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Abstract
The expansion of oil palm monocultures into globally important Southeast Asian 
tropical peatlands has caused severe environmental damage. Despite much of the cur-
rent focus of environmental impacts being directed at industrial scale plantations, 
over half of oil palm land- use cover in Southeast Asia is from smallholder planta-
tions. We differentiated a first generation smallholder oil palm monoculture into 8 
different sampling zones, and further divided the 8 sampling zones into oil palm root 
influenced (Proximal) and reduced root influence (Distal) areas, to assess how peat 
properties regulate in situ carbon dioxide (CO2) and methane (CH4) fluxes. We found 
that all the physico- chemical properties and nutrient concentrations except sulphur 
varied significantly among sampling zones. All physico- chemical properties except 
electrical conductivity, and all nutrient content except nitrogen and potassium varied 
significantly between Proximal and Distal areas. Mean CO2 fluxes (ranged between 
382 and 1191 mg m−2 h−1) varied significantly among sampling zones, and between 
Proximal and Distal areas, with notably high emissions in Dead Wood and Path zones, 
and consistently higher emissions in Proximal areas compared to Distal areas within 
almost all the zones. CH4 fluxes (ranged between −32 and 243 µg m−2 h−1) did not 
significantly vary between Proximal and Distal areas, however significantly varied 
amongst sampling zones. CH4 flux was notably high in Canal Edge and Understorey 
Ferns zones, and negative in Dead Wood zone. The results demonstrate the high het-
erogeneity of peat properties within oil palm monoculture, strengthening the need for 
intensive sampling to characterize a land use in the tropical peatlands.
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1 |  INTRODUCTION

The dramatic expansion of oil palm monocultures into 
globally important Southeast Asian tropical peatlands in 
recent decades has caused severe environmental, health 
and socio- political problems because of their role in haze, 
climate change and endemic biodiversity loss (Cheong 
et al., 2019; Danielsen et al., 2009; Dhandapani, 2015; 
Dislich et al., 2017). Oil palm (Elaeis guineensis) is na-
tive to West Africa and was first commercially planted 
in Malaysia in 1917 in the Thennamaran region in North 
Selangor, close to the largest area of tropical peatlands 
in Selangor state (Abdullah et al., 2009; Danielsen et al., 
2009; Dhandapani et al., 2019a; Rizal et al., 2018). Even 
though initially most expansion was on existing plantations 
(Basiron, 2007; Dhandapani, 2015; Shevade & Tatiana, 
2019), land for further expansion became scarce, exert-
ing pressure on forests (Hansen et al., 2013). In recent de-
cades, oil palm plantations have expanded rapidly across 
carbon- rich peatlands (Miettinen & Liew, 2010; Miettinen 
et al., 2016; Shevade & Tatiana, 2019). Peatlands are 
scarcely populated, making them easy to claim and gain 
ownership for establishing plantations, without any social 
conflict (Casson et al., 2007).

Tropical peatlands in Southeast Asia, which are naturally 
forested and wet ecosystems, have to be drained and com-
pletely cleared to establish oil palm plantations (Dhandapani 
et al., 2019a; Luskin & Potts, 2011; Matysek et al., 2017; 
Yule, 2010). A recent estimate by Wijedasa et al. (2018) 
shows that smallholder plantations had a greater contribution 
to land use change in Southeast Asia than industrial plan-
tations. Smallholder plantations are less strictly managed, 
without the use of any advanced equipment (Azhar et al., 
2011), resulting in increased habitat heterogeneity even in 
monocropping systems (Azhar et al., 2015), relative to well- 
maintained homogenous industrial monocropping (Matysek 
et al., 2017). It is notable that globally, 40% of the land used 
for oil palm cultivation are smallholder plantations (Saadun 
et al., 2018), and smallholder plantations are playing major 
part in expansion of oil palm plantations in Latin America 
and Africa (Azhar et al., 2017; Bennett et al., 2019; Sayer 
et al., 2012).

Smallholder plantations vary widely from industrial plan-
tations, in terms of land clearing, drainage, understorey veg-
etation and harvesting paths in the plantations (Azhar et al., 
2011; Dhandapani et al., 2019a,b; Matysek et al., 2017). In 
their intact state, tropical peatlands are complex ecosystems 
with a high degree of spatial heterogeneity (Girkin et al., 
2019), which, when converted to agricultural plantations, 
manipulates the complexity to varying degrees, resulting in a 
wide range of heterogeneous zones. Estimates of the impacts 
of land use as a whole on carbon emissions are difficult, in 
part because of the varying management practices in oil palm 

plantations, with some management practices unique to par-
ticular smallholders (S. Dhandapani, pers. observ.).

A range of approaches have previously been used to eval-
uate the response of greenhouse gas (GHG) fluxes of oil 
palm land use in tropical peatlands, including complete ran-
dom sampling (Dhandapani et al., 2019a), stratified random 
sampling (Matysek et al., 2017), field plots (Cooper et al., 
2019; Hergoualc'h et al., 2017; Melling et al., 2005a,b; Tonks 
et al., 2017), transects (Dariah et al., 2014) and area weighted 
plots accounting for some heterogeneity (Manning et al., 
2019). Dhandapani et al. (2019b) evaluated the impacts of 
nearby crops on peat properties and carbon emissions, but 
other heterogeneous zones in plantations, for example canal 
edge effects, were not reported. Although Manning et al. 
(2019) reported some heterogeneous zones in plantations 
in Borneo, the management practices vary widely between 
smallholders (Dhandapani et al., 2019a,b), and it is important 
to assess such variations within plantations in other regions 
such as Peninsular Malaysia and Indonesia. There is a need to 
know the individual impacts of all the heterogeneous regions 
in oil palm plantations to address knowledge gaps and allow 
full evaluation of different field sampling techniques, upscale 
emissions estimations appropriately and understand the ef-
fects of land- use change and management.

