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Abstract

The CMIP6 projections constitute the basis of our latest understanding of the

climate response to anthropogenic forcing. However, there is still considerable

uncertainty in the projections, especially at the regional scale. One way to con-

strain the uncertainty is by comparing the models historical climate change

signals against observations and investigate the physical reasons for diver-

gences. Here, we assess the signal-to-noise ratio (S/N) of surface air tempera-

ture (SAT), precipitation (PREC) and soil moisture (SM) over Europe for a set

of CMIP6 historical simulations and compare them against the E-OBS observa-

tional product and the ERA5 reanalysis. We found considerable divergences

between the CMIP6 ensemble mean S/N and that of E-OBS and ERA5, as well

as between ERA5 and E-OBS. The latter indicates that the S/N is affected by

data coverage. We show that the differences among model signals are associ-

ated with different atmospheric circulation responses. We also investigate the

potential relationships between the models' signals and climatological biases,

and we found evidence that the models with a warm climatological bias in

southern Europe tend to have smaller SAT signals (warm less). Finally, we

found no apparent relationship between SM biases and the warming signal,

suggesting that the mechanism by which SM–atmosphere interactions affect

climate variability does not explain the mean changes. However, there is a

tendency for models with higher SM to dry faster than models with lower SM.

KEYWORD S

climate change signals, CMIP6, model biases

1 | INTRODUCTION

Reliable projections of the regional climate response to
increasing greenhouse gases (GHG) are critical for adap-
tation planning. In the last decades, there has been enor-
mous progress in understanding the climate response to

increasing GHGs and projections based on global circula-
tion models (GCM) have become a widespread tool to
assess the future climate. The main climate modelling
effort is arguably the Coupled Model Intercomparison
Project (CMIP), coordinated by the World Climate
Research Programme (WCRP), which is currently in
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phase 6 (CMIP6) and have become the benchmark of cli-
mate research. Information distilled from the CMIP6 cli-
mate projections constitutes the basis of our latest
understanding of climate change. However, the CMIP
ensembles, particularly at the regional scale, are still pla-
gued with considerable uncertainty (e.g., Deser, 2020;
Foley, 2010; Giorgi & Francisco, 2000; Shepherd, 2014).
The main uncertainties in identifying the real-world
forced response from CMIP ensembles arise from differ-
ences in the models representation of physical processes
(typically called “model uncertainty”), internal variability
and scenario uncertainty (e.g., Hawkins & Sutton, 2009).
For long time scales (>century and beyond), differences
in the models' forced response are thought to dominate
over internal variability, but at the decadal timescales
(which are the most relevant for adaptation planning),
both are similarly relevant (e.g., Douville et al., 2021
IPCC AR6 WG1 chapter 08, fig. 8.23).

One way to assess and potentially reduce the model
and internal variability uncertainty of the climate projec-
tions is by evaluating historical simulations (simulations
driven by common past observed forcing) against obser-
vations, identifying the model differences and attributing
them to the particular representation of physical pro-
cesses or internal variability. This approach assumes that
the models better representing the observed past will bet-
ter represent the future. Although this assumption might
not always be valid, a comparison can still help to iden-
tify statistical relationships between the model biases of
an observable variable and its trends. Several studies
(e.g., Carvalho et al., 2021; Cattiaux et al., 2013; Giorgi &
Coppola, 2010) show that the models' forced response
depends on the model mean biases and there is some evi-
dence that the models that better represent some aspects
of the current climate (e.g., the SLP patterns) tend to sim-
ulate similar future climates (Watterson, 2019). These
relationships can constitute a so-called “emergent con-
straint” and can be used to narrow the uncertainty due to
different model responses (e.g., Brient, 2020; Hall
et al., 2019).

Observational studies have shown that European
mean temperatures have increased at almost twice the
rate than the global average (e.g., van der Schrier
et al., 2013). However, the historical trends show notable
seasonal and spatial differences, with the highest warm-
ing observed in northeast Europe and Scandinavia during
winter and southern Europe during summer (e.g., Oss�o
et al., 2022). For a global mean temperature increase of
2 K, the CMIP6 ensemble-mean projects a warming with
respect to 1850–1900 in winter (summer) of 3.4 K (2.7 K)
over northern Europe and Scandinavia, with a 2σ ensem-
ble spread of 2.6 K (2.4 K). In southern Europe and the
Mediterranean area, the projected warming for winter

(summer) is 2 K (2.9 K) with a 2σ ensemble spread of 1 K
(1 K) (IPCC AR6 Climate Atlas Gutiérrez et al., 2021).
These results show that although the models agree with
the sign and the general spatial structure of the trends,
their magnitudes differ.

The average precipitation over Europe has not changed
significantly since 1960 in the E-OBS dataset. However, at
the subcontinental scale, winter precipitation has shown a
small decrease in south Europe and an increase of up to
70 mm�decade−1 in northern Europe (Maraun, 2013). In
summer, significant decreases have been observed in
southern Europe and significant increases in northern
Europe (van den Besselaar et al., 2013).

For a global mean temperature increase of 2 K, the
CMIP6 ensemble-mean projects an increase of precipita-
tion with respect to 1850–1900 in winter (summer) of
2.7 mm�day−1 (1.9 mm�day−1) over northern Europe and
Scandinavia with a 2σ ensemble spread of 0.7 mm�day−1
(0.9 mm�day−1). In southern Europe and the Mediterra-
nean area, the projected precipitation change for winter
(summer) is of −1.8 mm�day−1 (−0.5 mm�day−1) with a
2σ ensemble spread of 1.4 K (0.6 K) (IPCC AR6 Climate
Atlas Gutiérrez et al., 2021). Generally, there is little
agreement among models' precipitation trends, with sev-
eral models showing opposite regional trends.

In this work, we examine historical (1950–2014) surface
air temperature (SAT), precipitation (PREC) and soil mois-
ture (SM) over Europe from the CMIP6 models, the ERA5
reanalysis and the E-OBS dataset to assess the emergence
of climate change signals, identify robust patterns across all
datasets and investigate reasons for discrepancies.

