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Abstract

Tropical weather is dominated by convection which is organised across a wide range of

spatial and temporal scales. The degree of convective organisation has important conse-

quences for weather and climate. The uncertainty in the response of convective organisa-

tion to a warming climate is one of the largest sources of uncertainty in climate sensitivity

estimates.

Self-aggregation is the process in which convection spontaneously clusters despite ho-

mogeneous initial conditions and forcing. It has been the focus of many recent studies

because of its implications for real world weather and climate. Cloud-radiation interac-

tions have been shown to be crucial drivers and maintainers of aggregation. Yet there

remains uncertainty in their role in self-aggregation. In this thesis, we develop a frame-

work to study aggregation and quantify the contributions of radiative interactions with

different cloud types to aggregation. We study models that form part of the Radiative-

Convective Equilibrium Model Intercomparison Project, comparing models with explicit

and parameterised convection across a range of sea surface temperatures (SSTs).

We find that longwave interactions with high-topped cloud and clear regions, as well

as shortwave interactions with water vapour are key drivers and/or maintainers of ag-

gregation. Their influence on aggregation tends to decrease with SST, but the rate of

aggregation remains similar. We find the strength of these interactions strongly corre-

lates with the rate of aggregation in parameterised convection simulations, yet the rate of

aggregation in explicit simulations is more strongly influenced by circulations.

Parameterised convection simulations often have stronger longwave interactions with

high-topped cloud than explicit simulations, resulting in faster aggregation. We find that

by artificially reducing this longwave feedback in parameterised simulations, the aggrega-

tion behaves more similarly to explicit simulations. This highlights that global weather and

climate models may be able to model the effects of real-world aggregation more accurately

given an accurate representation of cloud-radiation interactions.
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CHAPTER 1

INTRODUCTION

1.1 Background

The weather in the tropics is dominated by convection. The tropical atmosphere is in an

approximate equilibrium between atmospheric radiative cooling and convective heating

called radiative-convective equilibrium (RCE) (e.g. Manabe and Wetherald, 1967). With

radiative cooling of the free troposphere, consistently high surface temperatures, and an

abundant supply of moisture, convection occurs to neutralise conditional instability, re-

sulting in strong rainstorms. This convection can form a wide variety of structures with

a great range of spatial and temporal scales depending on the state of convective organ-

isation. Structures can range from individual cumulonimbus clouds, to squall lines (e.g.

Houze, 1977), mesoscale convective systems (MCSs) (e.g. Houze, 2004), tropical cyclones

(e.g. Emanuel et al., 2003), and the convective phase of the Madden-Julian Oscillation

(MJO) (Madden and Julian, 1971; Nakazawa, 1988; Mapes and Houze, 1993). The de-

gree of convective organisation affects the environment of both the convective regions and

surrounding subsiding regions (Wing, 2019), as well as global-scale circulations (Arnold

and Randall, 2015) and climate (Coppin and Bony, 2018). Because of its impacts on
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Chapter 1. Introduction

weather and climate, convective organisation has been the focus of many observational

and modelling studies.

The majority of tropical rainfall comes from organised convection. Organised convec-

tive systems that last upwards of 12 hours account for 75% of tropical precipitation, and

systems that propagate at least 250 km account for 60% of tropical precipitation (Roca

et al., 2014). Long-lived, well-organised MCSs contribute disproportionately to the total

extreme tropical rainfall (Roca and Fiolleau, 2020). There is some disagreement as to the

effects of aggregation on instantaneous precipitation rates, with some studies finding it

increases by as much as 30% (Da Silva et al., 2021), and others finding little difference

(Bao and Sherwood, 2019). However, these studies agree that extreme daily precipitation

rates increase with higher degrees of organisation thanks to the increased clustering of

rainstorms and enhanced precipitation efficiency.

The aggregation of tropical convection has significant impacts on the climate, with

convective aggregation reducing the high-cloud fraction and free-troposphere humidity

(e.g. Bretherton et al., 2005; Tobin et al., 2013; Wing and Cronin, 2016), affecting the

amount of shortwave radiation being absorbed by the atmosphere and surface, as well

as affecting the amount of longwave radiation escaping to space. The uncertainty in the

response of aggregation to a warming climate is a major source of uncertainty in our

estimates for the global climate sensitivity (Sherwood et al., 2020), with models that

increase in aggregation with warming tending to have a lower climate feedback parameter

due to increased longwave cooling (Becker and Wing, 2020).

There are many processes that cause tropical convective organisation. Much of the

convection is organised as a result of convectively coupled equatorial waves. These are

zonally-propagating low-pressure systems that form as a result of near-equatorial convec-

tion on a rotating planet (Matsuno, 1966; Kiladis et al., 2009). Sea surface temperature

(SST) hotspots act as convergence zones for convection, which help initiate convective

organisation but are not essential for the maintenance of organisation (Müller and Ho-
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Chapter 1. Introduction

henegger, 2020; Bretherton et al., 2004). Convection can further be organised along the

low-level convergence of trade winds (Back and Bretherton, 2009).

Another mechanism of organisation has been termed convective self-aggregation: a

process, first identified in idealised models, by which convection spontaneously becomes

clustered despite homogeneous initial conditions and forcing (e.g. Wing et al., 2017). Self-

aggregation has been the focus of many recent studies; the majority of which have used

idealised simulations of RCE to further understand the processes that cause this phe-

nomenon (e.g Held et al., 1993; Bretherton et al., 2005; Muller and Held, 2012; Wing and

Emanuel, 2014). A review of self-aggregation in numerical models has been published

by Wing et al. (2017). Despite self-aggregation being first recognised in these idealised

numerical models, key processes that drive self-aggregation are indeed relevant to the real

atmosphere (Holloway et al., 2017), aiding the development of organised structures in-

cluding tropical cyclones (Nolan et al., 2007; Wing et al., 2016) and the Madden–Julian

oscillation (Raymond and Fuchs, 2009; Arnold and Randall, 2015).

Several mechanisms have been shown to be important in influencing self-aggregation;

including interactions between convection and surface fluxes, (e.g. Tompkins and Craig,

1998), a coarsening of the moisture field (e.g. Craig and Mack, 2013), the virtual effect

of water vapour (Yang, 2018a), entrainment of convective updrafts (Tompkins and Semie,

2017), radiatively-driven boundary layer circulations (e.g. Muller and Held, 2012; Muller

and Bony, 2015; Naumann et al., 2017), and interactions between convection and radiation

(e.g. Bretherton et al., 2005; Beucler and Cronin, 2016). However, there still remains much

uncertainty in the mechanisms that drive and maintain self-aggregation (Wing et al., 2017),

the SST dependence of aggregation (Wing et al., 2020), and the impacts of aggregation on

climate sensitivity (Becker and Wing, 2020). These uncertainties are in part due to the

inter-model variability in the structures and dynamics of convection within RCE models

(Wing et al., 2017).

Most modelling studies of aggregation use simulations of RCE that are highly idealised.

3



Chapter 1. Introduction

These simulations are often configured over an ocean with a fixed SST, without rotation,

without a diurnal solar cycle, and without a mean wind or wind shear profile. However,

studies have shown that these aforementioned factors do influence aggregation. The use

of an interactive SST in RCE simulations initially slows the rate of aggregation, with a

shallower interactive ocean slab associated with a decrease in aggregation rate (Hohenegger

and Stevens, 2016; Coppin and Bony, 2017). This is because enhanced shortwave heating

in the clear regions leads to anomalously warm SSTs in these non-convective regions,

opposing aggregation. However, the SST in the non-convective regions is dependent on its

dryness (Shamekh et al., 2020). As the non-convective regions become very dry, enhanced

surface evaporation leads to a cooling effect that dominates over the shortwave heating.

This leads to negative SST anomalies, and favours aggregation in its mature phase.

The characteristics and mechanisms of aggregation are strongly dependent on rotation

(Carstens and Wing, 2022). The effects of rotation are small for latitudes equatorward of

± 5°, but moist convective regions will develop into tropical cyclones for latitudes poleward

of ± 9°. For these latitudes, convective organisation is more strongly driven by surface

flux feedbacks, with strong winds in the convective regions producing an enhanced latent

heat flux which further intensifies convection.

Land and orography also influences convective organisation, helping to form regions

of convergence. There are also distinct distributions in the shapes of organised convective

structures over land and over the ocean (Liu and Zipser, 2013). Organised convective

systems tend to be larger and more circular in shape over land, while more linear over

the ocean. These distributions in convective structures are additionally influenced by the

season. Convection over land tends to be more powerful, and has a much stronger diurnal

cycle compared to convection over the ocean (Nesbitt et al., 2000).

The structures of convection are strongly influenced by wind shear, affecting the storm

mode, duration and intensity of the convection (Rotunno et al., 1988). Using numerical

simulations, Chen et al. (2015) find that enhanced low-level wind shear favours linear
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Chapter 1. Introduction

convective structures, whereas mid-level shear tends to produce more isolated supercell-

like storms with rotating updrafts. Wind shear tends to dampen self-aggregation by

smoothing horizontal moisture variations (Tompkins, 2001), and by enhancing the surface

latent heat flux in dry regions (Bretherton et al., 2005).

Despite convective aggregation being affected by these previously mentioned factors,

the ocean covers the majority of the tropics where the diurnal cycle of convection is weak,

the effects of rotation are small, and wind shear is often weak. Therefore, highly idealised

models remain a valuable tool in understanding tropical convection. They can be used to

study the interactions between convection, radiation, surface fluxes and circulations that

affect aggregation, and can be used to study the impacts of aggregation on weather and

climate. We study these highly idealised simulations throughout this thesis.

Various metrics have been proposed to characterise aggregation, some of which measure

the horizontal variability of moisture throughout the domain. As aggregation increases,

dry regions generally get drier, convective regions become increasingly humid, and the

spatial scale of these regions increases. The interquartile range (IQR) of precipitable

water (PW) is used as an aggregation metric in some studies (e.g. Bretherton et al., 2005;

Holloway and Woolnough, 2016). However, this metric is highly dependent on temperature

due to the Clausius–Clapeyron exponential water vapour dependence on temperature.

To account for this temperature dependence, some studies choose to normalise PW by

dividing it by saturated PW, and measuring the horizontal variability of this column

relative humidity (e.g. Craig and Mack, 2013; Wing and Cronin, 2016).

The variance of column-integrated moist static energy (MSE) or frozen MSE (FMSE)

is a frequently used metric which is highly correlated with the IQR of PW. FMSE, or h (J

kg−1), is defined as the sum of an air parcel’s internal energy, potential energy and latent

heat. It is given by

h = cpT + gz + Lvqv − Lfqi (1.1)
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Chapter 1. Introduction

where cp is the specific heat capacity of dry air at constant pressure, T is temperature, g

is the gravitational acceleration, z is the height above the surface, Lv is the latent heat

of vaporisation, qv is the water vapor mixing ratio, Lf is the latent heat of fusion and qi

is the condensed ice mixing ratio. FMSE differs from MSE by accounting for the changes

in enthalpy associated with the freezing and melting of water. However, the contribution

of this freezing term is small in comparison to the other terms in vertically-integrated

FMSE budget analyses. In non-rotating RCE experiments over a fixed SST, variations in

humidity contribute the most to the horizontal variability in FMSE as horizontal temper-

ature gradients are weak, and the gravitational potential term is approximately uniform

throughout the domain. Therefore, the variance of column-integrated FMSE is highly

correlated to other metrics that measure the spatial variability of moisture.

FMSE is not entirely conserved for all convective processes, e.g. energy is not con-

served when an air parcel precipitates or when its pressure change is non hydrostatic.

Indeed, FMSE minus convective available potential energy (CAPE) is shown to be a

better conservation approximation (Romps, 2015), as this quantity accounts for energy

transfer associated with non-hydrostatic processes. However, under the majority of moist

adiabatic processes, FMSE conservation remains to be a fair approximation. Therefore,

convection does little to change a parcel’s FMSE, but convective processes redistribute

FMSE.

The density-weighted vertical integral of FMSE is almost entirely affected by radiation,

surface fluxes and advection. When convection is randomly distributed across the domain,

FMSE is approximately horizontally uniform. As convection aggregates, large overturn-

ing circulations develop and intensify. Regions with large-scale ascent are moister and

favourable for deep convection. Regions with large-scale subsidence are drier and convec-

tion is suppressed. Column-integrated diabatic radiative heating and cooling has a large

influence on FMSE variability despite FMSE variance being dominated by the horizontal

water vapour distribution. This is because horizontal temperature gradients are weak, so
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Chapter 1. Introduction

anomalous diabatic heating results in ascent which converges moisture into the column.

Similarly, anomalous diabatic cooling leads to subsidence which dries the column.

Wing and Emanuel (2014) derive a budget equation for the rate of change of vertically-

integrated FMSE variance, allowing for the quantification of the contributions of different

FMSE feedbacks to the rate of change of aggregation:

1

2

∂ĥ′2

∂t
= ĥ′LW ′ + ĥ′SW ′ + ĥ′SEF ′ − ĥ′∇h.ûh (1.2)

where hats (̂) denote a density-weighted vertical integral, LW and SW are the net column

longwave and shortwave heating (W m−2), respectively, SEF is the surface enthalpy flux,

made up of the surface latent heat and sensible heat fluxes, ∇h.ûh is the horizontal

divergence of the ĥ flux, and primes (′) indicate local anomalies from the instantaneous

domain-mean. The net longwave and shortwave radiative heating is defined as the column

radiative flux convergence as follows:

LW = LW ↑ sfc − LW ↓ sfc − LW ↑ top (1.3)

SW = SW ↓ top − SW ↑ top − SW ↓ sfc + SW ↑ sfc (1.4)

where upward and downward arrows indicate upwelling and downwelling fluxes, and the

subscripts (sfc) and (top) indicate a radiative flux at the surface and at the top of the at-

mosphere, respectively. Each term on the right hand side of Equation (1.2) is a covariance

between the ĥ anomaly and the anomaly of a source/sink of ĥ. If the term is positive,

there is either an anomalous source of ĥ in a region of already high ĥ, or an anomalous

sink of ĥ in a region of low ĥ, representing a positive feedback on self-aggregation.

There is some disagreement over the importance of each of the feedbacks in Equation

1.2 to aggregation, as well as their SST dependencies and dependencies on aggregation
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(Wing et al., 2017). The majority of studies that use the FMSE variance budget framework

find surface flux feedbacks are strong, positive contributors to aggregation at early stages,

sometimes being the leading driver of aggregation. However, their SST dependence is

up for debate with the feedback either increasing (Coppin and Bony, 2015), decreasing

(Becker et al., 2017), or remaining similar with SST (Wing et al., 2016). Feedbacks

between FMSE and both shortwave and longwave radiation have been shown to be key

drivers and maintainers of aggregation (e.g. Holloway and Woolnough, 2016; Wing et al.,

2016; Becker et al., 2017), and interactive radiation in models is essential for aggregation

to occur (Wing et al., 2017; Muller and Bony, 2015).

Muller and Held (2012) find that it is the longwave cooling effect of low clouds within

dry regions that is responsible for the onset of self-aggregation. The resultant circulation

driven by radiative cooling atop these clouds drives an upgradient transport of FMSE,

which increases the variance of FMSE. They find the sensitivity of self-aggregation to

domain size and resolution to be a result of the sensitivity of low cloud distributions

within the model. Once the convection is aggregated, the longwave cooling effect of low

clouds is not necessary to maintain aggregation (Muller and Held, 2012; Muller and Bony,

2015).

Direct cloud-radiation interactions have a major influence on self-aggregation by in-

fluencing the net column longwave and shortwave heating rates in Equations 1.3 and 1.4.

Clouds can have a net shortwave cooling effect by reflecting solar radiation to space, but

can also have a net longwave warming effect by reducing outgoing emission (Liou, 1986).

Wing and Emanuel (2014) note the importance of the shortwave radiative feedback due

to increased shortwave absorption within high-FMSE regions compared to low-FMSE re-

gions, increasing the FMSE variance. By comparing the clear-sky radiative fluxes (ra-

diative fluxes neglecting cloud) to the total radiative fluxes, they find that the shortwave

feedback is mainly a clear-sky effect, with the effects of shortwave absorption by water

vapour outweighing the reflecting and absorbing effects of cloud. Although the short-

8
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wave feedback has a small effect compared to the longwave feedback during the early and

mature stages of aggregation, they find it dominates the total radiative feedback at the

intermediate stage.

Unlike the shortwave feedbacks, the clear-sky longwave feedback is small in comparison

to the total longwave feedback. A simple schematic of longwave interactions with different

cloud types is shown in Figure 1.1. High-topped clouds prevent radiation emitted below

from escaping to space, and with their cold cloud tops, they emit little to space compared

to clear regions. This reduces the magnitude of the final term of Equation (1.3) and

helps to anomalously warm the atmospheric column. Shallow clouds have relatively warm

cloud tops, so these columns emit only slightly less longwave radiation to space than

clear columns. Clouds also affect the surface downwelling longwave radiation (DLR) by

emitting more radiation downwards than in the clear regions. However, with the lower

atmosphere being warm and usually fairly moist, DLR is always high in comparison to

outgoing longwave radiation (OLR) and there is much less variability in DLR than OLR

regardless of cloud type. Nevertheless, clouds with lower, warmer bases have greater DLR,

which enhances the vertically-integrated net longwave cooling rate. The result is columns

with high-topped clouds warm the atmosphere more than clear regions, and shallow clouds

often have a slightly greater cooling rate than the clear regions.

The magnitude of the cloud-longwave radiative effects is dependent on the altitude,

optical depth, effective size of the cloud particles and composition of the cloud. Higher,

thicker clouds reduce OLR, leading to a greater net longwave heating effect (e.g. Hong

et al., 2016). Additionally, clouds with smaller particles have enhanced cloud-radiation

interactions as they have a higher albedo and are able to trap more longwave radiation

(e.g. Vergara-Temprado et al., 2018). The effective cloud particle size is dependent on the

phase of the cloud, with liquid clouds having a greater number of particles for a given

condensed water content, resulting in enhanced longwave and shortwave effects (e.g. Fu

and Liou, 1993).

9
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Clear Shallow High High+Deep

Figure 1.1: Schematic to show upwelling and downwelling longwave fluxes into and out
of the atmosphere for clear, shallow, high, and deep cloud. The thickness of the arrows
indicates the magnitude of the flux.

Longwave fluxes out of the atmosphere are also dependent on the temperature and

humidity profiles. A warmer atmosphere generally has greater longwave emission (greater

radiative cooling) following the Stefan-Boltzmann law. As the water vapour path (WVP)

increases, the optical thickness of the atmospheric infrared windows (the ranges of long-

wave wavelengths for which water vapour is only a weak absorber) increases and narrows

(e.g. Koll and Cronin, 2018). This raises the altitude of the effective level of emission of

OLR to a cooler environment, decreasing OLR and helping decrease cooling of the atmo-

spheric column (e.g. Allan et al., 1999). Increasing WVP also has the effect of lowering the

effective level of emission of DLR to a warmer level, increasing DLR and increasing atmo-

spheric cooling (e.g. Ruckstuhl et al., 2007). These relationships between WVP, OLR and

DLR are also sensitive to the vertical distribution of water vapour; with upper-level hu-

midity variations having the largest influence on OLR, and lower-level humidity variations

mainly influencing DLR.

Wing and Emanuel (2014) find that longwave cooling is most influenced by cloud in

the moist convective regions, but dominated by the clear-sky cooling in the dry subsiding

regions. During the mature phase of aggregation, they find the reduced longwave cooling

10



Chapter 1. Introduction

of high clouds within high-FMSE regions becomes the dominant feedback maintaining

aggregation. They also note that dry regions initially have anomalously strong radiative

cooling, resulting in a positive longwave feedback, whereas at later times, the dry regions

amplify, becoming dryer, which decreases low-level emissivity. Anomalous longwave heat-

ing then develops at low levels to the extent that the column longwave heating anomaly

becomes positive.

Wing and Cronin (2016) study the SST sensitivity of cloud-radiative effects and find

that clouds contribute strongly to both the longwave and shortwave radiative feedbacks,

particularly at early times and cooler SSTs. In rotating RCE simulations, the longwave

interactions with cloud contribute a significant amount to tropical cyclogenesis particularly

at early stages of cyclone development (Wing et al., 2016; Muller and Romps, 2018).

A caveat of using the FMSE variance budget framework to study aggregation is the

strong SST dependence of FMSE, making it difficult to fairly compare aggregation across

simulations with different SSTs. Some studies choose to divide the budget terms by the

instantaneous variance of FMSE to eliminate the SST dependence (e.g. Wing and Cronin,

2016; Holloway and Woolnough, 2016). Therefore, this technique compares the budget

terms as a fraction of how aggregated the domain is, but it does not allow for the direct

comparison of each budget term at specific stages of aggregation for different simulations.

The contributions from cloud-radiation interactions to convective self-aggregation have

been generally shown to be important in previous studies, but a detailed analysis consid-

ering the role of specific cloud types is missing. With both the horizontal and vertical

distribution of clouds being one of the largest sources of variability amongst RCE simula-

tions (Wing et al., 2020), a detailed investigation into the role of specific cloud types on

self-aggregation may help in explaining the variability of self-aggregation amongst RCE

simulations and the consequential implications for climate sensitivity.
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Chapter 1. Introduction

1.2 Thesis Objectives

There is much variability in the progression and characteristics of convective aggregation

in numerical models, and cloud-radiation interactions have been shown to be crucial in the

development and maintenance of convective aggregation. Uncertainties in the mechanics

and characteristics of aggregation, and their sensitivities to a warming climate result in

one of the largest sources of uncertainty in climate predictions.

This thesis aims to shed light on some of the causes of this inter-model variability by

studying the contributions of cloud-radiation interactions to convective self-aggregation

in idealised numerical models. We study these interactions throughout the development

and maintenance stages of aggregation, across a range of SSTs, and for a range of model

configurations; from small, square domains with 100 m horizontal grid spacing, to global-

scale models with ∼100 km horizontal grid spacing.

The objectives of the thesis are to:

1. Design a framework that can be used to study how different cloud-radiation interac-

tions contribute to convective self-aggregation across a range of SSTs and resolutions.

2. Determine the key radiation-convection interactions that are responsible for the de-

velopment and maintenance of aggregation, and assess their sensitivity to SST in

cloud resolving models and general circulation models.

3. Assess the extent to which the inter-model variability of cloud-radiation interactions

affects self-aggregation.

4. Assess how modifications to cloud-longwave interactions affect self-aggregation in

explicit convection and parameterised convection simulations.
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1.3 Thesis Structure

In Chapter 2, we discuss the data and methods used in this thesis. We discuss the

Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP), from which

we analyse several of the cloud-system resolving models (CRMs) and general circulation

models (GCMs) that comprise the project, and whose protocol we use to run our own

RCE simulations using the Met Office Unified Model (UM). We then describe our UM

simulations, which are used in each of the three results chapters to study and compare

convective aggregation. Finally, we describe our analysis framework that is used in each

results chapter, enabling the fair study of the contributions of cloud-radiation interactions

to aggregation across a range of SSTs and model resolutions (first thesis objective).

In Chapter 3, we use RCEMIP simulations of the UM to study the key radiation inter-

actions that are responsible for the development and maintenance of aggregation in these

models. We study convection over three different SSTs and across different domain sizes

and resolutions to assess how radiative interactions with different cloud types contribute

to aggregation, assessing their sensitivity to SST and grid spacing (preliminarily answering

the second thesis objective).

The robustness of the conclusions from Chapter 3 is then tested by comparing the UM

simulations to other similar simulations in RCEMIP in Chapter 4. We use our analysis

framework to assess the variety of cloud-radiation interactions in the RCEMIP simulations

(second thesis objective), and test whether the inter-model variability in cloud-radiation

interactions can help explain the variability in the rate and degree of aggregation in these

models (third thesis objective).

In Chapter 5, we use the UM to simulate a set of explicit convection simulations and a

set of parameterised convection simulations, to study how the magnitude of cloud-longwave

interactions affects aggregation by systematically modifying the radiative properties of

cloud (fourth thesis objective).
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We then provide a summary of the conclusions of the thesis in Chapter 6, and discuss

further avenues of study.
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CHAPTER 2

DATA AND METHODS

Opening remarks

In this chapter, we introduce the datasets used throughout the thesis, as well as our

framework used to quantify and study aggregation. Methodologies unique to each chapter

are described in the methods sections of those chapters.

2.1 Radiative-Convective Equilibrium Model Intercompar-

ison Project (RCEMIP)

The Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP, Wing

et al., 2018) has been designed to assess the variation of the RCE state across a range of

model configurations including small and large cloud-system resolving models (CRMs) and

general circulation models (GCMs). It allows for the assessment of the the sensitivity of

clouds and convective aggregation to a warming climate across these model configurations.

With its free data availability, it is a valuable source of data to study convective self-

aggregation. We compare cloud-radiation interactions and self-aggregation in the CRMs
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Chapter 2. Data and Methods

and GCMs of RCEMIP in Chapter 4.

The CRMs and GCMs of RCEMIP are configured using a strict protocol which is

described in Wing et al. (2018). These protocols standardise the models, and aim to enable

direct comparisons between them. CRMs perform ∼100-day, non-rotating simulations

with doubly periodic boundary conditions and explicit convection. They have at least 74

vertical levels spanning at least 33 km, and have a sponge layer in the upper layers to damp

gravity waves. The large CRMs are on a channel domain of ∼6,000 km × 400 km with

a 3 km horizontal grid spacing, and the small CRMs are on a square, 100 km × 100 km

domain with a 1 km grid spacing. GCMs perform ∼1,000-day, non-rotating, global-scale

aquaplanet simulations with parameterised convection. They have a mean grid spacing of

O (1°) varying between ∼100 km and ∼170 km, with the average grid spacing of all GCMs

being ∼120 km. Every model in RCEMIP has a constant solar forcing of 409.6 W m−2

(the tropical annual mean), a uniform surface albedo of 0.07, and performs simulations

with three fixed SSTs of 295 K, 300 K and 305 K to compare how convection in RCE

may be affected by a warming climate. 3D data are produced every 6 hours, which is the

temporal resolution of much of our analysis throughout the thesis. However, 3D data is

usually only output for the final 25 days of the simulations in the freely available RCEMIP

data. Note that domain averaged 0D data, averaged 1D profiles, and 2D horizontal fields

are usually output hourly throughout the simulations.

2.2 UK Met Office Unified Model (UKMOi-vn11.0-RA1-T)

In Chapter 3, we use the UK Met Office Unified Model version 11.0 to simulate RCE

at three fixed SSTs: 295, 300 and 305 K, following the RCEMIP protocol. We mainly

study convection within the “LARGE” simulations. These simulations are configured on

a 6048 km × 432 km elongated channel domain with a 3 km horizontal grid spacing.

However, we also analyse three other sets of simulations on smaller 100 km × 100 km
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domains; the “SMALL” and “SMALL RHCRIT” simulations have a 1 km grid spacing,

and the “SMALL HI ” simulations have a 0.1 km grid spacing. These are used to assess

how the radiative properties of clouds are affected by the critical humidity threshold for

condensation (RHcrit) and grid spacing. The LARGE simulations are run for 113 days,

the SMALL simulations are 124 days, the SMALL HI simulations are 54 days, and the

SMALL RHCRIT simulations are 123 days.

The LARGE, SMALL and SMALL RHCRIT simulations have been configured follow-

ing the RCEMIP protocol. The SMALL HI domain only differs from this protocol in that

the horizontal grid spacing is ten times finer than the other 100 km × 100 km simulations

in RCEMIP. The LARGE and SMALL simulations have been submitted to RCEMIP

under the model name “UKMOi-vn11.0-RA1-T”, with the name “UKMO-RA1-T” being

used in subsequent RCEMIP comparison papers (Wing et al., 2020; Becker and Wing,

2020).

