t) =
∫ ∫ t

0
L∗

2Ψ(x(t))ρ0(x)dsdx (2.74a)

= 1
2

∫ ∫ t

0

(
G(x)C2G⊤(x)

)
: ∇2Ψ(x(s))ρ0(x)dsdx. (2.74b)

The right hand side of Eq. (2.74) does not require absolute continuity of the measure ρ0,
making it applicable in dissipative systems with singular measures: ρ0(x)dx 7→ ρ0(dx).
Note that we have evaluated the deterministic Koopman operator etL∗

0 to the observable Ψ
to give etL∗

0Ψ(x) = Ψ(x(t)), where x(t) solves Eq. (2.69) for ε = 0; this is in accordance
with Eq. (2.4).

Formula Eq. (2.74) coincides with what was obtained in [Abr17], where instead, the
author resorted to the tangent space in order to evaluate

(
G(x)C2G⊤(x)

)
: ∇2Ψ(x(t))

avoiding at all moments the density representation of the invariant measure ρ0. An
approach based on high-order Green functions was taken in [Luc12], although it yielded
a different formula. In such work, the Wiener increments dWt were treated as the time-
modulation of a sequence of p perturbations encoded in the matrix G. To illustrate this
idea, it is useful to rewrite Eq. (2.69) as a series of applied vector fields modulated by

41



Page 42 42

correlated Wiener increments:

dx = F(x)dt+ ε
p∑

i=1
gi(t)G:,i(x), (2.75)

where G:,i is the ith column of G and gi(t) are assumed to satisfy E [gi(t)] = 0 and
E [gk(t)gl(t)] = C2

k,l for every i, k, l = 1, . . . , p. For a given realisation of the noise
indexed by σ, one can apply Eq. (2.58) to obtain:

δ(1)
σ [Ψ] (t) =

p∑
i=1

∫ ∞

−∞
Gi(s)gi(t− s)ds, (2.76)

where Gi denotes the Green function associated with the vector field G:,i for every i.
Since, gi corresponds to a Wiener increment, taking averages over all possible realisations
σ makes the linear responses vanish: E

[
δ(1)

σ [Ψ]
]

= 0. Contrarily, the second order
response δ(2)

σ [Ψ] survives the averaging and is simplified to a single-time-variable integral
of the form:

δ̃(2) [Ψ] (t) := E
[
δ(2)

σ [Ψ]
]

= 1
2

p∑
k,l=1

∫
ρ0(dx)

∫ ∞

−∞
Θ(s)L∗

1,kL∗
1,le

sL∗
0Ψ(x)ds (2.77a)

= 1
2

p∑
k,l=1

∫
ρ0(dx)

∫ ∞

−∞
Θ(s)G:,k · ∇

(
G:,l(x) · ∇esL∗

0Ψ(x)
)

ds, (2.77b)

where L∗
1,i = G:,i·∇. To compare Eq. (2.77b) with Eq. (2.74), it is handy to disentangle the

column vector fields G:,i from the correlation matrix G so that, after some vector-matrix
manipulations, one deduces that:

δ(2) [Ψ] (t) = 1
2

p∑
k=1

p∑
l=1

C2
k,l

∫
ρ0(dx)

∫ t

0

(
G:,kG⊤

:,l

)
: ∇2Ψ(s)ds. (2.78)

It is distinct, then, that the approach described in the present document using operator
expansions yields a different formula to that of [Luc12] for the seemingly same question.
However, the tackling of such problem is, naturally, different, since the Green function
formalism regards the Wiener increments as an explicit time function whereas the operator
approach, by default, encodes the all averages in configuration space. To understand the
connection between these two approaches, we shall investigate whether the approach taken
in [Luc12] can be expressed more rigorously in terms of operators and compare it with the
perturbation operator in Eq. (2.73). To this end and for clarity, let us consider Eq. (2.75)
where a single perturbation G:,1 is applied, namely, p = 1. This means that C2 ≡ 1 and
we can rewrite Eq. (2.75) as:

dx(t) = F(x)dt+ εG̃HdWt, (2.79)
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where x(t) is in Rd, G̃ = diag(G:,1), Wt is a d-dimensional Wiener process and H is a
d× d matrix defined as:

H =


1
...
1

 [1, 0, . . . , 0] = 1de⊤
1 . (2.80)

Using this setting, we claim that Lucarini’s approach coincides with Eq. (2.74) if Eq. (2.79)
is interpreted in the Stratonovich sense (or G:,1 is a constant vector). We proceed by
expanding the operator product L∗

1,1L∗
1,1, which is instrumental in Eq. (2.77a). Let f

denote a generic twice differentiable function:

L∗
1,1L∗

1,1f = G:,1 · ∇ (G:,1 · ∇f) (2.81a)

= G:,1 · [(G:,1 · ∇) ∇f + (∇f · ∇) G:,1]
+ G:,1 · [G:,1 × (∇ × ∇f) + ∇f × (∇ × G:,1)] (2.81b)

= G:,1 · [(G:,1 · ∇) ∇f + (∇f · ∇) G:,1 + ∇f × (∇ × G:,1)] (2.81c)

= G:,1 · (G:,1 · ∇) ∇f + G:,1 · (∇f · ∇) G:,1 + G:,1 · (∇f × ∇ × G:,1) (2.81d)

= G:,1 · (G:,1 · ∇) ∇f + G:,1 · (∇f · ∇) G:,1 − ∇f · (G:,1 × ∇ × G:,1) (2.81e)

=
(
G:,1G⊤

:,1

)
: ∇2f + G:,1 · (∇f · ∇) G:,1 − ∇f · (G:,1 × ∇ × G:,1) . (2.81f)

We immediately observe that if ∇G:,1 ≡ 0, the response formula derived in Eqs. (2.74)
and (2.78) coincide. Consequently, agreement is found if the forcing is additive white
noise. The second and third terms on the RHS of Eq. (2.81f) are extra terms that can
be associated with the Itô-to-Stratonovich correction [Pav14]. Indeed, we see this by
regarding Eq. (2.79) in the Stratonovich sense:

dx(t) = F(x)dt+ εG̃H ◦ dWt. (2.82)

The corresponding Itô conversion reads and expands as

dx(t) =
[
F(x) + ε2

2
[
∇ ·

(
(G̃H)(G̃H)⊤

)
−
(
G̃H

)
∇ ·

(
G̃H

)]]
dt+ εG̃HdWt

(2.83a)

=
[
F(x) + ε2

2
[
∇ ·

(
G:,1G⊤

:,1

)
− (∇ · G:,1) G:,1

]]
dt+ εG̃HdWt. (2.83b)

Note that an ε2 term has appeared in the drift component. Consequently, the backward-
Kolmogorov equation associated with Eq. (2.83) will only have perturbation operators of
order ε2. Following the Dyson expansions that lead to Eq. (2.74), the perturbation operator
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L∗
2 for Eq. (2.83) writes as:

L∗
2f = 1

2
[
∇ ·

(
G:,1G⊤

:,1

)
− (∇ · G:,1) G:,1

]
· ∇f + 1

2G:,1G⊤
:,1 : ∇2f (2.84a)

= 1
2 [(G:,1 · ∇) G:,1] · ∇f + 1

2G:,1G⊤
:,1 : ∇2f (2.84b)

= 1
2

[1
2∇ (G:,1 · G:,1) − G:,1 × ∇ × G:,1

]
· ∇f + 1

2G:,1G⊤
:,1 : ∇2f. (2.84c)

Hence, comparing Eq. (2.84c) and Eq. (2.81f), we are left with showing that ∇ (G:,1 · G:,1)·
∇f = 2G:,1 · (∇f · ∇) G:,1, which can be seen by direct evaluation:

1
4∇ (G:,1 · G:,1) · ∇f = 1

4


2G1,1∂x1G1,1 + . . .+ 2Gd,1∂x1Gd,1

...
2G1,1∂xd

G1,1 + . . .+ 2Gd,1∂xd
Gd,1

 · ∇f (2.85a)

= 1
2 [G:,1 · ∂x1f∂x1G:,1 + . . .+ G:,1 · ∂xd

f∂xd
G:,1] (2.85b)

= 1
2G:,1 · (∇f · ∇) G:,1. (2.85c)

Which proves the claim. This can be formalised in the following proposition:

Proposition 2.3.1. Consider the SDE (2.69) in Stratonovich form and let H : Rd −→ Rd

be the Stratonovich-to-Itô correction:

H = ε2

2
[
∇ ·

(
GC2G⊤

)
− GC2

(
∇ · G⊤

)]
. (2.86)

Then,
δ̃(2) [Ψ] − δ(2) [Ψ] = 1

ε2

∫
ρ0(dx)

∫ ∞

−∞
Θ(s)H(x) · ∇Ψ(x(s))ds, (2.87)

where the first and second terms of the LHS are defined in Eq. (2.77a) and Eq. (2.78)
respectively.

Proof. We note the following chain of equalities:

dx = Fdt+ εGC ◦ dWt = [F + H] dt+ εGCdWt (2.88a)

=
[
F +

p∑
k=1

p∑
l=1

Hk,l

]
dt+ ε

p∑
i=1

G̃iHiCdWt, (2.88b)

where G̃i = diag (G:,i), Hi = 1e⊤
i and Hk,l is defined as:

Hk,l = ε2

2 Ck,l

[
∇ ·

(
G:,kG⊤

:,l

)
− G̃k∇ · G̃l

]
. (2.89)

Now, it is enough to repeat the argument started in Eq. (2.79) for each G̃i and then use the
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linearity of the leading order response to extend it for i = 1, . . . , p.

Remark 2.3.1. In case the applied fields G;,i in Eq. (2.75) are independent, we have that
C ≡ 1 in the SDE (2.83) making the cross-terms disappear in views that:

G̃:,kHkCH̃⊤
l G:,l = G̃:,kHkH̃

⊤
l G̃:,l = G̃:,k1e⊤

k el1
⊤G̃:,l ≡ 0. (2.90)

for every k ̸= l. Consequently, the L∗
2 operator associated with Eq. (2.83) reads as:

L∗
2 =

[ p∑
i=1

∇ ·
(
G:,iG⊤

:,i

)
−

p∑
i=1

G̃i∇ · G̃i

]
· ∇ + 1

2

p∑
i=1

(
G:,iG⊤

i

)
: ∇2, (2.91)

which would equate to applying the linear response formula to each field G:,i independently
and, then, summing up over i = 1, . . . , p.

In [Luc12] linear response of power spectral densities is related to the modulus of
the susceptibility function in case of white-noise modulated forcings. Indeed, there it is
argued that if F

[
Cϵ

Ψ,Ψ

]
(ω) is the perturbed power spectrum of the observable Ψ then we

have:

E
[
F
[
Cε

Ψ,Ψ

]
(ω)

]
− F [CΨ,Ψ] (ω) ≈ E

[∣∣∣δ(2)
σ [Ψ]

∣∣∣2] ≈ ε2 |F [G] (ω)|2 . (2.92)

In order to prove this, the author of [Luc12] invoked the Wiener-Khinchin theorem and
applied it to the autocorrelation function of δ(1)

σ [Ψ](t) before taking averages over σ.
Equation (2.92) appears to have a term missing if one compares it to Eq. (2.36). This is
due to the fact that, before averaging over realisations, the leading order response of the
flow is proportional to ε whereas the perturbed invariant measure responds proportionally
to ε2. Therefore, the RHS of Eq. (2.36) yields a single term from which Eq. (2.92) follows.

Notice that the left hand side of the equation above is especially easy to calculate if one
is let to sample the perturbed and unperturbed dynamics. Thus, it is possible to obtain
estimates of the modulus of the susceptibility function in a fully empirical way. One is
left with finding the actual locations of the poles, which the modulus itself cannot reveal.
This would be attained by noticing that the logarithm of the susceptibility function can be
written as:

log (F [G] (ω)) = log (|F [G] (ω)|) + iφ(ω), (2.93)

for every ω and some phase function φ. Assuming, further, that log (F [G] (ω)) is ana-
lytic, Kramers-Kronig relations are invoked to link its real and imaginary parts shown in
Eq. (2.93) and, thus, that of F [G] (ω). This way, Eq. (2.92) constitutes a practical way of
estimating the susceptibility function of a deterministic flow by using time series of the
stochastically forced vector field.
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2.4 Homogeneous Equation for the Response

The limit of weak forcing strength is instrumental in deriving meaningful linear response
formulas that capture statistical changes due to an applied external field. When small, yet
finite-sized perturbations are introduced, power series are resorted to and their conver-
gence depends on a radius of expansion. When the perturbations are not infinitesimal or
small, linear response formulas cease to be useful and the power series of high-order re-
sponses might diverge. One seems inevitably obliged to solve the perturbed Fokker-Planck
equation (2.52) to find the probability state at a certain time to evaluate the phase average
or full response of a given observable. In the present section, we aim at deriving a scalar
equation for the response function ⟨Ψ, ρ(·, t)⟩ in Eq. (2.56) that does not require a power
expansion nor the full knowledge of perturbed probability density function. The price to
pay, as will be detailed later, is the introduction of projected operators and memory in the
resulting equation.

The set of techniques explained here are based on the calculations presented in [Ken71];
[Ken73] in the context of quantum mechanical systems, at a time when linear response
and the subsequent fluctuation-dissipation theorem were just being introduced. Letting
alone the mathematically rigorous formulation of such results that eventually came with
Ruelle, the physical community was far from being unanimous with regards to Kubo’s
discoveries. The source of criticism for linear response was that it was not clear whether
infinitesimal changes in the microscopic nature of the system would provoke relatively
equal disturbances in the average behaviour. This was the cornerstone of the objections
to the perturbative approaches and it is summarised in [Kam71]. In such work, it is
argued that the chaotic nature of statistical mechanical systems can provoke exponentially
diverging microscopic trajectories on phase space with a rate given by the first Lyapunov
exponent resulting in statistical responses well beyond linearity. Hence, alternative ways
of simplifying the study of response were needed, one of them being that originated in
[Ken71]; see also [VV78] for a review on attempts to justify linear response theory.

Now, well after Ruelle’s mathematical proof of linear response, it is our desire to
review the formulas presented of [Ken71]; [Ken73] but in a stochastic framework and
with references to recent advances in the treatment of operator equations. To do this,
the equation of motion— regardless it being stochastic or deterministic— will suitably
be projected to derive, with the aid of the Mori-Zwanzig formalism [Zwa01], a scalar
equation for the response ⟨Ψ, ρ(·, t)⟩ where the only independent variable is ⟨Ψ, ρ(·, t)⟩
itself; this is, an homogeneous equation. It will be shown, moreover, that such relations
can be exploited to find explicit solutions for the response in frequency domain in a way
that they are not expressed in power series as opposed to previous sections.

To achieve this goal, we shall start by considering the forced SDE (2.15). Since
the introduction of perturbations makes the equations of motion non-autonomous, the
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exponential operator no longer serves as a notation for the solution of Eq. (2.16) unless we
introduce some assumptions on L(t). First, we shall assume that L(t) generates a strongly
continuous unitary semigroup for every t ≥ 0. Second, we assume that the family L(t) is
time-ordered (see [Gil17] for precise definition) so that the operator

∫ t
s L(τ)dτ is a strong

Riemann integral and the generator of a strongly continuous semigroup on t so that if
ρ(·, t) = e

∫ t

s
L(τ)dτρs then

∂tρ(·, t) = L(t)ρ(·, t), with ρ(·, s) = ρs. (2.94)

The exponential operator in this sense is, therefore, called a time-ordered exponential
[Gil17]. To finish the notation for this section we will define the full response function
RΨ(t) as:

RΨ(t) := ⟨Ψ, ρ(·, t)⟩ =
∫

Ψ(x)ρ(x, t)dx, (2.95)

where ρ(·, t) is a solution of Eq. (2.16). Traditionally, the response function is defined
as the difference between the perturbed and unperturbed means of the observable Ψ,
but since the latter is stationary, this definition will not introduce differences with other
formulations.

The derivation of an homogeneous response equation starts by differentiating Eq. (2.95)
with respect to time:

∂tRΨ(t) = ∂t

∫
Ψ(x)ρ(x, t)dx =

∫
Ψ(x)∂tρ(x, t)dx =

∫
Ψ(x)L(t)ρ(x, t)dx. (2.96)

This equation is exact and describes the evolution of the response to any order in ε for an
unlimited amount of time. However, we want to avoid solving the Fokker-Planck equation
(2.16) exactly to calculate ρ(·, t), on the contrary, the target is to extract from ρ(·, t) the
information necessary in order to describe RΨ(t) alone. For such purpose, we introduce
the projection P defined by:

Pf = ξ−1
(∫

Ψ(x)f(x)dx
)
ρ0, (2.97)

where,
ξ :=

∫
Ψ(x)ρ0(x)dx. (2.98)

Consequently with Eq. (2.97), our main assumption here is that ξ is non-zero. To check
that, indeed, P is a projection, it suffices to take a function f and evaluate it twice against
P:

PPf = ξ−1
(∫

Ψ(x)Pf(x)dx
)
ρ0 (2.99a)

= ξ−1
(∫

Ψ(x)ξ−1
(∫

Ψ(x)f(x)dx
)
ρ0(x)dx

)
ρ0 = Pf (2.99b)
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as desired. With these definitions, we immediately find that:

Pρ(·, t) = ξ−1
(∫

Ψ(x)ρ(x, t)dx
)
ρ0 = ξ−1RΨ(t)ρ0 (2.100)

and that Pρ0 = ρ0.
Next step is to derive an equation of motion of the projected function Pρ(x, t) by

making use of the generalised Mori-Zwanzig formalism formulated originally in [MD69].
Applying the projections P and 1 − P to the Fokker-Planck equation Eq. (2.16) gives the
following:

∂tPρ(·, t) =PL(t)ρ(·, t) = PL(t) (P + 1 − P) ρ(·, t) (2.101a)

=PL(t)Pρ(·, t) + PL(t) (1 − P) ρ(·, t), (2.101b)

∂t (1 − P) ρ(·, t) = (1 − P) L(t)ρ(·, t) = (1 − P) L(t) (P + 1 − P) ρ(·, t) (2.101c)

= (1 − P) L(t)Pρ(·, t) + (1 − P) L(t) (1 − P) ρ(·, t). (2.101d)

Integrating Eq. (2.101d) we find the value of (1 − P) ρ(·, t):

(1 − P) ρ(·, t) = G(t, 0) (1 − P) ρ0 +
∫ t

0
G(t, s)(1 − P)L(s)Pρ(·, s)ds, (2.102)

where G(t, s) = e
∫ t

s
(1−P)L(τ)dτ . The final expression for the projected dynamics Pρ(·, t)

is split in four parts:

∂tPρ(·, t) = (2.103a)

PL(t)Pρ(·, t) (2.103b)

+ PL(t)G(t, 0) (1 − P) ρ0 (2.103c)

+ PL(t)
∫ t

0
G(t, s) (1 − P) L(s)Pρ(·, s)ds, (2.103d)

where the relevant terms of the equation have been separated into rows. The LHS of
Eq. (2.103a) contains the time-derivative of the response function and, applying the
definition of the projection operator P, reads as:

∂tPρ(·, t) = ∂tξ
−1
(∫

Ψ(x)ρ(x, t)dx
)
ρ0 = ξ−1ρ0∂tRΨ(t). (2.104)

The streaming term [MD69] refers to the projected evolution laws for the projected
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variables and is present in Eq. (2.103b) and expanded below:

PL(t)Pρ(·, t) = ξ−2ρ0

∫
Ψ(x)L(t)

(∫
Ψ(x)ρ(x, t)dx

)
ρ0(x)dx (2.105a)

= ξ−2ρ0RΨ(t)
∫

Ψ(x)L(t)ρ0(x)dx. (2.105b)

Third, we notice that (1 − P) ρ0 ≡ 0 so that the initial value term in Eq. (2.103c) vanishes;
this results from Eq. (2.100). The last step is to expand the memory term by means of
analysing the kernel inside the time integral in Eq. (2.103d):

PL(t)
∫ t

0
G(t, s) (1 − P) L(s)Pρ(·, s)ds (2.106a)

= ξ−2RΨ(t)ρ0

∫ t

0

∫
L(t)G(t, s)(1 − P)L(s)ρ0(x)ds. (2.106b)

Upon substitution and simplification we find that the evolution equation for the response
function RΨ can be written in more compact terms as:

∂tRΨ(t) = B(t)RΨ(t) +
∫ t

0
K(t, s)RΨ(s)ds, (2.107)

where the newly introduced function B(t) and memory kernel K(t, s) are defined as:

B(t) = ξ−1
∫

Ψ(x)L(t)ρ0(x)dx, (2.108a)

K(t, s) = ξ−1
∫

Ψ(x)L(t)e
∫ t

s
(1−P)L(τ)dτ (1 − P) L(s)ρ0(x)dx. (2.108b)

Equation (2.107) becomes a scalar and homogeneous equation on RΨ, where there is not
explicit reference to the time-dependent measure ρ(x, t) that would be obtained by solving
the full Fokker-Planck equation (2.16). Solving the non-Markovian equation (2.107)
would yield the response function and, in principle, should be equal to the perturbative
approach in Eq. (2.56), provided that the parameter ε is within the radius of convergence.
A first check for the validity of Eq. (2.107) would involve showing that the leading order
terms with respect ε would give the Kubo formula (2.58). Indeed, it is calculated in
Appendix A, following [Ken71], how the memory equation (2.107) is solved to find that
the linear response can be written in terms of the Green function as done earlier.

Remark 2.4.1. The assumption of ξ ̸= 0 is central in the derivation of Eq. (2.107), as also
noted in the first work [Ken71]. A generalisation for ξ = 0 is found in [Ken73], although
the resulting equation differs from that of Eq. (2.107) because a time-dependent term is
added on the RHS; see also [VV78].

Step-function perturbation. If a constant forcing is activated at t = 0, time is modulated
by a Heaviside distribution on positive values of time. In particular we are looking at the
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Fokker-Planck equation expressed as:

∂tρ(·, t) = L(t)ρ(·, t) = L0ρ (·, t) + εΘ(t)L1ρ(·, t), (2.109)

where Θ is the Heaviside distribution with amplitude controlled by the perturbation
parameter ε. The linear response and susceptibility functions were already calculated
in Eqs. (2.63) and (2.66), respectively, using the Green function formulation. The same
results can be obtained to leading order using the present approach; see Appendix A for
the derivation.

We then look at Eq. (2.107) to study the full response functionRΨ(t). Upon substitution,
the function B(t) present in Eq. (2.108a) becomes:

B(t) = ξ−1
∫

Ψ(x)L(t)ρ0(x)dx = ξ−1
∫

Ψ(x) (L0 + εΘ(t)L1) ρ0(x)dx (2.110a)

= εΘ(t)ξ−1
∫

Ψ(x)L1ρ0(x)dx = εqΘ(t), (2.110b)

where we have introduced the scalar quantity q :=
∫

Ψ(x)L1ρ0(x)dx. Furthermore, the
integral kernel can be shown to become a convolution kernel by observing that for t, s ≥ 0
we have:

G(t, s) = e
∫ t

s
(1−P)L(s)ds = e

∫ t

s
(1−P)(L0+εΘ(s)L1)ds = e(t−s)(1−P)(L0+εL1). (2.111)

Consequently, the function K(t, s) depends on t− s uniquely and Eq. (2.107) becomes:

∂tRΨ(t) = εqRΨ(t) +
∫ t

0
K(t− s)RΨ(s)ds, (2.112)

which has the structure of a convolution. Finally, imposing causality as in Eq. (2.58), we
take Fourier transforms:

ωF [RΨ] (ω) −RΨ(0) = εqF [RΨ] (ω) + F [K] (ω)F [RΨ] (ω), (2.113)

for ω in R and whereby rearranging we get the explicit solution:

F [RΨ] (ω) = ξ

ω − εq + F [K] (ω) , (2.114)

where we have assumed thatRΨ(0) = ξ; for the justification, see Eq. (A.4) in Appendix A.
The inverse transform would return the response function to all orders in the parameter ε.

In Section 2.3 the response formulas were given in terms of the kth order Green
functions and, provided that the forcing parameter ε is small enough, yielded the full
response in time and frequency domains; see Eqs. (2.60) and (2.67), respectively. Here,
on the other hand, the response in frequency domain is given in terms of the memory
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integral in Eq. (2.107). Such integral component is determined by the memory kernel K
which is abstract and analytically intractable since it involves the exponential of a projected
(unbounded) differential operator, namely, (1 − P)L. However, rearranging Eq. (2.114)
and using the perturbative expansion in terms of the Green function based on Eq. (2.62)
and its transform Eq. (2.67) we find:

F [K] (ω) = ω − εq −
( ∞∑

k=0
εkδ(k)[Ψ](ω)

)−1

, (2.115)

which gives a formula for relating the memory term in Eq. (2.107) and the higher order
responses obtained through the generalised Green functions defined in Eq. (2.59).

Impulse perturbation. For a Delta-modulated forcing, substituting g(t) by δ(t) in
Eq. (2.56) readily gives the linear response function Eq. (2.61), although gathering the
leading order terms of Eq. (2.107) would also yield the same formula; see, again, Ap-
pendix A. For the full response, the function B(t) in Eq. (2.108a) reads in this case
as

B(t) = ξ−1
∫

Ψ(x)L(t)ρ0(x)dx = ξ−1
∫

Ψ(x)εδ(t)L1ρ0(x)dx = εqδ(t). (2.116)

The memory kernel K(t, s) in Eq. (2.108b) can also be written in convolution form as for
the Heaviside distribution. Indeed,

G(t− s) = e
∫ t

s
(1−P)L(τ)dτ = e

∫ t

s
(1−P)(L0+εδ(τ)L1)dτ = e(t−s)(1−P)L0+ε(1−P)L1 . (2.117)

This way, Eq. (2.107) becomes:

∂tRΨ(t) = B(t)RΨ(t) +
∫ t

0
K(t− s)RΨ(s)ds. (2.118)

As before, we take Fourier transforms on the previous equation to get:

ωF [RΨ] (ω) −RΨ(0) = εqRΨ(0) + F [K] (ω)F [RΨ] (ω). (2.119)

Taking RΨ(0) = ξ and rearranging,

F [RΨ] (ω) = ξ (1 + εq)
ω − F [K] (ω) . (2.120)

As with Eq. (2.115), it is possible to relate the kernel K with the kth order responses
provided that ε lies in the interval of the power series convergence.
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2.5 Summary and Discussion

In this chapter we have derived response formulas to describe a system undergoing external
perturbations. The theory of the transfer and Koopman operators together with their
stochastic analogues via the Fokker-Planck and backward-Kolmogorov equation, has been
shown to provide a methodology which yields the linear and non-linear responses in
agreement with previous works in this area.

Equation (2.23) contains the main perturbative formula for the expectation values of
observables in a system subject to static forcing. Time-dependence is here uniquely due
to applying variation-of-parameters in Eq. (2.16) and, thus, such response formula has to
be understood as transient. After convergence to a steady state, the stationary response is
given in Eq. (2.26) and the rate of convergence is determined by the point spectrum of the
generator; see Eq. (2.45). This is in line with recent advances in decomposing correlation
functions in terms of the point-spectrum of quasi-compact operators [Tan+20]. Taking
the advantage of the static character of the perturbation, Laplace transforms allowed to
link the theory of perturbed resolvent operators with the frequency representation of the
response in Eq. (2.49a).

When the applied fields are time-modulated, physical constraints in the response func-
tions are imposed. Indeed, the enforcement of causality allows to express the linear
response as a convolution of the associated Green function and the time-modulation as
shown in Eq. (2.58). More importantly, here we observed that the point spectrum of
the underlying quasi-compact operator serves to decompose both the Green function and
dynamic susceptibility in terms of eigenfunctions: see Eq. (2.64) and Eq. (2.68), respec-
tively.

A particular case of inhomogeneous forcing is considered in Section 2.3.1, where noise
is used to perturb a deterministic system. The operator expansion in Eq. (2.26) was
seamlessly employed in the backward-Kolmogorov equation associated with Eq. (2.69) to
find Eq. (2.74), which contains the leading order response and happens to be proportional
to ε2. If, on the other hand, one treats the Wiener increments in Eq. (2.69) as functions
obeying the usual rules of calculus, one obtains a response formula which has to be
averaged over all possible realisations of the noise and gives a different result (2.77a), first
obtained in [Luc12]. Because of treating the noise as a usual function, one is implicitly
led to the Stratonovich stochastic calculus [Pav14, Chapter 3]. In Proposition 2.3.1, we
precisely show that the difference between Eq. (2.74) and Eq. (2.77a) is exactly given by
the Itô-to-Stratonovich correction.

The second-to-last section takes an alternative angle to the problem of response. In
Section 2.4 we projected the Fokker-Planck equation to write a scalar and homogenous
equation for the response, first deduced in [Ken71] for quantum systems, which did not
resort to finding the perturbed density function at the price of introducing memory; see
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Eq. (2.107). The existence of solutions of Eq. (2.107) are tied to the decay properties of
the memory kernelK(t), which possesses an exponential of a projected operator. In views
of the spectral decomposition of the response function presented in Section 2.2.1, one is
inclined to think that convergence of the integral term in Eq. (2.107) as t tends to infinity
is determined by the spectral gap in the projected generators, which are not investigated
here. It was also observed that viewing Eq. (2.107) in frequency domain allows to derive
a non-perturbative formula for the response in the case of step-function (Eq. (2.114)) and
impulse perturbations (Eq. (2.120)). The Fourier transform of the memory kernel can,
furthermore, be related in the latter cases with the high-order responses and, thus, with
the generalised Green functions (see Eq. (2.115)). The latter is rather surprising since
the memory kernel on the LHS of Eq. (2.115) involves convoluted projected differential
operators whereas the generalised Green functions do not.
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Chapter 3

Response and Sensitivity
Using Markov Chains

In the Introduction, we mentioned the need of elaborating methodologies that allowed
to predict statistical changes of the climate system as a result of applying an external
field, without resorting long numerical integrations of the model in question. Towards
this goal, the linear response theory for stochastic systems surveyed in Chapter 2 come to
our aid since the resulting changes in the statistics are expressed in terms of the unforced
evolution operators. Constructing the response operator of a physical system, however,
is a difficult and costly task, which heavily depends on the nature of its dynamics and
the number of degrees of freedom. As a consequence of such computational expense,
developing numerically tractable methods are required. In this chapter we demonstrate
that it is possible to calculate, by using finite representations of the transfer operator, the
response of a system by sampling its unperturbed dynamics and having prior knowledge
of the forcings applied to it. The overall goal is to provide practically usable tools for
studying the response of complex non-equilibrium climate-like systems to perturbations.

Obtaining discrete representations of dynamical invariants is a pillar towards a better
understanding of a physical system. As for the invariant measure and other steady state
statistics, Ulam’s conjecture claims that a finer spatial resolution yields more accurate
computations [Ula64]. Unfortunately, this conjecture has only been proved positively for
very few deterministic dynamical systems; see e.g. [Li76]; [Fro98], although more details
and references will be given in the main body of this chapter. Along these lines, Ulam-type
finite projections of the transfer operator or Fokker-plank semigroup are, nevertheless,
susceptible of providing satisfactory estimates of invariant measures, correlations and
responses up to finite precision.