The climate change signals are identified by analysing
the signal-to-noise ratio (S/N) of the timeseries, which is
calculated using a regression scheme introduced by Haw-
kins et al. (2020) that assumes that the local force compo-
nent of the variable into consideration linearly scales
with the global mean surface temperature (GMST). Simi-
lar pattern scaling approaches have been widely used,
including in the IPCC AR5 (Collins et al., 2013) and are
justified by the evidence that the spatial pattern of
change of temperature and precipitation for various forc-
ing scenarios is often similar (e.g., Santer et al., 1990).

However, the method has some limitations that must
be taken into account when interpreting the results:
(1) GMST is affected by decadal and multidecadal vari-
ability, so it is not a perfect proxy of the external forcing
(e.g., Lopez et al., 2014; Watterson, 2019); (2) it does not
take into account possible nonlinearities of the climate
system and (3) it does not take into account the impact of
aerosols in modifying the local forced response (Frieler
et al., 2012; Watterson & Whetton, 2013).

To the best of our knowledge, this is the first time this
method has been applied to identify the S/N in CMIP6
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historical simulations. Moreover, new insights into the rela-
tionships between CMIP6 signals and climatological biases
over Europe are presented. In this context, we aim to
answer the following questions: (1) What are the historical
climate change signals of SAT, PREC and SM in CMIP6
models over Europe? Moreover, are the signals robust?
(2) How do the simulated S/N compare to observations?
(3) How do intermodel S/N discrepancies relate to mean
biases?

2 | DATA AND METHODS

2.1 | CMIP6 models

We use data from 17 models from the Coupled Model
Intercomparison Project Phase 6 (CMIP6) historical runs
(Eyring et al., 2016) that are listed in Table 1. This selec-
tion of models samples a range of horizontal resolutions
and modelling centres. This selection does not contain the
entire CMIP6 ensemble; however, previous work shows
that this number of models is adequate for sampling across

a range of model physics (e.g., Allan et al., 2022; Santer
et al., 2021). The r1i1p1f1 member of each model is used.
“r” is the realization number and distinguishes among
members of an ensemble that differ only in their initial
conditions, “i” indicate the initialisation method, which in
CMIP6 should invariably be assigned the value “1” except
for some hindcast and forecast experiments, “p” identifies
the physics version used by the model and “f” indicates
the type of forcing applied. In our case, all the models are
forced with the CMIP6-recommended forcing historical
data from 1850 to 2014 (Eyring et al., 2016). We also use
40 members (r1i1p1 to r40i1p1) of the ACCESS-ESM1.5
models, which only differ in their initial conditions to
test the impact of internal variability on the results. SM
values for all CMIP6 models is provided by the variable
“mrsos,” which measures the water content in all phases
within the upper 0.1 m of soil and is averaged over the
land portion of the grid cell. However, as ERA5 provides
soil moisture in the upper 0.07 m of soil, we have con-
verted the gravimetric soil water per unit area (kg�m−2)
to volumetric water content (m3�m−3) to enable a
cleaner comparison of SM trends between models and
observations (Yuan et al., 2021). This is achieved by
dividing the gravimetric soil water content by the
respective layer thickness (10 cm for the CMIP6 models
and 7 cm for ERA5) and by the density of pure water
(1000 kg�m−3). The CMIP6 data were interpolated to a
common 1.5� × 1.5� grid (approximately the ensemble
mean horizontal resolution) to calculate an ensemble
mean and to compare to other datasets.

2.2 | Reanalysis and observations

ERA5 is the latest reanalysis product from the European
Centre for Medium-Range Weather Forecasts (ECMWF),
spanning from 1950 to the present (Bell et al., 2021;
Hersbach et al., 2020). We use ERA5 data from 1950 to
2014, matching the end date of the CMIP6 historical
runs. This reanalysis product uses the 2016 version
ECMWF forecast model (Integrated Forecasting System;
IFS) Cy41r2, which has three fully coupled components
for the atmosphere, land and ocean waves. ERA5 uses an
ensemble 4D-Var data assimilation system with 10 mem-
bers that assimilate in situ observations of wind, humid-
ity and pressure along with radiances sensitive to upper-
air temperature and humidity from various satellites. The
data are on a full N320 Gaussian grid with a horizontal
resolution of 31 km (0.28125�) and 137 vertical levels. We
use the 2-m air temperature (t2m), total precipitation
(tp) and upper level (0–7 cm) SM (swvl1). We only ana-
lyse the upper SM since it is the level more strongly
coupled with the atmosphere (Seneviratne et al., 2010).

TABLE 1 List of historical CMIP6 simulations and their

resolution

Model Resolution Reference

BCC-ESM1 2.8125� × 2.8125� Wu et al. (2020)

CanESM5 2.8125� × 2.8125� Swart et al. (2019)

AWI-ESM-
1-1-LR

1.875� × 1.865� Semmler et al.
(2020)

ACCESS-CM2 1.875� × 1.25� Bi et al. (2020)

UKESM-0-LL 1.875� × 1.25� Sellar et al. (2020)

ACCESS-
ESM1.5

1.875� × 1.25� Ziehn et al. (2020)

CNRM-
ESM2-1

1.40625� × 1.40625� Séférian et al.
(2019)

MIROC6 1.40625� × 1.40625� Tatebe et al. (2019)

MRI-ESM2-0 1.125� × 1.125� Yukimoto et al.
(2019)

GFDL-ESM4 1.25� × 1� Dunne et al. (2020)

FIO-ESM-2-0 1.25� × 0.9375� Bao et al. (2020)

CMCC-ESM2 1.25� × 0.9375� Cherchi et al. (2019)

CESM2 1.25� × 0.9375� Danabasoglu et al.
(2020)

NorESM2-MM 1.25� × 0.9375� Seland et al. (2020)

TaiESM1 1.25� × 0.9375� Wang et al. (2021)

MPI-
ESM1-2-HR

0.9375� × 0.9375� Mauritsen et al.
(2019)

EC-EARTH3 0.703125� × 0.703125� Döscher et al.
(2021)

OSSÓ ET AL. 3
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We also use Europe-focused E-OBS v23.0 in this study
since it is based purely on observed station data (Cornes
et al., 2018). The E-OBS dataset is constructed by the
European Climate Assessment and Dataset (ECA&D)
project using station data provided by national meteoro-
logical agencies. The station data are interpolated to a
grid using a two-stage process incorporating a determin-
istic model and a stochastic technique. E-OBS daily data
are available on regular 0.1� and 0.25� grids. For this
study, we used the daily temperature (tg) and rainfall
(rr) on the 0.25� grid.