RHcrit is a parameter in the Smith sub-grid cloud scheme (Smith, 1990) used in the

Unified Model, and determines the grid-box mean relative humidity at which sub-grid

humidity fluctuations are assumed large enough to result in some fraction of the grid-box

becoming saturated and forming cloud. The LARGE, SMALL, and SMALL HI simula-

tions all have a uniform RHcrit value of 0.99 across the entire domain. The value of RHcrit

should depend on the dimensions of the grid-box, with coarser grid-boxes requiring a lower

RHcrit to yield realistic cloud amounts. Our value of 99% is too high to yield realistic

low cloud distributions (Morcrette, 2013) including at km-scale grid spacings. To see the

effects of a more realistic RHcrit, we used another set of simulations that are identical to

our SMALL simulations but for an RHcrit distribution used in the UK Met Office UKV

model. Here, RHcrit is set to 96% in the lowest layers and decreases steadily to 80% at

900 m. RHcrit is then maintained at 80% above this level.

The RCEMIP protocol states that large-domain simulations for a given SST are ini-

tialised using the equilibrium soundings of the corresponding small-domain simulations,
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providing aggregation does not occur in the small-domain. In our case, the SMALL simu-

lations showed signs of self-aggregation, therefore, our LARGE simulations are initialised

from a corresponding small-domain simulation with homogenised radiation, which showed

no sign of aggregation. Note that there was a mistake in the initialisation of the LARGE

simulations, in that the initial humidity profile is out by a density factor. Since density

is close to unity in the lower troposphere, this mistake does not result in supersaturation

at any level, and only results in the upper troposphere being drier than it should. Within

two days of the simulation, convection remoistens the upper troposphere to a similar level

to the intended initial profile. With the 2-day spin-up period neglected in our analysis,

we believe this error will not have an impact on our conclusions.

The science configuration of our simulations is based on the tropical Regional At-

mosphere and Land (RAL1-T) configuration (Bush et al., 2020). However, we use the

Smith sub-grid cloud scheme (Smith, 1990) rather than the PC2 scheme (Wilson et al.,

2008). With our simulations configured over an ocean, the land settings of RAL1-T are

not used. The simulations use explicit convection set over a flat, Cartesian grid, with

biperiodic boundary conditions, using a vertical sigma-z-coordinate Charney-Philips stag-

gering (Charney and Phillips, 1953). We use a 60 s time step for the LARGE simulations,

a 30 s time step for the SMALL and SMALL RHCRIT simulations, and a 5 s time step for

the SMALL HI simulations. The dynamical core uses a semi-implicit, semi-Lagrangian

scheme that solves the non-hydrostatic, fully compressible, deep-atmosphere equations of

motion (Wood et al., 2014).

The boundary layer scheme is based on that described in Lock et al. (2000) with

updates described in Walters et al. (2019). The subgrid turbulence scheme is based on

Smagorinsky (1963) with multiple extensions from Lock et al. (2000). We use Rayleigh

damping of all prognostics in a “sponge layer” in the upper levels of the model, with

the damping timescale following an exponential function of height from 24-40 km. The

microphysics used is a single-moment scheme based on Wilson and Ballard (1999).
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The default radiation scheme, which is used in UKMOi-vn11.0-RA1-T and studied in

Chapters 3 and 4, is the Suite of Community Radiative Transfer codes based on Edwards

and Slingo (SOCRATES) (Edwards and Slingo, 1996). The spectral files used are those

associated with the UM Global Atmosphere 3.0 (GA3.0, Walters et al., 2011) which has

6 spectral bands in the shortwave, and 9 in the longwave. The full radiation calculations

are computed at 15-minute time steps and simplified radiation calculation are made at

5-minute time steps. In Chapter 5, we use a different radiation scheme that allows us to

systematically modify cloud-longwave interactions. This will be discussed later in Section

5.2.1.

2.3 Variance of Normalised FMSE Budget

Using the variance of vertically-integrated FMSE (var(ĥ)) as the metric for comparing

aggregation across different SSTs has its disadvantages as it is very strongly dependent

on temperature. To account for this, we normalise vertically-integrated FMSE between a

hypothetical upper and lower limit based on the SST using Equation (2.1), yielding values

of normalised FMSE (ĥn) between 0 and 1.

ĥn =
ĥ− ĥmin

ĥmax − ĥmin

(2.1)

Here, hats (̂) denote a density-weighted vertical integral, and ĥmax and ĥmin are the upper

and lower limits of ĥ for a given SST. ĥmax is defined as the vertically-integrated FMSE

of a fully saturated moist pseudoadiabatic profile from the surface to the tropopause, plus

the integrated FMSE of the initial profile above the tropopause. For ĥmin, the vertically-

integrated FMSE of a dry adiabatic profile with zero moisture is used within the tropo-

sphere, and again, integrated FMSE above the tropopause from the initial profile is added.

The SST is used as the temperature at sea-level pressure to initiate both adiabatic profiles.

The tropopause is defined as the lowest level in the initial profile at which the lapse rate
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decreases to 2°C/km or less. The values of ĥmax and ĥmin for the UKMO-RA1-T model

are shown in Table 2.1, along with the height and pressure of the tropopause and the

integrated FMSE above it. With less than 11% of the mass-weighted integral of ĥmax and

ĥmin coming from the FMSE above the tropopause, the way we define the tropopause has

little effect on these limits and does not impact our conclusions. Note that these values

for ĥmax and ĥmin are used for all UM simulations throughout this thesis, however, ĥmax

and ĥmin are calculated separately for all RCEMIP simulations. The difference between

ĥmax and ĥmin does not vary by more than 8% between the RCEMIP models for a given

SST.

Table 2.1: Values of ĥmax and ĥmin for each SST used in Equation (2.1) to normalise ĥ.

SST
(K)

ĥmin

(GJ m−2)
ĥmax

(GJ m−2)

Tropopause
Pressure
(hPa)

Tropopause
altitude
(km)

ĥ above
tropopause
(GJ m−2)

295 3.177 3.563 92.0 16.1 0.386
300 3.228 3.753 91.3 16.6 0.387
305 3.272 3.988 80.0 17.9 0.348

For all of our SSTs, variations in ĥn are dominated by horizontal variations in mois-

ture. By computing the individual components of ĥ from the terms in Equation (1.1), we

find the horizontal variance of the thermal energy component of ĥ is approximately 0.5%

of the variance of the moisture component of ĥ for all SSTs. The variances of the geopo-

tential energy and ice content terms are negligible in comparison to the variance of the

moisture term. Average anomalies in the moisture component of ĥ increase exponentially

with SST and are proportional to the difference between ĥmin and ĥmax. Therefore, this

normalisation technique approximately eliminates the SST dependence of var(ĥ).

The relative importance of different processes to changing the variance of FMSE can

be analysed using the budget equation derived by Wing and Emanuel (2014) as shown

in Equation 1.2 in Chapter 1. This equation is suitable for comparing the importance
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of different ĥ feedbacks to aggregation within models at the same SST. However, due to

the strong dependence of var(ĥ) to SST, this equation cannot be used to analyse how the

importance of these feedbacks to aggregation change with SST. To enable fair comparisons

of aggregation with SST, we frame our analysis using a budget of the horizontal variance

of ĥn. By following the budget equation derivation by Wing and Emanuel (2014) and

using ĥn instead of ĥ, Equation (1.2) becomes:

1

2

∂ĥ′2n
∂t

= ĥ′nLW
′
n + ĥ′nSW

′
n + ĥ′nSEF ′

n − ĥ′n∇h. ˆuhn (2.2)

Here, each of the three normalised flux anomalies on the RHS (LW ′
n, SW

′
n, and SEF ′

n)

is equal to the original flux anomaly in Equation (1.2) divided by the difference between

ĥmax and ĥmin. The derivation of this equation is shown in the appendix.

In Wing and Emanuel (2014), the budget terms are normalised by the instantaneous

FMSE variance, which results in a couple of differences from our method. Firstly, as the

variance of FMSE increases, the magnitude of their terms tends to decrease because the

terms are divided by a larger value, whereas the terms in Equation (2.2) tend to increase

in magnitude as ĥ′n is a factor in every term. The SST sensitivity of the terms may also be

different if the degree of aggregation (as measured by normalised FMSE variance) changes

with SST. For example, if aggregation increases with SST, then Wing and Emanuel (2014)

would find the magnitude of the budget terms decrease with SST as the terms are divided

by a much larger FMSE variance, whereas following Equation (2.2), ĥ′n would increase and

therefore the individual terms increase with SST. If the degree of aggregation is similar

across all SSTs as measured by var(ĥn), then the SST dependence of the budget terms will

be very similar during the mature stage of aggregation regardless of which normalisation

method is used.

A drawback of the var(ĥn) budget framework is that it is a vertically-integrated frame-

work that is not able to quantify the effects of processes occurring at specific vertical
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levels. Studies have shown that there are many low-level processes that are important for

aggregation. For example, Muller and Held (2012) highlight the importance of shallow,

radiatively-driven circulations caused by cooling atop shallow clouds in dry regions, yield-

ing an upgradient transport of FMSE, inducing a positive aggregation feedback. Jeevanjee

and Romps (2013) describe how cold pools are responsible for the domain size dependence

of self-aggregation. Boundary layer processes are key for the production of available po-

tential energy that is associated with the development of self-aggregation (Yang, 2018a),

and are theorised to determine the length scale of aggregation (Yang, 2018b). The use of

our vertically-integrated framework means the effects of these processes are not directly

studied. However, circulations that are induced by diabatic forcing are included in the

vertically-integrated advection term in the var(ĥn) budget framework. So the radiation

and surface flux terms only account for the direct diabatic feedbacks.

There is still great value in the use of the var(ĥn) budget framework to study the direct

diabatic feedbacks. Previous studies have shown that these feedbacks are key drivers and

maintainers of aggregation, and this framework allows us to easily quantify and compare

these feedbacks across a range of models and SSTs.

22



CHAPTER 3

CLOUD-RADIATION INTERACTIONS AND THEIR

CONTRIBUTIONS TO CONVECTIVE SELF-AGGREGATION

Opening remarks

The work in this chapter has been published as Pope et al. (2021) and is only slightly

modified as a thesis chapter from the original publication. Part of the Introduction and

some of the Methods regarding the normalised FMSE variance budget framework and

model configuration in the original publication have been moved to Chapters 1 & 2, as

they are also relevant in the following chapters.

3.1 Introduction

Previous studies have shown that interactions between radiation and convection are crucial

drivers and maintainers of aggregation (e.g. Bretherton et al., 2005; Holloway and Wool-

nough, 2016; Becker et al., 2017). Some studies have further shown that cloud radiative

effects are important (e.g. Wing and Emanuel, 2014; Wing and Cronin, 2016) by comparing

the total longwave feedback to the clear-sky feedback. However, a detailed investigation
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into the importance of radiative interactions with different cloud types is missing. By

studying in detail the cloud-radiation interactions affecting aggregation within a set of

idealised simulations, this chapter begins to answer the second thesis objective.

In this chapter, we investigate the direct radiative-convective processes that are impor-

tant to self-aggregation, and their sensitivity to SST within elongated channel simulations

of the UK Met Office Unified Model (UM) version 11.0. We then investigate how the

SST-dependent convective features and their radiative interactions are affected by model

grid spacing and treatment of subgrid condensation using smaller square domains. Our

simulations are configured using three fixed sea surface temperatures (SSTs) following

the Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP) proto-

col (Wing et al., 2018, and briefly described in Section 2.1), and the model configurations

are described in Section 2.2. We use a budget equation for the variance of normalised

vertically-integrated FMSE which minimises the SST dependence of horizontal FMSE

variance (described in Section 2.3). This allows us to compare how the impacts of radia-

tive feedbacks on aggregation change with SST. We categorise cloud types based on the

vertical distribution of condensed water content and analyse their radiative interactions

that impact aggregation. This categorisation is shown in Section 3.2.2.

We first analyse how convection aggregates within the three large channel simulations

in Section 3.3, and show how the FMSE budget terms vary with time and SST. We

then analyse the radiative feedbacks responsible for maintaining aggregation in the large

domain and compare how SST affects these feedbacks in Section 3.4. Then, we look at

the dominant radiative feedbacks during the early stages of aggregation and see how they

change with time (Section 3.5). Finally, we investigate how these radiative interactions

are affected by both resolution and the critical humidity threshold for condensation to

occur (RHcrit), using smaller domains with lower grid spacing (Section 3.6). A summary

and conclusions is presented in Section 3.7.
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3.2 Methods

3.2.1 Data and Analysis Framework

In this study, we use the UK Met Office Unified Model version 11.0 to simulate RCE at

three fixed SSTs: 295, 300 and 305 K. This study mainly focuses on convection within

the “LARGE” simulations; 6048 km × 432 km elongated channel simulations with a

3 km horizontal grid spacing. However, we also use three smaller 100 km × 100 km

domains: “SMALL” (1 km grid spacing), “SMALL RHCRIT” (1 km grid spacing), and

“SMALL HI ” (0.1 km grid spacing), to assess how the radiative properties of clouds are

affected by the critical humidity threshold for condensation (RHcrit) and grid spacing.

The models used in this study are described in more detail in Section 2.2.

We use the variance of normalised vertically-integrated frozen moist static energy bud-

get framework to measure and analyse convective aggregation in this study. This frame-

work is described in Section 2.3.

3.2.2 Cloud Classification Scheme

The cloud classification scheme is based on Hill et al. (2018), using the vertical structure

of condensed water content to define different cloud types. High-level clouds are defined

to be located above an upper-level pressure threshold, low-level clouds are located below a

lower-level threshold, and mid-level clouds are anything in between. Clouds spanning two

or more levels have their own categories. In this study, a gridbox is defined as being cloudy

when its condensed water content exceeds 10−6 kg m−3. This is the approximate limit

below which the average difference between the longwave and shortwave heating rates of

clear-sky (without condensed water) and total radiative transfer calculations are less than

1 K day−1, and an order of magnitude lower than the value for mean cloud condensed

amount (analysis not shown).

We use different high and low cloud pressure level thresholds for each SST to account
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Figure 3.1: Cloud base distributions throughout each of the LARGE domain simulations.
The lower and upper pressure thresholds (P1 and P2) for each SST are shown in narrow
and wide dashed lines respectively, and the mean freezing level is shown in dotted lines.

for the change in depth of the troposphere. The thresholds for a given SST are determined

from the average vertical profile of cloud bases throughout the entire LARGE domain

simulation. Distributions of cloud base pressures for each of the LARGE simulations are

shown in Figure 3.1. The cloud base at a given column is calculated as the lowest-altitude

pressure at which the condensed water content exceeds 10−6 kg m−3 (the distribution

shown, therefore, does not account for additional cloud bases above the lowest base). The

profiles of cloud base have very similar features for each SST, with two consistent local

minima within each distribution. These two minima will be the chosen pressure thresholds

that define the cloud types throughout this study. The lower-level threshold is defined as

the first cloud base distribution local minimum below the freezing level. The upper-level

threshold is the highest-altitude cloud base distribution local minimum. The lower-level

thresholds (P1), and the upper-level thresholds (P2) for each SST are shown in Figure 3.1.

Rather than using all 12 cloud types used by Hill et al. (2018), we have merged the cloud

26



Chapter 3. Cloud-Radiation Interactions and Their Contributions to Self-Agg.

Figure 3.2: Schematic of the categories used in this study. P1 and P2 are the lower-level
and upper-level pressure thresholds respectively. The shading is contiguous across rows if
the cloud type extends across multiple layers. The mean domain fractions for each cloud
type throughout the entirety of the LARGE, 300 K SST simulation are shown. Note that
fractions are sensitive to aggregation and SST.

types that were only distinguishable by whether or not they are vertically contiguous. We

analysed radiative heating rates for all 12 cloud types, and found that the types we have

merged have similar heating rates for a given condensed water path (CWP) (not shown).

The merged cloud types also have similar ĥ distributions, meaning they will have similar

radiative interactions for a given CWP. The main differences between the individual cloud

types is their CWP distributions, with the contiguous types tending to have higher CWPs.

We end up with 8 cloud types used in this study, including Clear regions. A schematic of

the categories is shown in Figure 3.2.

3.3 Aggregation within the LARGE Domain

Within the first five hours of our simulations, convection initiates rapidly and homoge-

neously, with scattered convection appearing across the entire domain. After a couple of

days, dry regions begin to develop, within which, deep convection is suppressed. These dry

regions begin to grow in size and subsequently become drier, reminiscent of the radiatively-

driven cold pool process described in Coppin and Bony (2015). As the dry regions expand

and merge, the moist regions become increasingly confined and become moister. The most

prevalent dry regions are usually surrounded by the most intense convection. Dry regions

continue to expand, constricting the moist regions until an equilibrium state is reached
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with quasi-stationary bands of intense convection being separated by dry regions with

little cloud. This evolution is consistent with the majority of non-rotating large-domain

simulations of RCE (Wing et al., 2017, 2020).
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Figure 3.3: Hovmöller diagrams of ĥn for
each SST for the LARGE domain runs.
ĥn is averaged across the short axis of the
domain.
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Figure 3.4: Daily means of the (a) spatial
variance of ĥ, and (b) spatial variance of
ĥn, for each SST for the LARGE domain.

Hovmöller plots for each simulation are shown in Figure 3.3 using ĥn as a proxy for

moist convective regions. The Hovmöller diagrams were made by averaging ĥn along the

short axis of the domain. The evolution of the variance of column-integrated FMSE for

each SST is shown in Figure 3.4a. Visually, this metric has a strong correlation with SST

since a warmer atmosphere is able to contain exponentially more water vapour via the
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Clausius-Clapeyron relationship, so there will be a larger difference in FMSE between the

dry and moist regions. Normalisation allows for fair comparisons of aggregation across

all SSTs whilst using the FMSE variance framework, as shown in Figure 3.4b. Var(ĥn) is

a consistent metric for each SST, with values less than 10−4 corresponding to uniformly

scattered convection, and values greater than 10−3 corresponding to strong convective

aggregation. Aggregation via this metric reaches a similar level once the convective ag-

gregation is in equilibrium despite convection organising into four bands in the 305 K

simulations and five in the other simulations. We note however that when considering

multiple metrics of convective aggregation for these simulations there is no agreement on

the SST sensitivity of aggregation in the final equilibrium state. Wing et al. (2020) found

that the subsidence fraction and the organisation index (Iorg) both increase with SST for

these simulations, indicating that the convection forms into more constricted bands as

SST increases, whereas the variance of column relative humidity slightly decreases with

SST.

Considering the Hovmöller plots in Figure 3.3, the fully-aggregated state is reached

around day 50 for the 300 K and 305 K simulations and around day 75 for the 295 K

simulation. This difference in aggregation rate can be attributed to the ability of dry

regions to expand and amplify. In the 300 K and 305 K simulations, the dry patches that

form very early on merge, amplify and continue to expand until the equilibrium state is

reached. However, in the 295 K simulation these patches struggle to amplify and are easily

remoistened, allowing convection to reoccur in that location – more persistent dry patches

begin to develop around day 15 and slowly expand and confine the convection to form the

quasi-stationary bands.

The points in time at which the variances of ĥ level off in Figure 3.4 appear to occur

earlier than the points in time at which the convection appears fully aggregated in Figure

3.3 particularly for the 300 K and 305 K simulations. This could in part be due to the

averaging along short axis of the domain for the Hovmöller diagrams, smoothing out
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any features that do not extend across the entire short axis. However, once the moist

regions no longer get moister, and the dry regions no longer become drier, var(ĥ) will

reach its maximum value. This shows that there can be spatial reorganisation of the

convective aggregation without a change in var(ĥ). It may only take around the timescale

of a convective cell for a column to reach the upper limit of ĥ, however it takes much

longer for the driest regions to reach the lower limit. The drying of the dry regions

may be on the same timescale as the subsidence timescale; the time it takes for the very

dry air near the tropopause to descend throughout the depth of the free troposphere.

Var(ĥ) correlates strongly with aggregation, although it does not necessarily indicate how

clustered the convection is once the maximum variance is reached. This is not a surprising

result. Beucler and Cronin (2019) relate the evolution of the length-scale of convection

aggregation to the FMSE budget terms, showing that the processes that increase FMSE

variance are not always the processes that increase the length-scale of aggregation. This

allows convection to spatially reorganise without changing FMSE variance.

25 50 75 100
Time (days)

2

1

0

1

2

3

(s
1 )

1e 9
(a)

295 K

25 50 75 100
Time (days)

2

1

0

1

2

3 1e 9
(b)

300 K

25 50 75 100
Time (days)

2

1

0

1

2

3 1e 9
(c)

305 K
Smooth Var(hn) tend.
Smooth Adv.
Surface flux
Shortwave
Longwave

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Var(hn) 1e 3

1

0

1

2

(s
1 )

1e 9
(d)

Budget terms vs Var(hn)

Var(hn) tend.
Adv.
SEF
SW
LW
295 K
300 K
305 K

Figure 3.5: Domain-mean of terms in Equation (2.2) for (a) 295 K, (b) 300 K, (c) 305 K
within the LARGE domain. Each point represents a daily mean of the term. The advec-
tion term is calculated as a residual of the other terms. Both the var(ĥn) tendency and
the advection term are 5-day running averages, shown to reduce noise. (d) Mean of each
term against var(ĥn) calculated for 40 evenly-spaced var(ĥn) bins.
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Time series of the domain-mean values of the terms in the var(ĥn) budget (Equation

2.2) are shown in Figure 3.5a-c. Where the terms are positive, they are contributing to

an increase in var(ĥn), and hence encourage aggregation (note that the advection term is

calculated as a residual of the other terms). Figure 3.5d shows the mean values of the

budget terms for a given degree of aggregation for each SST in terms of var(ĥn). From

this, the SST dependence of the budget terms can be seen throughout the aggregation

process. The growth phase of aggregation can be seen where the var(ĥn) tendency is

strongly positive (typically where var(ĥn) < 1.4×10−3, compare with Figure 3.4b) and

the maintenance phase is where the tendency is close to 0. The magnitude of all terms

tends to increase as var(ĥn) increases since each term in the equation is a product that

includes ĥ′n.

The longwave feedback is the main driver of aggregation in each of our simulations, with

its contribution to aggregation insensitive to SST during the growth phase. Most studies

are in agreement that the longwave feedback is a strong positive driver of aggregation,

whereas Wing and Cronin (2016) found that the longwave feedback increases with SST.

They find that this SST dependence is mainly due to clouds. This is because at lower SSTs,

the atmosphere is drier, making the infrared atmospheric windows much more transparent.

The atmosphere is then a poor emitter of longwave radiation because it is optically thinner

at these wavelengths. They hypothesise that the presence of clouds in the moist regions

increases radiative cooling by increasing the number of longwave emitters, hence decreasing

the longwave feedback. Specifically, the presence of low clouds would have a larger effect

than high clouds as their warm cloud tops would emit more radiation. Our simulations

have a distinct lack of low cloud compared to most cloud-resolving models (Wing et al.,

2020), and this may be the reason we do not see this trend. We find the longwave feedback

is also the dominant maintainer of aggregation, however its contribution to maintenance

falls with SST. This is discussed further in Section 3.4.1.

The shortwave feedback is always positive and is highly sensitive to SST, with higher
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SSTs having smaller shortwave feedbacks. Its contribution to driving aggregation is small

compared to the longwave term especially for warmer SSTs, though it is roughly three

quarters of the magnitude of the longwave feedback during the maintenance phase. These

results are in agreement with Wing and Cronin (2016) and are discussed further in Section

3.4.3.

A more surprising result is the magnitude of the surface flux feedback which is a strong

negative feedback at all stages and SSTs except for the very earliest stages of aggregation.

This is in contrast to the majority of studies which find the surface flux feedback to be

one of the dominant drivers of self-aggregation (Wing et al., 2017). Wing and Emanuel

(2014) describe two opposing surface flux feedbacks at play. Firstly, surface wind speeds

are higher in moister regions resulting in a positive feedback which helps drive aggregation.

On the other hand, there is enhanced evaporation in the dry regions due to enhanced air-

sea enthalpy disequilibrium resulting in a negative feedback. Typically the former feedback

dominates at early stages, whereas the latter is more relevant for aggregated convection

(Wing et al., 2017). The surface flux feedback is also highly sensitive to SST, with higher

SSTs generally having a less negative surface flux feedback. The reasons for the surface

flux feedback’s sensitivity to aggregation and SST are not investigated.

Figure 3.5d shows the sum of all the diabatic feedbacks (longwave, shortwave and sur-

face flux terms) is similar at all stages of aggregation in each of our simulations, however

the rate of change of aggregation increases with SST. The aggregation rate increases with

SST because of the SST sensitivity of the advection term. At early stages of aggregation

(var(ĥn) < 0.8×10−3) the (usually negative) advection feedback becomes increasingly pos-

itive as SST increases and is approximately zero for the 305 K simulation. This accelerates

the aggregation process for higher SSTs. Muller and Bony (2015) highlight the importance

of radiatively driven circulations from low clouds that result in upgradient transport of

FMSE resulting in a positive feedback. Despite our simulations having a notable lack of

low cloud, the average fraction of low-level cloud increases from 1.4% at 295 K to 3.2% at
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305 K, and may be a factor in explaining the SST dependence of the advection term. We

do not explore the reason for this relationship further.

There are two occasions in the 305 K simulations in which var(ĥn) rapidly decreases.

These are between days 55 & 60, and days 95 & 100 (Figure 3.4). Approximately five

days prior to var(ĥn) decreasing, the intensity of the convection in the moist bands begins

oscillating with a period of 2 to 5 days. The convection can become so intense that anvil

clouds spread far away from the convective updrafts and over the driest regions of the

domain. This creates anomalous longwave heating over anomalously dry regions (relative

to the instantaneous domain-mean), resulting in a sharp decrease in the domain-mean

longwave term (Figure 3.5c days 55 & 95). The intense convection might also generate

intense circulations that transport high ĥ away from moist regions, creating the strongly

negative advection feedbacks which ultimately cause var(ĥn) to fall. These events are not

directly caused by radiation-convection interactions so they are not investigated further

in this study.

In Section 3.4, we discuss radiation-FMSE interactions during the “Mature” phase of

aggregation, and we discuss the “Growth” phase of aggregation in Section 3.5. We define

the Mature phase of aggregation to be after the time at which the convection is most

clustered (after day 75 for the 295 K simulation, and after day 50 for the 300 K and 305 K

simulations, following Figure 3.3) and where var(ĥn) is between 1.5×10−3 and 2×10−3.

This var(ĥn) range was chosen because the mean var(ĥn) tendency is close to zero for each

SST (Figure 3.5d) and the simulations are within this range for a sizeable duration (Figure

3.4b). Fluctuations in var(ĥn) outside this range will not bias the results. The Growth

phase is sampled for var(ĥn) between 3×10−4 and 4×10−4. This is an arbitrary range –

using any range in which aggregation increases rapidly for all SSTs does not affect the

conclusions of these results. We have chosen these narrow ranges to compare convection

at similar stages of aggregation, with FMSE anomalies being similar in magnitude.
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3.4 Cloud Type Contributions during the Maintenance of

Aggregation

Interactions between radiation and cloud/moisture responses to convection have been

shown to be crucial contributors to convective self-aggregation (e.g. Arnold and Putman,

2018; Wing et al., 2017). In this section, we investigate the impacts of cloud-radiative in-

teractions on the maintenance of self-aggregation during the Mature phase of aggregation

within our LARGE simulations. Figures presented in Sections 3.4.1 and 3.4.2 also display

data for the Growth phase of aggregation which are discussed in Section 3.5.

Note that results presented here are limited to our specific simulations. They are

outliers in RCEMIP in a number of ways, so the results might not be representative of all

RCE simulations. Wing et al. (2020) report that in terms of cloud fraction, our LARGE

simulations have roughly one fifth of the low-level cloud fraction compared to the mean of

the other RCEMIP cloud resolving models, but they also have one of the largest high-cloud

fractions.

The radiative heating rate of an atmospheric column is determined by the difference

between the radiative fluxes into the atmosphere and the radiative fluxes out. The only

longwave flux into the atmosphere is the upwelling surface radiation which is uniform

in space and time in our simulations, owing to the fixed SST. Therefore, the longwave

heating rate is determined by the magnitudes of the downwelling flux into the surface

and the outgoing longwave radiation (OLR). These fluxes are sensitive to the emission

heights and opacities of different layers, which in turn depend on the profiles of cloud and

moisture. Net longwave radiation into the atmosphere is always negative, but longwave

cooling can be strongly reduced with the presence of optically-thick high cloud.

