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ARTICLE

Unusual shrinkage and reshaping of Earth’s
magnetosphere under a strong northward
interplanetary magnetic field
Xiang-Yu Wang 1,2, Qing-He Zhang 1,2✉, Chi Wang 2, Yong-Liang Zhang3, Bin-Bin Tang 2,

Zan-Yang Xing1, Kjellmar Oksavik 4,5, Larry R. Lyons6, Michael Lockwood 7, Qiu-Gang Zong 8,

Guo-Jun Li9, Jing Liu 1, Yu-Zhang Ma1 & Yong Wang1

The Earth’s magnetosphere is the region of space where plasma behavior is dominated by the

geomagnetic field. It has a long tail typically extending hundreds of Earth radii (RE) with

plentiful open magnetic fluxes threading the magnetopause associated with magnetic

reconnection and momentum transfer from the solar wind. The open-flux is greatly reduced

when the interplanetary magnetic field points northward, but the extent of the magnetotail

remains unknown. Here we report direct observations of an almost complete disappearance

of the open-flux polar cap characterized by merging poleward edges of a conjugate horse-

collar aurora (HCA) in both hemispheres’ polar ionosphere. The conjugate HCA is generated

by particle precipitation due to Kelvin-Helmholtz instability in the dawn and dusk cold dense

plasma sheets (CDPS). These CDPS are consist of solar wind plasma captured by a con-

tinuous dual-lobe magnetic reconnections, which is further squeezed into the central mag-

netotail, resulting in a short “calabash-shaped” magnetotail.
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The Earth’s magnetosphere is a cavity with plasma con-
trolled by the Earth’s magnetic field, which is always
compressed on the dayside and dragged into a long comet-

like magnetotail, typically hundreds of earth radii in length, on
the nightside, by the action of the solar wind1,2. The magneto-
sphere protects the Earth’s environment and limits plasma loss
from the upper atmosphere into interplanetary space. The mag-
netosphere is highly dynamic due to intricate interactions at the
magnetospheric boundaries with the solar wind, such as magnetic
reconnection3,4 and Kelvin–Helmholtz instability (KHI)5,6. The
magnetospheric topology can be obviously changed due to these
interactions under different interplanetary conditions, especially
due to magnetic reconnection7–9.

During periods of southward IMF, magnetic reconnection
opens the previous closed magnetic field lines on the Earth’s
dayside magnetopause to form open field lines that are dragged
anti-sunward by the solar wind and populate the high-latitude
lobe regions of the magnetotail3,4. The open field lines are
eventually reclosed by magnetic reconnection and drift sunward
through the closed magnetosphere to the east or west of the inner
magnetosphere (the co-rotating plasmasphere) back to the day-
side where the cycle repeats. It results in a long magnetotail that is
typically several hundred RE long and drives large-scale two-cell
plasma circulation in the polar ionosphere (the Dungey convec-
tion cycle3,4).

Under a northward IMF condition, the magnetic reconnection
occurs between the IMF and open magnetotail field lines in the
high-latitude lobe regions (single-lobe reconnection), resulting in
one or two reverse convection cells formed inside the normal
convection cells (resulting in three or four cell convection)10,11

with transpolar auroral arcs (“theta” aurora)12–14 or the space
hurricane15 in the polar cap. It has been proposed that lobe
reconnection can also sequentially or simultaneously occur in
both hemispheres by reconfiguring open flux before it is closed
(dual-lobe reconnection (DLR))16. Lobe reconnection may also
open the closed field lines in the magnetotail and then reclose
them in the opposite hemisphere if enough of the previously open
lobe field lines are lost during long-lasting, strong and dominated
northward IMF conditions, where closed field lines are exposed at
the lobe magnetopause17,18. These newly-reclosed field lines
drape on the dayside magnetopause with cold and dense mag-
netosheath plasma and convect along the flanks from the dayside
to the nightside magnetotail19. These processes will theoretically
result in the formation of dawn and dusk cold dense plasma
sheets (CDPS)20 that squeeze into the central magnetotail from
both flanks to shorten the magnetotail20–22.

