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Abstract
How to best track species as they rapidly alter their distributions in response to cli-
mate change has become a key scientific priority. Information on species distributions 
is derived from biological records, which tend to be primarily sourced from traditional 
recording schemes, but increasingly also by citizen science initiatives and social media 
platforms, with biological recording having become more accessible to the general 
public. To date, however, our understanding of the respective potential of social media 
and citizen science to complement the information gathered by traditional recording 
schemes remains limited, particularly when it comes to tracking species on the move 
with climate change. To address this gap, we investigated how species occurrence 
observations vary between different sources and to what extent traditional, citizen 
science, and social media records are complementary, using the Banded Demoiselle 
(Calopteryx splendens) in Britain as a case study. Banded Demoiselle occurrences were 
extracted from citizen science initiatives (iRecord and iNaturalist) and social media 
platforms (Facebook, Flickr, and Twitter), and compared with traditional records pri-
marily sourced from the British Dragonfly Society. Our results showed that species 
presence maps differ between record types, with 61% of the citizen science, 58% of 
the traditional, and 49% of the social media observations being unique to that data 
type. Banded Demoiselle habitat suitability maps differed most according to tradi-
tional and social media projections, with traditional and citizen science being the most 
consistent. We conclude that (i) social media records provide insights into the Banded 
Demoiselle distribution and habitat preference that are different from, and comple-
mentary to, the insights gathered from traditional recording schemes and citizen sci-
ence initiatives; (ii) predicted habitat suitability maps that ignore information from 
social media records can substantially underestimate (by over 3500 km2 in the case of 
the Banded Demoiselle) potential suitable habitat availability.
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biodiversity monitoring, citizen science, climate change, range shifts, species' redistribution, 
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1  |  INTRODUC TION

One of the swiftest consequences of climate change is the global 
redistribution of species on Earth (Pecl et al.,  2017; Scheffers 
et al.,  2016). Changes in the distribution of these species on the 
move are anticipated to have wide-reaching consequences for eco-
systems and humans (Twiname et al., 2020; Wallingford et al., 2020). 
Consequently, how to best track these species as they rapidly 
alter their distributions has become a key scientific priority (Pecl 
et al., 2017). Information on species distributions is derived from bi-
ological records, which are defined as logs of species at a particular 
place at a certain time (Isaac & Pocock, 2015). Biological recording 
takes various forms and involves different contributors, methods, 
and information content. For a small number of taxa—namely those 
that are the most charismatic—structured monitoring schemes exist 
to provide systematic and focussed recording (Isaac et al.,  2014). 
These include, for example for birds, the Breeding Birds Survey 
(Field & Gregory,  1999) and the Seabird Monitoring Programme 
(Walsh et al.,  1995) in the UK, and the North American Breeding 
Bird Survey (Sauer et al., 1997). Such monitoring schemes are cost-
intensive, requiring dedicated participants, typically involve stan-
dardized protocols (Isaac et al., 2014; Pocock et al., 2015) and tend 
to be biased toward more developed countries (Moussy et al., 2021). 
Most biological recording fits within opportunistic, unstructured 
recording schemes. These are generally coordinated by individual 
specialist recording schemes or societies that collate records with a 
particular taxonomic focus (Pocock et al., 2015).

With technological advancements making it easier to submit 
records, biological recording has become more accessible to the 
general public (Pocock et al., 2015). Several citizen science applica-
tions, such as iNaturalist, enable individuals to submit records that 
can be identified through the applications' community of scientists 
and naturalists (Nugent, 2018). Social media moreover offer a novel 
source of information for answering ecological questions about bio-
diversity, species distributions, and the impacts of climate change. 
Social media websites and applications allow users to post content 
of any kind, offering vast amounts of untapped, freely available in-
formation when this content is relevant to the ecological questions 
being investigated (see e.g., Allain, 2019; Barve, 2014; Daume, 2016; 
ElQadi et al., 2017; Pace et al., 2019). Yet, to date, our understand-
ing of the potential of social media to complement existing sources 
of biological data for monitoring species distributions and habitat 
suitability availability remains limited, particularly when it comes to 
tracking species on the move with climate change (but see Pettorelli 
et al., 2019). In particular, information is lacking as to how species 

occurrence observations differ between different sources and to 
what extent different types of biological records are complementary.

To address this gap, this study makes use of available species 
occurrence data for the Banded Demoiselle (Calopteryx splendens) 
in Britain to assess the level of complementarity and divergence be-
tween distribution and habitat suitability maps derived from tradi-
tional recording schemes, citizen science initiatives, and social media 
information.