Incoming solar radiation is the main source of shortwave radiation into the atmosphere

(surface albedo is 0.07 in our simulations). Water vapour is an excellent absorber of

shortwave radiation, so the column humidity will have a major effect on the shortwave
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heating rates. Clouds are also good absorbers of shortwave radiation and act to increase

the amount of diffuse radiation, allowing more radiation to be absorbed by cloud and

water vapor. However, they are also good reflectors, resulting in clouds having either a

positive or negative influence on atmospheric shortwave heating (Wing and Cronin, 2016).
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Figure 3.6: Maps of (a) condensed water path (kg m−2), (b) FMSE anomaly (MJ m−2),
(c) longwave heating anomaly (W m−2), (d) shortwave heating anomaly (W m−2), (e)
Clear covariance quadrant (Section 3.4.2) - note that clouds are coloured white in (e).
Snapshots taken at day 100 in the LARGE domain with SST = 300 K. Regions where the
FMSE anomaly (“H”) and radiative heating anomaly (“L”) have the same sign contribute
to increasing var(ĥ). Note that the FMSE, shortwave and longwave anomalies relative to
the instantaneous domain mean and are not normalised.

From Figures 3.6a & c, we see a strong connection between cloud and net longwave

heating. As previously noted, there is a distinct lack of low cloud in our simulations, so

the vast majority of cloud in this figure are high-topped clouds. These high-topped cloud

regions have an average longwave heating anomaly of +47 W m−2 relative to the domain

mean, with the thicker clouds tending to have higher anomalies. The remaining cloud

type regions have an average longwave anomaly of −16 W m−2, and the clear regions have

an average of −11 W m−2. The shortwave heating rates are very strongly correlated with
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ĥ′. With changes in ĥ stemming from changes in water vapor, shortwave heating rates

depend mostly on the amount of water vapour in the column, and 99% of the shortwave

heating anomalies fall in the range of −15 to 28 W m−2. Note that radiative fluxes are

output as hourly-averaged variables whereas FMSE and 3D data (including cloud type

classification) are instantaneous snapshots.

We wish to study how the radiative feedbacks of each cloud category contribute to

the var(ĥn) tendency of the entire domain. Since both radiative anomalies and FMSE

anomalies are calculated at each grid point, the instantaneous values of the radiative

terms in Equation (2.2) can also be calculated at each point across the domain. Then,

by knowing the cloud type at each grid point, the contributions of each category to the

domain-mean radiative terms can be found.

Note that this approach does not describe the cloud-only effect, and since the anomalies

of FMSE and radiation also depend on the domain-mean, var(ĥn) is not purely a local

metric. We only consider the column-integrated cloud-radiative feedbacks here, although

indirect radiative interactions with cloud are shown to be important via the generation of

circulations (e.g. Muller and Held, 2012; Muller and Bony, 2015; Holloway and Woolnough,

2016). Nevertheless, we find the approach to be a useful way to compare the relative

importance of each cloud type’s direct radiative contribution to self-aggregation across a

range of SSTs.
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Figure 3.7: (a) Longwave and (b) shortwave radiative heating anomalies vs condensed
water path for each cloud type (defined in Section 3.2.2), and (c) distributions of condensed
water path for each cloud type. Data from the LARGE, 300 K SST simulation during
the Mature phase. 50 bins are spaced logarithmically throughout the CWP range. The
percentage shown in (c) is the percentage of each cloud type within a given bin.

To begin to quantify the longwave and shortwave heating effects of clouds, the mean

radiative anomalies of each cloud type (defined in Section 3.2.2) for a given CWP are

shown in Figure 3.7a & b. The radiative heating in both the longwave and shortwave
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varies strongly with CWP. The cloud type is also a very important factor in the radiative

anomalies, particularly in the longwave. For a given CWP, High clouds have the largest

column longwave heating rates since they have cold cloud tops, resulting in low outgoing

longwave radiation (OLR). This effect, combined with relatively little emission to the

surface, leads to strongly positive longwave heating anomalies. Low clouds have warm

tops and warm bases, so they effectively emit longwave radiation to space as well as to the

surface, cooling the column faster than Clear regions. Deep clouds have longwave heating

rates in between High and Low clouds for a given CWP. For a given total CWP, they

have less optically thick high-level cloud than High clouds, allowing more radiation to be

transmitted from the warmer lower levels. In addition, their low, warm bases strongly

emit towards the surface, further decreasing the column radiative heating.

In the shortwave, each cloud type’s heating rate increases with CWP, although this

is largely due to increased shortwave absorption by water vapour within these columns

(as shown in Wing and Emanuel (2014) and Section 3.4.3). However, there is some de-

pendence on cloud type due to the high reflectivity of clouds. Columns with Low clouds

typically have the highest shortwave heating rates. Their low cloud top height allows lots

of shortwave radiation to be absorbed by water vapour. The radiation they reflect may

also be absorbed by water vapour above the cloud. High clouds have the lowest shortwave

heating rates as they reflect a large amount of solar radiation before it can be absorbed

by the water vapour below.

The distributions of CWP for each cloud type are shown in Figure 3.7c. These distri-

butions, paired with the dependence of the radiative anomalies on CWP, determine the

mean radiative anomalies for each cloud category (domain-averaged heating rates of all

categories are shown in Figures 3.9e-g). Despite the High clouds having the largest long-

wave heating rate for a given CWP, their CWP distribution peaks at around 0.01 kg m−2,

corresponding to a longwave heating anomaly of roughly 20 W m−2. In contrast, the High

& Mid cloud has a peak CWP around 0.5 kg m−2 corresponding to a longwave heating
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anomaly around 70 W m−2. This results in High clouds having only the fourth largest

domain-averaged longwave heating rates out of all categories.
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Figure 3.8: Distributions of ĥn for each cloud type for all SSTs within the LARGE domain
during Mature phase. The vertical dashed line indicates the domain-mean ĥn throughout
the Mature phase. Note that each curve is normalised individually.

Distributions of ĥn during the Mature phase of the LARGE simulations for each cloud

category are shown in Figure 3.8. The vast majority of clouds occur within anomalously

high ĥn regions, with only a few High and Low clouds occurring with negative ĥ′n. High

clouds have the largest spread of ĥn out of all the cloud types as they can extend hundreds

of kilometres away from the updraft, spanning a wide ĥn range. Low clouds occur within

a broad span of ĥn as they can form under a wide range of conditions. At higher ĥ′n

regions, Low clouds form and may continue to develop into congestus and cumulonimbus,

as the environment is favourable for deep convection. At lower ĥ′n regions, descending

motion throughout the free troposphere increases stability and reduces humidity, making

the atmosphere unfavourable for deep convection, but shallow cumulus may still form

atop the well-mixed boundary layer. The majority of the other cloud types are associated

with deep convection, which only occurs within high ĥ′n regions, where the environment

is favourable for updraft development. Whilst the domain-mean ĥ′n for the Clear regions

is slightly negative, there is a very large spread in the distribution of ĥn, with just under

half of the Clear regions having positive anomalies.
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The domain-mean ĥn, as well as its lower limit, remain very similar with SST. The

upper limit increases slightly with SST, as does the mean ĥn for most cloud types. We do

not have a good explanation for this phenomenon.

3.4.1 Longwave Cloud Interactions

The contribution of each cloud category to the radiative terms can be calculated by mul-

tiplying their mean covariance between the normalised radiative and ĥ anomalies by their

cloud fraction. Figure 3.9a shows that it is the Clear, High, High & Mid, and Deep cat-

egories that have the largest contribution to the longwave term during the Mature phase

(compare open circles representing the Mature phase), with the magnitude of their con-

tributions being highly sensitive to SST. The contributions of the Low, Mid, Mid & Low

and High & Low categories have a relatively insignificant contribution. To understand the

magnitudes of the contributions of each cloud type to the longwave term, the constituents

of the longwave term are shown in the left-hand panels in Figure 3.9. The figure shows

the LW ′
n × ĥ′n covariance, and the fraction of each category. The mean LW ′

n and ĥ′n are

also shown, as well as the non-normalised longwave anomaly. Note that the mean LW ′
n

multiplied by the mean ĥ′n does not equal the mean LW ′
n × ĥ′n covariance, although for

most categories they are approximately equal. One notable exception is the LW ′
n × ĥ′n

covariance for the Clear regions at 305 K, which is negative, despite having both negative

LW ′
n and ĥ′n. This is discussed in Section 3.4.2.

Despite their relatively low LW ′
n × ĥ′n covariance, High clouds are one of the main

contributors to the longwave term at all SSTs because of their abundance, occurring

roughly four times as often as any other cloud type (Figure 3.9i). The longwave covariances

for the High & Mid and Deep clouds are high compared to the other categories, and they

are abundant enough to have an impact on the overall longwave term (Figure 3.9a). Low,

Mid, and Low & Mid clouds have a small mean longwave covariance and also a small

total fraction, making their contribution to the overall longwave term negligible. Despite
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Figure 3.9: Mean (a) contribution to the longwave term in Equation (2.2), (b) contribu-
tion to the shortwave term, (c) normalised longwave × FMSE covariance, (d) normalised
shortwave × FMSE covariance, (e) normalised longwave heating anomaly, (f) normalised
shortwave heating anomaly, (g) longwave heating anomaly, (h) clear-sky heating divided
by total shortwave heating rate, (i) cloud fraction, and (h) normalised FMSE anomaly for
the Growth (dots) and Mature phase (open circles) of the LARGE domains. Data points
for each category are in order of SST increasing to the right. Boxplots showing the spread
of the data for the Mature phase are shown in Figure 3.10.
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having the third largest longwave covariance, the High & Low cloud type has one of the

smallest cloud fractions, making its overall contribution also very small.

There is a significant decrease in the contributions of High and High & Mid clouds to

the longwave term as SST increases (Figure 3.9a). Figure 3.9c shows that the LW ′
n × ĥ′n

covariance remains similar for these cloud types across all SSTs, yet the fraction of these

clouds decreases (Figure 3.9i). This suggests the sensitivity of the High and High & Mid

cloud’s longwave contribution to aggregation is predominantly due to the sensitivity of

their abundance to SST. This decrease in anvil cloud fraction with SST is consistent with

the stability iris mechanism described by Bony et al. (2016), who describe the reduction in

anvil cloud as a consequence of increased anvil stability and decreased convective outflow

with increasing SST. This decrease in high clouds is consistent with ∼70% of the other

RCEMIP models (Wing et al., 2020).

The net longwave heating rate for all cloud types is negative, and gets more negative

with increasing SST (not shown). This SST sensitivity is primarily because the down-

welling longwave radiation into the surface increases with SST faster than the upwelling

longwave radiation. However, the non-normalised longwave heating anomalies tend to

become more positive with SST. As noted in Section 3.3, Wing and Cronin (2016) hy-

pothesise that the longwave cloud feedback would be more negative at lower SSTs because

the clear-sky atmosphere is a weaker emitter of longwave radiation at cooler SSTs, whereas

clouds act as effective longwave emitters, making their LW ′ more negative. Figure 3.9g

is in agreement with this hypothesis, with LW ′ for each cloud type being more negative

at lower SSTs. Once the longwave anomalies are normalised however, we see there is a

slight decrease in LW ′
n with increasing SST for the significant cloud types as the difference

between ĥmax and ĥmin increases. The decrease in LW ′
n, along with the slight increase

in ĥ′n with SST, results in the LW ′
n × ĥ′n covariance for the most abundant cloud types

remaining approximately constant with SST.
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3.4.2 Longwave Interactions within the Clear Regions

Figure 3.9a shows the contributions of the Clear regions to the longwave term decrease and

become negative with increasing SST. The reason for this is not immediately apparent,

with the mean LW ′
n × ĥ′n covariance becoming negative, despite both the mean LW ′

n and

mean ĥ′n remaining negative (which would usually produce a mean positive covariance).

This indicates that there must be a significant proportion of the Clear regions with large

negative covariance which is able to reduce the overall contribution to the longwave term

with increasing SST.

We consider four types of Clear regions at play here whose significance changes with

SST. There are the regions with both positive ĥ′ and LW ′ (H+L+), regions with both

negative ĥ′ and LW ′ (H-L-), positive ĥ′ and negative LW ′ (H+L-) and finally, negative

ĥ′ and positive LW ′ (H-L+). Note that this “H” and “L” nomenclature is only used to

categorise the Clear regions and is not to be confused with High and Low clouds. The Clear

covariance quadrant map in Figure 3.6e shows that H+L+ regions are rare and are found

in the highest ĥ′ areas, with a portion of these regions perhaps occurring as an artifact

of the condensed water content used to define clouds. A lot of these H+L+ columns may

indeed have enough high-altitude condensed water to produce a positive longwave heating

anomaly. H+L- regions are typically found surrounding the cloud clusters, with H-L-

occupying the majority of the dry regions. H-L+ occur only within the very driest areas.

The H+L+ and H-L- regions both have a positive LW ′× ĥ′ covariance whereas the H-L+

and H+L- regions have a negative covariance. By calculating the domain fraction of these

regions, as well as their mean LW ′
n and ĥ′n and their mean LW ′

n × ĥ′n covariance, we can

see how their influences on the longwave term changes with SST. These calculations are

shown in Figure 3.11 for both the Growth phase and Mature phase of aggregation. The

Growth phase is discussed in Section 3.5.

There is a shift in dominance from the positive covariance regions to the negative co-
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Figure 3.11: Mean (a) contribution to the normalised longwave term, (b) domain fraction,
(c) normalised longwave heating anomaly, (d) mean normalised longwave × FMSE co-
variance, (e) longwave heating anomaly, and (f) normalised FMSE anomaly of each Clear
category for the Growth (dots) and Mature phase (open circles). Boxplots showing the
spread of the data for the Mature phase are shown in Figure 3.12
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normalised longwave heating anomaly, (d) mean normalised longwave × FMSE covariance,
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during the Mature stage of the LARGE domains. Each data point represents the instan-
taneous domain-mean of the category. Boxes and whiskers follow the same format as in
Figure 3.10.
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variance regions as the SST increases. For all SSTs, the H+L+ regions only occupy around

1% of the domain, making their overall contribution to the longwave term negligible. At

295 K, there are two significant Clear regimes; H-L-, occupying 44% of the domain and

H+L-, occupying 25%. They have similar but opposite LW ′
n × ĥ′n covariances, so the

Clear region’s contribution to the longwave term is dominated by the H-L- regions based

on their abundance. This results in a positive contribution of the Clear regions to the

longwave term.

As SST increases, the LW ′ of the Clear regions as a whole becomes significantly less

negative (Figure 3.11e). This is mainly due to the approximate halving in the abundance

of high-topped clouds, which have strong positive longwave heating anomalies. This then

reduces the domain-mean longwave heating rate, making the longwave anomaly of the

Clear regions less negative. If we calculate LW ′ for each category using the absolute

longwave heating rates of the cloud types at 295 K and use the cloud type fractions of

the 305 K simulations, we find the LW ′ of the clear regions reduce by ∼51%. After

normalising the longwave anomalies, the SST sensitivity is even more notable (Figure

3.11c). The contribution of the H-L- regions falls rapidly as the LW ′
n × ĥ′n covariance

decreases. At the same time, the H-L+ regions (with negative covariance) become far

more abundant, also helping to decrease the Clear region’s contribution to the longwave

term. This feature was also noted by Wing and Emanuel (2014) and Emanuel et al.

(2014), who explain that extremely dry columns with little low-level moisture are unable

to effectively emit radiation, resulting in anomalous warming.

The magnitude of ĥ′ is largest for the two regimes with positive LW ′ (L+, Figure

3.11f). This is because the relationship between ĥ and longwave heating within the Clear

regions is not linear; the strongest longwave cooling occurs roughly where ĥ′ is zero for

all SSTs. The effective upward emission level is defined as the altitude at which the

temperature is such that σT 4 is equal to the OLR, where σ is the Stefan-Boltzmann

constant. Similarly, the effective downward emission level is the altitude at which the
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Figure 3.13: (Top) All longwave fluxes into, and out of the atmosphere plotted against ĥn
anomaly. 295 K: dotted, 300 K dashed, 305 K: solid. The fluxes out of the atmosphere are
plotted with positive direction into the atmosphere so that the three fluxes add together to
equal the net longwave heating. Horizontal grey lines indicate the domain-mean longwave
column heating. (Bottom) Percentage of Clear grid points within a given 0.001 ĥ′n range.
The ĥ′n at which the mean longwave heating anomaly is zero is indicated by the vertical
red lines. Clear regions to the left of the red line have a positive longwave anomaly on
average.
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temperature is such that σT 4 is equal to the downwelling longwave radiation at the surface.

For anomalously moist regions, high humidity in the boundary layer makes the effective

downwelling level of emission close to the surface. Therefore, an increase in moisture does

little to increase the downwelling longwave radiation. In these regions, an increase in

moisture has more of an effect in raising the upwelling level of emission to a cooler level,

decreasing OLR, reducing longwave cooling. For anomalously dry regions, the infrared

atmospheric windows are largely transparent to longwave radiation, so the upwelling level

of emission is low (enhanced OLR) and the downwelling level of emission is high (reduced

downwelling radiation). In these regions, the free troposphere is very dry, so humidity

variations are mainly affected by changes in boundary layer humidity. An increase in

humidity in these dry regions has more of an effect in lowering the downwelling level of

emission than raising the upwelling level of emission. Therefore, increasing humidity leads

to a lowering of the downwelling emission level, increasing downwelling longwave radiation,

enhancing longwave cooling. Upwelling and downwelling longwave fluxes are shown as a

function of ĥ′n in Figure 3.13. Specific humidity profiles and effective emission levels as a

function of ĥ′n for each SST are shown in Figure 3.14.

With the mean longwave heating rates skewed more toward the Clear longwave heating

rates with increasing SST, there is a greater quantity of Clear regions with positive LW ′.

This can be seen in the bottom panel of Figure 3.13, noting the tails of the ĥ′n distributions

extend more into the regions with positive longwave heating anomalies as SST increases.

This has the effect of lowering the LW ′
n× ĥ′n covariance of the H-L- regions, increasing the

contribution of H-L+ regions to the longwave feedback term, and making the total Clear

regions’ contribution to the longwave term negative at high SSTs.

3.4.3 Shortwave Interactions

Figure 3.9b shows that shortwave feedbacks in the Clear regions contribute the most to

the shortwave term once the domain is aggregated. However, this is an artifact of the
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emission shown in red, effective level of longwave emission into the surface shown in blue.

large fraction of the Clear regions. It can be seen from Figure 3.6b & d that there is a

very strong relationship between both FMSE and shortwave anomalies. This is because

variations of FMSE are dominated by changes in water vapour, which is an excellent

absorber of shortwave radiation. This results in the shortwave-FMSE covariance being

positive at almost every location (e.g. Arnold and Putman, 2018).

A large portion of the cloud contribution to the shortwave term is due to the amount

of water vapour in the column. The contribution of water vapour to the column shortwave

heating rate can be quantified by calculating the clear-sky heating rates and dividing by the

total heating rates for each category as shown in Figure 3.9h. The Clear regions have the

second lowest SW ′
n×ĥ′n covariance behind High clouds, yet they contribute the most to the

shortwave term due to the abundance of Clear regions. The total shortwave heating rates

can almost entirely be explained by the column WVP, particularly at higher temperatures

where the quantity of water vapour is higher, making the condensed water content less

significant at higher temperatures. The clear-sky component of the total shortwave heating
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rate is lowest for clouds with the highest CWP since there is a higher fraction of the heating

rate due to condensed water. The clear-sky heating rate is sometimes higher than the all-

sky heating rate for the high clouds since the cloud reflects the radiation that would

otherwise have been absorbed by the low-level water vapour.

The contribution of the shortwave term to aggregation is highly sensitive to SST, be-

coming less important as SST increases. This is because the range of SW ′
n decreases with

increasing SST, whereas the range of ĥn remains similar. This results in the domain-mean

normalised shortwave-FMSE covariance, and therefore, the shortwave term, decreasing

with SST (analysis not shown). The range of column WVP across the domain increases

exponentially with SST, whereas the relationship between column shortwave heating with

WVP is logarithmic (Vaquero-Mart́ınez et al., 2018). This results in the range of short-

wave heating across the domain being approximately linear. Once the shortwave heating

anomalies are normalised (divided by ĥmax − ĥmin), SW
′
n decreases with increasing SST.

3.5 Cloud Type Contributions throughout the Aggregation

Process

So far, we have only discussed the radiative interactions within the already-aggregated

LARGE domains. In this section, we look at the key radiative-convective interactions

responsible for the development of aggregation in the Growth phase, studying how these

interactions depend on SST, and how they are sensitive to aggregation.

Interactions between ĥ and longwave radiation are the main drivers of self-aggregation

at early times (Figure 3.5d). The longwave term is insensitive to SST during the Growth

phase, whereas an SST sensitivity develops once the aggregation is Mature, with the mean

longwave term decreasing with SST. Throughout the aggregation process, the magnitude

of each cloud type’s contribution to both radiative terms tends to increase. This is because

the magnitude of ĥ′ increases, and thus the positive radiative feedbacks increase.
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During the Growth phase, the contributions of the different cloud types to the longwave

term remain similar with SST, with longwave interactions with high-topped clouds and

Clear regions driving aggregation. Perhaps coincidentally, SST trends in the domain

fractions of these cloud types are balanced by opposite trends in the LW ′
n× ĥ′n covariance

resulting in their contributions to the longwave term being similar.

The development of the negative SST-dependence of the longwave term during the

Mature phase can be largely attributed to the amount the high-topped cloud fraction

reduces from the Growth phase to the Mature phase, which is greater in relative terms

for higher SSTs. The SST trend of the LW ′
n × ĥ′n covariance of High clouds also be-

comes more negative during the Mature phase. Figure 3.9g shows that the LW ′ remains

approximately constant with aggregation for all categories, so High clouds’ increasingly

negative LW ′
n × ĥ′n covariance with SST during the Mature phase has to do with how

ĥ′n for High clouds changes with aggregation. Because of the stability iris mechanism

described by (Bony et al., 2016), anvil clouds extend further away from the updrafts at

cooler SSTs, allowing anvil clouds to occur in lower FMSE regions. This effect is enhanced

with disaggregated convection where the horizontal scale of the moist regions is small. For

aggregated convection, the moist regions are much larger in size, so even anvils that ex-

tend far beyond the updraft will remain in anomalously moist environments, enhancing

the longwave-FMSE feedback. Therefore, the ĥ′n of High clouds increases less with aggre-

gation at higher SSTs. This, combined with the decrease in high-topped cloud fraction

with SST, decreases the cloud contribution to the longwave feedback during the Mature

phase as SST increases.

The longwave feedback in the Clear regions is positive and insensitive to SST during

Growth phase. The H-L- and H+L- categories are the only Clear categories that have a

significant impact during the Growth phase, with the H-L- having the largest contribution

to the longwave term (Figure 3.11a). During the Growth phase, the contribution of the

H-L- category remains similar since the increase in its fraction with SST is perhaps coin-
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cidentally balanced by the decrease in LW ′
n × ĥ′n covariance. As the convection becomes

more aggregated, the fraction of the H-L- regions becomes more constant with SST. The

LW ′
n×ĥ′n covariance also becomes increasingly negative with SST because ĥ′n becomes less

anomalously negative. These factors result in the longwave feedback of the Clear regions

developing the negative SST dependence once the convection aggregates.

Wing and Cronin (2016) find the clear-sky longwave feedback increases with SST par-

ticularly during the Growth phase, which is consistent with the simple two-layer model

outlined in Emanuel et al. (2014) that suggests the clear-sky longwave feedback becomes

more positive with SST. This is because at low SSTs, the tropospheric longwave opacity

is low, so an increase in humidity results in an increase in atmospheric longwave cool-

ing (negative feedback). At high SSTs, the tropospheric longwave opacity is higher due

to increased water vapour. Here, an increase in humidity results in a decrease in long-

wave cooling (positive feedback). We find the Clear regions’ longwave contribution to

the domain-mean longwave feedback is similar with SST during the Growth phase, then

decreases with SST during the Mature phase. This effect is not a disagreement with those

studies, as this study does not consider the clear-sky radiative fluxes separately. Instead,

we only use the total radiative fluxes and we break down the domain-mean longwave

feedback into contributions from Clear and cloudy regions. Our study finds the long-

wave contribution of the Clear regions decreases with SST because their longwave cooling

becomes less anomalous with SST due to the reduction of high-topped clouds.

The shortwave interactions become less significant for driving aggregation as SST in-

creases. The clear-sky shortwave contribution is inversely proportional to the difference

between ĥmax and ĥmin, and the difference in shortwave absorption between cloudy and

clear regions decreases with SST as the atmosphere contains more water vapour. This

results in the shortwave interactions being approximately 2.5 times more important in

driving aggregation at 295 K compared to 305 K (Figure 3.9b & 3.5d).

The shortwave anomalies increase in magnitude as aggregation increases, since the

53



Chapter 3. Cloud-Radiation Interactions and Their Contributions to Self-Agg.

cloudy regions become more humid and the clear regions become drier, amplifying the

shortwave heating anomalies. Because of this, the shortwave feedback is more effective

in maintaining aggregation than driving it. However, at very early times, particularly for

cooler SSTs, the shortwave absorption by clouds can have a significant impact on increasing

aggregation. This can be seen in Figure 3.9h, with the clear-sky component contributing

more to shortwave heating during the Mature phase, and also in the time series of the

clear-sky component of the shortwave term (using clear-sky radiative transfer calculations)

shown in Figure 3.15. At very early times, there is little variation in horizontal distribution

of water vapour, so the shortwave absorption by clouds has a significant impact on the

mean SW ′
n × ĥ′n covariance. At these times, the shortwave absorption by clouds accounts

for between 30% and 50% of the shortwave term, with clouds having a larger impact at

colder SSTs due to the decrease in tropospheric water vapour. This SST dependence is

consistent with Wing and Cronin (2016). As soon as dry and moist patches begin to

develop, the horizontal variations in the shortwave absorption of water vapour dominate

the shortwave term, accounting for 87% - 96% of the shortwave term as SST increases

once the domains are aggregated.

3.6 Comparison of Convection within High-Resolution Sim-

ulations

In the previous sections, only radiative interactions within LARGE domain simulations

have been analysed. In addition to these, we have also simulated the three-SST RCEMIP

cases in three other model configurations on smaller (100 km × 100 km) domains to investi-

gate how radiative interactions with clouds and moisture may be affected by horizontal grid

spacing and the treatment of subgrid condensation. Our SMALL and SMALL RHCRIT

simulations have a grid spacing of 1 km, while the SMALL HI simulations have a grid

spacing of 0.1 km. While the SMALL and SMALL HI both have a uniform RHcrit pa-

54



Chapter 3. Cloud-Radiation Interactions and Their Contributions to Self-Agg.

0 20 40 60 80 100
Time (days)

50

60

70

80

90

100

%
 o

f t
ot

al
 S

W
 te

rm

Clear-sky component of SW term

295 K
300 K
305 K

Figure 3.15: Time series of the daily-mean clear-sky component of the shortwave term,
calculated as the domain-mean shortwave term using clear-sky heating divided by the
domain-mean shortwave term.

rameter of 99%, the SMALL RHCRIT simulations have RHcrit decreasing from 96% near

the surface to 80% at 900 m and above.

With the length scale of the aggregated features in the LARGE domain being many

times larger than the dimensions of our smaller simulations, we are not able to quantify

how these changes in resolution and RHcrit explicitly affect aggregation. However, we are

able to see how the radiative properties of the clouds are affected. We can then infer how

these changes in the radiative properties of cloud may impact aggregation in larger-scale

simulations.