2.3 | S/N calculation

The signal-to-noise ratio (S/N) is calculated using the
method described by Hawkins et al. (2020) and Oss�o
et al. (2022). We start by regressing seasonal climate vari-
ations onto seasonal global mean surface tempera-
ture (GMST),

L tð Þ=αG tð Þ+b, ð1Þ

where L tð Þ is the local change of a variable
(e.g., temperature, precipitation) over time, G tð Þ is GMST
smoothed over 1950–2014 using a 15-year rolling mean
(Oss�o et al., 2022), and α and β are the linear regression
coefficients. Notice that by construction, the method
removes most of the influence of internal interannual
variability. Thereby, L(t) captures mainly the forced sig-
nal. The full 1950–2014 time period is used to incorporate
a common long-running time series across both CMIP6
and observations and to calculate the anomalies. The sta-
tistical significance of the linear regression coefficients is
calculated using the Wald (1943) test with a t-distribution
of the test statistic and adjusted degrees of freedom to
account for autocorrelation. GMST is calculated from
each CMIP6 model near-surface air temperature (tas)
when calculating S/N for each model (Hawkins &
Sutton, 2012) and the CMIP6 S/N ensemble mean is cal-
culated by averaging the S/N values of each individual
model. For ERA5 we used its 2-m air temperature (t2m)
to calculate GMST and S/N. The HadCRUT5 dataset
(Morice et al., 2021) was used to calculate GMST when
calculating S/N for E-OBS since E-OBS is a European-
only dataset.

The signal (S) of a variable is simply the difference
between the first and last values of the linear model L tð Þ
(i.e., S=L tnð Þ−L t0ð Þ) and the noise (N) is the standard
deviation of the residual between a given variable and its
associated L tð Þ. This framework assumes that αG tð Þ is a
good representation of the forced component of the local
change. This assumption has been shown to be a reason-
able approximation for temperature (Sutton et al., 2015)

and extremes of temperature and precipitation (Fischer &
Knutti, 2014). Since SM is strongly controlled by
temperature and precipitation, it is reasonable to assume
this scaling assumption also holds for SM. The resulting
S/N quantifies the ratio between the forced component of
the local change and its internal variability for a particu-
lar period. Here we use the qualitative classification
introduced by Frame et al. (2017), which classifies S/N
values as “unusual” (S/N> 1), “unfamiliar” (S/N> 2) and
“unknown” (S/N> 3).

3 | EMERGENCE OF CLIMATE
CHANGE SIGNALS

This section compares the S/N of SAT, PREC and SM
between CMIP6, ERA5 and E-OBS.

3.1 | Surface air temperature

The JJA CMIP6 ensemble mean S/N is greater than 1 across
the entire domain, with the greatest S/N values found
along the west coast of Great Britain, around the Baltic Sea
and on the coasts of the Black and Aegean Sea where
S/N > 1.6 (Figure 1a). ERA5 S/N have a more defined
structure than the CMIP6 ensemble mean with larger S/N
values over southern Europe and smaller values over much
of north Europe (Figure 1c). Large values (S/N > 2) are
found over mountainous terrains such as the Alps, Car-
pathians and southeast Spain in southern Europe and the
Norwegian mountain regions. This is consistent with obser-
vations from high-altitude stations in various mountainous
regions (Marty & Meister, 2012; Ohmura, 2012), as dis-
cussed later. The E-OBS JJA S/N is somewhat different,
with a less coherent structure (Figure 1e) and generally
weaker S/N than CMIP6 and ERA5. This is likely a result
of poor data coverage and quality across Europe
(e.g., Prein & Gobiet, 2017), which can add nonphysical
noise that aliases onto or dampen climate change signals
and suggests that the emergence of climate change signals,
even for SAT, is affected by data coverage. Finally, the
region with S/N < 0 around Romania was previously
attributed to data sparsity and homogeneity problems asso-
ciated with incorporating cooler SAT from high-altitude
stations (Craig & Allan, 2022).

The DJF CMIP6 ensemble mean S/N for SAT is below
1 for most of Europe but exceeds 1 along the northernmost
extremities of Scandinavia, parts of south Europe and
across parts of Great Britain and Ireland (Figure 1b). The
smaller S/N values than in summer mainly result from a
larger noise and not a smaller signal. ERA5's DJF S/N has
some similarities with S/N > 1 over much of the Iberian
Peninsula and Great Britain, but also large regions of

4 OSSÓ ET AL.
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S/N > 1 over Norway and the Alps (Figure 1d). Reasons
for greater SAT change at high altitudes are detailed by
Ohmura (2012). For example, the reduced quantities of
snow and ice caused by warming reduce the albedo effect
of the surface, enhancing warming. The DJF E-OBS S/N
(Figure 1f) shows a somewhat different structure than
CMIP6 and ERA5 and resembles its JJA S/N pattern.
However, regions of S/N > 1 over the Alps, Pyrenees and
small parts of Norway are consistent with ERA5.