The Banded Demoiselle is a highly recognizable damselfly that 
is currently shifting its distribution in the UK due to climate change 
(Brooks et al., 2007; Cham et al., 2014; Mill et al., 2010; Pettorelli 
et al., 2019). It is a member of Odonata (dragonflies and damsel-
flies), and as such has a hemimetabolous life cycle consisting of 
egg, nymph, and adult stages (Stoks & Córdoba-Aguilar, 2012). The 
nymphs are aquatic with eggs laid in aquatic plant tissue or in water, 
before metamorphosing into the terrestrial, flying adult stage, there-
fore requiring both healthy aquatic and resource-rich terrestrial hab-
itats (Nagy et al., 2019). It is one of a few British riverine Odonates, 
requiring an adequate unidirectional flow for larval respiration, 
therefore restricted primarily to slow-flowing streams and rivers in 
lowland areas of southern Britain, although shifting further north-
ward in recent years (Ward & Mill, 2005).

Britain makes for an excellent case study due to the vast 
availability of species distribution data for the UK, being argu-
ably the most intensively recorded country on earth (Powney & 
Isaac,  2015), with the second greatest number of species occur-
rence records worldwide, behind the United States but with ap-
proximately eight times the record density (https://www.gbif.org/
the-gbif-network, accessed April 2021). Odonata are a charismatic 
taxon, with a high engagement in recording both from volunteers 
within the UK's specialized recording scheme run by the British 
Dragonfly Society, as well as appealing to citizen–scientists more 
generally. The Banded Demoiselle, in particular, has a unique ap-
pearance and ease of species identification, being only one of two 
species of Demoiselle in the country with colored wings (Svensson 
et al., 2004), making it an ideal candidate for investigation into the 
use of social media and citizen science occurrence records. Based 
on previous work (Callaghan et al., 2018; Dickinson et al.,  2010; 
ElQadi et al., 2017; Noviello et al., 2021), we expect (H1) habitat 
suitability maps derived from social media records and citizen sci-
ence initiatives to significantly differ from habitat suitability maps 
derived from traditional records and (H2) occurrences derived from 
social media platforms and citizen science initiatives to be more 
common in urban settings compared with traditional biological 
recording.

T A X O N O M Y  C L A S S I F I C A T I O N
Biogeography
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2  |  METHODOLOGY

2.1  |  Species occurrence data

Species occurrence records for the Banded Demoiselle were 
downloaded from both the Global Biodiversity Information 
Facility (GBIF.org, 2021) and the National Biodiversity Network 
(NBN) Atlas (British Dragonfly Society Recording Scheme, 2021; 
National Biodiversity Network Trust,  2021). Records were se-
lected from 2010 onwards for comparison with social media 
datasets. Biological records from the British Dragonfly Society 
(BDS) Recording Scheme (excluding records from iRecord), Local 
Environmental Record Centres (LERC) as well as various national 
and international trusts and organizations were labeled as “tradi-
tional.” Records from both the iRecord and iNaturalist platforms 
were labeled as “citizen science.”

Records were collected from social media platforms (Facebook, 
Twitter, and Flickr) using the search terms “Banded Demoiselle” and 
“Calopteryx splendens.” For Twitter and Facebook, this involved a 
manual search (completed between 13/01/2022 and 04/04/2022, 
for approximately 1.5 h a day), with biological records consisting of 
an identifiable photograph or video. These records included either 
a tagged location or a mention of location within the content of 
the post, as well as a date for the observation if provided (oth-
erwise the date the content was shared). Latitude and longitude 
information is generally preferable, allowing for precise placement 
of species occurrences. However, this information was not avail-
able for Twitter or Facebook records. Around 23% of the records 
found included a tagged location label; however, this was typically 
a city or town level. As such, records from Twitter and Facebook 
were manually checked and georeferenced by determining all the 
1-km British National Grid squares that covered the spatial extent 
of the location description provided by the user. Although more 
imprecise than tagged geolocations, this ensured that the location 
information included was where the observation occurred (as op-
posed to where the photograph was uploaded). Searches yielded 
95 results from Twitter and 331 from Facebook, which covered 
295 and 867 1-km grid squares, respectively. These 1-km grid 
squares were included as Banded Demoiselle occurrences in sub-
sequent species distribution models (SDMs). For each social media 
occurrence, spatial precision (estimated to the nearest km2) was 
recorded in the final dataset. For Flickr, records were collated with 
the Flickr application programming interface (API) using the Flickr.
photos.search (http://www.flickr.com/servi​ces/api/flickr.photos.
search.html). Initial searches yielded 1316 results with location in-
formation as well as date recorded and posted that were extracted 
in R using the package FlickrAPI (Ando & Pousson, 2022). These 
results were then manually verified, with 1223 observations re-
maining once records observed outside the relevant time frame 
or study location as well as irrelevant or misidentified observa-
tions were removed. For each data type, occurrence records were 
cleaned using the R package CoordinateCleaner to flag and remove 
erroneous or duplicate results (Zizka et al., 2021). Potential data 

entry errors and failed georeferencing were flagged by checking 
for equal latitude and longitude values as well as zeros in the coor-
dinates; coordinates matching country centroids and biodiversity 
institutions were also removed to ensure occurrences with impre-
cise georeferencing or captured individuals were excluded (Zizka 
et al., 2019).