Convection displays some degree of aggregation in all of our simulations except for

the SMALL HI 295 K case. On average, the large domain simulations reach a maximum

var(ĥn) of 2.5×10−3, the SMALL and SMALL RHCRIT simulations reach 1.2 ×10−3, and

the SMALL HI simulations reach an average of 0.21×10−3. Time series of var(ĥn) for each

domain and SST are shown in Figure 3.16. To compare radiative interactions with clouds

across our domains, disregarding the influence of strong aggregation, we compare times
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at which var(ĥn) is less than 4×10−4. We also neglect the first two days of the LARGE,

SMALL and SMALL RHCRIT, and the first five days of the SMALL HI simulations, to

ignore the spin-up phase of the simulations

0 50 100
Time (Day)

10 5

10 4

10 3

va
r(h

n)

LARGE

295K
300K
305K

0 50 100
Time (Day)

SMALL

0 50 100
Time (Day)

SMALL_HI

0 50 100
Time (Day)

SMALL_RHCRIT
Variance of normalised column-integrated FMSE for each domain and SST

Figure 3.16: Time series of the variance of normalised FMSE for all domains and SSTs.

Profiles of cloud fraction reveal that both grid spacing and RHcrit strongly influence

the vertical structure of clouds across the domain (Figure 3.17). This figure shows only

the 295 K simulations, although similar changes are seen at the other SSTs. As the grid

spacing is reduced, there is a sharp increase in the quantity of low and mid-level cloud, with

this increase being most apparent when looking at the SMALL HI simulation. Low-level

clouds generally have smaller length scales so cannot be resolved in coarser grid spacings

due to the unrealistically high RHcrit value used. Our original RHcrit value becomes

more suitable at lower grid spacings, effectively representing these small-scale clouds more

realistically. There is also a decrease in altitude of high-level clouds with decreasing grid

spacing.

As the RHcrit is decreased to that used in the Met Office UKV model, the overall

cloud amount increases. This comes from an increase of more than an order of magnitude

in low-level cloud and also a significant increase in mid-level cloud. The upper-level cloud
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Figure 3.17: Temporally-averaged cloud fraction profiles after the spin-up period and while
var(ĥn) < 4×10−4 for each domain setup at 295 K. Horizontal dashed lines represent the
low and high cloud thresholds (P1 and P2).
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amounts remain largely unchanged. Fractions of the High, and High & Mid cloud types

are greatly reduced due to the increase in low and mid-level clouds, in turn increasing the

quantities of the High & Low and Deep cloud types.

Longwave interactions with FMSE are the main drivers of self-aggregation in our mod-

els (Section 3.3, Figure 3.5). With cloud-longwave heating rates remaining largely insen-

sitive to aggregation, a fair comparison of cloud-longwave interactions across our domains

can be made. We do not compare the FMSE anomalies of the cloud types as the degrees of

aggregation, and hence FMSE anomalies of different cloud types, are very different across

the domains, despite neglecting the mature phase of aggregation. We also do not compare

the shortwave heating anomalies for the same reason. With shortwave heating rates being

mostly dependent on the column water vapour, the changes in shortwave heating rates

due to the resolution dependence of cloud structures would be overshadowed by the effects

of different degrees of aggregation.

Comparisons of cloud type fraction, normalised longwave heating anomaly, absolute

longwave heating, and CWP for each cloud category, SST and domain configuration are

shown in Figure 3.18. From this, the resolution dependence of the longwave term for self-

aggregation may be inferred. There is a significant decrease in the longwave heating rates,

and longwave heating anomalies of high-topped clouds with both decreasing grid spacing

and decreasing RHcrit. This is mainly due to an increase in OLR rather than an increase

in the downwelling longwave radiation which remains approximately constant for these

categories with grid spacing (not shown). This increase in OLR may be mostly explained

by the change in cloud top height as well as the decrease of CWP. There is an associated

increase in cloud top temperature with decreasing altitude, which increases OLR. One

plausible explanation for the reduced cloud top height is that increased updraft mixing

at higher resolutions decreases updraft buoyancy and thus reduces the maximum altitude

of the plume (this analysis is outside the scope of this thesis). The CWP decreases for

the majority of cloud types as the critical condensation humidity is reached more widely,
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i.e. by decreasing RHcrit or decreasing the grid spacing. Since water vapour is more

readily condensed, the clouds that do form are more widespread and less concentrated. A

decreasing CWP of these high-topped clouds decreases their opacity to longwave radiation,

decreasing the effective level of emission. This also increases OLR, helping to lower their

longwave heating rates.
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Figure 3.18: Instantaneous domain-means of (a) domain fraction, (b) normalised longwave
heating anomaly, (c) absolute longwave heating, and (d) condensed water path, for each
cloud category within all domain setups and SSTs. Data taken after the spin-up period
and while var(ĥn) < 4 × 10−4 for each domain setup. Note that the fraction of the Clear
regions (top-left panel) are on a separate axis to the remaining cloud types. Vertical bars
represent the range of the 10th to 90th percentile.

The longwave heating anomalies of the remaining cloud categories without high-level

cloud remain similar with grid spacing and RHcrit. As shown in Figure 3.7a, the longwave

heating rates of these cloud types are less dependent on CWP in the LARGE simulations.
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The combined fractions of the lower longwave heating rate categories (the combined sum

of the Clear, Low, Mid and Mid & Low categories) remains similar with resolution and

RHcrit, and remain far more abundant than the high-topped cloud categories with rela-

tively high longwave heating rate categories. This reduces the spread of longwave heating

rates across the domain, decreasing the magnitude of the longwave anomalies for the ma-

jority of categories. This may decrease the LW ′
n× ĥ′n covariance in moist regions and may

significantly reduce the longwave term. An increase in Low and Mid & Low cloud may

also significantly reduce the longwave term since they have strong negative heating rates

and are mainly found in positive FMSE anomaly regions, so have a negative LW ′
n × ĥ′n

covariance on average.

Figure 3.17 shows that as grid spacing is reduced, there is a large increase in cloud frac-

tion in the mid-troposphere. This results in the fraction of the High category decreasing,

and the High & Mid and Deep category fractions increasing. These categories typically

have higher LW ′
n than High clouds. However, the mean LW ′

n of all clouds in the domain

is reduced as grid spacing is reduced. With clouds tending to occur in high-FMSE regions,

the domain-mean longwave term would likely be reduced. We find a similar result in the

reduced RHcrit simulations. With an increase in the low-level cloud, the domain fractions

of the High and High & Mid categories decrease, whereas the fraction of Deep clouds

increases. Again, Deep clouds tend to have very high LW ′
n, however the mean LW ′

n of

all the clouds is again reduced, and is mainly a result of the increased Low cloud fraction

with negative LW ′
n.

In our LARGE simulations, the contributions of longwave interactions with FMSE

to aggregation decrease with SST as anvil cloud fraction reduces. These cloud-radiation

trends with SST are largely consistent with those in the simulations with different grid

spacing (SMALL and SMALL-HI ). The total high-topped cloud fraction decreases with

SST by a similar amount, as does the decrease in LW ′
n for these clouds, meaning trends in

the radiative terms to aggregation with SST would likely be similar. For the SMALL RHCRIT
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simulations however, with Low cloud approximately doubling from 295 K to 305 K, the

magnitude of the longwave term would decrease faster with SST than our original higher-

RHcrit simulations. In the LARGE simulations, we also find that Clear regions have

a significant positive contribution to aggregation at cooler SSTs, with this contribution

decreasing with SST and becoming negative. The longwave heating rates of high-topped

clouds are more negative in the reduced RHcrit simulations, in turn increasing the domain-

mean longwave cooling. This makes the longwave heating anomalies of the Clear regions

less negative, which would further lower the Clear contributions to the longwave term.

This remains a consistent trend across all of our simulations.

These results can be used to infer how aggregation may be affected in large domains

with smaller grid spacings and at the lower RHcrit. Reductions in both grid spacing and

RHcrit are associated with a decrease in the anomalous longwave heating of high-topped

clouds and an increase in Low cloud fraction. These effects increase the mean radiative

cooling of the entire domain, making the clear regions’ longwave cooling less anomalous.

With reduced anomalous longwave heating in high-FMSE regions and reduced anomalous

cooling in low-FMSE regions, the LW ′
n×ĥ′n covariance would be reduced on average across

the domain, slowing the rate of aggregation.

3.7 Conclusions

In this chapter, we quantify the dominant direct radiative interactions that drive and

maintain aggregation within large channel domain simulations of radiative-convective equi-

librium (RCE) of the Met Office Unified Model version 11.0 (submitted to RCEMIP as

“UMKOi-vn11.0-RA1-T” (Wing et al., 2018)). We have assessed the sensitivity of these

interactions to sea surface temperature (SST) by comparing simulations with fixed SSTs of

295, 300 and 305 K using the normalised vertically-integrated FMSE (ĥn) variance budget

as our framework for studying self-aggregation. We define the “Growth” and “Mature”
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phases of aggregation using specific ranges of normalised FMSE to ensure a fair compar-

ison of convection across our simulations during these periods. We particularly focus on

the role of cloud-radiative interactions, assigning one of eight different cloud types to each

grid column based on the heights at which cloud occurs. We also investigate how the

key radiative interactions are affected by both grid spacing and the critical condensation

relative humidity parameter (RHcrit) using smaller (100 km × 100 km) domains.

ĥ is normalised between an upper and lower limit that are functions of SST, giving

values of ĥn between 0 and 1. Variations in ĥn are dominated by variations in moisture

for all of our SSTs. The difference between the upper and lower limits of ĥ is proportional

to the magnitude of the FMSE anomalies, making ĥn approximately SST-independent.

The instantaneous horizontal variance of normalised vertically-integrated FMSE, var(ĥn),

is a consistent aggregation metric across all SSTs, with values below 10−4 corresponding

to randomly scattered convection, and values greater than 10−3 corresponding to highly

aggregated convection. The var(ĥn) budget equation (Equation 2.2) states how the rate

of change of var(ĥn), and hence the rate of change of aggregation, is driven by feedbacks

between anomalies in ĥn and anomalies in normalised column-integrated longwave heat-

ing, shortwave heating, surface fluxes, and advection of ĥn. This study focuses on the

two radiative feedback terms of this equation (longwave and shortwave), which show that

regions with a positive covariance between the normalised radiative anomalies (LW ′
n and

SW ′
n) and ĥ′n help to increase aggregation.

During the Growth phase of aggregation, the longwave radiative term in Equation (2.2)

is the main driver in increasing the horizontal variance of ĥn, hence increasing aggregation.

The shortwave term is positive, though highly sensitive to SST, contributing 2.5 times

more to increasing var(ĥn) at 295 K than 305 K. The surface flux feedback is almost

always negative in our simulations and becomes increasingly positive with increasing SST,

resulting in the sum of the diabatic terms remaining similar during the Growth phase of

aggregation. Despite the sum of the diabatic terms being similar across SSTs, the rate of
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aggregation increases with SST. This is because the (usually negative) advection feedback

becomes increasingly positive with SST during early stages of aggregation. This allows

anomalies in ĥn to amplify more readily at higher SSTs.

During the Mature stage, both radiative terms are key maintainers of aggregation,

with the shortwave term being approximately three quarters the magnitude of the longwave

term. The longwave term’s contribution to the maintenance of var(ĥn) decreases with SST

during the maintenance phase, as does the shortwave term’s contribution. The decrease

in these terms is then balanced by an increase in the (negative) surface flux and advection

terms.

High-topped clouds produce the largest positive column-integrated longwave heating

anomalies, whereas low-level clouds produce negative anomalies. The mean ĥ′n for each

cloud type is positive, therefore clouds with a positive radiative anomaly have a positive

radiative-FMSE feedback and vice versa. Longwave interactions with high-topped clouds

are the main drivers of self-aggregation because they have a high LW ′
n × ĥ′n covariance

and they are the most abundant types of cloud. The contributions from these cloud types

remain similar with SST during the Growth phase, however their contributions to the

maintenance of aggregation decreases with SST as cloud fraction decreases.

Longwave interactions within the clear regions can have a large impact on the total

longwave term, although their contributions to the longwave term are highly sensitive

to SST and aggregation. The longwave contribution of the clear regions is large and

positive during early stages of aggregation and decreases with aggregation and SST, be-

coming strongly negative during the fully aggregated stage of the high-SST simulation.

We show that once the convection is aggregated, the typically negative longwave heating

anomalies in the clear regions become less negative with SST as a result of the domain-

mean longwave heating becoming increasingly negative. This is due to the reduction of

high-topped clouds which have a strong anomalous longwave heating effect, increasing

the domain-mean radiative cooling, resulting in the mean longwave heating anomaly of
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the clear regions becoming roughly 50% less negative. The mean covariance between the

longwave heating and FMSE anomalies becomes negative, meaning the clear regions have

a negative contribution to aggregation at high SSTs.

The domain-mean shortwave term is similar in magnitude to the longwave term during

the Mature phase because the SW ′
n×ĥ′n covariance is positive at almost all times and loca-

tions. The mean shortwave-FMSE feedback is heavily dependent on the horizontal spread

of water vapour and therefore the state of aggregation, being less important in driving

aggregation than maintaining it. The contribution of clouds to the shortwave term also

depends on the level of aggregation. At very early times, the additional shortwave ab-

sorption of condensed water results in clouds contributing to around 50% of the shortwave

term at 295 K and 30% at 305 K SST. As soon as distinct moist and dry patches begin

to develop, the differential absorption of shortwave radiation by water vapour rapidly in-

creases the clear-sky component of the shortwave term to 87%-96% of the total shortwave

term (from 295 K - 305 K).

Model grid spacing affects the radiative properties of clouds in a number of ways. We

find that decreasing grid spacing reduces the mean CWP of clouds, decreases the cloud

top height of high clouds, and produces more low and mid-level cloud. The overall effect

of these changes to the cloud properties is a reduced mean longwave heating anomaly of

high-FMSE cloudy regions. This would decrease the domain-mean covariance between

longwave heating and FMSE anomalies, slowing the rate of aggregation for hypothetical

high-resolution large-domain simulations. Sensitivities with SST that we find in the large

domain remain similar with grid spacing, meaning the magnitude of the decrease in the

longwave term with SST would likely remain similar with reduced grid spacing in larger

simulations.

The RHcrit parameter used in our simulations is unrealistically high for the grid spac-

ings used, resulting in unrealistic cloud distributions. When lowering the RHcrit to that

used in the Met Office UKV model, we find significant changes in the distribution, struc-
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ture, and radiative properties of cloud. The combined effects of using the decreased

RHcrit would likely reduce the direct longwave contributions to aggregation. Firstly, the

CWP of high clouds reduces as RHcrit is decreased although their domain-fraction re-

mains similar. The reduced CWP decreases their longwave heating anomalies and would

significantly reduce their contribution to the longwave term. Secondly, there is a large

increase in the fraction of low cloud, which would likely further reduce the longwave term

due to low cloud’s typically negative LW ′
n × ĥ′n covariance. However, with the increase

in low cloud, the radiatively-driven low-cloud circulations described by Muller and Bony

(2015) could become more common, increasing the upgradient transport of FMSE. It is

not clear whether this indirect low cloud effect would overcompensate, increasing the rate

of aggregation.

The vertical distribution of clouds in our models make these simulations outliers com-

pared to other models submitted to RCEMIP (Wing et al., 2020). Our large-channel

simulations have the lowest low-level cloud fraction and one of the highest high-cloud

fractions out of the other submitted cloud-resolving models. With high-topped clouds

generally having strongly positive LW ′
n × ĥ′n covariances, and low clouds having negative

covariances, the domain-mean longwave-FMSE feedbacks may be unusually high. Previ-

ous literature has highlighted the importance of upgradient FMSE transport by shallow

overturning circulations associated with low clouds (Muller and Held, 2012; Muller and

Bony, 2015). These circulations could be less prevalent in our simulations compared to

other RCEMIP simulations, and may result in the advection feedback in our simulations

being lower than simulations with a more realistic vertical cloud distribution.

There is much variability in the degrees of aggregation between numerical models of

RCE, which has important consequences for our understanding of weather and climate

(Wing et al., 2020). With radiative interactions between cloud and moisture being the

dominant drivers and maintainers of aggregation in our models, understanding how these

interactions vary between other RCE models may go some way in explaining the differences
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in self-aggregation. This is a focus of Chapter 4. By building on the analysis technique of

Wing and Emanuel (2014), our normalised FMSE variance budget framework allows for

the comparison of cloud-radiative interactions and their contributions to self-aggregation

across a range of models and SSTs. This technique is suitable for all models with a

fixed SST. Its use for model/reanalysis studies with a varying SST would require the

normalisation of ĥ to vary in space and time.

In Chapter 4, we use the var(ĥn) budget framework to study aggregation and cloud-

radiation interactions within the CRMs and GCMs in RCEMIP. We compare the results

from these models to the results from the UK Met Office UM found in this chapter to

test whether our results are robust across these RCEMIP models to achieve the second

thesis objective described in Section 1.2. In addition, we assess how the magnitude of

cloud-radiation interactions affects the rate of aggregation within these models to achieve

our third thesis objective.
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CHAPTER 4

RADIATION, CLOUDS, AND SELF-AGGREGATION IN

RCEMIP SIMULATIONS

Opening remarks

The work in this chapter has been published as Pope et al. (2023) and is largely unchanged

from the paper, except some of the Introduction and Methods from the paper have been

moved to Chapters 1 & 2. This chapter makes frequent references to the results of Chapter

3, which is also a published article (Pope et al., 2021). Because of the frequency of

references to this article, we choose to abbreviate the citation to “P21”.

4.1 Introduction

Convective self-aggregation was first identified in numerical models of radiative-convective

equilibrium (RCE) (Held et al., 1993), but the processes influencing it are relevant to real

world convection (Holloway et al., 2017) and it has major implications for weather and

climate (e.g. Wing et al., 2017). Because of this, it has been the focus of many studies

in recent years and continues to be an active area of research. However, there remains
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much debate as to the mechanisms and feedbacks responsible for controlling aggregation,

which is in part due to the inter-model variability in the structures and dynamics of

convection within these models (Wing et al., 2017). Aggregated convection is associated

with increased longwave cooling, so the response of aggregation to warming has impor-

tant consequences for climate sensitivity. The wide variety in responses of aggregation

to warming within numerical models leads to a major source of uncertainty in climate

sensitivity estimates (Sherwood et al., 2020).

Despite there being debate as to the processes driving and maintaining aggregation,

the majority of studies find that interactions between convection, clouds, and longwave

radiation are key drivers and maintainers of aggregation (Wing et al., 2017). Most re-

search on cloud feedbacks relies on either general circulation models (GCMs) that use

parameterised convection, or limited-area cloud-system resolving models (CRMs) with ex-

plicit convection that are too small to represent global-scale circulations. The climate

feedback and SST sensitivity of aggregation are different for GCMs and CRMs in the

Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP; Wing et al.,

2018, 2020), with GCMs typically having a lower climate sensitivity due to convection

becoming more aggregated on average at higher SSTs Becker and Wing (2020). This

response is not seen on average in CRMs.

P21 quantified the contribution of direct radiative interactions with different cloud

types to longwave and shortwave feedbacks with FMSE using a set of simulations from

the UK Met Office Unified Model which are submitted to RCEMIP as UKMOi-vn11.0-

RA1-T (referred as UKMO-RA1-T hereafter). They used a similar FMSE variance budget

framework to Wing and Emanuel (2014) but normalise ĥ in such a way so that its SST

dependence is eliminated, thus making the analysis framework insensitive to SST. They

found the direct longwave interactions with high-topped cloud and clear regions to be

the main drivers of self-aggregation. High-topped clouds typically occur in anomalously-

high ĥ regions and drastically decrease atmospheric radiative cooling, leading to a positive
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longwave-FMSE feedback. Similarly, clear regions have anomalously high radiative cooling

rates and tend to be found in anomalously-low ĥ regions, again leading to a positive

longwave-FMSE feedback and driving aggregation.

P21 found the main maintainers of aggregation were longwave interactions with high-

topped cloud, and shortwave interactions with water vapour. The shortwave-water vapour

feedback contributes 87-96% of the total shortwave feedback during the mature phase of

aggregation, with cloud-shortwave interactions being less important at higher SSTs and

higher degrees of aggregation. Anomalously humid environments occur in positive ĥ′

regions and are able to absorb more solar radiation leading to a positive feedback. The

difference in humidity between the moist and dry regions increases with aggregation, hence

the shortwave-moisture feedback has a higher impact during mature aggregation. The ex-

tents of the contributions of these feedbacks to aggregation are sensitive to SST. In their

simulations, the longwave contribution to aggregation is insensitive to SST during the

growth phase of aggregation, but there is a smaller longwave contribution to aggregation

maintenance as SST increases due to the reduction of high-topped cloud fraction. This

decrease in high-topped cloud fraction is consistent with the stability iris mechanism de-

scribed by Bony et al. (2016), who describe the reduction in anvil cloud as a consequence of

increased anvil stability and decreased convective outflow with increasing SST. Shortwave

interactions with moisture become less important to aggregation maintenance at warmer

SSTs. This is because the variability in atmospheric solar heating between humid and dry

regions contributes to a smaller fraction of the total ĥ variability as SST increases. Despite

radiative interactions with cloud and moisture being the main drivers of self-aggregation,

the rate of aggregation was most strongly moderated by circulations that generally oppose

aggregation, but become less negative at warmer SSTs, resulting in faster aggregation at

warmer SSTs.

Wing et al. (2020) showed that the UKMO-RA1-T model is an outlier compared to the

other RCEMIP models in several ways. With the upper troposphere being almost fully
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saturated, it has one of the largest high cloud fractions and one of the smallest low cloud

fractions compared to the other models. In addition, out of all the small 100 km × 100 km

domain simulations, the UKMO-RA1-T simulations are the only ones that display aggre-

gation. This highlights that the conclusions from P21 are only strictly applicable to the

simulations they studied and may not, in some cases, be relevant for other simulations

and real-world convection.

In this chapter, we test the robustness of the conclusions from P21 by applying their

analysis framework to the CRM and GCM simulations in RCEMIP. We quantify the

contributions of cloud-radiation interactions to self-aggregation at different stages of or-

ganisation and study their SST dependence. We investigate whether the differences in

cloud-radiation interactions between models and model types can explain the differences

in the behaviour of self-aggregation. In doing this, we achieve our second and third re-

search objectives that are outlined in Section 1.2.

4.2 Methods

4.2.1 Normalised FMSE Framework for the CRMs and GCMs in RCEMIP

We analyse the RCEMIP CRMs and GCMs (briefly described in Section 2.1) using the

var(ĥn) budget framework to study aggregation (described in Section 2.3). However, to

make the comparison between CRMs and the 40× coarser GCMs as fair as possible, we

horizontally smooth the raw output fields of the CRMs so that every grid box is the

mean of the 40 × 40 grid boxes surrounding it (accounting for the periodic boundary

conditions). This is because var(ĥn) is not only dependent on spatial aggregation, but

it is also sensitive to grid spacing, particularly while convection is randomly scattered

(analysis not shown). This is due to small-scale features, e.g. convective updrafts and

downdrafts that tend to have strong positive and negative ĥ′n respectively, not being

resolved at coarser resolutions. This leads to a smaller var(ĥn) for coarser horizontal
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resolutions. As the size of the convective clusters increase and ĥn anomalies are strong

over large areas, var(ĥn) becomes relatively less sensitive to grid spacing. For example,

when the CRMs have a var(ĥn) of 1×10−4, the average var(ĥn) after smoothing is around

60% lower. When var(ĥn) is 1×10−3 for CRMs, the var(ĥn) after smoothing is around

25% lower. When using this smoothing technique in the analysis, we refer to the CRMs

as Smoothed CRMs. Assuming that GCMs represent their subgrid scale processes in a

similar way to how CRMs resolve them, we would expect similar results between GCMs

and Smoothed CRMs.

In a similar way to P21, we define Growth and Mature phases of aggregation by

two ranges of var(ĥn) for which convection is randomly scattered or strongly clustered,

respectively. The var(ĥn) ranges used in this study vary slightly from P21. This is so that

as many simulations as possible have a defined Growth and Mature period which satisfy the

aforementioned criteria, while the var(ĥn) ranges remain small. Note that not all models

reach the Mature phase because these models do not appear strongly clustered at any

point in time. The Growth phase is identified as any time after day 2 (to neglect spin-up

effects) when var(ĥn) for GCMs and Smoothed CRMs is between 0.8×10−4 and 2.4×10−4.

The Mature phase is identified as any time when var(ĥn) for GCMs and Smoothed CRMs

is between 0.8×10−3 and 2.4×10−3. Further justification of these ranges is given in Section

4.3.1. Given our previous notion that var(ĥn) is sensitive to grid spacing, we use the times

of the Growth and Mature phases identified from the Smoothed CRMs to also analyse the

(non-Smoothed) CRMs.

Since ĥ′n is a factor of every term in Equation (2.2), one might expect the magnitude

of the terms to increase with aggregation. By dividing each term by the instantaneous

horizontal standard deviation of ĥn, we can eliminate the dependence of the terms on the

magnitude of ĥ′n. After dividing by this standard deviation, the sensitivity of the terms

to aggregation will depend on the sensitivity of the other variable in the term and its

correlation with ĥ′n.
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4.2.2 Cloud Classification Scheme

We use a cloud classification scheme to define a cloud type at each grid point in the sim-

ulations. The contribution of radiative interactions with these cloud types to aggregation

are calculated by multiplying each cloud type’s fraction by the mean covariance between

its radiative and FMSE anomalies. This analysis technique is based on that used by P21,

however the cloud type definitions in this study are different. In RCEMIP, 3D data are

only available for the final 25 days of CRMs and GCMs, so we are not able to define cloud

based on the vertical profile of condensed water for the full simulation as in P21. Instead,

we define clouds using top of atmosphere (TOA) fluxes, using the same method as Becker

and Wing (2020) (referenced as BW20 hereafter). This method produces four different

cloud types: Clear, Shallow, Deep, and Other. The outgoing shortwave radiation (OSR)

and outgoing longwave radiation (OLR) thresholds used to define the four cloud types are

shown in Table 4.1. The Shallow cloud OLR threshold is consistent with the low-cloud

threshold used by Fiedler et al. (2020), and the Deep OLR threshold is the same as the

RCEMIP threshold to define deep convective cloud. Note that the thresholds in Table 4.1

are used for each SST and are valid for simulations with the fixed insolation and surface

albedo used in all RCEMIP simulations (Section 2.1). Also note the convention of cap-

italising these cloud categories. The Clear category is not to be confused with clear-sky

radiation - the radiative fluxes calculated by excluding any cloud from a particular scene.

Table 4.1: OSR and OLR thresholds used to define the cloud types.

Cloud type OSR (W m−2) OLR (W m−2)

Clear < 100 N/A*
Shallow ≥ 100 > 250
Other ≥ 100 173 - 250
Deep ≥ 100 < 173

* As long as OSR < 100 W m −2, the column is classified as Clear, regardless of OLR.
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A comparison of the cloud type classification schemes between that used in P21 and

this study is shown in Figure 4.1(a-d). These figures show the P21 cloud distributions for

each of the BW20 cloud types across all of the CRMs. This comparison uses data from the

final 25 days of the simulations; the period for which 3D data is available. Approximately

80% of this study’s Clear category is made up of the Clear type defined in P21, meaning

the condensed water content is less than 10−6 kg m−3 everywhere in the column. The

remainder of the BW20 Clear category is mostly made up of optically-thin High and Low

cloud. The Shallow cloud type is mostly made up of Low cloud, and the Deep cloud is

almost entirely made up of the high-topped cloud (High, High & Mid, High & Low, and

Deep). The Other cloud type is made up of approximately two thirds high-topped cloud

that is perhaps too optically thin or having too small a vertical extent to lead to an OLR

less than 173 W m−2 and be classed as Deep.

Cloud types are redefined using the Smoothed radiative fluxes in order to make a fairer

comparison to GCMs. The distribution of the P21 cloud types for each Smoothed cloud

type is shown in Figure 4.1(e-h). Again, this comparison uses data for the final 25 days of

the simulations. The Smoothed Clear and Deep categories are mainly made up of the P21

Clear and high-topped cloud categories respectively. There is little difference between the

Smoothed and non-Smoothed distributions for these cloud types. The Smoothed Shallow

cloud is mostly made up of Clear and low to mid-topped cloud. The Smoothed Other

cloud type is mostly composed of high-topped cloud. The main difference between the

non-Smoothed and Smoothed distributions is the increase in fraction of Smoothed Other

cloud and the decrease in fraction of the Smoothed Deep cloud.