As expected, the CMIP6 ensemble means S/N pattern
is much smoother than those for each model (Figure S1,
Supporting Information). In JJA, the ensemble spread
(standard deviation) of S/N exceeds 0.6 across much of
Europe, although it is much lower across eastern Europe
(Figure S1). The large spread can be associated with
differences in the model representation of the physical
processes and low-frequency internal variability not
removed by the regression scheme (see section 5).

FIGURE 1 Maps of SAT S/N for (a, b) the CMIP6 ensemble mean, (c, d) ERA5 and (e, f) E-OBS for JJA and DJF calculated across

1950–2014. Yellow to red colours indicate positive S/N (increasing temperature) and blue indicate negative S/N (decreasing temperature).

The stippling in (a, b) shows where two-thirds of the CMIP6 models' S/N are statistically significant at the 95% level and in (c–f) it shows
where the ERA5 and E-OBS S/N are statistically significant at the 95% level. The black contours highlight the regions where jS/Nj > 1 and

jS/Nj > 2. An additional contour is included in panel c to highlight a region where S/N > 3 [Colour figure can be viewed at

wileyonlinelibrary.com]

OSSÓ ET AL. 5
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The CNRM-ESM2-1 model has a S/N with a spatial
structure most similar to ERA5, with a large S/N over the
Iberian Peninsula, the Alps and the Norwegian coast. On
the contrary, the BCC-ESM1 is most similar to E-OBS,
with lower S/N over much of the continent, decreasing
from the southwest (SW) to the northeast (NE). Some
models have S/N > 2 across much of Europe (CESM2,
CanESM5, EC-Earth3), which shows warming at a
greater rate than ERA5 or E-OBS (Figure 1), but there
are also two models (MPI-ESM1-2-HR and GFDL-ESM4)
that have small areas with S/N < 0 in Portugal and
northwest Russia, respectively.

The DJF S/N ensemble spread has a similar east/west
structure to JJA: exceeding 0.6 to the west with a lower
spread over eastern Europe and western Russia
(Figure S2). There is much diversity in the DJF S/N pat-
terns, with some models showing regions with S/N < 0
(ACCESS-CM2, CMCC-ESM2, FIO-ESM-2-0, GFDL-
ESM4) and contrasting spatial structures such as increas-
ing S/N from SW to NE (BCC-ESM1) and decreasing S/N
of the same orientation (CNRM-ESM2-1). UKESM
appears to resemble the spatial structure and values of
ERA5 and E-OBS S/N the best of the CMIP6 models, with
S/N > 1 over the Iberian Peninsula and the Alps, then
decreasing below 1 across the rest of Europe. However,
UKESM also has a high climate sensitivity and a too-cold
aerosol period in the 1960s/1970s (Meehl et al., 2020;
Sellar et al., 2020). However, none of the models show
the same contrast in S/N between the Norwegian moun-
tains and Sweden present in ERA5 (Figure 1d).

High-altitude regions such as the Alps and Norwegian
mountains show S/N > 1 in both seasons, with an indica-
tion of the same phenomenon in ERA5 and somewhat in
E-OBS (Figure 1c–f). This is in stark contrast to lower
altitude regions such as the Pannonian Basin around
Hungary (Ceglar et al., 2018), which has remarkably
lower ERA5 S/N in both seasons compared to the sur-
rounding mountain ranges. Ohmura (2012) explains four
reasons why high-altitude regions experience warming
faster than low-altitude regions. These are the cryo-
sphere/temperature feedback, temperature amplification
in an inversion layer, condensation at high altitudes
releasing high levels of latent heat, and the construction
of the Stefan-Boltzmann equation, which permits the
temperature sensitivity of the energy balance to be ampli-
fied at the lower temperatures of high altitude.

3.2 | Precipitation

The JJA CMIP6 ensemble mean S/N for PREC does not
exhibit any defined structure. The magnitudes are every-
where smaller than ±0.25 S/N (Figure 2a), indicating that

there has not been any remarkable change in summer
PREC over Europe. However, ERA5 and E-OBS JJA S/N
(Figure 2c,e) have a different spatial structure to CMIP6,
with negative S/N around the Mediterranean and positive
S/N across parts of the main continent where CMIP6 has
weak negative S/N—although both datasets have positive
S/N across Scandinavia. ERA5 and E-OBS S/N values
are small across the continent: In ERA5, there are only
two small regions in Norway/Sweden and Spain with
jS/Nj > 1, and the E-OBS has only two tiny regions in
Lapland and the Iberian Peninsula, where jS/Nj > 1.

For DJF, the CMIP6 ensemble mean S/N is smaller
than ±0.5 everywhere, with positive values all over
Europe except over some regions of the Mediterranean
coast, where small negative values are apparent (Figure 2b).
Unlike JJA, the CMIP6 ensemble mean shows wetter win-
ters for almost all of Europe. However, the S/N values are
smaller than 1 everywhere. E-OBS S/N structure is similar
to CMIP6 with overall positive values except over some
areas of the Mediterranean coast (Figure 2f). However, the
S/N structure of ERA5 is remarkably different. It is charac-
terized by a distinct north/south split along a SW to NE
diagonal where the northern region has positive and the
southern region negative S/N (Figure 2d). This results in
the boundary between positive and negative S/N in ERA5
being shifted further north than in E-OBS and the CMIP6
ensemble mean. These differences could partially be attrib-
uted to the persistent general model deficiency in represent-
ing the jet tilt over the North Atlantic, resulting in the jet
intercepting the European continent too far south. This bias
has been observed in the past (Doblas et al., 1998;
Woollings, 2010) and current CMIP6 (Simpson et al., 2020)
model assessments. An analysis of the individual models
sea-level pressure (SLP) biases is consistent with a too zonal
storm track over Europe in virtually all the models
(Figures S7 and S8).