The low precision of Facebook and Twitter social media data 
is a potential source of error during modeling as it may overesti-
mate the current range and therefore the range of suitable habi-
tats. The location descriptions provided varied in precision; some 
observations detailed exact locations that could be prescribed 
to individual 1-km grid squares, whereas others described wider 
locations covering several km grids. As such, we performed ad-
ditional sensitivity analyses using several alternative subsets of 
the social media data; in these, the dataset was filtered to only 
include points with a spatial precision of at least 1, 2, 5 and 10 km2, 
respectively. Results of these models were compared with those 
that used all social media data points, using Spearman's correlation 
to check for sensitivity of results to differing thresholds of spatial 
precision, as well as spatial assessment of uncertainty between 
different cropped datasets.

2.2  |  Environmental data

The set of environmental variables considered to shape the distribu-
tion of Banded Demoiselle in the UK included climatic conditions, 
topography, landcover type, vegetation productivity, and level of 
urbanization. Monthly minimum and maximum temperature as well 
as monthly precipitation for the period 1990 to 2020 were accessed 
from the Met Office at a 1-km resolution (Met Office et al., 2022) 
and used to generate a series of monthly average bioclimate vari-
ables using the biovars function in the R package dismo (Hijmans 
et al., 2021), under the assumption that species' ranges respond to 
the long-term averages of climate conditions (Taheri et al., 2020). 
These climate variables represent annual trends, seasonality, and 
limiting environmental factors and as such are designed to be 
biologically meaningful, being widely used for SDMs (Manzoor 
et al.,  2018), and informative for Odonatan distributions (Abbott 
et al., 2022; Collins et al., 2017).

Slope was extracted from the Ordnance Survey (OS) Terrain 50 
Digital Terrain Model (DTM) accessed from EDINA Digimap (OS 
Terrain 50, 2013); slope is important for Odonata species due to its in-
fluence on water velocity, O2 content, weathering, channel substrate 
size, and organic matter composition (Collins & McIntyre, 2015) and 
of particular importance to the Banded Demoiselle that favors slow-
flowing rivers.

To capture the aquatic element of the Banded Demoiselle's niche, 
the percentage cover at 1-km resolution of the freshwater aggre-
gate class was extracted from the Centre for Ecology and Hydrology 
(CEH) 2015 Land Cover Map accessed from EDINA Digimap (Land 
Cover Map 2015,  2017). A Water and Wetness Probability Index 
(WWPI) product coordinated by European Environment Agency 
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(EEA) Copernicus program was also acquired which indicates the 
occurrence of water and wet areas as a continuous probability at 
20-m resolution based on observations between 2009 and 2015 
(Langanke et al., 2018).

Normalized Difference Vegetation Index (NDVI; 
Pettorelli,  2013) Long Term Statistics (LTS) version 2.2. were 
also included from the Copernicus Global Land Service (CGLS) 
at a 1-km resolution (Toté et al., 2021). These statistics include 
the minimum, median, maximum, average, and standard deviation 
calculated from 10-daily NDVI values throughout 1999 to 2017 
derived from Spot-4, Spot-5, and Proba-V satellite imagery. The 
NDVI gives an indication of “greenness” and therefore is likely 
to be influential in odonatan distribution. In addition, the CGLS 
100-m resolution tree cover density for the reference year 2012 
was included (European Environment Agency, 2018). These should 
account for the influence of vegetation on the Banded Demoiselle 
distribution, where vegetation influences territory selection and 
where eggs are laid into aquatic emergent vegetation (Ward & 
Mill, 2005). To account for varying levels of urbanization, annual 
composites of visible night light version 2 were acquired for the 
years 2014 to 2018 from the Earth Observation Group (Elvidge 
et al., 2021) and averaged across these years.

Predictor variables were reprojected to the British National Grid 
and aggregated to a 1-km resolution where needed using the func-
tions projectRaster and aggregate in R package raster (Hijmans & 
van Etten, 2012). All predictors were scaled to a mean of zero and a 
standard deviation of one. Predictor distributions were checked for 
any significant skew and a log transformation applied where a strong 
skew was identified.

The Pearson's correlation coefficient was calculated between 
each pair of predictor variables and where the coefficient was 
greater than 0.7, only one variable was retained. Including covary-
ing predictors above this threshold results in increased uncertainty 
and disagreement among projections (Brun et al.,  2019; Dormann 
et al., 2012). In cases where it was unclear which covarying predictor 
should be kept, two separate models were run with each set of cova-
rying predictors, and the variable that contributed to more accurate 
model fit (assessed by true skill statistic [TSS] and the area under the 
receiver operating characteristic curve [AUC]) was kept. As a final 
check to ensure no correlated predictor variables were included, the 
Variable Inflation Factor (VIF), a measure of multicollinearity, was 
calculated for each occurrence dataset before model computation, 
to ensure that VIF was less than six, which is deemed acceptable 
(Guisan et al., 2017).

