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Abstract
Wheat (Triticum aestivum L.) is a major source of nutrients for populations across the

globe, but the amino acid composition of wheat grain does not provide optimal nutri-

tion. The nutritional value of wheat grain is limited by low concentrations of lysine

(the most limiting essential amino acid) and high concentrations of free asparagine

(precursor to the processing contaminant acrylamide). There are currently few avail-

able solutions for asparagine reduction and lysine biofortification through breeding.

In this study, we investigated the genetic architecture controlling grain free amino

acid composition and its relationship to other traits in a Robigus × Claire doubled

haploid population. Multivariate analysis of amino acids and other traits showed that

the two groups are largely independent of one another, with the largest effect on amino

acids being from the environment. Linkage analysis of the population allowed identi-

fication of quantitative trait loci (QTL) controlling free amino acids and other traits,

and this was compared against genomic prediction methods. Following identification

of a QTL controlling free lysine content, wheat pangenome resources facilitated anal-

ysis of candidate genes in this region of the genome. These findings can be used to

select appropriate strategies for lysine biofortification and free asparagine reduction

in wheat breeding programs.

Abbreviations: GS, genomic selection; HFN, Hagberg falling number; KHI, kernel hardness index; PCA, principal components analysis; QTL, quantitative
trait locus.
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1 INTRODUCTION

The nutritional quality of wheat (Triticum aestivum L.) has
profound impacts on human health. As one of the largest
sources of average daily calorie intake in the world (18.2%
in 2019; FAO, 2021), wheat is an essential source of macro-
and micronutrients. In 2019, 19.5% of average daily global
protein intake was estimated to be provided by wheat-based
foods (FAO, 2021). Similarly, between 2008 and 2017 in
the UK, over 25% of average daily fiber intake was pro-
vided by wheat-based foods (Gressier & Frost, 2022). Wheat
flour is often fortified to increase its nutrient content. In the
UK, wheat is fortified with calcium, iron, thiamine, niacin,
and, most recently, folate (DEFRA, 1998; Department of
Health and Social Care UK Government, 2021). The quanti-
ties of different macro- and micronutrients in wheat can have
large impacts on population health because of the scale at
which wheat products are consumed. For example, it is esti-
mated that the addition of folate to UK flour will lead to a
20% decrease in neural tube defects in babies (Department
of Health and Social Care UK Government, 2021). Conse-
quently, it is essential to ensure that the nutritional profile of
wheat is as beneficial as it can be for human health.

One way in which the nutritional profile of wheat can
be improved is via optimization of its amino acid compo-
sition, with the concentrations of lysine and asparagine as
most important. Free (soluble, nonprotein) asparagine can be
converted into the processing contaminant, acrylamide, dur-
ing high-temperature cooking and processing, and this has
led to ongoing efforts to reduce free asparagine concentra-
tion (Oddy et al., 2022). Lysine, on the other hand, is not
produced endogenously by humans or other monogastric ani-
mals, making it an essential amino acid in the diet, but it
is present in only small quantities in wheat and other cereal
grain and populations reliant on cereals for their nutrition may
suffer from lysine deficiency (Galili & Amir, 2013). Indeed,
fortifying wheat flour by adding lysine has been shown to
improve indices of nutritional status in clinical trials in Pak-
istan, northern China, and Syria (Hussain et al., 2004; Zhao
et al., 2004; Ghosh et al., 2008). Flour fortification is unlikely
to be a sustainable solution in developing countries and it
would be much cheaper and more efficient to increase the
intrinsic lysine content of wheat grain. Therefore, the amino
acid composition of wheat grain could be optimized both by
decreasing grain free asparagine content and increasing lysine
content.

In recent years, studies have investigated genetic strategies
for the reduction of free asparagine content in wheat grain.
Induced and natural variation in the asparagine synthetase 2
genes, for example, has been found to impact significantly on
free asparagine content (Alarcon-Reverte et al., 2022; Oddy
et al., 2021; Raffan et al., 2021) and quantitative trait loci
(QTLs) for grain asparagine content have been identified from

Core Ideas
∙ High free asparagine and low lysine concentrations

limit the nutritional value of wheat grain.
∙ Investigation of a biparental mapping popula-

tion formed from the UK soft wheats Claire and
Robigus.

∙ Breeding for lower free asparagine and higher
lysine using Claire and Robigus diversity is pos-
sible but limited.

previous genome-wide association studies (GWAS) (Emebiri,
2014; Peng et al., 2018; Rapp et al., 2018). However, the small
number of stable QTL available to breeders limits the progress
that can be made to reduce grain asparagine content in breed-
ing programs and no genetic strategies for soft (biscuit) wheat
specifically have been investigated. Similarly, there are lim-
ited strategies currently available for increasing lysine content
in wheat grain. Lysine biofortification via QTL identification
and marker-assisted breeding has been studied extensively in
both rice (Oryza sativa L.; Jang et al., 2020; Wang et al.,
2008; Yoo, 2017; Zhong et al., 2011) and maize (Zea mays
L.; Prasanna et al., 2020), but only two studies have previously
investigated lysine biofortification in wheat through associa-
tion studies. Peng et al. (2018) successfully identified QTL
controlling free lysine and Jiang et al. (2013) identified QTL
for total lysine.