The S/N of the individual models is quite diverse, and
many do not resemble the ensemble mean. In JJA, the
S/N ensemble spread is high (greater than 0.6) along
the coast of Norway, where the models disagree on the
sign and strength of S/N (Figure S3). Some models
(e.g., CanESM5, EC-Earth3, UKESM1-0-LL) have
S/N > 1 in this region, but other models have S/N < 0
(e.g., ACCESS-CM2, BCC-ESM1, MIROC6). Remarkably,
several models show increased PREC over southern
Europe and the Mediterranean (e.g., EC-Earth3, GFDL-
ESM4, ACCESS-ESM1-5, NorESM2-MM) in contradic-
tion with observations. EC-Earth3 has the strongest posi-
tive S/N over much of Scandinavia and south Europe.
CMCC-ESM2 has mostly S/N < 0, but it is generally
weak compared to CanESM5's region of negative S/N
around Denmark, Germany and Holland. Only MRI-
ESM2-0 has a similar north/south split to ERA5 and
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E-OBS, with some models showing the opposite pattern
of increasing PREC in the south and decreasing PREC in
the north (e.g., ACCESS-ESM1-5, NorESM2-MM).

The DJF S/N ensemble spread is of a similar magni-
tude with that in JJA (Figure S4). The region of the larg-
est DJF ensemble spread stretches from the Atlantic
coast to the western border of Poland. This matches the
large positive S/N values on the continent in AWI-
ESM1-1-1-LR and CNRM-ESM2-1 compared to the nega-
tive S/N values in ACCESS-CM2, CMCC-ESM2 and
MIROC6. The area of the ensemble mean S/N close to
1 around Poland (Figure 2b) is a consequence of various
models with strong positive S/N but also some models
with weaker S/N bringing down the ensemble mean
(e.g., BCC-ESM1, NorESM2-MM). TaiESM1 has the clos-
est S/N resemblance to ERA5's distinct north/south split,
and two other models (GFDL-ESM4, NorESM2-MM)

also have similar structures to ERA5. Notice that none of
the models S/N resembles that of the E-OBS. Generally,
the model differences in their PREC S/N patterns are
coherent with the differences in their SLP signals
(Figures S9 and S10), suggesting that divergent circula-
tion changes as a response to climate change and inter-
nal variability not removed by the regression model
largely determine the differences in the models PREC
change.

3.3 | Soil moisture

The JJA CMIP6 ensemble mean SM S/N is negative (dry-
ing) almost everywhere in Europe apart from two tiny
and isolated regions of Spain, Sicily and northwest Italy
(Figure 3a). The drying increases with latitude and is

FIGURE 2 Maps of PREC S/N for (a, b) the CMIP6 ensemble mean, (c, d) ERA5 and (e, f) E-OBS for JJA and DJF calculated across

1950–2014. Blue contours indicate positive S/N (increasing precipitation) and red contours indicate negative S/N (decreasing precipitation).

The stippling in (a, b) shows where two-thirds of the CMIP6 models' S/N are statistically significant at the 95% level and in (c–f) it shows
where the ERA5 and E-OBS S/N are statistically significant at the 95% level. The statistical significance is calculated using the Wald (1943)

test. The black contours highlight the regions where jS/Nj > 1 and jS/Nj > 2 [Colour figure can be viewed at wileyonlinelibrary.com]
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larger across northern Scandinavia, although the ensem-
ble mean does not reach 1. SM is therefore decreasing
across CMIP6 models but has yet to cross the threshold
for an “unusual” climate. ERA5's SM is also mostly nega-
tive across Europe but unlike the CMIP6 ensemble mean,
it has positive values over Great Britain, Ireland,
Sweden and Finland, indicating an increase in SM in
these areas (Figure 3c). However, only Ireland has
S/N > 1, indicating that the soil has become unusually
wet, consistently with the large positive JJA PREC S/N
over this area in ERA5 (Figure 2c). Some mountain
regions in Spain, Norway and the Alps have S/N < −1,
indicating that there has been a transition to unusually
dry SM in these regions. This is consistent with the
amplified SAT signal over mountainous terrain in ERA5
t2m (Figure 1c). Moreover, an early snow melt and the
usually thin soil of mountainous regions are likely to
contribute to the strong S/N value upsetting any
increase in PREC (e.g., Jasper et al., 2004). Note that
northern coastal regions have a narrow band of positive
S/N, which might be a consequence of the differential
warming rates between the coast and the North Sea,
increasing the intensity of moist advection inland dur-
ing summer (Diffenbaugh et al., 2007).

The DJF S/N is negative across most of Europe except
in some areas of Scandinavia and Russia, where S/N > 0
(Figure 3b). Similar to JJA, the S/N is weak across the
entire domain (jS/Nj < 1 everywhere). Winter SM in the
CMIP6 has not transitioned into an “unusual” climate.
The ERA5 SM S/N has a north/south split with S/N > 0
across the north and S/N < 0 for the south (Figure 3d),
indicating an increase in SM across north Europe and
drying soil across south Europe. This pattern is likely to
be closely associated with the similar north/south split in
ERA5 winter PREC. Mountainous regions in Spain and
the Balkans have unusual levels of drying (S/N < −1).
Parts of Scandinavia have S/N > 1, indicating that SM
content in these regions is unusually large compared to
past climate.

In JJA, the individual models exhibit a substantial
diversity of SM S/N patterns, with the largest ensemble
spread over Scandinavia, eastern Europe and western
Russia, where several models have opposite S/N signs
(Figure S5). In particular, CNRM-ESM2-1 has a very
strong negative S/N (similar to its SAT S/N), and MPI-
ESM2-0 and GFDL-ESM4 have weak positive S/N. As in
the case of JJA S/N PREC, the models show a diversity
of signals over southern Europe and the Mediterranean

FIGURE 3 Maps of S/N for (a, b) the CMIP6 ensemble mean mrsos and (c, d) ERA5 swvl1 for JJA and DJF calculated across 1950–
2014. Green contours indicate positive S/N (increasing soil moisture) and brown contours indicate negative S/N (decreasing soil moisture).

