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Following e�orts from leading centres for climate forecasting, sustained routine

operational near-term climate predictions (NTCP) are now produced that bridge

the gap between seasonal forecasts and climate change projections o�ering the

prospect of seamless climate services. Though NTCP is a new area of climate

science and active research is taking place to increase understanding of the

processes andmechanisms required to produce skillful predictions, this significant

technical achievement combines advances in initialisation with ensemble

prediction of future climate up to a decade ahead. With a growing NTCP database,

the predictability of the evolving externally-forced and internally-generated

components of the climate system can now be quantified. Decision-makers in

key sectors of the economy can now begin to assess the utility of these products
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for informing climate risk and for planning adaptation and resilience strategies

up to a decade into the future. Here, case studies are presented from finance

and economics, water management, agriculture and fisheries management

demonstrating the emerging utility and potential of operational NTCP to inform

strategic planning across a broad range of applications in key sectors of the

global economy.

KEYWORDS

decadal predictions, climate risk, climate forecast application, climate forecast

information, operational climate prediction

1. Introduction

In climate prediction, the initial state of the climate system
(including elements of the atmosphere, ocean, land, sea ice, and
biogeochemistry) is constrained to closely represent a particular
date via the introduction of observation-based data in the model
initial conditions (Meehl et al., 2021). In common with weather
or seasonal prediction, starting from observed conditions is a
prerequisite for predicting their subsequent temporal and spatial
evolution. Similar to long-term future climate projections, in
Near-Term Climate Prediction (NTCP) natural and anthropogenic
factors influencing the Earth system e.g., aerosols and changes
in greenhouse gas (GHG) concentrations, are also introduced in
the models. These models are then run forward over a period of
typically about a decade to produce NTCPs. This process is carried
out over the historical period from the 1960s through to present
day with the resulting predictions of the historical record, known
as hindcasts or retrospective forecasts, used to obtain estimates
of model biases (Hermanson et al., 2017; Maraun et al., 2017),
uncertainties for verification (Goddard et al., 2013) and to assess
skill (Boer et al., 2016; Yeager et al., 2018; Volpi et al., 2021).

The field of NTCP is relatively new to climate science, with
the first paper appearing only in 2007 (Smith et al., 2007).
Consequently, NTCP is an area of active research aimed at
identifying, studying, and understanding the processes and
mechanisms in the climate system that can produce skillful
predictions (Meehl et al., 2021). Even at this developmental
stage of the science, early results showed that there was skill in
some regions for annual to decadal predictions, thus suggesting
there could be climate information of use to stakeholders.
Consequently, operational NTCP has been in development for
over a decade (Smith et al., 2013). While there is still much
research to do, the potential for annual to decadal predictions
to fill the existing gap between seasonal climate predictions and
climate change projections is well recognised (Wei et al., 2009;
Boer et al., 2016; Kushnir et al., 2019; Merryfield et al., 2020). Over
5 years ago, the World Climate Research Programme (WCRP),
co-sponsored by the World Meteorological Organisation (WMO),
the Intergovernmental Oceanographic Commission (IOC) of
UNESCO, and the International Science Council (ISC), established
the WCRP Grand Challenge on Near Term Climate Prediction
(GC-NTCP). This challenge was led by a team charged with
making the case for, and understanding of, the challenges to

establishing routine operational NTCPs (Kushnir et al., 2019). The
WMO has now established and defined the roles and designation
criteria for centres to qualify as Global Producing Centres of
Annual to Decadal Predictions (GPCs-ADCP) and has designated
the UK Met Office as Lead Centre for Annual to Decadal Climate
Prediction (LC-ADCP, www.wmolc-adcp.org), responsible for the
collection, coordination and dissemination of annual to decadal
predictions according to standards and protocols as defined in
the 2021 Manual on the Global Data Processing and Forecasting
System (https://community.wmo.int/en/activity-areas/global-
data-processing-and-forecasting-system-gdpfs). The decadal
forecast community has now established formal mechanisms
and guidelines to produce NTCPs including minimum ensemble
size and requirements on hindcast data for bias correction, core
prediction products and delivery schedules. In 2021, the WMO
issued the first synthesis of these predictions in a “Global Annual
to Decadal Climate Update for 2021–2025” (Hermanson et al.,
2022). Building on the results of pioneering studies such as Smith
et al. (2018), this included the finding that the annual mean global
average near-surface (land and sea) temperature is likely (>66%)
to be at least 1◦C warmer than preindustrial levels (defined as the
1850–1900 average) in each of the coming 5 years, and that there is
a 40% chance of crossing the 1.5◦C threshold in a single year.

With the requisite protocols for routine NTCP and data
delivery in place, in order to identify where the available forecast
skill intersects with the greatest economic and societal benefits
(Dunstone et al., 2022), there is a need to inform and refine
products based on analysis of carefully chosen case studies. In
practise this requires improving the understanding of sectoral
needs for prediction information, and to produce and tailor
products and services to help meet those needs. The following
sections report the findings of the GC-NTCP on current and
emerging applications of decadal predictions to inform, plan and
prepare for increasing risks of natural hazards due to climate
change and variability, and to mitigate those impacts (Soares and
Dessai, 2014).

We describe a series of cases where operational NTCPs have
been shown to be of utility, in some cases even where the forecast
skill might be marginal, and highlight other cases where NTCPs
might have meaningful impact in the near future. The case studies
presented here span a diverse range of important sectors: finance,
including reinsurance in disaster-prone regions (2.1 & 2.2) and
commodity returns (2.3); glacier mass loss and water management
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(3.1 & 3.2); agriculture for wheat (4.1) and wine-grape (4.2)
production; fisheries management and exploitation (5.1 & 5.2).