Figure 4.2 shows the fraction of different cloud types as a function of FMSE percentile

during the final 24 hours of the simulations. Differences in the BW20 and P21 cloud

classification schemes within the CRMs can be seen by comparing Figures 4.2a and 4.2c.

Cloud fraction increases with FMSE percentile regardless of the cloud classification scheme

used. There is a lower cloud fraction in the BW20 cloud types compared to the P21 cloud
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Figure 4.1: (a-d) Distributions of the cloud categories used in P21 for each of the four
cloud types used in this study. (e-h) Distributions of the cloud categories used in P21 for
each of the Smoothed cloud types. Data is averaged over the final 25 days of the CRMs
for all SSTs. Orange lines represent the median, boxes represent the interquartile range,
and whiskers represent the full range of the models. The UKMO-RA1-T model is shown
in purple triangles. Average domain fraction is shown in the subplot titles.
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Figure 4.2: Cloud type fraction vs FMSE percentile for the (a) BW20 cloud types for all
CRMs, (b) Smoothed BW20 cloud types for all CRMs, (c) P21 cloud types for all CRMs,
and (d) BW20 cloud types for the GCMs during the final 24 hours of the simulations.
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types at all FMSE percentiles except for the extremely moist environments in which the

cloud fraction is close to 100%. There is more high-topped cloud in the P21 classification

scheme compared to the BW20 Deep cloud which may be due to the presence of optically-

thin High cloud that has OSR < 100 W m−2. There is also a greater fraction of P21

Low cloud compared to BW20 Shallow cloud at all FMSE percentiles, again due to the

presence of optically thin Low cloud with OSR < 100 W m−2.

The effect of Smoothing is shown by comparing Figures 4.2a with 4.2b. Smoothing

reduces the total cloud fraction in the lower 40% and upper 10% of FMSE values. The

fraction of Deep cloud is reduced and the fraction of Other cloud is increased at all FMSE

percentiles. The difference between Smoothed CRMs and GCMs can be seen by comparing

Figures 4.2b and 4.2d. There is a greater cloud fraction in GCMs at all FMSE percentiles,

which is largely due to the increase in Deep cloud fraction. There is also a greater Shallow

cloud fraction particularly at lower FMSE values, and a lower Other cloud fraction at

higher FMSE values. The effects of Smoothing, and comparisons between CRMs and

GCMs are discussed further in Section 4.4. The cloud type fractions of the non-Smoothed

CRMs are most similar to the fractions of the GCMs, suggesting GCMs may be tuned to

have a more accurate cloud fraction in a discrete grid box sense rather than on subgrid

scales. Yet GCMs still have a greater average cloud fraction particularly at higher ĥ′n

regions.

Radiative interactions with high-topped cloud and Clear regions are shown to have the

largest role in aggregation in P21. With the majority of BW20 Clear and Deep clouds

being collocated with P21 Clear and high-topped cloud respectively, results from P21 can

be fairly compared to results from this study.
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4.3 Variance of Normalised FMSE

4.3.1 Evolution of Normalised FMSE variance in RCEMIP simulations

The RCEMIP CRMs simulate a wide range of convective characteristics (Wing et al.,

2020). All models analysed in this chapter display aggregation to some degree except for

the UKMO-CASIM model at 305 K, whose convection remains scattered throughout the

entire simulation. Figure 4.3 shows 24-hour running averages of var(ĥn) for each Smoothed

CRM and SST. Also shown are the var(ĥn) limits for the Growth and Mature phase of

aggregation (introduced in Section 4.2) which will be discussed in Sections 4.3.2 and 4.4.

There is much variability in the rate of aggregation amongst the CRMs as well as the

maximum degree of aggregation, with no consistent SST dependence. The inconsistent

SST dependence of aggregation is seen regardless of aggregation metric used Wing et al.

(2020).

In the majority of CRMs, aggregation begins as dry patches form and expand in size.

These dry regions get drier while moist regions get moister. The dry patches in these

models continue to grow until the convection is constrained to 3-8 quasi-stationary bands

orientated along the short axis of the domain. In CM1, SCALE, and WRF-COL-CRM

(and DAM to a lesser extent), waves continuously propagate across the domain, taking

approximately 3 days to traverse the long axis. These models typically exhibit rapid

fluctuations in var(ĥn) (Figure 4.3). Intense convection is generated within these waves,

and horizontal humidity variations are smoothed out behind the waves. These waves

inhibit aggregation, so these simulations often do not reach the Mature phase. UKMO-

CASIM is unique in the way moist regions seem to amplify first in the 295 K and 300 K

simulations, generating convergence within the moist regions. Dry patches then begin to

develop in the divergent regions but they struggle to amplify, often becoming remoistened

particularly at warmer SSTs. At 305 K, both the moist and the dry regions in UKMO-

CASIM fail to amplify. Not all models reach both the Growth and Mature stages of
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Figure 4.3: Time series of var(ĥn) for each Smoothed CRM and SST neglecting the first
two days accounting for model spin-up (24-hour running averages). The Growth and
Mature phases are indicated by the yellow and blue shaded regions respectively. Models
marked with an asterisk (*) are excluded in future model-mean calculations as not all of
their simulations reach the Growth and Mature phase for all SSTs.
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aggregation at all three SSTs. These models are marked with an asterisk in Figure 4.3

and do not contribute to model-mean calculations to prevent skewing the results.

Figure 4.4 shows 24-hour running averages of var(ĥn) for each GCM and SST. Also

shown are the var(ĥn) limits for the Growth and Mature phase of aggregation. All of

the GCMs aggregate, again displaying a wide range of characteristics Wing et al. (2020).

Like the majority of CRMs, dry patches develop and expand, while moist regions become

moister and increasingly confined until an equilibrium state is reached. Unlike the CRMs,

aggregation increases with SST in the majority of GCMs. GCMs that reach a more

aggregated state at warmer SSTs do not usually aggregate faster as SST increases, but

they tend to continue aggregating for a longer duration.

As with the CRMs, we do not include all GCMs in the model-mean calculations as

not all models have data in both the Growth and Mature phases of aggregation for each

of the SSTs. These models are marked with an asterisk in Figure 4.4. Note CAM5 and

CAM6 have FMSE data only for the final 25 days of the 1095-day simulation. ICON-

GCM at 300 K already has a variance greater than the upper limit for the Growth phase

after two days (which we consider the spin-up period) so is not included in model-mean

calculations. ECHAM6 and GEOS are included in the model-mean calculations because

the 295 K simulations reach the Mature stage after the 100 days shown in Figure 4.4.

The Growth and Mature thresholds for a given model are fairly arbitrary. So any

var(ĥn) range which satisfies the criteria of the convection being randomly scattered

(Growth) or strongly clustered (Mature) may be used to define the two phases to study

any one particular model. However, we want each model to have the same var(ĥn) thresh-

olds to make the comparisons in this study as fair as possible. The Growth phase range

chosen allows the vast majority of models to be included in the Growth phase. The con-

vection becomes significantly clustered above the upper limit of the Growth phase. Having

the lower limit of the Mature phase at 0.8×10−3 allows the ECHAM6 and GEOS GCMs

to be included, but excludes the CM1, SCALE and UKMO-CASIM CRMs, which do
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not become “strongly clustered”. Despite all models aggregating to some degree (except

UKMO-CASIM at 305 K), we have chosen not to define the Growth and Mature phases

relative to the evolution of aggregation within each model because of the extensive range

in aggregation among the models. Using Growth and Mature phases defined in that way

could result in confusion comparing feedbacks across models because those differences

could either be due to changes between the models themselves or due to changes in ag-

gregation. The Growth and Mature definitions used in this study have been chosen in an

attempt to make comparisons between the models as fair as possible.

4.3.2 Normalised FMSE variance budget analysis

Figure 4.5 shows the spatiotemporal mean of the budget terms during the entirety of the

Growth and Mature phase of aggregation for Smoothed CRMs and GCMs and for each

SST. From this figure, we can see which FMSE covariances are enhancing or opposing

aggregation at these different stages. The var(ĥn) tendency is calculated using a second-

order finite difference approximation from 6-hourly calculated var(ĥn). The diabatic terms

are explicitly calculated from hourly-averaged data, whereas the advection term is calcu-

lated as a residual of the other terms. This is because the FMSE diagnostic is output as

instantaneous values rather than hourly-averaged values for most models that provided

it, and FMSE advection is not a diagnostic in all models. By comparing GCMs to the

Smoothed CRMs, we remove biases that may be a result of the small-scale features that

cannot be resolved in the larger grid spacing in GCMs. Also shown in this figure, are the

model-mean longwave and shortwave feedbacks using clear-sky radiation. This allows us

to quantify the influence clear-sky radiation on the radiative feedbacks.

Figure 4.5 shows that for all model types, and at all SSTs, FMSE feedbacks with

longwave radiation and surface fluxes are typically the main drivers of self-aggregation in

the Growth phase, however the magnitude of each feedback is highly variable from model

to model. The shortwave term is consistently small and positive and has little inter-model
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Figure 4.4: Time series of var(ĥn) for each GCM and SST for the first 100 days, neglecting
the first two days accounting for model spin-up (24-hour running averages). Note that
CAM5 and CAM6 only have FMSE output for the final 25 days of their 1095-day simula-
tions, so we can only analyse that time period for those models. Also note there is missing
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the model output. The Growth and Mature phases are indicated by the yellow and blue
shaded regions respectively. Models marked with an asterisk (*) are excluded in future
model-mean calculations.
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Figure 4.5: Spatiotemporal mean of terms in the var(ĥn) budget equation divided by
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variability. The advection term typically opposes aggregation and is the greatest source

of variability for the rate of aggregation across the models. The extensive variability in

the budget terms highlights that the physical processes affecting aggregation are highly

variable from model to model. In addition, the SST dependence of the model mean terms

do not represent the SST dependence of the terms in each model. For example, Coppin

and Bony (2015) studied the SST dependence of drivers of aggregation in the ISL-CM5A-

LR GCM (not in RCEMIP), highlighting that the surface flux term becomes relatively

more important as SST increases, in contrast to the RCEMIP model mean terms.

The RCEMIP CRMs that do not contribute to the model mean values are largely

those models with waves that rapidly propagate across the domain and smooth horizontal

humidity variations (CM1, SCALE, and WRF-COL-CRM). Deep convection occurs in

these waves which generate high surface winds. Apparently related to these waves, these

models tend to have higher than average longwave and wind-induced surface flux feedbacks,

as well as a more negative advection feedback.

During the Mature phase of aggregation, both the longwave and shortwave feedbacks

maintain aggregation, and are balanced by the typically-negative surface flux and advec-

tion feedbacks. On average, the magnitude of the longwave feedback has little dependence

on the degree of aggregation in CRMs, but there is a slight decrease in the majority of

GCMs with increased aggregation which is similar in magnitude to the decrease in the

clear-sky longwave feedback. The shortwave feedback increases with aggregation as moist

and dry regions amplify, leading to larger differences in shortwave absorption between

positive and negative ĥ′n regions. The surface flux feedback is usually positive during the

Growth phase as higher surface wind speeds in moist convective regions leads to a pos-

itive feedback. During the mature phase, the wind speed-surface flux feedback becomes

overcompensated by the negative air-sea disequilibrium feedback, whereby surface evapo-

ration rates are enhanced in drier environments (Wing and Emanuel, 2014). The surface

flux feedback during the Mature phase at higher SSTs may be less negative due to the
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wind-evaporation feedback being relatively stronger Coppin and Bony (2015).

The magnitude of the clear-sky longwave feedback is small in comparison to the total

longwave feedback, decreasing slightly as aggregation increases, in agreement with Wing

and Cronin (2016). The clear-sky shortwave feedback contributes to a much greater frac-

tion of the total shortwave feedback compared to the clear-sky longwave feedback. This

is because the shortwave feedback is mainly driven by the shortwave absorption by water

vapor, which comprises a greater fraction of the total shortwave feedback as SST increases

(Wing and Emanuel, 2014; Wing and Cronin, 2016; Pope et al., 2021).

As noted by Wing et al. (2020), GCMs tend to reach a higher degree of aggregation at

higher SSTs. With only a slight increase in aggregation rate with SST in GCMs during

the Growth phase, aggregation rates increase with SST most significantly for var(ĥn) in

between the Growth and Mature phases. This can be seen in many of the models in

Figure 4.4. Note that in Figure 4.5, the var(ĥn) tendency of GCMs during the Mature

phase continues to increase slightly with SST.

For GCMs during the Growth phase, the sum of the diabatic terms decrease in mag-

nitude with increasing SST, yet the advection term becomes more positive with SST,

resulting in a small SST dependence in the rate of aggregation in the Growth phase. After

the Growth phase however, the sum of the diabatic feedbacks becomes less SST dependent

(because the surface flux feedback becomes more positive with increased SST), while the

advection term remains more positive with SST. This results in a greater rate of aggrega-

tion after our defined Growth phase. In CRMs, the sum of the diabatic terms also becomes

less sensitive to SST after the Growth phase, though they still have a more negative SST

dependence than the average of the GCMs. The SST sensitivity of the CRMs’ advection

feedback tends to oppose the SST sensitivity of their diabatic feedbacks at all stages of

aggregation.

The longwave feedback is on average a factor 2 greater in GCMs compared to CRMs for

all stages of aggregation. The larger longwave feedback in GCMs is the main difference in
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terms of the diabatic feedbacks between CRMs and GCMs. This results in GCMs having

an overall larger diabatic feedback, corresponding to a more negative advection feedback

and/or a higher rate of aggregation in the Growth phase. There is, however, a large

spread in the models’ advection term and aggregation rate. The difference between the

mean advection term between GCMs and Smoothed CRMs is not statistically significant

at the 95% confidence level for a given SST, even when including the models that are

neglected from the model-mean comparisons. The increase in mean aggregation rate

from the Smoothed CRMs to the GCMs is only significant at each SST when we include

the models neglected from the model-mean comparisons. The difference in the longwave

feedbacks in CRMs and GCMs is significant and will be discussed further in Section 4.4.2.

There is little difference in the budget terms between the non-Smoothed and Smoothed

CRMs (not shown). After dividing the terms by the standard deviation of ĥn, the rate

of aggregation, longwave term, and shortwave term remain similar on average. The most

significant difference between the non-Smoothed and Smoothed CRMs is the magnitude

of the surface flux term during the Growth phase, which is about 40% smaller in the

Smoothed CRMs. We do not have an explanation for why this it. With the surface flux

term decreasing in the Growth phase, and the other diabatic terms and var(ĥn) tendency

term remaining similar, the advection term becomes more positive after smoothing as it

is calculated as a residual of the other terms.

If FMSE feedbacks in CRMs and GCMs are represented similarly despite the different

grid spacings, the budget terms in GCMs should be similar to the budget terms in the

Smoothed CRMs. For both CRMs and GCMs, each of the diabatic terms are typically

positive during the Growth phase but on average decrease in magnitude as SST increases

(Figure 4.5). The SST dependence of the radiative terms found here is only in partial

agreement with P21, who studied the UKMO-RA1-T model simulations which are rep-

resented by the purple, triangular data points in Figures 4.5, 4.7 & 4.8. They analysed

this SST dependence of the UKMO-RA1-T CRM and found the longwave feedback de-
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creases with increasing SST due to the reduction of high-cloud fraction at higher SSTs.

However in their study, this SST dependence was only found in the Mature phase. We

explore how high-cloud fraction affects the longwave feedback in the RCEMIP CRMs and

GCMs in Section 4.4. P21 found that the shortwave feedback decreases with increasing

SST, and is inversely proportional to the difference between ĥmax and ĥmin. This finding

is consistent with the RCEMIP models and physically means that the shortwave heating

anomalies contribute similar amounts to increasing the non-normalised FMSE variance at

different SSTs. This is because the range of water vapor path (WVP) increases with SST,

while the radiative absorption efficiency decreases with increasing WVP Vaquero-Mart́ınez

et al. (2018) resulting in little difference in horizontal net shortwave heating variance with

SST. However, since FMSE anomalies are higher at warmer SSTs, the shortwave heating

anomalies contribute to a smaller fraction of FMSE variance.

Some of the results from the mean of the models are in contrast to the results found

in P21. According to the model means, the surface flux feedback is almost as important

as the longwave feedback in driving aggregation, which is in stark contrast to the UKMO-

RA1-T model that shows the surface flux feedback to be slightly negative even during the

Growth phase. This suggests the air-sea disequilibrium feedback in the UKMO-RA1-T

model dominates over the wind speed-surface flux feedback to a larger degree than in

the majority of models. The sum of the diabatic terms decreases with increasing SST

for the model means, yet it is more constant with SST in the UKMO-RA1-T simulations

and is also more negative. Despite the more negative diabatic feedback in UKMO-RA1-

T, the rate of aggregation is faster than the model means at 300 K and 305 K. This is

because the UKMO-RA1-T model has the most positive advection feedback of all models.

This feedback increases with SST despite the diabatic terms remaining similar, resulting

in faster aggregation at higher SSTs in UKMO-RA1-T. For both CRMs and GCMs in

RCEMIP, the advection term is inversely proportional to the sum of the diabatic terms,

becoming less negative with increasing SST. The result is that the rate of aggregation
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during the Growth phase for both CRMs and GCMs does not depend strongly on SST.
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Figure 4.6: (a) Average of the var(ĥn) tendency term vs the longwave term in Equation
(2.2), (b) average of the var(ĥn) tendency term vs the sum of the three diabatic terms
(longwave, shortwave & surface flux), (c) average of the advection term vs the sum of
the diabatic terms, and (d) average var(ĥn) tendency term vs the advection term, for
each Smoothed CRM (points) and GCM (crosses) averaged over the Growth phase. Also
shown is the regression line for CRMs (dotted) and GCMs (solid line), as well as their
slope, p-value and r-value.

Previous literature has shown the diabatic terms to be essential drivers of aggregation,

so we would expect that a greater diabatic-FMSE feedback would lead to an increased

rate of aggregation. Despite the diabatic terms driving aggregation in the Growth phase

87



Chapter 4. Radiation, Clouds, and Self-Aggregation in RCEMIP Simulations

of the RCEMIP simulations (Figure 4.5), we cannot conclude that the magnitude of the

sum of the diabatic terms is correlated to the rate of aggregation. Figure 4.6a shows the

correlation between the longwave term and the var(ĥn) tendency term in Equation (2.2)

during the Growth phase for Smoothed CRMs and GCMs. We find there is a significant

correlation between the longwave term and rate of aggregation in the GCMs, but there

is no significant correlation between the longwave term and rate of aggregation in the

CRMs (regardless of Smoothing). Figure 4.6b shows the correlation between the sum of

the diabatic terms and the var(ĥn) tendency term. Again there is a significant positive

correlation between the diabatic feedbacks and rate of aggregation in the GCMs, but not

for the CRMs. A greater diabatic feedback is associated with a more negative advection

feedback (Figure 4.6c). In the CRMs, the sum of the diabatic terms is, on average,

proportional to the magnitude of the advection feedback, hence there is no significant

relationship between the diabatic feedbacks and aggregation rate. There is a less negative

relationship between the sum of the diabatic terms and the advection term in the GCMs,

allowing GCMs with a higher diabatic feedback to aggregate faster. The rate of aggregation

in CRMs is most strongly correlated with the advection feedback (Figure 4.6d), with no

significant correlation between the advection feedback and aggregation rate in the GCMs.

The longwave feedback is one of the key drivers and maintainers of aggregation in the

majority of models at each SST. It is typically a larger feedback in GCMs, resulting in

largely faster aggregation rates compared to CRMs. The longwave feedback is a major

factor in determining the model spread in the rate of aggregation in GCMs. We explore

the contributions of different cloud-radiation interactions to the longwave feedback in the

following section. We assess their SST sensitivities, and compare and contrast CRMs and

GCMs.
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4.4 Contributions of Cloud-Radiation Interactions to Ag-

gregation

In this section, we compare longwave-cloud interactions within the CRMs and GCMs. We

first study these interactions in the CRMs to test the robustness of the conclusions in

P21. We then compare CRMs to GCMs by first seeing how cloud-longwave interactions

are affected by coarsened grid spacing using the Smoothed CRMs. Then we compare the

Smoothed CRMs to GCMs to study why the longwave feedback tends to be stronger in

GCMs.

4.4.1 Cloud-Radiation Interactions within CRMs

The contributions to aggregation from longwave interactions with each of the cloud types

in Table 4.1 for CRMs and Smoothed CRMs are shown in Figure 4.7a, comparing SST

and phase of aggregation. Each model that contributes to the mean is shown in grey, the

model mean shown in black, UKMO-RA1-T is shown in purple, and models that do not

contribute to the mean are shown in light orange. The model-mean contributions to the

longwave term using clear-sky radiation are shown in the cyan points. We first focus on

the (non-Smoothed) CRMs.

There is great variability between the models in terms of cloud fraction, and the LW ′

and ĥ′n of the different cloud types, so the factors affecting the longwave feedback vary

considerably from model to model. However, for the CRMs during the Growth phase of

aggregation, longwave interactions with the Clear and Deep regions typically contribute

most to the longwave feedback. The Clear regions have a large contribution mainly because

of their large domain-fraction (Figure 4.7b) and positive LW ′
n×ĥ′n covariance (Figure 4.7c),

despite the covariance being on average the lowest in magnitude out of all cloud types.

Deep clouds are the next most abundant cloud type on average and typically have the

largest LW ′
n × ĥ′n covariance of all cloud types. They have the largest LW ′

n due to their
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Figure 4.7: CRMs (downward triangles) vs Smoothed CRMs (upward triangles): (a) Con-
tributions of longwave interactions for each cloud type in Table 4.1 to the longwave term
in Equation (2.2) (equal to the cloud type fraction multiplied by their mean LW ′

n × ĥ′n
covariance) divided by the standard deviation of ĥn, (b) cloud type fraction, (c) LW ′

n × ĥ′n
covariance divided by the standard deviation of ĥn, (d) ĥ

′
n divided by the standard devi-

ation of ĥn, (e) LW
′
n, and (f) net longwave heating (Equation 1.3). Data points represent

spatiotemporal means. The layout follows the same protocol as Figure 4.5. Note different
y-axis ranges for Clear in b, c, d & e.
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cold cloud tops (Figure 4.7e) and have the second highest ĥ′n of the cloud types (Figure

4.7d). A large portion of the Deep category comes from thin anvil cloud which often extend

a great distance from the high-FMSE updraft that they originated from. This transport

of high cloud to lower-FMSE regions lowers the average ĥ′n of the Deep category. The

Shallow and Other cloud types have an insignificant contribution to the longwave feedback

in comparison because their LW ′
n × ĥ′n covariance is small in magnitude (mostly due to

a small-magnitude LW ′
n) and they have a small fraction (although the fraction is highly

variable between models).

The negative SST dependence of the longwave feedback, as seen in Figure 4.5, can

be explained by the negative SST dependence of the longwave interactions with the Deep

and Clear regions as follows, in agreement with P21. During both the Growth and the

Mature phases, the LW ′
n × ĥ′n covariance of the Deep regions remains similar with SST

(Figure 4.7c) while the Deep cloud fraction steadily decreases (Figure 4.7b), so the SST

dependence of the Deep cloud’s longwave contribution to aggregation is primarily due to

the decrease in Deep cloud fraction.

The contribution of the Clear regions decreases with increasing SST due to the decrease

in the Clear LW ′
n × ĥ′n covariance. We do not find the clear-sky longwave feedback in the

Clear regions decreasing with SST by the same extent, indicating that the SST sensitivity

of the Clear regions’ longwave feedback is a side effect of the cloud response to SST. There

are multiple factors that influence this SST dependence: the change in longwave heating

rates of the different cloud types, the change in their fraction, the increase in the range of

ĥmax and ĥmin, and the change in correlation between longwave and FMSE anomalies in

the Clear regions. The correlation between LW ′
n and ĥ′n remains similar with SST (15%

decrease in the correlation coefficient from 0.173 at 295 K to 0.147 at 305 K), as does the

mean ĥ′n (Figure 4.7d). The change in the Clear LW ′
n × ĥ′n covariance is therefore mainly

due to the change in Clear LW ′
n.

To isolate the effects of the changing longwave heating rates with SST on the Clear
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longwave feedback, we use the average cloud type fractions at 295 K with the average cloud

type longwave heating rates at 305 K. By taking the sum of the product of these cloud

fractions and their longwave heating rates, we calculate a hypothetical new domain-mean

longwave heating rate. Then a new hypothetical LW ′ for each cloud type is calculated by

subtracting the new domain-mean heating rate from the cloud type net longwave heating

rates. We find that the average Clear LW ′ becomes 74% more negative compared to the

values at 295 K. However, after normalising LW ′ to account for the changing SST, we

find this hypothetical new Clear LW ′
n is largely insensitive to SST. We next isolate the

effect of the changing cloud fraction with SST by using the average cloud type longwave

heating rates at 295 K with the average cloud type fractions at 305 K to calculate the cloud

types’ LW ′. We find the domain-mean longwave cooling rate increases by approximately

3 W m−2 compared to the value at 295 K, and is mainly a result of the decreasing Deep

cloud fraction allowing for enhanced radiative cooling. The increased domain-mean cooling

rate is closer to the mean cooling rate of the Clear regions, making their LW ′ 37% less

anomalously negative. This is close to the actual 30% decrease in the mean LW ′
n of the

Clear regions. This shows that the SST sensitivity of the Clear LW ′
n is primarily due to

changes in cloud fraction with SST.

The contribution of the clear-sky longwave feedback to the total feedback is negligible in

the cloudy regions (Figure 4.7a). This is because the clear-sky longwave heating anomalies

are much smaller than the total longwave heating anomalies (Figure 4.7e), showing that

the longwave feedback is mainly a result of the longwave interactions with clouds. Even the

Clear regions’ longwave contribution is more positive than the clear-sky feedback because

the longwave anomalies in Clear regions are more anomalously negative within a domain

containing clouds.

For the Clear regions, the decrease in their longwave feedback with increasing aggre-

gation is largely a clear-sky effect, with their total longwave feedback and their clear-sky

longwave feedback decreasing by a similar magnitude (Figure 4.7a & c). On average, the
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Clear regions’ LW ′
n remains similar with aggregation (becoming very slightly more posi-

tive) and their ĥ′n becomes more negative. But the changes in these model-mean values

are not enough to explain the decrease in the mean LW ′
n × ĥ′n covariance in the Clear

regions. The decrease in this covariance must be due to a decrease in the correlation be-

tween LW ′
n and ĥ′n as aggregation increases, which is a clear-sky radiation effect. During

the Growth phase, there is a positive correlation between ĥ′n and clear-sky LW ′
n. This

is because regions with increasingly positive ĥ′n have a greater column-integrated WVP,

thus a higher effective level of OLR emission, reduced OLR (Allan et al., 1999), and there-

fore a higher LW ′. During the Mature phase, there is a greater abundance of extremely

dry regions. In these extremely dry regions, an increase in WVP more readily lowers the

effective emission level of downwelling longwave radiation (Ruckstuhl et al., 2007) than

increases the effective emission level of OLR (Chapter 3, Figure 3.14). The consequence is

increasingly negative LW ′ at higher ĥ′n. This is a negative correlation, and helps to make

the total Clear longwave feedback more negative in the Mature phase. The transition

of the driest regions’ clear-sky longwave feedback from initially positive to negative as

aggregation increases is also described by Wing and Emanuel (2014), who explain it as a

competition between local and remote effects using a simple two-layer model.

Next, we look at the effects of smoothing on cloud-longwave interactions in the CRMs

to see how a coarser grid spacing affects cloud-longwave interactions. After smoothing

the TOA radiative fluxes and reclassifying the cloud types using the smoothed radiation,

there is a large difference in the fraction of the different cloud types (Figure 4.7b). Firstly,

there is an almost complete elimination of Shallow cloud in the Smoothed CRMs during

the Growth phase, with a large reduction in Deep cloud in the Growth and Mature phases.