Consequently, the aim of this study was to investigate QTL,
genomic prediction (GP) accuracy, and candidate genes con-
trolling the free amino acid composition of wheat grain in
a soft wheat mapping population developed from the vari-
eties Claire and Robigus. Like many UK varieties, these
parents both lack the B genome homologue of the asparagine
synthetase-2 gene, TaASN-B2 (TraesLDM3B03G01566640
in variety Landmark), the presence/absence of which is a
known source of grain asparagine content variation (Oddy
et al., 2021). This mapping population, therefore, repre-
sents a useful resource for identifying additional variation.
Claire and Robigus are also represented by scaffold-level
genome assemblies in the wheat pangenome, facilitating
candidate gene analysis. Furthermore, we investigated other
traits, such as grain size, hardness, and Hagberg falling num-
ber (HFN), to determine whether QTL controlling nutritional
traits overlapped with those controlling other traits of interest.

2 MATERIALS AND METHODS

2.1 Production of doubled haploid lines

Doubled haploid lines (171) of Robigus × Claire were pro-
duced using a modified Knox et al. (2000) method. Wheat
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spikes were emasculated between growth stages GS55 and
GS59. Once the stigma was receptive it was fertilized with
freshly shed donor maize pollen. After 1 day, wheat flo-
rets were treated with Dicamba (20mgL−1) (Sigma-Aldrich,
D5417) and injected into the plant stem (100 mg L−1). Devel-
oping embryos were excised between 14 and 21 days. Under
aseptic conditions, seeds were removed from the spikelets,
surface sterilized with 70% (v/v) ethanol (EtOH) for 1 min,
rinsed with sterile distilled water, and immersed in 20% (v/v)
commercial bleach solution with a few drops of Tween 20 for
20 min. They were then rinsed with sterile distilled water three
times.

Haploid embryos were excised and grown on 90 mm Petri
dishes in the dark on Gamborg’s B5 media with minimal
organics (Gamborg et al., 1968), 2% (w/v) sucrose, pH 5.8,
9 g L−1 Difco bactoagar at 20˚C. When showing signs of
germination, embryos were transferred to a light incubator at
20˚C. Any nongerminated 1-month-old embryos were given
cold shock treatment at 4˚C for 7 days to promote germina-
tion. Germinated plantlets were vernalized for 4 weeks and
were grown in the glasshouse until the 4-tiller stage. Plants
were then given colchicine (C9754; Sigma-Aldrich) treat-
ment for 5–6 h in the light at room temperature, washed and
transplanted to soil, acclimatized, and grown in a glasshouse.
The mapping population was genotyped by Limagrain using
a proprietary single-nucleotide polymorphism (SNP) array.
The genetic map comprising 872 loci was constructed using
MSTMap Online (http://mstmap.org/).

The mapping population was grown in field trials at the
John Innes Centre Morley Mill Hill field site (52˚33′15.1″N
1˚01′59.2″E) in 2017–2018 (abbreviated as H18) and at
the Church Farm field site (52˚38′N 1˚10′E) in 2018–2019
(abbreviated as H19). All 171 Doubled Haploid lines of the
mapping population were grown in each trial. Within each
trial, one replicate of each line was drilled in 6 m2 plots
in a completely randomized design. The H18 field trial was
drilled on September 21, 2017 and harvested on August 1,
2018. The H19 field trial was drilled on the September 14,
2018 and harvested on the August 12, 2019. Growth habit,
heading date, plant height, and yield traits were scored in the
field.

DoubleTop fertilizer (27N 30SO3) was applied at a rate of
150 kg/ha on the March 20, 2018 for H18 and the February 23,
2019 for H19. In both trials, slug control pellets were applied
at a rate of 7 kg/ha after drilling to control slug pests (Gusto
(metaldehyde) pellets on September 27, 2017 for H18 and
Sluxx (Ferric phosphate) pellets on September 24, 2018 for
H19). Herbicide mixtures were applied in autumn (November
21, 2017 for H18 and September 24, 2018 for H19) and spring
(May 23, 2018 for H18 and March 19, 2019 for H19) for both
trials to control weeds.