The stippling in (c, d) shows where ERA5 S/N is statistically significant at the 95% level. The statistical significance is calculated using the

Wald (1943) test. The same test was applied to each CMIP6 model but no grid points in the domain shown passes the same two-thirds

threshold applied for Figures 1 and 2. The black contours highlight the regions where jS/Nj > 1 and jS/Nj > 2 [Colour figure can be viewed

at wileyonlinelibrary.com]
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region, with the models showing an increase in PREC
(Figure S3) also showing an increase in SM (i.e., EC-
Earth3, ACCESS-ESM1-5, NorESM2-MM) which is
clearly at odds with observations. As for JJA PREC,
MRI-ESM2-0 resembles ERA5 the most. Interestingly,
in JJA, the SM patterns strongly resemble PREC in con-
tinental Europe but not Scandinavia, where several
models show a substantial increase in PREC but
decreasing SM. This suggests that changes in PREC
strongly control continental Europe's SM changes, while
over Scandinavia, other factors also have a strong
impact (e.g., warming, early snow-melt).

The DJF S/N ensemble spread is greater than in JJA
across the central part of the continent, with more diver-
sity in the models S/N (Figure S6). For example, MRI-
ESM1-2-0 and CanESM5 have S/N < 0 (drying SM)
everywhere but FIO-ESM-2-0 and MPI-ESM1-2-HR have
mostly positive S/N (increasing SM). Despite the greater
ensemble spread, the Iberian Peninsula has a lower
ensemble spread than in JJA, where most models have
negative S/N. The north/south split in ERA5 S/N
(Figure 3d) may be replicated at least partially by AWI-
ESM-1-1-LR and TaiESM1 with negative S/N in south
Europe and positive S/N in north Europe.

FIGURE 4 Maps of (a, b) CMIP6 ensemble climatological mean tas, (c, d) climatological bias using ERA5 t2m and (e, f) climatological

bias using E-OBS for JJA and DJF calculated across 1950–2014. The biases are calculated as model minus observations, so yellow-to-red

contours indicate warmer model temperatures and blue contours indicate cooler model temperatures. Stippling in (c–f) shows where at least
two-thirds of the CMIP6 models agree on the sign of the climatological bias. The north and south regions used to calculate area-averages for

the scatter plots are shown in (a) [Colour figure can be viewed at wileyonlinelibrary.com]
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4 | LINKING SIGNAL BIASES TO
MEAN BIASES

In this section, we further explore the diversity of the
model signals and try to identify relationships between
the model signal biases and the models mean biases. We
focus in the signals (S) instead of in the S/N since the dif-
ferences between models are primarily attributed to the
differences in the signals (see Supporting Information).
The purpose of this analysis is not to provide an exhaus-
tive evaluation of model bias (which is covered in other
studies) but instead to understand S/N changes in the
context of mean biases to aid physical interpretation. To

that aim, we calculate area-averaged climatological biases
of CMIP6 SAT, PREC and SM with respect to ERA5 and
E-OBS and compare those with the area-averaged signal
biases (the difference between model and observed sig-
nal) across north and south Europe. These two areas are
chosen based on a visual inspection of the areas subjected
to similar changes across variables (Figure 4a highlights
the definition of the two areas). Scatterplots between
the variables of interest identify the relationships, and
a correlation coefficient quantifies their strength. We
only show the scatterplots showing significant relation-
ships, but a comprehensive summary of the correlation
coefficients found is given in supplemental Tables S1 and

FIGURE 5 Scatter plots of area-averaged CMIP6 climatological temperature bias and signal bias for (a) south Europe DJF E-OBS,

(b) north Europe DJF E-OBS, (c) south Europe DJF ERAS, (d) north Europe DJF ERAS, (e) south Europe JJA ERAS and (f) south Europe

JJA E-OBS. The star indicates the climatological and signal bias for the CMIP6 ensemble mean. The red line indicates the line of best fit for

the scatter points shown by gold (positive signal) or grey (negative signal) circles. The correlation coefficient between the climatological and

signal biases is shown on each panel, along with the area-averaged E-OBS and ERAS signals. Asterisks (**) indicates correlation coefficients

statistically significant at the 95% level [Colour figure can be viewed at wileyonlinelibrary.com]
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S2. Note that a strong relationship can help to narrow the
uncertainty due to differences in model responses and
inform on plausible mechanisms (Brient, 2020).

4.1 | Surface air temperature

Figure 4 shows the CMIP6 ensemble SAT and the bias to
ERA5 and E-OBS for JJA (left panel) and DJF (right
panel). In summer, the CMIP6 ensemble mean has a
warm bias in southern Europe and a cold bias in north-
ern Europe with respect to both ERA5 (Figure 4c) and
E-OBS (Figure 4e). Stippling shows where at least two-
thirds of the CMIP6 models agree on the sign of the bias
indicating that the bias pattern is not due to a few very
warm or very cold models, but it is common among
CMIP6 models. This bias pattern could be related to an
SLP bias over the North Atlantic present in all the CMIP6
models analysed (Figure S7). All models show too-strong
SLP pressure over the North Atlantic, which advects cold
air into Scandinavia and likely suppresses convection and
warms the rest of Europe.

The winter bias pattern is similar to summer, with
warm biases over the UK and southern Europe and cold
biases over East Scandinavia, but generally with less
agreement between models (Figure 4d,f). As for sum-
mer, SAT biases seem to be related to SLP biases.
Figure S8 shows that all the models have too high SLP
over southern Europe, which could explain the warm
bias and low pressure over the Northeast Atlantic that
could reduce the advection of relatively warmer Atlan-
tic air into Scandinavia, causing the cold bias over
this area.