In the polar ionosphere, this process would result in two
dominated large-scale reversed convection cells and a horse-collar
aurora (HCA, weak auroral emissions with two bright transpolar
arcs (here termed “poleward edges”) that appear at the poleward
edge of the main auroral oval in the dawn and dusk sectors23,24).
It is not known the size of the magnetotail under a northward
IMF condition, and whether it can be inferred from the HCA
evolution and/or the disappearance of the polar cap25,26.
Although the previous simulation suggested that the magnetotail
length could vary with the reciprocal of the IMF BZ component
(1/BZ)17,18,27, and attempted to explained HCA appearance or
polar cap disappearance due to dual-lobe reconnections24,28,
there are still some controversy, e.g.17,25,26,29,30 and neither study
had provided a complete picture or explanation of all observed
features.

Here, we present continuous multi-instrument observations of
the evolution of a conjugate HCA and associated poleward edge
arcs that merge together in both hemispheres. The observations
are investigated and interpreted using a global three-dimensional
(3D) magnetohydrodynamic (MHD) simulation for the topology

of the magnetosphere and evolution of HCA from a global
perspective.

Results
On 9th April 2015, a large cloud of erupted solar material, a
coronal mass ejection (CME), reached Earth’s magnetopause
leading to enhanced solar wind dynamic pressure (PDyn), fol-
lowed by an interplanetary CME (ICME). Within the ICME, the
IMF oscillated between strongly northward (~10 nT) and
southward (~ −10 nT), and the solar wind number density
changed between about 10 and 30 cm−3. Geomagnetic indices
reveal strong disturbances (two consecutive magnetic storms
and multiple strong substorms when IMF turned southward
around 22:40 UT on 9th April). Inside this ICME, there was a
notable quiet period (9:17–12:17 UT, gray shading in Fig. 1)
with a stable, strong and predominantly northward IMF (Bz >
15 nT), a weak dawn-dusk component (IMF By, |By/Bz | <
0.38), a relatively steady solar wind velocity (on average
~400 km/s), with the number density of ~10 cm−3, and PDyn of
~3 nPa. These conditions are favorable for dual-lobe
reconnection16,28, which has previously been proposed as
contributing to the formation of HCA24,28 which is a common
feature of the magnetosphere and does indeed occur for pre-
dominantly northward IMF31.

Aurora and plasma observations from the Southern and
Northern Hemispheres are presented in Fig. 2. A conjugate horse-
collar aurora (HCA) appears in both hemispheres with two bright
transpolar aurora arcs (poleward edges) on the dawn and dusk
side of the main auroral oval, which are associated with both
electron and ion precipitation (see Fig. 2a–f), indicating that the
HCA may be located on closed magnetic field lines. The electron
energy fluxes and the SSUSI images also reveal several smaller
arcs or fine structures inside the HCA. Assuming that the HCA is
located on closed field lines, the polar cap became very small and
teardrop-shaped24,32,33 when the HCA formed. After about 1 h
(around 3 h after IMF turn north), the two poleward edges of the
HCA merged together around the noon-midnight meridian with
sunward flows around dayside cusp region in both hemispheres
indicating ongoing dual-lobe reconnections (DLRs) (blue curve in
Fig. 2a, g and Supplementary Fig. S1)23,24,34. This suggests that
the polar cap nearly disappeared (normally the polar cap is empty
without discrete auroral emissions and linked to the open lobe
field line region) and that a nearly fully closed magnetosphere was
generated by dual-lobe reconnection16,24,28. The formation and
evolution of this HCA lasted about 2 h from ~10:21 to ~12:02 UT
when its poleward edges merged around 12:02 UT (Supplemen-
tary Fig. S2) during stable, strong and dominantly northward IMF
and low solar wind dynamic pressure (PDyn of ~3 nPa). This
timescale for near-complete closure of the polar cap is viable.
Milan et al.35 show that the model value of the open flux polar
cap during 2010 is about 4 × 108Wb, which is assumed to be
applicable for the clear and circle-like polar cap with radius ~17°
that was seen soon prior to the HCA (Fig. S2a). Simple geometry
shows that the poleward edges are 20 degrees apart (i.e., almost
merged together), as in the HCA global auroral images shown
here, giving an open flux only around 20% of flux in the full
circular polar cap with a diameter of 20 degrees. This suggests an
open flux of around 0.8 × 108Wb. On the other hand, around
3.2 × 108Wb open flux was closed when the polar cap changed
from a nearly circular to the HCA teardrop shape.

