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PERSPECTIVE OPEN

Importance of internal variability for climate model assessment
Shipra Jain1✉, Adam A. Scaife 2,3, Theodore G. Shepherd4,5, Clara Deser 6, Nick Dunstone2, Gavin A. Schmidt 7,
Kevin E. Trenberth 6,8 and Thea Turkington1

Benchmarking climate model simulations against observations of the climate is core to the process of building realistic climate
models and developing accurate future projections. However, in many cases, models do not match historical observations,
particularly on regional scales. If there is a mismatch between modeled and observed climate features, should we necessarily
conclude that our models are deficient? Using several illustrative examples, we emphasize that internal variability can easily lead to
marked differences between the basic features of the model and observed climate, even when decades of model and observed
data are available. This can appear as an apparent failure of models to capture regional trends or changes in global teleconnections,
or simulation of extreme events. Despite a large body of literature on the impact of internal variability on climate, this
acknowledgment has not yet penetrated many model evaluation activities, particularly for regional climate. We emphasize that
using a single or small ensemble of simulations to conclude that a climate model is in error can lead to premature conclusions on
model fidelity. A large ensemble of multidecadal simulations is therefore needed to properly sample internal climate variability in
order to robustly identify model deficiencies and convincingly demonstrate progress between generations of climate models.

npj Climate and Atmospheric Science            (2023) 6:68 ; https://doi.org/10.1038/s41612-023-00389-0

INTRODUCTION
Climate models are remarkably successful in reproducing many
earth-system phenomena such as atmospheric jet streams,
oceanic currents, monsoons, the El Niño Southern Oscillation
(ENSO), the North Atlantic Oscillation (NAO), and the response of
global climate to external forcing1–3. From their basis in the
Navier-Stokes equations of fluid dynamics, even extreme events
like heatwaves and cold snaps, floods and droughts, cyclones, and
storms all appear spontaneously in climate model simulations. In
some cases, models also warn us of more intense extreme events
than we have yet experienced but which could plausibly occur at
any time in the current climate4–7. Scientists also use climate
models to understand the physical mechanisms behind past
changes in climate8, to understand and predict extreme events9,
to project future climate change, and to inform governments and
policymakers about the impacts of climate change10.
To gain confidence in model projections, the fidelity of

models is assessed by comparing model simulations of the
historical climate with observations. This trial of models using
observations is core to identifying current model deficiencies
and prioritizing areas for further development11. The scientific
literature presents many examples where a mismatch between
model and observed climate features has been reported, such as
trends in regional rainfall amount and temperature12–14, multi-
decadal changes in atmospheric circulation15 and climatology16,
the frequency or magnitude of extreme events17,18, global
teleconnections19, interaction between different modes of
climate variability20 or external forcing effects21,22. There can
be many reasons why models disagree with observations.
However, even in the case of perfect models, perfect boundary
conditions, and perfect observations, a lack of agreement
between the modeled and observed climate can still arise
simply due to chaotic internal variability13,23–29.

Due to the inevitable presence of internal variability, each
realization of climate, in both observations and models, represents
only one possible realization out of many30,31. When evaluating
models against observations, this issue (known as sampling
variability) is supposed to be handled through statistical tests,
but the power of those tests relies heavily on the assumed chance
process generating internal variability. This leads to a misinter-
pretation of significance tests, which is widespread in climate
science, leading to overly lax criteria32. This problem is only
exacerbated if the statistical tests do not take proper account of
multidecadal internal variability, which is very difficult to quantify
from single or small ensembles of models, or from observations.
Many of the studies claiming a mismatch between models and

observations, including some cited in the IPCC WG1 report10,
continue to use only a single or a small ensemble of simulations
from a given model. These studies generally show that the
differences are statistically significant, typically for time periods
that are considered sufficiently long. Here, we provide three
illustrative examples to demonstrate how internal variability
cannot be easily ruled out as a cause of commonly reported
discrepancies even when decades of observations and model data
are available.