Soils store three times more carbon than the atmosphere, 
and the natural emission of carbon from soil through micro-
bial decomposition is more than 10 times larger than that of 
the world fossil fuel industries (Oertel et al., 2016). Intact 
Southeast Asian peatlands absorb 2.6 tonnes of CO2 per 
hectare per year and store approximately 69 Gt of Carbon 
(Norwana et al., 2011; Page et al., 2011), thus playing an 
important role in global carbon cycle. GHG emissions from 
peatlands or any soil are affected by changes in a range of 
environmental parameters including peat temperature, pH, 
electrical conductivity, redox potential and nutrient con-
centrations (Dhandapani et al., 2019a,c). pH affects cation 
exchange capacity, influences soil nutrient availability for 
plants and trees and affects microbial community structure 
(Gillman, 1981; Sawhney et al., 1970). Redox potential is 
electron exchange capacity of atoms for reduction and oxi-
dation reactions, which can change the forms of soil nutri-
ents by changing the charge of ions and may impact nutrient 
availability in soil (DeLaune & Reddy, 2005; Pezeshki & 
DeLaune, 2012; Søndergaard, 2009). A decrease in redox 
potential can put pressure on living cells and rhizosphere in 
soil, and may indicate a lack of oxygen (Pepper & Gentry, 
2015). Both pH and redox potential impact soil nutrient dy-
namics and directly or indirectly influence GHG emissions 
(Hénault et al., 2019; Weslien et al., 2009). Redox potential 
affects the balance between methanogenic and methano-
trophic microbial communities and can significantly affect 
CH4 emissions (Topp & Pattey, 1997). Electrical conductiv-
ity is a measure of salinity and rough estimate of nutrients 
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and also impacts soil– plant, water and nutrient dynamics, 
microbial activity and GHG emissions (Marton et al., 2012). 
Thus, understanding the relationships between peat physico- 
chemical properties and carbon emissions hotspots in micro-
habitats within this heterogeneous ecosystem would provide 
insights into better management of the plantations and also 
better experimental design for future studies.

Tropical peatlands are naturally nutrient poor (Sjögersten 
et al., 2011); however, some nutrients exhibit functional 
correlations with soil microbial communities and carbon 
emissions (Dhandapani et al., 2019c). Despite their poten-
tial functional interaction and impact, the change in nutrient 
concentration with land- use conversion to oil palm planta-
tions is virtually unknown, let alone the nutrient dynamics 
within the oil palm plantations. Dhandapani et al. (2019c) 
suggest that anthropogenic disturbances involving drainage 
of tropical peat forests may result in nutrient leaching and re-
duced nutrient concentration; however, such loss in agricul-
tural landscapes and their functional relationship with carbon 
emissions are yet to be explored. Conversion of forests to oil 
palm plantations involving drainage in tropical peatlands was 
known to increase pH, temperature and redox potential, and 
decrease moisture; however, their variations within oil palm 
plantations are not well documented (Cooper et al., 2019; 
Dhandapani et al., 2019a; Tonks et al., 2017).

In this study, we define and evaluate the heterogeneity 
of peat properties in 16 sampling regions in an oil palm 
monoculture to identify possible carbon emission hotspots. 
We hypothesize (1) that the peat properties and nutrient 
content significantly vary amongst sampling zones con-
sidering the varied physical and environmental features 
among the zones. We further hypothesize that (2) changes 
in nutrient concentrations and peat properties significantly 

affects carbon emissions, resulting in significantly different 
carbon emissions between zones. We anticipate higher car-
bon emissions from the regions with higher labile carbon 
availability such as regions with dead wood or understorey 
vegetation, and regions with high degree of disturbance 
such as harvesting paths. We also hypothesize that (3) areas 
closer to oil palm plants will have higher emissions, be-
cause of significant autotrophic contributions from mature 
oil palm roots, along with other influence of rhizosphere 
such as microbial community structure and root exudate 
additions, further adding to the heterogeneity in carbon 
emissions among the zones.

2 |  MATERIALS AND METHODS

2.1 | Study sites

This study was conducted in a smallholder oil palm mono-
cropping plantation (3°25′25.8″N 101°20′12.9″E) located 
adjacent to Raja Musa forest reserve on the southern edge 
of the North Selangor peatlands. Indicative view of the lo-
cation is given in Figure 1. The oil palm trees were approx-
imately 17– 18 years old and of first- generation plantation. 
The total site size was approximately 2 ha. The site bor-
dered other oil palm plantations, which were abandoned 
for forest regeneration inside Raja Musa protected forest 
reserve. A drainage ditch, running down the middle, di-
vided the site into two halves. The site had a sizeable cover 
of understorey vegetation, predominantly ferns. There was 
abundant decaying dead wood of non- oil palm plants on 
the site, in particular legacy tree stumps from prior forest 
cover. There were some dead cut stems of other plants and 

F I G U R E  1  Site location
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trees of previous land use, visibly protruding from the sur-
face. There were also harvesting paths running throughout 
the plantation. The peat depth in the site was approximately 
3 m. The water table level during the time of sampling was 
c. 60 cm below the ground surface. The water table level 
fluctuates from 30 cm belowground to 80 cm belowground 
throughout the year (S. Dhandapani et al., Unpublished). 
The average rainfall in the region is 1349– 2480 mm yr−1 
(Global Environmental Centre, 2014), with rainfall meas-
ured nearby at Kuala Selangor town (9 km away) recording 
weather data for August 2018 of mean 37.7 mm rainfall, 18 
rainfall days, a mean temperature of 28°C and 68% average 
(World Weathers Online, 2020).