Whilst there remains a cross-tail current sheet we should
expect continuation of some tail reconnection but the voltage will
decay as both the lobe flux and magnetic shear across the current
sheet decreases. An average value of 7 kV over an extended decay
period is not unreasonable based on the estimation of the polar

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00700-0

2 COMMUNICATIONS EARTH & ENVIRONMENT |            (2023) 4:31 | https://doi.org/10.1038/s43247-023-00700-0 | www.nature.com/commsenv

www.nature.com/commsenv


cap potential models36,37. Lobe reconnection voltages have been
shown to saturate at about 25 kV38,39, which yields a typical total
destruction rate of combined open flux by lobe reconnection and
residual tail reconnection of about 32 kV. For these voltages, the

above reduction in open flux of 3.2 × 108Wb would take 104 s ≈
2.8 h, consistent with the DMSP observations.

The formation and evolution of this HCA and their related
polar cap disappearance are further investigated and supported by

Fig. 1 An overview of the IMF, solar wind conditions and auroral electrojet on 9–11 April 2015. a The three IMF components; b the solar wind number
density and speed; c the solar wind dynamic pressure, PDyn and SYM-H index; d the provisional auroral electrojet geomagnetic indices; green and blue lines
are for AL and AU; the zooming (e) IMF and (f) PDyn for the periods of 8:30–12:30 UT on 10 April 2015. The IMF and solar wind data have been lagged by
7min to allow for propagation from the bow shock nose to the dayside magnetopause. The period between the two red dotted lines is the period of focus.
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Fig. 2 Auroral and plasma observations in the Northern and Southern Hemispheres, respectively. a, b, g, h Aurora in the Lyman–Birge–Hopfield short-
band (LBHS) band (wavelength of 140–150 nm) observed by the SSUSI instrument on board the DMSP satellites overlapped by the satellite track as a white
dashed line; c–f, i–l electron and ion energy flux spectrograms from the special sensor for precipitating particles (SSJ5) on board the DMSP satellites.
a–f are captured around 11:00 UT, and g–l are around 12:00 UT.
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numerical simulation using a high-resolution 3-D global mag-
netohydrodynamics (MHD) code driven by the observed solar
wind and IMF parameters from OMNI website. The MHD code
uses piecewise parabolic method32 with a Lagrangian remap to
MHD (PPMLR-MHD)40,41 imbedded in an electrostatic iono-
sphere shell with height-integrated conductance allowing for the
electrostatic coupling and calculation of field-aligned currents
(FACs) between the ionosphere (near the Earth) and the model’s
magnetospheric inner boundary (about 3 RE).

Two-dimensional frames extracted from a movie of the
simulation results (Supplementary Movie S1) in the Geocentric
Solar Magnetosphere (GSM) X–Y and X–Z planes are shown in
Fig. 3. The Sun is at the right side of the plots. The simulation
results show that during such long-lasting, strongly northward
IMF conditions, the dual-lobe magnetic reconnection indeed
occurred between IMF and magnetotail lobe magnetic field lines,
which consumed almost all open lobe magnetic field lines and
stripped open the closed magnetotail magnetic field lines in one
hemisphere (blue lines in Fig. 3a, b with one end connected to the
Earth and a bend at the other end), and reclosed them in the
other hemisphere after some delay (red lines in Fig. 3a, b with two
bends in the tail). These reclosed magnetic field lines on dayside