METHODS
We use an ensemble of initialized climate simulations from the
Climate Historical Forecasts Project (CHFP) database. The ensem-
ble member rainfall from each model was spatially averaged over
the selected domains (i.e. 20-28°N, 76-87°E for north-central India
and all-India land region) and bias-adjusted using the difference
between the ensemble mean and observations for each model’s
hindcast period. Model fidelity was then tested using the
UNprecedented Simulated Extremes in Ensembles (UNSEEN)
method4,27 and rainfall multimodel ensemble (MME) was created
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using a selected set of models that passed the UNSEEN tests and
are statistically indistinguishable from the observations (GloSea5,
CFS, and the MPI models for north-central India for 1950-2013, and
GloSea5, ECMWF-S4, CFS, MIROC5, and MPI-LR for all-India for
1901–2013) (see Table 1 of Ref. 4 for details of models, Ref. 33 for
details on the CHFP). We have also previously tested the fidelity of
the CHFP models in representing JJA rainfall over India and found
a reasonably realistic simulation of JJA rainfall in most of these
models, i.e. the spatial distributions were comparable to the
observations, models show statistically significant skill in simulat-
ing the interannual variability of JJA rainfall, and the ENSO-rainfall
teleconnections were similar to the observations4,34. The ensem-
ble mean trend was removed from each ensemble member time
series for each model to remove any influence of climate change
before creating MME. A total of 10,000 time series of length 51
years were resampled from MME by randomly selecting ensemble
members in sets of three consecutive years to preserve the
interannual autocorrelation in rainfall. Linear trends were calcu-
lated as the slope of the line of best fit for each time series to
obtain 10,000 values of trends. Each trend value was then
multiplied by the length of the time series (i.e. 51 years) to obtain
the change in JJA total rainfall over a 51-year period, shown on the
x-axis (Fig. 1a, b). We also tested the sensitivity of the extreme
values shown in Fig. 1 to the model variance by removing one of
the models with the highest variance while resampling. We find
no substantial influence of the differences in the models’ variance
on the extreme values presented in Fig. 1.
The rainfall MME created for Fig. 1b was used to randomly

resample 10,000 time series of lengths 20 and 50 years for all-
India rainfall and corresponding sea-surface temperatures (SSTs)
for the Nino3.4 region (5°S to 5°N, 170°W to 120°W). The
correlation coefficient between all-India rainfall and correspond-
ing Nino3.4 SSTs was calculated for each of the 10,000 time
series for both 20 (Fig. 4a) and 50 years (Figure not shown).
Similar to rainfall, the SSTs were detrended before resampling to
remove the influence of forced climate change on SSTs. For
Fig. 4b, we randomly selected 30 correlation values from the
10,000 correlation values for the length of 50 years. We then
calculated the average of the selected 30 correlation values to
obtain the mean correlation and this was repeated 10,000 times
to obtain the distribution in Fig. 4b.

DO MODELS REPRODUCE OBSERVED TRENDS?
Over the latter half of the 20th century, historical observations
show a significant reduction in the summer monsoon rainfall over
parts of India14,35–37. However, most historical climate model
simulations from different CMIP generations have shown a
consistent increase in rainfall during this period and beyond into
the 21st century under increasing greenhouse gas forcing14,38,39.
Several hypotheses have been proposed to explain the

apparent mismatch in observed and model-simulated trends in
monsoon rainfall over north-central India, including large observa-
tional uncertainty40, the recent warming of the Indian Ocean41,
radiative forcing due to aerosols42 or changes in land-use and
land-cover43. In most cases, these factors are found to have
systematic effects on the modeled monsoon rainfall. However, it is
also possible that internal variability on multidecadal timescales
contributes to this mismatch.
We find that the most extreme drying and wetting trends in the