Projected transfer operators are realised to have Markov-matrix structures whose spec-
tral features are linked to dynamical properties of the underlying system. Indeed, the
already mentioned rough-parameter dependence of an intermediate complexity ENSO
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model is characterised by small spectral gaps in these matrices1. Moreover, almost in-
variant sets on phase space arise from the eigenvectors of such matrices and can be
associated with Lagrangian coherent structures in the ocean [Fro+07] as well as midlati-
tude atmospheric blocking events [TBD15]. Furthermore, when a system is undergoing
perturbations, Markov matrices serve to give estimates of the statistical sensitivity of
the model [Sen93]; [Luc16] and can reveal its approach to a bifurcation point [TLD18];
[Tan+18]. It remains to show, though, whether information of the unforced attractor can
be used to entirely calculate the linear response of the system given prior knowledge of
the applied field.

The plan for this chapter is to delve on the finite representation of the operator semi-
group techniques exposed in the previous chapter and report the results found in [SGL20].
We shall depart from the deterministic case of the transfer operator introduced in Sec-
tion 2.1 and observe that an extension to stochastic systems is straightforward. Projecting
the transfer operator onto a finite dimensional basis functions naturally leads to matrix
representations that inherit a Markovian structure, as is shown in Section 3.1. By working
at the level of abstract yet finite Markov chains, we are able, in Section 3.2, to develop
the perturbation theory of stochastic matrices that allows for defining the concept of linear
response for this type of finite phase space processes and thus, for coarse-grained transfer
operators. This is accompanied by technical counterpart in Section 3.2.1, which addresses
the algebraic well-posedness of the problem. The numerical conditioning of stochastic ma-
trices towards calculating the linear response is investigated in Section 3.2.1.1. Numerical
results are gathered in Section 3.3 which involve the study of two simple yet meaningful
dynamical processes. In Section 3.3.1 a two-dimensional Ornstein-Uhlenbeck (O-U) pro-
cess [UO30] is analysed, whereas Section 3.3.2 deals with the celebrated Lorenz 63 system
[Lor63] in the hope of providing the transfer operator point of view to prior investigations
in determining its statistical sensitivity.

3.1 Projected Transfer Operators and Markov Chains

We consider a finite subdivision of the d-dimensional phase space X ⊆ Rd into N

Lebesgue-measurable and non-intersecting subsets or boxes {Bi}N
i=1 and define 1Bi

as
the characteristic function on box Bi ⊂ X . The vector space spanned by this set of
functions we denote as UN and it is, by construction, N -dimensional. In case that X
is unbounded, some of the boxes must also be unbounded in order to cover X , but
this is fine as long as the chosen collection is finite. Thus, we define the projection

1The meaning of spectral gap here is to a large extent the same as defined in the paragraph below
Eq. (2.42)
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PN : L1
η (X ) −→ UN = Span

(
{1Bi

}N
i=1

)
⊂ L1

η (X ) as

PNρ =
N∑

i=1

1Bi

η (Bi)

∫
Bi

ρ(x)1Bi
(x)η(dx), (3.1)

where η indicates some probability measure that has to be chosen depending on the problem
at hand; this shall be discussed in more detail later in this chapter. The choice of functional
space follows from the domain of the transfer operator Pt defined in Eq. (2.1), although it
is susceptible of being changed accordingly with the nature of the flow. It follows that any
projected function PNρ can be represented in vector form u = [u1, . . . , uN ]⊤ in RN with
respect to the basis of UN , where:

ui = 1
η (Bi)

∫
Bi

ρ(x)1Bi
(x)η(dx), (3.2)

for every i = 1, . . . , N . In an analogous manner, the transfer operator Pt introduced in
Eq. (2.1) can be projected to obtain matrix approximants. It was shown in Section 2.1 that
the operator Pt is the exponential of a generator L defined as a strong limit in Eq. (2.9), and
such notation will be used from now on. The projected exponential PNe

tL : UN −→ UN ,
hence, admits a matrix representation Mt, where each element is given by:

Mt
i,j := 1

η(Bi)

∫
Bi

etL1Bj
(x)η(dx), (3.3)

with i, j = 1, . . . , N . This matrix describes the proportion of box Bi that will end up
in box Bj after t time units. To a large extent this matrix determines the probability of
jumping onto Bj conditional on being somewhere distributed in Bi according to η. In
general, matrices that describe transition probabilities between states are called Markov
or stochastic [Sen73]:

Definition 3.1.1. Let N be a positive integer. The matrix M in RN×N is Markov or
stochastic if the following two conditions are met:

(i) Mi,j ≥ 0 and,

(ii)
∑N

i=1 Mi,j = 1

for every i, j = 1, . . . , N .

With this definition, it is claimed that Mt is a stochastic matrix for every t ≥ 0. We,
therefore, have to check conditions (i) and (ii) on the entries of Mt, stated in Defini-
tion 3.1.1. Firstly, since the characteristic functions are positive and η is a probability
measure, it is immediate that Mt

i,j ≥ 0, for every i, j = 1, . . . , N . Secondly, we apply the
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definition of the transfer operator (2.1) to obtain the following chain of equalities:

N∑
i=1

Mt
i,j =

N∑
i=1

1
η(Bi)

∫
Bi

etL1Bj
(x)η(dx) (3.4a)

=
N∑

i=1

1
η(Bi)

∫
ϕ−t(Bi)

1Bj
(x)η(dx) (3.4b)

=
N∑

i=1

1
η(Bi)

∫
ϕ−t(Bi)∩Bj

η(dx) (3.4c)

=
N∑

i=1

η (ϕ−t (Bi) ∩Bj)
η (Bi)

= 1, (3.4d)

which is true for every j = 1, . . . , N and every value of t. Consequently, the matrix
defined in Eq. (3.3) is stochastic.

It is worth highlighting that the properties of the flow ϕt are reflected through etL

and it raises the question of whether such properties are preserved when projecting etL

onto UN . First of all, notice that because of the projection, the semigroup property
is lost; see Eq. (2.2). While the transfer operator satisfies etLesL = e(t+s)L— which
results from the underlying autonomous system—, the matrix representation Mt does not
satisfy the semigroup relation in general, leading to a inhomogeneous family of Markov
chains {Mt}t≥0 whose the spectral elements (eigenvalues and eigenvectors) might be
time-dependent. This can also be seen as a consequence of projecting the evolution of
probability density functions which entail the appearance of memory terms, by virtue
of the Mori-Zwanzig formalism; cf. Eq. (2.101) or [Zwa01]. In practise, the projected
transfer operator Mτ is calculated once for a value of τ > 0 so that the semigroup property
is almost held for nτ time units for every integer n > 1:

Mnτ ≈
n︷ ︸︸ ︷

Mτ · . . . · Mτ = (Mτ )n . (3.5)

Hence, a suitable choice of τ allows to minimise the loss of semigroup property and define
the homogeneous discrete time Markov chain {(Mτ )n}∞

n=1, where the projection of the
transfer operator is performed only once. From now on, Mnτ shall equally denote the
projection of enτL and nth power of Mτ . In general, a good value for τ depends on
the size of the boxes used in the partition. Indeed, coarse partitions are examined with
larger values of τ , so that points of phase space have more chances of jumping to the next
box;[FR02]; [TLD18]. Consequently, the choice for τ becomes crucial and will be studied
in Section 3.3.2 with a worked example.

Alongside the semigroup property, the concepts of ergodicity and mixing of a dynamical
system {ϕt}t≥0 defined in the Introduction can also be extended to Markov chains by means
of analysing the structure of the stochastic matrices defining them. Positive elements in
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the stochastic matrix Mτ indicate that after τ time units, a fraction ofBj will jump intoBi

and, in this sense, the two states Bi and Bj are connected. Furthermore, M2τ will also be
a stochastic matrix and its positive elements indicate connected states after 2τ time units.
Hence, one expects that, if the underlying system is ergodic or mixing, the entries of the
stochastic matrix Mt will eventually become positive. Indeed, in the theory of Markov
matrices, and more generally of positive matrices, ergodicity and mixing can be suitably
defined in terms of their algebraic structure and non-negativity of matrix powers. Indeed,
a stochastic matrix M is primitive if there exists a positive integer n such that Mn has
strictly positive elements [Sen73]. Such matrices will, hence, define Markov processes
where states are visited with uniformly non-vanishing probability after enough iterations
of the chain. These matrices are also known as irreducible and aperiodic [Bal00]; [Sen73,
§1]. For this class of matrices, the celebrated Perron-Frobenius theorem holds in the form
that follows:

Theorem 3.1.1 (Perron-Frobenius). LetN be a positive integer and M anN×N primitive
stochastic matrix. Then,

(i) 1 is in σ (M)

(ii) 1 is simple

(iii) if Mu = u, u is strictly positive or negative

(iv) 1 > |λj|, for all λj in σ (M) \ {1}

This theorem is central in the theory of Markov chains since it guarantees the existence
of an invariant probability vector, this is, an eigenvector u = [u1, . . . , uN ]⊤ associated
with the eigenvalue 1 that is strictly positive and such that

∑N
i=1 ui = 1. Moreover, the

simplicity of such an eigenvalue implies that there are no subsets of states that are invariant
under the action of M, reminiscing of ergodicity. Finally, the Perron-Frobenius theorem
also implies that the spectrum of a primitive stochastic matrix is within the complex unit
ball, in views of item (iv) above.

With regards to the projected transfer operator defined in Eq. (3.3), one would like to
obtain finite dimensional vector approximations of the invariant measure that can be used
to calculate the expectation values of the coarse-grained observables. To this end, and
assuming that the resulting matrix is primitive, we exploit Perron-Frobenius theorem to
find the positive eigenvector u associated with the largest eigenvalue 1:

Mτ u(τ) = u(τ), (3.6)

for some value of τ in R that minimises the loss of semigroup property in the sense
of Eq. (3.5). Notice that because of this assumption, although the family {Mτ }τ∈R is
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technically inhomogeneous, u has a weak τ -dependence to the extent that u(τ) ≈ u(nτ)
for every natural n. Moreover, by construction, it follows that u is exactly invariant for
every stochastic matrix in {Mnτ }∞

n=1. Hence, from now on we shall drop the τ -dependence
notation in Eq. (3.6).

With the homogeneous chain {Mnτ }∞
n=1 at hand, convergence to the steady state u is

measured by the rate at which ∥Mnτ u0 − u∥ vanishes for any initial ensemble u0 in RN .
Since we are assuming that Mτ is mixing, the second largest eigenvalue in modulus λ2

of Mτ lies strictly inside the unit ball and regulates the speed at which ensembles relax
towards a steady state [Sen73]. In this sense, λ2 is related to the spectral gap associated
with a point spectrum in the generator of the transfer operator or Fokker-Planck semigroup
discussed in the paragraph below Eq. (2.42).

Remark 3.1.1. Projected transfer operator are, effectively, a way of visualising the coarse-
grained dynamics of the flow, although it is not here proved whether they constitute a
rigorous approximation in a suitable norm. More concretely, a projection PN is said to
be a rigorous approximation of etL in the operator norm if

lim
N→∞

∥∥∥PNe
tL − etL

∥∥∥ = 0. (3.7)

This is the content of Ulam’s conjecture [Ula64], which states that finer partitions lead
to more accurate approximations of dynamical invariants such as the invariant measure
or the rate of mixing. Regarding the invariant measure estimated from the eigenvalue
problem (3.6), such conjecture has turned out to be positive for twice differentiable
expanding one-dimensional maps in the L1 norm [Li76]. Immediate extensions to higher
dimensions require the existence of a physical and absolutely continuous invariant measure
where partitions of phase space can be taken rather arbitrarily in order to converge
[Fro98]. It has been proved, however, that Ulam-type estimations do work as well
for uniformly hyperbolic dynamical systems which posses a singular invariant measure,
although partitions are required to be Markov-partitions — see [Fro99] for definition—
that allow to regard the dynamical system as subshifts of finite type [Bal00].

In the same way that the eigenvector associated with the largest eigenvalue 1 gives
us a first guess for the discretised invariant measure, we can consider approximating the
expectation value of an observable Ψ. To this end, we can introduce an inner product
⟨·, ·⟩PN

, so that if ρ and Ψ are square integrable, we have

⟨ρ,Ψ⟩PN
:= ⟨PNρ, PNΨ⟩ =

N∑
i=1

[PNρ]i[PNΨ]i, (3.8)

where ⟨·, ·⟩ refers to the L2-inner product and [PNρ]i and [PNΨ]i are the coordinates with
respect to the basis of UN of ρ and Ψ respectively, as determined by Eq. (3.2). Notice
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that if η is the invariant measure and possesses a density ρ0 with respect to Lebesgue,
then ⟨ρ0,Ψ⟩PN

provides a coarse-grained estimate of the expectation value of Ψ at the
statistical steady state. Furthermore, since correlation functions can be expressed in terms
of the transfer operator, see Eq. (2.11), its discretised counterparts via Ulam-projections
should be the candidates for approximating them in finite precision. Letting Ψ and Φ be
L2-integrable, their projected correlation function is given by:

CPN
Ψ,Φ(t) =

N∑
i=1

N∑
j=1

[PNΨ]i Mt
j,i [PNρ0]j [PNΦ]j − ⟨ρ0,Ψ⟩PN

⟨ρ0,Φ⟩PN
. (3.9)

As before, projected correlations provide estimates of the actual correlation functions,
although rigorous results on the limit of fine resolution are, to this date, very limited; see
Remark 3.1.1.

In previous chapters we have observed that the invertibility of the flow together with the
invariance of the measure µ makes the transfer operator semigroup unitary in L2

µ(X ); see
Theorem 2.1.1 and the comments below. Consequently, the lack of non-unital eigenvalues
in such operator semigroup cannot explain the decay of correlations, which is characteristic
of chaotic and mixing systems. It was observed that more general Banach spaces are needed
to identify the resonances within the unit ball responsible of making correlations decay
[BL07]. In this chapter, though, the transfer operator semigroup is projected by means of
Eq. (3.3). Such finite truncation introduces artificial irreversibility to the dynamics, and
will reflect on the non-unitarity of the resulting approximation Mτ , but also seen in the
Perron-Frobenius theorem 3.1.1. One way of viewing this is to regard Ulam-partitions as
an upwind finite-difference scheme that artificially introduces diffusion and, consequently,
the approximated transfer operator and other invariant features correspond to that of a
stochastically forced system [FJK13]. On physical grounds, the geometric complexity
and self-similarity of deterministic attractors that support the invariant measure prevents
that an increase of resolution results in unitary transition matrices Mτ that, in turn, yield
eigenvalues that converge strictly within the complex unit ball [FR02].

3.2 Perturbations of Finite Markov Chains

Applied fields lead to perturbations on the transfer operator eτL and, consequently on the
matrix Mτ . This fact motivates the problem of reverting the question i.e., by considering
perturbations of Mτ , can we estimate the response. Because rigorous and general results
regarding the approximation of transfer operators do not exist— see Remark 3.1.1—, we
cannot guarantee whether the qualitative features like the existence of a spectral gap, the
regularity of the invariant measure or the correlation functions will be preserved under
projections. In this section we shall, nevertheless, develop the theory of response for
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finite Markov chains at an abstract level following [Sch68]; [Luc16]; [ADF18], so that the
matrix Mτ can be employed to estimate the response and sensitivity of the underlying
system.

Consider a mixing Markov chain with a finite number of states N in N. The transition
probability from state to state is determined by a matrix M in RN×N which, without loss
of generality, determines the process itself. In other words, a positive vector u0 in RN with∑N

i=1 u0,i = 1 would indicate an initial ensemble of states and the sequence {Mnu0}∞
n=0

would be a realisation of the Markov process and the probability of transitioning from
ith state conditioned on being in the jth is given by Mi,j . Positivity and conservation
of probability ensure that M is a stochastic matrix, satisfying conditions (i) and (ii) of
Definition 3.1.1. Furthermore, the process is assumed to be mixing, implying that the
matrix M is primitive, for which the Perron-Frobenius theorem 3.1.1 holds.

In order to obtain a response formula for Markov chains, it is necessary to introduce
external perturbations that do not compromise the Markovian structure of the defining
matrices. This way, working at the level of stochastic matrices, we consider a perturbation
of the matrix M of the form:

M −→ M +
n∑

k=1
εkmk, (3.10)

wherem1, . . . ,mn areN×N matrices and ε1, . . . εn are real parameters. The matricesmk

are what we will call the perturbation matrices which model different physical processes
involved in changing the nature of the matrix M. This way of introducing perturbations
allows to consider general patterns of forcing with, if time-dependence was allowed,
different time modulations; see, for instance, Eq. (2.75) or a more general discussion
in [Zwa01]. Another reason for this is to investigate whether responses to different
perturbations can be seamlessly added so that a superposition principle holds; we shall
observe that by the nature of the problem taken here, n = 1 in Eq. (3.10) will suffice to
determine the well-posedness of the problem; but this is going to be treated in Section 3.2.1.

The matrix on the RHS of Eq. (3.10) must be stochastic in order to describe Markov
chain, this amounts to enforcing certain structure on the perturbation matrices mk so that
Definition 3.1.1 is satisfied. This requirement corresponds to having:

N∑
i=1

[mk]i,j = 0, (3.11)

for any k in {1, . . . , n} and j in {1, . . . , N}. This assures that the columns of M +∑n
k=1 εkmk add up to one so that total probability adds up to 1. Moreover, non-negativity
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must be preserved, so not all choices of εk are valid. For this, we define

ε−
k = min

{
ε ∈ R : ∀i, j ∈ {1, . . . , N},Mi,j + ε [mk]i,j ≥ 0

}
, (3.12)

and
ε+

k = max
{
ε ∈ R : ∀i, j ∈ {1, . . . , N},Mi,j + ε [mk]i,j ≥ 0

}
. (3.13)

Hence, to ensure non-negativity of the perturbed Markov process, we must have that
maxk ε

−
k ≤ εk ≤ mink ε

+
k . To guarantee that the latter interval is non-empty, we need to be

certain that ε−
k < 0 and ε+

k > 0, for all k. This would not happen supposing that for i1, j1, i2

and j2 in {1, . . . , N} we have that Mi1,j1 = Mi2,j2 = 0 and [mk]i1,j1
, [mk]i2,j2

< 0. This
would imply that ε−

k = ε+
k = 0. In such case, we say that the matrices mk are non-

admissible perturbations.
Before deriving the response formulas, we need to make sure that the perturbed Markov

chain preserves the mixing property, so that its leading unit eigenvalue is simple and there
are no other eigenvalues on the unit ball. To tackle this issue, we refer to the continuity of
the matrix-to-eigenvalue mapping, which allows to take sufficiently small non-zero values
of εk so that the subdominant eigenvalues of M remain inside the complex unit ball after
the perturbation is applied [Wil65]; [TE05]; [ADF18]. In this setting, by virtue of the
Perron-Frobenius theorem, the perturbed stochastic matrix will have a dominant simple
eigenvalue, whose value is 1 and its associated eigenvector v = v(ε1, . . . , εn) can be
normalised and strictly positive. In other words, v solves:(

M +
n∑

k=1
εkmk

)
v = v. (3.14)

The goal is to express the perturbed invariant measure v in terms of M,m1, . . . ,mn, ε1, . . .

and εn. Not only do we want to calculate v but also describe how the unperturbed measure
u responds at a given power of εk. In particular, we shall extract the linear response, which
is specially relevant in the physical literature. Using multiindex notation, we suppose a
formal expansion in powers of ε1, . . . , εn:

v = u +
∞∑

|α|=1
(ε1, . . . , εn)αwα, (3.15)

where wα = 1
α! (∂ε1 , . . . , ∂εn)α v. The series in Eq. (3.15) contains the response at all

orders of εk, in particular, for |α| = 1, we get the linear response. Moreover, this is
saying that the perturbations can be treated independently and added to give the response
at leading order of the parameter εk, for every value of k. Substituting the expression
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(3.15) in Eq. (3.14) we obtain:

(
M +

n∑
k=1

εkmk

)u +
∞∑

|α|=1
(ε1, . . . , εn)αwα

 = u +
∞∑

|α|=1
(ε1, . . . , εn)αwα. (3.16)

Gathering the terms for |α| = 1 we get:

O(εk) : (1 − M) ∂εk
v = mku, (3.17)

for k = 1, . . . , n. Notice that the matrix 1−M cannot be inverted since 1 is an eigenvalue
of M; we shall discuss this issue in the next section. At the moment, we directly apply
the inverted matrix to find that

∂εk
v = (1 − M)−1 mku. (3.18)

We define Gk = (1 − M)−1 mk as linear response matrix which has also been named a
differential matrix [Sch68]. The choice of notation for the linear response matrix is not
out of coincidence since it plays the role of the Green function discussed in Section 2.3.
If we repeat the process for the second order terms (|α| = 2) we get:

O
(
ε2

k

)
: 1

2!∂
2
εk

v = (1 − M)−1 mk∂εk
v = (Gk)2 u (3.19a)

O (εkεl) : ∂2
εk,εl

v = (1 − M)−1 ml∂εk
v + (1 − M)−1 mk∂εl

v (3.19b)

= GkGlu + GlGku. (3.19c)

Thus, we inductively construct the whole expansion as:

v = u +
∞∑

i=1

(
n∑

k=1
εkGk

)i

u =
(

1 −
n∑

k=1
εkGk

)−1

u. (3.20)

This formula provides a tool to calculate the perturbed invariant measure as long as
it converges, in which case it should equal the vector found by solving the eigenvalue
problem Eq. (3.14). The problem of convergence will be addressed in the next section.

Moreover, by simply considering the transpose matrices, it is possible to develop a
response theory for observables, which are understood to be in duality with probability
density functions. Indeed, letting Ψ in RN represent a generic coarse-grained observable,
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its expectation value with respect to the perturbed stationary vector v satisfies:

⟨Ψ,v⟩ =
〈

Ψ,u +
∞∑

i=1

(
n∑

k=1
εkGk

)i

u
〉

=
〈1 +

∞∑
i=1

(
n∑

k=1
εkGk

)i
⊤

Ψ,u
〉

(3.21a)

=
〈

1 +
∞∑

i=1

(
n∑

k=1
εkG⊤

k

)i

Ψ,u
〉
, (3.21b)

where ⟨·, ·⟩ denotes the usual inner product in RN , although it is, in fact, a finite dimen-
sional interpretation of the standard pairing between observables and probability density
functions. The advantage of formulas (3.20) and (3.21) is that they allow us to identify
the response to perturbations at an arbitrary order of non-linearity including the linear
case which encodes the sensitivity of the system to forcing, in line of the linear response
formulas derived in Chapter 2. In fact, Eq. (3.21) is the finite dimensional counterpart of
Eq. (2.23). These matrix relations are, however, still purely formal. We need a deeper
understanding of what we mean with (1 − M)−1 and for what values of εk they are useful.

3.2.1 Well-posedness and Invertibility of 1 − M

In this section we will study the necessary conditions for the response formulas presented
above to be useful. Generally, we will revisit the problem of the non-invertibility of the
linear response matrix and specifically, address the items listed below:

(i) Identify when the matrix 1 − M can be inverted

(ii) Find the radius of convergence of Eq. (3.20)

(iii) Assess the numerical conditioning of 1 − M

Item (i) was indicated in the previous section when constructing the linear response matrix.
Item (ii) will boil down to calculating the interval of real values of εk for which the series
in Eq. (3.20) converges. Finally, item (iii) concerns the numerical inversion of the matrix
1 − M and, ultimately, the computation of the linear response matrix: we shall estimate
the numerical conditioning (in a sense explained later) in terms of the eigenvalues of the
matrix M. To tackle these questions we will reduce the number of perturbation matrices
on the RHS of Eq. (3.10) to only one (i.e., with n = 1), without compromising the
generality of the results.

As mentioned earlier, the linear response matrix is not well defined a priori because 1
is an eigenvalue of the matrix M making 1 − M is not invertible. However, we can define
a more suitable normed space for which the norm of M is less than one, making 1 − M
invertible. The idea relies on the fact that RN , on which M is defined, admits a splitting
of the form:

RN = span{u} ⊕ V , (3.22)
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where V is the invariant subspace generated by the generalised eigenvectors of M associ-
ated with the eigenvalues distinct to 1 and span{u} is the vector subspace spanned by u.
This space can also be regarded as the kernel of the functional ι defined as

ι : RN −→ R,

x 7−→ ι (x) =
N∑

i=1
xi.

(3.23)

Indeed, one observes that if an N -vector uj is a generalised eigenvector of M associated
with the eigenvalue λj , the identity (M − λj)aj uj = 0 holds for some positive integer
aj , namely, the algebraic multiplicity. Hence,

ι ((M − λj)aj uj) =
aj∑

k=0

aj

k

λk
j ι
(
Maj−kuj

)
= (1 − λj)aj ι(uj) = 0. (3.24)

Consequently, since the eigenvalue 1 is simple and the rest of eigenvalues have norm
strictly less than one, we have that ι(uj) = 0. Now, turning to the perturbation problem
Eq. (3.10), if M and M + εm is are stochastic matrices, it follows that ι (mx) = 0 for any
x in RN . Moreover, 1 is no longer an eigenvalue of M if this matrix’ action is restricted to
V , making 1 − M invertible. The discussion in the paragraphs above can be summarised
in the following statement:

Proposition 3.2.1. Let M and m be N × N matrices where M and M + m are both
mixing stochastic matrices. In addition, let u denote the N dimensional invariant vector
associated with M. Then, using the splitting of RN in Eq. (3.22), 1 − M is invertible on
V and mx is in V , for any x in RN .

Recall that the linear response matrix in Eq. (3.18) only requires the evaluation of
(1 − M)−1 after having calculated mku, so writing the inverse explicitly is not that big
an abuse, by virtue of the previous proposition. We must underline, however, that it is not
possible directly numerically invert 1 − M. To overcome this problem, we must deflate
the matrix by removing the dependence on the dominant eigenspace. In other words, we
have to find an N ×N matrix Q such that 1 − M + Q is invertible. Such matrix is given
by the spectral projector of M around the eigenvalue 1 [Kat66]; [TE05]:

Q = 1
2πi

∫
Γ(1,r)

(z − M)−1 dz, (3.25)

where Γ(1, r) denotes a closed circle of radius r and centred at 1 in the complex plane.
The radius r is sufficiently small so that the interior of Γ(1, r) contains only the eigenvalue
1. Consequently, the resolvent operator that constitutes the integrand in Eq. (3.25) is well
defined for all values of z on Γ(1, r); the properties of the resolvent where mentioned in
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Section 2.2 although the reader is referred, again, to [EN06]. Spectral projectors of general
(possibly unbounded) operators can be difficult to evaluate, although matrices admit more
handy expressions in terms of eigenvectors. Indeed, let z be a constant N dimensional
real vector. Then, it follows that z is a left eigenvector relative to M:

z⊤M = z⊤. (3.26)

With this definition and recalling that the vector u denotes the right eigenvector relative
to the eigenvalue 1, spectral projector Q is now written as [TE05]:

Q = uz⊤

|u⊤z|
. (3.27)

Furthermore, if the eigenvectors u and z are normalised so that |u⊤z| = 1, the denominator
in Eq. (3.27) equals one. It is immediate to check that Q in Eq. (3.27) is a (rank-
one) projector, i.e. QQ = Q. Notice, in fact, that the matrix Q is also obtained by
Q = limτ→∞ Mτ , in the matrix norm [Sen73].

We now have all the components to define a generalised inverse matrix of 1 − M
necessary to calculate the linear response matrix G. To this end, we perform Neumann
series to express the inverse of 1 − M:

G = (1 − M)−1 m =
∞∑

k=0
Mkm =

∞∑
k=0

(M − Q)k m = (1 − M + Q)−1 m, (3.28)

where we have exploited the fact that Qm = 0 in the third equality. The second equality
in Eq. (3.28) is justified when the matrix M acts on V (see Eq. (3.22)), where we would
have that the spectral radius of M is strictly less than one. On the other hand, the fourth
equality holds in general, since the spectral radius of the matrix M−Q is less than one on
RN . This comes specially convenient in computer calculations, although the numerical
conditioning has to be assessed; this will be investigated in Section 3.2.1.1 below.

To tackle the convergence of the series in Eq. (3.20) (item (ii) on the list at the start
of this section) we want to be certain that the induced L1-norm of the series

∑∞
k=1 ε

kGku
does not blow up. For this problem we introduce the matrix norm ∥ · ∥1∗ which we define
as the norm ∥ · ∥1 restricted to V:

∥A∥1∗ = max
x∈V

∥Ax∥1

∥x∥1
= max

x∈RN

ι(x)=0

∥Ax∥1

∥x∥1
. (3.29)

This matrix norm will allow us to estimate the linear response matrix G whose definition
involves the inverse of 1 − M. We are now in conditions of applying the ratio test in
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Eq. (3.20):∥∥∥εk+1Gk+1u
∥∥∥

1
∥εkGku∥1

=

∥∥∥εGεkGku
∥∥∥

1
∥εkGku∥1

=

∥∥∥ε (1 − M)−1 mεkGku
∥∥∥

1
∥εkGku∥1

(3.30a)

=

∥∥∥ε (1 − M)−1 mεkGku
∥∥∥

1∗

∥εkGku∥1
(3.30b)

≤
ε
∥∥∥(1 − M)−1

∥∥∥
1∗

∥∥∥mεkGku
∥∥∥

1∗

∥εkGku∥1
(3.30c)

≤ ε
∥∥∥(1 − M)−1

∥∥∥
1∗

∥m∥1 ≤ ε (1 − ∥M∥1∗)−1 ∥m∥1. (3.30d)

Since we want that the ratio remains less than 1 to ensure absolute convergence, we choose
ε so that

|ε| < εmax := 1 − ∥M∥1∗

∥m∥1
. (3.31)

The real parameter εmax determines a radius of expansion of the response formulas and,
hence, a tolerance on the size of perturbations. We are still left, with showing that εmax

is non-zero. For that we shall analyse the number ∥M∥1∗ which is commonly known as
the ergodicity coefficient of the Markov chain M [Sen84]; [IS14]. Roughly speaking,
∥M∥1∗ is an indicator of the mixing strength of M, similarly to what the second largest
eigenvalue λ2 of M does. Contrary to λ2, the ergodicity coefficient possesses an explicit
formula in terms of the elements of the matrix M [Dob56]; [IS14]:

∥M∥1∗ = 1
2 max

1≤i,j≤N
∥M(ei − ej)∥1 = 1

2 max
1≤i,j≤N

N∑
k=1

|Mi,k − Mj,k|, (3.32)

which does not involve solving eigenvalue problems. From Eq. (3.32) we observe that
∥M∥1∗ < 1 if any two columns of M share a positive element. For the class of mixing
Markov chains considered here we have that ∥M∥1∗ < 1. Consequently, Eq. (3.31)
implies that εmax > 0. More importantly, the ergodicity coefficient constitutes a bound for
the size of the non-unit eigenvalues of a stochastic matrix, giving an a priori bound on the
rate of convergence to equilibrium: |λ2| ≤ ∥M∥1∗ . Moreover, the ergodicity coefficient
enjoys the submultiplicative property and the second eigenvalue does not. This is critical
in the study of convergence of inhomogeneous Markov chains determined by collection
of stochastic matrices {Mk}∞

k=1, where

∥∥∥M1 · . . . · Mk0
∥∥∥

1∗
≤
∥∥∥M1

∥∥∥
1∗

· . . . ·
∥∥∥Mk0

∥∥∥
1∗
, (3.33)

for any k0 in N. Hence, the ergodicity coefficient gauges the rate of convergence to
equilibrium of a family of stochastic matrices.