This is because the Shallow and Deep clouds are often small in area, particularly during

the Growth phase, meaning that after averaging the TOA radiative fluxes across the

surrounding 120 km × 120 km area, these clouds are often reclassified as either Clear or

Other clouds. This results in an increase in Other cloud, although there is an approximate
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halving of the total cloud fraction during the Growth phase. During the Mature phase, all

cloud types increase in fraction in the Smoothed CRMs as a likely result from increased

cloud clustering. The total cloud fraction in the Mature phase is similar to the non-

Smoothed CRMs.

Smoothing also has an effect on the average LW ′
n × ĥ′n covariance of the cloud

types (Figure 4.7c). The covariance remains similar for Deep cloud, but increases slightly

for the Other cloud, perhaps a result of a significant proportion of the non-Smoothed

Deep cloud regions becoming reclassified as Other after Smoothing, as can be inferred

by comparing Figures 4.2a & b. The combined effects of the change in cloud fraction

and LW ′
n × ĥ′n covariance after Smoothing is a reduction in the contribution from Deep

cloud with subsequent increases in the contributions from the Other and Clear cloud

types during all stages of aggregation. Smoothing has a negligible effect on the clear-sky

longwave feedback.

4.4.2 Comparison of Cloud-Radiation Interactions within CRMs and

GCMs

In Figure 4.8, we compare the longwave-cloud interactions between the Smoothed CRMs

and GCMs. Figure 4.8a shows that during the Growth phase, longwave interactions with

the Clear regions and Deep regions are the main drivers of self-aggregation for GCMs,

with interactions with Other clouds also having a significant contribution. Contributions

of each of these cloud types to the total longwave feedback are higher in GCMs compared

to the Smoothed CRMs. This is largely due to the increased fraction of the Other and

Deep cloud types (Figure 4.8b), but also the increased LW ′
n × ĥ′n covariance of the Deep

and Clear cloud types (Figure 4.8c).

The absolute net longwave heating rate (defined in Equation 1.3) of Deep cloud is

similar in the Smoothed CRMs and GCMs, but in the Clear regions, the longwave heat-

ing rate is more negative on average for GCMs (Figure 4.8f). Given that the clear-sky
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Figure 4.8: Smoothed CRMs (upward triangles) vs GCMs (circles): (a) Contributions of
longwave interactions for each cloud type in Table 4.1 to the longwave term in Equation
(2.2) (equal to the cloud type fraction multiplied by their mean LW ′

n × ĥ′n covariance)
divided by the standard deviation of ĥn, (b) cloud type fraction, (c) LW ′

n × ĥ′n covariance
divided by the standard deviation of ĥn, (d) ĥ

′
n divided by the standard deviation of ĥn, (e)

LW ′
n, and (f) net longwave heating (Equation 1.3). Data points represent spatiotemporal

means. The layout follows the same protocol as Figure 4.5. Note different y-axis ranges
for Clear in b, c, d & e.
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longwave heating rate in the Clear regions is similar in CRMs and GCMs, the decreased

longwave cooling in CRMs is likely a result of more thin high cloud being present in the

Clear regions. Since Clear regions occupy the majority of the domain, the domain-mean

longwave emission is closely linked to that of the Clear regions. This makes the LW ′
n of

Deep clouds in GCMs more positive LW ′
n (Figure 4.8e), and helps to increase the mean

LW ′
n × ĥ′n covariance of Deep clouds.

The LW ′
n × ĥ′n covariance of the Clear regions is more than double that of the

Smoothed CRMs. This is in part because Clear regions in GCMs typically occur in

more negative ĥ′n regions compared to Smoothed CRMs (Figure 4.8d), which is a likely

consequence of the greater cloud fraction in GCMs, confining the Clear regions to drier

environments. The LW ′
n is also more negative in GCMs partially due to the mean net

longwave heating rates being more negative on average, but mainly because of the dif-

ference in cloud fraction between the model types. To isolate the effect of the difference

in cloud fraction between CRMs and GCMs on the Clear regions’ longwave feedback, we

use the mean longwave heating rates of the cloud types in the Smoothed CRMs with

the cloud fractions of the GCMs. We then calculate a hypothetical new domain-mean

longwave cooling by taking the sum of the product of these cloud fractions and net long-

wave heating rates and then find the new hypothetical cloud type LW ′. We find that

the LW ′
n of the Clear regions becomes approximately 2.5 times more negative. This is

thanks to the Deep and Other clouds lowering the domain-mean longwave cooling rate

in GCMs, hence making the Clear regions more anomalously negative. These effects sug-

gest that the greater high-topped cloud fraction in GCMs is a key factor in the enhanced

total longwave-FMSE feedback, and therefore rate of aggregation in GCMs compared to

CRMs. The non-Smoothed CRMs have a similar Deep cloud fraction and Deep LW ′
n × ĥ′n

covariance to the GCMs, yet the contributions from Other and Clear cloud types remain

larger in GCMs thanks to the increase in the Other cloud fraction in GCMs. The increase

in Other cloud fraction, with their positive LW ′, helps further lower the (negative) LW ′
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of the Clear regions in GCMs compared to non-Smoothed CRMs, helping increase these

cloud types’ contributions to the longwave feedback.

As the convection reaches the Mature phase, longwave interactions in the Clear, Other

and Deep cloud types maintain aggregation in the Smoothed CRMs. For GCMs, longwave

interactions with the Clear and Deep cloud types are the key maintainers of aggregation.

The contribution from the Clear regions decreases with aggregation in both the CRMs

and GCMs because of the clear-sky effect described in Section 4.4.1. Despite the GCMs

having a larger Shallow fraction, these clouds have a similarly insignificant contribution

to the longwave feedback as in the Smoothed CRMs. Their LW ′
n × ĥ′n covariance is

consistently close to 0 because both their LW ′
n and ĥ′n are small.

The SST sensitivity of the longwave feedback in GCMs is less straightforward than

CRMs with multiple factors playing a role. As with the CRMs, there is great variability

between the models in the factors affecting the longwave feedback. On average, during the

Growth and Mature phases, the longwave feedback decreases with increasing SST because

of a decrease in the contributions from the Clear and Deep categories. The decrease in

the contributions from Clear regions comes from their decreasing LW ′
n × ĥ′n covariance.

During both phases of aggregation, the Clear ĥ′n becomes less negative, which is in part a

result of the decreased Deep and Other cloud fraction. These clouds form in anomalously

positive ĥ′n regions, so a decrease in their abundance with increasing SST will result in an

increase in anomalously moist Clear regions, thus decreasing the mean Clear LW ′
n × ĥ′n

covariance. The main factors responsible for the decreasing contribution from Deep cloud

is the increase in the range of ĥmax and ĥmin that is used to normalise the longwave heating

anomalies, as well as a decrease in their average ĥ′n in the Growth phase.
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4.5 Conclusions

In this chapter, we compare the effects of cloud-radiation interactions on convective self-

aggregation within the CRMs and GCMs submitted to RCEMIP (Wing et al., 2018, 2020).

We use the normalised vertically-integrated FMSE variance (var(ĥn)) budget framework to

study aggregation (Pope et al., 2021, referred to as P21.), and define “Growth” and “Ma-

ture” phases of aggregation to compare how FMSE feedbacks contribute to aggregation

at similar stages of aggregation across the range of models. We define four different cloud

types based on the top of atmosphere radiative fluxes following the method from Becker

and Wing (2020) and calculate the contribution of radiative interactions with these cloud

types to aggregation. These cloud types are: Clear, Shallow, Deep and Other. GCMs have

on average a 40 times larger grid spacing than CRMs. When comparing these two model

types we account for biases in our analysis technique due to the resolution difference by

horizontally smoothing the CRMs so that each grid point is an average of the 40 × 40

grid points surrounding it, referred to as Smoothed CRMs.

The goals of the study are to:

• Validate the robustness of the results in P21 who studied the effects of cloud-

radiation interactions on self-aggregation within the Met Office Unified Model version

11.0 CRM (submitted to RCEMIP and referred to as “UKMO-RA1-T”).

• Investigate to what extent differences in cloud-radiation interactions affect self-

aggregation within CRMs and GCMs, and how these are sensitive to SST.

4.5.1 Robustness of Pope et al. (2021) results

We consider the robustness of the following five conclusions from P21:

1. Key drivers of aggregation are longwave interactions with high-topped clouds and

Clear regions. (Robust)
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Most CRMs and GCMs are in agreement with this conclusion when considering that

Deep cloud are mostly equivalent to high-topped clouds in P21. Deep clouds have

strong longwave heating anomalies and occur in anomalously moist regions. Clear

regions typically have negative longwave heating anomalies and tend to occur in

anomalously dry regions. Both of these radiative interactions result in a strongly

positive longwave feedback.

2. The main maintainers of aggregation are longwave interactions with high-topped

clouds and shortwave interactions with water vapour. (Robust)

Most CRMs and GCMs are in agreement that these radiative interactions are key

maintainers of aggregation. The shortwave feedback increases with aggregation as

moist and dry regions amplify, leading to a greater contrast in shortwave absorp-

tion by water vapour between the moist and dry regions, resulting in an enhanced

shortwave-FMSE feedback.

3. The main resistors of aggregation are negative surface flux and advection feedbacks.

(Not Robust for surface flux in the Growth phase)

In the majority of models, the surface flux feedback is actually a key driver of

aggregation, with the UKMO-RA1-T model having the most negative surface flux

contribution during the Growth phase. In most models, this is likely due to a strong

wind speed-induced surface flux feedback outweighing the air-sea disequilibrium feed-

back during the Growth phase of aggregation (unlike in UKMO-RA1-T where the

opposite is true). As aggregation matures, the models are in agreement that the

surface flux feedback becomes increasingly negative and often opposes aggregation.

The advection feedback is typically negative and highly variable between models.

4. The SST-dependence of the longwave feedback is absent during the Growth phase,

but is negative in the Mature phase. (Not Robust for Growth phase)
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For the RCEMIP models, the domain-mean longwave feedback decreases with in-

creasing SST at all stages of aggregation, which is primarily due to the decrease in

Deep and/or Other cloud fraction at warmer SSTs. P21 also find the high-topped

cloud fraction decreases with increasing SST, however this is compensated by an

increase in their mean longwave-FMSE covariance in the Growth phase. We do

not find the longwave-FMSE covariance of the Deep and Other clouds increasing

with SST in the majority of RCEMIP models, hence their domain mean longwave

feedback tends to decrease with SST.

The RCEMIP CRMs and GCMs differ in the processes leading to the decrease in the

longwave feedback with increasing SST. For the CRMs, the average longwave-FMSE

covariance of these clouds remains similar with SST, so the decrease in their cloud

fraction reduces their total aggregating influence. A secondary effect of the decreased

Deep cloud fraction is an increase in the magnitude of domain mean longwave cooling.

This makes the typically-negative longwave heating anomalies of the Clear regions

less anomalous, also decreasing the Clear regions’ aggregating influence at warmer

SSTs. In GCMs, the longwave feedback decreases with SST because the normalised

longwave heating anomalies of Deep clouds decreases, reducing their aggregating

influence. In addition, the Clear regions occur in less anomalously dry regions due

to the reduced total cloud fraction, also reducing their average aggregating influence

as SST increases.

5. The SST-dependence of the aggregation rate is positive because the advection

feedback becomes increasingly positive with SST. (Not Robust for SST-dependence

of the aggregation rate. Robust for the SST-dependence of the advection feedback)

P21 find the sum of the diabatic feedbacks are insensitive to SST during the Growth

phase. However, for the RCEMIP CRMs and GCMs, each diabatic feedback tends

to decrease with increasing SST during the Growth phase. Despite the sum of these
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diabatic feedbacks decreasing with SST, the rate of aggregation remains similar on

average. The sum of the diabatic feedbacks tends to be proportional to the magni-

tude of the (negative) advection feedback, resulting in little change in aggregation

rate with SST.

4.5.2 Differences between GCMs and CRMs

Using var(ĥn) as our aggregation metric, we find there is much variability in the rate of

aggregation and the maximum degree of aggregation within the CRMs, with no consistent

SST dependence on the rate of aggregation and the maximum degree of aggregation.

GCMs, on the other hand, aggregate faster than CRMs on average, and tend to be more

aggregated at higher SSTs.

Both the contributions of shortwave-FMSE and surface flux-FMSE feedbacks to aggre-

gation are similar in magnitude in Smoothed CRMs and GCMs. However, the longwave-

FMSE feedback is, on average, approximately twice as strong in GCMs compared with

CRMs. This results in typically faster rates of aggregation in GCMs. This is primarily due

to GCMs having a larger cloud fraction than Smoothed CRMs, but more crucially a larger

Deep cloud fraction. However, if GCMs are instead compared to the non-Smoothed CRMs,

GCMs have a similar Deep fraction but a larger Other fraction (which is mostly comprised

of thinner high-topped cloud), which still results in a greater total longwave-FMSE feed-

back. The longwave-FMSE feedback is strongest for Deep clouds because they typically

occur in anomalously-high FMSE regions, and have anomalously strong positive longwave

heating rates. Like with the SST sensitivity of cloud fraction in CRMs, a secondary ef-

fect of the increased Deep cloud fraction in GCMs is an increase in the longwave-FMSE

feedback in the Clear regions. This is because an increased cloud fraction reduces the

magnitude of domain-mean longwave cooling. With Clear regions occupying the majority

of the domain, their typically-negative longwave heating anomalies become more negative,

increasing their longwave-FMSE feedback. The increase in the contributions from Deep
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and Clear regions to the longwave-FMSE feedback accounts for the doubling of the total

feedback.

As previously mentioned, the sum of the diabatic feedbacks with FMSE tend to de-

crease with increasing SST during the Growth phase, yet the aggregation rate remains in-

sensitive to SST thanks to the increasingly positive advection feedback. After the Growth

phase however, the sum of the diabatic feedbacks becomes less SST dependent, yet the

advection feedback remains more positive at higher SSTs in GCMs, resulting in GCMs

being more aggregated at higher SSTs. This finding, and the point made above about

differences in cloud amount between GCMs and CRMs, suggests that GCMs should be

compared more systematically to CRMs to investigate their total cloud amount.

Despite the difference in the diabatic feedbacks between GCMs and CRMs accounting

for the difference in the aggregation rate between these model types, there is no evidence

that the model spread in the magnitude of the diabatic feedbacks can explain the model

spread in the rate of aggregation in CRMs. On average for CRMs, the magnitude of the

(negative) advection feedback is proportional to the sum of the diabatic feedbacks. The

advection term may be largely influenced by deep overturning circulations that transport

FMSE from moist to dry regions, dampening aggregation. The rate of aggregation in

CRMs is most strongly correlated with the magnitude of the advection term. Unlike in

CRMs, the diabatic feedbacks are significantly correlated with aggregation rate in GCMs.

This may suggest that the overturning circulations that smooth horizontal humidity gradi-

ents are relatively weaker compared to the diabatic feedbacks in GCMs than CRMs. One

possibility is that GCMs are not capturing key circulations that would otherwise mediate

aggregation, although circulations in CRMs could also be too strong. These effects are

not investigated in this study.

We have shown that the production of cloud in CRMs and GCMs, in terms of quantity

and distribution, is very different. This in turn, results in largely different longwave-FMSE

feedbacks that alter the rate and degree of aggregation. Not only are the longwave-FMSE
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interactions enhanced in GCMs, but there is a less negative correlation between the dia-

batic and advection feedbacks in GCMs than CRMs. This suggests that the response of

circulations to diabatic heating are different in GCMs and CRMs. These factors highlight

our limitations to accurately represent the cloud response to warming in climate studies.

CRMs are often used to study the cloud response to warming, but are too small to cap-

ture the large-scale circulations that affect the total cloud feedback. GCMs are used in

climate modelling studies because they are complete representations of the climate system,

and they can perform hundreds of years of global-scale simulations. However, there are

discrepancies in cloud-radiation interactions and circulations between GCMs and CRMs.

Both CRMs and GCMs should be evaluated against observations in an effort to make

these aspects of clouds and circulations more realistic.

In Chapter 5, we modify cloud radiation interactions within explicit and parame-

terised convection simulations to assess the sensitivity of aggregation and the advection

feedback to these interactions to achieve our fourth thesis objective. This helps highlight

key differences in the processes affecting aggregation between explicit and parameterised

simulations. We test whether an enhanced cloud-longwave feedback in explicit convec-

tion simulations affects aggregation rate despite there being little connection between

these feedbacks and aggregation rate in the RCEMIP CRMs. We also investigate whether

aggregation in parameterised convection simulations behaves more similarly to explicit

simulations if the cloud-radiation interactions are more similar.
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CHAPTER 5

THE RESPONSE OF CONVECTIVE SELF-AGGREGATION TO

ENHANCED RADIATIVE-CONVECTIVE INTERACTIONS IN

EXPLICIT AND PARAMETERISED CONVECTION

SIMULATIONS

5.1 Introduction

In our previous chapters, we have found that direct interactions between longwave ra-

diation and FMSE are crucial drivers and maintainers of self-aggregation within both

the explicit and parameterised convection simulations in RCEMIP. The longwave-FMSE

feedback is often the dominant diabatic FMSE feedback throughout the RCEMIP simula-

tions. Specifically, longwave interactions with high-topped clouds and clear regions have

the greatest contributions to the total longwave-FMSE feedback, but longwave interactions

with high-topped cloud directly and indirectly affects the longwave feedback in the cloudy

and clear regions respectively. We have seen that the sum of the diabatic feedbacks with

FMSE tend to decrease with SST during the Growth and Mature phases of aggregation,

yet there is no consistent SST dependence on the aggregation rate in both the explicit and
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parameterised convection simulations. In addition, despite the wide range in the magni-

tude of the diabatic feedbacks, there is no correlation between these feedbacks and the rate

of aggregation amongst the explicit convection simulations. However, there is a significant

correlation for the parameterised convection simulations, with higher diabatic feedbacks

leading to faster aggregation. The reason for there being little correlation between these

diabatic feedbacks and aggregation in the explicit convection simulations has to do with

the response of the advection feedback to the diabatic feedbacks. The (typically negative)

advection feedback becomes increasingly negative as the diabatic feedbacks increase, often

leading to no relationship between the diabatic feedbacks and aggregation rate. With

cloud-radiation interactions being one of the largest sources of variability amongst RCE

models, the question is raised: To what extent would a change in cloud-radiation interac-

tions affect the rate of aggregation?

Bretherton et al. (2005) showed in a sensitivity test that by artificially doubling the to-

tal radiative heating anomalies throughout every column, the rate of aggregation increases

in an explicit convection simulation. This result seemingly opposes the results from Chap-

ter 4. Many studies have then shown that radiative interactions with clouds are essential

for the development of non-rotating aggregation through mechanism denial experiments

(e.g. Muller and Held, 2012; Holloway and Woolnough, 2016). With these cloud-radiation

interactions turned off, the convection does not aggregate. Cloud-radiative interactions

aid the development of of tropical cyclones in rotating domains, however they are not

essential for tropical cyclone development (Wing et al., 2016). They help to accelerate

tropical cyclone formation (Ruppert et al., 2020), and help to strengthen and broaden the

cyclone’s circulation Bu et al. (2014).

In non-rotating domains, aggregation often starts with the development of dry patches

that continue to expand, confining convection into small, intensely precipitating regions.

Fan et al. (2021) show that these dry patches are not guaranteed to continue expanding

and amplifying without sufficient cloud-radiative forcing, otherwise deep convective circu-
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lations could engulf these initial dry patches, preventing aggregation. They modify cloud

radiative forcing in the model by adjusting the threshold radius of cloud ice crystals be-

fore they are converted to snow. A greater threshold radius increases anvil cloud fraction,

thus increasing the cloud-longwave radiative effect, resulting in faster aggregation. By

modifying this threshold, the vertical structure of clouds are modified. As the threshold

is increased, anvil cloud fraction increases, whereas the low cloud fraction remains largely

unchanged. Therefore, this approach only tests the sensitivity of aggregation to anvil

cloud fraction.

By modifying the strength of cloud-radiation effects in the radiation scheme, we can

test how the magnitude of cloud-radiation interactions affect convective self aggregation

without explicitly affecting the cloud structure. In this chapter, we study the effects of

modified longwave-cloud interactions on self-aggregation in idealised explicit and param-

eterised convection simulations.

5.2 Methods

5.2.1 Experiment Design

In this chapter, we use two sets of RCE simulations of the UK Met Office Unified Model.

We run an explicit convection and a parameterised convection set, simulated over a fixed

SST of 300 K. The explicit simulations are based on the LARGE simulations used in

Chapter 3. This is an idealised, elongated channel simulation that is 6,048 km × 432 km

in size with a 3 km horizontal grid spacing. The parameterised simulations are based on the

the Met Office Unified Model Global Atmosphere (GA7.1, CMIP6 model version) (Walters

et al., 2019) that has an RCEMIP GCM submission labelled “UKMO-GA7.1” (Wing et al.,

2018). We have modified this version to occur on an elongated, bicyclic channel domain

that is 6,040 km × 440 km (approximating the RCEMIP elongated channel domain explicit

simulations) with a 20 km grid spacing.
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We modify the cloud-longwave interactions by systematically scaling the parameter

that controls the total cloud cover seen by the longwave radiation scheme within a grid

column (Ctot). Ctot is a parameter used in the Monte Carlo Independent Column Ap-

proximation (McICA) radiation scheme, developed by Pincus et al. (2003). The grid box

cloud fraction itself is not directly affected by Ctot; this parameter is only used by the

longwave radiation scheme. In adjusting this parameter, we do not directly affect the

cloud structures, we only affect the cloud’s radiative forcing. Each set has a “Control”

simulation in which Ctot is not adjusted. Additionally, two experiments are performed:

one with Ctot halved (“Halve”) and another with Ctot doubled (“Double”). Note that the

Double simulations often have total cloud cover in the longwave radiation scheme greater

than 100%, however this unphysical scenario does not result in model error and acts to

enhance the cloud emissivity.

The McICA radiation scheme is used in GA7.1 by default, but we have had to modify

the explicit convection model configuration to use McICA. This scheme is designed to

be implemented in large-scale models with a coarse grid spacing on the order of dozens

to hundreds of kilometres; within which, a wide variety of cloud structures could de-

velop. It is designed to represent the radiative transfer of sub-grid cloud structures in a

computationally-efficient and unbiased way, calculating 1-dimensional radiative fluxes ver-

tically throughout the column. We have chosen to use this radiation scheme because it is

straightforward to scale the radiative influence of cloud. In comparing the explicit Control

simulation to the LARGE 300 K simulation in Chapter 3, we find very little difference in

terms of rate and degree of aggregation, as well as the structure of aggregated convection.

The Independent Column Approximation (ICA) can quite accurately represent the

domain mean radiative flux by calculating the clear-sky radiative flux and the average

radiative flux within each possible vertical cloud structure, weighted by the probability

of the cloud structure occurring (Cahalan et al., 1994; Barker et al., 1999). The ICA

approximates radiative fluxes throughout a grid column (F ICA) by the equation:
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F ICA = (1− Ctot)F
clr + CtotF cld (5.1)

Where F clr is the clear-sky radiative fluxes calculated at each vertical level throughout

the column, and F cld is sum of radiative fluxes at each spectral band, averaged over

all possible subgrid cloud structures. The subgrid cloud structures are calculated from

cloud fraction and in-cloud condensate within each grid cell, which are then overlapped

following additional overlap assumptions (using the stochastic cloud generator described

by Räisänen et al. (2004) in our configuration). Ctot is the sum of the probabilities of these

sub-grid cloud structures. Radiative fluxes are more uniform in clear skies compared to

cloudy skies, so F clr is only calculated once. It is usually very computationally expensive

to calculate the full ICA of F cld, so the McICA scheme approximates F cld by calculating

radiative fluxes for a number of sampled possible cloud structures. In our configuration, we

use the Optimal Spectral Sampling method of McICA described by Räisänen and Barker

(2004). This McICA method approximates F cld by the formula:

F cld ≈
K∑
k=1

(
1

Nk

Nk∑
n=1

F cld
n,k

)
(5.2)

Where k is a spectral interval within the k-distribution of radiation, K is the number

of spectral intervals used to approximate the k-distribution, Nk is the number of randomly

selected cloudy subcolumns, and F cld
n,k is the radiative flux of the randomly selected cloud

column for the spectral interval. So, this is an approximate average radiative flux of the

cloudy subcolumns within a grid column.

Rearranging Equation (5.1) gives Equation (5.3). In our experiments, we system-

atically scale Ctot for longwave radiation only, running experiments for Halve Ctot and

Double Ctot. So we provide less or more weight to the cloudy columns in our experiments,

therefore weakening or enhancing the effect of cloud-longwave interactions.
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F ICA = F clr + Ctot(F cld − F clr) (5.3)

5.2.2 Analysis Framework

The cloud classification scheme used in this chapter is similar to that described in Section

3.2.2 and used in Chapter 3, but we combine some of the categories with similar longwave

radiation properties for ease of analysis. The cloud classification scheme is originally based

on that used by Hill et al. (2018) who use the vertical profile of condensed water content

to define different cloud types. They use a lower and an upper pressure level threshold

to define low, high and mid-level cloud, with cloud types spanning multiple levels having

their own separate category. In Chapter 3, cloud types are defined by the vertical profile of

condensed water in relation to the lower and upper thresholds, resulting in eight different

cloud types: Clear, Low, Low & Mid, High, High & Low, High & Mid, and Deep. In this

chapter, we ignore the low threshold. Here, a condensed water profile with cloud below

the high threshold only is defined as “Shallow”, cloud above the high threshold only is

defined as “High”, and cloud above the threshold in addition to cloud below is defined as

“High+”.

In Chapter 3, we define the lower and upper thresholds based on the vertical distribu-

tion of cloud bases averaged throughout the entire large channel simulations (as in Figure

3.1 in Chapter 3). The high-level threshold is defined as the highest-altitude cloud base

distribution local minimum. We use the mean cloud base distribution of the Control ex-

plicit convection simulation to define the threshold and we use this value for each of our

simulations. The upper level threshold is 469 hPa.

We use the same variance of normalised frozen moist static energy (FMSE) budget

framework that is based on the framework by Wing and Emanuel (2014) as described in

Section 2.3. Aggregation is measured by the variance of normalised vertically-integrated

FMSE (var(ĥn)). The framework allows us to compare the aggregating influence of feed-
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backs between FMSE and longwave radiation, shortwave radiation, surface enthalpy fluxes,

and advection of FMSE. Since we only analyse simulations over one SST in this chapter,

we could have used the Wing and Emanuel (2014) framework and yielded the same results.

However the use of the normalised framework allows us to compare these results to those

in the previous chapters.

To make a fair comparison between our explicit and parameterised simulations, we

horizontally smooth the explicit simulations in a similar way to the Smoothed CRMs in

Chapter 4. The parameterised convection simulations have a grid spacing that is approx-

imately 7 times greater than the explicit simulations. Therefore, we horizontally smooth

the 2-dimensional and 3-dimensional fields so that each gridbox is an average of the 7 × 7

gridboxes surrounding it. We only analyse the smoothed explicit simulations in this chap-

ter.

We discuss the characteristics of the simulations in terms of two distinct phases of

aggregation: one in which the aggregation is rapidly increasing (“Growth”) and another

in which the domain displays strongly aggregated convection (“Mature”). The Growth

phase for both the parameterised and explicit convection simulations is defined as any

time at which var(ĥn) is between 2×10−4 and 4×10−4. The Mature phase is defined as

any time at which var(ĥn) is between 1×10−3 and 2×10−3.

5.2.3 Expected Cloud-Longwave Forcing Response to Modified Ctot

By modifying the cloud-longwave radiation interactions through adjusting Ctot, we in-

tend to alter the amount of longwave radiation absorbed and emitted by the cloud for a

given condensed water content, thus altering the cloud column-integrated longwave heat-

ing anomalies. A simple schematic of radiative interactions with different cloud types is

shown in Figure 1.1 and can be used to infer how modifying Ctot may impact the column

longwave heating rates for each cloud type. As discussed in Chapter 1, and shown in

Figures 3.9g & 4.8f, high-topped clouds anomalously warm the atmospheric column and
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shallow clouds tend to have slightly greater longwave cooling than Clear columns. Equa-

tion (5.3) shows that as Ctot increases, the difference between the cloudy fluxes and clear

fluxes will provide a larger contribution to the total radiative flux.