This site has previously been included in two studies of oil 
palm monocropping, where it was referred to as “1st gen OP” 
in Dhandapani et al. (2019a,b).

2.2 | Sampling strategy

The site was divided into 8 sampling zones (see Table 1), and 
the sampling zones were further divided into root influence 
area referred as Proximal area (within 3 m from nearest oil 
palm stem) and non- root influence area referred as Distal area 
(further than 3 m away from nearest oil palm stem), making 
a total of 16 different sampling regions. These distances were 

selected based on the extent of roots within an oil palm plan-
tation previously identified by Matysek et al. (2017).

A total of five sampling points were chosen for each 
sampling zone. At each sampling point, CO2 and CH4 mea-
surements were taken, and surface peat (0– 5  cm) samples 
were subsequently collected from the exact spots where the 
carbon emissions measurements were made, for laboratory 
analyses. All of five independent sampling within each indi-
vidual sampling zone were collected on the same day. This 
resulted in 80 independent sampling points in total for the 
site, covering both Distal and Proximal areas in all sampling 
zones. Each sampling point was sampled only once for this 
study. Sampling was carried out over 3 days in a dry season 
from 18th to 20th of August 2018 between 11:00 and 14:00 
each day.

2.3 | Peat characteristics

The procedure used for peat analyses was based on 
Dhandapani et al. (2019a,b,c). Peat temperature was meas-
ured in situ, using a digital thermometer. About 20 g of peat 
samples was collected using a metal spoon from the top 
5  cm of the surface from each individual sampling point. 
For measuring gravimetric moisture, about 20 g of fresh peat 
from each individual sampling points was dried in an oven 
at 105°C for 48 h. The gravimetric moisture was calculated 
as follows:

For pH, redox and electric conductivity measurements, 
5 ml volume of peat sample was diluted in 10 ml deionized 
water in a centrifuge tube and shaken on a table shaker for 

Gravimetric moisture (%) =
Mass of the water lost in oven drying

Mass of oven dried peat
× 100.

T A B L E  1  Description of sampling zones and areas
Zone Area

Name Descrip�on

Canal 

represents the canal that runs on the border on two sides of the 
planta�on, which is about 2-3 metres wide and 1-1.5 metres deep. 
Surface layers were dry throughout the measurement period.

Canal Edge 
represents the edge on the side of the planta�on that is within 0.5 
metre from the canal

Cleared 
(Figure 2a)

is the open area in the planta�on that is free of any understorey 
vegeta�on or other dis�nct features.

Each zone is divided into 
2 Areas as given below. 
This classifica�on is 
based on Matysek et al 
(2017) that found no 
root contribu�on to 
CO2 emissions 
for measurements that 
are more than 3m away 
from oil palm stem.

Dead Wood 
(Figure 2b)

is similar to the cleared zone, with only difference being protruding 
stem of previous genera�on of forest plants, from the ground. The 
dead stems are within 0.5 metre from any sampling point in Dead 
Wood zone. Name  Descrip�on

Ditch 
(Figure 2c)

is on a 1 m wide, 0.5-1 m deep ditch that runs in the middle of the 
planta�on, dividing it into two. The ditch drains into the large canal at 
the end. Surface layers were dry throughout the measurement period.

Ditch Edge 
(Figure 2d) is on either side of the ditch, within 0.5 metre from the ditch. 

 Proximal
 

within 3 
metres from 
nearest oil 
palm stem
 

Understorey 
Fern
(Figure 2e) represents peat that is within 0.5 metre from nearby fern.

Path
(Figure 2f) 

represents the area of peat within 0.5 metre on either side of the 
harvest path filled with gravel, running throughout the planta�on. 

 Distal
 

further than 
3 metres 
away from 
nearest oil 
palm stem
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2 h. The pH of the supernatant was then measured using a 
Eutech pH 700 pH meter supplied by Thermo scientific. 
The redox potential and electrical conductivity were mea-
sured using Eutech Ion 2100 (Thermo scientific) and Groline 
HI98331 probe (Hanna), respectively.

For analysing total carbon (C) and nitrogen (N) con-
tent, all samples were oven- dried (105°C for 48  h) and 
finely ground using a Fritsch mortar grinder pulverisette 
2 (Brackley, UK). Approximately 70  mg of sample was 
weighed into a Skalar ceramic crucible, and the exact 
weight was recorded. The samples were then transferred to 
an auto sampler in Skalar primacs series SNC100 TC TN 
analyser (Breda, The Netherlands) and analysed for total C 
and total N content.

2.4 | Nutrient analysis

The peat nutrient concentrations were analysed using induc-
tively coupled plasma mass spectroscopy (ICP- MS). For 
this, approximately 0.15  g of oven dried (105°C for 48  h) 
and ground peat was weighed in microwave digestion tubes 

(MARSXpress vessels, CEM Microwave Technology Ltd.). 
The digestion tubes were sealed with a stopper and a screw 
lid, after adding 10 ml of nitric acid to each sample. The di-
gestion tubes were then placed in a MARSXpress microwave 
(CEM Microwave Technology Ltd.) and run at 1600 W & 
100% power with a ramp for 20 min and held for 20 min at 
170°C. The tubes are left overnight in the microwave to cool 
down. The digested samples are then filtered and made up 
to 30 ml using milliQ water. Then, 1 ml of each sample was 
transferred in to 10- ml tube and further diluted with 9 ml of 
milliQ water. The samples were then analysed using ‘Agilent 
Technologies’ (Milton Keynes, UK) 7900 ICP- MS fitted 
with ‘SPS 4’ autosampler.