2. Finance and economics

2.1. Current applications of, and challenges
for, assessing climate-related financial risk

In recent years, the finance sector has made progress in
understanding the different representative concentration pathways
(RCPs) and shared socio-economic pathways (SSPs) used in
Intergovernmental Panel on Climate Change (IPCC) reports. The
range of different pathways allow for the consideration of a variety
of warmer futures, each with different outcomes and impacts.
Financial and macroeconomic modellers have sought to link these
broad scenarios to financial and economic factors. This linkage
comes from estimates of the overall levels of damage associated
with each scenario and the resultant impact. The magnitude of
physical hazards and their evolution over time can inform asset-
level estimates of risk under a given scenario. Damage functions
are a way to provide a probabilistic view of potential harms an asset
may face from a physical hazard. Arriving at an overall damage
function1 for an asset requires aggregation of multiple hazards and
consideration of the relationship between them (Neumann et al.,
2020).

As the impacts of climate change have become clearer (Pörtner
et al., 2022), the relationship between climate risk and financial
risk has grown more apparent. In 2017, the international Financial
Stability Board (FSB)2 introduced the Task force on Climate-
related Financial Disclosures (TCFD, 2017). The TCFD guidance
aims to provide financial markets with the information they
need to appropriately price climate risks and ensure the efficient
allocation of capital. While many firms3 have endorsed the TCFDs
recommendations for disclosure, the usefulness of these disclosures
depends on the quality of the data and analyses they include.

In many regions, asset-level data is sparse or non-existent,
making it particularly challenging to evaluate performance under
changing conditions. Even in locations with good data, most
models do not consider interaction effects between hazards or
the second-order economic effects of an event (e.g., delinquency
rates after hurricanes; Gromowski, 2018). For example, a model
may provide the total damages to an asset from flooding but
not account for the months of lost revenue post-flood. Another
challenge relates to the time horizons under which physical risks
materialise. While extreme events can occur at any time, major
changes in the prevalence and severity of these events often
require years of observational data to be identified, for example
the prevalence, frequency, and intensity of hurricanes (Masson-
Delmotte et al., 2021). As a result, financial actors can struggle to
integrate the insights from their physical risk analyses into current
and future strategy.

1 A climate damage function is a simplified expression of economic

damages as a function of climate inputs e.g., changes in temperature.

2 Available online at: https://www.fsb-tcfd.org/about.

3 3,400 as of August 2022 Available online at: https://www.fsb-tcfd.org/

support-tcfd/.

Nevertheless, there are some areas where NTCPs already offer
potential to inform financial decisions. One example is where
climate risk can affect lenders’ credit risk exposure through its
impact on the value of assets used as loan collateral, such as
mortgaged properties (Bellrose et al., 2021). In one instance, a
meta-analysis of studies on the effect of flood risk on house prices
indicates that properties located in the 100-year floodplain have
a price discount of −4.6% (Beltrán et al., 2018). Another study
of the impacts of winter floods in 2013–14 in the UK indicated
that properties affected by prolonged flooding saw decreases in
sales prices of between −4.2 and −2.6% (Garbarino and Guin,
2020). The study also found that these decreases were not reflected
in lenders’ property valuations for mortgage refinancing, and that
their valuations were therefore biassed upwards.

Climate risk can also increase financial stress on borrowers, by
creating costs to repair damage or reducing the incomes which
borrowers rely on to repay their loans (Figure 1). A before/after
analysis of delinquency rates (i.e., the percentage of loans
within a financial institution’s loan portfolio whose payments are
delinquent) for mortgages in areas affected by Hurricane Harvey
showed that damage to properties caused by the hurricane affected
the ability of homeowners to make their mortgage payments in
the months following. Mortgages for properties estimated to have
hurricane damage saw a 205% increase in 90+ day delinquency
compared to delinquency rates 6 months prior to the hurricane
(Gromowski, 2018). As we shall further examine in the following
section, decadal predictions already offer skilful predictions of
multiyear fluctuations in hurricane-related losses.

2.2. Decadal hurricane predictions for
insurance

Hurricane damage in the United States (US) is rising as
population and property in coastal regions increase with Atlantic
hurricanes now accounting for most of the insured losses in the
US. Hurricane activity also varies on decadal timescales (Landsea,
2007; Klotzbach and Gray, 2008) with hurricane damage in the
US varying by up to a factor of 5 between recent decades.
Skilful decadal predictions of hurricane activity offer the re-
insurance sector an opportunity to better manage these varying
risks (Lockwood et al., 2021).

Factors controlling hurricane formation include sea surface
temperature (SST), temperatures in the upper troposphere,
atmospheric stability and vertical wind shear in the upper
troposphere (e.g., Emanuel, 2007; Latif et al., 2007; Saunders and
Lea, 2008; Garner et al., 2009). On decadal timescales these factors
are influenced by North Atlantic SST (Goldenberg et al., 2001;
Dunstone et al., 2011) which is highly predictable (Doblas-Reyes
et al., 2013; Yeager and Robson, 2017), enabling skilful long-range
predictions of hurricane frequency (Smith et al., 2010; Caron et al.,
2014, 2018; Hermanson et al., 2014).