The ergodicity coefficient can be regarded as a condition number for the invariant vector
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u in the sense that it estimates the effects of applying a perturbation on general Markov
matrices [Sen88]. Indeed, using similar arguments to the ones in Eqs. (3.30) we have:

∥v − u∥1 ≤ ε∥m∥1

1 − ∥M∥1∗
, (3.34)

where v is the perturbed invariant vector given in Eq. (3.14). Taking the point of view of
observables (see Eq. (3.21)), bounds on the expected value of a coarse-grained observable
Ψ, can be immediately obtained. Along these lines, we refer the reader to [Inu19] for a
practical use of the ergodicity coefficient, in the context of optical chaos.

The ergodicity coefficient is clear to provide a measure of the sensitivity of a Markov
chain with respect to perturbations but it does not tell us how they affect the localisation
of the eigenvalues of the matrix M, something crucial if one wants to control the spectral
gap between the leading eigenvalues. This spectral stability problem can be understood in
terms of the algebraic conditioning of the matrix M. For this purpose we introduce the
condition number κp(A) of a matrix A in RN×N with respect to the p-norm [Wil65, §4]:

κp (A) = ∥A∥p∥A−1∥p, (3.35)

where in caseA is singular, κp(A) = ∞. With this definition, the following stability result
holds [Mit03]:

Proposition 3.2.2. Let M be an N × N diagonalisable, primitive and stochastic matrix
with eigenvalues {λj}N

j=1 satisfying: λ1 = 1 > |λ2| ≥ |λ3| ≥ . . . ≥ |λN |. Let X be an
N × N non-singular matrix such that M = X−1diag(λ1, . . . , λN)X . Suppose that the
N ×N matrix m is such that M +m is stochastic and that

κ2(X)∥m∥1 <
1 − |λ2|

2 . (3.36)

Then, M +m has a unique invariant vector.

The proof of this result relies on classical perturbation theory, in particular on the
Bauer-Fike theorem [BF60]. With a bit more work, one can deduce a bound on the rate
of convergence to equilibrium of the perturbed chain, also presented in the work cited
above. The condition shown in Eq. (3.36) can very restrictive if the process is governed by
a highly non-normal Markov matrix, as in this case κ2 (X) can be very large [TE05]. This
non-normality reflects on pairs of eigenvectors being parallel to each other making the
algebraic condition number exceedingly large. However, in order to preserve the spectral
gap, the only thing needed is a good conditioning of the eigenvalues closest to the unit
circle. Hence, to find a sharper stability bound like in Eq. (3.36) the eigenvalue condition
number might be the object to look at [Wil65]; see e.g. Appendix B for its definition and
[Tan+19] for an application of this concept.
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Proposition 3.2.2 only holds for diagonalisable matrices, so that κp(X) stays finite.
In practise, an especially for projected transfer operators, Markov matrices are typically
singular and posses clusters of eigenvalues close to the origin. This makes the stability
bound in Eq. (3.36) of no use, since the eigenvectors can become almost parallel making
the condition number arbitrarily large. The ergodicity coefficient, on the other hand, is
more convenient to this end since it does not depend on the algebraic structure of M, but on
its mixing character. In particular, we can formulate the stability result of Proposition 3.2.2
for general Markov matrices in terms of the ergodicity coefficient:

Proposition 3.2.3. Let M,m be N ×N matrices and ε a real number such that M and
M+εm are stochastic matrices with sets eigenvalues {λi}N

i=1 and {λi(ε)}N
i=1, respectively,

satisfying: λ1 = 1 > ∥M∥1∗ ≥ |λ2| ≥ |λ3| ≥ . . . ≥ |λN | and λ1(ε) = 1 ≥ |λ2(ε)| ≥
|λ3(ε)| ≥ . . . ≥ |λN(ε)|. If ε∥m∥1 < 1 − ∥M∥1∗ , then λ2(ε) < 1 and M + εm has a
unique invariant vector.

Proof. The result follows from the subadditive property of the norm ∥ · ∥1∗ on stochastic
matrices [IS14]. This implies that:

|∥M + εm∥1∗ − ∥M∥1∗| ≤ ε∥m∥1∗ = ε∥m∥1. (3.37)

where the last equality follows from Eq. (3.29). Hence, using the assumption of ∥m∥1 <

1 − ∥M∥1∗ ,
∥M + εm∥1∗ ≤ ∥M∥1∗ + ε∥m∥1 < 1, (3.38)

or,
∥M + εm∥1∗ ≤ ∥M∥1∗ < 1. (3.39)

Secondly, since the ergodicity norm bounds the magnitude of every non-unit eigenvalue,
we have that λ2(ε) ≤ ∥M + εm∥1∗ < 1. This last inequality implies that the simplicity of
the unit eigenvalue of M is preserved under the perturbation m. Therefore, the perturbed
stochastic matrix M + εm has a unique invariant vector.

As a consequence, we have that the more mixing the Markov chain is, the more stable the
second eigenvalue will be with respect to perturbations. However, Proposition 3.2.3 does
not impose conditions onm beyond its size. So it remains to investigate whether structured
perturbation matrices can amplify the changes in spectral elements of general Markov
chains. In [ADF18], the authors consider the problem of finding a perturbation matrix
that maximises the rate of mixing of a Markov chain, by optimising the aforementioned
eigenvalue condition number. In case the perturbation matrix only affects the transition
probability of a single state, explicit formulas can be derived for the sensitivity of the second
eigenvalue, the rate of mixing and linear response; the reader is referred to Appendix B
for details.
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3.2.1.1 Conditioning of the Linear Response Matrix

The linear response matrix has been shown to be well defined by virtue of the fact that
the matrix 1 − M is invertible on the range of the perturbation matrix m. The numerical
computation of the linear response matrix goes through the calculation of the generalised
inverse of Eq. (3.28). In general, the generalised inverse matrix can be inverted directly or
by implicitly solving a linear system of equations using an adequate stable method. In any
case, the computational well-posedness of finding the inverse of the matrix 1 − M + Q
is given by the condition number κp (1 − M + Q), whereby the larger this scalar is, the
more numerically difficult it is to invert the matrix. This is because κp determines a
relative distance of a matrix to its closest non-invertible matrix of the same dimensions.
Hence, it is of computational interest to determine the factors that make κp (1 − M + Q)
large. In particular, we seek lower bounds of κp (1 − M + Q) in terms of the spectrum
of M, thus, avoiding having to calculate inverses explicitly. In particular, the following
result holds:

Proposition 3.2.4. Let N be a positive integer and M in RN×N be a mixing stochastic
matrix with eigenvalues {λj}N

j=1 satisfying: λ1 = 1 > |λ2| ≥ |λ3| ≥ . . . |λN |. Let Q in
RN×N denote the spectral projector around the eigenvalue λ1 = 1, defined in Eq. (3.27).
Then, the condition number with respect to the spectral norm κ2 (1 − M + Q) satisfies:

κ2 (1 − M + Q) ≥ 1
dist ({1}, σ (M) \ {1}) . (3.40)

Proof. First, let us find a lower bound for ∥ (1 − M + Q)−1 ∥2 in Eq. (3.35). Notice that
since Q is a spectral projector around 1, the spectrum of M−Q is given by σ (M − Q) =
{λ2, . . . , λN} ∪ {0}. Furthermore, the resolvent norm of M − Q at the complex number
z is bounded from below by the inverse of the distance to the spectrum [EN00]:

∥ (z − (M − Q))−1 ∥2 ≥ 1
dist ({z}, σ (M − Q)) , (3.41)

where dist(·, ·) indicates the usual distance between two compact sets in the complex
plane. In fact, this inequality holds for every induced matrix norm.

Secondly, we shall bound the term ∥1 − M + Q∥2 in Eq. (3.35). By the definition of
the spectral norm, we have

∥1 − M + Q∥2 = σ1 (1 − M + Q) =
√
λmax ((1 − M∗ + Q∗) (1 − M + Q)), (3.42)

where σ1(A) denotes the largest singular value of a matrix A and λmax(A) denotes its
largest eigenvalue in modulus. Next, by virtue of spectral radius theorem, ∥A∥2 =
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σ1(A) ≥ |λmax(A)|, for any matrix A. In our case, we observe that:

(1 − M + Q) u = u, (3.43)

where u is the invariant vector associated with M. This shows that 1 is an eigenvalue of
1 − M + Q and therefore, we get the following inequality:

∥1 − M + Q∥2 = σ1 (1 − M + Q) ≥ |λmax (1 − M + Q) | ≥ 1. (3.44)

Using this inequality and Eq. (3.41), we get the desired result.

Notice that equality in Eq. (3.40) is attained when M = Q. Proposition 3.2.4 states the
requirements on the spectrum of M for the associated linear response matrix to be well
conditioned for numerical computation: it demonstrates that the presence of an eigenvalue
close to unity makes the condition number arbitrarily large. In many applications, as will
be apparent later, each iteration of the matrix M represents the transition probabilities
in phase space relative to short physical timescales. This implies that stochastic matrices
will be diagonally dominant and the eigenvalues are clustered around 1. Consequently,
the second largest eigenvalue λ2 (in the notation of Proposition 3.2.4) not only does it set
the mixing rate of the Markov chain, but will also determine the numerical conditioning
for estimating the linear response.

3.3 Numerical Results

The present section aims at applying the discretised transfer operator and perturbation
theory of Markov chains in the study two specific dynamical systems subject to external
stimuli. The link between Markov chains and dynamical systems was explained in Sec-
tion 3.1 where the projection of the transfer operator describing the evolution of probability
density functions naturally gives matrix approximants with the structure of Markov chains.
In Section 3.2, we exploited the theory of stochastic matrices to define, at a finite dimen-
sional and abstract level, the notions of linear response and sensitivity of a Markov chain,
which will be here used to calculate and investigate a simple O-U process [UO30] and the
Lorenz 63 system [Lor63]. To this end, time series will be used to sample the statistics of
the systems in question, to then elaborate detailed climatologies in its unperturbed regime
to then predict their response without resorting to observations of the forced system.

The dynamical systems chosen here are different in nature and yield different statisti-
cal properties reflected on their associated operator semigroups and invariant measures.
Broadly, while the O-U process is stochastic and possesses a stationary probability density
with respect to the Lebesgue measure, the deterministic Lorenz 63 system will display
an average contraction of volumes on phase space provoking that the associated invariant
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measure is singular. The regularity of the invariant measure allows for employing the
response formulas derived in Chapter 2, where a density function was explicitly used.
For the Lorenz 63 system, however, such linear response formulas will be purely formal,
although we shall show that a seamless application of the theory in Section 3.2 onto a
coarse-grained phase space can yield correct sensitivities in agreement with experimental
data and previous works.

It was shown on Section 2.2 and 2.3 that an external forcing could be associated with
perturbation operators affecting the Fokker-Planck equation of a stochastic process; see
Eq. (2.16). If one considers a perturbation of the kind F 7→ F + ∑

k εkGk in Eq. (2.15),
we obtain a perturbed Fokker-Planck equation:

∂tρ(·, t) = L0ρ(·, t) +
n∑

k=1
εkLkρ(·, t), (3.45)

where Lk = −∇ · (Gk◦), in accordance with Eq. (2.17b). We immediately identify the
unperturbed and perturbed components of the equation. Assuming sufficient regularity of
the measure ρ with respect to t, we can Taylor expand Eq. (3.45) around t. Indeed, let
τ > 0 be a small increment in the time variable. Then,

ρ(x, t+ τ) ≃ ρ(x, t) + τLρ(x, t) + τ
n∑

k=1
εkLkρ(x, t), (3.46)

where O(τ 2) terms have been dropped, following the strategy outlined in [Luc16]. The
unperturbed component of Eq. (3.46) represents the pushforward operator to first order
in τ . Projecting Eq. (3.45) onto a finite basis of characteristic functions in the spirit of
Eq. (3.1), translates the problem into vector and matrix notation:

ut+τ = Mτ ut +
n∑

k=1
εkmk, (3.47)

where the perturbation matrices mk are differentiation matrices that will be constructed
suitably for each of the systems analysed later. We have, therefore, arrived at a perturbation
problem of stochastic matrices analogous to Eq. (3.10), making the formulas derived in
Section 3.2 susceptible of being applied in continuous time dynamical systems.

As mentioned in the introductory paragraph of this section, we wish to calculate the
sensitivity of a system by only sampling the statistics in its unperturbed state. Hence, in
order to approximate Mτ we shall estimate the climatology of the system using long time
series that capture trajectories evolving on a bounded region of phase space X . After
transients have died, sample points will populate X , possibly shadowing [Rob01] the
dynamics on an attractor in case of deterministic systems. In stochastic systems, even
though phases spaces are typically unbounded, X can be chosen so that it capture most of
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the probability of the system. Such region can be subdivided into N equally sized boxes
{Bi}N

i=1 with Lebesgue-zero measure intersections. If {x1, . . .xT } denotes the T sample
points living in X , the matrix Mτ in Eq. (3.46) is constructed as:

Mτ
i,j =

#
{
{xi}T

i=1 ∩Bi ∩ ϕ−τBj

}
#
{
{xi}T

i=1 ∩Bj

} , (3.48)

for i, j = 1, . . . , N and where # is the counting measure. A matrix whose entries are
defined following Eq. (3.48) is called a transition matrix with transition time τ . In this
case, since the sample points {xi}T

i=1 populate the attractor of the system, the probability
of transitioning from box Bj to box Bi is relative to the invariant measure of the system.
In other words, the transition matrix Mτ is an approximation of the projected transfer
operator in Eq. (3.3) where η is the invariant measure of the system.

Remark 3.3.1. The matrix Mτ estimated from time series is the procedure for applying
Eq. (3.3) when the finite measure η corresponds to the invariant measure, in accordance
with the usual definition of the transfer and Koopman operator semigroups; see Section 2.1.
If the system possesses an absolutely continuous invariant measure, η can be chosen as
the Lebesgue measure. In this case, the construction of Mτ consists of populating each
boxBi in Eq. (3.3) with sample points that will be evolved τ time units forward in time and
transitions will be counted in the spirit of Eq. (3.48). One can, nevertheless, seamlessly
apply the Lebesgue-measure approximation to study the rates of convergence to the steady
state regardless of this being a singular measure. The reader is referred to [Fro98] for
seminal rigorous results along these lines and to [Tan+18] for a comparative approach
in the context of dissipative dynamical systems.

Remark 3.3.2. Transition matrices learnt from discretised data like that in Eq. (3.48),
correspond to an empirical frequency estimator that maximises the log-likelihood function
of transition probabilities from state to state [AG57]. The derivation, though, is strongly
based on the independence assumption that allows to write the log-likelihood function as
a sum. Lifting such assumption entails extending the physical state space to a collection
of latent (unobserved) Markovian states2 which carry the memory of the process. This
approach to estimate the invariant measure of the system is, firstly, of greater generality
that of Eq. (3.48) since it can reveal hidden dependencies that were initially neglected by
the coarse-graining and secondly, it appears to be more resilient to dimensionality and
lack of data points [Ger+18]. The drawback, though, is that the resulting latent Markov
model cannot be related so easily to a projected transfer operator, whose algebraic and
spectral properties can be of great use, as is clear from Section 3.1.

2Not to confuse with Hidden Markov Models [Ger+18].
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The perturbation matrices mk in Eq. (3.47) represent projected differential operators
and they should be such that they constitute admissible perturbations to the stochastic
matrix Mτ , namely, their columns need to add up to zero (see Eq. (3.11)) and ε+ and ε−

in Eqs. (3.12) and (3.13), respectively, should be larger than zero. We now examine how
two implement them so that they are compatible with the domain discretisation carried
out for the transition matrix Mτ . For simplicity, we shall describe the procedure in two
dimensions which still allows for cross terms in higher order derivatives. The idea is to
assign a value to the derivatives at each box Bi based on its value at the centre. The
centre of box Bi is denoted by [xi, yi] in R2, for every i = 1, . . . , N . Since the boxes are
equally sized, we let the real numbers δx and δy denote the length of the sides along the
x and y-axis, respectively. Since the box-discretisation need not have a Cartesian product
structure, there are three kinds of boxes. The box Bi is said to be

(i) interior if [xi, yi] ± [δx, 0] and [xi, yi] ± [0, δy] correspond to a center of some box in
{Bi}N

i=1.

(ii) isolated if [xi, yi] ± [δx, 0] and [xi, yi] ± [0, δy] do not correspond to a center of any
box in {Bi}N

i=1.

(iii) a boundary box if it is neither interior or isolated.

Performing several Taylor expansions we find the partial derivative of ρ with respect to x
at the interior box [xi, yi] to be:

∂xρ ([xi, yi]) = ρ([xi + δx, yi]) − ρ([xi − δx, yi])
2δx

+ O
(
δ2

x

)
. (3.49)

which corresponds to a centred stencil. The same scheme is used for the y-direction. For
the second and cross derivatives, we implement the usual second order centred discretisa-
tion:

∂2
xρ([xi, yi]) =ρ([xi + δx, yi]) − 2ρ([xi, yi]) + ρ([xi − δx, yi])

2δ2
x

+ O(δ2
x), (3.50a)

∂2
x,yρ([xi, yi]) =ρ([xi + δx, yi + δy]) − ρ([xi + δx, yi − δy])

4δxδy

− ρ([xi − δx, yi + δy]) − ρ([xi − δx, yi − δy])
4δxδy

+ O(δxδy). (3.50b)

This stencil is completed with the analogous schemes in the y-direction. Since Eqs. (3.49)-
(3.50) involve the centres of every box surrounding Bi, we define the derivatives with
respect to x and y as the finite difference increments obtained by dropping the second
order terms in δx and δy. Derivatives at the boundary boxes are defined similarly, although
the centred scheme employed in Eqs. (3.49)-(3.50) has to be substituted by a first order
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increment. Indeed, without loss of generality, suppose Bi is a boundary box so that
[xi − δx, yi] is not a centre of any box in {Bi}N

i=1. Then, the partial derivative of ρ with
respect to x at [xi, yi] is:

∂xρ ([xi, yi]) = ρ([xi + δx, yi]) − ρ([xi, yi])
δx

+ O (δx) . (3.51)

Derivatives at the rest of the boundary boxes are defined following this strategy. Finally,
we enforce that isolated boxes have derivatives equal to zero. Naturally, these numerical
derivatives can be arranged into matrices so that their multiplication with vectors approx-
imate their respective differentiation. Thus we obtain matrix representations mk of the
operators Lk.

3.3.1 An O-U Process

As a preliminary application, we shall consider the O-U process, whose statistical prop-
erties are well known in analytical terms; see e.g., [MPP02]; [Pav14, Chapter 3]. This
process {x(t)}t≥0 is generated by the following linear SDE:

dx(t) = Ax(t)dt+ ΣdWt, (3.52)

where Wt is a d-dimensional Wiener process, A is a d × d matrix which represents the
drift of the process and the d× d matrix Σ is such that ΣΣ⊤ is positive-definite indicating
the covariance of the noisy component. Performing an integration of Eq. (3.52) in the Itô
sense, one obtains strong solutions driven by the exponential of the matrix A:

x(t) = etAx0 +
∫ t

0
e(t−s)AdWs, (3.53)

for some d-dimensional initial condition x0 which can be prescribed exactly or assumed
to be suitably distributed. The stability of Eq. (3.53) is determined by the spectrum of the
matrix A which determines the norm-growth of its matrix exponential. Hence, we shall
require that spectral abscissa (the maximum of the real parts of the eigenvalues) of A is
strictly less that zero. In fact, such condition is necessary for this process to posses an
Gaussian invariant measure [DZ96]:

ρ(x) = 1
(2π)d/2

√
det S

e− 1
2 x⊤S−1x, (3.54)

where S is the d × d positive-definite stationary covariance matrix, determined by the
Lyapunov equation:

AS + SA⊤ = ΣΣ⊤, (3.55)
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which uniquely determines the matrix S since ΣΣ⊤ is strictly positive-definite [Gar09].
As x(t) is let to evolve in time, ensembles of trajectories on phase space are exponentially
quickly expected to oscillate around zero. If such ensemble is regarded as a probability
density function ρ, it obeys the Fokker-Planck equation (3.45). Again, the spectral stability
of the matrixA translates on the operator L0 having a zero spectral abscissa, with a simple
eigenvalue located exactly at 0 and relative eigenfunction given by a Gaussian invariant
measure [DZ96]; [Ris89]. Moreover, the entirety of the spectrum of L0 consists of simple
eigenvalues given by linear combinations of those ofAwith integer coefficients [MPP02].
Consequently, the semigroup generated by the Fokker-Planck equation is, trivially, quasi-
compact with zero residual for which spectral decompositions of the response function are
available; see Section 2.2.1. Furthermore, the strongly continuous semigroup generated by
L0 is a contraction which converges (in the operator norm sense) to the spectral projector
relative to the eigenvalue 0 exponentially fast, with a rate determined by a finite spectral
gap equal to the maximum real part of the eigenvalues of A.

Numerical Setting and Results. As a numerical example, we shall consider a two
dimensional O-U processes, where the constituent matrices A and Σ in Eq. (3.52) are
given by:

A =
−1 0

0 −1

 , and Σ =
1 0
0 1

 . (3.56)

It is obvious that the variables in this process are uncorrelated and we shall investigate
the response of the system when its mean is shifted and correlations are introduced in the
noise. This way, the process in question is:

dxε1,ε2(t) = A (xε1,ε2(t) − ε1µ) dt+
√

ΣΣ∗ + ε2HdWt, (3.57)

where

µ =
1
0

 , and H =
0 1
1 0

 , (3.58)

and ε1, ε2 ∈ R have to satisfy the conditions for the perturbed process to be well defined,
namely, ΣΣ∗ + ε2H has to be symmetric positive definite. The resulting Fokker-Planck
equation takes the form of Eq. (3.45) where L1 and L2 are a first and a second order
differential operators, respectively, and are defined component-wise as:

L1ρ(x) = −ε1

2∑
k=1

∂xk

( 2∑
l=1
, [Aµ]l ρ(x)

)
; (3.59a)

L2ρ(x) = ε2

2

2∑
k=1

2∑
l=1

∂2
xk,xl

(Hk,lρ(x)) , (3.59b)
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for every sufficiently differentiable ρ and x in X . The projection onto a finite dimensional
basis would yield the discretised equation Eq. (3.47), falling into the perturbation theory
developed in Section 3.2.

In order to construct a transition matrix Mτ , we let {Bi}2N

i=1 be a collection of boxes
covering four standard deviations of the process on each direction. In the experiments
performed, we have considered 2N boxes by means of discretising each axis into 2N/2

equally sized segments. We have examined the values N = 10, 12 and 14 trying to keep
a balance between numerical tractability and precision. The box subdivision of phase
space is done using the Matlab package GAIO [DFJ01] which creates a hierarchy of
boxes based on a binary tree structure which greatly accelerates the process of associating
a point on phase space with the unique box containing it. The unperturbed process is
sampled by integrating Eq. (3.52) forward using an Euler-Maruyama scheme for 106 time
units with a time step of dt = 10−2, thus obtaining a time series of points on phase space.
We then construct the transition matrix Mτ according to Eq. (3.48), where ϕt is now
replaced by the process x(t) and the transition time is chosen to be τ = dt.

The perturbation matricesm1 andm2 that result from discretising the operators L1 and
L2 are calculated using Eqs. (3.49)-(3.50). In the present O-U case, since the invariant
measure has an absolutely continuous density with respect to the Lebesgue measure which
is smoothly defined on R2, there will not be any complexity on its support, therefore we
shall not expect to find many isolated boxes or boundary boxes having relatively big
probability of occurrence. Moreover, provided that the time series at hand is long enough
relative to the domain discretisation, the boundary boxes will have almost zero probability,
therefore, there is no practical need of implementing explicit boundary derivatives as done
in Eq. (3.51).

A good compromise was found provided that the resolution was high enough. Indeed,
on Fig. 3.1, we see that the predicted response of the observable x was well approximated.
This is checked on Table 3.1 where we show that the error of approximating the perturbed
invariant measure using Eq. (3.8) and the response formulas of Eq. (3.21) presented earlier
is small. The linear response (see Fig. 3.2) is precisely doing what one expects: mass
is pumped to the right as a consequence of the mean being shifted and the introduction
of correlations inflicts a rotation. Higher order correction terms (see Fig. 3.2) can also
give an insight on how the measure is gradually modified. As a safety check, the sum
of the components of the response are checked to add up to (almost) zero, meaning that
probability is not introduced or depleted.

3.3.2 The Lorenz 63 System

The existence of an invariant density with respect to the Lebesgue measure in the O-U
process has greatly facilitated the computation and characterisation of its response to
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(a) (b)

Figure 3.1: Response of the O-U system to the perturbations considered in Eq. (3.58).
The figure (a) shows the true response calculated by subtracting the unperturbed invariant
measure from the perturbed one. Figure (b) is the predicted response calculated from
Eq. (3.20).

Table 3.1: Mean value (first column) and linear responses (second and third columns) of
the observable x with respect to the perturbations in Eq. (3.58). The first row refers to
the values obtained from integrating the O-U process. The rest are values calculated via
discretisation of the transfer operator where N is the resolution. We defined Error1 as the
L2 norm of the difference between the coarse-grained perturbed invariant measure and the
first order correction. Error2 is the same but with higher order correction terms.

⟨x⟩ δ(1)
ε1 [x]1 δ(1)

ε2 [x]1 Error1 Error2

O-U 0 1 0 0 0

N = 10 10−4 0.47 3 × 10−3 0.02 0.02

N = 12 10−4 0.77 2 × 10−3 7×10−3 5 × 10−3

N = 14 10−4 0.93 8 × 10−4 3×10−3 8 × 10−4
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(a) (b)

(c) (d)

Figure 3.2: Panel (a) shows the linear response of the O-U process with respect to the
perturbations considered in Eq. (3.58) calculated by truncating Eq. (3.21) at the first order.
Figures (b) and (c) show the linear response to changes in ε1 and ε2, respectively. Figure
(d) contains the second order correction obtained via Eq. (3.21).
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external forcing. The Lorenz 63 system, instead, generates a non-conservative and non-
uniformly hyperbolic flow making it ill-posed for calculating response in the sense of
Ruelle (1.9). The Lorenz 63 system is a deterministic three-dimensional flow {ϕt}t∈R that
is obtained by truncating Saltzman’s equations for convection, and results in the set of
ODEs governed by the vector field F : R3 −→ R3:

ẋ(t) = F(x) =


s(y − x)
x(r − z) − y

xy − bz

, (3.60)

where the Prandtl number, aspect ratio and Rayleigh factor are s = 10, b = 8/3 and
r > 0, respectively. The Rayleigh factor is not determined just yet in view that it is the
parameter that, ultimately, regulates the temperature difference between the convecting
layers and it is responsible for the appearance of well-studied bifurcations [Spa82]. The
Lorenz 63 equation (3.60) is quadratic and, hence, non-linear which, together with having
dimension greater than two, makes it susceptible of displaying complex chaotic dynamics
on a compact region of phase space.

The presence of a global attractor boils down to the existence a quadratic Lyapunov
function whose Lie derivative has negative values on an ellipsoid [Spa82]. The axis and
centre of this ellipsoid can be written in terms of the model parameters r, s and b. One
considers, for instance, the Lyapunov function L(x) = rx2 + sy2 + s(z − 2r)2, with Lie
derivative satisfying the following relation:

L̇(x) = ∇L(x) · F(x) = −2s(rx2 + y2 + bz2 − 2rbz), (3.61)

for every x in R3. Consequently, the set E := {x ∈ R3 : rx2 + y2 + bz2 = 2rbz} defines
an ellipsoid and the points at which the Lie derivative of L vanishes. Furthermore, the
points in the interior of E are the only ones having positive Lie derivative, implying that
all points on R3 eventually fall into E . Thus is found a compact trapping region on phase
space where entering trajectories can never leave. This fact, together with the regularity
of the vector field F, implies that solutions are well defined for any time.

The non-conservative forces present in the Lorenz system result from the dissipative
processes in the Saltzman’s equation. More concretely, phase pace experiences an average
exponential contraction of volumes proportional to the divergence of the governing vector
field. Indeed, let V (t) : R −→ R denote the volume of a compact subset S ⊂ R3 with
smooth boundary and normal vector n inR3. Then, Liouville’s formula and the divergence
theorem give:

V̇ (t) =
∫

ϕ(∂S,t)
F · nds =

∫
ϕ(S,t)

∇ · Fdv = −(1 + σ + b)V (t). (3.62)
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From where one deduces that:

V (t) = e−(1+s+b)tV (0). (3.63)

Hence, if the trapping volume determined by the ellipsoid E is let to evolve forward in time,
it will eventually have zero volume. Notice that this exponential contraction of volumes
does not imply stability in any way, it just means that the limiting set or attractor, if it
exists, will have zero Lebesgue volume. Moreover, the invariant measure of the system,
regardless of the nature of the attractor, will be singular with respect to the Lebesgue
measure. Let us note, furthermore, that Eq. (3.63) implies that the Lorenz flow cannot
have repelling equilibria. If the latter were true, there would exist an open neighbourhood
of a source in R3 whose volume is exponentially divergent with rate equal to the sum of
the eigenvalues of the linearised equation, in contradiction with Eq. (3.63).

Solving F = 0 gives three equilibrium points on phase space, namely, O = (0, 0, 0) and
p± = (±

√
b(r − 1),±

√
b(r − 1), r−1). For the values of 0 < r < 1 the origin is the only

real equilibrium value, whose local stability is determined by the eigendecomposition of
the linearised equation at O. Global stability, on the other hand, follows from the existence
of a Lyapunov function whose Lie derivative is negative for all values outside a compact
ellipsoid3. At r = 1, a degeneracy is introduced in the linearised equation at the origin
and two new equilibria p± appear. This way a supercritical pitchfork is traversed at
r = 1, since the origin loses stability and the non-trivial equilibria are locally stable. The
stability of p± is broken when the real parts of two of the eigenvalues determining the
linear stability trespass the imaginary axis, giving rise to two unstable and one stable local
directions. Such loss of stability corresponds to a subcritical Hopf bifurcation attained at
[Spa82]:

rH = s(s+ b+ 3)
s− b− 1 ≈ 24.7368... (3.64)

corresponding to the “critical value of r for the instability of steady convection” [Lor63].
Beyond the Hopf bifurcation r > rH , the lack of sinks or sources and the numerical
evidence of a positive Lyapunov exponent, revealing sensitive dependence with respect to
initial conditions, suggest chaotic behaviour of the flow supported on a global attractor,
albeit non-rigorously.

The quest for a mathematical proof of chaos in the Lorenz system started since the
publication of E. Lorenz’ seminal paper, and was gathered as one of S. Smale’s unresolved
problems [Sma98]. Attempts on the proof of such fact kicked off with Lorenz’ local
maxima map, which by naked eye resembled the (chaotic) tent map to the extent of
being mutually homeomorphic. The geometric Lorenz model was later introduced by J.
Guckenheimer [GW79], where the Poincaré map was studied and argued to be faithful

3The Lyapunov function L can be taken to be in this case L(x) = rx2 + sy2 + sz2.

82



Section 3.3 83

with the original model. Such one-to-one correspondence was proved in 2000 concluding
the result below [Tuc02]:

Theorem 3.3.1 (W. Tucker). For the classical parameter values (s = 10, b = 8/3 and
r = 28), the Lorenz equations support a robust strange attractor, which supports a unique
SRB measure.