2.5 | Carbon emissions

CO2 and CH4 emissions from the peat surface were measured 
using a Los Gatos (San Jose, California, USA) ultraport-
able greenhouse gas analyser as described in Dhandapani 
et al. (2019a,b,c). The gas analyser works on the principle 
of laser absorption spectroscopy and gives readings of CH4 

F I G U R E  2  Example pictures of Distal 
areas of sampling zones (except Canal and 
Canal Edge), (a) Cleared, (b) Dead wood, 
(c) Ditch, (d) Ditch Edge, (e) Understorey 
Ferns, (f) Path

(a) (b)

(c) (d)

(e) (f)
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and CO2 ppm as well as gas temperature. The measurements 
were made using closed dynamic chamber method using a 
chamber with a height of 15 cm and the inner diameter of 
13.5 cm. The chamber had an inlet and an outlet port that 
were connected to the gas analyser, using a 6.35- mm outer 
diameter polytetrafluoroethylene (PTFE) tube. During each 
measurement, about 1 cm of the chamber was carefully in-
serted into the ground until it was sealed to the ground sur-
face, and gas measurements were taken over 3 min. There 
was no surface vegetation in any of the measurement points. 
The gas analyser was set to record gas flux every 20 s, result-
ing in at least six recorded measurement points for each plot. 
The first minute of each measurement was ignored allowing 
the gas flux to settle down after initial disturbance of placing 
the chambers. Following omission of the first minute in each 
measurement period, linear fits of CO2 concentration increase 
to sample rate showed an R2 > .99 in all instances. CO2 flux 
gradients were used as confirmation that CH4 sampling (of 
much lower emission rates) within the same chamber may 
be reliable. The gas measurements in ppm were converted 
to mg CO2 m

−2 h−1 and µg CH4 m
−2 h−1 for CO2 and CH4, 

respectively, as described in Samuel and Evers (2016), using 
the ideal gas law PV = nRT, where P = atmospheric pres-
sure; V = volume of headspace; n = number of moles (mol); 
R = universal Gas Constant law (8.314  J K−1 mol−1); and 
T = temperature in kelvin (K), with conversion factor, 1 mol 
of CO2 = 44.01 g and 1 mol CH4 = 16.02 g.

2.6 | Statistical analyses

Differences in peat properties and carbon fluxes among heter-
ogeneous zones and between Proximal and Distal areas were 
assessed using a two- way analysis of variance (ANOVA). 
Fishers multiple comparison test was carried out for each 
of the measured peat property to identify the significance 
of difference between each heterogeneous zones. For data 
sets that are not normally distributed, log transformation or 
boxcox transformation was used. Significance was assessed 
at p ≤ .05. Backwards, stepwise elimination regression was 
used to assess relationships between peat properties and car-
bon fluxes. Proximal measurements, however, were not used 
for multiple regression because of the unknown extent of root 
contributions attached to each measurement. All statistical 
analyses were carried out in Genstat v19.

3 |  RESULTS

3.1 | Peat properties

Gravimetric moisture content (Figure 3a) varied significantly 
among sampling zones, between Proximal and Distal areas, 

and in the interaction term (Table 2). Moisture content was 
greatest at Proximal areas on the Canal and Ditch zones, and 
decreased in the Distal areas. Along the path, moisture content 
was particularly low. The interaction terms were significant 
because Canal and Ditch Edge zones showed significantly 
higher moisture levels in Proximal than Distal areas, while 
other zones were either unchanged between the two areas or 
showed higher moisture in Distal areas (Figure 3a). Redox 
potential also varied significantly among different sampling 
zones and was lower in Proximal than Distal areas (Table 
2, Figure 3b). Redox potential was highest in the Drainage 
Ditch (340 and 442 mV) but was lowest in Proximal areas of 
Canal Edge and Understorey Ferns zones. pH was consist-
ently acidic and <4 (Figure 3c), but also varied significantly 
among sampling zones, and was slightly lower in Distal areas 
compared to the Proximal areas (Table 2; Figure 3c). In con-
trast, while electrical conductivity varied between different 
sampling zones, it did not vary between Proximal and Distal 
areas within those zones, but did vary significantly in the in-
teraction term (Table 2; Figure 3d). Electrical conductivity 
was higher in Proximal areas than Distal areas on the Cleared 
zone, while it was lower in the Proximal than Distal areas 
in Dead Wood and Understory Ferns zones, resulting in sig-
nificant interactions between Zones and Areas (Figure 3d; 
Table 2).