by DLRs are dragged anti-sunward by the solar wind through a
viscous-like (i.e., non-reconnection) interaction from the dawn
and dusk flanks to replenish the magnetotail with closed field
lines (Supplementary Movie S1). These processes result in a
quasi-balance magnetosphere and a “scissors-like” distribution of
field lines in the magnetotail where the “scissors mouth” (X-
shape) is formed by the newly opened and/or reclosed field lines
from the Northern and Southern Hemispheres, respectively
(Fig. 3a, b). In other words, there are still open field lines in the
magnetotail at any time due to the ongoing lobe reconnections,
but they will be sequentially reclosed by dual-lobe reconnections,
resulting in a nearly fully closed magnetosphere (partly see the
regions around the open-closed field line boundary (OCB) in
Fig. 3c, d and Supplementary Fig. S3). Following these processes,
the regions referred as cold dense plasma sheet (CDPS20, plasma
density >1 cm−3, red color in Fig. 3c, d) are formed, as the solar
wind/magnetosheath plasma is captured by the high-latitude
dual-lobe reconnection and compressed by the subsequent
reconnection of the lobe field lines in the tail leading to a small
magnetotail shaped like the “bottle gourd” or “calabash” fruit
with a slender opening over the poles (density <1 cm−3, white to
blue color in Fig. 3c, d). The flow vortex around the edges of the

Fig. 3 A 2-D view of the simulated magnetic field, plasma and FACs by the PPMLR-MHD code at 11:09 UT on 10 April 2015. The left and right columns
are for the X–Z and X–Y planes, respectively. a, b Selected magnetic field lines: the blue lines are half-open field lines generated by single-lobe reconnections,
the red lines in the magnetotail are full-open field lines generated by dual-lobe reconnection, the green lines are closed field lines, and the pink lines represent
the upstream IMF; the IMF vector in the Y–Z plane is also shown in the upper right corner of b; c, d the logarithm of the density and overlaid velocity vectors and
the open-closed field line boundary (OCB, green dashed curve, identified from Fig. S3) with zoom-in areas in the upper right corner corresponding to the
regions highlighted with white boxes; e, f field-aligned currents, red indicates the direction outward from the surface, and blue indicates inward.
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CDPS have a strong density gradient, highlighted in the zoomed-
in boxes in the upper right corners of Fig. 3c, d, indicating that
the mixing of high- and low-density plasma may be caused by the
KHI process. Note that magnetosheath plasma seems to be
transported into most of the magnetosphere, except for part of
the closed regions of the magnetosphere and newly reconnected
field lines (Fig. 3c, d).

The field-aligned current indicates the location of the magne-
topause current, and a current reversal is seen in the central
magnetotail around X=−28 RE where it is link to the lobe
reconnection region in both hemispheres, suggesting that the
center magnetotail may only extend to around 28 RE (Fig. 3e, f). It
confirms the nearly fully closed magnetosphere together with the
topology of the magnetic field lines and the distribution of plasma
density and velocity (Fig. 3a–d). Note that the flow shear sheets
also generated filamentary upward FACs inside the CDPS, which
can cause magnetic field-aligned acceleration of magnetospheric
electrons (probably through the Knight’s current-voltage
process42,43) that precipitate into the polar ionosphere and gen-
erate smaller arcs inside the HCA (seen in Fig. 2a–e).

The simulation results is consistent with observations from
spacecraft D and E of the THEMIS (Time History of Events and
Macroscale Interactions during Substorms) mission44 that were
flying from the dayside toward the nightside in the duskside
equatorial magnetosphere (THEMIS D: from [7.4, 6.9, −0.7] RE
in GSM at 09:00 UT to [3.8, 6.0, −0.7] RE at about 12:00 UT, and