While strangeness in this theorem refers to the sensitive dependence on initial condi-
tions, robustness alludes to the persistence of the attractor’s topology under small changes
in the governing parameters. In this sense, the Lorenz attractor is shown to posses a hyper-
bolic structure, although in a singular way. Such non-uniform hyperbolicity results from
the intersection of the stable manifold with the return plane, provoking a discontinuity
in the Poicaré map. Consequently, robustness in Theorem 3.3.1 cannot be in the linear
response sense, since the splitting of the tangent space is not continuous and, thus, not
suitable for having a smooth density along the unstable directions. There exists, neverthe-
less, attempts in providing numerical evidence of linear response in the Lorenz 63 system
point to the existence of linear response in the Lorenz system. In [Rei02], linear response
is analysed in the frequency domain providing a methodology to extract from particular
time series the value of the susceptibility function at a given frequency. It is, in fact, estab-
lished that the modulus of the susceptibility should be inversely proportional to the forcing
strength when the latter is small, up to approximately 0.001 in the Lorenz 63 model. An
extension to high-order responses was done in [Luc09], where generalised Kramer-Kronig
relations were numerically calculated, this time departing from the numerical calculation
of the Green function. Other approaches focus on the numerical shadowing of trajectories
and, in fact, constitute the dual approach to the operator methods here presented [LAH00];
[NW17]

The perturbation problem we tackle here is that of changing the value of the control
parameter r → r + ε1 for ε1 in R, which leads to bifurcations numerically surveyed
in [Spa82]. We also study the additive perturbation on the z-variable by adding a real
parameter ε2 on the third component of the vector field F. These perturbations incur a
modification on the vector field of the form:

ẋ(t) = F(x) + ε1G1(x) + ε2G2(x), (3.65)

where G1(x) = [0, x, 0]⊤ and G2(x) = [0, 0, 1]⊤. Consequently, the Liouville equation
reads as Eq. (3.45), with perturbation operators L1 and L2 defined according to Eq. (2.17b).
The resulting changes in the statistics of the system were monitored through the observable
z whose mean value was calculated for values of r ranging in [23.5, 30] and ε2 in [−1, 1].
When r ≈ 24.7+0.47ε2, a sharp gradient in the mean value of the observable z is identified
which results from the Hopf bifurcation. This unbounded gradient located at rH is tracked
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Figure 3.3: Location of the statistically inferred bifurcation point rH as a function of the
parameters r and ε2. The solid black line rH indicates sharp gradients of ⟨z⟩. Darker and
lighter areas roughly correspond to values for ⟨z⟩ > 22.5 and ⟨z⟩ < 20.5, respectively.
The expectation values were computed by integrating the equations for 5 · 102 time units
with twenty ensemble members for each value parameter choice.

and shown in Fig. 3.3 (a) as a function of r and ε2. Far away from this bifurcation point,
the statistics change smoothly with respect to ε1 and ε2. For the calculation of these means,
ensembles of twenty integrations of 5 · 102 time units and a time step 10−2 time units were
analysed after having removed 10% of each time series to discard transients. This number
of ensemble members are length of integrations resulted in negligible standard deviations
provided r is far away from the bifurcation point.

Numerical Setting and Results. Unlike the O-U system considered in Section 3.3.1,
the dynamics of the Lorenz 63 model is supported on a compact attractor. Negative Lie
derivatives on the ellipsoid E (see Eq. (3.61)) provide an analytical bound of the location
of the attractor although numerical investigations, on the other hand, guarantee that,
once transients have died away, the attractor is tightly enclosed by the Cartesian product
[−20, 20] × [−30, 30] × [0, 50]. Then, to obtain the box partition, we divide each axis into
two and repeat such procedure in the resulting segments. This way, a total of 2N boxes
{Bi}2N

i=1 were constructed for the values of N = 12, 15 and 18. As mentioned earlier, the
box discretisation and searching algorithms were executed using GAIO [DFJ01]. We note
at this stage that only a few of the 2N boxes will support a non-zero value of the invariant
measure and hence, only these will be kept for computations reducing the sizes of the later
constructed transition matrices. On this note, the box-counting dimension of the estimated
compact set can be readily calculated, giving here an approximation of 1.95, slightly lower
in comparison with previous works [GP83]. It is not intended here to provide rigorous
computations on this matter.

Looking back at Eq. (3.47), we want to sample the unperturbed system (3.60) in order to
approximate the transfer operator via the stochastic matrix Mτ for some suitable choice of
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transition time τ . To obtain the sample points, we integrated the model for 105 time units
with a time step of dt = 10−3 time units using an adaptive Runge-Kutta scheme, where
103 time units had been previously discarded to make sure the system has reached the
steady state. Such length of integration translates into approximately 105 Lyapunov times
and guarantees that each box is populated by a sufficient amount of points; a failure of the
latter would create numerical artifacts like having multiple irreducible states— of positive
Lebesgue measure—, in disagreement with the presence of physical invariant measure
[Tuc02]. Once the time series is at hand, the transitions between boxes are recorded
following Eq. (3.48) where four transition times τ have been studied: τ = dt, 5 · dt, 10 · dt
and 100 · dt. The choice of these transition times aims at keeping a balance between the
accuracy of the time-discretised Liouville equation (3.46) and the coarse-graining due to
the box subdivision.

The dissiptiveness of the flow together with the irreversibility of the coarse-grained
transfer operator Mτ , reveals resonances within the unit circle with non-zero imaginary
parts, explaining the oscillations in the correlation functions. This results in having a non-
selfadjoint generator in the Liouville equation which further implies the non-normality of
the resulting transition matrix Mτ . Transient growths and delays in convergence to steady
state are, hence, expected when taking successive powers of Mτ

4. This is illustrated in
Fig. 3.4 (a) where the convergence to steady state is measured in terms of the powers of
Mτ − Q, where Q is the projection matrix to which Mnτ converges as n tends to infinity.
The Euclidean and 1-norms are considered and in both cases there is a delay before they
enter the asymptotic regime where the convergence rate is measured by the modulus
second largest eigenvalue λ2 of Mτ . More concretely, we observe that at t ≈ 0.025 the
exponentially decaying regime starts. While the 1-norm shows an subexponential initial
decay, the Euclidean or 2-norm exhibits transient growth. In either case, these phenomena
are explained by the numerical range of Mτ exceeding the complex unit ball; see [TE05,
Chapter IV] for an overview on norm-growth of matrix powers.

It is well known that the artificial diffusion due to a coarse discretisation is less-
ened by a large transition time τ , especially when approximating the eigenvalues of the
Liouville/Fokker-Planck equation [TLD18]. Unlike conservative systems, the Lorenz at-
tractor will be composed of infinitely self-replicating structures that will be smudged by
any spatial discretisation, regardless of the resolution. As commented earlier, artificial
diffusion equates to the introduction of irreversibility having two relevant implications in
the present case study: (a), the sampled invariant measure is smoothed [FJK13] and (b),
eigenvalues within the unit circle appear, although they are susceptible of revealing the
location of the Ruelle-Pollicot resonances [FR02]. Such eigenvalues, however, do not have
a formula in terms of the vector field F in Eq. (3.60) although it is known that they explain

4This is mathematically attributed to non-normal matrices possessing a numerical range that strictly
contains the convex hull of its eigenvalues; see [TE05].
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(a) (b) (c)

Figure 3.4: (a) 1- and 2-norms of the decay matrix Mt − Q as a function of time and
its logarithmically scaled version against the slope given by the modulus of the second
largest eigenvalue λ2 of M5·dt in the inset figure. (b) Autocorrelation function of the
variable z using Eq. (3.9) for transition times τ indicated in the legend vs. full integration
(black curve). (c) Power spectral densities of the variable z obtained from the Fourier
transform of Eq. (3.9) for different values of transition time τ indicated in the legend vs.
full integration (black curve).

the evolution and decay of correlation functions [Rue86]; [BL07]. Hence, an immediate
sanity check is the evaluation of correlation functions as done in Fig. 3.4, where in panel
(b) we computed the autocorrelation function of the variable z. The black curve indicates
the autocorrelation function obtained from direct numerical simulations of the Lorenz 63
system, whereas the coloured lines are approximated autocorrelation functions using a
transition matrices Mτ and formula (3.9) with a resolution of N = 15 and transition
times τ indicated in the legend. We highlight that for each curve, an independent run
of the model has been performed accordingly with the integration parameters explained
earlier in this subsection, so that dependences on initial conditions are ruled out. It is
distinct that for larger values of transition times, a better approximation of the correlation
function is obtained, as results of a minimisation of the artificial diffusion entailed by the
discretisation. The case of τ = 0.1 is plotted in red since, although being a valid transition
time, it will not be considered for the study of the response in favour of the accuracy of the
time-discretised Louville equation (3.46). Fig. 3.4 (c) shows the power spectral density
of the variable z for different transition times. It is remarkable that the location of the
frequency peak is indistinguishable from the reference integration (black curve), located
at around ω = 8. This suggests that, while the rate of correlation decay is overestimated
due to artificial diffusion, the dominating frequency variability is well captured. In other
words, the real parts of the eigenvalues of Mτ are more sensitive to transition times,
whereas the imaginary parts are more robust.

A coarse-grained estimation of the invariant measure can be readily obtained by solving
the eigenvalue problem Eq. (3.6) and it is plotted on Fig. 3.5 (a) against the corresponding
box-covering for N = 15. We immediately identify the complex “butterfly”-like set of
boxes that supports the coarse-grained measure, which concentrates probability around
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the centre of the butterfly compared to the edges of the lobes where the dark blue colours
indicated a low probability of occurrence. Regarding the perturbation operators, the same
techniques as with the O-U process where employed. The difference here that one needs
to take special care due to the complex geometry of the attractor, as illustrated by Fig. 3.5.
Hence, one needs to take special care of the boundary and isolated boxes. As noted at
the end of Section 3.3, isolated boxes will be assigned zero-valued derivatives, whereas
boundary box derivatives will be estimated with forward increments (see Eq. (3.51)). This
technical detail is of crucial importance in the treatment of the edges of the lobes of the
attractor depicted in Fig. 3.5 (a), where the values of probability, although close to zero,
sharply vanish once outside the box-covering. Note that this is not a significant problem
in the O-U process, since the Gaussian density smoothly vanishes at the outer boxes.
Bearing all these details in mind, the operators L1 and L2 were discretised into m1 and
m2. In particular, Fig. 3.5 (b) shows the evaluation ofm1 onto u, revealing the probability
increase and depletion flows resulting from the applied perturbation; see red and blue
values respectively. Ulam’s method is prone to errors when estimating the invariant
measure, and such errors are larger (in relative terms) where the empirical occupation
rate is smaller. This is made worse when one considers finite differences. Nonetheless,
we expect that the errors we introduce are small in absolute terms and localised in the
phase space. Therefore, if one considers smooth observables, the overall contribution
coming from those regions will end up being small. The relevance of using smooth
observables should not come as a surprise: Ruelle’s [Rue09] response theory only works
for C3 observables, while the extension to less regular functions entails modifications that
will not be treated here [BKL17].

At a qualitative level, the results of applying this methodology are presented in Fig. 3.6,
where we show that Eq. (3.21) can indeed approximate the expectation values of the chosen
observables for a wide range of values of ε1. In this case, we are showing the calculations
obtained with a transition time of τ = dt. We underline that these plots demonstrate
the validity of the formulae not only to compute the linear response but to predict the
perturbed statistics of the system. As is natural, the formulas cannot be expected to work
for large values of the perturbation parameter, letting alone beyond the bifurcation point
at rH .

Quantitatively, tables 3.2-3.4 contain a series of statistics computed using stochastic
matrices Mτ for transition times τ = dt, 5 · dt and 10 · dt, respectively, with perturbation
parameters of ε1 = 0.1 and ε2 = 0.1. In these tables, the perturbative expansions and
linear response formulas obtained in Section 3.2 are applied to calculate the expectation
values of the observables x2, y2, z2 and z using Eq. (3.8), together with their linear
responses using Eq. (3.21). The first row of these tables is labelled with Lorenz 63 and
contains the reference values calculated from direct simulations of Eq. (3.60). Differently
to the calculations for Fig. 3.3, an ensemble of twenty independent members was taken in

87



Page 88 88

each case and integrated for 105 time units and with a time step of 10−2 time units, after
the removal of transient trajectories of 103 time units. These type of ensemble integrations
served both to calculate the unperturbed and perturbed expectation values and the linear
responses, whose standard errors are not shown here since they are below 1%. The values
of ε1 = ±0.05 and ε2 = ±0.05 were also considered in the empirical estimation of the
linear response. When only L1 is applied, the predicted perturbed expectation values
using Eq. (3.21) are shown in columns five to eight of tables 3.2-3.4. The perturbed
expectation values as results of applying simultaneous forcings ε1G1 and ε2G2 are shown
in columns nine to twelve of the same tables, demonstrating the predictive skill of the
formulas. More importantly, the linear responses with respect to L1 and L2 are shown in
the last eight columns of tables 3.2-3.4, while the combined linear response is given by
the sum, by virtue of the additivity. We highlight that the computations shown here agree
with those of prior works where, instead, the authors resort to trajectory-wise algorithms
for the computation of the linear response [Wan13]; [NW17].

Increasing resolution yielded more precise results in the estimation of expectation
values, although this was not the case when computing the linear responses forN = 15 and
N = 18 in tables 3.2-3.4. The reason is that a high box-resolution needs of exponentially
more sample points on phase space, in detriment of invariant measure approximation. We
observe, furthermore, that the accuracy of such approximations heavily depend on the
choice of observable and perturbation. While the linear and total responses of z present
a good agreement with the full model, the rest of observable’s linear responses become
dependent on the perturbation chosen. Not so when calculating the full responses where,
in relative terms, the performance is better. We highlight that the Markov matrix M
calculated from a time series will not capture the effects of the stable directions, necessary
for the computation of Ruelle’s formula (1.9), and (1.11) in particular. Indeed, a stochastic
matrix estimated with respect to the Lebesgue measure (see Remark 3.1.1) encodes also
the effects of both stable and unstable directions and would yield a set of eigenvalues that
contain the those of M [TLD18]. We therefore, conclude that tables 3.2-3.4 contain the
information relative to the unstable directions observed in long integrations of the system.
More work is, hence, needed to discern the way applied fields project along the stable and
unstable directions of the flow.
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(a) (b)

Figure 3.5: The coarse-grained Lorenz 63 invariant measure is shown on figure (a) for
a box-resolution of N = 15. Relative occupancy is colour-coded. Using the same
level of coarse-graining, figure (b) shows the discretised operator L1 applied onto the
invariant measure. Positive (negative) values show the direction of increase (depletion) of
probability due to the perturbation.

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Panels (a), (b) and (c) are the expected values of the observables y2, z2 and
z, respectively, computed using Eq. (3.21) (dashed line) vs. empirically obtained means
(solid line) as a function of ε1. The relative error is shown on figure (d). Relative error (%)
of the prediction of the expected values of the observables indicated in the plots. Figures
(e) and (f) are 2-dimensional errors for y2 and z as a function of ε1 and ε2.
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Table 3.2: Expectation values (first twelve columns) and linear responses (last eight columns) of the observables x2, y2, z2 and z with respect
to the unperturbed and perturbed (ε1 = 0.1 and ε2 = 0.1) invariant measure. In the first row empirical time averages were used whereas the
rest indicate the expectation values obtained by means of evaluating Eq. (3.21) with a transition matrix of size N × N , and transition time
τ = dt.

⟨x2⟩ ⟨y2⟩ ⟨z2⟩ ⟨z⟩ ⟨x2⟩ε1 ⟨y2⟩ε1 ⟨z2⟩ε1 ⟨z⟩ε1 ⟨x2⟩ε1,ε2 ⟨y2⟩ε1,ε2

L-63 62.7975 81.2079 628.9203 23.5490 63.0685 81.5965 633.9853 23.6507 62.9642 81.4554

N = 12 63.3087 82.3652 629.7495 23.5497 63.9594 82.6604 634.0191 23.6397 63.8450 82.4960

N = 15 62.9322 81.4755 629.2876 23.5527 63.6321 81.8329 634.3466 23.6618 63.5166 81.6583

N = 18 62.8354 81.2423 629.2227 23.5542 63.4534 81.4851 634.3259 23.6622 63.3296 81.2907

⟨z2⟩ε1,ε2 ⟨z⟩ε1,ε2 δ(1)
ε1 [x2] δ(1)

ε1 [y2] δ(1)
ε1 [z2] δ(1)

ε1 [z] δ(1)
ε2 [x2] δ(1)

ε2 [y2] δ(1)
ε2 [z2] δ(1)

ε2 [z]

L-63 633.8258 23.6491 2.6060 3.886 50.50 1.008 -1.006 -1.478 -1.172 -0.002

N = 12 633.4111 23.6260 6.488 3.022 42.386 0.894 -1.143 -1.651 -6.103 -0.138

N = 15 633.8201 23.6505 6.985 3.656 50.272 1.087 -1.147 -1.743 -5.257 -0.113

N = 18 633.6526 23.6526 6.215 2.608 50.802 1.080 -1.216 -1.922 -4.737 -0.094
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Table 3.3: Expectation values (first twelve columns) and linear responses (last eight columns) of the observables x2, y2, z2 and z with respect
to the unperturbed and perturbed (ε1 = 0.1 and ε2 = 0.1) invariant measure. In the first row empirical time averages were used whereas the
rest indicate the expectation values obtained by means of evaluating Eq. (3.21) with a transition matrix of size N × N , and transition time
τ = 5 · dt.

⟨x2⟩ ⟨y2⟩ ⟨z2⟩ ⟨z⟩ ⟨x2⟩ε1 ⟨y2⟩ε1 ⟨z2⟩ε1 ⟨z⟩ε1 ⟨x2⟩ε1,ε2 ⟨y2⟩ε1,ε2

L-63 62.7975 81.2079 628.9203 23.5490 63.0685 81.5965 633.9853 23.6507 62.9642 81.4554

N = 12 63.3154 82.3735 629.7792 23.5502 63.9725 82.6588 634.0774 23.6409 63.8575 82.4928

N = 15 62.9284 81.4895 629.1764 23.5505 63.6315 81.8222 634.3041 23.6609 63.5154 81.6443

N = 18 62.8305 81.2722 629.0002 23.5500 63.4426 81.4444 634.1984 23.6596 63.3210 81.2436

⟨z2⟩ε1,ε2 ⟨z⟩ε1,ε2 δ(1)
ε1 [x2] δ(1)

ε1 [y2] δ(1)
ε1 [z2] δ(1)

ε1 [z] δ(1)
ε2 [x2] δ(1)

ε2 [y2] δ(1)
ε2 [z2] δ(1)

ε2 [z]

L-63 633.8258 23.6491 2.6060 3.886 50.50 1.008 -1.006 -1.478 -1.172 -0.002

N = 12 633.6270 23.6270 6.556 2.936 42.675 0.902 -1.148 -1.666 -6.190 -0.140

N = 15 633.7810 23.6478 7.029 3.453 50.928 1.100 -1.149 -1.768 -5.223 -0.110

N = 18 633.7781 23.6521 6.182 2.124 50.001 1.081 -1.179 -1.939 -4.202 -0.075
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Table 3.4: Expectation values (first twelve columns) and linear responses (last eight columns) of the observables x2, y2, z2 and z with respect
to the unperturbed and perturbed (ε1 = 0.1 and ε2 = 0.1) invariant measure. In the first row empirical time averages were used whereas the
rest indicate the expectation values obtained by means of evaluating Eq. (3.21) with a transition matrix of size N × N , and transition time
τ = 10 · dt.

⟨x2⟩ ⟨y2⟩ ⟨z2⟩ ⟨z⟩ ⟨x2⟩ε1 ⟨y2⟩ε1 ⟨z2⟩ε1 ⟨z⟩ε1 ⟨x2⟩ε1,ε2 ⟨y2⟩ε1,ε2

L-63 62.7975 81.2079 628.9203 23.5490 63.0685 81.5965 633.9853 23.6507 62.9642 81.4554

N = 12 63.3167 82.3746 629.7816 23.5503 63.9828 82.6286 634.1533 23.6425 63.8667 82.4596

N = 15 62.9281 81.4919 629.1595 23.5501 63.6447 81.7800 634.4634 23.6643 63.5294 81.5974

N = 18 62.8317 81.2747 629.0003 23.5500 63.4431 81.3503 634.2905 23.6600 63.3220 81.1361

⟨z2⟩ε1,ε2 ⟨z⟩ε1,ε2 δ(1)
ε1 [x2] δ(1)

ε1 [y2] δ(1)
ε1 [z2] δ(1)

ε1 [z] δ(1)
ε2 [x2] δ(1)

ε2 [y2] δ(1)
ε2 [z2] δ(1)

ε2 [z]

L-63 633.8258 23.6491 2.606 3.886 50.50 1.008 -1.006 -1.478 -1.172 -0.002

N = 12 633.5229 23.6284 6.652 2.648 43.403 0.917 -1.157 -1.694 -6.325 -0.142

N = 15 633.9628 23.6542 7.188 3.101 52.579 1.137 -1.134 -1.797 -5.008 -0.101

N = 18 633.9375 23.6547 6.207 1.523 50.59 1.063 -1.129 -1.979 -3.499 -0.050
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3.4 Summary and Discussion

Projecting the transfer operator or Fokker-Planck equation onto a finite dimensional vector
space using Ulam’s method naturally gives stochastic or Markovian matrices that describe
the dynamical system of interest up to finite precision. Although rigorous approximation
results are scarce, we have provided numerical evidence of its usefulness in calculating
certain dynamical invariants.

By considering perturbations of a generic finite phase space Markov chain, one can
express the resulting invariant vector as a power series of differential matrices that pro-
vide the response at all orders of non-linearity, including the leading order term that is
denominated as the linear response; see Eq. (3.21). The well-posedness of linear response
in this sense boils down to determining the singularity of said differential matrix; see
Proposition 3.2.1. A stability result is presented in Proposition 3.2.3, where the problem
of having non-simple eigenvalues is overcome in comparison to the results of [Mit03].
Furthermore, the numerical conditioning of the linear response is described in terms of
the eigenvalues of the chain; see Proposition 3.2.4.

Alongside previous works [Luc16]; [ADF18], it is possible to link the perturbation
theory of stochastic matrices to dynamical systems via the projected transfer operator.
The linear component in the perturbative expansion (3.21) indicates the coarse-grained
sensitivity of a dynamical system to prescribed perturbations, in the same way Eq. (2.23)
does in general. We examined the Fokker-Planck/Liouville equation to identify the opera-
tors that incur the perturbations on the evolution of densities. Then, by considering simple
finite difference methods, we were able to model (to finite-precision) the flow of proba-
bility that results from the perturbation. This gives matrix perturbations that allowed to
exploit the perturbative formulas giving us access to the linear and non-linear response of
the systems. Notice that using this method, we only need one integration of the (unforced)
model to determine the response and sensitivity.

The two numerical experiments performed in sections 3.3.1 and 3.3.2 were intrinsically
different. While the O-U process possesses a smooth invariant measure, the Lorenz 63
model is a dissipative deterministic system with an singularly hyperbolic attractor of
zero Lebesgue-measure. Along these lines, we highlight that the partitioning of phase
space naturally induces artificial diffusion [FJK13], which can smoothen the sampled
distribution and, hence, making the calculations better posed [FR02]. In either example,
the unperturbed models were integrated in order to sample their respective climatologies
and to construct the projected transfer operator. Finite differences were, then, constructed
taking into account the geometry of the partition— see bulleted list above Eq. (3.49)—
and the estimated linear responses agreed with the empirically calculated values, as seen
in tables 3.1-3.4. We observed dependence on the chosen observable and resolution in the
Lorenz 63 case study, and could be attributable to the fact that the stable directions of the
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flow are not sampled using this methodology; see also [TLD18].
One is led to think that, at a coarse-grained level, the more mixing the stochastic matrix

is, the more robust it is to forcing in views of Eq. (3.31). However, we noted that the
mixing rate given by the modulus of the second eigenvalue is deceiving in determining
the convergence rates as shown in Figure 3.4 (a), where transient growth is observed for
small values of time. This because the Lorenz 63 model is dissipative and, thus, the
projected semigroup is prone to be non-normal and likely to reveal sub-unitary complex
eigenvalues with numerical ranges exceeding the unit ball. This suggests that the mixing
rate of the Markov chain may not be enough to quantify the sensitivity of the chains,
but one should account for the non-normality of the underlying semigroup generator or
associated stochastic matrix, the very least.
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Chapter 4

Reduced-Order Dynamical Models

The projection of transfer operator semigroups via Markov chains is a costly procedure
that is restricted to low-dimensional phase spaces. It, therefore, remains to answer what
happens when physical domains are projected onto a set of relevant variables. Recent
works have been devoted to this question [Che+14]; [Tan+20], although we shall here
focus on the similar problem of parametrising unresolved, subgrid variables that are
neglected by coarse-graining.

Many theoretically rigorous parametrisations have been devised, that are broadly di-
vided into top-down and data-driven approaches: the former aim at deriving the parametri-
sations by applying suitable approximations to the equations describing the dynamics of the
whole system, see e.g. [GM13]; [MTV01]; [WL12], while the latter are built by construct-
ing a statistical-dynamical model of the impact of unresolved scales on the ones of interest.
In this chapter, we will discuss and compare the properties of the Wouters-Lucarini (WL)
top-down equation [WL12] and of the Empirical Model Reduction (EMR) data-driven
parametrisation [KKG05]. We will also see when and how the integro-differential equa-
tion occurring in the WL parametrisation can be recast into a set of Markovian stochastic
differential equations (SDEs). In other words, we investigate the quasi-Markovianity of
the latter parametrisation [Pav14].

The two aforementioned methodologies are conceptually and practically different, even
though the ultimate goal is to provide a computationally practical approximation for the
Mori-Zwanzig or GLE integro-differential equation mentioned in the Introduction and to
be revisited more rigorously in Section 4.1. In other words, both approaches— top-down
and data-driven— provide fluctuations in the form of stochastic noise and memory effects
determined by an integral kernel. On the one hand, the WL approach assumes prior
knowledge about the decoupled hidden dynamics but no information about the statistical
properties of the coupled system, in the lines of linear response theory. The empirical
approach, on the other hand, samples the observed variables evolving according to the
latter. The structure of Multilevel Stochastic Models (MSMs) that generalise EMRs
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[KCG15] allows one, moreover, to derive explicit formulas for the fluctuating and memory
correction terms that parametrise the influence of hidden processes.

The overall goal of this chapter is to provide a conceptual and analytical link between
these two approaches aiming, first, to buttress the practical relevance of the WL pertur-
bative approach and, on the other, to provide further insight into the well-documented
robustness of the EMR method. Moreover, we will clarify how multilevel systems arise
from both the top-down (WL) and the bottom-up (EMR) approaches. The present chapter
explores the complete set of boxes and explains all the arrows in Fig. 4.1. The diagram
in the figure shows that, starting from the top box, one can arrive at a memory equation,
via top-down or bottom-up methods, as indicated by the left and right sequence of arrows,
respectively.

This chapter is based on a recent publication [SG+21] and is structured as follows.
The Mori-Zwanzig formalism for projected equations of motion is recalled in Section 4.1,
highlighting the need for non-Markovian modelling. Section 4.2 revisits the derivation of
the WL parametrisation method by applying the Dyson expansion— already defined in
Section 2.2— to the Koopman operator associated with two weakly coupled dynamical
systems. We show in Section 4.2.1.1 that such an expansion need not be truncated
for additively coupled models and consider more general coupling laws than those in
[WL13]. Furthermore, we study the problem of finding Markovian representations of the
memory equation in the WL approach based on the spectral decomposition of the Koopman
semigroup. Specifically, Theorem 4.2.1 shows, in the case of a scalar observable, how
to recast the stochastic integro-differential equation arising in the WL parametrisation
as a multilevel Markovian stochastic system involving explicitly the spectral elements
of the (uncoupled) Koopman operator, and we point out in Remark 4.2.5 how such a
Markovianisation extends to the multidimensional setting. Section 4.4 provides new
insights into the Markovian representation adopted in the MSM framework; these insights
help one to determine, in particular, the number of levels required for EMR to converge.
Finally, Section 4.5 presents a comparison of the data-driven and top-down parametrisation
approaches using a simple conceptual stochastic climate model.

The present chapter has supporting information included in a number of appendices.
Appendix C discusses the stochastic Itô integration of the elementary form of an MSM.
Appendix D shows further details on how EMR approaches can capture the dynamical
properties of partially observed systems; in it, we consider a simple climate model,
obtained by coupling the Lorenz atmospheric model [Lor84] and the Lorenz 63 convection
model [Lor63], already studied in Section 3.3.2.
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COUPLED SYSTEM

EMRResponse Theory

Memory Equation

Multilevel Stochastic Model

Ensemble of hidden vairables Partial observations

Dyson expansion

Linear Regressions
Ito integrationSpectral Decomposition

Figure 4.1: Schematic view of the two complementary approaches studied in this chapter.
The arrows on the left-hand side indicate top-down, perturbative parametrisations; on the
right, they refer to bottom-up, empirical parametrisations.

4.1 The Mori-Zwanzig Formalism

Let us reformulate the problem of constructing parametrisations as a projection of the
dynamics onto the set of resolved variables. By working at the level of observables, Mori
[Mor65] and Zwanzig [Zwa61] showed that the evolution laws for the projected dynamics
incorporate a deterministic term that would be obtained by neglecting altogether the impact
of the unresolved variables, to which a stochastic and a non-Markovian correction had
to be added. A. J. Chorin and co-authors [CHK02]; [CL15] played an important role
in developing further these ideas and applying them to several important problems. We
briefly recapitulate below the Mori-Zwanzig projection operator approach.

Formally, let Ψ denote a generic observable— possibly inCb— defined on a state space
viewed as the product of two finite-dimensional spaces X × Y , with variables x in X and
y in Y being the resolved and unresolved variables, respectively. Next, let us define P
to be a projector onto functions depending only on the target variables in X , with the
complementary projector on the unresolved variables being defined by Q = 1 − P.

Given a smooth flow ϕt on X × Y arising as solutions of Eq. (1.1), its action on
smooth observables Ψ = Ψ(x,y) was introduced in Section 2.1 via the Koopman operator
semigroup {Ut}t≥0; see also Section 4.2 below for further details on context of coupled
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systems. We wish to recall that Ut is represented formally as the exponential of L∗,
Ut = etL∗ , although it is rigorously justified by operator semigroup theory [EN00];
[Paz12]. With this representation, L∗ satisfies the following identities

∂t

(
UtΨ

)
= L∗etL∗Ψ = etL∗L∗Ψ = etL∗ (P + Q) L∗Ψ (4.1a)

= etL∗PL∗Ψ + etQL∗QL∗Ψ +
∫ t

0
e(t−s)L∗PL∗esQL∗QL∗Ψds, (4.1b)

where we have employed the Dyson identity to obtain Eq. (4.1b), as was discussed earlier
in Chapter 2, around Eq. (2.18). The first term in Eq. (4.1b) is the contribution of the
resolved variables x alone to the instantaneous rate of change of Ψ. The second term
models the fluctuating effects of the unresolved y-variable by itself, while the third and
last term represents, via an integral, the time-delayed influence upon x of its interactions
with y.

This formal calculation suggests that any closed model for the x-variables should
incorporate a fluctuating term to account for the y contributions and a memory or integral
term for the y–x interactions. Unfortunately, the Mori-Zwanzig equation (4.1b)— also
known as the Generalised Langevin Equation (GLE) in the context of equilibrium systems
[Pav14]— does not provide explicit analytic formulas to determine each of the three
summands in the RHS of Eq. (4.1b). Hence, we need efficient ways to approximate such
an equation.