2.2 Phenotyping

Grain diameter, kernel hardness index (KHI), and grain
weight measurements were recorded for 300 kernels from
each line in the population using a Perten Single Kernel
Classification System (SKCS) 4100 (Calibre Control Inter-
national Ltd.). Grain length (mm), width (mm), and area
(mm2) measurements were recorded in triplicate for each
sample using a MARVIN Seed Analyser and software Mar-
vin 4.0 (MARViTECH GmbH). Grain samples were milled
to wholemeal flour in a coffee grinder and flour moisture
content was recorded using a Minispec nuclear magnetic
resonance (NMR) analyzer (Minispec Mq10, Bruker Inc.).
Hagberg falling number measurements were recorded using
an FN 1000 as the average of two technical replicates (Perten),
adjusting for flour moisture content as required according
to manufacturer’s instructions. Amino acid analysis was per-
formed on wholemeal flour samples by HPLC as described
previously (Raffan et al., 2021) by Curtis Analytics. Briefly,
free amino acids were extracted from 0.5 g of wholemeal
flour and underwent precolumn derivatization (Curtis et al.,
2018). Samples were then run on an HPLC system iden-
tically to previously described (Raffan et al., 2021). Three
technical replicates were taken for each sample for amino acid
measurement.

2.3 Phenotypic data analysis

Skewness and kurtosis were measured for all variables in
each environment and normal plots visually inspected in
Genstat (VSN International, 2021) to determine if variables
required transformation. The data were appropriately trans-
formed according to their distribution if necessary (see Tables
S1 and S2 for details of transformations). Subsequent analy-
ses were performed on transformed variables unless otherwise
stated. Plotting was performed in R (R Core Team, 2021) with
the packages ggplot2 (Wickham, 2016), tidyverse (Wickham
et al., 2019), and cowplot (Wilke, 2020).

Broad-sense heritability for each trait was estimated as
described in Covarrubias-Pazaran (2019) using the packages
dplyr (Wickham et al., 2022) and lme4 (Bates et al., 2015).
Kendall rank correlation coefficients were performed on
nontransformed data and adjusted p-values (Bonferroni cor-
rection) were calculated for plotting using R (R Core Team,
2021) and the package corrplot (Wei & Simko, 2021). Prin-
cipal component analysis was performed on untransformed,
scaled variables using the package factoextra (Kassambara
& Mundt, 2020). Correlation network analysis was per-
formed and plotted by filtering for significant correlations
where p < 0.001 using Kendall correlation with Bonferroni

 19403372, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20335 by U

niversity of R
eading, W

iley O
nline L

ibrary on [15/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://mstmap.org/


4 of 14 ODDY ET AL.The Plant Genome

correction using the packages corrr (Kuhn et al., 2020), igraph
(Csardi & Nepusz, 2006), and ggraph (Pedersen, 2021).

Bayesian modeling was performed on untransformed vari-
ables in R using the package rstanarm (Goodrich et al., 2020).
Variables were scaled before modeling and individual linear
models for each predictor variable were created to guide the
selection of informative priors. Simulations of the posterior
distribution were subsequently performed to check model fit
and intervals were plotted using the package bayesplot (Gabry
& Mahr, 2022). R2 estimates were obtained by taking the
median of leave-one-out cross validation adjusted estimates.

2.4 Linkage analysis

Single-environment linkage analysis was performed in R
using packages qtl (Broman et al., 2003) and qtl2 (Broman
et al., 2019). Single-environment linkage analysis was made
into an interactive app using the packages shiny (Chang et al.,
2021), plyr (Wickham, 2011), and rsconnect (Atkins et al.,
2021) (accessible at https://t9onwp-wheatworker.shinyapps.
io/QTL_Browser/ and in Supporting Information 1). As
before, simple interval mapping (SIM) was performed first
to identify covariates for use in composite interval mapping
(CIM). Identified QTL from CIM were then used to create sin-
gle QTL models as well as additive QTL models. Upper and
lower 95% confidence intervals for QTL location were calcu-
lated using the Bayesian credible interval method in R/qtl and
expanded to the closest markers. Pseudomarkers were gener-
ated every 2 cM in the map and the minimum marker covariate
proximity was set at 20 cM. A logarithm of the odds (LOD)
score of 3 was used as the significance threshold.

Multi-environment single trait linkage analysis was per-
formed in Genstat for each trait to detect QTL present in
both environments, following selection of the most appro-
priate variance–covariance model according to the Bayesian
information criterion. SIM was initially performed to identify
putative QTL. These QTLs were then used as covariates in
CIM. QTL identified from CIM was then used to construct
the final QTL models. Pseudomarkers were generated every
2 cM in the map. The minimum cofactor proximity was set at
30 cM, and the minimum separation for selected QTL was set
at 20 cM. Significance thresholds were determined by the Li
and Ji’s (2005) method with a genome-wide significance level
of 0.05.