THEMIS E: from [5.8, 6.8, −0.4] RE at 09:00 UT to [1.45, 4.7,
−0.4] RE at about 12:00 UT), although there was no satellite in
the magnetotail. Both the simulation and observation (Supple-
mentary Fig. S4) results agree that the PPMLR-MHD model is
indeed capturing the key physical processes during these strongly
northward IMF conditions, although the Bx is underestimated by
the model due to the fact that geomagnetic tilt is not considered.
In additional, if we assume the dayside magnetospheric boundary
layer is quasi-steady, the electron and ion energy flux data from
both THEMIS D and E may suggest that the thickness of the
duskside magnetospheric boundary layer increased from about
1.6 RE crossed by THEMIS E around 09:00 UT (about 73 min of
crossing time) to about 4.2 RE crossed by THEMIS D around
09:48 UT (about 145 min of crossing time, Fig. S3), This thicker
magnetospheric boundary layer happened during stable, strong
and dominantly northward IMF and low solar wind dynamic
pressure (PDyn of ~3 nPa) after about 10:00 UT (Fig. 1), which
may confirm the ongoing dual-lobe reconnection occur at both
hemispheres.

Summary and discussion
In summary, the dual-lobe reconnection in the simulation not only
strips off and recloses all open lobe field lines, but also strips the
closed magnetotail field lines in both hemispheres and then recloses
them in the opposite hemisphere (Fig. 4a, b). These reclosed field
lines are dragged anti-sunward from the dayside to the nightside by

Fig. 4 The topology of the magnetosphere and the formation and evolution of the CDPS and HCA from simulationsand as schematics. a, bA 3-D view of
the simulated and schematical field lines, plasma density and velocity vectors in the X–Y plane; c, d the simulated and schematical plasma density and velocity
vectors with the open-closed field line boundary (OCB, green dashed curve) in the equatorial plane; e, f field-aligned mapping of the simulated and schematical
plasma density regions with OCB from the magnetospheric X–Y plane to the ionosphere and the ionospheric convection streamlines overlaid the measured
cross-track horizontal ion flows along the track of DMSP F16 (cyan curve in e, above the track represents sunward and below represents anti-sunward) in the
Northern Hemisphere. The sun is on the left for a, b, and on the top for the rest. The magnetosphere in the equatorial plane is divided into three main parts:
plasma transportation regions (CDPS) in the flanks (yellow area in b, d, f), low-density “calabash-shaped”magnetotail region (blue area in b, d, f), and the high
density inner magnetpshere (red area in b, d, f). During long-lasting, strongly northward IMF conditions, the dual-lobe reconnection strips off and recloses the
closed magnetic field and transports plasma from the magnetosheath into the magnetosphere by forming the CDPS. The reclosed field lines in the CDPS are
dragged tailwards by KHI at the dawn and dusk flanks, and squeezes the magnetosphere into a “calabash-shaped”magnetotail. The strong density gradient and
flow shears accelarate the precipitating local plasma into both hemispheres of the polar ionosphere to from transpolar auroral arcs (poleward edges) of the
HCA, and the evolution of the CDPS is also associated with merging of the poleward edges of the HCA.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00700-0

6 COMMUNICATIONS EARTH & ENVIRONMENT |            (2023) 4:31 | https://doi.org/10.1038/s43247-023-00700-0 | www.nature.com/commsenv