In the limit of perfect timescale separation between the x- and y-variables, the non-
Markovian term drops out and the fluctuating term can be represented as a— possibly
multiplicative— white-noise term, thus recovering the basic results obtained via ho-
mogenisation theory [PS08]. When no such separation exists, however, one has to resort
to finding an integral kernel beyond the abstract formulation of Eq. (4.1b); see, for instance,
the theoretical ansatz based on perturbation expansions presented in [WL12]; [WL13] and
discussed later in the chapter, and [KCG15]; [VL18a] for concrete applications.

In parallel with the theoretical approaches to approximate the Mori-Zwanzig equation
(4.1b), data-driven methods have been proposed to model fluctuations and memory effects
arising as a result of projecting a large state space onto (much) smaller subspaces. To
this end, the work in [KCG15] provides a rigorous connection between the Mori-Zwanzig
equation (4.1b) and multilevel regression models that were initially introduced for climato-
logical purposes in [KKG05]. More recently, [LL21] proposed Nonlinear Auto-Regressive
Moving Average with exogenous input models as a data-driven methodology that is com-
parable with the Mori-Zwanzig formalism and applied such models to the deterministic
Kuramoto-Sivashinsky equation and to a stochastic Burgers equation. The complementar-
ity of theory-based and data-driven model reduction methods in the absence of timescale
separation is very well documented in [LL21] as well.
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Efforts at using ingeniously selected basis functions as a stepping stone in data-driven
methods for model reduction, effective simulation with partial data, and even prediction are
multiple. Thus, the eigenvalues and eigenfunctions of the Koopman and transfer operators
have been used to capture the modes of variability of the underlying flow, regardless of the
latter being deterministic or stochastic; see, respectively, [Bal00] or [Tan+20]. Dynamic
Mode Decomposition [Sch10, DMD] allows one to reconstruct from observations the
eigenvectors and eigenvalues of the Koopman operator for observables of interest even
in high-dimensional dynamical systems [Mez05]; [Row+09]. The latter approach is
complementary to the one presented herein because we shall use the eigenvectors of the
Koopman operator to build the projected dynamics for the observables of interest, which
can then be rewritten as a multilevel Markovian stochastic model. Examples of other
types of selection of dynamically interesting and effective bases are multichannel singular-
spectrum analysis analysis [Ghi+02, MSSA] and data-adaptive harmonic decomposition
[CK17]; [KCG18, DAH-MSLM]. A more thorough discussion of the complementary
approaches involved is beyond the scope of this chapter.

4.2 Revisiting the Weak-Coupling Parametrisation

To study dynamical systems in which one can separate the variables into two groups with
weak coupling between the two, one often resorts to parametrisations of the effects of
one group on the other. In the limit of weak coupling, the coupling itself can be treated
as a perturbation of the main dynamics [WL12]. Granted such an assumption and some
degree of structural stability of the system, one can apply response theory to derive explicit
stochastic and memory terms to describe the impact of the variables we want to neglect
on those of interest, in the Mori-Zwanzig spirit. Note that, to do so, no assumption
on timescale separation between the two groups of variables is necessary. This point
is particularly relevant in the context of climate, where no clear timescale separation is
observed as pointed out in the Introduction. This implies that asymptotic expansions of
the kind used in homogenisation theory— see [PS08]— are of limited utility.

4.2.1 Responses Due to Coupling

Here, using a perturbative approach, we review the derivation of the parametrisation
presented in [WL12]; [WL13]. Formally, we want to couple two dynamical systems
generated independently by two vector fields F : X ⊆ Rd1 −→ X and G : Y ⊆ Rd2 −→
Y with possibly d1 ̸= d2 and typically d1 ≪ d2. We study a broad class of systems of the
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form:

ẋ(t) = F(x(t)) + εCx
x (x(t)) : Cx

y (y(t)) , (4.2a)

ẏ(t) = G(y(t)) + εCy
x (x(t)) : Cy

y (y(t)) . (4.2b)

The operation indicated by the colon x : y denotes the Hadamard product that multiplies
vectors or matrices component-wise. Here, four new vector fields have been introduced
to model the coupling law, namely Cx

x : X −→ X , Cy
x : X −→ Y , Cx

y : Y −→ X and
Cy

y : Y −→ Y . The real parameter ε controls the strength of the coupling between the
two groups of variables, x(t) and y(t), so that the x- and y-variables are uncoupled for
ε = 0. We assume that the vector fields F and G, as well as the coupling laws in Eq. (4.2)
are such that the system possesses a global attractor. Furthermore, we assume throughout
this chapter that this global attractor supports an physical invariant probability measure
µ that describes the distribution of trajectories onto the global attractor, so that Birkhoff
averages hold for sets with positive Lebesgue measure; see Theorem 1.1.1 and comments
below.

The WL parametrisation views the coupling as an ε-perturbation of the otherwise
independent x- and y-processes, with x the observed and y the hidden variables. One
next assumes that the impacts of perturbations applied to these processes can be addressed
using Ruelle’s response theory [Rue97]; [Rue09], so that response formulas of Chapter 2
can be used to derive an effective equation for the x-variables.

Taking the Mori-Zwanzig point of view, we wish to calculate the evolution of observ-
ables that depend on the observed variables x alone, Ψ = Ψ(x(t)). The idea, following
[WL13], is to perform a perturbative expansion of the differential operator L∗ governing
the evolution of Ψ under the action of the flow associated with Eq. (4.2). Denoting by
Ψ(x,y, t) the time evolution of a smooth observable Ψ in Cb(X × Y), the first step of this
Dyson-like operator expansion reads as follows:

∂tΨ = L∗Ψ = (L∗
0 + εL∗

1)Ψ, (4.3)

exactly as Eq. (2.24) where, instead, the second order operators vanish because of the
absence of noise. Here L∗

0 and L∗
1 account for the advective effects of the uncoupled and

coupling terms, respectively, that compose the RHS of Eq. (4.2). Namely, looking back at
Eq. (2.25) we deduce

L∗
0 =

F(x)
G(y)

 ·

∇x

∇y

 ; (4.4a)

L∗
1 =

Cx
x (x) : Cx

y (y)
Cx

x (x) : Cx
y (y)

 ·

∇x

∇y

 , (4.4b)
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in Eq. (4.4), ∇x and ∇y denote the vector differential operators with respect to the variables
x and y. Recalling Section 2.1, the solution operator of Eq. (4.3) is the Koopman operator.
Formally, its dual counterpart acts on densities and it is the transfer operator [Bal00]; see,
also, Section 2.1. Equation (4.3) is thus a transport law, where the physical quantity or
observable is advected by the vector field on the RHS of Eq. (4.2).

Note that the operator formalism presented here in the deterministic dynamical systems
setting —and the associated semigroup theory— extends to Markov diffusion processes
driven by a stochastic forcing, as clarified in Chapter 2; see also [Tan+20]. In the latter case,
we remind the reader that the transport equation (4.3) becomes the so-called backward-
Kolmogorov equation (2.13) that describes the evolution of the expected value of observ-
ables. Loosely speaking, the corresponding extension amounts to adding a Laplacian-like
operator to the advection operator L∗; more details are given in Section 2.1.1.

More precisely, one associates to the solution Ψ(x,y, t) of Eq. (4.3) unfolding from
an “initial” observable Ψ = Ψ(x,y) at time t = 0, a family of linear Koopman operators
indexed by time {Ut}t≥0 such that Ψ(x,y, t) = UtΨ(x,y), for any t ≥ 0 and (x,y)
in X × Y . These operators are defined— as mentioned already in connection with
introducing the GLE (4.1b) and Sections 2.1 and 2.1.1— as exponentials of the operator
L∗, i.e., Ut = etL∗ . This notation is formal as the operator L∗ is unbounded; it is,
however, useable as {Ut}t≥0 satisfies the semigroup property, i.e. Ut+s = UtUs, t, s ≥ 0,
as for a standard exponential. Over the appropriate function space of observables Ψ, this
family actually forms a strongly continuous contracting semigroup [EN06]; we refer to the
functional setting employed in the definition of the semigroup generators around Eqs. (2.6)
and (2.13).

The action of the flow on an observable Ψ becomes thus more transparent thanks to
the operator Ut, according to the equation

UtΨ(x0,y0) = etL∗Ψ(x0,y0) = Ψ(x(t,x0),y(t,y0)), (4.5)

where (x(t,x0),y(t,y0)) denotes the system’s solution at time t emanating from the initial
state (x0,y0) at time t = 0. In what follows, we omit the subscript 0 in (x0,y0) but still
take it as an initial state.

When the coupling parameter ε in system (4.2) is small, one can use formal perturbation
expansions of the Koopman semigroup to better isolate and assess the coupling effects
at the level of observables, in the same way it was done for the static response of the
Fokker-Planck equation in Section 2.2. To do so, we follow here the Dyson expansion
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(2.18) which in the present case reads as follows:

etL∗Ψ(x,y) = etL∗
0+tεL∗

1Ψ(x,y) (4.6a)

= etL∗
0Ψ(x,y) + ε

∫ t

0
esL∗L∗

1e
(t−s)L∗

0Ψ(x,y)ds (4.6b)

= etL∗
0Ψ(x,y) + ε

∫ t

0
e(t−s)L∗

0L∗
1e

sL∗Ψ(x,y)ds, (4.6c)

and it yields the following expansion of the Koopman operator in ε:

etL∗Ψ(x,y) = etL∗
0Ψ(x,y) + ε

∫ t

0
e(t−s)L∗

0L∗
1e

sL∗
0Ψ(x,y)ds+ O

(
ε2
)
. (4.7)

This identity shows that the evolution of a generic observable can be described as an
ε-perturbation of its decoupled evolution according to L∗

0. We note, again, that these
expansions are purely formal and in particular it is not clear in which sense this expansion
might converge. For a bounded perturbation operator L∗

1, it would be straightforward to
prove boundedness of the resulting perturbed semigroup. However, L∗

1 here is a differential
linear operator, for which direct estimates are more laborious; see comments immediately
below Eq. (2.18) and Remark 2.2.2. Leaving alone the functional analysis framework
that would make such an expansion rigorously convergent, we shall use nevertheless the
expansion (4.7) throughout this rest of the present chapter.

The objective now is, using this operator expansion, to derive an effective reduced-
order model for the evolution of the x-variable without having to resolve the y-process.
We start observing the system at t = 0, but assume that it has already attained a steady
state. Since we are only concerned with observables depending solely on the x-variables,
we formulate now an evolution equation for such observables. To do so, we consider
first the adjoint Liouville equation (4.3) for a generic y-independent observable Ψ, this is,
Ψ(x,y) = Ψ(x), for every x and y. For such an observable, at the time we start observing
the coupled system, Eq. (4.3) reduces to

∂t

(
etL∗Ψ

)
|t=0 =

[
F(x) + εCx

x (x) : Cx
y (y)

]
· ∇xΨ. (4.8)

Equation (4.8) illustrates the trivial fact that the time evolution in Eq. (4.2) of an x-
dependent physical quantity is also affected by the y-variables.

Following [WL12]; [WL13], the decoupled equations are assumed to have been evolv-
ing for some time prior to the coupling. Hence, we have to formally parametrise the evo-
lution of the Cx

y (y)-contribution to the vector field which is, ultimately, a vector-valued
observable. We do so by introducing an extended version of the Koopman operators that
act on vectors component-wise, rather than just on real-valued observables. Consider
v : X × Y −→ Rd, for some positive integer d, and define the action of the Koopman
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operator etL∗ on v as: [
etL∗v(x,y)

]
i

= etL∗ [v(x,y)]i (4.9)

for every i = 1, . . . , d. The definition (4.9) will allow us to use the semigroup notation for
observables of possibly different dimensions, all of which take their inputs in the phase
space X × Y . Ultimately, this is a component-wise evaluation of our extended Koopman
operator family, and its generator can be obtained analogously by taking strong limits in
each entry. As mentioned above, we have to model the effects of the coupling vector field
Cx

y(y), whose state at time t = 0 is the product of the evolution from time −t to 0. We
then have, with the dynamics starting at time −t and initial state (x0,y0),

Cx
y (y) = etL∗Cx

y (y0,−t) = etL∗Cx
y (y0) . (4.10)

Now, by using the perturbative expansions in Eqs. (4.6b)-(4.7), we obtain:

Cx
y (y) = etL∗Cx

y (y0) = etL∗
0+tεL∗

1Cx
y (y0) (4.11a)

= etL∗
0Cx

y (y0) + ε
∫ t

0
esL∗L∗

1e
(t−s)L∗

0Cx
y (y0) ds (4.11b)

= etL∗
0Cx

y (y0) + ε
∫ t

0
e(t−s)L∗

0L∗
1e

sL∗Cx
y (y0) ds (4.11c)

= etL∗
0Cx

y (y0) + ε
∫ t

0
e(t−s)L∗

0L∗
1e

sL∗
0Cx

y (y0) ds+ O
(
ε2
)
. (4.11d)

Plugging the identity in Eq. (4.11c) into Eq. (4.8), we find the following expression:

∂t

(
etL∗Ψ

)
|t=0 =

[
F(x) + εCx

x (x) :
{
etL∗

0Cx
y (y0)

}]
· ∇xΨ

+
[
εCx

x (x) :
{ ∫ t

0
esL∗L∗

1e
(t−s)L∗

0Cx
y (y0) ds

}]
· ∇xΨ.

(4.12)

This equation is an exact reformulation of the problem induced by Eq. (4.8). This
reformulation demonstrates that memory effects enter at second order in powers of the
coupling parameter. Notice, though, that even if Eq. (4.12) reduces the dimensionality of
the problem from d1 + d2 to d1, it does not constitute an approximation for the evolution
of Ψ as an observable of x alone, since it depends on the evolution of the y-variables in
the coupled regime by means of the action of esL∗ onto L∗

1. Therefore, we need to perform
a further approximation by considering Eq. (4.11d) instead, which leads to a second order
response formula:

∂t

(
etL∗Ψ

)
|t=0 ≃

[
F(x) + εCx

x (x) :
{
etL∗

0Cx
y (y0)

}]
· ∇xΨ

+
[
εCx

x (x) :
{ ∫ t

0
e(t−s)L∗

0L∗
1e

sL∗
0Cx

y (y0) ds
}]

· ∇xΨ,
(4.13)
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where the terms of order ε3 have been dropped. In some sense, Eq. (4.13) is our equiv-
alent of the Dyson approximation for interactions quantum electrodynamics, where such
interactions take place between the generic x and y variables. Furthermore, Eq. (4.13) ap-
proximates the evolution of the x-variables with no need for the evolution of the y-variables
in the coupled regime, in line with the theory of linear response. This result amounts to
saying that— by observing only the statistical properties of the decoupled dynamics of the
y-process, obtained with ε = 0— one can construct a Markovian contribution

Cx
x (x) :

{
etL∗

0Cx
y (y0)

}
, (4.14)

and a non-Markovian contribution

Cx
x (x) :

{ ∫ t

0
e(t−s)L∗

0L∗
1e

sL∗
0Cx

y (y0) ds
}
, (4.15)

to the dynamics of the x-variables that is able to describe the delayed impact of the
coupling and involves integrating a memory kernel. Expanding the kernel K̃ of the
integral correction, we get:

K̃(t, s,x0,y0) :=e(t−s)L∗
0L∗

1e
sL∗

0Cx
y (y0) (4.16a)

=e(t−s)L∗
0
[
Cx

x(x0) : Cx
y(y0)

]
· ∇xe

sL∗
0Cx

y (y0) (4.16b)

+ e(t−s)L∗
0
[
Cy

x(x0) : Cy
y(y0)

]
· ∇ye

sL∗
0Cx

y (y0) (4.16c)

=
[
e(t−s)L∗

0
(
Cy

x(x0) : Cy
y(y0)

)]
· ∇ye

sL∗
0Cx

y (y0) . (4.16d)

Note that the leading-order Koopman operator esL∗
0 models the evolution of the observables

in the uncoupled regime. Since there is no prior knowledge on initialising the coupled
system at time −t, the initial state y0 in the hidden variables should be drawn from an
ensemble, according to a probability density function. At this stage, there is freedom
in the choice of such a prior. However, since we are assuming that the coupled system
was initialised at time −t, it is natural to draw y0 according to the invariant measure ν
associated with the dynamical system generated by the vector field G from Eq. (4.2). In
effect, we wish to sample initial conditions from the coupled steady state, but do not assume
any prior knowledge of the coupled statistics. As discussed in [WL12]; [WL13], we can
take advantage of response theory to address this situation. Indeed, for any sufficiently
smooth observable Ψ, we have the following perturbation expansion at hand (see also
Eq. (2.23)):

⟨Ψ⟩ε :=
∫

Ψ(x,y)µ(dx, dy) = ⟨Ψ⟩ε=0 +
∞∑

k=1
εkδ(k)[Ψ], (4.17)

where ⟨Ψ⟩ε is the expectation value of Ψ in the coupled system (4.2), ⟨Ψ⟩ε=0 is the
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expectation value of Ψ according to the statistics generated by the uncoupled process
obtained by setting ε = 0 in Eq. (4.2), and εkδ(k)[Ψ] is the kth-order response. This
formula is analogous to that in Eq. (2.23). In what follows, we remove the subscripts for
the averages when ε = 0. Therefore, we have that the expected value of the coupling
function reads as: 〈

Cx
y

〉
ε

=
〈

Cx
y

〉
+

∞∑
k=1

εkδ(k)[Cx
y]. (4.18)

Likewise, we can calculate the average of such function at time t:〈
etL∗

0Cx
y

〉
ε

=
〈
etL∗

0Cx
y

〉
+

∞∑
k=1

εkδ(k)[etL∗
0Cx

y]. (4.19)

Now, by letting η̃(t,y0) = etL∗
0Cx

y(y0), we find that in order for the approximate statistics
to agree up to second order in ε with the exact one, we only need to impose the following
conditions upon the first two moments of the parametrised noisy fluctuations (see also
[WL12] for the derivation):〈

η̃(t,y0)
〉

=
∫
ν (dy0) Cx

y (y0) , (4.20a)〈
η̃(t,y0)η̃⊤(0,y0)

〉
=
∫
ν(dy0)etL∗

0Cx
y (y0)

(
Cx

y (y0)
)⊤
. (4.20b)

It follows that any stochastic noise η(t) that satisfies the two conditions above will be
suitable for parametrising the fluctuations in the y-dynamics tied to the lack of knowledge
in the initial state. Each of the entries in the correlation matrix given by Eq. (4.20b) is the
correlation function between the components of the vector field Cx

y and these will become
explicit provided a suitable spectral decomposition is at hand. Such a decomposition will
be provided later in Section 4.2.2.

In the memory term, though, we neglect ε-corrections to its statistics since memory
effects are of order ε2 already. Thus, we have, by averaging the kernel K̃(t, s,x0,y0) in
Eq. (4.16b) with respect to the ensemble of y-variables, ν,

K(t, s,x) : =
∫
ν(dy0)

[
e(t−s)L∗

0
(
Cy

x(x0) : Cy
y(y0)

)]
· ∇ye

sL∗
0Cx

y (y0) (4.21a)

=
∫
ν(dy0)

[
e(t−s)L∗

0Cy
x(x0) : e(t−s)L∗

0Cy
y(y0)

]
· ∇ye

sL∗
0Cx

y (y0) (4.21b)

=
∫
ν(dy0)

[
Cy

x(x(t− s)) : e(t−s)L∗
0Cy

y(y0)
]

· ∇ye
sL∗

0Cx
y (y0) . (4.21c)

This way, the memory kernel only depends on the x-variables and no information about
the coupled invariant measure µ. Hence, we find a self-consistent evolution of the x-
variables, subject to the influence of unobserved variables y, in the form of a stochastic
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integro-differential equation (SIDE) resembling the GLE (4.1b):

ẋ(t) = F(x) + εCx
x (x) : η(t) + ε2Cx

x(x) ·
∫ t

0
K(t, s,x)ds, (4.22)

where η(t) is a stochastic forcing that agrees with the mean and correlation properties stated
in Eq. (4.20). We emphasise that the solution x(t) of the original system of ordinary dif-
ferential equations (4.2) does not satisfy Eq. (4.22): it is just the proposed reduced-order
model for the x-variables. The closure provided by expressing the corrections in the
second and third term on the RHS of Eq. (4.22) as functions of x alone constitutes the
WL parametrisation. There are two sources of error in the model proposed in Eq. (4.22).
First, the truncation performed in the Dyson expansion neglects higher-order statistical
responses which are weighted by the third power of the small coupling parameter. Sec-
ondly, averaging over the statistics of the uncoupled dynamics can also introduce errors.
In fact, the nature of the stochastic correction is not fully determined except for its lagged
correlation.

Note that there is considerable freedom in the choosing the noise, since we only require
agreement up to the second moment. However, a direct consequence of this weak-coupling
parametrisation is that realisations of the noise can be produced by directly integrating
the decoupled hidden variables, or by representing it using simple autoregressive models
[VL18b]. We are assuming here that the uncoupled dynamics leads to a noisy signal;
this can be achieved either by the presence of stochastic forcing in the hidden variables
[VL18b]; [Wou+16] or by their uncoupled dynamics being chaotic [VL18a].

The perturbation operator approach taken here is analogous to that of [WL13], who
only considered the independent or additive-coupling cases; the latter is expanded below in
Section 4.2.1.1. Here, though, we generalise further the parametrisation formulas that can
be obtained via perturbative expansion of linear operators. In fact, the present approach
can also be extended to weakly coupled systems of the form:

ẋ(t) = F(x(t)) + εCx (y(t)) , (4.23a)

ẏ(t) = G(y(t)) + εCy (x(t),y(t)) , (4.23b)

where Cy encodes interactions that need not be separable between the x- and y-variables
in the hidden layer of the model. Note that the full parametrisation of arbitrary couplings
was discussed by the two authors of [WL13] in a previous work [WL12], in which they
directly employed the first and second order Green functions, although they had to resort
to Schauder basis to express arbitrary couplings as a series of separable product on x and
y.
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4.2.1.1 The Additive-Coupling Case

The approximate Dyson expansion given in Eq. (4.13) is exact in the case of additive
coupling. Such systems take the form:

ẋ(t) = F(x(t)) + εCx (y(t)) , (4.24a)

ẏ(t) = G(y(t)) + εCy (x(t)) . (4.24b)

Indeed, letting Cy(x,y) = Cy(x) in Eq. (4.23b) and using Eq. (4.11b) allows us to avoid
the truncation of the Dyson expansion and yields the following expression for the memory
term:

K̃(t, s,x,y0) = esL∗L∗
1e

(t−s)L∗
0Cx (y0) (4.25a)

= esL∗ (Cx(y0) · ∇x + Cy(x) · ∇y) e(t−s)L∗
0Cx (y0) (4.25b)

= esL∗ (Cy(x)) · ∇ye
(t−s)L∗

0Cx (y0) , (4.25c)

which is exact. Next, taking averages with respect to ν, we obtain:

K(t, s,x) =
∫
ν(dy0)esL∗Cy(x) · ∇ye

(t−s)L∗
0Cx (y0) . (4.26)

Hence, the parametrisation in this additive-coupling case is exact, as no terms proportional
to εk, k ≥ 3 are present. The only assumption made is that the statistics in the y-variables
have reached a steady state according to the unperturbed system. Finally, the full SIDE in
this case takes the form:

ẋ(t) = F(x) + εη(t) + ε2
∫ t

0
K(t, s,x)ds, (4.27)

where the stochastic process η has the mean and correlation properties given by Eq. (4.20).
This equation is, thus, exactly the one obtained in [WL13].

4.2.2 Markovian Representation through Koopman Eigenfunctions

In the context of Langevin dynamics, there are known conditions on memory kernels that
allow one to recast certain SIDEs into Markovian SDEs by means of extended variables;
see [Pav14, Section 8.2]. Those stochastic processes are called quasi-Markovian [Pav14],
although such a Markovianisation procedure is actually not limited to stochastic processes
and it relies on the same type of ideas in other contexts; see [Che+11]; [CGH12]; [Daf70]
and [KCG15, Section 1.3]. This Markovianisation theory can be formulated in the setting
of near-equilibrium statistical mechanics, where one uses fluctuation-dissipation-like rela-
tions that link the decay properties of the memory kernel and the decorrelation rates of the
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fluctuations. Here, we follow the approach in [Pav14] but without making any assumptions
on the Hamiltonian behaviour of the y-variables. We need, though, to impose conditions
on the spectral properties of the generator of the y-dynamics, as explained below.

We define the generator L∗
0,y of the Koopman semigroup associated with the y-

dynamics by:
L∗

0,yΨ(y) = G(y) · ∇Ψ(y), (4.28)

for every real-valued observable Ψ in D
(
L∗

0,y

)
⊂ Cb(Y) and we denote the associated

Koopman operator at time t by etL∗
0,y; the subscript “y” has been dropped from the

∇ operator herewith, for notational clarity. Recall that the spectrum of such operators
provides useful insights into the statistical properties of the system; see Section 2.2.1.

It suffices to show below that the spectrum of etL∗
0,y allows one to characterise the

constitutive ingredients of the WL parametrisation (4.22) and (4.27), subject to natural
assumptions. Even though we have clarified in Eq. (4.9) how the Koopman operator acts
on vector-valued observables of any dimension, we restrict now its action for simplicity to
scalar real-valued observables, as in Eq. (4.28). In this case, along the lines of Section 2.2.1,
we can (formally) decompose the operator as:

etL∗
0,y =

M∑
j=1

eλjtΠ∗
j + R∗(t), (4.29)

where {λj}M
j=1 are the simple eigenvalues that form the point spectrum of L∗

0,y and Π∗
j is

the spectral projector onto the eigenspace spanned by the eigenfunction ψ∗
j . Recall that

dual eigenfunctions are here denoted with the superscript (·)∗, in line with Remark (2.2.4)
and Eq. (2.44). Here, R∗(t) is the residual operator associated with the essential spectrum
of L∗

0,y and its norm is controlled by a decaying exponential; see Eq. (2.42). We assume
furthermore that the spectrum of L∗

0,y lies in the complex left half-plane, and that in
particular Reλj ≤ 0 for any j. Recall that such a spectral decomposition and its properties
can be rigorously justified for a broad class of differential equations perturbed by small
noise disturbances; see [Tan+20, Theorem 1 and Appendix A.5]. Based on these rigorous
results, we assume, roughly speaking, that these properties survive in a certain small-
noise limit, and concentrate here on the vector field given by G in (4.28) for which
a decomposition such as (4.29) holds and a spectral gap does exist in the appropriate
functional space; we refer the reader to the paragraphs immediately below Eq. (2.42).

In the following lines, we heuristically examine the expression of the memory kernel K
appearing in Eq. (4.27) using the eigendecomposition proposed in Eq. (4.29). In particular,
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we study such an integral kernel K component-wise:

[K(t, s,x)]i = Cy(x(s)) ·
〈

∇
M∑

j=1
eλj(t−s)αi,jψ

∗
j (y)

〉
+ R∗(t− s)[Cx]i (4.30a)

≈ Cy(x(s)) ·
〈

∇
M∑

j=1
eλj(t−s)αi,jψ

∗
j (y)

〉
(4.30b)

= Cy(x(s)) ·
M∑

j=1
eλj(t−s)αi,j

〈
∇ψ∗

j (y)
〉
, (4.30c)

for i = 1, . . . , d1, where

αi,j = ⟨ψj, [Cx]i⟩ =
∫
ν(dy)ψj(y)[Cx(y)]i, (4.31)

and we have neglected the contribution coming from the essential spectrum. The coeffi-
cients αi,j are the analogues to those defined earlier in Section 2.2.1 immediately below
Eq. 2.45.

This decomposition highlights the fact that the leading eigenvalues of the operator
governing the evolution of observables in the uncoupled y-dynamics set the timescale for
the memory kernel. Furthermore, this spectral approximation implies that the correlation
functions of the noise have the same decay properties, as will become apparent later in
the proof of Theorem 4.2.1. It follows that the correspondence between the noise and
integral timescales allows us to recast the SIDE in the WL equation (4.27) into a fully
Markovian version with linearly driven hidden variables that are forced by the observed
variables, through a functional dependence that can be non-linear. More exactly, we have
the following theorem.

Theorem 4.2.1. Consider the system (4.24) where Eq. (4.24a) is, instead, a scalar equation
for a real-valued variable x(t). Let ν be the physical invariant measure associated with
the equation

ẏ = G(y), (4.32)

i.e., with the flow determined by the vector field G in system (4.24), for ε = 0. Moreover, let
L∗

0,y be the (uncoupled) Koopman operator associated with (4.32) as defined in Eq. (4.28).
The point spectrum of L∗

0,y is assumed to be constituted ofM simple eigenvalues, whose
corresponding eigenpairs

{
(λj, ψ

∗
j ), j = 1, . . . ,M

}
are ordered as follows: 0 ≥ Reλj ≥

Reλj+1 and λj = λj+1 when Imλj > 0, for j in {1, . . . ,M}.
We assume that Cx in (4.24) lies in the span

{
ψ∗

j , j = 1, . . . ,M
}

and has ν-mean
zero.

Then, the WL equation (4.27) associated with system (4.24) admits a Markovianisation
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of the form:

ẋ(t) = F(x(t)) + εΛ · Z(t), (4.33a)

dZ(t) = [εR(x(t)) + DZ(t)] dt+ ΣdWt, (4.33b)

where Λ and Z(t) lie in CM for every t, while the inner product Λ · Z(t) is real. Here,
R is mapping R into CM , Wt is a (real-valued) M -dimensional Wiener process with
covariance matrix Σ, and D is anM ×M matrix with complex entries, as specified below.

More precisely,
Λ =

[
α

1/2
1 β

1/2
1 , . . . , α

1/2
M β

1/2
M

]⊤
, (4.34)

where

αj = ⟨ψj,Cx⟩ =
∫
ν(dy)ψj(y)Cx(y), (4.35a)

βj =
〈
Cx, ψ∗

j

〉
=
∫
ν(dy)Cx(y)ψ∗

j (y). (4.35b)

The CM -valued mapping R is defined as

R (x) =
Cy(x) · α

1/2
1

β
1/2
1

〈
∇ψ∗

1(y)
〉
, . . . ,Cy(x) · α

1/2
M

β
1/2
M

〈
∇ψ∗

M(y)
〉 , (4.36)

where Cy is defined in (4.24b), and ⟨·⟩ denotes averaging with respect to the invariant
measure ν.

Finally, D = diag (λ1, . . . , λM) and the covariance matrix Σ is given by

Σ = (− (D + D∗))1/2 H, (4.37)

where H is an M × M matrix whose entries are defined as follows: If λj is real, then
Hj,j = 1, and if λj = λj+1, then

Hj,j = 1,
Hj+1,j+1 = 0,
Hj+1,j = 1,

(4.38)

while all other entries are zero.

Proof. The aim is to show that under the assumptions of this Theorem — which require
that the coupling function Cx : R −→ R projects entirely onto span

{
ψ∗

j , j = 1, . . . ,M
}

— the memory and noise terms of the WL equation (4.27) are obtained from the term
εΛ · Z(t) in Eq. (4.33a), after integration of Eq. (4.33b).