With real-time decadal prediction now an operational WMO
activity (Smith et al., 2013; Kushnir et al., 2019; Hermanson et al.,
2022), forecasts of hurricane activity and total US economic losses
for the coming 5 years weremade in partnership withWillis Towers
Watson to facilitate adjustments to extreme event occurrence rates,
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FIGURE 1

Schematic of the pathway through which climate hazards can a�ect the financial performance of financial institutions (Adapted from Gallo and

Lepousez, 2020).

inform capital allocation strategies and influence premium pricing.
These forecasts also provide opportunities to structure multi-year
deals to take advantage of this predictability.

In Figure 2, linear regression of past observations onto
an index based on predicted North Atlantic tropical ocean
temperatures (Vecchi et al., 2011) is used to provide a probabilistic
hurricane activity forecast. US damage forecasts (not shown) use
a modified regression to account for the non-linear relationship
with damage. Retrospective forecasts reveal skill (rank correlation
∼0.7), outperforming persistence forecasts (using the last 5 years
to predict the next five). Figure 2 shows that an active period is
predicted for 2021–2025.

2.3. Decadal predictions for commodity
price forecasting

The El Niño Southern Oscillation (ENSO) has a significant
impact on agriculture, water, and health (Zebiak et al., 2015).
Some of the nations that experience profound ENSO impacts are
geographically small, located in or near the tropics, and have
economies dependent on a few climate-sensitive industries. In
addition, there are documented relationships between ENSO and
movements in commodity prices (Brunner, 2002; Ubilava and
Holt, 2009), agricultural production (Gutierrez, 2017), and broader
macroeconomic indicators (Cashin et al., 2017). In that regard,
Kitsios et al. (2022), have demonstrated that econometric forecasts
of certain commodity spot prices can be further improved with the
inclusion of climate predictions of the relevant indices of climate
variability i.e., exogenous factors. Here the highlighted commodity
is coconut oil, and the exogenous factor is the Niño4 index
(Rasmusson and Carpenter, 1982) provided by climate simulations.
The Niño4 index is chosen as coconut oil is predominantly
produced in the tropics where the physical influence of ENSO is
most direct.

The commodity prices are accessed from the World Bank
database4 with real commodity log-returns based on monthly
inflation rates calculated using the G7 averaged consumer price

4 Available online at: https://www.worldbank.org/en/research/

commodity-markets.

index.5 ENSO forecast data was generated using the Climate re-
Analysis and Forecast Ensemble (CAFE) system (O’Kane et al.,
2019, 2020, 2021a,b). The model representation of the log-
returns of the commodity price allows for additive seasonality,
autoregressive processes, and lagged exogenous ENSO (Niño4)
factors (for details see Kitsios et al., 2022). The autoregressive
models are built using available data from January 1980 to
December 2020, with all combinations of lags assessed up to a lag
of 12 months. Combinations of lags that produce autocorrelated
residuals or are shown to be heteroskedastic are excluded. Of
the remaining combinations, the most parsimonious model was
determined as that which minimises the Bayesian Information
Criterion (BIC) (Schwarz, 1978) from within a class of models
for which there are multiple lag combinations that have similar
BIC values.

Out of sample correlations between the actual and forecast
log returns produced by this econometric model are illustrated in
Figure 3. Three variants are illustrated: one using perfect future
ENSO information (perfect-ENSO, blue line) as an upper bound
on skill; one with no ENSO information (no-ENSO, red line);
and finally, the CAFE forecasts (GCM-ENSO, cyan line). Per start
date the perfect-ENSO and GCM-ENSO cases have the same lag
structure and the same values for the model coefficients, with the
coefficients only learnt using data prior to the start date. In the
no-ENSO case the same endogenous lags are adopted, but the
model coefficients are re-calculated such that this model best fits
the data. For the perfect-ENSO and GCM-ENSO cases, the hollow
black circles indicate forecast times at which ENSO is found to
be Granger or predictively causal, with a statistically significant
reduction (to a 95% confidence) in their residual sum of squares
(RSS) as compared to the no-ENSO case. This is after accounting
for the increased number of parameters (i.e., F-test).

The no-ENSO case has statistically significant positive
correlations for only the first 4 months. The perfect-ENSO case
has significant correlation and ENSO is found to be Granger
causal for the entire 2-year period. This is, however, not a plausible
forecast since one cannot know ENSO perfectly into the future.
The GCM-ENSO case is a realistic and fair forecast, has significant
correlations for the entire 2-year forecast window, and has a lower
RSS than the no-ENSO case for most lead times. The associated
significant RSS reductions at forecast months 21 and 22 should

5 Available online at: https://data.oecd.org.
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FIGURE 2

Multiyear North Atlantic hurricane forecasts. Observed and forecast 5-year mean hurricane activity (accumulated cyclone energy, ACE). Shading

corresponds to the 75 and 95% prediction intervals. The box and whisker plot shows the 2021–2025 forecast. The rank correlation coe�cient (ρ) is

for the hindcast period.

FIGURE 3

Interannual ENSO forecasts improve commodity price predictions.