2.5 Genomic prediction

GP was performed for each trait via fivefold cross valida-
tion with 10,000 permutations using the R package rrBLUP
(Endelman, 2011). The “mixed.solve” function within this
package was used to estimate marker effects for each trait,
with the identity matrix being left unspecified. Pearson cor-

relation coefficients were calculated for the results from the
training and testing datasets to estimate GP accuracy. For
within year prediction estimates, training and testing datasets
came from the same trial. For between year prediction esti-
mates, training and testing datasets were from different trials.
Further detail is available as R markdown in Supporting Infor-
mation 2. Scripts were submitted to the high-performance
computing cluster at Rothamsted Research via SLURM for
execution.

2.6 Candidate gene analysis

The gene content of the lysine QTL was determined for all
wheat pangenome varieties at chromosome scale assembly by
identifying the location of the markers in these varieties and
extracting genes from Ensembl Biomart (Howe et al., 2021).
Genes residing within the region in variety Chinese Spring
v1.0 were submitted to KnetMiner (https://knetminer.com/
Triticum_aestivum/) (Hassani-Pak et al., 2021) for ranking
on relevant keywords (“Lysine,” “Storage proteins”). Expres-
sion of the top hits was then investigated in expVIP (Borrill
et al., 2016) to further narrow down plausible candidate genes.
Transcript per million (TPM) data for the Azhurnaya develop-
mental time-course experiment were extracted from expVIP
for plotting in R using the package pheatmap (Kolde, 2019).
Corresponding Claire and Robigus genes were then identified
from these Chinese Spring candidate genes in Ensembl and
pairwise aligned via BLAST using Geneious Prime 2020.1.2
to identify variation.

3 RESULTS

3.1 Phenotypic analysis

We measured free amino acid concentrations and other traits
of interest in the Robigus × Claire mapping population from
field trials grown in 2017–2018 (H18) and 2018–2019 (H19)
(Figure 1; Figure S1). Aspartic acid, asparagine, and glutamic
acid were the most abundant of the free amino acids measured,
with concentrations of free amino acids consistently higher in
H19 than in H18 (Figure 1a). Principal component analysis
(PCA) revealed harvest year to be a key driver of variation
in this dataset (Figure 1b) and, notably, the second harvest
year (H19) also showed lower yield alongside the increased
free amino acid content of the grain (Figure 1b). PCA and
correlation network analysis revealed that most of the other
traits measured here were uncorrelated with the amino acids
(Figure 1b,c; Figures S2 andS3), except for grain yield which
showed negative correlations with a subset of amino acids
(Figure 1b,c; Figure 2a).

To understand whether any of the traits we measured could
predict free asparagine or lysine content in the grain, we
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F I G U R E 1 Characterization of the Robigus × Claire mapping population. (a) Measurements of amino acids in the 2017–2018 (H18) and

2018–2019 (H19) harvest years. (b) Principal component analysis of all traits in both years along the first two principal components. (c) Correlation

network analysis of all traits across both years (GH omitted, Kendall correlation, only links with significance <0.001 shown). GH (growth habit), GY

(grain yield), Hd (heading date), HFN (Hagberg Falling Number), KHI (kernel hardness index), KW (kernel weight), PH (plant height).

F I G U R E 2 Relationships between free asparagine/lysine and other agronomic measurements. (a) Linear modeling of free asparagine content

against grain yield. The gray shaded ribbon shows 95% prediction intervals sampled from the posterior distribution. (b and c) Parameter values from

multiple linear modeling of asparagine (b) and lysine (c) as explained by other traits measured in this population. HFN, Hagberg falling number;

KHI, kernel hardness index.
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T A B L E 1 Multi-environment quantitative trait locus (QTL) for measured amino acids.

Trait

Multi-environment single trait linkage analysis (H18 and H19)
Marker Chr. cM Mbp −log10(p) H18 (%) H19 (%) High val.

Ala WC.0223839 7B 211.2 719 5.03 7.1 5.7 Robigus

Asn WC.0221262 4B 114.47 601 5.96 2.6 14.8 Robigus

Asp WC.0218489 1B 54.4 530 5.4 8 5.9 Claire

WC.0214359 3A2 2.3 738 7.95 7.3 15.3 Robigus

WC.0221037 4A 148.8 703 8.08 12.6 9.3 Claire

WC.0227146 4D 48.8 16 3.7 5.5 4.1 Claire

Gln WC.0221302 4B 103.7 547 3.5 5.4 4.5 Robigus

WC.0228471 6B 19.7 25 5.09 8.2 6.7 Claire

Glu WC.0221329 4B 100.8 518 4.27 3.7 10.1 Robigus

Gly WC.0226796 4B 155.2 327 4.26 3.2 5.3 Robigus

Iso WC.0223785 7B 211.2 717 3.6 6.8 3.7 Robigus

Lys WC.0218011 1A2 27.3 593 4.95 12.1 2.6 Claire

Phe WC.0220622 3B1 78.1 116 3.83 6.2 5.6 Robigus

Abbreviations: Chr., chromosome; cM, centimorgan; H18/H19 (%), percentage of variation explained by QTL in respective year; High val., parental line carrying the

allele responsible for the higher value; Mbp, megabase pair location in Chinese Spring v1.0.

constructed Bayesian linear models with the traits and harvest
year as explanatory variables (Figure 2b,c). In both the free
asparagine (Figure 2b) and lysine (Figure 2c) models, envi-
ronment had the greatest effect, whereas other variables had
little explanatory power. Nevertheless, the variance explained
in the models was still reasonable for asparagine at 56.5%, but
only 22.2% for lysine.