A preliminary set of SDMs was implemented through biomod2 
with a dataset of all species occurrence records and all environmen-
tal variables to examine variable importance and guide predictor 
selection. Importance was determined by computing the Pearson's 
correlation between predictions made with a given variable and with 
the variable replaced with a randomized input, with variable impor-
tance averaged from five permutations. These preliminary screening 
steps resulted in a final set of predictors consisting of mean annual 
temperature, isothermality, mean temperature of the wettest and 

driest quarters, total annual precipitation, slope, percentage fresh-
water cover, WWPI, mean NDVI, and percentage tree cover.

2.3  |  Sampling effort

Species distribution models rely on the assumption that sampling ef-
fort and probability of detection are approximately even over a given 
area. However, this is often not the case, especially for opportun-
istically sampled data such as in citizen science projects and social 
media, and as such sampling bias can severely distort results (Bird 
et al., 2014; Johnston et al., 2021). A typical way to counteract this is 
with a target-group background approach (Phillips et al., 2009), which 
uses sampling from other related taxonomic groups to give a broad 
overview of sampling effort over an area. In this study, this approach 
was not possible as acquiring an equivalent sampling background 
for social media data is extremely difficult, if not impossible, due to 
the time and computational workload involved. Instead, we used a 
“bias covariate correction” method (Chauvier et al., 2021; Warton 
et al., 2013), where several proxies for sampling effort are used to 
correct for areas of bias. We therefore included several sampling ef-
fort predictors in our models, namely distance to major population 
center, distance to nearest road, and population density. Shapefiles 
for major population centere were downloaded from the Office for 
National Statistics (2021) and the Scottish Government SpatialData.
gov.scot  (2022), and the distance from each 1-km grid cell in our 
study area to the nearest city was calculated. Spatial line data for 
roads were based on OpenStreetMap Data Extracts, as processed by 
Geofabrik GmbH (2023), using the latest road data available for the 
UK as of February 13, 2023; for each grid cell in the study area, we 
calculated how far they lay from the nearest road. Residential popu-
lation density was downloaded from the Environmental Information 
Data Centre  (2023) at 1-km resolution. Predictor covariation was 
assessed, and a preliminary set of models was run to check for vari-
able importance (following same methods as for environmental vari-
ables). Where sampling effort variables were important (1 − r > 0.05, 
where r is the Pearson's correlation coefficient), they were retained 
in the final model. When final projections were made, these vari-
ables were set to the median value for a given layer across the study 
area, to compensate for the potential effect of sampling effort fol-
lowing the protocol of Warton et al. (2013).

2.4  |  Species distribution modeling

Ensemble SDMs for the Banded Demoiselle were implemented 
using the R biomod2 package (Thuiller et al., 2021) for each spe-
cies occurrence dataset. There was no a priori reason to select 
one family of models over another, so all were trialed and com-
pared in terms of habitat suitability outputs, performance metrics 
provided by biomod2 (accuracy, bias, TSS, and AUC), and vari-
ance in estimated response curves. Since all performed similarly 
and showed broadly similar outputs (Figure S3), ensemble model 
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    |  5 of 13O'NEILL et al.

results were built with output from all high-performing models, re-
gardless of family. As such, a set of six modeling techniques were 
selected including three machine-learning methods, generalized 
boosting model, random forest, and maximum entropy; two re-
gression methods, generalized linear model, and multiple adaptive 

regression splines; and finally, a recursive partitioning method, 
classification tree analysis. For all modeling algorithms, the default 
biomod2 settings were used.

For each dataset (traditional, citizen science, and social media), 
10,000 pseudo-absence points were randomly selected from the 

TA B L E  1 Total number of occurrence records collected for each type, including the number of 1 and 10-km British National Grid squares. 
For each type, the number and proportion of grid squares where observations were unique to that type is given.

Type Details Total records 1 km grids Unique 1 km grids 10 km grids Unique 10 km grids

Traditional BDS; LERCs; National Trusts/
Organizations

6749 4211 2424 (57.6%) 908 184 (20.3%)

Citizen science iRecord; iNaturalist 9646 5075 3100 (61.1%) 982 136 (13.8%)

Social media Facebook; Flickr; Twitter 2026 1480 726 (49.1%) 421 15 (3.6%)

Abbreviations: BDS, British Dragonfly Society; LERC, Local Environmental Records Centre.

F I G U R E  1 Distribution of traditional, citizen science, and social media species occurrence records (left) and consistencies and differences 
when gridded to the 10 km British National Grid (right). Population centers with more than 500,000 people have been highlighted.

TA B L E  2 Evaluation statistics for the ensemble models averaged from validation runs for each species occurrence data type, including the 
true skill statistic (TSS), the area under the receiver operating characteristic curve (AUC), Cohen's κ coefficient, sensitivity, and specificity. 
Values in brackets are the standard deviation across the five validation runs.