Out-of-sample correlation between forecast and actual log returns

(i.e., approximate percentage change) in coconut oil price for

autoregressive models using no exogenous ENSO information

(no-ENSO, red), GCM ENSO forecasts (GCM-ENSO, cyan) and

perfect future ENSO knowledge (perfect-ENSO, blue). The grey zone

indicates correlations that are statistically no di�erent from zero to a

95% confidence level. For the GCM-ENSO and perfect-ENSO

models, the hollow black circles indicate forecast times at which

ENSO is found to be Granger causal to a 95% confidence level.

not be interpreted as a return of skill, but rather the RSS for the
no-ENSO case increasing faster than that of the GCM-ENSO
variant. This is consistent with the known forecast time dependent

predictability of ENSO on inter-annual timescales (Luo et al., 2008;
Knight et al., 2014; Dunstone et al., 2020). Over the first 8 months
the GCM-ENSO and perfect-ENSO cases have identical statistics.
This is because the coconut oil commodity has one exogenous lag
of 8 months. This means that up to this point only historical ENSO
information is used in all auto-regressive with external factor
models, and it is not until a forecast time of 9 months that an actual
ENSO forecast needs to be made. It is at this point that the forecast
error measures begin to differ.

In summary, all commodity forecasts adopting exogenous
ENSO factors out-perform those that did not. This indicates
the importance and demonstrates the utility of incorporating
NTCP information in a practical application of predicting
commodity returns.

3. Water management and glacier loss

3.1. Decadal prediction in the Wupper river
catchment

The Wupper catchment water board manages water level and
quality of the Wupper River in Germany. To improve water
management strategies multiyear predictions of the Standardised
Precipitation Index (SPI, McKee et al., 1993) are required as this
is correlated to dam water levels in the catchment. Multiyear
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annual and hydrological seasonal means are needed at high spatial
resolution to manage 14 dams in an area of 800 km2.

Statistical downscaling from 200 km to ∼11 km (Kreienkamp
et al., 2018) was applied to all ensemble members of the
global decadal prediction system MPI-ESM-LR (Mauritsen et al.,
2019). Relationships between large-scale temperature, relative
humidity, and geopotential height in Central Europe to local-scale
temperature and precipitation in Germany have been considered
using NCEP reanalyses (Kalnay et al., 1996) and high-resolution
HYRAS observational data (Rauthe et al., 2013).

Downscaled precipitation has been recalibrated by applying
the Decadal Climate Forecast Recalibration Strategy (DeFoRest,
Pasternack et al., 2017) to correct bias, drift and conditional bias
and adjust ensemble spread.

The skill of probabilistic decadal SPI predictions in reproducing
past HYRAS observations has been evaluated using correlation
and ranked probability skill score (RPSS, Ferro et al., 2008) in
comparison to the reference prediction observed climatology over
1962–2020. The SPI drought index was assessed for multi-year
annual and seasonal mean predictions for the coming 3 years. A
significance level of 95% is applied using 1,000 non-parametric
block bootstraps and considering autocorrelation.

Results showed that high-resolution statistical downscaling
transfers the prediction skill of the global prediction system to
higher spatial resolution and that the recalibration enhances SPI
prediction skill. Additional skillful predictions were also found for
three-year seasonal means, especially so for August to October
in the Wupper river catchment. The study of Paxian et al.
(2022) further reveals promising 3-year mean SPI skill for several
additional regions in Germany.

The feedback of the Wupper catchment water board concluded
that the product is understandable and well-structured and of
utility during the daily decision-making work of water boards in
Germany. A high probability of drought conditions is currently
forecast for 2021–2023.

3.2. Decadal prediction for glacier mass
balance

Glaciers are important indicators of climate change. They also
store 75% of the earth’s available freshwater (Jansson et al., 2003),
also acting as buffers preventing precipitation from immediately
turning into runoff. They are essential parts of mountain water
storage and supply downstream communities and ecosystems,
upon which 22% of the global population depends (Immerzeel
et al., 2020). Quantifying changes in mass balance is challenging
considering glacier response times (Raper and Braithwaite, 2009).
In temperate maritime climates this is generally between 15 and
60 years but can exceed a century for high latitudes (Cuffey
and Paterson, 2010). Decadal time scales are rarely considered in
glacier modelling, even though they are critical for water resource
management (Frans et al., 2016; Lane and Nienow, 2019). By
predicting glacier mass balance on decadal timescales, it is possible
to predict runoff, an important input for water resource decisions.

Here multi-decadal glacier discharge is examined using the
Open Global Glacier Model (OGGM; Maussion et al., 2019)

forced by monthly temperature and precipitation from the Decadal
Climate Prediction Project (DCPP, Boer et al., 2016;Maussion et al.,
2019). Results of a 10 member hindcast ensemble of the sixth
version of the Model for Interdisciplinary Research on Climate
(MIROC6) are analysed where all ensemble members, initialised
each year for the period 1960–1999, are bias corrected for model
drift as in Boer et al. (2016) and referenced to observations from the
Climatic Research Unit gridded Time Series version 4 (Harris et al.,
2020). OGGM is forced for 279 reference glaciers, from a global
database of 216 000 glaciers, all of which have observational records
exceeding 5 years (Van der Laan et al., 2022).

As a case study, we consider the Hintereisferner alpine glacier
in Austria (Strasser et al., 2018). Based on the coupled model
presented by Stoll et al. (2020), mass loss of Hintereisferner
contributed 9.4% of discharge over 1991–2010. The remaining
discharge is fed by the melting of other glaciers in the basin,
snowmelt, and rain (Weber et al., 2010). The total catchment
glaciation decreased from 44% in 1969 to 38% in 2009, leading to a
decrease in contribution to annual streamflow (Müller et al., 2009).
The glaciation of the catchment is expected to approach zero within
the 21st century, significantly altering the hydrological balance
in the catchment (Strasser et al., 2018). Decadal scale forecasts
in this basin would allow insight into the deglaciation patterns,
streamflow contribution and water resources for the downstream
Inntal community.