3.2 QTL analysis

Broad-sense heritability estimates varied substantially
between the different amino acids, with free asparagine
and lysine showing heritability estimates of 0.60 and 0.45,
respectively (Table S1). Aspartic acid showed the highest
heritability of the amino acids measured here, with an
estimate of 0.82. Heritability estimates for the size traits were
generally very high, as expected, and correlation of these
values between years was also stronger than the correlation
of amino acids between years (Table S1).

We identified QTL for grain free asparagine content and
lysine content on chromosomes 4B and 1A, respectively
(Figure 3a,b; Table 1), which had significant effects across
both environments but were also affected by QTL by envi-
ronment effects (Figure 3c; Figure 3d; Table 1; Table S2).
The asparagine QTL on 4B explained 2.6% of the variance in
H18, when free asparagine concentrations were lower overall,
whereas it explained 14.8% of the variance in H19, when free
asparagine concentrations were elevated (Table 1). In both
years, the Robigus allele was associated with the higher free
asparagine concentrations. In contrast, the lysine QTL on 1A
explained 12.1% of the variance in H18, when free lysine was

lower overall, and only 2.6% of the variance in H19, when
free lysine concentrations were elevated. The Claire allele was
associated with higher free lysine concentrations in both years
in this case. Multi-environment linkage analysis of amino acid
and grain measurements revealed many QTL controlling the
other amino acids and traits as well (Table 1; Tables S2 and
S3).

The QTL controlling asparagine on chromosome 4B
appeared to overlap with QTL for glutamine, glutamic acid,
and glycine (Table 1). Each of these QTL had a greater effect
in H18 than in H19 and the Robigus allele was associated with
the higher value in each case as well, suggesting that these
QTL are caused by the same variant. These QTL were also
located near to a QTL for KHI and more distantly to QTL for
grain diameter, plant height, and grain weight (Table 2, Figure
S4), which are likely caused by the Rht-B1 polymorphism.
QTL for aspartic acid also appeared to overlap with QTL for
other traits (Table 2). For aspartic acid on 4A and 4D, there
are co-locating HFN QTL, suggesting that these two traits are
under the control of the same locus (Figure S5). The location
of the QTL on 4D matches the Rht-D1 polymorphism between
Claire and Robigus found at 18.78 Mbp in Chinese Spring. Of
all the amino acids measured in this study, we identified the
most QTL controlling aspartic acid (Table 1). Other potential
sources of variation underpinning the QTL in this study are
presented in Table S4.

3.3 Genomic prediction

Following our modeling of asparagine and lysine using agro-
nomic measurements and QTL models, we calculated the
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ODDY ET AL. 7 of 14The Plant Genome

F I G U R E 3 Identification of quantitative trait locus (QTL) controlling free asparagine and free lysine. (a) Multi-environment genome scan plot

for asparagine. (b) Multi-environment genome scan plot for lysine. (c) Impact of the asparagine QTL on free asparagine concentrations in both field

trials. (d) Impact of the lysine QTL on free lysine concentrations in both field trials. Error bars show plus and minus two times standard error of the

mean. Significance values are taken from the corresponding years of the multi-environment linkage analysis.

T A B L E 2 Multi-environment quantitative trait locus (QTL) impacting both amino acids and other traits on chromosomes 4A, 4B, and 4D.

Chr.

Multi-environment single trait linkage analysis (H18 and H19)
Trait Marker cM Mbp −log10(p) H18 (%) H19 (%) High val.

4A Asp WC.0221037 148.8 703 8.08 12.6 9.3 Claire

KHI WC.0221037 148.8 703 8.26 14.8 14.7 Robigus

HFN WC.0188904 147.1 733 8.24 11.5 10.3 Robigus

Area WC.0220938 149.7 709 2.22 3 3.2 Claire

Length WC.0221119 149.7 702 7.12 1.8 6.5 Claire

4B Asn WC.0221262 114.47 601 5.96 2.6 14.8 Robigus

KHI WC.0226741 110.8 594 4.30 4.2 8.6 Robigus

Diam WC.0226868 82.5 32 18.53 17.7 18.7 Claire

Height WC.0226868 82.5 32 17.98 19.8 20.7 Claire

Weight WC.0226868 82.5 32 9.25 12.2 14.1 Claire

4D Asp WC.0227146 48.8 16 3.7 5.5 4.1 Claire

Width WC.0227146 48.8 16 5.98 8 8.9 Robigus

Diam WC.0227146 48.8 16 7.84 7.6 8.1 Robigus

HFN WC.0227149 56.9 17 10.92 23.5 5.6 Robigus

Height WC.0213051 56.9 17 28.97 27.8 38.9 Robigus

Abbreviations: Chr., chromosome; cM, centimorgan; H18/H19 (%), percentage of variation explained by QTL in respective year; High val., parental line carrying the

allele responsible for the higher value; HFN, Hagberg falling number; KHI, kernel hardness index; Mbp, megabase pair location in Chinese Spring v1.0.
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8 of 14 ODDY ET AL.The Plant Genome