Occurrence dataset TSS AUC κ Accuracy Bias

Traditional 0.60 (0.05) 0.88 (0.03) 0.60 (0.05) 0.80 (0.02) 0.99 (<0.01)

Citizen science 0.66 (0.05) 0.91 (0.02) 0.65 (0.04) 0.84 (0.02) 0.99 (<0.01)

Social media 0.66 (0.04) 0.90 (0.02) 0.62 (0.05) 0.86 (0.02) 0.99 (0.02)

All 0.65 (0.05) 0.90 (0.02) 0.61 (0.05) 0.87 (0.02) 1.00 (<0.01)
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background data, a quantity approximately matching the most nu-
merous occurrence dataset, to be broadly appropriate across SDM 
techniques (Barbet-Massin et al., 2012). To ensure pseudo-absence 
composition was not impacting results, preliminary SDMs were com-
puted with 5, 10 and 15 sets of pseudo-absence points. Agreement 
was high overall across all statistical metrics used (Table 2) and did 
not differ significantly between runs with different numbers of 
pseudo-absence sets. As each dataset was large and computation-
ally taxing, all final models were run with five pseudo-absence data-
sets. To reduce the potential of selecting pseudo-absences within 
the same niche as presences, pseudo-absences were placed at least 
1.5 km away from any observed occurrences that have a coordinate 
uncertainty of up to 1 km.

Several validation models were created, where 20% of the spe-
cies occurrences, including both presence and pseudo-absence 
points, were set aside for evaluation. Model performance was as-
sessed with TSS, which provides a threshold-independent measure 
of accuracy (Allouche et al.,  2006). TSS has several documented 
drawbacks (Leroy et al.,  2018), notably its dependence on prev-
alence; however, we chose to use a balanced approach where the 
number of pseudo-absences was set to match the number of pres-
ences, as this reduces the chance of bias when using TSS results, 
allows easier comparison between different models as prevalence is 
held constant, and is the recommended approach when attempting 
to maximize discrimination in SDMs (Steen et al., 2020). Several al-
ternative metrics were also calculated to provide an overall summary 
of performance and potential bias. These included AUC; frequency 
bias, the ratio between observed and predicted presences; accuracy, 
the fraction of occurrences correct; and finally Cohen's Kappa co-
efficient, a measure of model accuracy which corrects for accuracy 
expected to occur by chance (Allouche et al., 2006). This process 
was repeated five times, splitting the occurrences into five random 
training and testing sets of 80% and 20%, respectively, balancing 
the ratio of presence and pseudo-absence points, to ensure that 
their composition was not having any impact on model accuracy. 
Ensemble models were built combining all individual models with 
a TSS value greater than 0.6, considered to be useful to excellent 
(Komac et al., 2016), and weighing model contribution according to 
their TSS.

The evaluation results are based on the internally validated mod-
els, whereas the final projections presented throughout the man-
uscript are based upon all available occurrence data, without any 
presences or pseudo-absences set aside for internal validation. This 
is to ensure the final parameter estimates are built with the max-
imum information and therefore lower uncertainty in parameter 
estimates and projections. As our validation models were robust, 
we verified that the final full models were sufficiently similar to the 
validation models so as to ensure the final full models were similarly 
robust. We verified this using a Spearman's correlation between the 
projected habitat suitability of five validation models and the final 
models for each data source.

Each ensemble model of habitat suitability was converted into bi-
nary presence–absence maps; thresholds were selected to maximize 

the combined sensitivity and specificity scores (Liu et al., 2016). Pair-
wise comparisons were carried out to compare predictions between 
models based on different occurrence datasets, computed for both 
habitat suitability predictions and binary presence–absence maps. 
Similarity between predictions was calculated using Spearman's cor-
relation tests.

Banded Demoiselle habitat was further analyzed by extracting 
the proportion of predicted presences within each of the 10 aggre-
gate classes of the CEH 2015 land cover map accessed from EDINA 
Digimap (Land Cover Map 2015,  2017). This included a built-up 
areas and gardens class, to compare suitable habitat within urban 
areas across occurrence data types.

3  |  RESULTS

A total of 17,831 observations of the Banded Demoiselle were col-
lected (Table 1). When gridded to the 1 km2 British National Grid, at 
the same resolution as the predictor variables, a large proportion of 
the total number of grid cells where presence was reported for each 
occurrence type, were unique to that data type; ~61%, ~58% and 
~49% for citizen science, traditional and social media, respectively. 
When aggregated to 10 km2, the difference becomes less stark 
(Table 1; Figure 1).

The TSS and Kappa scores across all SDMs were greater than 
0.6, while all AUC values exceeded 0.85, indicating good model per-
formance (Table 2). Model performance was broadly similar across 
all data sources (Table  2). Accuracy and bias values were similar 
across data types, and high across all models. Validation models 
were representative of the final models as Spearman's correlation 
coefficients between validation and final models were greater than 
0.98 in all cases.

Annual mean temperature and percentage freshwater cover 
were highly ranked variables for all three data sources (Table S1) and 
were found to be important in all three models (1 − r > 0.1, where r is 
the Pearson's correlation coefficient). In addition, summed annual 
precipitation was found to be highly important in citizen science and 
traditional SDMs, but not for social media. Distance to the nearest 
roads was an important predictor for social media SDMs but was 
less important when using traditional or citizen science data sets. 
For full details on variable importance for all three data sources, see 
Supporting Information (Table S1). The breadth of suitable environ-
mental conditions and response curves were broadly similar across 
data types (Figure S1).