Indian Meteorological Department (IMD) observational record for
both regional (Fig. 1a) as well as all-India rainfall (Fig. 1b) lie within
the range of plausible trends from chaotic internal variability in
the current climate. (Note that only the models that pass fidelity
tests for observed Indian monsoon rainfall have been used for this
analysis.) Even more extreme values than have been observed in
the IMD record so far are possible, solely due to internal variability,
in the absence of any systematic forced effects. For example, there
is around a 1-in-160-year chance of a wetting trend of magnitude
larger than the wettest trend, and a 1-in-18-year chance of a
drying trend of magnitude larger than the driest trend in the
observational record. Therefore, for this case, internal variability
cannot easily be rejected as the cause of the models’ apparent
failure to capture the observed drying trend (also see Ref. 44,45).
Unprecedented climate extremes are often a manifestation of both

internal variability and external forcing. However, in many cases, the
internal variability is so large that it can easily negate or greatly
overwhelm any forced response in climate trends, even on
multidecadal time scales27,46). For example, in this case, internal
variability can be large enough to overwhelm the wetting trend due
to greenhouse gas forcing and give temporary drying trends in
monsoon rainfall.
Another example where the role of internal variability was ignored

is the recent paper by Scafetta47, which claimed that no model with a

Fig. 1 Internal variability in rainfall trends. Change in June-July-August (JJA) total rainfall over a 51-year period from internal variability in a
multimodel ensemble (MME) of climate predictions for (a) north-central India (20-28°N, 76-87°E) and (b) all-India (land-only) rainfall. The darker
color indicates wetter trends. The dotted lines show the most extreme 51-year trends in the IMD observational record during 1950–2013 (the
period for which drying trends were observed over north-central India) and 1901–2013 for all-India. The MME here is from the Climate
Historical Forecasts Project (CHFP). See Methods for more details.
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climate sensitivity >3 °C was consistent with observed trends since
1979. However, this claim is based on comparing each model’s
ensemble mean change with an observational estimate (from ERA5)
without taking either observational uncertainty or model internal
variability into account. When these elements are included and
appropriate statistical tests were employed (following Ref. 48), it was
demonstrated that the majority of the models with sufficiently large
ensembles, even some of those with high climate sensitivity of 5 °C,
are consistent with the observations49.
There also exists a selection bias when comparing the most

extreme trends in the observational record with model-simulated
trends50. Inspection of observational time series, with no a priori
reason to select the particular period of most extreme trends,
followed by comparison with model-simulated trends for the same
time period introduces a selection bias and the impression that
models fail to produce observed trends. In many cases, those
extreme trends in regional climate can appear at any time in the
model simulation and not necessarily during the observed period,
irrespective of any forced changes which are often smaller than
the internal variability for short- or medium-term periods. It is
therefore very difficult to argue that models cannot reproduce
observed extremes by pre-selecting extreme periods in the
observations and then testing models for the same historical
period. Significance testing of these extreme trends is difficult in
such cases and simple tests based on a single or limited
ensembles of simulations to reject the null hypothesis of internal
variability in favor of a model error are often invalid51.
Whilst the Indian rainfall trend presented here is only one

example, many other cases of models apparently failing to
reproduce observed trends for other regions and variables also
exist15,16,52–54. Therefore, it is necessary to re-examine such cases
and carefully rule out internal variability as a cause of apparent
mismatch between observed and modeled trends to robustly
identify the true model errors.

HOW SHOULD WE TEST MODELS FOR EXTREME EVENTS?
In addition to the selection bias in time, there also exists a
selection bias in space. If we preselect a particular extreme
event from the observational record, which, by definition, is a
rare event, and look for similar events in climate model
simulations, then the chances of finding rare events of the

same magnitude, duration, and spatial scale, at the same
location will necessarily be low. However, in this case, it is
premature to then conclude that models cannot simulate the
observed extreme event. For instance, if we then use a large
ensemble of climate simulations and search for a similar
intense event with no a priori specification of exactly where it
should happen, it is often possible to find a similar extreme
event in the simulations, leading to very different conclusions
about model fidelity46,55.
To illustrate this, we use the example of the German floods of