F I G U R E 4 Variation explained by heritability, genomic prediction, and quantitative trait locus (QTL). (a) Genomic prediction accuracy

between years. (b) Additive QTL effects and genomic prediction (rrBLUP) accuracy (yellow and red marks, respectively) plotted alongside

broad-sense heritability (shown as bars). Bars are shaded according to the trait group that they belong to (amino acid, size, or other). HFN, Hagberg

falling number; KHI, kernel hardness index.

accuracy of GP for within and between year prediction of
traits (Figure 4a; Figure S6; Table S1). Prediction accuracy
was more consistent when performed across years rather than
within years (Figure S6), so these were used for further inter-
pretation. Prediction accuracy for lysine was the lowest of
all traits at a mean accuracy of 0.10, whereas accuracy for
asparagine was around 0.34. Of all amino acids, aspartic acid
had the greatest prediction accuracy results. Prediction accu-
racies for the other functional traits were generally higher than
the accuracies for amino acids, as expected from the higher
heritability of these traits. Comparing the amount of varia-
tion explained by GP methods and additive QTL models, we
can see that the GP models explain more variance than the
additive QTL models for all traits (Figure 4b).

3.4 Lysine QTL candidate gene analysis

The gene content and QTL size of the lysine QTL on 1A, the
HFN/aspartic acid/KHI QTL on 4A, and the asparagine QTL
on 4B differed substantially (Table S5). Due to the size of the
4A and 4B QTL, we were unable to plausibly narrow down
candidate genes, whereas the lysine QTL on 1A was much
smaller so amenable to further analysis. We investigated the
gene content of the lysine QTL for all genomes assembled
to chromosome scale in the wheat pangenome and gene con-
tent varied to a small extent between the different varieties
(Table S6). Most notably, the QTL did not match any loca-
tions in variety Julius and matched to an unanchored scaffold
in Stanley.
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ODDY ET AL. 9 of 14The Plant Genome

F I G U R E 5 Analysis of the TaHDT-A1 candidate gene for lysine quantitative trait locus (QTL) between parents Claire and Robigus. (a)

Pairwise alignment of the two genes. (b) Percentage identity calculated as a sliding window average of 100 bp. (c) Expression of the four transcripts

throughout development in variety Azhurnaya. TPM, transcript per million.

KnetMiner analysis of the genes residing in Chinese
Spring in the lysine QTL was undertaken with rele-
vant keywords to highlight possible candidate genes, and
these genes were subsequently investigated for their expres-
sion patterns from expVIP. Pairwise analysis of the top
KnetMiner hits in the lysine QTL showed that the top
hit (TRAESCS1A02G445700) differed between Claire and
Robigus. TRAESCS1A02G445700, or TaHDT-A1, has been
identified as a member of the histone deacetylase family in
wheat. A deletion within the coding sequence of the gene in
Robigus means that the most highly expressed transcript can-
not be expressed (Figure 5) and the two missing exons from
this most highly expressed transcript form a zinc finger/C2H2
DNA binding domain, which is important for transcriptional
regulation.

4 DISCUSSION

4.1 Limited variation in Claire and
Robigus for asparagine and lysine improvement

Soft wheat breeding in the UK has relied heavily upon Claire
and Robigus as parents since their development in 1999 and

2005, respectively. A recent study found that UK winter
wheats developed between 2002 and 2017 could be clustered
into four distinct populations, and two of these populations
were characterized by their Claire or Robigus heritage (Shori-
nola et al., 2022). The varieties within these population groups
characterized by Claire and Robigus heritage are also almost
entirely soft wheat varieties, further emphasizing the impor-
tance of these two varieties in UK soft wheat breeding.
This large contribution of Claire and Robigus as parents to
soft wheat breeding means that opportunities for nutritional
improvement have often been limited to variation between
these two parents.