In the next step, we analyse potential relationships
between SAT signal bias and mean bias in the CMIP6
ensemble (Figure 5). In DJF, most models (10 out of 17)
overestimate the warming signal in southern Europe
with respect to both ERA5 and E-OBS. Consistent with
Figure 4, 13 out of 17 models have a warm mean bias
(Figure 5a,c). Figure 5a,c also shows that as the model
SAT mean bias increases, the signal bias decreases, sug-
gesting that climatologically warmer models tend to have
smaller warming signals (Figure 5a,c). This statistical
relationship is robust for biases to ERA5 (r = −0.65) and
E-OBS (r = −0.66) both statistically significant at the 95%
level. A similar relation is apparent for DJF in northern
Europe, although much weaker (r = −0.37) and not sta-
tistically significant (Figure 5b,d).

The reason for this relationship is unclear. However,
we explored if it could be a consequence of a relationship
between warming and the expansion of the subtropical
dry zones (particularly affecting southern Europe) as a
response to global warming (Cresswell-Clay et al., 2022;
Grise & Davis, 2020; Nguyen et al., 2015). The reasoning
is that, especially in winter, when circulation changes are
relatively more important than in summer (Brogli
et al., 2019), the subtropical highs are located too far north
in the warmer models, encroaching into south Europe. In
these models, any further expansion of the subtropical
highs as a response to warming would have less effect on
the warming signal compared to models where expansion
of a more southerly high-pressure system affects the
European climate to a greater extent. Tentative evidence
supporting this hypothesis is presented in Figure 6.
Figure 6a shows that the models with higher mean SLP
tend to have a higher mean SAT with a statistically

FIGURE 6 Scatter plots of CMIP6 DJF climatological SAT versus climatological SLP (a) and SLP signal versus climatological SLP

(b) area-averaged over south Europe. The red line indicates the line of best fit for the scatter points shown by gold. The blue start shows the

multi-model ensemble mean. The correlation coefficient of the scatter plots is shown on each panel. Asterisks (**) indicates correlations

coefficients statistical significant at the 95% level [Colour figure can be viewed at wileyonlinelibrary.com]
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significant correlation of r = 0.49. Moreover, Figure 6b
shows that the models with higher mean SLP tend to have
a weaker SLP signal suggesting that the models with a too-
far north or stronger subtropical high tend to have a
weaker subtropical high expansion. However, there is no
direct relationship between the SAT signal and the SLP
signal (not shown); therefore, the explanation is inconclu-
sive. Further exploration of this hypothesis is out of the
scope of this paper and will be the topic of future work.

In JJA, the signal biases in southern Europe are smal-
ler than for winter, and all but three models have a warm
mean bias (Figure 5e,f). Generally, warmer models tend

to have a larger warming signal, but the correlation coef-
ficients are small (r = 0.25 for ERA5 and 0.22 for E-OBS)
and not statistically significant. However, MIROC6 has a
very large warm bias, which exceeds 5 K using both obser-
vational datasets despite having signal biases close to the
ensemble mean. Removing this model from the analysis
would give a stronger correlation coefficient between the
climatological and signal biases. This substantial warm
bias is identified at global scales over land (Allan
et al., 2022) and may be linked to a positive energy imbal-
ance of about 1 W�m−2 in the model's pre-industrial spin-
up experiment and underestimation of outgoing longwave

FIGURE 7 Maps of (a, b) CMIP6 ensemble climatological means for pr, (c, d) climatological biases using ERA5 tp and (e, f)

climatological biases using E-OBS rr for JJA and DJF calculated across 1950–2014. The biases are calculated as model minus observations, so

the blue (positive) contours indicate greater model precipitation and the red (negative) contours indicate less model precipitation. Stippling

in (c–f) shows where at least two-thirds of the CMIP6 models agree on the sign of the climatological bias [Colour figure can be viewed at

wileyonlinelibrary.com]
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radiation (OLR) in the pre-industrial control experiment
compared to observations (Tatebe et al., 2019).

Several authors showed evidence of coupling between
SM and local temperatures at intraseasonal and inter-
annual timescales (e.g., Dirmeyer, 2011; Ferranti &
Viterbo, 2006; Fischer et al., 2007). At longer timescales,
evidence has also shown positive feedback over Europe
between SM and temperature variability (Seneviratne
et al., 2006, 2010). In these studies, the projected increase
in temperature variability is partially attributed to mean
changes in SM (drying) over southern and central
Europe. The cross-correlation analysis between the tem-
perature signal bias and mean SM bias (Tables S1 and S2)
shows no relationship between model warming biases
and SM mean biases (r = −0.13, and not statistically

significant). This suggests that the mechanisms by which
SM–atmosphere interactions affect climate variability do
not have the same effect on the mean climatic changes
and cannot explain model differences.

4.2 | Precipitation

Figure 7 shows the CMIP6 ensemble mean PREC and the
bias to ERA5 and E-OBS for JJA (left panel) and DJF
(right panel). In JJA, there is a striking difference
between the biases from ERA5 (Figure 7c) and the biases
from E-OBS (Figure 7e). For ERA5, the CMIP6 ensemble
mean has a dry bias over most continental Europe, which
is especially large over the Alps and the Pyrenees.

FIGURE 8 Scatter plots of area-averaged CMIP6 climatological precipitation bias and signal bias for north Europe in JJA for E-OBS

(a) and ERAS (c). (b, d) Same as (a, c) but for DJF. The star indicates the climatological and signal bias for the CMIP6 ensemble mean. The

red line indicates the line of best fit for the scatter points shown by gold (positive signal) or black (negative signal) circles. The correlation

coefficient between the climatological and signal biases is shown on each panel along with the area-averaged signal. Asterisks (**) indicate

correlation coefficients statistically significant at the 95% level [Colour figure can be viewed at wileyonlinelibrary.com]
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However, for E-OBS, the models have a large wet bias
over central and north Europe and Scandinavia and a dry
bias over southern Europe. In DJF, the differences
between the CMIP6 ERA5 (Figure 7d) and E-OBS
(Figure 7f) biases are not as large as for JJA. Both show a
wet bias over central and north Europe and a dry bias
over the Mediterranean. However, opposite biases are
apparent in Scandinavia and the Balkans.