Distance to roads was the only covariate of sampling effort that 
was found to have any effect on the models, and outputs shown 
here are made following correction for sampling effort. Comparisons 
with uncorrected models are included in Supporting Information 
(Figure S2), and significant differences in suitability for social media 
SDMs can be seen around major population centers including 
London, Manchester, and Birmingham.

Social media had higher spatial uncertainty than data from other 
sources, so several sensitivity tests were carried out. SDMs were 
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constructed with points with a spatial precision of at least 1, 2, 5, 
10 km2, respectively, and compared to models constructed with the 
full data set. The most dissimilar models were those built with all 
data and those built with 2 and 1 km2 precision data (Spearman's 
coefficient: 0.96 and 0.97 respectively; Table S2). All models were 
broadly similar (Figure  S3), though uncertainty was higher around 
major population centers and coastal areas. The results presented 
here are for models built with all data.

Under our ensemble model based on traditional occurrence 
records, around 50,800 km2 (21.71%) of Great Britain's landmass 
is predicted suitable for the Banded Demoiselle; this is compared 
to ~54,600 km2 (23.33%) based on citizen science records and 
~41,500 km2 (17.73%) based on social media records (Figure 2). As 
expected, using all collected data led to the greatest total projected 
area of suitable habitats for the Banded Demoiselle (~57,600 km2, 
24.60%). Suitable habitats for the Banded Demoiselle were pre-
dicted to primarily include arable lands (37.9% to 48.5% of total 
suitable area), improved grasslands (32.6% to 33.5%) and built-up 
areas (11.8% to 21.0%), with only a small proportion of suitable areas 
found within broadleaf woodlands (3.1% to 3.8%). The study area 
was similarly dominated by the arable and improved grasslands land 
cover types, covering together 57.6% of the total area (Table 3).

Spearman's correlation coefficients between habitat suitability 
maps based on different record types were greater than 0.85 for 
all pairs of occurrence datasets. Projections based on traditional 
and citizen science records were the most correlated (0.95) while 

projections based on traditional and social media records were 
the least correlated (0.87, Table 4). The area consistently expected 
to be suitable for the Banded Demoiselle was estimated to cover 
44,761 km2 when comparing models based on traditional and citizen 
science records; but this area was expected to only cover 33,061 km2 
when comparing models based on traditional and social media re-
cords. In the latter situation, 17,745 km2 of suitable habitats was 
uniquely identified by traditional records while 8434 km2 of suit-
able habitats was uniquely identified by social media records. The 
area uniquely identified as suitable by traditional records primarily 
covers the southern lowlands, while the area uniquely identified 
as suitable by social media records covers the southwest, south 
Wales, coastal areas around the south of the UK, the northeast and 
Scotland (Figure 3). A greater proportion of projected suitable habi-
tat was found within built-up and urban areas when considering so-
cial media records (21%) than citizen science (13.7%) and traditional 
data (11.8%).

4  |  DISCUSSION

This study offers a unique assessment of the level of comple-
mentarity and divergence between habitat suitability distribu-
tions derived from traditional recording schemes, citizen science 
initiatives, and social media information. Our results show that (i) 
social media records provide insights into the Banded Demoiselle 

F I G U R E  2 Projected habitat suitability index according to weighted mean ensemble models computed based on traditional (left), citizen 
science (middle) and social media (right) observations.
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distribution and habitat preference that are different from, and 
complementary to, the insights gathered from traditional record-
ing schemes and citizen science initiatives; (ii) predicted habitat 
suitability maps that ignore information from social media records 
substantially underestimate (by over 3500 km2) potential suitable 
habitat availability.

The use of social media to extract species occurrence obser-
vations and inform ecological research and wildlife management 
is a relatively new concept, with a few cases where such meth-
ods have been investigated both for native (Barve,  2014; ElQadi 
et al., 2017; Pace et al., 2019) and non-native species (Allain, 2019; 
Daume, 2016). Social media data can greatly extend the number of 
occurrence records available to ecologists (Allain, 2019) and, in the 
case of countries with limited resources, provide an alternative to 
costly specialized recording schemes and citizen science campaigns 
(Di Minin et al., 2015). Our study demonstrates that there is much 
value in capitalizing on this new type of information: Even though 
substantially less numerous than the other data types overall, 49% 
of the Banded Demoiselle presences derived from social media plat-
forms were unique to social media, enabling us to capture a broader 
perspective on the species' habitat preferences. Our conclusions 
resonate with previous research by ElQadi et al. (2017) who found 

that Flickr observations of honeybees in Australia (i) extended the 
known distribution based on traditional records towards urban cen-
ters, and (ii) represented tourist areas in remote locations that were 
not depicted by traditional records (ElQadi et al., 2017). Together, 
these results suggest that spatial patterns in social media recorder 
activity tend to be different from the patterns found among record-
ers involved with traditional and citizen science data collection.