Figure 4 compares observed and hindcast mass balance for
the Hintereisferner. The temperature and precipitation amplitudes
and trends correspond well to observations, showing the merit of
using the decadal scale ensemble mean. The utility of this approach
and skill of decadal hindcasts for glacier and runoff modelling
is especially evident in the well-captured negative cumulative
mass balance (Figure 4D) and in the overall Pearson correlation
coefficient between the annual cumulative time series of 0.98, MME
of 457.4mm w.e.6 and MAE of 1,373mm w.e.

The current results are promising for skilful glacier mass
balance decadal predictions. The method could also be expanded to
all glaciers in an essential water tower region such as the Himalayan
mountain range (Pfeffer et al., 2014; Immerzeel et al., 2020). This
promises to provide necessary information for the planning of
water resource allocation for hydropower, agriculture and drinking
water on decadal timescales.

4. Agricultural policy

Recent studies have explored the ability of decadal climate
forecast systems at predicting extreme climate events relevant
to agriculture, such as drought and heat stress conditions, on
a multiannual time scale (Paxian et al., 2019; Solaraju-Murali
et al., 2019, 2021; Esit et al., 2021). Evaluating the quality of such
predictions is considered a fundamental step because it assesses
whether the prediction system can be trusted to reliably forecast
multiannual climate events. The results presented in this section
reveal significant skill for predicting climate events for temperature
and, to a lesser extent, for precipitation that are already being

6 Units are water equivalent (w.e.).

Frontiers inClimate 06 frontiersin.org

https://doi.org/10.3389/fclim.2023.1121626
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


O’Kane et al. 10.3389/fclim.2023.1121626

FIGURE 4

Decadal prediction of Glacier mass balance. Results for the Hintereisferner, an alpine glacier in Austria, for 1982–1990. Average temperature (A) and

precipitation (B) over the time period for CRU and ensemble mean bias corrected hindcasts. (C) year to year mass balance of the glacier. “CRU” refers

to results achieved with the CRU baseline climate, whereas “observed” results are glaciological measurements of mass balance on the Hintereisferner

[World Glacier Monitoring Service (WGMS), 2021]. (D) shows the cumulative mass balance over the time period, MME is mean model error and MAE is

mean absolute error. Cumulative mass balance is used as model skill is expected to be higher for integrated than instantaneous fluxes, and

cumulative mass balance over the decade is most relevant for further hydrological modelling (Förster et al., 2018).

usefully utilised to aid decision-making in the wheat sector with
potential further applications to viticulture.

4.1. Decadal climate prediction for
supporting decision-making in the
wheat-sector

Wheat is the most harvested cereal crop in the world,
contributing to the food security of many countries (Toreti et al.,
2019). The usefulness of NTCPs for decision-making in the wheat-
sector has recently been demonstrated (Solaraju-Murali et al.,
2021). Unfavourable hot or dry conditions can induce water stress
affecting both grain quality and yield, especially when occurring
during sensitive development stages of the plant. NTCPs have been
shown to skilfully anticipate multiannual drought and heat stress
conditions in several areas with user-relevant agro-climatic indices
such as the Standardised Precipitation Evapotranspiration Index
(SPEI6) and Heat Magnitude Day Index (HMDI3) prior to wheat
harvesting. Figure 5 presents the predicted likelihood of the most
likely tercile category of multiannual averaged SPEI6 over global
wheat harvesting regions for 2015–2019 from forecasts initialised
in November 2014. The predictions show an increase in drought
(below-normal category) events over most of the wheat-growing
regions for the period (Figure 5A) and there is good agreement with
observed SPEI6. This implies opportunities to help stakeholders

in the wheat sector during their decision-making processes on
multi-annual timescales.

These encouraging results have led to the development
of tailored forecast products. A prototype product for multi-
year drought forecasts for the coming 5 years over the
global wheat harvesting regions has been made available for
the agriculture user community (https://climate.copernicus.
eu/decadal-predictions-agriculture). Such an initiative
aims to establish transdisciplinary partnerships based on
decadal predictions to help agricultural users during their
decision-making process.

4.2. Potential use of decadal predictions for
viticulture

Grapes are grown under open-field conditions in vineyards to
supply fruit with characteristics for wine production with market-
demanded sensory profiles (aroma, taste, and flavour). A vineyard
is meant to last several decades but vineyard longevity is strongly
conditioned by climate, making decadal predictions potentially
very relevant. Thousands of vine varieties and landraces are used,
each with its own climatic suitability, supporting viticulture’s global
spread. Products of the grapevine account for close to 4.5% of global
food trade (VanNieuwkoop, 2019; Fortune Business Insights, 2022)
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FIGURE 5

Multiannual prediction of Standardised Precipitation Evapotranspiration Index over 2015–2019. Most likely tercile for the categories “below normal

(%)”, “normal (%)”, and “above normal (%)” of SPEI6 corresponding to the local wheat harvesting season for (A) decadal forecasts initialised near the

end of 2014 and (B) observations. Non-growing wheat areas and regions with negative skill are displayed in white and grey, respectively.

while international trade of wine in 2019 reached 31.8 bn€ (OIV,
2020)7.