2021. The observed event in July 2021 was associated with daily
mean rainfall reaching as high as 150 mm over parts of Germany
(Fig. 2c). Searching ensembles of climate simulations from
multiple models for European rainfall extremes of similar
magnitude to that observed, reveals several instances with
rainfall intensity in climate models reaching, and in some cases
even exceeding the rainfall rate seen in the observational record
(Fig. 3a–d). We can also examine the mean sea level pressure
(MSLP) to determine if the simulated extreme corresponds to a
realistic circulation pattern. In all cases, the extreme rainfall
events in the models are co-located with extreme low-pressure
regions (Fig. 3e–h), indicating low-level convergence and
enhanced probability of intense rainfall, similar to the observed
event which had low MSLP in the vicinity.
To illustrate the point further, we also examined a large

ensemble from a single model, the CESM156, as this isolates the
impact of internal variability. While we find similar mid-latitude
extremes occurring randomly anywhere over the selected domain
in some simulations of the large ensemble, other simulations from
the same model did not simulate any such events. This shows that
a-priori constraining the regional scale and location in the model
to that of the pre-selected local record event invalidates
commonly used statistical significance tests and hence can lead
to the erroneous conclusion that models cannot reproduce the
observed extreme. One potential way to handle this issue is to
employ a spatially aggregated probability perspective, for
example as demonstrated by Ref. 46, and aggregate rainfall
distributions over a spatial domain (e.g. for Köppen Geiger climate
zones or regions with similar topographic features or climate
variability). However, any such aggregation raises other questions,
as the distribution is no longer independent and identically
distributed.

Fig. 2 Observed extreme rainfall over Europe in July 2021. Daily mean rainfall (mm) over Europe for 12–15 July (a–d) and corresponding
daily mean sea level pressure anomaly (hPa) (e–h) from E-OBS v26.0 dataset. The daily sea level anomalies are calculated with respect to
monthly values for July 2021.
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ARE TELECONNECTIONS CHANGING?
Large-scale internal variability from phenomena such as ENSO,
NAO, or the Indian Ocean Dipole (IOD), are known to influence
regional climate across the globe through teleconnections. These
teleconnections lead to systematic changes in regional climate far
from the center of action of the variability itself57–60 and often
contribute to the predictability of regional weather and climate
events. For example, the ENSO-rainfall teleconnection is crucial for
tropical rainfall prediction at seasonal lead times34,61.
Recent literature questions the stationarity of these and other

teleconnections and in many cases argues that causal mechanisms,
such as externally forced climate change, are driving systematic
change in either the pattern or the strength of the teleconnection
from one epoch to another, and that these changes are not
represented in climate models. For instance, changes in the ENSO-
rainfall teleconnection have been reported for several tropical regions
including India62, East Asia63, North America64, and Africa65,66, as well
as many other large-scale teleconnections, such as the recently
discovered connection between the Quasi-Biennial Oscillation and
Madden Julian Oscillation20,67 and the ENSO-Asian teleconnection68.
Several studies already highlight internal variability as a cause of

the apparent mismatch between model and observed teleconnec-
tions69–74 but many others continue to suggest that mismatch
implies model error. Therefore, we re-examine one well-known
example: ENSO and Indian summer monsoon rainfall teleconnection.
Figure 4 (a) shows that the distribution of ENSO teleconnections

in rainfall resamples covers an enormous range of correlations on
20-year timescales (r=−0.90 to 0.47). A similar result holds for 50-
year timescales (r=−0.80 to 0.22). Note that this range occurs
due to sampling variability rather than any true systematic non-
stationarity, and includes the historical periods such as 1980–2010
when non-stationarity in the ENSO-Indian rainfall teleconnection
has been reported in observations62. Whilst methodologies to
calculate the ENSO-monsoon relationship vary in the literature,
even the extreme examples of apparent non-stationarity in
observed teleconnections sit well within the spread of plausible
ENSO-monsoon teleconnections due to the internal variability of
the climate system. The model resamples even show the
possibility of a positive correlation on 20-year timescales; opposite
in sign to the observed teleconnection.
In addition, there is also a growing body of literature suggesting

that the ENSO-Indian rainfall teleconnection could change in the

future under climate change75,76. However, Fig. 4 (b) shows that
the mean ENSO-rainfall correlation for the CMIP6 multimodel
ensembles (of size ~30) for both historical and future periods72 sits
within the range of internal variability (r=−0.31 to −0.51).
Therefore, great care is needed before we can conclude with
confidence that there is any robust change in the ENSO-monsoon
relationship in the future.
Finally, given the broad range of possibilities in Fig. 4a, b, and

the fact that simulated future changes are well within this range, it
is unlikely that observational data will yield significant examples of
changes in teleconnections that are extreme enough to rule out
internal variability and detect any true non-stationarity on any
reasonable timescale into the future.