3.2 | Peat elemental analysis

Total carbon varied significantly among sampling zones, and 
was greater in Proximal than in Distal areas (p < .001, Figure 
4a). Carbon content was greatest in the Dead Wood zone 
(471 mg g−1), and lowest in the Canal zone (139 mg g−1). In 
contrast, while nitrogen content varied significantly among 
zones (p < .001), it did not vary between Proximal and Distal 
areas (Table 2, Figure 4b). The interaction term, however, 
was significant (Table 2), as Canal zone had higher nitro-
gen content in Proximal than Distal areas, while Cleared and 
Understory Ferns zones had higher nitrogen content in Distal 
than Proximal areas. Nitrogen was greatest at the Distal area 
in Understory Ferns zone (21  mg  g−1) and was lowest in 
the Canal zone (8 mg g−1). Phosphorus varied significantly 
among zones and was consistently higher in the Proximal 
than Distal areas (Table 2, Figure 4d), as was sulphur (Table 
2, Figure 4e). Sulphur content was greatest at the Proximal 
area in the Canal zone (5 mg g−1) and lowest at the Distal 
areas in same Canal zone (1 mg g−1). Sulphur content also 
varied significantly in the interaction term (Table 2), as the 
Ditch zone exhibited a distinct trend of higher sulphur con-
centration in Distal than Proximal areas, contradicting all 
the other zones. Potassium content only varied significantly 
among zones (Table 2) and was greatest in the Canal zone 
(1 mg g−1, Figure 4f). Calcium content varied among zones 
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(Table 2, Figure 4g) and was greatest on the Path and Dead 
Wood zones. Calcium content was generally higher in proxi-
mal areas than Distal areas, with no significant interactions 
between Sampling Zones and Areas (Table 2). Magnesium 
content varied significantly among sampling zones, and be-
tween Distal and Proximal areas, with no significant inter-
actions between Zones and Areas. Magnesium content was 
notably higher in Proximal areas of Canal Edge and Ditch 
Edge zones (Table 2; Figure 5h).

3.3 | In situ CO2 and CH4 fluxes

Mean CO2 fluxes varied significantly among sampling zones 
and between Proximal and Distal areas, but the interaction 
term was not significant (Table 2, Figure 5a). Fluxes were 
consistently greater in Proximal areas closer to oil palms, 
with particularly high fluxes measured in the Proximal area 
of the Dead Wood zone (1190 mg CO2 m

−2 h−1), and in the 
Path zone (928 mg CO2 m

−2 h−1). The mean CO2 emissions 

for the site are 620 mg CO2 m
−2 h−1. Root- derived CO2 was 

calculated only for the Cleared zone, in order to discount ef-
fects from other landscape features, for example canals, path 
compaction or understory vegetation inputs. Root- derived 
CO2 was estimated at 189 mg CO2 m

−2 h−1, equivalent to c. 
28% of total respiration.

CH4 fluxes exhibited considerable variation, ranging 
from −32 to 253  µg CH4  m−2  h−1 and varied significantly 
among Zones, with significant interaction between Zones 
and Areas (Table 2). However, the variation between Distal 
and Proximal areas was not significant (Table 2, Figure 
5b). Proximal areas of Canal Edge and Understorey Ferns 
had notably higher CH4 flux, while Proximal areas of Dead 
Wood had the greatest negative flux. Mean peat temperature 
varied significantly among the zones, between Distal and 
Proximal areas, and in the interaction terms (Table 2, Figure 
5c). Highest temperatures were recorded in Dead Wood zone 
(c. 35°C) but were also high around paths. Some Zones such 
as Cleared, Understory Ferns and Path had higher tempera-
ture in Proximal areas, while the rest of the Zones had higher 

F I G U R E  3  (a) Gravimetric moisture (%), (b) redox potential (mV), (c) pH and (d) electrical conductivity (µS cm−1) at Proximal and Distal 
areas across sampling zones in smallholder oil palm plantation. Means ± 1 SEM. Bars that do not share any letters are significantly different from 
each other according to Fisher's multiple comparison test
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temperature in Distal areas, resulting in significant interac-
tions between Zones and Areas (Table 2). The mean CH4 
emissions for the site are 39 µg CH4 m

−2 h−1.
No significant relationship was found between distal 

CO2 fluxes and peat physico- chemical properties. In contrast, 
distal CH4 fluxes were significantly correlated with carbon 
content (Figure 6; 5.2% of variance; p = .030). CH4 fluxes 
increased with carbon content.

4 |  DISCUSSION

Our results show that the apparent heterogeneity visible 
within smallholder oil palm plantations (Azhar et al., 2011; 
Dhandapani et al., 2019a) is reflected by significant varia-
tion in peat physico- chemical properties and nutrient content 
found by sampling across distinct zones. Gravimetric mois-
ture was highest in the Canal and Ditch zones as expected, 
even though water table was below surface in all zones. 
Another notable characteristic was the higher moisture con-
tent in Proximal areas for most of the zones, in contrast to 
Dhandapani et al. (2019b), where Proximal areas had the 
lowest moisture level compared to the Distal areas to oil palm 
in four different cropping systems. This may be because of 
the fact that Dhandapani et al. (2019b) included moisture 
measurements from both wet and dry seasons, whilst our cur-
rent study only measured moisture in the dry season, when 
increased shade in Proximal areas may be more important 
in preventing increased evapotranspiration from the surface 
peat and maintaining higher moisture levels.