Choice of grape varieties is highly dependent on climate. Plants
need 2–4 years until they become fully productive and climate in
this period is critical for correct rooting and aerial development
(Webb et al., 2011; Sgubin et al., 2019). Despite irrigation, depleted
water reserves left vineyards vulnerable to water stress. Loss of
leaves and arrest of secondary metabolism responsible for maturity
is indicated by colourless berries. Grapevines close their stomata
during daytime temperatures above 35◦C, stopping photosynthesis,
causing lower sugar accumulation in berries, malic acid breakdown
from nocturnal respiration, and dehydration and desiccation,
decreasing yields. These grapes are unfit for quality wine. An
ability to predict temperature and rainfall would greatly enhance
risk management for such investment. The capacity to estimate
probabilities for the frequency of extreme events that cause, for
example, water stress in grapes, would improve farm management
and mitigate risks.

The ability to foresee the evolution of the climate for
the impending 1–10 years is key to timely implementation of
adaptation measures or change of viticulture business models
(Gishen et al., 2016; Graça and Gishen, 2022). Grape and wine
production would become more resilient, decreasing the use of
plant pesticides and irrigation requirements. Other benefits include
sizing of long-term facilities such as wineries and warehouses,
managing wastewater and recycling and transport logistics (Graça,
2019).

Useful seasonal forecasts have already been demonstrated for
wine production (Santos et al., 2020). Simulations of using seasonal
forecasts to inform viticulture decisions have shown the need
to consider the context of users and how they use forecasts,
highlighting the high value of co-creating forecast services (Vigo
et al., 2021). Demand for decadal predictions will be fostered by

7 Available online at: https://www.oiv.int/en/oiv-life/current-situation-of-

the-vitivinicultural-sector-at-a-global-level.

wider use of seasonal predictions with user-centric communication
(Calmanti et al., 2021; Khosravi et al., 2021). Relevant temporal
and spatial granularity will also be key for adoption of multi-
year forecast information as well as the transparent disclosure of
uncertainty to inform user-relevant decisions (Sgubin et al., 2019).

5. Fisheries management

5.1. Applications and opportunities for
decadal forecasts in marine fisheries,
aquaculture, and conservation

For more than a decade, physical information about the future
ocean has been used to produce ecological forecasts at both short
(Hobday andHartmann, 2006; Hazen et al., 2017) andmultidecadal
timescales (Tommasi et al., 2017a). Ecological forecasts exploit
relationships between physical variables and biological responses
to predict ecologically relevant information. This includes species’
spatial distribution, abundance, and phenology (Payne et al., 2017).
In recent years, ecological forecasts at seasonal time scales have
also been developed for fisheries (Hobday et al., 2011; Payne et al.,
2017), aquaculture (Spillman and Hobday, 2014) and conservation
(corals, Spillman, 2011; Liu et al., 2019; Spillman and Smith, 2021)
applications. Decision-makers such as fishers/farmers, managers
and policymakers in these sectors are now including forecast
information in their planning (Hobday et al., 2016; Kaplan et al.,
2016). These plans can be based on forecasts about a species’:

1. Spatial distribution, where the decision might be where to fish
or farm (Hobday et al., 2019).

2. Abundance and production of juveniles, where the decision
might be how much to catch or grow (Kiaer et al., 2021).

3. Phenology, such as timing of migration, where the decision
might be when to open or close fishing grounds (Champion
et al., 2018).
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4. Growth/condition - where the decision might be related to
stock productivity.

While In theory decision-making can benefit from prior
knowledge of all these factors, in practise most forecast systems to
date have only focused on species spatial distributions (Payne et al.,
2017).

The high skill of oceanic decadal-scale predictions has been
apparent from early studies of climate prediction (IPCC AR5
WG1, Chapter 11, Kirtman et al., 2013). Oceanic predictability
is typically higher than predictions for either the land surface or
the atmosphere (Merryfield et al., 2020), and therefore represents
one of the most promising areas for the application of decadal
forecasts. Significant decadal-forecast skill is seen throughoutmuch
of the global ocean (Keenlyside et al., 2008; Power et al., 2021) and
particularly in the North Atlantic (Figure 6). A majority of work
has focussed on the open ocean rather than the coastal shelf-seas
where the most of human interactions with the ocean take place.
Nevertheless, studies that have examined the predictability of shelf
seas and coastal marine ecosystems have shown potentially useful
skill at interannual to multi-year timescales (Stock et al., 2015;
Tommasi et al., 2017b; Koul et al., 2021, 2022; Miesner et al., 2022).

Due to the length of the available observational record and
relatively high predictability, SST is one of the most utilised
variables in models of marine ecological responses (Salinger et al.,
2016; Merryfield et al., 2020). However, predictability is not limited
to SST: multi-annual predictability is also seen in ocean heat
content (Yeager et al., 2012) and salinity (Bethke et al., 2021;
Figure 6) and large-scale indices such as Atlantic multidecadal
overturning (Matei et al., 2012; Hermanson et al., 2014), the
dynamics of the North Atlantic sub-polar gyre (Wouters et al.,
2013), Atlantic multidecadal variability (Smith et al., 2020) and
ENSO (Luo et al., 2008; Barnston et al., 2012, 2019; Knight
et al., 2014; Dunstone et al., 2020). This physical predictability
also extends into biogeochemical components including primary
productivity and nutrient concentrations (Séférian et al., 2014;
Gehlen et al., 2015; Park et al., 2019): indeed, most marine
ecosystem drivers can potentially be predicted on at least the
multi-year time-scale (Fransner et al., 2020; Frölicher et al., 2020).