Step 1. In this step, we expand the memory term and the lag-correlations of the noise in
the WL equation (4.27) in terms of the leading eigenelements of the uncoupled Koopman
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operator L∗
0,y. These expansions will serve us in Step 2 below to compare the noise and

memory terms of the WL-equation with those produced after integration of Eq. (4.33b).
Let the λj be sorted as in the hypotheses of the theorem. Hence, to distinguish real

and complex conjugate eigenvalues and for notational convenience, we introduce the set
of indices Ir and I+ defined as:

Ir = {j ∈ {1, . . . ,M} : λj is real}, (4.39a)

I+ = {j ∈ {1, . . . ,M} : Imλj > 0}. (4.39b)

An immediate consequence that is used several times throughout the proof is that the sum
of the eigenvalues is real, and may be split as follows:

M∑
j=1

λj =
∑
j∈Ir

λj +
∑

j∈I+

λj +
∑

j∈I+

λj =
M∑

j=1
Reλj ∈ R. (4.40)

As previously stated, we expand the mean and correlation functions of the scalar noise
term η in the WL equation (4.27) in terms of the eigenpairs. The mean is zero by
assumption, but the autocorrelation function can be expanded as follows, based on the
spectral decomposition of correlation functions [Tan+20] later reviewed in Section 4.3:

〈
η(t)η(0)

〉
= CCx,Cx(t) =

M∑
j=1

eλjtαjβj; (4.41)

herein, αj and βj are as defined in (4.35a) and (4.35b), respectively. The expansion of
the correlation function in Eq. (4.41) is a finite sum by virtue of the assumption that Cx

lies in span
{
ψ∗

j , j = 1, . . . ,M
}

and therefore there is no contribution from the essential
spectrum.

Regarding the complex scalars αj and βj defined (4.35a) and (4.35b), it follows that
for each j such that λj = λj+1, we get αj = αj+1 and βj = βj+1. Indeed,

αj =
∫
ν(dy)ψj(y)Cx(y) =

∫
ν(dy)ψj(y)Cx(y) (4.42a)

=
∫
ν(dy)ψj+1(y)Cx(y) = αj+1, (4.42b)

in which we have exploited the fact thatψj = ψj+1 whenλj is complex and j in {1, . . . ,M}.
The same proof can be repeated for βj . Such a conjugacy relation also holds for the

gradients of the eigenfunctions ∇ψj , for those j in {1 . . . ,M} such that λj = λj+1. This
is observed by the following equality:

∇ψj(y) = ∇ψj+1(y) = ∇ψj+1(y), (4.43)
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since ∇ is a differential operator that only involves here differentiation with respect to a
real variable.

Exploiting (4.43), the memory kernel K then expands as (recalling that R∗(t)Cx ≡ 0):

K(t, s, x) =Cy(x(s)) ·
〈

∇
M∑

j=1
eλj(t−s)αjψ

∗
j (y)

〉

=Cy(x(s)) ·
∑
j∈Ir

eλj(t−s)αj

〈
∇ψ∗

j (y)
〉

+ Cy(x(s)) ·
∑

j∈I+

eλj(t−s)αj

〈
∇ψ∗

j (y)
〉

+ Cy(x(s)) ·
∑

j∈I+

eλj(t−s)αj

〈
∇ψ∗

j (y)
〉

(4.44)

which leads to

K(t, s, x) = Cy(x(s)) ·
M∑

j=1
Re

(
eλj(t−s)αj

〈
∇ψ∗

j (y)
〉)

. (4.45)

Note that to go from (4.44) to (4.45), we have made use of the aforementioned conjugacy
relations, that led to a real-valued memory kernel at the end. With (4.41) and (4.45) at
hand, the noise and memory terms in the WL equation (4.27) are thus characterised in
terms of the leading eigenelements of the uncoupled Koopman operator L∗

0,y.
Step2. The second step consists of analysing the noise and memory terms produced

by integration of Eq. (4.33b) and to compare these terms with those of the WL equation.
Performing an Itô integration of Eq. (4.33b)— cf. Appendix C— leads to:

Z(t) = etDZ(0) +
∫ t

0
e(t−s)DΣdWs︸ ︷︷ ︸

noise term

+ε
∫ t

0
e(t−s)DR(x(s))ds︸ ︷︷ ︸

memory term

, (4.46)

where (for simplicity) we have assumed that the initial condition distributes normally with
mean zero and variance equal to the identity matrix, and the function R : R −→ CM is
as defined in (4.36). The noise and memory contributions of Z(t) are as indicated by the
brackets in (4.46).

Let us denote the noisy component of Eq. (4.46) as q(t) in RM . Then, it is clear that
q has zero mean and the lag cross-correlations read as:

E
[
q(t)q⊤(0)

]
= etD =


eλ1t

. . .
eλM t

 . (4.47)
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Let Λ be defined as in (4.34) and let us calculate the mean and lag-correlations of the
one-dimensional stochastic process Λ · q, aimed at approximating η in the WL equation.
First, note that Λ · q is a zero-mean Gaussian process, with lag correlations given by:

E [(Λ · q(t)) (Λ · q(0))] =
(
etDΛ

)
· Λ. (4.48)

Now, expanding
(
etDΛ

)
· Λ in (4.48) shows that we recover the RHS of (4.41).

However, the noise term η in the WL equation is a real-valued stochastic process, and
we are dealing with complex scalars, so therefore we still have to show that Λ · q(t) is real
for every t in R. To do so, let us denote by w⊤ = [w1, . . . , wM ] any arbitrary row vector
in RM . Consider the following inner product:

Λ · etDΣw = Λ · etD


√

−2Reλ1
. . .

√
−ReλM

Hw (4.49a)

= Λ ·


eλ1t

√
−2Reλ1

. . .
eλM t

√
−2ReλM

Hw. (4.49b)

By construction of the matrix H in Eqs. (4.37)-(4.38), the product Hw is given component-
wise, for j = 2, . . . ,M , as:

[Hw]j =

wj, if j ∈ Ir or, j ∈ I+,

wj−1, if λj = λj−1,
(4.50)

while [Hw]1 = w1. This implies in particular that [Hw]j = [Hw]j+1 whenever λj = λj+1.
As a consequence, we get

Λ · etDΣw =
∑
j∈Ir

α
1/2
j β

1/2
j eλjt

√
−2λjwj +

∑
j∈I+

α
1/2
j β

1/2
j eλjt

√
−2Reλjwj

+
∑

j∈I+

α
1/2
j β

1/2
j eλjt

√
−2Reλjwj,

(4.51)

which shows that Λ · etDΣ is a real-valued quantity, and thus for any realisation of the
M -dimensional Wiener processWt, the product Λ ·e(t−s)DΣdWs is real and hence, Λ ·q(t)
is also real for every t.

Finally, we are left with showing that the memory kernel K of the WL equation
coincides with that of the memory term in Eq. (4.46), when multiplied by the vector Λ.
To do so, we exploit the expansion (4.45) of K for this comparison, namely using the
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expression of R in (4.36), we observe that

Λ ·
∫ t

0
e(t−s)DR(x(s))ds =Cy(x(s)) ·

∑
j∈Ir

eλj(t−s)αj

〈
∇ψ∗

j (y)
〉

+ Cy(x(s)) ·
∑

j∈I+

eλj(t−s)αj

〈
∇ψ∗

j (y)
〉

+ Cy(x(s)) ·
∑

j∈I+

eλj(t−s)αj

〈
∇ψ∗

j (y)
〉

=Cy(x(s)) ·
M∑

j=1
Re

(
eλj(t−s)αj

〈
∇ψ∗

j (y)
〉)

,

(4.52)

which indeed coincides with the expression of K in Eq. (4.45), as desired. The proof is
complete.

Remark 4.2.1. Note that the Koopman operator of interest here is the one associated
with the y-subspace Y ⊆ Rd2 and not with the entire (x,y)-space X × Y ⊆ Rd1+d2 .
Other techniques, like the DMD mentioned in Section 4.1, aim at extracting the modes
of variability of the full system by means of studying the Koopman operator in the entire
phase space through suitably defined observables. To this end, the latter methods employ
projections of observables onto the eigenfunctions of the Koopman operator to obtain the
so-called Koopman modes, which are susceptible of capturing the underlying dynamics.
Notice that in Theorem 4.2.1, instead, we are using the Koopman eigenfunctions to identify
the closure model, while projections only come into play in the definition of the coefficients
αj and βj; see Eqs. (4.35a) and (4.35b), respectively.

Remark 4.2.2.

(i) Assumptions on F, R and Λ that ensure that (4.33) possesses a global random
attractor— and thus a stable asymptotic behaviour in the pullback sense— appear
in [KCG15, Theorem 3.1 and Corollary 3.2].

(ii) Note that Theorem 4.2.1 can be viewed as a generalisation of other Markovianisation
results for GLEs that appeared in the literature; see [Pav14]. For instance, the scalar
GLE in R reduces to

ẋ = F (x(t)) −
∫ t

0
K(t− s)x(s)ds+ η(t), (4.53)

where λ is inRn,M is a positive definite n×nmatrix andK(t−s) =
(
e(t−s)Mλ

)
·λ

determines the autocorrelation of the process η(t). In this setting, Eq. (4.53) is
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equivalent to the following SDE:

ẋ = F (x(t)) + λ · z
dz = [xλ−Mz] dt+ ΣdWt,

(4.54)

with ΣΣ∗ = M +M∗. Theorem 4.2.1 allows for non-linear dependence on x in the
z-equation, and thus for memory kernels that are more complicated than in (4.53).
Such a generalisation is of practical importance since the process z can then have
a more complex correlation dependence on the observed variable x than the one
afforded by linear memory terms.

Remark 4.2.3. When L∗
0,y is self-adjoint — in a suitable Hilbert space, as outlined in

Section 4.3 but also in Chapter 2—, i.e., when L∗
0,y = L0,y the eigenvalues are real and

the eigenvectors are mutually orthogonal. Self-adjointness thus implies that there are no
oscillations in the correlation functions of the noise or, equivalently, peaks in their power
spectrum. With respect to Theorem 4.2.1, the matrix H in this case would be the identity,
since the eigenvalues and eigenfunctions are real and the Itô solutions of Eq. (4.33b) are,
hence, real as well.

Remark 4.2.4. The resulting system given by Eq. (4.33) is now fully Markovian and the
only sources of error with respect to the original SIDE (4.22) lie (i), in the effects of the
essential spectrum, which are neglected herein and (ii), the assumptions about the coupling
terms. Neglecting the essential spectrum is only valid for Koopman operators with a point
spectrum capable of capturing the correlations in the decoupled y-system; the latter might
only hold in the case of Markovian diffusion processes and not for deterministic ones. Also,
the assumption that the coupling functions project solely on the point spectrum might not
hold in general.

From a practical perspective, though, a suitable choice of dominant eigendirections
can reduce the number of extra dimensions needed to integrate the system. Such a suitable
choice boils down to neglecting particular eigendirections and this can be done according
to two handy criteria:

(i) The weight determined by the αj and βj coefficients defined in Eqs. (4.35a) and
(4.35b) is small; and

(ii) The eigenvalues λj of L∗
0,y satisfy Reλj0 ≪ λ†, for some j0 in {1, . . . ,M}, in which

case eλj0 t decays rapidly as t grows; here λ† < 0 and |λ†| is some characteristic
inverse time for the deterministic system F. In addition, if αj0 > αj for every j
in {1, . . . ,M} and j ̸= j0, both the memory and the noise correlations die out
fast. Hence, one can neglect the integral terms and perform a fully Markovian
parametrisation, which is possible in the presence of white noise.

115



Page 116 116

Remark 4.2.5. Theorem 4.2.1 is stated for x being a scalar for the sake of simplicity, but
this result extends to the d1-dimensional Eq. (4.24) for the (observed) variables x. In this
remark, we sketch the main elements that permit such a generalisation.

Aside from the obvious generalisation of the assumptions in Theorem 4.2.1 to a multidi-
mensional setting, the main hypothesis consists of assuming that the now vector-valued cou-
pling function Cx in Eq. (4.24) has components {[Cx]i : i = 1, . . . , d1} that project onto
the M simple eigenspaces of the decoupled Koopman operator introduced in Eq. (4.28).
In this case, the construction of a multilevel Markovianisation like Eq. (4.33) can be done
in the following fashion:

ẋ(t) = F(x(t)) + εΛZ(t), (4.55a)

dZ(t) = [εR(x(t)) + DZ(t)] dt+ SdWt. (4.55b)

Here Wt is a d1M -dimensional Wiener process, Z(t) is a d1M -dimensional vector, Λ is a
matrix of size d1 ×d1M , R : Rd1 −→ Cd1M and D and S are d1M×d1M block-diagonal
matrices given by:

D =


D1

. . .
DM

 and S =


Σ1

. . .
ΣM

 , (4.56)

where Dj and Σj are d1 ×d1 diagonal matrices with every (non-zero) element being equal
to λj or

√
−2Reλj , respectively. More importantly, the vectors Z(t) and R(x) are split

into M column vectors zj(t) and rj(x) of length d1 with j in {1, . . . ,M}. This way,
Z(t) =

[
z⊤

1 (t), . . . , z⊤
M(t)

]⊤
and R(x) =

[
r⊤

1 (t), . . . , r⊤
M(t)

]⊤
.

Therefore Eq. (4.55) can be written as:

ẋ(t) = F(x(t)) + εΛZ(t), (4.57a)

dz1(t) = (εr1(x(t)) + D1z1(t)) dt+ Σ1dW (1)
t , (4.57b)

...

dzM(t) = (εrM(x(t)) + DMzM(t)) dt+ ΣMdW (M)
t , (4.57c)

where W (j)
t is a d1-dimensional Wiener process. The vectors rj(x) are given by:

rj(x) =
[
Cy(x) · γ1,j

〈
∇ψ∗

j (y)
〉
, . . . ,Cy(x) · γd1,j

〈
∇ψ∗

j (y)
〉]⊤

, (4.58)

where γi,j are defined in terms of the parameters (αj, βj) introduced in Eqs. (4.35a) and
(4.35b), respectively. Here we don’t give the explicit expression of Λ, but its role is to
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provide suitable weights, in the spirit of Eq. (4.34), to the levels in Eq. (4.57) so that
(a), the correlation functions match those of the coupling function Cx in the uncoupled
regime; and (b), the resulting term ΛZ(t) is real.

The system Eq. (4.57) has the general structure one would obtain if the coupling function
Cx projected along all the eigendirections in the point spectrum. This might not be true
in general, but the drift matrix D can be rearranged so that only the relevant modes of
variability be modelled — following criteria (i) and (ii), as formulated in Remark 4.2.4 —
and still afford a reduction of the number of levels M . Notice that the M th level variables
zM described by Eq. (4.57c) decorrelate the fastest compared to the rest, since their
exponential decorrelation rate is given by |ReλM | ≥ |Reλj|, for all j = 1, . . . ,M − 1.

The advantages of the Markovian system (4.33) and (4.57) over the original WL
equation (4.27) are twofold. First, we identify situations in which the WL equation can
be Markovianised by introducing extended, hidden variables. This idea was already
introduced in a preliminary application of the WL parametrisation [Wou+16], in which
the authors resorted to a Markovian system to perform their simulations. In fact, one of
their examples is studied in the present framework; see Section 4.2.3.

Second, memory equations contain non-local terms that are cumbersome and com-
putationally expensive to integrate, as well as requiring much larger storage for the full
history of the system’s variables. The efficient Markovianisation of evolution equations
with memory terms is an active field of research in diverse areas of mathematics and
the applied sciences; these areas include the study of bifurcations of delay differential
equations [Che+16]; [CKL20], the reduction of stochastic partial differential equations
to stochastic invariant manifolds [CLW15a]; [CLW15b], and material sciences [Daf70],
among many others.

4.2.3 Preliminary Example

As seen earlier in Theorem 4.2.1, if the coupling function is resonant with the Koopman
operator associated with the y-dynamics, one can identify the dominant exponential rates
of decay of the memory term and the characteristic decorrelation time of the noise.
As a consequence, one can Markovianise the parametrisation and greatly facilitate the
numerical integrations involved.

To illustrate the above statement, we revisit here the preliminary application of the WL
parametrisation in the context of multiscale triads [Wou+16]. In that work, the authors
implemented the parametrisation for a collection of three-dimensional models that do
exhibit timescale separation and compare the corresponding outputs to those obtained
via homogenisation. The results are encouraging, since the parametrisations in [Wou+16]
were obtained only from the decoupled hidden dynamics, in the lines of the present chapter
as well; see derivation of Eq. (4.22).
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One of the first multiscale triads studied in [Wou+16] is the following:

ẋ(t) = εB(0)y1y2, (4.59a)

ẏ1(t) = εB(1)xy2 − γ1y1 + σ1dW (1)
t , (4.59b)

ẏ2(t) = εB(2)xy1 − γ2y2 + σ2dW (2)
t . (4.59c)

Here we require that
∑

j B
(j) = 0, dW (1)

t and dW (2)
t are scalar Wiener increments and

the parameter ε indicates both the timescale separation and the coupling strength. Notice
that when the system is decoupled, i.e. when ε = 0, the fast dynamics evolve according to
an O-U process whose steady state statistics are governed by Gaussian distributions with
explicit mean and variance; see, e.g. [Pav14]. Hence, by virtue of the previous formulas
or by following [Wou+16], the WL parametrisation yields the following scalar SIDE:

ẋ(t) = εη(t) + ε2
∫ t

0
K(s, x(t− s))ds; (4.60)

here,

⟨η(t)⟩ = 0, (4.61a)

⟨η(t+ s)η(s)⟩ =
(
B(0)

)2
e−(γ1+γ2)t σ

2
1

2γ1

σ2
2

2γ2
, (4.61b)

K(s, x) =
x
x

 ·
〈B(1)y2

B(2)y1

 : ∇yy1(s)y2(s)
〉
, (4.61c)

where the angular brackets refer to the ensemble averages according to the already men-
tioned Gaussian distributions arising from the decoupled model. Expanding these averages
Eq. (4.61c) leads to:

K(s, x) = xe−(γ1+γ2)
〈
B(1)y2

2 +B(2)y2
1

〉
(4.62a)

= xB(0)e−(γ1+γ2)s
(
B(1) σ

2
2

2γ2
+B(2) σ

2
1

2γ1

)
. (4.62b)

The timescales are indicated by the exponents in the formulas above and they are the
same for the noise and the memory kernel. This equality suggests the possibility of
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Markovianising the memory equation into the following two-dimensional system:

ż1(t) =εB(0)z2, (4.63a)

ż2(t) = − (γ1 + γ2)z2 + σ1σ2

2γ1γ2
{2(γ1 + γ2)}1/2dWt

+ ε

(
B(1) σ

2
2

2γ2
+B(2) σ

2
1

2γ1

)
z1. (4.63b)

Clearly, performing a numerical integration of this system is easier than for a memory
equation like Eq. (4.60).

The results of Section 4.2.2 allow us to carry out the dimension reduction of the
multiscale triad by analysing the spectral properties of the Koopman operator associated
with the decoupled y-dynamics. Since the y-variables evolve stochastically, the Koopman
operator becomes the backward-Kolmogorov equation (2.13), which governs the evolution
of the expectation values of the observables. Thus, for a generic observable Ψ in the y-
phase space, the evolution of its expectation value in the uncoupled regime is given by:

∂tΨ(y1, y2) = L∗
0,yΨ(y1, y2)

=
−γ1y1

−γ2y2

 · ∇Ψ(y1, y2) + σ2
1∂

2
y1Ψ(y1, y2) + σ2

2∂
2
y2Ψ(y1, y2).

(4.64)

Now, letting Ψ(y1, y2) = y1y2 be the coupling function of the triad system (4.59), we find
that:

L∗
0,yΨ(y1, y2) = −(γ1 + γ2)Ψ(y1, y2). (4.65)

The above equation is an eigenvalue problem, showing that this particular observable Ψ is
an eigenfunction of the generating operator L∗

0,y operator associated with the eigenvalue
−(γ1 + γ2). This is no surprise, since y1 and y2 are respectively the Hermite polynomial
eigenfunctions of the backward-Kolmogorov equation of the scalar O-U process [UO30];
[Pav14, Section 4.4]. Hence, the product y1y2 is also an eigenfunction of the same equation
for the joint process. Therefore, we can immediately re-Markovianise the parametrisation
according to Eq. (4.33), where D = γ1 + γ2 and

R(x(t)) =
(
B(1) σ

2
2

2γ2
+B(2) σ

2
1

2γ1

)
x(t), (4.66)

in agreement with [Wou+16].
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4.3 Semigroup Property of the Projected
Koopman Operator Family

Memory effects represented by integral terms seem unavoidable unless the memory kernels
vanish quickly with respect to time. Infinite timescale separation between the two sets
of variables, for instance, leads to the vanishing of the associated integral expressions
yielding a Markovian process [PS08]. Here, we are not assuming no such property in
the coupled dynamical system under study; see Eqs. (4.2) and (4.24). On the other hand,
reduced phase spaces can help explain the statistics of the dynamical system without
resorting to delayed effects that entail the integrals in Eqs. (4.22) and (4.27). Following
[Tan+20], we briefly review here a criterion based on Koopman operators— and, more
generally, Markov operators— that enables one to decide whether memory effects can
help explain the dynamics and statistics in reduced phase spaces.

It was shown in [Che+14, Theorem A] that projection onto a reduced state space is
closely related with a coarse graining of the (full) probability transitions on the original
system’s attractor, while [Tan+20, Theorem 2] dealt recently with the impact of such a
projection in terms of reduction of the Koopman semigroup. In [Tan+20], the authors
proposed a criterion based on the spectral theory of Markov semigroups to ascertain
whether the reduced state space associated with a given projection can fully explain the
statistics of the desired variables. In fact, it follows that the analysis of correlation functions
is not only of physical interest but also of methodological utility in determining the need
for modelling non-Markovian effects by inspecting the loss of the semigroup property, as
explained below.

Let µ denote an ergodic invariant measure of the system and take two observables
Ψ,Φ in the space L2

µ of zero-mean functions that are square-integrable with respect to µ.
Assume furthermore that the spectrum of the operator L in Eq. (2.12) is densely defined in
L2

µ and it is a pure point spectrum, given by the eigenvalues {λj}∞
j=1 and their associated

eigenfunctions {ψj}∞
j=1, where the eigenvalues are ordered by their decreasing real parts.

Then, the correlation function CΨ,Φ(t) between the functions Ψ and Φ is given by:

CΨ,Φ(t) =
∫

Ψ · etL∗Φdµ =
∫
etLΨ · Φdµ (4.67)

and it can be expanded, formally, as

CΨ,Φ(t) =
∞∑

j=1
eλjt ⟨ψj,Ψ⟩µ

〈
Φ, ψ∗

j

〉
µ
. (4.68)

It is recalled that the dual operators in (4.67) and the adjoint eigenvectors in (4.68) are
indicated by the superscript (·)∗, while ⟨·, ·⟩µ denotes the inner product with respect to µ.
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We refer to [Tan+20, Corollary 1] for a proof of (4.68) in the context of Markov semigroups.
The proof actually applies to the case of the Koopman semigroups considered here as long
as the Koopman semigroup Ut defined by (4.5) is a strongly continuous semigroup in
L2

µ with a simple spectrum. The RHS of Eq. (4.68) consists of a linear combination
of exponential terms whose coefficients are calculated by projecting Ψ and Φ onto the
corresponding eigenspaces. These coefficients weight each exponential function and they
can become exceedingly large if the Koopman operator deviates very much from normality
[TE05, Chapter X].

The interactions between the resolved and hidden variables that are modelled by the
Dyson expansion of the Koopman operator in Section 4.1 may introduce memory effects
into the closed, reduced model for the x-variables, as given by Eqs. (4.22)-(4.26). In
certain situations, such memory effects can be neglected, even in the absence of exact
slaving relationships between the resolved and hidden variables [CLM19]. But the loss
of slaving relationships requires, in general, an explicit representation of memory effects
[CLM17] to achieve an efficient model reduction.

Furthermore it was shown in [Che+14]; [Tan+20] that the reduction of the Koopman
semigroup to observables that act only on the reduced state space leads, in most circum-
stances, to a family of operators that, while Markovian, no longer satisfy the semigroup
property. One might then ask to which extent this loss of the semigroup property arising
from the reduction, and the related emergence of memory effects, are crucial for providing
a faithful reduced model of the observed variables.

When considering reduced state spaces obtained by projection, along with observables
Ψ and Φ defined on them, Theorem 2 in [Tan+20] shows the existence of a family of
Markov operators {Tt}t≥0 that satisfies:∫

Ψ · TtΦdµx =
∫

[Ψ ◦ πx] · etL∗ [Φ ◦ πx]dµ = CΨ ◦ πx,Φ ◦ πx
(t), (4.69)

for every t ≥ 0, where πx is the canonical projection onto the reduced subspace and
µx is the disintegrated or sample measure associated with πx; see [Tan+20, Remark 3].
However, due to the projection, the semigroup property is lost, namely, TsTt ̸= Tt+s for
some t, s.

Following the reasoning above, one can establish a criterion for the need to model a
memory contribution when performing the dimension projection. Formally, if there exist
τ > 0 and T in N such that, for every t in {kτ ∈ R : 0 ≤ k ≤ T}, we have

CΨ ◦ πx,Φ ◦ πx
(t) =

∫
Ψ · TtΦdµx =

∫
Ψ · (Tτ )k Φdµx, (4.70)

for some natural k, one can, then, say that the semigroup is preserved, to some extent,
depending on how large T and small τ can be taken in Eq. (4.70) above. Other such criteria
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are available in the context of mutually dual Koopman and transfer operators. Indeed,
[TBD15] had already considered empirical ways of quantifying the loss of the semigroup
property in reduced dimensions.

The interpretation of τ in Eq. (4.70) can come from the practical implementation of
the semigroups following Ulam’s method described in Section 3.1. In particular, if we
look at the construction of transition matrices in Eq. (3.48), τ would represent the time-
lag between transitions. Indeed, going back to Fig. 3.4 in Section 3.3.2, Eq. (4.70) was
implemented and shown that there existed a value for τ (namely, τ = 100 · dt) for which
correlations were better approximated. According to the present criterion, one is led to
think that memory effects were not so relevant in that application, probably, because there
is no dimension reduction; this was implicitly assumed in Eq. (3.5). On the other hand,
if for all reasonable values of τ and T , Eq. (4.70) is not satisfied, memory effects can be
assumed significant.

4.4 Multilevel Stochastic Models and
Empirical Model Reduction

4.4.1 Multilevel Stochastic Models (MSMs)

MSMs are a general class of SDEs that were introduced in [KCG15] and are, by their
layered structure, susceptible to provide a good approximation of the GLE (4.1b) for-
mulated by Mori and Zwanzig when a high-dimensional system is partially observed;
see [KCG15, Proposition 3.3 and Sec. 5]. The MSM framework allows one to provide
such approximations that are accompanied by useful dynamical properties, such as the
existence of random attractors [KCG15, Theorem 3.1]. As discussed in [KCG15], MSMs
arise in a variety of data-driven protocols for model reduction that typically use successive
regressions from partial observations; see Section 4.4.2 below. The general form of an
MSM is given by [KCG15, Eq. (MSM)]; we only use herein its most basic version, which
has the following structure:

dx(t) = [F(x(t)) + εΠr(t)] dt, (4.71a)

dr(t) = [εCx(t) − Dr(t)] dt+ ΣdWt. (4.71b)

Here the observed vector variable x(t) lies in Rd1 and, for ε = 0, the hidden variables
r(t) in Rd2 evolve in time independently. Otherwise, the dynamics of the x-variables is
linearly coupled to that of the r-variables, which act upon (4.71a) as a stochastic forcing,
via the canonical projection Π : Rd2 −→ Rd1 , while Wt in (4.71b) is a d2-dimensional
Wiener process. The matrix C in Rd2×d1 models the feedback of the x-process onto the

122



Section 4.4 123

r-variables. In the case of C ≡ 0, r would evolve according to an O-U process with drift
matrix D and covariance matrix ΣΣ⊤. For the sake of simplicity, in the calculations that
follow, we restrict ourselves to the case d1 = d2 so that the projection Π reduces to the
identity.

The more general MSM with non-linear coupling considered in [KCG15] was shown
to be equivalent to a SIDE with explicit expressions for the memory kernels and stochastic
forcing being obtained; see [KCG15, Proposition 3.3]. The noise term there results from
successive convolutions of the homogeneous solutions of the lower levels of the system
with an O-U process. In particular, using the Itô stochastic calculus, one readily obtains a
SIDE that is equivalent to an MSM; see [KCG15, Section 3.2] and Appendix C below.

We show next that a SIDE with the same linear-memory structure can actually be
obtained by using the operator formalism presented in Section 4.2 above. One might
object that an MSM is a stochastic system, due to the presence of white noise in the hidden
layer, whereas the theory presented above applies to deterministic dynamics. However,
it was clarified in Chapter 2 that the algebraic manipulations with operators can be done
seamlessly for deterministic or stochastic systems. In fact, given a smooth,C∞ observable

Ψ : Rd1 × Rd2 −→ R,

(x, r) 7−→ Ψ(x, r),
(4.72)

its expected value along a stochastic trajectory Xt = (x(t), r(t))⊤ solving Eq. (4.71),
namely E [Ψ(Xt)], defines a Markov semigroup by means of the exponential of the gen-
erator L∗ in Eq. (2.13), which solves the backward-Kolmogorov equation associated with
Eq. (4.71):

∂t

(
etL∗Ψ

)
=
F(x) + εr
εCx − Dr

 · ∇etL∗Ψ + 1
2

 0
ΣΣ∗∇2

re
tL∗Ψ

 , (4.73)

the only difference with respect to the transport equation (4.3) lies in the presence of a
second order differential operator induced by the white noise. We introduce the operators
L∗

0 and L∗
1 in the same spirit as those in Eqs. (2.25) and (4.4):

L∗
0 =

F(x)
−Dr

 · ∇ +
 0
ΣΣ∗ : ∇2

r

 ; (4.74a)

L∗
1 =

 r
Cx

 · ∇, (4.74b)

which play a role that is analogous to their deterministic relatives in Eq. (4.4) of the
previous section. Again, the operator L∗

1 is viewed as a perturbation to the operator L∗
0

due to the coupling. If one considers observables Ψ = Ψ(x), Eq. (4.73) becomes at time
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t = 0:
∂t

(
etL∗Ψ

)
|t=0 =

[
F(x) + εr

]
· ∇xΨ, (4.75)

and we apply now, as in Section 4.2, the Dyson perturbative expansion. By virtue of the
formula (4.22), the parametrisation leads to a memory equation of the form:

ẋ(t) = F(x(t)) + εη(t) + ε2
∫ t

0
K(s,x(t− s))ds, (4.76)

where the hidden variables in the decoupled regime are governed by an O-U process with
invariant measure µr. The properties of the stochastic noise η(t) are given by:

〈
η(t)η⊤(0)

〉
=
∫

dµr(r0)etL∗
0r0r⊤

0 (4.77a)

=
∫

dµr(r0)E [r(t)|r0]E [r(0)|r0]⊤ (4.77b)

=
∫

dµr(r0)e−tDr0r⊤
0 (4.77c)

=
∫

dµr(r0)e−tDr0r⊤
0 = e−tDΣΣ⊤, (4.77d)

where r is a function analogous to the coupling function Cx
y in the previous section and

the initial condition r0 is assumed to be normally distributed with zero mean and variance
ΣΣ∗. The memory kernel is reads as:

K(s,x(t− s)) =
∫

dµr(r0)Cx(t− s) · ∇r0E [r(s)|r0] (4.78a)

=
∫

dµr(r0)Cx(t− s) · ∇r0e
−sDr0 (4.78b)

= Cx(t− s) · e−sD (4.78c)

= e−sDCx(t− s). (4.78d)

Using the intermediate steps above, the explicit d1-dimensional equation becomes, finally:

ẋ(t) = F(x(t)) + εη(t) + ε2
∫ t

0
e−sDCx(t− s)ds. (4.79)

The integro-differential equation above is the same as Eq. (C.2) one obtains using the
Itô integration described in Appendix C. This similarity of results occurs because we are
considering the case of additive coupling, and the Dyson expansion can be truncated after
the memory term proportional to ε2, cf. Section 4.2.1.1.