Our analysis found that there is variation between Claire
and Robigus and that this does impact asparagine and lysine
content to a small extent. Asparagine had a moderate heri-
tability (0.60) across both field trials in the study, whereas
the heritability for lysine was lower (0.45). One QTL was
found for asparagine and lysine each, both explaining less
than 10% of the variance on average. The asparagine QTL
identified here (peak at 601.4 Mbp in Chinese Spring) lies
around 60 Mbp from another QTL (peak at 660.7 Mbp in Chi-
nese Spring) identified by Peng et al. (2018), suggesting that
these may coincide, whereas the lysine QTL does not over-
lap with previously identified QTL. Genomic selection had

 19403372, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20335 by U

niversity of R
eading, W

iley O
nline L

ibrary on [15/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 14 ODDY ET AL.The Plant Genome

a predictive ability of 0.34 on average for asparagine, indicat-
ing that this method may be better suited for breeding because
of the genetic architecture of this trait (many small-effect
QTL). Rapp et al. (2018) also found that genomic selection
(GS) had a predictive ability of around 0.5 on average for
asparagine, the higher estimate in this study likely due to
within environment prediction and analysis of a more diverse
mapping population. GS only achieved a predictive ability of
0.10 for lysine, indicating that only incremental advances in
lysine content are possible using Claire and Robigus. Previous
GWAS studies using more diverse panels have found more,
larger effect QTL controlling asparagine and lysine content
(Peng et al., 2018; Rapp et al., 2018), indicating that there
may be beneficial alleles in more diverse germplasm. Con-
sequently, UK soft wheat germplasm will require diversity
beyond Claire and Robigus to make changes to asparagine and
lysine content beyond the incremental improvements found
here.

4.2 Trade-offs between amino acid content
and other traits

Another aspect we wanted to investigate in this population was
whether there were any relationships between amino acids and
other traits. Amino acids tended to correlate positively with
one another and were mostly unrelated to the other measured
traits, with the exception of grain yield and kernel hardness
index. A negative correlation between grain yield and free
asparagine has previously been documented (Xie et al., 2021),
but in other experiments the association has been positive
(Malunga et al., 2021; Xie et al., 2021). In our analysis, this
association mostly arose because of the effect of environment
on both yield and asparagine. Environmental stress can lead
to decreases in yield while increasing free asparagine, while
other variables (e.g., nitrogen fertilizer) can lead to increases
in both yield and free asparagine (see Oddy et al. (2022) for
review). Our modeling of asparagine through these variables
mostly indicated environment as the driving force in our study,
but there was still a slight negative association with yield and
plant height as well as a slight positive association with kernel
hardness. Kernel hardness, like grain free asparagine content,
is known to increase with nitrogen application, which may
underly this small association with asparagine.

A strong environmental effect on free asparagine con-
centration has been observed in response to many different
stressors (see Oddy et al., 2020 for review) and it is under
stressful conditions that the highest asparagine levels are often
observed. These increases in grain asparagine concentra-
tion vary massively, causing unexpected blips in acrylamide
content in food products. These environmentally induced
increases pose the greatest threat to food safety and regulatory
compliance, so elimination of this environmental response

would be of great interest. A weak environmental effect was
seen in this study: during the 2018–2019 season, the aver-
age amino acid concentrations rose while the yields dropped.
Interestingly, the asparagine QTL we identified here had
greater effect in this season, enabling reductions of 15.68%
in free asparagine concentrations in those lines possessing
the Claire allele over those possessing the Robigus allele.
This suggests that this QTL may be more effective under
more stressful conditions, so selection of the Claire allele
at this locus may prove beneficial for reducing the large
free asparagine increases observed following environmen-
tal stress. This is in contrast to the effect of the TaASN-B2
deletion, which has a greater effect when grain asparagine
concentrations are lower (Oddy et al., 2021), when plants
are not suffering from sulfur deficiency. Future work would
therefore benefit from identification of similar QTL that are
associated with lowering asparagine content from the high
levels seen during stress. This would enable the stacking of
alleles that are beneficial under both stress and non-stress
conditions to ensure that free asparagine concentrations are
minimized in all environments.

We also wanted to understand whether any QTL controlling
amino acid content had pleiotropic effects on other traits. The
asparagine QTL we identified on chromosome 4B appeared
to overlap with QTL for plant height in the first year, sug-
gesting that there might be an impact of the Rht-B1b allele
on asparagine. The Rht genes are dwarfing genes used dur-
ing the green revolution that have many impacts on crop traits
beyond height (Casebow et al., 2016) and Claire and Robigus
both possess different Rht genes on 4B and 4D (Wilkinson
et al., 2020). However, this QTL overlap was not present in
the second year of analysis when the asparagine QTL had a
greater effect, suggesting that the QTL controlling height and
asparagine may be distinct. However, a more detailed analysis
is required to comprehensively assess the impact of Rht-B1
alleles (and dwarfing genes in general) on grain asparagine
content. The QTL controlling asparagine did overlap consis-
tently with a QTL for KHI though, with the “increasing allele”
belonging to Robigus for both traits. Kernel hardness and free
asparagine content are both known to correlate under certain
conditions with nitrogen content (Oddy et al., 2022), so this
QTL may be linked to nitrogen use efficiency/uptake. The
KHI QTL on 4B also exhibited a similar genotype by envi-
ronment effect pattern to the asparagine QTL, with a greater
effect of the QTL observed in the second trial year. Selection
for the Claire allele at this QTL would therefore be suitable in
the context of soft wheat breeding, where both softer textures
and lower asparagine content are desirable.