The potential for operational marine ecological decadal forecast
products builds on those already developed at seasonal time
scales (Payne et al., 2017). Most of the operational products at
seasonal timescales consider changes in the spatial distribution
of fish species, with mounting evidence that such predictability
could be extended to multi-year timescales (Payne et al., 2022) as
shown in forecasts of Mackerel (Scomber scrombus) habitat around
Greenland (Figure 7). Decadal predictability of the total catches of
fish species at the large-marine ecosystem level has also been shown
(Park et al., 2019) including some stock-specific cases (Årthun et al.,
2018).

Exploratory studies have also shown that the use of ecological
forecasts can generate economic value for users. One such example
examines the use of multi-annual forecasts in the management
of Pacific sardine (Sardinops sagax) in the California Current
system. Tommasi et al. (2017c) showed that the use of forecasts, in
conjunction with established management systems, could improve
both the long-term yield and sustainability of the fishery. Economic
valuation tools have also shown a potential net-positive yield of

annual productivity forecasts for sandeel (Ammodytes sp.) in the
North Sea (Kiaer et al., 2021). However, there is currently only
limited use of this information by decision makers of forecast
products irrespective of timescale (Skern-Mauritzen et al., 2016;
Payne et al., 2017), in contrast to other fields (e.g., agriculture,
Asseng et al., 2012).

5.2. Prediction of Labrador Current
temperatures in support of fishery
management

The “northern” cod (Gadus morhua) inhabits northwest
Atlantic waters off the coast of Canada’s Newfoundland and
Labrador (NL) province. These shelf and upper slope waters
are dominated by the cold Labrador Current, which varies on
interannual to decadal timescales (Han et al., 2019) and is
linked to the North Atlantic subpolar gyre which is relatively
predictable on multi-year timescales (e.g., Robson et al., 2018).
Because Labrador Current temperatures influence cod populations
(Lehodey et al., 2006), this species could be a promising candidate
for the application of seasonal to decadal forecasts to living marine
resource management (e.g., Tommasi et al., 2017b). Of particular
note is that especially cold ocean temperatures in the region appear
to have been a factor in the economically damaging collapse of
the northern cod population in the 1990s (Mullowney et al., 2019),
recovery from which is still incomplete (Rose and Walters, 2019).

The possible utility of multi-year climate forecasts for
management of this species has been explored using hindcasts from
the CanCM4 model (Merryfield et al., 2013). Seasonal forecasts
from this model have previously been shown to be relatively skilful
at ranges of up to 12 months in predicting SST anomalies in the
Labrador-Newfoundland large marine ecosystem that is home to
the northern cod habitat (Hervieux et al., 2019).8

Ocean potential temperatures are considered along a series
of transects spaced approximately every two degrees in longitude
from 56◦N to 46◦N, extending eastward from the NL coast and
encompassing the southward component of upper ocean flow
associated with the Labrador Current over the shelf and upper
slope to a depth of 661m. Northern cod populations generally
winter on the upper slope beneath the cold sub-zero core of
the Labrador Current, and migrate in late spring westward into
cooler shelf waters to feed (Lilly et al., 2013). Because the extent
of coldest Labrador Current waters influences both the available
optimal habitat for growth and recruitment and the availability
of prey (Rose and Rowe, 2015), predictions of the anomalous
cross-sectional area at temperatures >0◦C in each of the transects
are examined.

Figure 8A shows annual time series from the ORAS4 ocean
reanalysis, the CanCM4 analysis, and first-year (lead 0) forecast
values for the 50◦N transect, near the latitudinal centre of what had

8 The decadal hindcasts considered here consist of 10 ensemble members

initialized at the start of each January from 1961 to 2015. Both the ORAS4

reanalysis (Balmaseda et al., 2013) and the analysis used in initializingCanCM4

(consisting of the CanCM4 ocean component forced by the reanalysis-

nudged atmospheric component) are referenced for verification.
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FIGURE 6

Skill of decadal predictions of the North Atlantic Ocean. Correlation skill of August surface temperature forecasts (A) and subsurface salinity in March

(B) a forecast-time of 5 years. Predictive skill is expressed as the Pearson correlation coe�cient (r) between the forecast and observed values of each

variable, with each grid point coloured according to the local value, evaluated over the period 1960–2018 for SST and 1985–2018 for salinity.

Regions where the correlation coe�cient is not significantly >0 (at the 95% confidence level) are cross-hatched. The area over which suitable

mackerel habitat is calculated is indicated by a solid line. Ocean regions not represented by all forecast models are shown in grey (Modified from

Payne et al., 2022).

FIGURE 7

Example of a marine application of decadal forecasting. Mackerel (Scomber scrombus) habitat around Greenland forecast by the CESM-DPLE model

system is shown for forecasts initialised in 1990 (red) and 2010 (blue), showing the median (solid line) and 90% range of realisations in the model

(colour areas). Habitat estimates based on observation are shown (triangles) together with a three-year centred running mean (dashed black line) of

these values. The decadal forecast system is clearly able to predict the expansion of mackerel habitat in this region that occurred in the early 1990s.