4.4.2 Empirical Model Reduction (EMR)

As discussed in Sections 4.1 and 4.2, and illustrated in Fig. 4.1, the evolution of the
resolved variables is forced by fluctuating terms and the effects of the previous state of
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the system. It is desirable, therefore, to construct a full model of the system even when
only capable to partially observe it. The EMR methodology [KKG05] aims at achieving
this goal; we discuss it below in the broader context of MSMs. Note that EMR provides
a solution for the dynamical closure of partially observed systems and thus it differs from
the methodology recently proposed in [BPK16], which requires one to fully observe the
system for the data-driven discovery of its underlying equations to work.

Having a set of reduced n, d1-dimensional observations {xi : i = 1, . . . , n} recorded
every dt time units, one seeks to regress the tendencies1 {dxi : i = 1, . . . , n} of the data
onto a quadratic function of the form:

F(x) = f + b · x + Q(x), (4.81)

where b in Rd1×d1 describes dissipative processes and Q is a quadratic form describing
self-interaction between the x-variables. The ith component of the quadratic form is given
by:

[Q]i = x⊤Aix, (4.82)

where Ai in Rd1×d1 . The function F is expected to approximate the vector field driving the
dynamics in the absence of hidden external influences. Of course, performing regressions
yields an error called residual {ri : i = 1, . . . , n}. Hence, the evolution of the x-variables
satisfies the equation:

ẋ = F(x) + r. (4.83)

At this point, one can study the properties of the residual time series {ri}n
i=1 and construct

a model able to reproduce its main statistical features. However, we know that if it is
possible to sample all the variables of the dynamical system of interest, one expects that
the residuals are explained by the errors committed exclusively in the regression algorithm.
If some sort of subsampling is done, whether spatial or temporal, the residuals are due
also to the delayed influence of unresolved processes that are involved in the coupling.

Allowing for the main level variables x to be linearly coupled with the residual r, we
are creating a model that is able to incorporate memory effects as well. Hence, for each

1Tendencies can be calculated using a various finite-difference methods of different orders. One can
use a dt2 order forward difference

dxi = −3xi + 4xi+1 − xi+2

2dt
, (4.80)

as done, for instance, in [KKG05].
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component i of x we have:

d[x]i
dt = [f ]i + b(0)

i · x + x⊤Aix + [r(0)]i, (4.84a)

d[r(0)]i
dt = b(1)

i · [x, r(0)] + [r(1)]i, (4.84b)

d[r(1)]i
dt = b(2)

i · [x, r(0), r(1)] + [r(2)]i, (4.84c)
... (4.84d)

d[r(l)]i
dt = b(l+1)

i · [x, r(0), r(1), . . . , , r(l)] + [r(l+1)]i, (4.84e)

where we have introduced new matrices b(j) in Rd1×(j+2)d1 that model the linear coupling.
The residual at the last level [r(l+1)]i is assumed to obey a Wiener process for which the
correlation matrix is obtained from the last residual time series. The choice of stochastic
process in the last step can only be done if the decorrelation of [r(l+1)]i is sufficiently fast
according to the timescale set by dt. This motivates the problem of choosing the optimal
number l of levels.

Several criteria have been established to determine the optimal number of levels l. The
basic idea is that the resulting (l+ 1)-residual in Eq. (4.84e) should be well approximated
by Gaussian white noise with some learnt covariance [KCG15]; [KKG10]. One has,
therefore, to test whether the residual variables decorrelate at lag dt and whether the lag-0
covariance matrix is invariant in the last levels. Consequently, regression on the tendency
of the optimal level r(l) should yield:

r(l+1) − r(l) ≃ −r(l) + γ(l), (4.85)

where γ(l) is the residual of the previous regression and is approximately equal to r(l+1).
Hence, γ(l) would become a lagged version of r(l+1). Subject to this assumption, it is
possible to estimate the optimal value of the coefficient of determination R2:

R2 = 1 −
∑

k γ
2
l∑

k (r(l+1) − r(l))2 ≃ 1 −
∑

l r(l+1)2∑
l r(l+1)2 + r(l)2 ≃ 0.5. (4.86)

This means that, when the amount of unexplained variance of the last regression is 50%,
one has reached the optimal number of levels. It is worth stressing that the empirical
model (4.84) has the structure of an MSM (4.71), as discussed in [KCG15], since the
memory is fully explained by a set of linearly driven extended variables. It can, therewith,
be integrated to transform it into an integro-differential equation with explicit formulas
for the fluctuating noise and memory kernel, cf. [KCG15, Proposition 3.3]; see also
Section 4.4.1 for such a transformation from another perspective.
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Finally, note that the aforementioned stopping criterion for EMR — namely R2 ≃ 0.5,
see [KCG15, Appendix A] — is based on decorrelation times and it is also present in
the multilevel WL equation (4.57). We noted, in fact, in Remark 4.2.5 of Section 4.2.2
that the last level modelled by Eq. (4.57c) decorrelates the fastest with respect to the rest.
Ultimately, making this point amounts to saying that a low number of levels is expected
to arise in the EMR method, provided most of the eigenvalues λj in Theorem 4.2.1 are
located far away from the imaginary axis, except for a very few of them. Conversely,
if the Koopman eigenvalues cluster near the imaginary axis or do not exhibit a spectral
gap located at a suitably defined, small negative real part, many levels are expected to be
needed to capture the hidden dynamics; see again Remark 4.2.5.

4.5 Numerical Experiments

In sections 4.2 and 4.4, we have shown that both the WL top-down approach and the EMR
data-driven method yield a set of multilevel equations for the variables of interest in a
multiscale system. In particular, both approaches give explicit formulas for the fluctuation
term and memory kernel in the GLE (4.1b) of the Mori-Zwanzig formalism. Furthermore,
their Markovian representation share that the hidden layers are linearly driven with a white
noise background; see Eqs. (4.33) and (4.71). We now compare the two approaches to
model reduction in a simple, conceptual stochastic climate model.

Since the modelling of geophysical flows is the primary motivation for this research,
we consider a set of SDEs proposed in [FMB07, among others] as a physically consistent
climate “toy” model. In such a model, the main x-variables are slow and weakly coupled
to the fast y-variables. The latter correspond to weather fluctuations and carry, in fact,
most of the system’s variance. The model’s governing equations are:

dx1 = {−x2 (L12 + a1x1 + a2x2) − d1x1 + F1 + ε (L13y1 + c134y1y2)} dt, (4.87a)

dx2 = {x1 (L21 + a1x1 + a2x2) − d2x2 + F2 + εL24y2} dt, (4.87b)

dy1 =
{
ε (−L13x1 + c341y2x1) + F3 − γ1

h
y1

}
dt+ σ1√

h
dW (1)

t , (4.87c)

dy2 =
{

−ε (L24x2 + c413y1x2) + F4 − γ2

h
y2

}
dt+ σ2√

h
dW (2)

t , (4.87d)

whereW (1)
t andW (2)

t are two independent Wiener processes. These equations describe the
evolution of four real variables x = (x1, x2) and y = (y1, y2); their timescale separation
is determined by the parameter h and the coupling strength is controlled by ε. The
parameter values used herein are: c134 = c341 = 0.25, c413 = −0.5, L12 = L21 = 1,
L24 = −L13 = 1, a1 = −a2 = 1, d1 = 0.2, d2 = 0.1, F1 = −0.25, F2 = F3 = F4 = 0,
γ1 = 2, γ2 = 1 and σ1 = σ2 = 1. The timescale separation and the coupling strength are
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set to be h = 0.1 and ε = 0.5, respectively.

4.5.1 WL Approximation

Notice that the hidden variables evolve according to a decoupled O-U process. Taking
advantage of this fact, we calculate the weak-coupling–limit approximation of the model,
according to the formulas presented in Section 4.2 for the separable coupling functions
given by:

Cx(x,y) = Cx
y(y) =

L13y1 + c134y1y2,

L24y2

 , (4.88a)

Cy(x,y) = Cy
x(x) : Cx

y(y) =
−L13x1 + c341y2x1

−L24x2 + c413y1x2

 . (4.88b)

The coupling function Cx in the slow equation (4.88a) is independent of the x-variables,
indicating that the noise correction can be additively incorporated and implemented by
examining the decoupled hidden process. Note that the functional form of Cy implies
that the WL parametrisation cannot be exact in ε, as noted in Eqs. (4.12) and (4.13). This
indicates that the WL reduced model will not only introduce an error in averaging over the
decoupled steady state, but also that the Dyson expansion Eq. (4.6) has to be truncated at
ε3, rather than merely at ε2 where no memory effects would be included.

According to the WL model (4.22) discussed in Section 4.2, the fluctuation terms
correspond to the decoupled evolution of the coupling function Cx

y, concretely as in
Eq. (4.20). This allows to directly compute the correlation function:

〈
Cx

y(y)Cx
y(y(t))⊤

〉
=
L2

13e
−(γ1/h)t σ2

1
2γ1

+ c2
134e

−(γ1+γ2)t/h σ2
1σ2

2
2γ1γ2

0
0 L2

24e
−(γ2/h)t

 . (4.89)

From Eq. (4.89) we deduce that the noise covariance matrix for the given parameter values
is given by: 〈

Cx
y(y)Cx

y(y)⊤
〉

=
0.2578... 0

0 0.5

 . (4.90)

The memory kernel K, which is a vector of two components [κ1, κ2]⊤, is given by:

K(s,x) =
κ1(s,x)
κ2(s,x)

 =
〈

Cy(x,y) · ∇yCx(x(s),y(s))
〉

; (4.91)

here the brackets ⟨·⟩ indicate the averages for the uncoupled equilibrium in the y-variables,
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which happen to be a set of independent O-U processes. Explicitly,

κ1(s,x) =
〈

(−L13x1 + c341y2x1) ∂y1 (L13y1(s) + c134y1(s)y2(s))
〉

(4.92a)

−
〈

(L24x2 + c413y1x2) ∂y2 (L13y1(s) + c134y1(s)y2(s))
〉

(4.92b)

= − L2
13e

−(γ1/h)sx1 + c341c134e
−(γ1+γ2)s/h σ

2
2

2γ2
x1 (4.92c)

+ c134c341e
−(γ1+γ2)s/h σ

2
1

2γ1
x1, (4.92d)

κ2(s,x) =
〈

(−L13x1 + c341y2x1) ∂y1 (L24y2(s))
〉

−
〈
L24x2∂y2 (L24y2(s))

〉
(4.92e)

= − L2
24e

−(γ2/h)sx2. (4.92f)

The reduced-order model obtained herewith does give explicit formulas for the evaluation
of the stochastic noise and the memory kernel, independently of the timescale separation
h, although these formulas are rather complicated. Still, the scheme remains the same
when changing parameter values, so it is flexible in studying different scenarios.

4.5.2 EMR Model and Results

Basic EMR algorithm implementation. Regarding the data-driven EMR protocol, we
integrated the full model with a time step of dℓt = 10−3 time units for a duration of
Tℓ = 104 time units in order to learn the model parameters. Then, a separate run was
performed as a test case. This time, the EMR system was integrated together with the full
model using a time step of dτ t = 10−2 time units for a total of Tτ = 105 time units. The
equations were solved using a fourth-order Runge-Kutta and a Euler-Maruyama method for
the deterministic and stochastic components, respectively. By sampling every time step,
we learned an EMR model whose coefficients were explicitly found. The convergence
criterion R2 ≃ 0.5 was attained by adding two extra levels, for a total of three.

The climatologies of the slow x-variables are obtained using data from the full model,
the EMR model and the WL parametrisation. The two-dimensional probability density
functions (PDFs) of the stochastic model (4.87) in the (x1, x2)-plane are shown in Fig. 4.2.
These PDFs were calculated by employing the Matlab R2019a kernel smoothing function
ksdensity. Their respective marginals are shown in Fig. 4.3. The agreement between the
two methodologies when approximating the clearly non-Gaussian density arising from the
full model is clearly excellent.

The timescale separation between the x-variables and the y-variables is clearly depicted
on panel (a) of Fig. 4.4, where the fast variables decorrelate almost instantly compared
to the slow ones. The approximation of these autocorrelation functions is also obtained
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using the EMR and WL methods.

(a) Full model (b) EMR model (c) WL model

Figure 4.2: Two-dimensional probability density functions (PDFs) of the stochastic
model (4.87) in the (x1, x2)-plane, as obtained with: (a) the full integration; (b) an
integration of the EMR model; and (c) the WL parametrisation. The timescale separation
parameter used is h = 0.1. The PDFs shown here and in Fig. 4.5 were obtained by using
the Matlab R2019a kernel smoothing function ksdensity.

(a) x1-PDF (b) x2-PDF

Figure 4.3: PDFs of (a) the x1 variable; and (b) the x2 variable. The separation parameter
is h = 0.1 and colors used for each method are indicated by the legends inside the panels.
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(a) (b)

Figure 4.4: Autocorrelation functions for the four variables x1, x2, y1, y2 obtained (a) from
the full model; and (b) the comparison of the corresponding results for x1, x2 with the full
model, the EMR model, and the WL parametrisation. See legend for the choice of lines;
h = 0.1.

In general, cf. [KKG05], the regressions performed in the main level (4.84a) of the
EMR model allow one to effectively reconstruct the coefficients of a weakly coupled
model; see another example in Appendix D. The EMR methodology, though, only allows
for linear coupling between the slow x’s and the fast y’s. The non-linear coupling between
the slow and fast variables in system (4.87) compromises the estimation of the main model
parameters in Eq. (4.84a), so that we cannot expect to recover the original, full model’s
behaviour given by system (4.87). The EMR model coefficients at the first and second
levels are as shown on tables 4.1 and 4.2, respectively.

Table 4.1: Empirically estimated EMR model coefficients at the first level, Eq. (4.84a),
for h = 0.1. First column gives the coefficients for the constant forcing f (0), the second
and third columns indicate the linear component of the vector field b(0) and the last three
columns determine the quadratic form A.

f (0) x1 x2 x2
1 x1x2 x2

2

-0.31404 -0.50954 -0.065313 0 -1.0092 0.99704

-0.15356 0.12353 0.21979 1.0092 -0.99704 0
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Table 4.2: Empirically estimated EMR model coefficients at the second level, Eq. (4.84b),
for h = 0.1. First column gives the coefficients for the constant forcing f (1), the next two
columns indicate the linear coupling to the main level (i.e. the first two columns of b(1))
and the last two columns determine the linear drift for the second level (i.e. the last two
columns of b(1)).

f (1) x1 x2 r
(1)
1 r

(1)
2

0 -5.6397e-4 -6.9382e-05 -20.2823 0.016165

0 -1.648e-4 -4.72e-4 0.086621 -10.0426

As discussed in Section 4.4.2, the EMR has the structure of an MSM and it can be recast
into an integro-differential equation. If, for simplicity, one only considers the first added
level, the EMR can be readily integrated giving the following equation for the evolution
of the slow variables x = (x1, x2):

ẋ(t) = F(x(t)) + e−Dty(0) +
∫ t

0
e−D(t−s)ΣdWs +

∫ t

0
e−D(t−s)Cx(s)ds. (4.93)

Here, Ws is an independent two-dimensional Wiener process and

D =
−19.9982 2.1122 · 10−3

−0.77528 −10.116

 ,C =
−5 · 10−3 −5 · 10−4

−1 · 10−3 −5 · 10−3

 , (4.94a)

Σ =
 0.2626 −0.0014
−0.0014 0.5013

 . (4.94b)

First thing to note is that the matrix C has a small norm and, by virtue of Eq. (4.93), it
means that memory effects are going to be very small. On the other hand, the eigenvalues
of the matrix D are λ1 ≃ −20, λ2 ≃ −10, which are approximately the drift coefficients
of the uncoupled O-U process driving the y-variables. This indicates that the exponential
kernel is damping the effects of the x-variables in past times rather quickly. Moreover,
the covariance matrix Σ corresponds to that obtained by integrating the y-dynamics
independently, according to Eq. (4.90).

Regarding the WL approximation, we stress that the y-variables are no longer present,
after taking the averages in its construction. The memory kernel K in this case differs
from the matrix D above, although its dominant terms correspond to its eigenvalues. Note
that, if L13 = 0, the coupling function Cx

y would project entirely onto the eigenfunction of
the O-U process associated with the generator eigenvalue −(γ1 +γ2). The same statement
would hold for c134 = 0, where in this case Cx

y projects onto the eigenfunctions associated
with the eigenvalue −γ1.
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Reduced Time Scale Separation. The parameter h controls the timescale separation
in the evolution of the x- and y-variables. Here we set h = 1 so that this separation is
reduced by an order of magnitude as illustrated by the autocorrelation functions in Fig. 4.7.

In the WL parametrisation, there is no need to sample the dynamics in order to construct
it, since the formulas of Section 4.2 are explicit and the construction does not depend on
h. In the case of model (4.87), the covariance matrix and time correlations of the WL
noise correction are thus given by Eq. (4.89) with no reference to h. The memory term,
though, is expected to change as the kernel K will decay more slowly by a factor of 10.
Therefore, memory effects are more important, as expected.

The EMR approach, on the other hand, requires a new learning phase for this value
of h = 1. We used the same numerical integration parameters dℓt = 10−3 and Tℓ = 104

time units as for the previous case. In the first level regression, one observes that the
coefficient values listed in Table 4.3 are essentially the same from those estimated in the
previous case, for h = 0.1, and listed in Table 4.1. The second level coefficients, for
h = 1, are shown on Table 4.4. Regarding the convergence levels of EMR, it was not
affected by changes in the timescale separation parameter namely, from h = 0.1 to h = 1.
Probably the value of h was not that important here because of the low dimensionality
and stochastic nature of the hidden process. However, convergence is likely to be altered
in more complicated models, as illustrated in Appendix D.

The covariance matrix Σ of the noise correction is indicated in Eq. (4.95b) and it agrees
well with the previous values, for h = 0.1, as given in Eq. (4.94b). The matrix C that
indicates the strength of the memory effects also has a magnitude that is of the same order
as that in the previous case of h = 0.1, which is rather suprising, given the factor of
10 in timescale separation h; compare Eqs. (4.94a) and (4.95a). This observation tells
us that the loss of Markovianity might be intrinsic to the nature of the coupling rather
than being due to the timescale separation, even though, in the limit case of infinite scale
separation, memory effects will disappear entirely. The memory kernel, as determined by
matrix D, scales almost exactly with the timescale separation and it is expected to change
depending on how the coupling functions project onto the eigenspaces of the underlying
Orstein-Uhlenbeck process, as discussed more generally earlier in Theorem 4.2.1.

The performance of both parametrisation techniques is summarised in Figs. 4.5–4.7.
These figures are the exact counterparts of Figs. 4.2–4.4 for the reduced timescale separa-
tion h = 1. First of all, we note from Fig. 4.7 (a) that, for h = 1 there is indeed no strict
timescale separation, as indicated by the autocorrelation functions obtained from the full
model. Secondly, consideration of Figs. 4.5(a)–(c), 4.6(a,b) and 4.7(b) shows that neither
the WL nor the EMR approach seems to be affected by the timescale reduction.
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(a) Full model (b) EMR model (c) WL parametrisation

Figure 4.5: Two-dimensional smoothed PDFs of the stochastic model (4.87), but with a
timescale separation of h = 1. Panels (a), (b) and (c) are calculated by integrating the full
model, the EMR model and WL approximation, respectively, as in Fig. 4.2.

(a) x1-PDF (b) x2-PDF

Figure 4.6: PDFs of (a) the x1 variable and (b) the x2 variable, for a timescale separation
of h = 1; compare with Fig. 4.3.
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(a) (b)

Figure 4.7: Autocorrelation functions for the four variables x1, x2, y1, y2 obtained (a) from
the full model; and (b) the comparison of the corresponding results for x1, x2 with the full
model, the EMR model, and the WL parametrisation. See legend for the choice of lines;
h = 1.

Table 4.3: Empirically estimated EMR model coefficients at the first level, for h = 1.

f x1 x2 x2
1 x1x2 x2

2

-0.31181 -0.339 -0.42944 0 -0.93439 0.97958

-0.16925 0.46833 0.17513 0.93439 -0.97958 0

Table 4.4: Empirically estimated EMR model coefficients at the second level, for h = 1.

f (1) x1 x2 r
(1)
1 r

(1)
2

0 -3.9452e-3 -1.5027e-4 -2.1001 0.016509

0 -5.0312e-4 -3.79e-3 0.054861 -1.1214

D =
−2.1001 0.016509
0.054861 −1.1214

 ,C =
−4 · 10−3 −1 · 10−4

−6 · 10−4 −4 · 10−3

 , (4.95a)

Σ =
0.2618 0.0011
0.0011 0.4554

 . (4.95b)

135



Page 136 136

4.5.3 Memory Effects

We would like to end this results section by analysing the role of the memory effects
when performing a reduction of the highly idealised model given by Eqs. (4.87). For
this purpose, we apply the criterion (4.70) discussed in Section 4.3. We thus spectrally
approximate the autocorrelation functions of the variables x1 and x2 using Eq. (4.70) with
the Koopman/backward-Kolmogorov semigroup Tτ estimated using Ulam’s method (3.3)
with a transition time of τ = 0.5 time units for the case where h = 0.1 and τ = 1 time
unit for h = 1. The choice of different transition times τ depends on how well Eq. (4.70)
is approximated. Indeed, for a range of positive but small values of τ ≤ 1 we chose those
which, for either case, best approximated the the autocorrelation functions of x1 and x2

for T = 10 time units using transition matrices.
We clearly observe in Fig. 4.8 that the correlation functions can be accurately recon-

structed in the case of (a), large timescale separation h = 0.1, but not so for (b), h = 1.
This indicates, naturally, that memory effects are negligible in the first case and relevant
in the second, in line with more general considerations of homogenisation theory [PS08].
Furthermore, the impossibility of fulfilling Eq. (4.70) when h = 1 indicates that errors
due to projection of the Koopman semigroup are attributed exclusively to memory effects
and not to artificial diffusion; we refer the reader back to Section 3.3.2 and comments
around Fig. 3.4.

(a) (b)

Figure 4.8: Autocorrelation functions for the two x-variables obtained from the full model
in the spectral reconstruction using the projected Koopman operator: (a) h = 0.1 and (b)
h = 1.

4.6 Summary and Discussion

Providing efficient and accurate parametrisations for model order-reduction is a key goal in
many areas of science. There are two main approaches for constructing parametrisations:
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top-down, by deriving the reduced model directly from the evolution equations governing
the system through the use of suitable approximations; and data-driven, in which the
parametrisations are constructed through suitable optimisation procedures, which are first
tuned in a training phase and then actually used in the prediction phase. Both approaches
aim to derive the effective dynamics for the variables of interest: formally, this is achieved
by applying the Mori-Zwanzig projection operator [Mor65]; [Zwa61] to the full dynamics.
The result of doing so is to describe the impact of the hidden variables by formulating a
generalised Langevin equation (GLE) (4.1b) for the variables of interest that includes a
deterministic, a stochastic, and a non-Markovian component. Top-down and data-driven
approaches are conceptually complementary and have different practical advantages and
disadvantages. In this chapter, we have shown the fundamental link between a top-down
and a data-driven approach that have been formulated and applied in the recent literature.
This equivalence was illustrated schematically in Fig. 4.1.

We first revisited in Section 4.2 the WL parametrisation of [WL12]; [WL13], which
relies on an assumption of weak coupling between the hidden and observed variables, and
have extended the previous results by considering more general coupling classes. We have
also shown that the perturbative expansion that yields the WL parametrisation is exact
when the coupling between the hidden and resolved variables is additive. In doing so, we
noted that he Dyson formalism (4.13) is to essential for computing the effects of the hidden
processes on the dynamics of the observed variables, when working at the level of the
system’s observables. This methodology is explicit, in the sense that no information about
the actual coupled process is needed, because the formal computations are performed by
considering the limit in which no coupling is present. This is in line with linear response
theory and the results of Chapter 2. Other advantages of this approach are that it can be
implemented without the need for any hypothesis on the timescale separation between the
hidden variables and the observed ones, and that it is also scale adaptive [VL18a].

We addressed systematically the problem of re-Markovianising the WL memory equa-
tion, which was first pointed out in [Wou+16] and discussed further in Section 4.2.3 here.
This example system (4.59) had one observed and two hidden variables that yielded a
scalar WL parametrisation that was re-Markovianised to a extended system with just two
scalar differential equations. Throughout Section 4.2, we provided a broader framework
for re-Markovianisation later formalised for a scalar equation in Theorem 4.2.1 and de-
scribed for higher dimensional systems in Remark 4.2.5. The required assumptions for
this treatment boil down to having a spectral decomposition like that of Eqs. (2.40) and
(4.29). More concretely, it is assumed that the coupling law between the processes projects
entirely onto a (simple) point spectrum so that the memory kernel can be written as a sum
of exponentially decaying functions; see Eq. (4.30). In addition, if the projection onto
eigenfunctions is small, one can afford the reduction of the dimension of the extended
model (4.33), as noted in Remark 4.2.4.
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The multilevel structure of the re-Markovianisation obtained in Section 4.2 motivated
the comparison with multilayer stochastic models (MSMs) in Section 4.4. Such MSMs
arise naturally in data-driven reduction methods [KKG05] and they had been shown in
[KCG15] to approximate the GLE predicted by Mori [Mor65] and Zwanzig [Zwa01]. We
showed in Section 4.4.1 that a seamless application of the WL parametrisation solves the
MSM of Eq. (4.71) and coincides with its Itô integration; see Appendix C for clarification.
Note that an MSM can be obtained from partial observations of the coupled system,
which amounts to the special case of the data-driven empirical model reduction (EMR)
methodology [KKG05]. The EMR protocol was revisited here in Section 4.4.2 and it is,
in principle, dual to the WL parametrisation, in the sense that only partial observations
of the coupled system are required, without the need for knowing the actual equations of
motion. Comparing the multilevel structure of Eq. (4.57) with that of Eq. (4.84) suggests
that the Koopman eigenvalues λj highlighted in Theorem 4.2.1 may help provide insights
into the number of levels needed for EMR to converge.

Additionally, we considered in Section 4.5 a conceptual climate model to which we
applied both of the methodologies revisited herein. Since both the MSM and the WL
parametrisation yield a memory equation that involves integrals and stochastic noise, we
were able to compare their structure, as well as their statistical outputs. We found that
both methodologies produced equivalent numerical results and that the memory kernel
and noise predicted in the WL parametrisation agreed with what was found using the
data-driven EMR approach.

Access to the resonances indicated in Theorem 4.2.1 is restricted to analytically tractable
processes like that in sections 4.2.3 and 4.5, or low-dimensional systems for which the
Markov chain approach of Chapter 3 can be taken to estimate the resonances. A step
up in complexity, but with physical relevance, would be to study the coupled two-layer-
atmosphere-ocean model of [DV17] where the upper layer of the atmosphere is modeled
as an O-U process with a nonlinear coupling with the rest of components. More generally,
it is worth noticing, though, that the resonances can be obtained through reduced phase-
spaces filtered through adequate observables [Tan+20]. These observables can be seen
as the coupling function of Eq. (4.2a), which is more likely to have a tractable dimension
and, thence, be suitable for estimating the resonances and modes of Theorem 4.2.1.
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Chapter 5

Conclusion

In this work, we have taken an ergodic theoretic scope to understand the effects of perturba-
tions in physical systems. The problems of climate response, sensitivity and variability are
motivating of each chapter herein, and have been addressed at a conceptual level. To this
end, the theory of operator semigroups has been instrumental and, furthermore, appeared
impossible to detach from physical interpretations. In this chapter, we shall reflect on the
results presented earlier in this dissertation with vistas to future work.

Estimating climate response and sensitivity is a straightforward task if one has infinite
computational power, since one would be able to sample different forcing scenarios and
empirically observe the system’s reaction to a given perturbation. Unfortunately, this is
today impossible, obliging us to utilise a hierarchy of models to achieve a greater under-
standing of the non-linear processes that can trigger abrupt changes in the climate system
[Hel05]; [Ghi15]; [GL20]. We have argued that the linear response theory of statistical
physics is relevant tool for understanding climate response, because it provides a frame-
work for calculating non-equilibrium sensitivities which are, in fact, currently not regarded
in works of crucial relevance like the latest IPCC reports [IPC14]; [Ghi15]; [IPC21]. It
was proposed throughout this work that the differentiability of statistical steady states
based on Ruelle’s formula (1.9) is an adequate quantitative method for calculating the ro-
bustness of a system to a prescribed forcing. In this sense, the stochastic perspective taken
in Chapter 2 has facilitated accessing the leading order correction to the system’s statistics
out of the properties of the Fokker-Planck semigroup generator describing the unforced
evolution of probabilities. Indeed, assuming that said semigroup is quasi-compact, relax-
ation rates in terms of the dominating eigenvalues were identified by means of looking at
the response function itself: see Eq. (2.45). The fluctuation-dissipation theorem, equiv-
alently, asserts that response functions should decay as correlation functions, for which
spectral decompositions exist [Tan+20]. Furthermore, the Green function formalism was
recovered, where the latter is decomposed in terms of the point spectrum regardless of
the time-modulation of the forcing: see Eq. (2.64). More interestingly, we proved that the
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Green function survives the noise-modulated and correlated forcings as firstly suggested
by [Luc12], although the corresponding SDE has to be conceived in the Stratonovich
sense. Only in this case can one reconcile the results of [Luc12], [Abr17] and those shown
in Sections 2.2 and 2.3.1. This is gathered in Proposition 2.3.1.

Changes in the power spectral densities due to stochastic forcings are given Eq. (2.92)
and originally found in [Luc12]. Such formula provides an amenable algorithm for
estimating the Ruelle-Pollicot resonances out of time series, as detailed in the paragraph
immediately below. While the Ulam projections of the transfer operator employed in
Chapter 3 provided such spectral estimates via Markov modelling, they required expensive
computations. The method arising from Eq. (2.92), on the other hand, would only require
the study of model ensemble trajectories. This idea was partially implemented in [Luc12]
to calculate the modulus of the susceptibility function, although the author did not consider
the problem of locating its poles. Additionally, here we speculate on the possibility of
relating the noise strength employed in Eq. (2.92) with the artificial diffusion entailed by
Ulam’s projection [FJK13]. An experiment to gauge the scope of these ideas would be
most valuable.

The scalar and homogeneous equation (2.107) derived in [Ken71] and revisited here in a
classical and stochastic framework, allows to compute the full response of a system without
solving the Fokker-Planck equation with the price of introducing memory. The results
in this section, however, are abstract, since they involve projected differential operators
that do not always have explicit representations, although future investigations should
endeavour to find suitable approximations of the different components in Eq. (2.107),
especially the memory kernel.