Equation (5.3) shows that when we halve Ctot, the contribution from the cloud fluxes

ranges from 0% to 50% of the total flux, and the contribution from the clear-sky fluxes

ranges from 50% to 100%. So we would expect the cloudy regions’ cloud effects to be

halved. When we double Ctot, we would expect the cloudy regions’ cloud effects to be

doubled. The contribution from the cloud fluxes ranges between 0% and 200%, and

the clear fluxes contribute between 100% and -100%. In all experiments, the total clear

fraction plus cloud fraction always equals 100%, but the Double experiment leads to some

unphysical radiative fluxes. For example, if a column contains thick high-topped cloud,

with all subgrid columns containing cloud, and with OLR less than half of the clear-sky

OLR, Ctot would equal 200%. This means the top of atmosphere flux would equal 2 × the

cloud OLR minus 1 × the clear-sky OLR, and this scenario would yield negative OLR. In

both the explicit and parameterised Double simulations, this occurs in around 3% of grid

boxes. Despite this being unphysical, the result is an enhanced radiation-cloud interaction

leading to greater longwave heating rates associated with these high-topped clouds, which

is the intention of the experiment.

An alternative methodology to alter the magnitude of cloud-radiation interactions

that does not result in such unphysical features may be preferential to ours, as it is not

immediately clear how the model responds to these features and what their consequences

are. For example, a future experiment could modify cloud optical depth by scaling the

amount of condensed water seen by the radiation scheme. Greater condensed water content

would increase cloud optical depth and enhance cloud-radiation interactions, but would

not result in unphysical radiative fluxes. A drawback of this approach is that the sensitivity

of the net longwave heating rate to condensed water path is highly dependent on cloud

type and condensed water path itself (Figure 3.7). For example, in an experiment where
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CWP is doubled in the radiation scheme, the net longwave heating rate would be increased

more for thin high cloud compared to thick high cloud. Additionally, the net longwave

heating of a column with a typical shallow cloud would be less affected by the increased

CWP than a column containing a typical high cloud. Our experiment more fairly scales

all cloud-radiative effects, but at the expense of being unphysical.

5.3 Response of Cloud to Modified Cloud-Radiation Inter-

actions

The longwave heating rates for a given condensed water path (CWP) for each cloud type

in each of the simulations are shown in Figure 5.1 along with each cloud type’s CWP

probability distribution function. As expected, the High and the High+ cloud types have

positive LW ′, and the Shallow cloud type has negative LW ′ for the vast majority of

the CWPs the clouds typically have. As intended, we find that High and High+ clouds

have increasing longwave heating rates for a given CWP as Ctot increases, meanwhile the

longwave heating rates of Shallow clouds becomes more negative. The longwave heating

rates remain similar throughout the simulations and are not much affected by aggregation

(not shown in this figure), which is consistent with the findings of Chapters 3 and 4.

Comparing explicit and parameterised convection simulations, the longwave heating

rates for a given CWP for High and Shallow clouds are broadly similar. One of the

key differences is the longwave heating rates of the High+ clouds, which are higher (less

negative) for a given CWP in the parameterised convection simulations compared to the

explicit simulations, particularly for CWPs greater than 0.1 kg m−2. This difference is

almost entirely due to the difference in OLR rather than the difference in DLR (not shown).

This is discussed later in Section 5.5. The discrepancy in OLR between the parameterised

simulations and explicit simulations is roughly an order of magnitude greater than the

discrepancy in DLR.
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Figure 5.1: (a) longwave heating rate vs CWP throughout the whole of the simulations for
Shallow (blue), High (green) and High+ (red) clouds within the explicit convection Halve
(dotted), Control (dashed) and Double (solid lines) simulations. Lines are calculated by
creating 50 logarithmically-spaced CWP bins and finding the mean LW for each cloud
type within the bin. Domain-mean longwave heating rates are represented by horizontal
lines. (b) Same as (a) but for the parameterised convection simulations. (c) Probability
distribution function of CWP for each cloud type within the explicit convection simula-
tions. (d) Same as (c) but for the parameterised simulations.
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On average, High+ clouds have the highest CWP, followed by High cloud and Shallow

cloud. This is consistent for all simulations. There are slight changes in the distributions

of CWP for each cloud type as Ctot is modified, which will inevitably impact the longwave

heating rate of the clouds, but this impact is small in comparison to the direct effect of

Ctot on the longwave heating rates.

There are a variety of vertical distributions of cloud in our simulations, with the dis-

tribution being sensitive to Ctot, the degree of aggregation, and parameterisation of con-

vection, as seen in Figure 5.2. For the explicit convection simulations during the Growth

phase, there is broadly little difference in the mean cloud fraction profile with Ctot. How-

ever, the vertical structure of cloud is more sensitive to Ctot during the Growth phase in

the parameterised convection simulation, with a decrease in fraction of low clouds as Ctot

increases. The distribution of high cloud is similar in the Control and Double simulations,

but approximately double for the Halve simulation. This may be because the atmosphere

in the cloudy regions on the Halve simulations cool more than they should, yielding greater

instability, resulting in more convection. More convective heating is needed to balance the

enhanced radiative cooling, which may be the cause of this greater cloud fraction. Note,

however, that we do not see a similar large cloud amount in the explicit simulation, high-

lighting that the cloud response to enhanced radiative cooling is very different between

these simulations. During the Mature phase, high cloud fraction increases slightly as Ctot

increases for the explicit simulations but decreases for the parameterised convection sim-

ulations. The fraction of mid-level cloud decreases with Ctot in both sets of simulations,

with low cloud fraction decreasing slightly for the explicit, and remaining similar in the

parameterised convection simulations.

In all simulations, high cloud fraction decreases with aggregation (going from Growth

to Mature), which is consistent with the majority of studies with CRMs, (e.g. Wing and

Cronin, 2016) and GCMs (e.g. Bony et al., 2016). We also see a reduction in low cloud

with aggregation in each simulation, particularly in the parameterised Control and Double
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Figure 5.2: Cloud fraction profiles for each of the explicit (a & c) and parameterised
simulations (b & d) during the Growth (a & b) and Mature phase (c & d). The high cloud
threshold is shown by the black dashed line. The 0°C and -39°C isotherms are represented
by dotted lines.
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simulations.

The heights of the isotherms in Figure 5.2 are slightly lower in the parameterised

simulations, indicating the mean temperature of the troposphere is colder. In addition,

the cloud top pressure tends to be slightly lower in the parameterised simulations. Both

of these factors would contribute to reduced cloud top emission and an overall greater

atmospheric longwave heating rate for high-topped clouds. This may help to explain

why the High+ longwave heating rates in Figure 5.1 are higher for a given CWP in the

parameterised simulations.

To see how Ctot affects the vertical profile of the radiative heating rate, Figure 5.3 shows

total radiative heating rate profiles as a function of ĥ percentile for each simulation during

the Growth and Mature phase. In addition, cloud fraction contours (using a minimum

condensed water content of 10−6 kg m−3 to define a cloud) as a function of ĥ percentile

and pressure is overlaid. In all simulations, at all stages of aggregation, there is a greater

concentration of deep convective cloud at higher ĥ percentiles. These deep convective

clouds are associated with radiative heating throughout the majority of the column, with

strong radiative cooling at their cloud tops. By design, the magnitude of these heating

rates increases with Ctot.

The ĥ percentile range of the deep convective regions and anvil cloud are strongly

affected by Ctot. Firstly, during the Growth phase of the explicit simulations, we find

little difference in the cloud distribution between the Halve and Control simulations. But

we find a larger ĥ percentile range of anvil cloud associated with radiative heating for

the explicit Double simulation. An increase in anvil cloud fraction in drier regions with

increasing Ctot is a common feature across both the explicit and parameterised simulations,

being particularly notable at higher degrees of aggregation. The presence of high cloud

prevents much of the upwelling radiation from lower levels escaping to space, having a

warming effect throughout the entire column. The greatest anvil cloud warming may

be where the anvil cloud is thick and the upwelling radiation below it is strong. Note in

116



Chapter 5. The Response of Self-Agg. to Enhanced Radiative-Convective Interactions

1000

700
500

300

200

100

Pr
es

su
re

 (h
Pa

)

(a) Halve. Explicit
mean h
5%
10%
30%
50%
70%
90%

(b)
Growth

Control. Explicit (c) Double. Explicit

0 20 40 60 80 100
h percentile

1000

700
500

300

200

100

Pr
es

su
re

 (h
Pa

)

(d) Halve. Param.

0 20 40 60 80 100
h percentile

(e) Control. Param.

0 20 40 60 80 100
h percentile

(f) Double. Param.

1000

700
500

300

200

100

Pr
es

su
re

 (h
Pa

)

(g) Halve. Explicit (h)
Mature

Control. Explicit (i) Double. Explicit

0 20 40 60 80 100
h percentile

1000

700
500

300

200

100

Pr
es

su
re

 (h
Pa

)

(j) Halve. Param.

0 20 40 60 80 100
h percentile

(k) Control. Param.

0 20 40 60 80 100
h percentile

(l) Double. Param.

4
3
2
1

0
1
2
3
4

K 
da

y
1

4
3
2
1

0
1
2
3
4

K 
da

y
1

4
3
2
1

0
1
2
3
4

K 
da

y
1

4
3
2
1

0
1
2
3
4

K 
da

y
1

Figure 5.3: Total radiative heating rate profiles vs ĥ percentile, with overlaid cloud fraction
contours, for each simulation during the Growth (upper half) and Mature (lower half)
phase. Cloud fraction contours indicate the fraction of cloudy grid boxes for a given ĥ
percentile and pressure. The domain-mean ĥ is represented by the vertical dotted line.
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Figures 5.3c, i and l, the anvil cloud heating is notably stronger in the drier columns where

the upwelling emission is coming from a higher effective temperature. It is not immediately

apparent what the cause of this extensive high cloud at higher Ctot is. Perhaps a greater

radiatively-driven instability is generated within anvil cloud that is stronger as Ctot is

increased. With larger anvil base heating and cloud top cooling, a circulation may be

generated, capable of maintaining high cloud.

There is a greater fraction of high-topped cloud in moist regions in the parameterised

simulations at both phases of aggregation, with an associated increase in longwave heat-

ing rates throughout the column. The altitude of the convective cloud tops also tends

to be higher in parameterised simulations, further enhancing column radiative heating.

Additionally, there is a greater fraction of very shallow cloud atop the boundary layer in

the parameterised simulations which extends far into the dry regions. These clouds are

associated with strong radiative cooling and are not as much of a feature in the explicit

simulations, with much of their low-level cloud perhaps being developing cumulus towers.

Furthermore, there is a lower fraction of high cloud in the drier regions in the higher

Ctot simulations for the parameterised simulations. All of these effects may help enhance

the longwave-FMSE feedback in the parameterised simulations compared to the explicit

simulations. This is discussed in more detail in Section 5.5.

The change in cloud fraction with Ctot may be linked to the amount of convection

needed to maintain radiative convective equilibrium (RCE). For simulations in equilibrium,

atmospheric radiative cooling is balanced by convective heating via latent heat release and

sensible heat transport. This convective heating originates from the surface sensible and

latent heat fluxes, meaning the total radiative cooling is balanced by surface heat fluxes.

In our simulations, around 94% of the total surface enthalpy flux comes from the latent

heat flux. Figure 5.4 shows that the total radiative cooling rate (longwave plus shortwave)

tends to be higher as Ctot decreases. This is primarily due to the reduced ability of

high-topped clouds to prevent radiation escaping to space, and may result in a greater
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amount of deep convection. The change in radiative cooling with Ctot is associated with

a change in surface heat fluxes and therefore convective heating. However, there is a

particularly large discrepancy between radiative cooling and surface fluxes in the Double

simulations, especially during the times before the Mature phase. Discrepancies in domain-

mean surface fluxes and radiative cooling will result in a nonzero net atmospheric energy

balance, meaning the simulations are not in RCE during these times. This highlights

that our approach to study the effects of enhanced cloud-radiation interactions on self-

aggregation in RCE experiments by adjusting Ctot is flawed to some extent. For the

times at which the simulations are approximately in RCE, both the radiative cooling and

convective heating reduce as Ctot increases.
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Figure 5.4: Total atmospheric radiative cooling (shortwave plus longwave) (solid lines)
and total surface heat flux (latent plus sensible) (dashed lines) for each of the explicit
(left) and parameterised (right) simulations, plotted against var(ĥn).
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5.4 Self-Aggregation within the Simulations

Convection within each of our simulations is initially randomly distributed throughout the

domain. Over the course of tens of days, convection becomes organised into moist and dry

regions, eventually forming multiple quasi-stationary moist bands with intense convection

separated by dry, subsiding regions. Figure 5.5 shows Hovmöller plots for each simulation,

with ĥ′n being averaged along the short axis of the domain. Positive ĥ′n is associated

with moist convective regions and negative ĥ′n is associated with dry subsiding regions.

From this figure, we can see that moist and dry regions amplify faster as Ctot increases.

We also find the length scale of organisation to be greater with Ctot once the convective

organisation reaches equilibrium. The length scale of organisation is also greater in the

parameterised convection simulations for a given Ctot.

The time series of var(ĥn) is shown in Figure 5.6a & b for each of our simulations. As

implied in Figure 5.5, the convection aggregates faster as Ctot increases in both the explicit

and parameterised convection simulations via the var(ĥn) metric. There is little difference

in the final degree of aggregation in both sets of simulations via this metric. The e-folding

of the autocorrelation function of ĥn (Lcor) is used as a measure of the length scale of

organisation and the time series of this is shown in Figure 5.6c & d. We find the length

scale of aggregation is not perfectly correlated with var(ĥn), continuing to increase for a

time even once var(ĥn) first reaches equilibrium for the Control and Double simulations

in particular.

The variance of ĥn increases with aggregation because positive and negative anomalies

in ĥn tend to amplify as aggregation increases. To see how the amplification of ĥn anoma-

lies are affected by Ctot and parameterisation, the evolution of the probability distribution

function of ĥn for each simulation is shown in Figure 5.7. In both the explicit and param-

eterised simulations, we find the moist regions amplify faster as we increase Ctot. This is

expected because moist regions are favourable for deep convection, producing high-topped
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clouds which have strong positive longwave heating anomalies. Increased longwave heat-

ing anomalies in moist regions further heats moist regions, making them more favourable

for deep convection. We find a greater concentration of grid cells in the very highest ĥ′n

regions for the lower Ctot simulations, which may be a result of reduced noise in ĥ′n in

moist regions due to the reduced influence of cloud-longwave interactions. In the Halve

simulations, the most negative ĥ′n regions amplify faster than the most positive ĥ′n regions,

but as Ctot increases, the rate of negative ĥ′n amplification appears to increase. However,

this may be a result of the moist regions amplifying faster at higher Ctot, making the dry

regions more anomalously negative at a faster rate.
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Figure 5.7: Time series of ĥn PDFs for each simulation. The instantaneous domain-mean
ĥn is represented by the dashed line.

To see which feedbacks contribute to the rate of change of aggregation, and how these
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feedbacks are affected by Ctot and parameterisation, the var(ĥn) budget terms in Equation

(2.2) are plotted against var(ĥn) in Figure 5.8. For the majority of var(ĥn) lower than the

Mature phase, the rate of aggregation increases as Ctot is increased. This is consistent in

both the explicit and parameterised simulations. The aggregation rate is typically faster

in the parameterised simulations for a given Ctot.
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Figure 5.8: Terms in Equation (2.2) divided by the standard deviation of ĥn plotted
against var(ĥn) for the (a) explicit and (b) parameterised simulations.

The rate of change of aggregation via the var(ĥn) metric is equal to the sum of the
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diabatic terms plus the advection term. Firstly, the dependence of the shortwave term on

var(ĥn) is similar in all of our simulations. This is an expected result since it is shown by

Wing and Emanuel (2014) and in Chapter 3 that the majority of the shortwave term can

be explained by shortwave absorption by water vapour, with the absorbing affect of cloud

having a small effect in comparison. The variability of ĥ is dominated by the variability

of vertically-integrated water vapour, so the relationship between the shortwave term and

the var(ĥn) should be consistent between simulations at the same temperature. This is

verified in Chapter 4 with the shortwave term having the smallest inter-model variability

for a given var(ĥn) regardless of parameterisation.

The surface flux term is typically negative or close to zero during the early stages of

aggregation which is consistent with the results in Chapter 3, but anomalously negative

compared to the majority of simulations in Chapter 4. The surface flux term becomes

increasingly negative as the convection becomes more aggregated. This is consistent with

the findings in the previous chapters and consistent with the enhanced (negative) air-

sea disequilibrium feedback as aggregation increases, as described by Wing and Emanuel

(2014). In each of these simulations, the shortwave and surface flux terms approximately

cancel each other, meaning that the total diabatic feedback is approximately equal to the

longwave term.

The sensitivity of the longwave term to Ctot is more complicated than initially antici-

pated from the experiment design. We had expected the longwave term to increase with

Ctot at all stages of aggregation due to an enhanced positive feedback between high-topped,

deep convective cloud in moist regions leading to further anomalous heating and further

deep convection. Our simulations do display an increase in the longwave term as Ctot

increases, but only during the very early stages of aggregation in the explicit simulations,

and up until the Mature phase of the parameterised simulations. The longwave feedback of

the Double simulations becomes increasingly negative as aggregation develops and there

is no consistent trend with Ctot after the convection becomes more aggregated. In the
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explicit Double simulation, the longwave term becomes negative and the total diabatic-

FMSE feedback turns negative in the Mature phase. However, the convection does not

disaggregate because the advection term remains positive for this simulation.

The differences in the budget terms between the Halve and Control simulations were

anticipated following the results of the previous chapters. The Control simulations have a

higher longwave feedback than the Halve simulations at all stages of aggregation, resulting

in the total diabatic term being higher in the Control simulations. The advection feed-

back is more negative, but the aggregation rate is faster. These outcomes are anticipated

following the results in Chapter 4; in particular for the parameterised simulations, where

the models with a stronger longwave feedback aggregate faster despite a more negative ad-

vection feedback. For simulations with a higher diabatic feedback, the advection feedback

is expected to be more negative. The increased diabatic feedback has a greater tendency

to amplify moist and dry regions, so the circulations that act to dampen aggregation will

be acting across larger gradients of FMSE, and so the advection feedback becomes more

negative.

It was unclear from Chapter 4 whether the enhanced longwave feedback would result

in faster aggregation for the explicit convection simulations because the magnitude of the

(negative) advection term was found to be proportional to the diabatic feedback in the ex-

plicit aggregation rates on average, with the longwave feedback having no correlation with

aggregation rate. We find a higher diabatic feedback is associated with faster aggregation

in the explicit simulations in this chapter, but it is not associated with an increasingly

negative advection feedback, with the Double simulation often having the most positive

advection feedback. This suggests that Ctot, and hence the cloud-longwave forcing, has a

strong influence on radiatively-driven circulations that may favour aggregation, and these

play a key role in the aggregation rate of explicit simulations.

The longwave feedback is greater in the parameterised simulations for all Ctot, which

is consistent with the findings of Chapter 4. This results in a faster aggregation rate for a

126



Chapter 5. The Response of Self-Agg. to Enhanced Radiative-Convective Interactions

given var(ĥn) compared to the explicit simulations. In the parameterised simulations, the

change in the magnitude of the advection feedback with Ctot is correlated with the total

diabatic term, however the rate of aggregation remains most strongly correlated with the

total diabatic feedback, which in turn is most influenced by the longwave feedback in our

simulations.

The parameterised convection Halve simulation is most similar to the explicit Control

simulation in terms of the magnitude of the longwave feedback, total diabatic feedback,

advection feedback and aggregation rate for a given var(ĥn). It is also the most similar

parameterised simulation in terms of the domain-mean radiative cooling rate and surface

flux (Figure 5.4) and length scale of aggregation (Figures 5.5 & 5.6). This suggests that

decreasing the cloud-longwave forcing in parameterised convection simulations may allow

aggregation in parameterised simulations to behave more similarly to explicit convection

simulations. However, there remains significant discrepancies in the distribution of cloud

between these two simulations (Figures 5.2 & 5.3).

We have seen that for both the explicit and parameterised convection simulations,

aggregation via the var(ĥn) metric increases with Ctot, and that the rate of aggregation

for a given Ctot and var(ĥn) is greater in the parameterised simulations. This is mainly a

result of the response of the longwave feedback to Ctot and parameterisation of convection,

being greater in the parameterised simulations and increasing with Ctot. We explore the

factors controlling the longwave feedback for each simulation at both stages of aggregation

in the following section.

5.5 Influence of Enhanced Cloud-Radiation Interactions on

the Longwave-FMSE Feedback

The longwave term in Equation 2.2 is the domain-mean covariance between longwave

heating anomalies and ĥn anomalies. This is equal to the integral of the LW ′ × ĥ′n
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covariance multiplied by the probability distribution function (PDF) of the covariance.

The integral can be separated into four covariance “quadrants”. These are the regions

with both positive LW ′ & ĥ′n (positive contribution), positive LW ′ & negative ĥ′n (negative

contribution), negative LW ′ & positive ĥ′n (negative contribution), and both negative LW ′

& ĥ′n (positive contribution).

The distribution of the LW ′× ĥ′n covariance multiplied by the PDF of the covariance is

shown in Figure 5.9 for each simulation during the Growth phase and during the Mature

phase. This figure gives an understanding as to which regions are contributing to the

longwave term, and how this is sensitive to aggregation, Ctot and parameterisation of con-

vection. Note that the values displaying the contributions to the domain-mean covariance

are not divided by the standard deviation of ĥn as was the case in Figure 5.8.

During the Growth phase, we find the contributions from the positive covariance quad-

rants are large in comparison to the negative quadrants in all simulations. This means

anomalously dry regions tend to have anomalously negative LW ′ and anomalously moist

regions tend to have positive LW ′. The total longwave term increases with Ctot for both

explicit and parameterised convection. This is because the magnitude of the positive

longwave anomalies increases as Ctot increases (as expected). There is a stronger correla-

tion between ĥ′n and LW ′ in the parameterised convection simulations than the explicit

simulations, resulting in a greater total longwave feedback.

The range of ĥn is higher in the Mature phase compared to the Growth phase since

the magnitude of ĥn anomalies is greater. This increases the magnitude of the covariance

quadrant contributions and domain-mean covariance. As with the Growth phase, the

correlation between ĥ′n and LW ′ remains stronger in the parameterised simulations. The

dependence with Ctot is less straightforward. From the Halve to Control simulations,

the longwave term increases as the longwave anomalies amplify. In both the explicit and

parameterised simulations, the Double simulation develops a significant amount of negative

ĥ′n regions with strongly positive LW ′. In addition, there is a reduced amount of positive
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Figure 5.9: Distributions of the LW ′
n×ĥ′n covariance for each simulation during the Growth

(upper half) and Mature phase (lower half). The strength of the colours represents the
magnitude of the LW ′

n× ĥ′n covariance multiplied by its probability distribution function.
The probability distribution function is calculated from a 50 × 50 2-dimensional histogram
of density using the x and y limits shown in the figures as the histogram boundaries. Values
in the subplot corners show the contribution to the domain-mean LW ′

n× ĥ′n covariance of
each covariance quadrant. The values in the plot titles show the domain-mean LW ′

n × ĥ′n
covariance (multiplied by 1011). The correlation coefficient (r) between ĥ′n and LW ′ is
also shown.
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ĥ′n regions with positive LW ′. These factors reduce the correlation between ĥ′n and LW ′,

resulting in a sharp decrease in the total longwave term for the Double simulations.

To help explain how the longwave anomalies are affected by Ctot, parameterisation and

aggregation, we show the distributions of cloud type LW for each simulation at both stages

of aggregation in Figure 5.10. Firstly, as Ctot increases, the range of cloud LW increases.

The LW of the High and High+ cloud types tends to become more positive and the Shallow

cloud type becomes more negative. This is true for both the parameterised and explicit

simulations and regardless of the degree of aggregation. Ctot does not affect the Clear

longwave heating rates, so the longwave distribution for the Clear regions remains similar

regardless of Ctot. The Clear distribution is also similar regardless of parameterisation

and aggregation. The peak of the Clear distribution may change amplitude, but this is

due to the change in the total Clear fraction.

The High and High+ LW increases with Ctot, resulting in the domain mean LW in-

creasing by up to a few tens of W m−2. The main consequence of this is the Clear and

Shallow regions become more anomalously negative. This makes the negative LW ′ covari-

ance quadrants (shown in Figure 5.9) have a greater contribution to the total longwave

feedback as Ctot increases.

The most significant difference between the explicit and parameterised simulations is

the LW distribution of the High+ clouds in both the Growth and Mature phases. The

parameterised simulations tend to have a larger amount of High+ cloud with greater

LW . In Chapter 4, it was found that the mean high-topped cloud’s LW remained simi-

lar between the Smoothed explicit convection simulations and parameterised simulations

during the Growth phase, but was higher for the parameterised simulations in the Mature

phase. However, the longwave anomalies were consistently higher in the parameterised

simulations, which is what we find in our simulations here. Therefore, the change in the

aggregating influence of longwave heating rates between the explicit and parameterised

simulations are consistent in this chapter and Chapter 4.
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during the Growth (upper half) and Mature phase (lower half) of each simulation. The
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To explain the sensitivity of ĥ′n to Ctot, parameterisation, and aggregation, we show

each cloud type’s ĥ′n distribution in Figure 5.11. Together with Figure 5.10, we can gain

a deeper understanding of what influences the longwave-FMSE feedback.

During the Growth phase, there is a shift from a negatively skewed ĥ′n distribution for

the Halve simulations, to a more normal distribution in the Control simulations, and then

to a more positively skewed and Double simulations (not explicitly shown). The cloud

types that occur in the negative ĥ′n regions tend to also have negative LW ′ in the Halve

simulations, meaning the negative ĥn anomalies are able to amplify faster than the positive

ĥ′n. This helps to explain why the dry regions amplify faster than the moist regions for

the Halve simulations in Figure 5.7, but the moist and dry regions amplify at a similar

rate to each other in the Control and Double simulations. Despite the amplification of

the dry regions in the Halve simulations being faster than the amplification of the moist

regions, it is still slower than the amplification of anomalously dry regions in the Control

and Double simulations. As previously discussed, this is in part due to the increased rate

of amplification of the moist regions making the dry regions more anomalously negative.

However, Figure 5.10a - f shows the Clear and Shallow clouds have a far less anomalous

LW ′ in the Halve simulations, thus further reducing their amplifying effect on negative

ĥ′n.

As Ctot increases, we find the ĥ′n distribution of High cloud becomes increasingly

negative in the Growth phase and particularly for the Mature phase. This increases the

magnitude of the (negative) contribution from the negative ĥ′n & positive LW ′ quadrant,

significantly reducing the magnitude of the longwave term particularly during the Mature

phase.

Figure 5.9 showed that the parameterised simulations had a much smaller negative

contribution from the negative covariance quadrants compared to the explicit simulations

at both stages of aggregation. We can see from Figure 5.11 that there is a greater amount

of High and High+ cloud types occurring in positive ĥ′n regions, and that the Clear and
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Growth (upper half) and Mature phase (lower half) of each simulation.
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Low cloud types are typically confined to more negative ĥ′n regions in the parameterised

simulations. Because of this, there is a stronger correlation between ĥ′n and LW ′, hence

an enhanced longwave feedback.

The total contributions of each cloud type to the longwave feedback for each simulation

during the Growth and Mature phases of aggregation are quantified in Figure 5.12a. Dur-

ing the Growth phase, the total longwave term increases with Ctot (though for the explicit

simulations, the increase from Control to Double is very small). It is also much larger

in the parameterised convection simulations than the explicit simulations. In the Mature

phase, the total longwave term increases from the Halve to the Control simulations, but

decreases from the Control to the Double simulations. These features can be explained by

analysing the contribution of each cloud type to the longwave term.