A CALL FOR MORE RIGOROUS MODEL ASSESSMENT
We find that studies claiming a mismatch between model and
observed climate phenomena are often too quick to ignore the
null hypothesis that such apparent discrepancies between models
and observations can arise due to chaotic internal variability. We
have presented examples where this applies to changes on
multidecadal timescales, such as global and regional trends,
recent extreme events, and apparent changes in observed
teleconnections. Assessing models against the rare and most
extreme observed cases automatically introduces a selection bias
into the process of model evaluation, which is particularly
compounded for extreme events on small spatial scales. Limited
observational records can easily show apparent non-stationary or
spurious teleconnections due to internal variability and sampling
error. Using a single simulation or small ensembles of simulations
can easily lead to premature conclusions about model fidelity.
Therefore, a large ensemble of multidecadal simulations is needed
to properly sample initial condition uncertainty and convincingly
demonstrate model failure to capture observed phenomena, as
well as to assess the progress or deterioration in performance
between older and newer generations of models. Initialized large
ensembles are already being used for seasonal predictions33,77,
and more recently for multidecadal predictions78 and projec-
tions53,79. Using these ensembles to isolate internal variability
from true model errors provides a powerful second application.

Fig. 3 Simulation of extreme European rainfall in climate models. Daily mean rainfall (mm) over Europe for a selected day between 1950-
2014 (a–d). Corresponding daily mean sea level pressure (hPa) is shown in (e–h). The CESM-LE case is from the CESM1 Large Ensemble and the
remaining models are from CMIP6 ensembles.
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FUTURE OUTLOOK AND SUMMARY
While a large ensemble is desirable to account for fluctuations due
to internal variability, we acknowledge that these are computa-
tionally expensive and may not be always available. Therefore, we
also highlight other potential model evaluation methodologies
that could be used. For instance, in contrast to picking a single
period in observations and testing a single model simulation
against that, we suggest using a longer time period, and sampling
all possible periods of a fixed length within that interval. For
example, sampling 20-year trends over 50 years for both
observations and models and comparing the distribution of
trends4,51. Comparing multimodel mean trends directly with the
observations is also not a fair comparison49 and for these cases,
statistical tests, similar to the UNSEEN method6, could be
employed to test model fidelity.
Grid point comparisons for extremes, such as calculating spatial

distributions of extremes (e.g., 1-day maximum rainfall) and
comparing those with the model spatial distribution, are likely to
show apparent disagreement. A similar problem has been
recognized as ‘double-penalty’ in high-resolution weather predic-
tion where verification scores are penalized twice, i.e. for
simulating a feature in the wrong place and not simulating a
feature at the right place80. Simple approaches, such as pooling
daily maximum rainfall values over a time period and spatial
domain for both observations and models, and then comparing
the distributions, or extending more sophisticated methodologies
(such as Hi-RA81) used in high-resolution weather prediction, could
be considered for evaluating climate models for extremes.
There are also new emerging methodologies, such as resam-

pling of observational records to create pseudo-observational
large ensembles5, quantification of the degree of discrepancy
between models and observations using Bayes factors32, spatial
aggregation of regional extremes46, ensemble boosting methods
where a climate model is reinitialized to generate large samples of
extreme events at relatively low cost82, physical or process-based
evaluation of models using storyline methods32, and intelligent
use of machine learning methods to differentiate variability from

model errors83, all of which could be employed for better control
of internal variability and sampling error.
Finally, we emphasize that models will always contain errors.

The proper sampling of internal variability is a necessary but not
sufficient condition for assessing model fidelity; it is also crucial to
assess if the model simulates the phenomena of interest and is fit
for purpose. Certainly, not all disagreements between models and
observations can be attributed to internal variability. However, this
only underscores the need for large ensembles of multidecadal
simulations to bolster our efforts toward the development of more
realistic climate models.

Received: 19 February 2023; Accepted: 25 May 2023;
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