Interestingly, we found much more genetic control of free
aspartic acid concentration in this population compared to the
other amino acids. Heritability was high (>0.8), GP accu-
racy was moderate (>0.5, same as grain weight), and there
were four multi-environment QTL controlling the trait. Two of
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the QTL controlling aspartic acid also overlapped with QTL
controlling HFN. One of these QTL was situated on 4D and
overlapped with traits for plant height and grain size as well,
indicating that this may be due to Rht-D1 allele status, which
is known to impact HFN as well as plant height (Fradgley
et al., 2022). The second QTL controlling both aspartic acid
and HFN was situated on 4A and also overlapped with traits
for grain size and KHI. Previous work has identified a major
QTL underlying pre-harvesting sprout (PHS) variation on 4A,
but both Claire and Robigus share the same MKK3-A allele
which underlies this QTL (Shorinola et al., 2017). Li, Zhang
et al. (2021) also identified a PHS QTL in a similar region on
4A but this does not overlap with the region identified here.
One possible source of variation underlying the QTL control-
ling aspartic acid and HFN on 4A is the Triticum dicoccoides
introgression in Robigus, which matches the region this QTL
is found in (Przewieslik-Allen et al., 2021). The antagonistic
relationship between HFN and asparagine at this QTL could
be a result of increased HFN reducing proteolysis, and thereby
preventing accumulation of free amino acids.

4.3 Lysine candidate genes

Scaffold-level genome assemblies of Claire and Robigus
(Walkowiak et al., 2020) enabled us to investigate the lysine
QTL in greater depth, identifying the candidate gene TaHDT-
A1, encoding a histone deacetylase. The wheat histone
deacetylase family is very large, encompassing approximately
50 genes (Jin et al., 2021; Li et al., 2022). Histone deacetylases
function mainly to inhibit gene expression because histone
deacetylation causes chromatin condensation, with roles in
many different developmental processes and environmental
responses. In wheat, it is known that differences in grain lysine
content can be caused by differential expression of lysine-
poor storage proteins (prolamins). Gill-Humanes et al. (2014),
for example, identified downregulation of gliadins (a class
of prolamins) as a method of increasing lysine content in
wheat, and Moehs et al. (2019) showed that mutation of wheat
prolamin binding factor (WPBF), a DNA-binding with one
finger (DOF)-class transcription factor, increased lysine con-
centration. Lower prolamin protein content is also associated
with increased lysine content in barley (Hordeum vulgare L.)
(Rustgi et al., 2019). However, the prolamins confer the vis-
coelastic properties of wheat dough that are required for the
manufacture of many products, including bread, so this must
also be considered when trying to breed for higher lysine
content.

In maize, grain lysine content is similarly affected by
the abundance of lysine-poor proteins in the prolamin fam-
ily called zeins. The expression of particular zein genes is
determined by a bZIP transcription factor called Opaque2
(Gavazzi et al., 2007), and the mutant line lacking a func-
tional Opaque2 gene is characterized by higher kernel lysine

content (Mertz et al., 1964). Interestingly, the lysine QTL
identified in this study is situated upstream of an Opaque2
orthologue on chromosome 1A: TraesCS1A02G329900, oth-
erwise known as storage protein activator (SPA), which is
known to activate storage protein synthesis in wheat (Albani
et al., 1997). The A genome homologue of SPA does not dif-
fer in sequence between Claire and Robigus, but differential
expression of SPA (through differences in TaHDT-A1 regula-
tion) is a possible mechanism by which this QTL could affect
lysine content.

Future work investigating TaHDT-A1, SPA, and other reg-
ulatory genes of storage proteins in wheat would help to
elucidate their effects on grain lysine content and would be
useful for expanding the germplasm available to increase
lysine content, given the limited QTL and small effect of
GS we found. Chromosome-level assemblies of Claire and
Robigus would also enable further analysis of this mapping
population in the future. Combining both increased diversity
and pangenomes, sequencing of the Watkins collection, and
construction of genome assemblies will enable novel diversity
to be identified that can be introgressed into elite soft wheat
germplasm as well (Shewry et al., 2022).

5 CONCLUSIONS

The nutritional quality of the UK soft wheat can be improved
incrementally using diversity from Claire and Robigus, but
greater diversity is required to make larger gains. The genetic
architecture of different amino acids differs considerably, and
they are often controlled by QTL that impact other traits as
well. Future soft wheat breeding in the UK should therefore
consider use of more genetic diversity and using pleiotropic
QTL to the benefit of farmers and consumers.
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