www.nature.com/commsenv


the solar wind via the dawn and dusk flanks. Plasma is transported
from the solar wind/magnetosheath into the magnetosphere to
form the CDPS and squeezes the magnetotail into a “calabash-
shape” mainly through the tension of the reconnected magnetic
field and KHI driven by the solar wind flows (Fig. 4c, d). These
results support the Milan et al. 2020 model24 that new regions
generated by DLRs moving tailward along the flanks of the mag-
netosphere have important impact on HCA formation, and region
boundaries in the magnetosphere are related to the bright poleward
edges of HCA. When the simulated plasma density is mapped
along the magnetic field to the ionosphere and overlaid on the
simulated ionospheric convection streamlines in the Northern
Hemisphere, a striking pattern emerges (Fig. 4e, f). Two reversed
convection cells (sunward around the noon-midnight meridian,
and anti-sunward at the dawn and dusk flanks) appear in the
central polar cap and dominate the ionospheric convection, con-
sistent with the observations of the cross-track horizontal velocity
from DMSP F16 (Fig. 4e) and confirming the ongoing dual-lobe
reconnection18,23,24. A clear “anchor-like” distribution of low
plasma density overlap with the reversed cells, which is linked to
the “calabash-shaped” magnetotail with clear mapped CDPS edges
that are co-located with the observed dawn and dusk poleward
edges of the HCA (two bright transpolar auroral arcs). The strong
density gradient and flow shears around the CDPS edges shown in
Fig. 3c, d suggest that the poleward edges of the HCA are generated
by particle precipitation (both ions and electrons) due to the
density gradient and KHI, which is associated with opposite electric
field accelerating particles to generate FACs more effectively
around the CDPS edges14,45. Here, the density boundary is paid
more attention than the OCB, which can make it easier to
understand the mechanism since sometimes IMF variability con-
ditions could make the OCB more complex. As the dual-lobe
reconnection progresses, the magnetic tension and KHI drive the
CDPS to continuously squeeze and shrink the upper part of the
“calabash-shaped” magnetotail until it nearly disappears, which
confirms merging of the poleward edges of the conjugate HCA and
inferring a nearly fully closed and very small magnetosphere (the
center magnetotail may only extend to around 28 RE in length).
Such a short magnetotail could potentially expose spacecraft or
astronauts to damaging doses of energetic solar wind particles at
times when it was previously thought they should be well protected
by the Earth’s magnetosphere. This would make extended intervals
of “quiet” northward IMF conditions surprisingly hazardous. This
study should be of essential value for the planning of future space
missions (including lunar missions or observatory) and provide
new insight into when solar activity may expose a given location to
hazardous radiation from the Sun. It also indicates that continuous
observations of the auroral oval in both hemispheres from space
combined with 3-D simulations provide an insightful way to
monitor and investigate solar wind-magnetosphere-ionosphere
coupling processes, which is truly occurring across a wide range of
temporal and spatial scales, under a wide range of IMF
conditions14,15.

Methods
PPMLR-MHD model. The PPMLR-MHD model is based on an extension of the
piecewise parabolic method46 with a Lagrangian remap to magnetohydrodynamics
(MHD)40,41. It is a three-dimensional MHD model, designed especially for the
solar wind–magnetosphere–ionosphere system47–49. The model possesses high
resolution in capturing MHD shocks and discontinuities and a low numerical
dissipation in examining possible instabilities inherent in the system49.

The model uses a Cartesian coordinate system with the Earth’s center at the
origin and X, Y, and Z axes pointing toward the Sun, the dawn-dusk direction, and
the north, respectively. The size of the numerical box extends from 30 RE to –100
RE along the Sun-Earth line and from –50 RE to 50 RE in Y and Z directions, with
320 × 320 × 320 grid points and a minimum grid spacing of 0.15 RE. An inner
boundary of radius 3 RE is set for the magnetosphere to avoid the complexities
associated with the plasmasphere and large MHD characteristic velocities from the

strong magnetic field48. An electrostatic ionosphere shell with height-integrated
conductance is imbedded, allowing an electrostatic coupling process introduced
between the ionosphere and the magnetospheric inner boundary. The Earth’s
magnetic field is approximated by a dipole field with a dipole moment of
8.06 × 1022 Am−1 in magnitude. The model is run to solve the whole system by
inputting the observed interplanetary conditions for the current event.

Data availability
The solar wind, IMF and geomagnetic data are available on https://omniweb.gsfc.nasa.
gov/. The DMSP SSUSI and particle data are available on https://ssusi.jhuapl.edu/gal_
AUR. The THEMIS D and E data are available on http://themis.ssl.berkeley.edu/data/
themis/thd/l2 and http://themis.ssl.berkeley.edu/data/themis/the/l2, respectively. The
SuperDARN data are available on http://vt.superdarn.org/tiki-index.php. The 3D
PPMLR-MHD simulation data are available on https://doi.org/10.5281/zenodo.7230262.

Code availability
The computer code of PPMLR-MHD model for simulating the formation of space
hurricane is a large simulation program system, which need to be run on a
supercomputer and will be available upon request to contributed author (C.W.,
cw@spaceweather.ac.cn).
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