Redox potential and pH are important soil properties for 
better management of agricultural ecosystems and mitigation 
of soil GHG emissions (Husson, 2013; Pezeshki & DeLaune, 
2012; Wang et al., 2018). Redox potential is lower in Proximal 
than in Distal areas, which may be related to increased need 
of oxygen for living cells in oil palm rhizosphere (Husson, 
2013). Redox potential in all the sampling zones in this study 
was higher than have been observed in a pristine tropical peat-
land in Peninsular Malaysia (Girkin et al., 2020a), and only 
the Ditch zone had higher redox potential than oil palm and 
pineapple intercropping system in the same region (Girkin 
et al., 2020a). The higher Redox potential in the ditch may 
be because of the higher water and oxygen availability in that 
zone (Figure 3). pH was in the range previously observed in 
oil palm plantations in tropical peatlands (Dhandapani et al., 
2020; Dhandapani et al., 2019a,b; Tonks et al., 2017). Even 
though there were significant differences in pH between sam-
pling zones, all the zones were highly acidic with pH under 4. 
pH was also generally higher in Proximal areas than in Distal 
areas. This may be because of the influence of oil palm rhizo-
sphere, as plant rhizosphere and their nitrogen uptake mech-
anisms have been shown to increase the pH in rhizosphere 
(Nye, 1981). Similar increases in pH closer to tree and plant 
stems were also observed in Panamanian peatlands (Girkin 
et al., 2019) and associated with differences in the concentra-
tion and composition of root exudates (Girkin et al., 2018a,b) 
and oxygen (Girkin et al., 2020b).

Electrical conductivity is another important characteristic 
that influences soil– plant, water and nutrient dynamics, and 
microbial activity in production of CO2 and CH4. Electrical 

T A B L E  2  Two- way analysis of variance (ANOVA) for peat physico- chemical properties and nutrient concentrations, showing statistical 
significance of the effects of Area, Zone and the interactions between Area and Zone. Statistically significant figures are presented in bold. The 
values inside the brackets in subscript indicate numerator and denominator degrees of freedom

Variable Area Zone Area*Zone

Gravimetric moisture F(1,65) = 6.02, p = .017 F(7,65) = 11.73, p < .001 F(7,65) = 5.16, p < .001

pH F(1,65) = 25.19, p < .001 F(7,65) = 6.23, p < .001 F(7,65) = 1.88, p = .087

Redox F(1,65) = 10.93, p = .002 F(7,65) = 17.01, p < .001 F(7,65) = 1.96, p = .074

Electrical conductivity F(1,65) = 0.04, p = .851 F(7,65) = 9.18, p < .001 F(7,65) = 5.93, p < .001

Carbon F(1,56) = 9.07, p < .004 F(7,56) = 9.37, p < .001 F(7,56) = 2.15, p = .053

Nitrogen F(1,56) = 1.96, p = .167 F(7,56) = 23.26, p < .001 F(7,56) = 7.22, p < .001

C:N F(1,56) = 5.87, p = .019 F(7,56) = 7.82, p < .001 F(7,56) = 2.21, p = .047

logCalcium F(1,64) = 19.60, p < .001 F(7,64) = 5.75, p < .001 F(7,64) = 2.89, p = .011

Potassium F(1,64) = 1.15, p = .288 F(7,64) = 23.62, p < .001 F(7,64) = 1.65, p = .137

logMagnesium F(1,63) = 14.84, p < .001 F(7,63) = 5.7, p < .001 F(7,64) = 2.15, p = .051

logPhosphorus F(1,63) = 38.31, p < .001 F(7,63) = 6.25, p < .001 F(7,63) = 1.10, p = .372

Sulphur F(1,64) = 14.85, p < .001 F(7,64) = 2.01, p = .068 F(7,64) = 5.03, p < .001

Temperature F(1,66) = 9.25, p = .003 F(7,66) = 128.58, p < .001 F(7,66) = 14.96, 
p = .001

boxcoxCH4 F(1,66) = 0.21, p = .647 F(7,66) = 2.41, p = .029 F(7,66) = 2.17, p = .048

logCO2 F(1,66) = 7.74, p = .007 F(7,66) = 2.56, p = .021 F(7,66) = 0.87, p = .537
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F I G U R E  4  (a) Carbon, (b) nitrogen, (c) carbon:nitrogen (d) phosphorus, (e) sulphur, (f) potassium, (g) calcium concentrations and (h) 
Magnesium (mg g−1) at Proximal and Distal areas across sampling zones in smallholder oil palm plantation. Means ± 1 SEM. Bars that do not 
share any letters are significantly different from each other according to Fisher's multiple comparison test
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conductivity also significantly varied between sampling 
zones, but exhibited a different trend of change between 
Proximal and Distal areas within the zones. Notably, the zones 
with some understorey ground cover such as Understory 
Ferns and Dead Woods exhibited higher electrical conduc-
tivity in Distal areas than Proximal areas, while it was the op-
posite in the Cleared zone with no ground cover. This may be 
because of the surface peat in the open areas such as Cleared 
zone having more impact of rainfall washing the salts in the 

surface peat than the zones with some ground cover (Liu 
et al., 2018). Another factor impacting higher electrical con-
ductivity in Understory Ferns and Dead Wood zones is the 
additional living and dead roots in the region releasing nu-
trients into the soil by root exudation and decomposition, re-
spectively (Dhandapani et al., 2019b; Girkin et al., 2018a,b). 
Moreover, the electrical conductivity in all zones is higher 
than observations in Panamanian peatlands (Girkin et al., 
2019). The difference in rainfall pattern and higher organic 
content between the studied site and Panamanian peatlands 
may explain the differences in the electrical conductivity, as 
Panamanian peat had higher rainfall, and also higher organic 
content, which is related to lower electrical conductivity in 
tropical peat (Asadi & Huat, 2009). This may be because the 
peat in Cleared zone may have undergone a higher degree of 
decomposition than peat under some ground cover, as electri-
cal conductivity of tropical peat is known to decrease with in-
creased decomposition (Asadi & Huat, 2009). This increased 
electrical conductivity of surface peat in oil palm plantations 
may be further aided by additional ionic chemical inputs in 
preparation for agricultural production, such as liming and 
fertilizer additions (Azeez & Van Averbeke, 2012).