For the explicit simulations during the Growth phase, contributions from the Clear

and High+ regions dominate the longwave term, with their contributions increasing as

Ctot increases (Figure 5.12a). Clear regions have a positive LW ′ × ĥ′n covariance (Figure

5.12b) and they are more abundant than any other cloud type (Figure 5.12c), so they

have a significant contribution to the longwave term. Their covariance increases with Ctot

as their LW ′ becomes anomalously more negative compared to the increasingly positive

LW ′ of the High and High+ clouds (Figure 5.12d). The High+ regions have a significant

contribution to the longwave term because they occupy around a fifth to a quarter of the

domain and have the highest LW ′×ĥ′n covariance out of all cloud types. As Ctot increases,

their LW ′ and LW ′ × ĥ′n covariance increases, hence their contribution increases.

For the parameterised simulations during the Growth phase, the contribution of each

cloud type to the longwave term is greater than in the explicit simulations. The High+

cloud has the largest contribution within the Control and Double simulations, with contri-

butions from Clear and Low cloud having a significant contribution particularly at lower

Ctot. The contributions from the High+ cloud are greater in the parameterised simulations

which is mainly due to the increase in LW (Figure 5.12f). This increase in LW is in part
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due to the lower cloud top temperature of these clouds in the parameterised simulations

(Figure 5.12h) thanks to their higher cloud tops (Figure 5.12i) as well as their colder over-

all temperatures at a given pressure (Figure 5.2), despite their CWP being typically lower

(Figure 5.12g). These High+ clouds are also more abundant in the parameterised simula-

tions, which is the main reason for the greater High+ contribution in the parameterised

simulation for the Halve experiment. Unlike in the explicit simulations, Shallow clouds

have a significant contribution to the longwave term in the parameterised simulations.

They have a much greater fraction, particularly in the Control and Double simulations,

and they have a positive LW ′× ĥ′n covariance thanks to their typically-negative ĥ′n (unlike

in the explicit simulations).

The longwave term remains similar from the Growth to Mature phase for the Halve

and Control simulations, which is consistent with the finding in Chapter 4 for the 300 K

SST. However, the longwave term significantly decreases with aggregation for the Dou-

ble simulations. This is a result of increasingly negative contributions from every cloud

type to the total longwave term and is consistent in both the parameterised and explicit

simulations.

The decrease in the contribution of High+ clouds with aggregation is linked with the

decrease in High+ cloud fraction since their LW ′ × ĥ′n covariance increases slightly. High

(but not High+) clouds have a more negative contribution because of the increasingly

negative LW ′ × ĥ′n covariance. The magnitude of the covariance increases as their LW ′

increases, which is a combination of their LW increasing (due to increased CWP and

slightly lower cloud top pressure and thus temperature) and the reduction in high-topped

cloud amount making them more anomalously positive. Their ĥ′n is also increasingly neg-

ative with aggregation, making their covariance negative. The Shallow cloud’s average

LW ′ × ĥ′n covariance becomes increasingly negative with aggregation. Their LW ′ is neg-

ative, yet they tend to occur in increasingly positive ĥ′n. This lowers their contribution to

the longwave term. Finally, the decreased contribution of the Clear regions comes from
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their reduced average LW ′ × ĥ′n covariance. This is in part due to less negative LW ′ in

the parameterised simulation. With the reduction in high-topped cloud fraction with ag-

gregation, the Clear LW ′ becomes less anomalously negative. The mean ĥ′n also becomes

increasingly positive in both the explicit and parameterised simulations as there is a higher

fraction of Clear regions in anomalously high ĥ′n (Figure 5.11).

5.6 Conclusions

In our previous chapters, we find that longwave-FMSE interactions are crucial drivers and

maintainers of aggregation within RCEMIP models, often being the strongest diabatic-

FMSE feedback throughout the simulations. We find a wide range in the magnitude of

these diabatic feedbacks amongst the models, as well as a wide range in the degree and

rate of aggregation. Whilst there is a link between the magnitude of the diabatic-FMSE

feedbacks and aggregation rate in GCMs, there is no such correlation in the CRMs.

In this chapter, we investigate how the longwave-FMSE feedback affects the rate of

aggregation in explicit and parameterised convection simulations by systematically scaling

the strength of cloud-longwave radiation interactions in the model. This is achieved by

altering the parameter that determines the fraction of cloudy subcolumns within a given

grid box seen by the longwave radiation scheme (Ctot). We run two sets of simulations: a

set of three explicit convection simulations with a 3 km horizontal grid spacing and a set

of three parameterised convection simulations with a 20 km grid spacing. All simulations

are non-rotating, approximately 6,000 km × 400km in size with doubly periodic boundary

conditions, constant solar forcing, and with a fixed SST of 300 K. Both sets of simulations

have a Control simulation in which Ctot is not adjusted. We then have a Halve and a

Double Ctot simulation designed to reduce and increase the magnitude of cloud-longwave

interactions respectively.

We use the same variance of normalised vertically-integrated FMSE (var(ĥn)) frame-

137



Chapter 5. The Response of Self-Agg. to Enhanced Radiative-Convective Interactions

work as described in Section 2.3 to measure aggregation and quantify the contribution

of different FMSE feedbacks to the rate of change of aggregation. A cloud classification

scheme is used to define a cloud type at every grid point, defining four different cloud types

based on the vertical profile of condensed water: Clear (negligible condensed water in the

profile), Shallow (cloud in the lower troposphere only), High (cloud in the upper tropo-

sphere only), and High+ (cloud in both the upper and lower troposphere). Differences in

the longwave-FMSE feedback between our simulations can then be studied by comparing

these cloud types’ contribution to the total longwave feedback. We define a “Growth”

and “Mature” phase of aggregation using fixed ranges of var(ĥn) for which convection is

rapidly aggregating and in approximate equilibrium respectively.

We only analyse the explicit simulations after horizontally smoothing them, so that

every grid point is the average of the 7 × 7 grid points surrounding it (accounting for

the doubly-periodic boundary conditions). This is because the parameterised simulations

have an approximately 7 times greater grid spacing. In smoothing the explicit simulations,

we can use the var(ĥn) budget framework to compare the two sets of simulations fairly,

without the resolution dependence of the framework directly affecting the results.

In adjusting the cloud-longwave interactions, the interactions between FMSE and

both shortwave and surface fluxes remain similar. Therefore, the differences in the to-

tal diabatic-FMSE feedbacks in our simulations are due to the alteration of Ctot and

representation of convection. As Ctot is increased, we find the magnitude of the longwave

heating anomalies of the cloudy regions increases.

Increased Ctot is associated with a faster aggregation rate and is mainly the result of an

enhanced longwave-FMSE feedback in higher Ctot simulations during the early stages of

aggregation for both the explicit and parameterised convection simulations (the advection

feedback also plays a key role in the explicit simulations). This was an expected result for

the parameterised simulations, as there was a significant correlation between the longwave

feedback and aggregation rate in the parameterised simulations in RCEMIP despite the
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advection term becoming more negative. The advection feedback in our explicit simula-

tions does not completely balance the diabatic feedback as was seen on average in the

RCEMIP simulations, meaning the rate of aggregation is able to increase as the diabatic

feedbacks increase in our simulations, in agreement with Fan et al. (2021) and Bretherton

et al. (2005). However, the advection feedback is more independent of Ctot in the explicit

simulations compared to the parameterised simulations. This suggests that the indirect

effects of modifying cloud-radiation interactions on circulations play a larger role in ex-

plicit convection simulations. It is likely that these indirect effects could outweigh the

direct effects in other explicit convection simulations, given that there is no correlation

between the longwave feedback and aggregation rate in the RCEMIP CRMs.

The longwave-FMSE feedback is greater in the parameterised simulations which aggre-

gate faster than the explicit simulations. This is in agreement with the findings in Chapter

4, with faster aggregation in the parameterised convection models due to a greater long-

wave feedback.

The enhanced longwave feedback during the Growth phase at higher Ctot is due to

the enhanced anomalous longwave heating rate in anomalously moist regions thanks to

increased heating from high-topped clouds. This causes moist regions to amplify faster,

but also helps the dry regions amplify faster by making their typically-negative longwave

anomalies more negative by reducing the domain-mean radiative cooling.

The longwave feedback is greater in the parameterised simulations because of the

stronger correlation between FMSE anomalies and longwave anomalies. There is a greater

fraction of high-topped cloud in anomalously moist environments within the parameterised

simulations. In addition, these clouds have a greater anomalous longwave heating because

of their higher cloud top height and associated lower cloud top temperature. They pro-

duce more Shallow cloud (which have negative longwave heating anomalies) than in the

explicit simulations, with the majority of this cloud occurring in anomalously dry regions

atop the boundary layer. This further enhances the longwave-FMSE feedback by further
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cooling dry regions. The longwave-FMSE correlation is weakened by Shallow cloud in the

explicit simulations because the majority of shallow cloud occurs in anomalously moist re-

gions and could be associated with developing cumulus convection. With a greater cloud

fraction in the parameterised simulations, the Clear regions, with their associated negative

longwave heating anomalies, are confined to more anomalously dry regions. In addition,

their anomalous longwave cooling is more anomalous thanks to the greater fraction and

the increased heating of high-topped cloud.

An unexpected result is that the domain-mean longwave feedback is sharply reduced

after the Growth phase of the Double Ctot experiments. We find this is due to an in-

crease in High cloud fraction over anomalously dry regions, reducing the longwave-FMSE

correlation. It is unclear what the mechanism behind this is, however enhanced cloud-

radiation interactions lead to greater cloud base heating and enhanced cloud top cooling.

So, perhaps a radiatively-driven circulation may develop that is capable of sustaining

High cloud for long periods of time allowing them to spread into dry regions. The de-

creased domain-mean longwave feedback for the Double Ctot simulations decreases the

total diabatic-FMSE feedback, even becoming negative during the Mature phase of the

explicit simulation. However, the decrease in the diabatic-FMSE feedback is balanced by

an increase in the advection feedback, so the convection does not disaggregate.

By halving Ctot in the parameterised convection model, the simulation behaves more

similarly to the explicit Control simulation in terms of aggregation characteristics. The

longwave-FMSE feedback is similar, as are the total diabatic and advection feedbacks.

The rate of aggregation in the Growth phase, as well as the length scale of convection is

also the most similar in the parameterised Halve simulation compared to the other pa-

rameterised simulations. The distribution of cloud remains very different between these

two simulations, with the parameterised simulation having a much greater cloud frac-

tion. However, their aggregating influence is compensated by their reduced radiative

forcing. This highlights that convective organisation in parameterised convection simula-
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tions can be represented more similarly to explicit convection simulations providing the

cloud-radiation interactions are similar.

Modifying the cloud-radiation interactions by adjusting Ctot has been shown to be a

flawed approach, particularly when doubling Ctot. In certain circumstances where thick

high-topped cloud is present, the doubled Ctot simulations can yield exceptionally low,

or even negative OLR values. As a result, these simulations struggle to reach RCE,

particularly during the Growth phase. Furthermore, the doubled Ctot experiments produce

an abundance of high cloud in anomalously dry regions which is a feature unseen in

the other RCEMIP simulations (Chapter 4) which has major consequences for the total

longwave-FMSE feedback.

An alternative approach to adjust the cloud-radiation interactions other than by mod-

ifying Ctot would be preferable, to avoid the unphysical features that we have seen. For

example, we could adjust the cloud optical depth for a given condensed water content

by scaling the amount of condensed water seen by the radiation scheme. Modifying the

clouds’ optical depth would adjust the magnitude of their longwave radiative interactions

without yielding unphysical longwave heating rates. We have seen in this chapter that

many cloud properties do not have a linear relationship with Ctot (e.g. their longwave-

FMSE feedback). Therefore, an experiment should be run with more simulations in which

the adjustment in cloud optical depth from one simulation to the next is small (e.g. by

scaling the condensed water content in the radiation scheme by 0.4, 0.6, 0.8, 1.0, 1.2 and

1.4).

141



CHAPTER 6

CONCLUSIONS

6.1 Conclusions

Opening Remarks

In this chapter, we present the main conclusions of the thesis. In Section 6.2, we discuss

each of the main thesis objectives that are raised in Chapter 1. We then highlight the lim-

itations of our work and discuss future directions of study following these thesis outcomes

in Section 6.3.

6.2 Summary of Major Outcomes

The spontaneous clustering of convection, termed convective self-aggregation, has been

a focus of many recent studies. It is an important area of study because it has major

implications for both weather and climate e.g. by leading to more extreme precipitation

events (e.g Bao and Sherwood, 2019), influencing cyclogenesis (e.g Wing et al., 2016), and

by increasing domain-mean radiative cooling (e.g. Bretherton et al., 2005). However, there
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remains much uncertainty in the mechanisms that drive and maintain aggregation (Wing

et al., 2017), the sea surface temperature (SST) dependence of aggregation (Wing et al.,

2020), and the impacts of aggregation on climate sensitivity (Becker and Wing, 2020).

The uncertainty in the response of tropical convective aggregation to a warming climate is

a great source of uncertainty in our estimates of the global climate sensitivity (Sherwood

et al., 2020).

Interactions between radiation and convection have been shown to be crucial drivers

and maintainers of self-aggregation, with interactive radiation being essential for the trig-

gering of self-aggregation (e.g Bretherton et al., 2005; Muller and Held, 2012). Wing and

Emanuel (2014) develop a framework to study aggregation that assumes that aggregation

is strongly correlated to the spatial variance of vertically-integrated frozen moist static

energy (FMSE). A budget equation for the rate of change of FMSE variance shows how

interactions between FMSE anomalies and anomalies in radiative heating, surface fluxes

and advection of FMSE contribute to changing FMSE variance. This approach allows us

to quantify the contributions of these feedbacks to aggregation. A caveat of this approach

is the strong SST dependence of FMSE, making it difficult to compare aggregation using

the FMSE budget framework with different SSTs. In this thesis, we present modifications

to this framework and extend it to allow the study of different cloud type contributions

to aggregation. Our main findings are as follows.

A framework to study the contributions of cloud-radiation interactions

to self-aggregation across a range of SSTs

In Chapter 2, we describe a new framework to study aggregation that is insensitive to

SST. It is based on the vertically-integrated FMSE variance (var(ĥ)) budget framework

described byWing and Emanuel (2014); however, we normalise vertically-integrated FMSE

between hypothetical upper and lower limits as a function of SST. This yields values of

normalised ĥ (ĥn) between 0 and 1 and removes the temperature dependence of var(ĥ).
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By rederiving the var(ĥ) budget equation for ĥn, we then have a budget equation for

aggregation that is insensitive to SST. We can then assess how different feedbacks with

ĥn contribute to aggregation.

We define different cloud types and study how radiative interactions with each cloud

type contribute to aggregation. A cloud type’s contribution to the radiation terms in

the var(ĥn) budget equation is equal to its mean covariance between its radiative heating

anomaly and its ĥn anomaly, multiplied by its domain fraction. Cloud types are defined

in different ways in our three working chapters due to differences in the available data. In

Chapters 3 and 5, cloud types are defined by their vertical profile of condensed water, in a

similar way to Hill et al. (2018). In Chapter 4, we used top of atmosphere radiative fluxes to

define clouds, following the method in Becker and Wing (2020). Regardless of the cloud

classification scheme used, conclusions about radiative interactions with clear regions,

clouds defined as high-topped, and clouds defined as shallow are generally equivalent.

This var(ĥn) budget framework is a valuable tool to study aggregation and the feed-

backs that control it. It can be used to directly compare aggregation in simulations across

a range of SSTs. The use of a cloud classification scheme and the study of the con-

tributions of their radiative interactions to aggregation is a useful way to compare the

radiation-convection feedback between models. We have demonstrated how this approach

can be used to study radiation-cloud interactions, but a similar approach may be used to

study surface flux feedbacks too.

The key radiation-convection interactions that development and maintain

aggregation

In Chapter 3, we use our var(ĥn) budget framework to study the key cloud-radiation inter-

actions that are important for aggregation within simulations of the UK Met Office Unified

Model. We assess the sensitivity of these interactions to SST and degree of aggregation.

In Chapter 4, we then compare aggregation within the RCEMIP CRMs and GCMs and

144



Chapter 6. Conclusions

test the robustness of our Chapter 3 conclusions.

We find that longwave interactions with high-topped cloud and clear regions are key

drivers of self-aggregation in the majority of CRMs and GCMs, and that longwave inter-

actions with high-topped cloud, and shortwave interactions with water vapour, are the

main maintainers of aggregation. There is much intermodel variability in the magnitude

of these longwave feedbacks, but the shortwave feedbacks are more consistent across all

models.

The contributions of these longwave and shortwave radiation interactions to aggrega-

tion are sensitive to SST. In the majority of models, high-topped cloud fraction, as well as

their normalised longwave heating anomalies, decrease with increasing SST. These factors

reduce the amount of anomalous longwave heating in moist regions, and also reduce the

anomalous longwave cooling of cloud-free areas in the dry regions, leading to a reduction in

the total longwave-aggregation feedback as SST increases. The contribution of shortwave

interactions with water vapour to aggregation also decreases with SST. The difference be-

tween shortwave absorption by water vapour in the moist and dry regions remains similar

with SST, therefore, the shortwave contribution to aggregation decreases with SST, being

proportional to the difference between the upper and lower limits of ĥ.

The shortwave contribution to aggregation remains similar with model type and model

grid spacing because it is mainly sensitive to interactions with water vapour rather than

cloud (which is more sensitive to grid spacing and parameterisation). As a result, it has

little inter-model variability for a given SST and degree of aggregation. The longwave

contribution to aggregation is more sensitive to model type and grid spacing. In Chapter

3, it was shown that the longwave heating anomalies of high-topped cloud increase as

grid spacing is increased within CRMs, likely increasing the longwave contributions to

aggregation. In Chapters 4 and 5, we found that the longwave contributions to aggrega-

tion further increase at coarser resolutions with parameterised convection, as a result of

increased high-topped cloud fraction.
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We have shown that high-topped clouds are crucial in determining the total direct

longwave feedback by affecting both the cloudy regions and the clear regions’ longwave

feedback. Other studies have also highlighted that longwave interactions with shallow

clouds drive circulations that are key drivers of aggregation. Therefore, both high and

low clouds must be well represented in models to accurately represent the contributions

of radiative interactions to self-aggregation.

How the inter-model variability of cloud-radiation interactions affects

self-aggregation

In Chapter 4, the cloud-radiation interactions are compared between the CRMs and GCMs

in RCEMIP. Both the CRMs and GCMs display wide ranges in the rate and degree of

aggregation, as well as a wide variety of radiation-convection interactions. We find no

correlation between aggregation rate and radiation-convection interactions in the CRMs,

with the rate of aggregation being most sensitive to the role of circulations. The ag-

gregation rate in GCMs, on the other hand, is highly dependent on the magnitude of

radiation-convection interactions, with a greater longwave feedback leading to faster ag-

gregation rates. The sensitivity of cloud-longwave interactions to SST in GCMs may help

to explain why GCMs tend to be more aggregated at higher SSTs. During intermediate

to mature stages of aggregation, high-topped clouds tend to occur in anomalously higher

ĥ environments at warmer SSTs, resulting in an enhanced longwave feedback during these

times. This allows the convection to continue aggregating for a longer duration, leading

to more aggregated convection at higher SSTs.

On average, the rate of aggregation is faster in GCMs than CRMs. This is mainly

attributed to a greater longwave feedback in GCMs because of a greater high-topped

cloud fraction than CRMs.

The high variability of aggregation and its key longwave-FMSE feedbacks amongst

models highlights that results from any one model may not be representative of real-world
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convection.

How modifications to cloud-longwave interactions affect self-aggregation

In Chapter 5, we modify cloud-longwave interactions in explicit and parameterised con-

vection simulations by altering the parameter that determines the fraction of cloudy sub-

columns within a given grid box seen by the longwave radiation scheme (Ctot). At early

stages of aggregation, the longwave feedback increases with Ctot which results in faster

aggregation via the var(ĥn) metric. This is expected in the parameterised simulations

given the results of Chapter 4, in which GCMs with a greater longwave-convection feed-

back tend to aggregate faster. We find the explicit simulations also aggregate faster with

increasing Ctot, which is in agreement with Fan et al. (2021). However, the advection

feedback is more independent of Ctot in the explicit simulations than in the parameterised

simulations. This finding, and the results from Chapter 4, suggest that the indirect effect

of cloud-radiation interactions affecting the advection feedback may prove to be the key

factor influencing aggregation in other explicit convection simulations.

The organisation of convection in the Halve Ctot parameterised simulation more closely

resembles the explicit convection Control simulation than the other parameterised simula-

tions. The var(ĥn) budget terms are similar, as is the length scale and rate of aggregation.

The Halve parameterised simulation still has a much greater Deep cloud fraction than the

Control explicit simulation, however this is balanced by an artificially reduced longwave

forcing, reducing their aggregating influence. This suggests that parameterised convection

models may be able to simulate convective aggregation more accurately, providing clouds

and their radiative interactions are more accurately represented.

We note, however, that while the methodology of this experiment scales the magni-

tude of cloud-radiation interactions, it also leads to some unphysical characteristics in the

model. The consequences of these features are not fully known and may have an effect on

these conclusions.

147



Chapter 6. Conclusions

6.3 Future Work

We have discussed that the methodology to scale the magnitude of cloud radiation inter-

actions in Chapter 5 leads to some unphysical characteristics which may have an effect on

the conclusions of the experiment. An alternative method to study the sensitivity of self-

aggregation to cloud-radiation interactions that does not lead to such unphysical features

would be preferable. Results from that experiment could then be compared to our results

to verify the validity of our conclusions. We suggest that by systematically scaling the

cloud condensed water content seen by the radiation scheme, cloud optical depth would

be adjusted, and thus the magnitude of cloud-radiation interactions would be modified.

Using multiple simulations with small adjustments to condensed water content would be

beneficial to study the non-linearity of the effects of modified cloud-radiation interactions

on convection that were seen in Chapter 5.

The var(ĥn) budget framework builds upon the var(ĥ) budget framework designed

by Wing and Emanuel (2014), but our modification allows the framework to be used to

fairly compare the contributions of FMSE feedbacks to aggregation across simulations with

different SSTs. It can be used as a valuable tool to help study aggregating processes across

different models and SST. One of the drawbacks of the var(ĥn) budget framework is that

it is based on vertically-integrated parameters; therefore, important feedbacks that occur

within specific layers of the atmosphere (e.g. boundary layer feedbacks (Yang, 2018a,b)

and radiatively driven circulations (Muller and Held, 2012; Muller and Bony, 2015)) are

not able to be explicitly studied in this framework.

Our results from Chapters 4 & 5 suggest that circulations play a crucial role in the

development of aggregation, often outweighing the effects of diabatic-FMSE feedbacks

in explicit convection simulations. The overall effect of circulations is usually to oppose

aggregation, but having a less negative effect at warmer SSTs (proportional to the mag-

nitude of the diabatic feedbacks in the RCEMIP CRMs). Ascent in moist regions, upper
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level divergence, then descent in dry regions transports FMSE from moist to dry regions.

Yet the low-level radiatively-driven circulations from shallow clouds drives an upgradient

transport of FMSE that promotes aggregation (Muller and Held, 2012; Muller and Bony,

2015). The sensitivity of these circulations to SST and cloud-radiative interactions may

be investigated using a normalised FMSE framework. Rather than normalising vertically-

integrated FMSE, we may still normalise non vertically-integrated FMSE using the same

upper and lower limits used in our framework. By using a stream function analysis of

3D normalised FMSE on the overturning circulation (in a similar way to Bretherton et al.

(2005)), the transport of normalised FMSE via these circulations, and hence their aggregat-

ing influence, may be quantified and compared across different SSTs. A comparison of the

influence of these circulations to aggregation within explicit and parameterised convection

simulations would be of particular interest. It may help to explain why the relationship

between the diabatic-FMSE feedbacks and aggregation rate are different between CRMs

and GCMs.

All model simulations in this thesis are idealised, configured over an ocean with a

fixed SST, without rotation, without a prescribed mean wind, without a diurnal cycle and

without land. The real atmosphere is far more complex than this idealised scenario, so the

processes behind real world convective aggregation may differ from those that drive self-

aggregation in idealised simulations. However, the use of our analysis framework remains

valid to study convection in less idealised studies too. A drawback of this framework in

its current form, is that it relies on the surface temperature to be fixed. The use of this

framework in studies with a varying surface temperature may require the normalisation

limits of ĥ (ĥmin and ĥmax) to vary in space and time.

The framework may then be used to study aggregation using observations and reanal-

ysis data, and then compared to more realistic simulations of convection to examine biases

within these climate models. Many of the models in RCEMIP have also been run in more

realistic climate configurations. The vast majority of global-scale models are GCMs, but
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some of the RCEMIP CRMs are also configured to be part of the DYnamics of the Atmo-

spheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND) project

(Stevens et al., 2019), which is a global storm-resolving model intercomparison project. We

have seen in this thesis that models exhibit a wide range in longwave heating rates, fraction

and FMSE distribution for a given cloud type, resulting in a large range in the magnitude

of longwave-FMSE feedbacks. These feedbacks are also sensitive to resolution, critical con-

densation humidity and convective parameterisation, significantly impacting aggregation.

A comparison of cloud fraction, distribution, and radiative properties between GCMs,

DYAMOND storm-resolving models, and observations would be of particular interest to

study systematic differences in cloud-radiation interactions and aggregation between these

models.

As discussed in Chapter 1, cloud-radiation interactions are additionally sensitive to

other factors, including cloud particle size and condensed water content, which can both

be reliably observed using aircraft and/or satellite retrievals (e.g. Rosenfeld and Lensky,

1998). Future studies could use observations of these properties to quantify discrepancies

between observed and simulated convective cloud and their radiative interactions. In

doing so, we may be able to more accurately model tropical convection, and reduce our

uncertainty in the tropical cloud response to a warming climate.
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NORMALISED FMSE VARIANCE BUDGET EQUATION

DERIVATION

Starting with the equation of normalised FMSE:

ĥn =
ĥ− ĥmin

ĥmax − ĥmin

(A.1)

ĥn, can be broken down into its domain-mean state plus the anomaly from the mean:

ĥn = {ĥn}+ ĥ′n (A.2)

where curly brackets denote the domain-mean state. Splitting ĥn and ĥ in A.1 into their

domain mean and anomaly, we get:

{ĥn}+ ĥ′n =
{ĥ} − ĥmin

ĥmax − ĥmin

+
ĥ′

ĥmax − ĥmin

(A.3)

The first term on both sides of the equation is the domain-mean of ĥn and the second

term is the anomaly. By subtracting the domain-mean from this equation, we end up with

an expression for the anomaly of ĥn:
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ĥ′n =
ĥ′

ĥmax − ĥmin

(A.4)

Differentiating this with respect to time:

∂ĥ′n
∂t

=
1

ĥmax − ĥmin

∂ĥ′

∂t
(A.5)

Multiplying with ĥ′n, using the identity x × ∂x/∂t = 1/2 × ∂x2/∂t on the left hand side,

and substituting Equation (A.4) for ĥ′n on the right hand side:

1

2

∂ĥ′2n
∂t

=
ĥ′

(ĥmax − ĥmin)2

∂ĥ′

∂t
(A.6)

Taking the anomaly of the expression for the tendency of ĥ shown in Equation 3 of Wing

and Emanuel (2014):

∂ĥ′

∂t
= SEF ′ + LW ′ + SW ′ −∇h.ûh (A.7)

and substituting this into Equation (A.6) gives us an expression for the ĥn tendency budget

in terms of ĥ′:

1

2

∂ĥ′2n
∂t

=
ĥ′LW ′ + ĥ′SW ′ + ĥ′SEF ′ − ĥ′∇h.ûh

(ĥmax − ĥmin)2
(A.8)

Or in terms of ĥ′n, the equation becomes:

1

2

∂ĥ′2n
∂t

= ĥ′nLW
′
n + ĥ′nSW

′
n + ĥ′nSEF ′

n − ĥ′n∇h. ˆuhn (A.9)

Here, each normalised variable is equal to the original variable in Equation (A.7) divided

by the difference between ĥmax and ĥmin.
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