Our findings demonstrate that social media projections of 
Banded Demoiselle habitat cover a larger proportion of built-up 
areas and gardens than traditional recording. This may potentially be 
an artifact of sampling bias, but it may also indicate that these urban 
areas provide important habitats for Banded Demoiselles, something 
that could be underestimated without the consideration of social 
media observations. The proportions of the other land cover types 
were largely consistent between data types, with predicted Banded 
Demoiselle habitat dominated by arable and improved grasslands. 
This contradicts previous findings that agriculture, managed land, 
and excessive grazing do not provide suitable Banded Demoiselle 
habitat due to diminished bankside vegetation (Lowdon, 2015; Ward 
& Mill, 2005). The coarse spatial resolution considered in this study, 
together with the fact that our study area is heavily dominated by 
these landcover types (covering 57.6% of our study area), may ex-
plain such results.

Sourcing information on species presence from social media 
platforms is not straightforward, and the amount of information 
garnered can be quite limited. For example, the manual Facebook 
and Twitter searches yielded 331 and 95 results, respectively, for 
Banded Demoiselle. These numbers are comparable with simi-
lar studies that have extracted species occurrence records from 
Facebook, such as the ones by (i) Campbell and Engelbrecht (2018) 
that gathered 1239 observations for 34 species of baboon spiders 
across Southern Africa (around 36 records per species), (ii) Rocha 
et al.  (2017) that sourced 369 records of the Eurasian red squirrel 

Class Study area Traditional
Citizen 
science Social media

Improved grassland 31.2% (73,084) 33.5% (17,003) 32.6% (17,770) 33.4% (13,854)

Arable 26.4% (61,865) 48.5% (24,636) 47% (25,642) 37.9% (15,747)

Mountain, heath, 
bog

15.4% (35,926) 0.4% (195) 0.4% (244) 0.4% (181)

Semi-natural 
grassland

9.5% (22,113) 0.7% (339) 0.6% (351) 0.8% (334)

Built-up areas and 
gardens

6.6% (15,394) 11.8% (6004) 13.7% (7455) 21% (8716)

Coniferous 
woodland

6.1% (14,303) 1.0% (502) 1.1% (574) 1.0% (400)

Broadleaf woodland 2.5% (5919) 3.1% (1552) 3.4% (1850) 3.8% (1571)

Coastal 1.2% (2831) 0.5% (230) 0.5% (290) 0.7% (284)

Freshwater 0.6% (1512) 0.6% (321) 0.7% (372) 0.9% (372)

Saltwater 0.4% (1042) 0.0% (24) 0.1% (36) 0.1% (36)

Note: Percentages are given of total study area and total predicted suitable habitat, with values in 
brackets being the total area in kilometers squared. Bold text is used to indicate land classes where 
Banded Demoiselle suitable habitat dominates (where total suitable area > 1000 km2).

TA B L E  3 Coverage of land cover 
classes for the Great Britain study area 
and the predicted suitable habitat for the 
Banded Demoiselle according to ensemble 
species distribution models based on 
different types of species occurrence 
records.

TA B L E  4 Spearman's correlation between models derived from 
different species occurrence records. Above diagonal values are 
the correlation between binary presence–absence maps and below 
diagonal the correlation between habitat suitability projections.

Habitat 
suitability maps

Binary (presence/absence) maps

Traditional Citizen science Social media

Traditional 1 0.805 0.651

Citizen science 0.952 1 0.714

Social media 0.870 0.928 1
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in Portugal, and (iii) Havlin et al.  (2017) that collected 30 observa-
tions of red-necked wallabies on the Isle of Man, UK. These inves-
tigations all used specific Facebook pages set up by the scientists 
and dedicated to encouraging submission of records for their target 
species. In our case, biological records were gathered from existing 
platforms, which may partially explain the low numbers of records 
we were able to source. Although requiring greater effort and longer 
term management, dedicated pages may yield a greater number of 
results as well as being a more active way of engaging communities 
with biological recording.

Acquiring biological records from Flickr was aided by the use of 
an API that allows for an automated search of visual content and 
extraction of information on associated location and date. Using this 
API for the Banded Demoiselle yielded 1316 initial results instantly, 
providing both a faster method to access information in compari-
son to other social media platforms investigated as well as yielding a 
greater total number of observations. Although the initial search was 
rapid in comparison with manual searches on Twitter and Facebook, 
the subsequent manual verification of the data was, however, time-
consuming. The R package CoordinateCleaner (Zizka et al., 2021) 
provided a means to rapidly flag and remove likely erroneous re-
cords, such as those assigned to country centres and biodiversity 
facilities, as well as identify outliers and duplicate observations. 
The difficulty with Flickr API searches is that this can yield obser-
vations where species are incorrectly identified, alongside content 

where the species name is mentioned in another context without 
any intention to indicate presence of the species. This verification 
step was proven to be important in our case, leading to the removal 
of 92 sightings (~7% initial results) despite the deliberate selection 
of an easily identifiable species. For other species, results may be 
even less reliable, such as for two bumblebee species in Australia 
where only 65% and 68% of the occurrences extracted from Flickr 
by ElQadi et al.  (2017) were correctly identified. Research to iden-
tify alternatives to manual verification process is needed (ElQadi 
et al., 2017).