All the nutrients and total carbon content showed signif-
icant variation among sampling zones. Carbon content was 
noticeably lower in the Canal zone, as expected, as more than 
a metre of carbon and relatively nitrogen- rich surface peats 
were displaced by the canal (Tonks et al., 2017). Both the 
carbon content and nitrogen content of all zones were slightly 
lower than what was observed in both primary and second-
ary forests in Peninsular Malaysia (Dhandapani et al., 2019c), 
possibly because of the lack of leaf litter and other carbon 
addition in the oil palm monoculture, which may get further 
reduced with further generation of oil palm monoculture 
(Dhandapani et al., 2019a; Sayer & Tanner, 2010), as well as 
continuous oxidative losses (Ishikura et al., 2018) and possi-
ble loss through use of fire as a management practice (Astiani 
et al., 2018; Dhandapani & Evers, 2020).

All the studied macronutrients except sulphur varied 
among sampling zones, and all macronutrients except po-
tassium varied significantly between Proximal and Distal 
areas, showing a significant degree of soil heterogeneity in 
nutrient concentrations. These variations in nutrient concen-
trations between sampling zones are plausibly influenced 
by three different factors: (1) legacy effect of peat forma-
tion and previous generation forest, (2) fertilizer addition 
and (3) drainage- associated leaching. Peat, by definition, is 
partially decomposed organic material, mostly derived from 
natural vegetation of peat- forming ecosystems, and thus, the 
above- ground species composition significantly impacts peat 
properties and nutrient concentrations (Girkin et al., 2019; 
Sjögersten et al., 2011). North Selangor peatlands are natu-
rally biodiversity- rich ecosystems with wide range of above 
ground plant and tree species (Dhandapani et al., 2019c; 

F I G U R E  5  (a) CO2 (mg m−2 h−1), (b) CH4 (µg m−2 h−1) and (c) 
temperature (°C) at Proximal and Distal areas across sampling zones 
in smallholder oil palm plantation. Means ± 1 SEM. Bars that do not 
share any letters are significantly different from each other according 
to Fisher's multiple comparison test
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Yule, 2010). Thus, the spatial variations in this 1st- generation 
oil palm monoculture is most likely associated with previous 
generation forest plant species distribution and their varying 
degree of mineralization. This site is also actively drained 
and has high potential for nutrient loss through drainage 
(Dhandapani et al., 2019c). Our recent study has shown con-
sistent decrease in different nutrients over time in different 
agricultural systems in North Selangor peatlands, further 
strengthening the theory of nutrient loss through leaching 
(Dhandapani & Evers, 2020; Dhandapani et al., 2021). This 
could further add to the spatial variability of these nutrient 
concentrations. It is unknown if there was any fertilizer usage 
in this particular agricultural system, which could directly in-
fluence changes in macronutrient concentrations in different 
sampling zones. However, it is clear that these findings val-
idate the first hypothesis that peat physico- chemical proper-
ties and nutrient concentrations significantly vary across the 
plantation.

CO2  fluxes varied significantly among the sampling 
zones, but did not significantly correlate with any peat 
physico- chemical properties or nutrient concentrations. CO2 
emissions were notably higher in Proximal area of the Dead 
Wood zone. This is possibly because of the higher tempera-
ture in the Dead Wood zone (Figure 5c) and availability of 
extra labile carbon in the form of previous generation's dead 
wood and root systems (Oertel et al., 2016; Pfeifer et al., 
2015). On the other hand, CO2 emissions were notably lower 
in the Ditch Edge and Ditch zones, again likely related to 
lower temperature (Figure 5d). The differences in fluxes be-
tween Proximal areas and Distal areas in the Ditch, Ditch 
Edge and Canal Edge zones were minimal (Figure 5a). This 
may be because of the removal of surface peat layers, which 
are needed for the horizontal expansion of oil palm root sys-
tems (Safitri et al., 2018), thus reducing fine root biomass 
which is a significant component of total autotrophic CO2 
emissions (Oertel et al., 2016). As anticipated in the second 
hypothesis, Dead Wood and Path zones had relatively higher 

CO2 emissions compared to other sampling zones. The lack 
of correlations between measured peat properties and CO2 
emissions indicates that there may be other properties that are 
not measured such as microbial community structure and ac-
tivity that may have greater influence on the CO2 emissions 
in these ecosystems (Dhandapani, 2018; Dhandapani, Ritz, 
et al., 2020; Dhandapani et al., 2019c). However, it should 
also be noted that the lack of temporal data in this study im-
pose limitations on identifying significant correlations be-
tween peat properties and GHG emissions.

The mean CO2 emissions of 620  mg CO2  m−2  h−1 for 
the entire plantation are consistent with CO2 emissions ob-
served in the site in the previous years using complete ran-
dom sampling (Dhandapani et al., 2019a). Dhandapani et al. 
(2019a) consisted of 75 emission measurements from three 
visits in each season, with 25  measurements made in each 
visit. This current finding in combination with our previous 
study suggests that 25 complete random sampling used in 
our previous research was sufficiently representative of the 
mean CO2 emissions from the smallholder oil palm land use. 
The observed emission levels in this study are also consistent 
with recent observations in other first-  and second- generation 
smallholder oil palm plantations on peat in the region (S. 
Dhandapani et al., unpublished).