Ulam’s method has been used to approximate the transfer operator and Fokker-Planck
semigroup in Chapter 3, although we noted that rigorous convergence results are limited to
systems possessing absolutely continuous invariant measures or those having (computa-
tionally amenable) Markov partitions; we refer the reader back to Remark 3.1.1. It is well
known that such method provides stochastic matrix estimates, whose perturbation theory
has been tackled in Section 3.2. An Ulam-projected version of Ruelle’s linear response
formula (1.9) was given in Eq. (3.21) where, in addition, all the non-linear corrections
are included. This formula was conceived in the context of stochastic matrices although,
similarly to the convergence of Eq. (1.9), the validity of the series expansion (1.9) boiled
down to having a sufficiently mixing Markov chain as captured by the ergodicity co-
efficient: see Eq. (3.31). The ergodicity coefficient can be computed from the matrix
entries and provides a bound to the modulus of the second largest eigenvalue of the chain
[Dob56]; [IS14]. Furthermore, it is shown in Proposition 3.2.3 that the ergodicity coef-
ficient gives a stability bound for the second eigenvalue. In essence, this result says that
the uniqueness of the invariant probability and mixing character of the chain is preserved
for perturbations whose size is bounded by the ergodicity coefficient. This result extends
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that in Proposition 3.2.2, where the bound is given in terms of the algebraic condition
number. Along this lines, it was already suggested immediately below, that the eigenvalue
condition number— see Appendix B or [Wil65]; [TE05] for definitions— could improve
Proposition 3.2.3 in the limit of small perturbations. We would like to note that a stability
result of this sort would be analogous to the full transfer operator version found in [KL99],
where the perturbation theory of [Kat66] is resorted to. On a practical note, the eigenvalue
condition number has been recently used to check the robustness of transition matrices
learned from time series [Tan+19].

Projecting the evolution operators onto a finite basis inherently provokes the loss of
semigroup property, which prevents the use of the spectral mapping theorem linking
the spectrum of the generator with that of the semigroup [EN00, Chapter IV]. We
understand that this is a consequence of the Mori-Zwanzig formalism revisited here in
Section 4.1. This question has not been addressed in mathematical terms and the modelling
community would greatly benefit from having a priori estimates of the accuracy of Ulam
projections. Throughout the numerical approximations of Section 3.3 we have assumed
that the semigroup property was satisfied in the sense of Eq. (3.5). Additionally, the
introduction of artificial diffusion inherently compromises the accuracy of computations
[FR02]; [FJK13]. In the study of the Lorenz 63 system reported in Section 3.3.2, a
diagnosis was done in terms of correlation functions— see Fig. 3.4— were it was shown
that coarse-grained correlations decay more quickly, although the power spectral peaks
were well preserved.

While the O-U process studied in Section 3.3.1 has a purely simple real spectrum with
orthogonal eigenfunctions [MPP02], the dissipativeness of the Lorenz 63 model provoked
the appearance of complex eigenvalues in the approximate stochastic matrices with non-
orthogonal eigenvectors. We observed that the non-normality of such matrices translated
in a non-trivial delay in convergence to the steady state, as illustrated in Figure 3.4 (a).
Furthermore, the eigenelements of non-normal matrices experience a more sensitive de-
pendence to perturbations which can be better studied using ε-pseudospectra [TE05]. We
are, thus, inclined to conjecture that the sensitivity of the system is not only measured by
the shrinking of the spectral gap, as calculated for the pitchfork bifurcation [Gas+95] or
observed in the transitions between Warm and Snowball climate states [Tan+18], but by
large ε-pseudospectral values at the dominating resonances.

The low dimensionality of the problems considered in Section 3.3 allows to perform
the box subdivision on the whole phase space. Unfortunately, many physically relevant
models posses high-dimensional domains that are numerically intractable. Because of
this dimensionality barrier, reduced phase spaces are considered. Results along this line
support the applicability of the transfer operator methods in a climatological context, see,
e.g., [Che+14]; [TBD15]. However, the inherent loss of Markovianity in the dimension-
ality reduction requires control on the memory effects introduced by the hidden variables,
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again as a consequence of the Mori-Zwanzig formalism. This is something that compli-
cates the study of the response, as pointed out in [LW17] where the robustness of reduced
systems with the presence of forcing is assessed. Further research should be oriented on
adapting this methodology based on the transfer operator in high-dimensional systems
with views to predicting the response of physically relevant models. A first step along
these lines is done, in fact, in the already cite work of [Che+14], where narrow spectral
gaps in reduced Markov matrices indicate a lack of linear response in an intermediate
complexity ENSO model. It was also raised that the linear responses estimated using
the Markov chain approach and gathered in tables 3.2-3.4 were heavily dependent on the
choice of observable, possibly, because the stable contribution in Ruelle’s formula 1.11a is
not captured; see [TLD18] for further reference. In this regard, algorithms for calculating
the linear response along orbits would be useful to precisely determine the decomposition
of the applied fields into the stable and unstable directions of the flow [NW17]. We hope
that these techniques provide a way of categorising the suitability of different observables
to the methodology of Chapter 3.

To formulate accurate and efficient parametrisations for multiscale processes is a crucial
challenge in many areas of science and technology for one of two reasons: either the
numerical simulation of all scales active in a given system is computationally unfeasible;
or there is a mismatch between model resolution and the granularity and homogeneity of the
observations, as in the case in geophysical flows and in the climate system. Moreover, the
construction of parametrisations is instrumental to help understand the nature of non-linear
fluxes across scales and the physical processes responsible for cascades, instabilities, and
feedbacks. In this context, the WL equation first proposed in [WL12] using Ruelle’s high-
order response formulas and revisited here in Section 4.2 using the operator semigroup
expansions, captures the leading order corrections in the statistics of interacting physical
processes where there is no need of timescale separation. The Dyson expansion of
Eq. (2.18) proved to be instrumental in deriving the WL equation (4.22). It was shown in
[Wou+16] through worked examples that the WL equation could be Markovianised to yield
reduced sets of equations. We systematically addressed such problem in Theorem 4.2.1,
where we assumed that the coupling functions involved in Eq. (4.24) projected entirely onto
the point spectrum so that the associated WL equation could be recast into a Markovian
system of extended variables, making the latter quasi-Markovian [Pav14]. The resulting
system (4.33) appeared to posses the structure of a Multilevel Stochastic Model (MSM),
where the hidden variables are linearly driven and explain the integral kernel in the
WL equation. More importantly, on Remark 4.2.5 the hidden variables were hierarchised
according to their decorrelation time. This note suggests that when the timescales separate,
one could potentially remove the linear drift being left with a fully Markovian equation,
reminiscing of classical homogenisation results [PS08]. Furthermore, the hierarchised
equation can posses a gap in timescales within the hidden variables so that one could
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afford a reduction of the dimensions of system (4.33); we refer back to Remark (4.2.4).
This practical role of the λj’s in Theorem 4.2.1 deserves, therewith, a more careful
examination in further work.

The response-theory-based WL equation has been employed as top-down parametri-
sation of conceptual models [Wou+16]; [VL18b], but also as subgrid processes in
atmosphere-ocean coupled systems [VL18a]; [DV17]. If the full equations are not known,
one is left with data-driven methodologies that provide candidate models to emulate partial
observations. To this end, the EMR methodology [KKG05] reviewed here in Section 4.4
is seen as the bottom-up counterpart to the WL parametrisation since they are both writ-
ten in an MSM manner; this is illustrated in Fig. 4.1. It was suggested at the end of
Section 4.4.2 that the number of levels needed for EMR to converge was related with
the spectrum underlying Koopman operator. Effectively, if the generator eigenvalues are
located close to the imaginary axis, one expects EMR to converge at a high number of
levels, whereas if the eigenvalues have very negative real parts, the parametrised signal
would be almost white making EMR converge instantly. More broadly, the theoretical
results of Chapter 4 establish how the spectral features of semigroups determine in turn the
constitutive elements of data-driven non-Markovian closure of partially observed complex
systems, when rewritten as an MSM. These results highlights, in particular, new bridges
with Koopman modes and the DMD decomposition [Mez05]; [Sch10], as well with other
kinds of projections onto spectral bases [CK17]; [Ghi+02]; [Has88]; [Pen96].
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Appendix A

Homogeneous Equation for the Linear
Response

This appendix aims at checking that, indeed, the Kubo response formula (describing the
response function to first order in the perturbation parameter) is recovered when gathering
the first order terms in the integro-differential equation (2.107) as done in [Ken71]. Noting
that L0ρ0 ≡ 0, we can further simplify B(t) and K(t, s):

B(t) = ξ−1
∫

Ψ(x)L(t)ρ0(x)dx = ξ−1
∫

Ψ(x) (L0 + εg(t)L1) ρ0(x)dx (A.1a)

= εg(t)ξ−1
∫

Ψ(x)L1ρ0(x)dx = εg(t)q, (A.1b)

where we have introduced q := ξ−1 ∫ Ψ(x)L1ρ0(x)dx. From this calculation, we imme-
diately observe thatB(t) is of order ε. From Eq. (2.108b) and the perturbed Fokker-Planck
equation (2.16), the kernel K reads as:

K(t, s) =ξ−1
∫

Ψ(x)L(t)G(t, s) (1 − P) L0ρ0(x)dx (A.2a)

+ εg(s)ξ−1
∫

Ψ(x)L(t)G(t, s) (1 − P) L1ρ0(x)dx (A.2b)

=εg(s)ξ−1
∫

Ψ(x)L(t)G(t, s)L1ρ0(x)dx (A.2c)

− εg(s)qξ−1
∫

Ψ(x)L(t)G(t, s)ρ0(x)dx, (A.2d)

where we have used that L0ρ0 ≡ 0 and PL1ρ0 = qρ0. As withB(t), this calculation shows
that the minimum order for K(t, s) is ε.

The next step is to find the equations for the response at the zeroth and first orders of
powers of ε corresponding to the expansion:

RΨ(t) = R
(0)
Ψ (t) + εR

(1)
Ψ (t) + ε2R

(2)
Ψ (t) + . . . (A.3)
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This expansion is the same as Eq. (2.56), although we denote it differently in accordance
with Section 2.4. The reason is that the method presented here is different to the approach
involving the Green function (see Eq. (2.60)); the target of this subsection is to show that
these two approaches coincide in their leading order term. The equation for R(0)

Ψ (t) reads
as:

∂tR
(0)
Ψ (t) = 0, (A.4)

from where we deduce that the zeroth order response is constant equal to R(0)
Ψ (0) = ξ; see

Eq. (2.98) for the definition of ξ. We now extract the first order terms in K(t, s), that we
denote as K(1)(t, s):

K(1)(t, s) =εg(s)ξ−1
∫

Ψ(x)L0G0(t, s)L1ρ0(x)dx (A.5a)

− εg(s)qξ−1
∫

Ψ(x)L0G0(t, s)ρ0(x)dx, (A.5b)

which was obtained by replacing the time-dependent perturbed operator L(t) by the
unforced analogue L0. We have also introduced the operator G0(t, s) which is defined as:

G0(t, s) = G0(t− s) = e(t−s)(1−P)L0 , (A.6)

and corresponds to the zeroth order elements in the expansion of G(t, s). Hence, we have
that:

G0(t− s)ρ0 = e(t−s)(1−P)L0ρ0 = ρ0. (A.7)

Consequently, Eq. (A.5b) vanishes.
Thus, the equation for the linear term R

(1)
Ψ (t) is:

∂tR
(1)
Ψ (t) = B(t) +

∫ t

0
K(1)(t, s)ds. (A.8)

This is the non-Markovian equation that describes the time evolution of the linear response
as results of extracting the leading order terms in Eq. (2.107). The objective, then, is to
prove that Eq. (A.8) is the same as the Kubo formula. This entails proving a few operator
identities necessary to manipulate such equation. First we note that for any function f :

L0G0(t, s)f = e(t−s)L0(1−P)L0f. (A.9)

Furthermore, knowing that L0Pf ≡ 0 for any function f ,

L0G0(t, s)f = e(t−s)L0(1−P)L0f = e(t−s)L0L0f = ∂te
(t−s)L0f. (A.10)
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Using these identities, we find a simpler expression for K(1)(t, s):

K(1)(t, s) = εg(s)ξ−1
∫

Ψ(x)L0G0(t, s)L1ρ0(x)dx (A.11a)

= εg(s)ξ−1
∫

Ψ(x)∂te
(t−s)L0L1ρ0(x)dx. (A.11b)

The final step is to use Leibniz integration rule in Eq. (A.8) to realise that there exists a
function G such that:

R
(1)
Ψ (t) =

∫ t

0
G(t− s)g(s)ds, (A.12)

and such function is given by:

G(t− s) =
∫

Ψ(x)e(t−s)L0L1ρ0(x)dx, (A.13)

which is the Green function that gives the linear response (2.58). We note, though, that the
procedure for obtaining this linear response was departing from the exact formula of the
full response given in Eq. (2.107), which did not resort to linearising the Fokker-Planck
equation at the beginning.

147



Page 148 148

148



Appendix B

Atomic Perturbations of Markov Chains

A particularly interesting class of perturbations of Markov chains only affect the transition
probabilities of a single state. This can confidently be considered the simplest perturbation
of a stochastic matrix and allows to derive perturbative bounds explicitly without resorting
to norm estimates.

Let N denote a positive integer and consider an N × N stochastic matrix M. If the
probability of state k is altered, it means that part of the transition probability to state i
increases in detriment of that of state j. This class of atomic perturbations constitutes a
family of matrices AN :

AN =
{
m ∈ RN×N : m = (ei − ej)e⊤

k , 1 ≤ i, j, k ≤ N
}
. (B.1)

Not all elements in AN are admissible perturbations for the stochastic matrix M. Indeed,
let m = (ei − ej)e⊤

k where i, j and k are so that Mj,k = 0 and Mi,k = 0. Then,
for every real value of ε, Mi,k + εmi,k < 0 or Mj,k + εmj,k < 0. This means that
M + εm has negative entries for all ε in R and it cannot constitute a stochastic matrix;
see Definition 3.1.1. This motivates the following definition:

AN (M) = {m ∈ AN : M +m is stochastic} . (B.2)

In this setting, let εm be in AN (M) for some ε in R. Then, if Q is the spectral projector
around 1 (see Eq. (3.25)) and u = [u1, . . . , uN ]⊤ is the stationary vector of M, there exist
i, j and k in {1, . . . , N} such that the linear response is given by:

Gu = (1 − M + Q)−1 mu = (1 − M + Q)−1 (ei − ej)uk (B.3a)

= uk

[
(1 − M + Q)−1

]
:,i

− uk

[
(1 − M + Q)−1

]
:,j
. (B.3b)

Equation (B.3b) is in agreement with what was found in [MS88] and this form of the
linear response allows to derive explicit bounds on the norm of Gu. This, furthermore,
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determines the radius of expansion of the response formula in Eq. (3.16). Indeed, one has

∥Gu∥1 = uk

[
(1 − M + Q)−1

]
:,i

− uk

[
(1 − M + Q)−1

]
:,j

≤ uk

1 − ∥M∥1∗
. (B.4)

From where one deduces that the invariant vector u is more robust to atomic perturbations
at state k if the invariant probability there is small. The radius of expansion εmax for the
perturbative formulas, on the other hand, becomes independent of uk by means of the ratio
test. Summarising the proof in Eq. (3.30), we take the ratio of two successive elements in
the series:

∥GGnu∥1

∥Gnu∥1
≤ ∥G∥1 ≤ ∥m∥1

1 − ∥M∥1∗
= 2

1 − ∥M∥1∗
, (B.5)

which yields the following bound on the radius of expansion

εmax = 1 − ∥M∥1∗

2 . (B.6)

While the leading eigenvalue of the perturbed Markov chain remains unchanged, the
rest of the spectrum {λl(ε)}N

l=1 is susceptible of being altered as a function of ε. Here,
we are assuming that the spectrum is totally simple for ε = 0 and is sorted according to:
λ1 = 1 ≥ |λ2| ≥ . . . ≥ |λN |. To study the sensitivity of the eigenvalues, we calculate
the leading order change in λj as results of perturbing M by εm, for i = 2, . . . , N .
By invoking the continuity of the eigenvalues with respect to matrix entries and their
simplicity [Wil65]; [TE05], we can perform Taylor series around ε = 0 so that

λl(ε) = λ2 + ε
dλl(ε)

dε

∣∣∣∣
ε=0

+ O
(
ε2
)
. (B.7)

Let vl = [vl,1, . . . , vl,N ]⊤ and ul = [ul,1, . . . , ul,N ]⊤ be the left and right eigenvectors of
M associated with λl, respectively, and assume that ∥vl∥2 = ∥ul∥2 = 1, then, if εm is in
AN(M) and using standard arguments, there exist i, j and k in {1, . . . , N}:

dλl(ε)
dε

∣∣∣∣
ε=0

= 1
|v∗

l ul|
v∗

l (ei − ej) e⊤
k ul = 1

|v∗
l ul|

v∗
l (ei − ej)ul,k (B.8a)

= 1
|v∗

l ul|
(vl,i − vl,j)ul,k = κ2 (λl) (vl,i − vl,j)ul,k, (B.8b)

where k2(λl) is the eigenvalue condition number [Wil65]; [TE05]. This formula gives a
complex number whose absolute value estimates of the rate of change of λl as a function
of ε. This calculation reveals that the local quantity (vl,i − vl,j)ul,k controls the robustness
of the eigenvalue λl provided that the global quantity κ2 (λl) stays finite.

The mixing time of the stochastic matrix M is indicated by the modulus of the second
largest eigenvalue, whose sensitivity to atomic perturbations can be estimated by applying

150



Section B.0 151

Eq. (B.8b) to λ2. However, since the modulus can be cumbersome to manipulate, it is hard
to get the exact derivative formula for |λ2|. It is, therefore, convenient to consider the real
part of the logarithm of λ2, which indicates the rate of convergence. Indeed, we have:

dRe (log(λ2(ε)))
dε = Re

(
d log(λ2(ε))

dε

)
= Re

(
1

λ2(ε)
dλ2(ε)

dε

)
. (B.9)

Now, inserting the value of the sensitivity derivative in Eq. (B.8b) into Eq. (B.9) and
evaluating at ε = 0, we get

Re

(
1

λ2(ε)
dλ2(ε)

dε

) ∣∣∣∣
ε=0

= κ2(λ2)
|λ2|2

Re
(
λ2 (v2,i − v2,j)u2,k

)
. (B.10)

for some i, j and k in {1, . . . , N}. We do not expand this expression further, although a
generic form in terms of arbitrary perturbation matrices m can be found in [ADF18].
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Appendix C

Itô Integration of the MSM

In the main text, we proposed a solution of the MSM given by Eq. (4.71) using the
Dyson expansion for the linear operators involved in the backward-Kolmogorov equation.
advection acting on functions. Therefore, we substituted non-linear ordinary differential
equations for a partial differential equation, for the sake of having linear operators in hand.
The same solution can be attained by direct integration of the MSM in the form (4.71). We
convolute, in the Itô sense, Eq. (4.71b) to find an explicit solution for r(t) when d1 = d2:

r(t) = e−Dtr(0) +
∫ t

0
e−D(t−s)ΣdWs + ε

∫ t

0
e−D(t−s)Cx(s)ds; (C.1)

here, r(0) indicates an initial state that can be assumed to be distributed in a prescribed way.
For the more general, non-linear MSMs considered there, see [KCG15, Proposition 3.3].

By substituting the expression (C.1) into Eq. (4.71a), we find an exact expression for
the evolution of x(t):

ẋ(t) = F(x(t)) + εe−Dtr(0) + ε
∫ t

0
e−D(t−s)ΣdWs + ε2

∫ t

0
e−D(t−s)Cx(s)ds, (C.2)

in which the memory effects in the fourth term are of second order in ε. Note that the
ε-order terms arise from a noise realisation in the decoupled regime, whereas the memory
term is exclusively due to the coupling of the main variables with the hidden ones. Hence,
the only degree of freedom left is the distribution of the initial states r(0).
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Appendix D

The Coupled Lorenz 84–63 System

The EMR methodology’s ability to capture the statistics of low-dimensional dynamical
systems was illustrated in [KKG05], where the authors considered the Lorenz 63 system
[Lor63] as a test case in which the phase space can be fully sampled. Moreover, provided
that the integration time step is short enough, the parameters of the underlying model
can be fully captured with a high degree of confidence. Here, we repeat the analysis
of [KKG05] to illustrate the effectiveness of EMR in capturing statistical and dynamical
properties in an extended, partially observed deterministic system.

The model we consider is the result of coupling the X = (X, Y, Z) variables of the
Lorenz 84 system [Lor84] with the x = (x, y, z) variables of the Lorenz 63 system [Lor63],
namely:

Ẋ = −Y 2 − Z2 − aX + a(F0 + hx), (D.1a)

Ẏ = XY − bXZ − Y +G, (D.1b)

Ż = XZ + bXY − Z, (D.1c)

ẋ = τs(y − x), (D.1d)

ẏ = τ(rx− y − xz), (D.1e)

ż = τ(xy − βz); (D.1f)

the parameter values are: a = 0.25, b = 4, F0 = 8, G = 1, and s = 10, r = 28, β = 8/3,
respectively. The parameter h measures the strength of the coupling, while τ scales the
rate of change in the Lorenz 63 system and, therefore, the timescale ratio between the two
subsystems.

This system is a skew-product, in the sense of [Sel71], since the coupling is one-way
only, with the Lorenz 63 system driving the Lorenz 84 dynamics. Hence, one has— as
noted in [VL18b]— a fully Markovian WL parametrisation of the Lorenz 63 variables.
Furthermore, the correlation function that defines the stochastic noise η(t) can be further
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expanded and simplified,with respect to Eq. (4.20). One can, in fact, write explicitly:

C(η(0), η(t)) = ⟨(x(0), 0, 0) · (x(t), 0, 0)⟩ , (D.2)

where the angular brackets ⟨·⟩ indicate averages with respect to the physical measure
associated with the Lorenz 63 system. Since Lorenz 84 does not feed back into Lorenz 63,
the evolution of x(t) only obeys the dynamics of Lorenz 63, and thus the decorrelation of
the noise scales with τ . Notice that this trivially follows from Theorem 4.2.1.

In most of the numerical experiments, the timescale separation between the two sys-
tems is τ = 5 unless otherwise stated. The relevance of this timescale parameter was
investigated in previous work [VL18b]. Here, we focus as well on the effects of the cou-
pling strength h, and we shall study the cases of h = 0.25 and 0.025. Partial observations
only will be used in these experiments, by sampling the three-dimensional outputs of the
Lorenz 84 system. Then, the observed tendencies are regressed and sequentially layered
following the EMR approach, as explained in Section 4.4.

D.1 EMR Outputs

The Lorenz 84–63 model is integrated for 730 time units that correspond in Lorenz 84 to
10 natural years, with a time step of 5 · 10−3 time units; two separate runs are made for
the coupling strengths h = 0.25 and h = 0.025. These two full-model runs are used to
train the corresponding EMR model versions, both of which use only the slow X-variables
and eliminate the fast x-variables. Then, two separate full-model simulations are run, for
testing purposes, over 7 300 time units, and the EMR model’s output is compared with
it, for the two parameter values. Below we show the main statistical outputs of the EMR
methodology compared to the two reference integrations of the full model. The results for
the two separate h-values are shown in Figs. D.1–D.3 and Figs. D.4–D.6, respectively.

The region of phase space explored by the EMR model clearly coincides with the
one visited by the full model, as seen in Figs. D.1 and D.4, and the relative occupancies
within this region—as indicated by the smoothed PDFs shown in Figs. D.2 and D.5,
respectively—agree very well. The timescales are also well captured, as indicated by the
good approximation of the autocorrelation functions, cf. Figs. D.3 and D.6.

Notice that, while the original Lorenz 84–63 system is purely deterministic, the EMR
model includes white noise acting on the hidden layers of the learned model. This
fact could suggest that a smoothing of the invariant measure is inevitable and that the
EMR methodology may not be able to capture fractal geometries in phase space, since
the EMR model would not satisfy the Hörmander’s hypoellipticity condition [CSG11];
[Hör67]. The numerical evidence in Figs. D.1 and D.4, however, illustrates a strikingly
good approximation of the full model’s attractor, including its very fine, and presumably
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fractal, structure.
Actually, [KCG15, Theorem 3.1 and Corollary 3.2] provided sufficient conditions for

the existence of a random attractor for a broad class of MSMs that are not subject to a
non-degeneracy condition of Hörmander type. In other words, one can have an MSM
that possesses a random attractor and is thus dynamically quite stable, while exhibiting
in a forward sense an invariant measure of the associated Fokker-Planck equation that is
singular with respect to the Lebesgue measure. This mathematically rigorous result helps
explain what is observed numerically not only in the present paper for the EMR of the
Lorenz 84–63 model, but also in the case of the EMR model of the Lotka-Volterra example
in [KCG15, Fig. 7].

Ulam’s method was used on the projection of the full (X,x) phase space onto the
X subspace to approximate the spectrum of the Koopman operator, since it can provide
further information on the characteristics of the time series, beyond PDFs and correlation
functions. In particular, we learned transition matrices Mτ according to Eq. (3.48) with
transition times of τ = dt. The observed spectra (red × symbols) using a coarse partition
of phase space into 512 non-intersecting boxes showed good agreement with the spectra
based on the full model (blue open circles); see Fig. D.7. This agreement confirms further
that, at this level of coarse graining, the EMR model captures well the the characteristics
of the full model’s solutions.

(a) Full model (b) EMR model

Figure D.1: Trajectories of the Lorenz 84–63 model in the three-dimensional (X, Y, Z)
phase space of the Lorenz 84 model, for h = 0.25 and 200 time units: (a) for the full
Lorenz 84–63 model governed by Eqs. (D.1) (blue); (b) for the EMR model (red).
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(a) X-PDF (b) Y -PDF (c) Z-PDF

Figure D.2: Smoothed PDFs of the Lorenz 84–63 variables (a) X, (b) Y, and (c) Z with
a coupling strength of h = 0.25. The blue curve corresponds to the full model; the red
curve corresponds to the EMR model. These PDFs and those in Fig. D.5 were obtained
by using the Matlab R2019a kernel smoothing function ksdensity.

(a) X-ACF (b) Y -ACF (c) Z-ACF

Figure D.3: Autocorrelation functions (ACFs) of the Lorenz 84–63 variables (a) X, (b)
Y, and (c) Z for a coupling strength of h = 0.25.

(a) Full model (b) EMR model

Figure D.4: Example trajectories of the Lorenz 84- 63 model on the (X, Y, Z) domain with
a coupling strength of h = 0.025 integrated for 200 time units. Subfigure (a) corresponds
to the full model (D.1) (blue) and subfigure (b) refers to the EMR model (red).
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(a) X-PDF (b) Y -PDF (c) Z-PDF

Figure D.5: Smoothed PDFs of the Lorenz 84- 63 variables (a) X , (b) Y , and (c) Z, with
a coupling strength of h = 0.025. The blue curve corresponds to the full model; the red
curve corresponds to the EMR model.

(a) X-ACF (b) Y -ACF (c) Z-ACF

Figure D.6: ACFs of the Lorenz 84- 63 variables (a) X , (b) Y , and (c) Z for h = 0.025.
The blue curve corresponds to the full model; the red curve corresponds to the EMR
model.

(a) h = 0.25 (b) h = 0.025

Figure D.7: Leading eigenvalues of the discretized Koopman operator in the L84 model’s
phase space. The blue open circles correspond to the data obtained by integrating the full
model’s Eqs. (D.1), the red × symbols correspond to the EMR model. (a) h = 0.25; and
(b) h = 0.025.

159



Page 160 160

D.2 Convergence

Convergence in the EMR approach is determined by the “whiteness” of the last-level
residual, as explained in Section 4.4.2; see Eq. (4.86) and discussion thereof. In Fig. D.8,
we plotted the mean of the determination coefficients R2 for the three X-variables and
we show that its convergence in the EMR approach depends only mildly on the coupling
parameter h. Indeed, for h = 0.25 we observe in panel (a) that around 18 levels are
necessary before achieving the optimal level, whereas for weaker coupling with h = 0.025
convergence is attained in panel (b) already with 15 levels, as one might expect.

Furthermore, as already pointed out in [KCG15] on a different example, the results in
Fig. D.8 (c) illustrate that a smaller timescale separation τ can require a higher number of
levels for EMR to attain convergence: in the case at hand, around 25 levels are needed.
For completeness, Fig. D.8 (d) shows that including additive white noise in the Lorenz 63
system can, in fact, accelerate the convergence of the method, with convergence achieved
at ℓ = 7.
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(a) h = 0.25 and τ = 5 (b) h = 0.025 and τ = 5

(c) h = 0.25 and τ = 2
(d) Noisy Lorenz 63 model with h = 0.25 and
τ = 5

Figure D.8: Determination coefficientsR2 of the EMR method as a function of the number
ℓ of levels. (a) h = 0.25; (b) h = 0.025; and (d) h = 0.25 but with the Lorenz 63 model
including additive noise. Panels (a,b,d) all have the timescale separation τ = 5, while in
panel (c) h = 0.25 and τ = 2.

D.3 Model Coefficients

We show here that the EMR model coefficients can be efficiently approximated when
phase space subsampling is carried out. Here, regressions are performed over fifty short
time series of 10 time units each, with a time step of 5 · 10−3, as in Section D.1. The
reason for taking this sample length here is that 10 time units is visually enough for the
slow variable X to go through a cycle, as illustrated in Fig. D.9, for both h = 0.25 and
0.025.
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(a) h = 0.25 (b) h = 0.025

Figure D.9: Time-series of the Lorenz 84 variables (X, Y, Z) over 10 time units: (a)
h = 0.25, and (b) 0.025.

The estimated coefficients and their standard deviations using the EMR regressions are
listed below in Tables D.1 and D.2 for h = 0.25 and in Tables D.3 and D.4 for h = 0.025.
The tables show the coefficients of the linear and quadratic forms at first level in the EMR
regressions: see Eq. (4.84a).

As expected, a stronger coupling of h = 0.25 leads to greater uncertainty in the
estimation, as indicated by the corresponding standard errors. For the fairly complex and
chaotic system at hand, we note that no memory effects are artificially introduced in the
regressions at the second level. Indeed, we found that the coupling of the main level with
the subsequent ones was 0 to the fourth decimal place.

EMR 1 x y z x2 xy y2 xz yz z2

fX 1.949 -0.352 -0.002 -0.104 -0.015 0.01 0.052 -0.946 -0.001 -0.921

fY 0.999 0.001 -1.001 0.002 0 1.001 -4.003 0 0 0

fZ 0.002 -0.003 -0.002 -1.001 0.001 4.003 1.001 0 0 0

Table D.1: Means of the EMR coefficients of the Lorenz 84–63 model, estimated from an
ensemble of 50 runs over 10 time units for h = 0.25.
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EMR 1 x y z x2 xy y2 xz yz z2

fX 0.543 1.005 0.246 0.291 0.428 0.152 0.188 0.104 0.076 0.099

fY 0.001 0.002 0 0.001 0.001 0 0 0 0 0

fZ 0.001 0.002 0.001 0.001 0.001 0.001 0 0 0 0

Table D.2: Standard deviations of the EMR coefficients of the Lorenz 84–63 model,
estimated from an ensemble of 50 runs over 10 time units for h = 0.25.

EMR 1 x y z x2 xy y2 xz yz z2

fX 2.006 -0.253 -0.001 -0.003 -0.004 0 0.001 -1.002 0.001 -1.003

fY 1 0 -1.001 0.002 0 1.001 -4.003 0 0 0

fZ 0.001 -0.002 -0.002 -1.001 0.001 4.003 1.001 0 0 0

Table D.3: Means of the EMR coefficients of the Lorenz 84–63 model, estimated from
an ensemble of 50 runs over 10 time units for h = 0.025.

EMR 1 x y z x2 xy y2 xz yz z2

fX 0.034 0.063 0.019 0.021 0.026 0.01 0.014 0.007 0.008 0.006

fY 0.001 0.002 0 0.001 0.001 0 0 0 0 0

fZ 0.001 0.002 0.001 0.001 0.001 0.001 0 0 0 0

Table D.4: Standard deviations of the EMR coefficients of the Lorenz 84–63 model,
estimated from an ensemble of 50 runs over 10 time units for h = 0.025.
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