Citizen science has become an invaluable and cost-effective 
source of species occurrence records (Noviello et al.,  2021). 
Nevertheless, a number of concerns remain about the accuracy 
and quality of citizen science data due to variability in volunteers' 
level of experience and expertise (Aceves-Bueno et al.,  2017), 
with previous studies finding a lower performance of SDMs based 
on citizen science data compared with systematic surveys (Tiago 
et al., 2017) and suggesting filtering citizen science data accord-
ing to data quality and information content for more accurate 
SDMs (Van Eupen et al., 2021). In our case, however, all SDMs 
performed adequately, and habitat suitability maps derived from 
traditional and citizen science sources were the most congruent. 
These comparable results from citizen science and traditional ob-
servations are likely partially a result of improved data validation 
within citizen science initiatives (Dickinson et al., 2010), with, for 

F I G U R E  3 Pairwise comparison between projected suitable habitat for the Banded Demoiselle according to different data types. 
Predictions were converted to binary presence–absence maps using the threshold that maximized the true skill statistic for each ensemble 
model. Values in brackets indicate the total consistencies and differences between predicted suitable habitats in terms of the number of 
1-km pixels and therefore total area in km2.
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example, iNaturalist crowdsourcing verification from users within 
the platform and iRecord verification largely being performed by 
volunteers associated with national recording schemes, such as 
within the BDS—likely the same county recorders that oversee 
and verify the BDS's own records. Moreover, both the BDS and 
citizen science records are largely collected with an unstructured 
and opportunistic framework.

A number of limitations to our study should, however, be 
acknowledged. First, this work was performed at a relatively 
coarse resolution; fine-scale and more sophisticated hydrological 
and hydraulic predictor variables could prove advantageous for 
Odonatan modeling (Collins & McIntyre,  2015). Second, model-
ing approaches focused on rivers and water bodies, as opposed to 
approaches based on gridded variables as well as the combination 
of stream-only and terrestrial-only model processes, have been 
previously encouraged when aiming at identifying suitable hab-
itats for freshwater species such as Banded Demoiselle (Collins 
& McIntyre, 2015). However, such an approach was not feasible 
here, particularly as the vast majority of occurrences collated 
were for the terrestrial adults as opposed to aquatic nymphs. 
Third, biotic variables have been increasingly employed to improve 
predictive ability of SDMs (Yates et al., 2018), with competition 
and intraguild predation particularly significant constraints on 
Odoanata distributions (Pélissié et al., 2022); however, inclusion 
of these interactions as predictors for Banded Demoiselle habitat 
was beyond the scope of this study due to the quantity of interac-
tions possible. As such, these biotic factors are likely to modify the 
projected potential suitable habitat throughout Britain in practice. 
Fourth, most of the Twitter occurrences lacked geo-location in-
formation and so, along with Facebook, relied on location infor-
mation within the content that lacked precision compared with 
traditional occurrences. In this study, there was little evidence 
that using lower precision data significantly affected results, ver-
ified through several sensitivity analyses, but this is unlikely to be 
universally true and should be treated carefully. Fifth, for social 
media, when the location of the observation was not explicitly 
detailed an assumption was made that the tagged location pro-
vided information as to where the picture was taken; this cannot 
be confirmed and therefore adds a level of uncertainty regarding 
the reliability of social media data. Sixth, it is possible that individ-
uals could report Banded Demoiselle occurrences with multiple 
sources, leading to duplicates that may affect the correlation and 
similarities between data types. Seventh, we found evidence that 
sampling bias can be more prevalent in citizen science and social 
media data, than in more traditional sampling surveys. There are 
numerous published methods of compensating for these issues 
(Chauvier et al., 2021; Ranc et al., 2016; Stolar & Nielsen, 2014), 
some of which were used here, but established methods may be 
difficult to carry out for limited social media data. Finally, while 
providing a compelling case for employing social media data for 
the Banded Demoiselle, the generality of our conclusions requires 
further investigation to determine whether our findings apply for 

other species, particularly those that are perhaps more difficult to 
identify by nonexperts.

5  |  CONCLUSION

Public participation has become commonplace within scientific 
research aimed at biodiversity monitoring and conservation, 
enabling access to a monumental breadth of data on species oc-
currence unobtainable otherwise. Our study offers a compelling 
illustration of the value of alternative sources of traditional bio-
logical records and highlights, in particular, the value of ecological 
information derived from social media data as an inexpensive and 
complementary source of species occurrence data. This source of 
freely available information can be exploited to capture a more 
complete understanding of species habitat preferences, appreci-
ate the influence of urban settings, and gain insights that cannot 
be attained from traditional recording alone. We believe further 
development of APIs to gather social media information, technolo-
gies for automated verification, and greater adoption of available 
geo-tagging facilities, would further broaden the scientific appli-
cation of social media.
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