When mackerel started utilising this habitat in the early 2010s and appeared around Greenland, decadal forecasts would have correctly predicted that

the available habitat would persist for the coming decade. This example therefore shows how decadal forecasts can be used to foresee changes in

the habitat, and therefore potentially distribution of marine species. Such information, if it had been available at the time, would have been valuable

to managers trying to decide whether to invest in this potential new fishery. Modified from Payne et al. (2022).

been the prime region for this fishery. The multi-year to decadal
timescale variations of these three timeseries align reasonably
well, particularly in the earlier decades, and a prolonged negative
anomaly is evident in each of the time series during the early
1990s, indicative of generally colder temperatures and reduced
favourable habitat above 0◦C. Figure 8B shows anomaly correlation
(AC) as a function of lead year for the decadal forecasts, as well
as for persistence of both verification datasets and their lagged

correlations with each other. Forecast anomaly correlations (AC)
based on verification with the CanCM4 analysis (blue) remain
statistically significant and generally higher than persistence of
the analysis through lead times of 5 years, whereas skill based on
verification with ORAS4 is significant only in the 1st year.

These results indicate the potential utility of decadal forecasts
for predicting subsurface ocean conditions relevant to the
management of the northern cod population out to at least 1 year
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FIGURE 8

Subsurface ocean predictability relevant to northern cod populations. (A) Time series of the fractional area anomaly of temperatures >0◦C in a

longitudinal transect near 50◦N extending from the Newfoundland coast to approximately 50◦W and a depth of 661m, for the 1st year of CanCM4

decadal forecasts (blue), the CanCM4 analysis used for their initialisation (red), and the ORAS4 reanalysis (green). (B) Anomaly correlations as a

function of lead time for CanCM4 forecasts verified against the CanCM4 analysis (blue) and ORAS4 (red), with additional persistence and

cross-correlation measures as indicated. Dots indicate statistical significance at 95% taking into account reduced degrees of freedom due to

autocorrelation.

ahead and possibly longer, although further studies are needed to
understand the differences between skill measures based on ORAS4
and the CanCM4 analysis.

5.3. Future requirements

Realising the full potential of NTCP in the marine sector
will require overcoming numerous barriers within, and external
to, the field of climate prediction. The most important of these
is a need to raise awareness in the user and marine science
communities about the current and constantly improving skill of
climate predictions, as is being done for seasonal forecasts (Hobday
et al., 2016). Considerable investment is still needed to support
decadal forecasting and integration of those forecasts into decision
support tools.9 Overall, collaboration between forecast developers
and the marine resource sector is needed to support forecast-based
tactical and strategic decisions that reduce environmental risk over
annual to decadal time scales.

6. Discussion

The studies described here demonstrate that climate forecasts
are already being successfully applied across a number of sectors,
including hurricane re-insurance, in the marine and agricultural
sectors and for water management including glacier loss. For
example, it is apparent that NTCPs of the frequency and intensity
of hurricane activity are providing important information to enable
the re-insurance sector to manage risk and to estimate total losses
years in advance. It is further observed that relationships in the
physical climate system can be utilised to better predict commodity

9 Available online at: https://www.foo.org.au/forum/foo-2021.

prices and broadermacroeconomic indicators such that forecasts of
certain commodity spot prices can be improved with the inclusion
of predicted climate variability in econometric models. Finally,
oceanic predictability is relatively high on these timescales and is
shown to yield useful predictions of various habitats across a range
of economically important fish species in the North Atlantic.

While climate-model predictions have shown potential to
deliver useful information to society (Dunstone et al., 2022), the
interpretation of model output to extract the relevant and “skilful”
information is key to realising this potential. It is the large-
scale processes in the climate system that are potentially highly
predictable on timescales from months to years and statistical
downscaling of decadal forecasts to regional scales can often be
more skilful than naïve use of gridpoint information. However,
the signal to noise ratio in some regions is anomalously low,
such that extremely large ensembles of climate forecasts are often
required to capture skill (Smith et al., 2019). For these and other
technical reasons (see, e.g., Power et al., 2021), predicting the near-
term climate remains a challenge which will necessitate careful
development of products.

Information about the future offers a range of benefits, not all of
which will be equally distributed. As with seasonal forecasts, there
may be groups disadvantaged by such information, and so forecast
providers should consider the ethical aspects of forecast delivery
(Hobday et al., 2019). For example, multi-year drought prediction
may increase insurance costs to individual farmers (disadvantage)
while reducing losses to insurance providers (advantage). Similarly,
not all users can act freely in response to the information provided,
particularly in situations where economic, cultural or traditional
constraints are important (Soares et al., 2018). A note of caution, in
common with weather prediction NTCP skill assessments based on
past performance are only indicative of whether a given real-time
forecast exhibits a degree of skill and therefore can provide useful
guidance. A non-trivial task is how to effectively communicate the
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utility of NTCP and the associated challenges and uncertainties
in an appropriate form to meet the needs of the end user and
manage expectations.

7. Summary

We have presented a small fraction of the full range of case
studies in which NTCPs have been shown to be useful or have the
potential to be useful. NTCP will underpin a crucial component of
the Global Framework for Climate Services (GFCS)10 as the annual
to decadal timescale is a key planning horizon in decision-making.
However, the utility of NTCPs will only grow where user feedback
is actively sought and products are co-developed specifically to
fit user demand for information. As described in Kushnir et al.
(2019), an enormous community effort has been required to
deliver operational climate prediction systems. The generation
of ensembles of bias-corrected and post-processed predictions is
now routinely carried out across multiple centres. This significant
community effort is now providing prediction information that can
underpin future climate services for end-users.

With the evolution of operational centres around the globe
and continued advances in climate modelling, a more expansive
and homogeneous observing network for the oceans, advances
from artificial intelligence and machine learning to analyse and
extract signal from the noise, in combination with user demand
for climate services, the capability in near term climate prediction
is expected to grow from its current status building on these
early demonstrations.
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