CH4 fluxes were very low in comparison to CO2 fluxes; 
however, it also significantly varied between sampling 
zones (Table 2; Figure 5b). The notably higher CH4  flux 
in Understorey Ferns zone relates to previous findings that 
plants with shallow adventitious root systems such as yam 
and pineapple significantly increased CH4 emissions from 
peat surface (Dhandapani et al., 2019b). This is possibly 
because of different root exudate addition and rhizosphere 
microbial communities of these plants influencing CH4 
emissions (Girkin et al., 2018a). Similarly, Dhandapani et al. 
(2019b) also found negative CH4  flux near dead oil palm 
stems of previous generation, similar to Dead Wood zone, 
which also had negative CH4  flux in this study. This may 
be because of the fact that previous generation dead wood 
and stems are usually away from current generation crops, 
and thus away from shade resulting in higher surface tem-
perature (Figure 5c) and lower moisture (Figure 3a) affect-
ing CH4 production. Methanotrophic microbial communities 
were known to be not affected by disturbance in tropical peat-
lands unlike methanogenic communities (Arai et al., 2014; 
Jackson et al., 2009), and methane absorption albeit minimal 
in this zone suggests the dominance of methanotrophs over 
methanogens. Understorey Ferns also had higher pH than 
most other sampling zones (Figure 3c), which may also neg-
atively impact CH4 production (Dhandapani & Evers, 2020) 
as acidic conditions are required to activate the precursors 
for CH4 production (Qing- Yu et al., 2019). It should be noted 
that mean CH4 fluxes were minimal in this study and were 
near zero, even though they significantly varied between 

F I G U R E  6  Relationship between boxcox CH4 and carbon content
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sampling zones. It should also be noted that the canals and 
ditches would be filled with water in wet season, and have, at 
that point, high potential for CH4 emissions (Manning et al., 
2019).

The net positive mean CH4 emissions for the site in this 
study are in contrast to net CH4 absorption observed in the 
site in the previous years (Dhandapani et al., 2019a). This 
may be because of greater emissions in some of the sampling 
zones such as Understorey Ferns and Canal Edge zones that 
were not sampled in Dhandapani et al. (2019a). However, 
low CH4  flux near zero is consistent with previous studies 
in Southeast Asian peatlands across land uses (Couwenberg 
et al., 2010; Dhandapani & Evers, 2020; Dhandapani et al., 
2019a,b,c). CH4 flux also exhibited positive relationship with 
carbon content. Similar positive relationship between Carbon 
content and CH4 flux was previously observed in Malaysian 
peat swamp forests (Dhandapani et al., 2019c). This is in 
line with previous conditions that once the required moisture 
level is met for CH4 production, their production is dependent 
on the availability of labile carbon in peatlands (Couwenberg, 
2009). This validates part of our second hypothesis that CH4 
emissions are correlated with peat properties and nutrient 
concentrations; however, another part of the second hypoth-
esis regarding CO2 flux correlations with measured physico- 
chemical and nutrient properties is not validated.

The observed c.28% increase in emissions at Proximal 
areas in Cleared zone compared to Distal areas, correspond-
ing to root- derived autotrophic CO2 flux, is slightly lower 
than observations made at the site in 2016– 2017 period, 
which showed 33.5% increase in CO2 emissions near ma-
ture oil palm plants (Dhandapani et al., 2019b). This differ-
ence may be because of seasonal variation, as Dhandapani 
et al. (2019b) reported both wet and dry season emissions, 
while this study reports only the dry season CO2 emissions. 
This is also within the range of other observations made in 
oil palm plantations in peatlands in other parts of Southeast 
Asia at 29% and 32.5% autotrophic contribution of mature 
oil palm to total CO2 emissions reported by Dariah et al. 
(2014) and Matysek et al. (2017), respectively. This vali-
dated our third hypothesis that autotrophic emissions from 
mature oil palm trees significantly contribute to total CO2 
emissions.

5 |  CONCLUSIONS

Taken together, our study demonstrates a high degree of 
heterogeneity in peat physico- chemical properties within 
a smallholder oil palm plantation. The nutrient variation 
along with small- scale variations of other physico- chemical 
properties amongst different heterogeneous regions show 
that intensive sampling is required to characterize a land 
use in tropical peatlands. The significant variations in many 

key macronutrients can have functional impact on soil mi-
crobial communities and related environmental processes 
such as nutrient cycling. These results taken alongside with 
our previous research in the study site (Dhandapani et al., 
2019a) suggest that the use of complete random sampling 
with 25 measurement points was representative of the 
GHG emissions from the small holder oil palm land use. 
However, the significant variation among sampling zones 
in CO2 emissions, the primary GHG in Southeast Asian 
tropical peat ecosystems, indicates the importance of ac-
counting for these habitat characteristics in estimating the 
total emissions for the land use. Notably uncleared previ-
ous generation dead wood area in a plantation contribute 
to greater CO2 emissions and CH4 absorption in oil palm 
monoculture. Similarly, harvesting path and areas near un-
derstorey ferns were found to have greater CO2 and CH4 
emissions, respectively. Future research on the balance be-
tween methanogenic and methanotrophic microbial com-
munities in tropical peatlands would help us understand the 
mechanism behind the changes in CH4 flux. Consistently 
higher CO2 emissions in Proximal than Distal areas across 
the sampling zones imply the importance of taking the au-
totrophic contributions of mature oil palm root system into 
account while reporting total emissions for oil palm land 
use. Root- derived CO2 estimates are important and required 
for any future models to understand carbon cycle and loss in 
tropical peatlands. There is a need for more research in this 
area, as oil palm management strategies widely vary from 
one smallholder to another, in addition to potential seasonal 
variations in some of these properties and GHG emissions 
in some heterogeneous zones within a plantation such as 
canals and ditches.
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