Further insights can be obtained by the scatterplots
between the PREC signal bias and mean bias shown in
Figure 8. In JJA, with respect to E-OBS (Figure 8a), all
models are too wet, and all but two underestimate the
wetting signal (seven have a negative signal, indicating
decreased PREC). The scatter plot suggests that wetter
models tend to have a larger positive (or less negative)
signal and a smaller signal bias with a statistically sig-
nificant correlation of r = 0.44. However, no relation-
ship is found when the bias is calculated with respect to
ERA5 (Figure 8c). In that case, all models underesti-
mate the signal and 11 out of the 17 models have a dry
mean bias which is entirely inconsistent with the biases
to E-OBS.

In DJF, an inverse relationship between signal
biases and mean biases for north Europe is apparent,
suggesting that the models with the strongest wet bias
tend to have smaller wetting signals. The relationship
holds for ERA5 and E-OBS, although the correlation
coefficients are small and not statistically signifi-
cant (r = −0.36 for E-OBS and r = −0.32 for ERA5)
(Figure 8b,d). Four models (ACCESS-CM2, CMCC-
ESM2 and FIO-ESM) have a negative signal compared
to E-OBS and ERA5, although ACCESS-CM2 is climato-
logically drier than E-OBS. AWI-ESM and CNRM-ESM2
are notable outliers with substantial positive signal
biases compared to E-OBS and ERA5, indicating that
their PREC is increasing at a greater rate than the obser-
vations or reanalysis.

4.3 | Soil moisture

Figure 9 shows the CMIP6 ensemble mean SM and the
bias to ERA5 for JJA (left panel) and DJF (right panel).
Since there is no observational estimate, model biases

FIGURE 9 Maps of (a, b) climatological ensemble mean CMIP6 mrsos and (c, d) climatological biases using ERA5 swvl1 for JJA and

DJF calculated across 1950–2014. The biases are calculated as model minus observations so the green (positive) contours indicate greater

model soil moisture and brown (negative) contours indicate less model soil moisture. Stippling in (c, d) shows where at least two-thirds of

the CMIP6 models agree on the sign of the climatological bias [Colour figure can be viewed at wileyonlinelibrary.com]
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with respect to ERA5 may also relate to deficiencies in
the ERA5 model, though the input of precipitation and
potential evaporative response to temperature changes
are expected to be realistic. In JJA, the CMIP6 ensemble
mean underestimates the SM over continental Europe,
and at least 2/3 of the models agree with the sign of the
bias. In winter, continental Europe biases are small, but
most models have a dry bias over the Iberian Peninsula
and west France and a wet bias over Norway and
Sweden.

The scatter plot between the signal bias versus the
mean biases of SM suggests a strong linear relationship
between them in DJF, both in northern (r = −0.56)
(Figure 10b) and southern (r = −0.61) Europe
(Figure 10b), both statistically significant at the 95% level.
The relation suggests that models with excess SM tend to
dry faster. This could be a simple consequence of dry
models being unable to dry further, but vegetation sto-
mata regulation, which affects plant water use effi-
ciency, could also play a role. In northern Europe,
10 out of 17 models have a wet soil climatological bias,
and all but two models have negative signal biases
(excess drying). Five out of 17 models have a positive
signal (increasing SM), and the rest have a negative

signal (decreasing SM). The CanESM5 model is a nota-
ble outlier with a much stronger negative signal bias
and drying signal than other models. In southern
Europe, 15 of the 17 models have a dry mean bias, and
all but four models have positive signal biases
(i.e., models dry too little or even increase soil moisture
[models 10 and 13]) (Figure 10b).

5 | DISCUSSION

5.1 | Decadal and multidecadal
variability

The regression scheme applied in this manuscript aims to
separate the forced response from the internal variability.
However, due to the relatively short span of the observa-
tional products, decadal and multidecadal variability
modulating the GMST is likely to impact the results. We
test the impact of internal variability in the S/N patterns
by calculating the SAT signal for all members of
ACCESS-ESM1-5, which has a large ensemble of 40 runs.
These runs only differ from their initial conditions and
have an identical representation of the physical

FIGURE 10 Scatter plots of area-averaged CMIP6 climatological soil moisture bias and signal bias for north Europe DJF (a) and south

Europe DJF (b) for ERAS. The star indicates the climatological and signal bias for the CMIP6 ensemble mean. The red line indicates the line

of best fit for the scatter points, which are shown by gold (positive signal) or black (negative signal) circles. The correlation coefficient

between the climatological and signal biases is shown on each panel, along with the area-averaged ERAS signal. Asterisks (**) indicates

correlation coefficients statistically significant at the 95% level [Colour figure can be viewed at wileyonlinelibrary.com]
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processes. We have performed the same test for precipita-
tion. However, the spatial variability of the precipitation
signals is very large in the models, so the average spatial
signal is tiny (see Figures S3 and S4), making the inter-
pretation of the test results meaningless. Figure S11
shows box plots of the SAT signal over southern and
northern Europe for winter and summer for all the
CMIP6 models (green dots) and the 40 ensemble mem-
bers of ACCESS-ESM1-5 (red dots). Their corresponding
standard deviation quantifies the spread. The signal
spread is larger for the 16 CMIP6 models than for the
40 ACCESS members especially over southern Europe
suggesting that a portion of the spread can be attributed
to different model physics. However, the figures also indi-
cate that the impact of the large-scale decadal variability
is not negligible and impacts the model signals.

5.2 | Aerosol external forcing

Anthropogenic aerosols have been the second dominant
driver of forced climate change after GHGs and have an
opposite radiative impact (Myhre et al., 2013). Sulphate
aerosols directly influence the Earth's radiative budget by
scattering shortwave radiation and indirectly by changing
the clouds' albedo, lifetime and precipitation efficiency
(e.g., Bellouin et al., 2020). The total aerosol radiative forc-
ing in 2011 with respect to pre-industrial times is assessed
to be −0.45 ± 0.5 W�m−2, and aerosol-cloud interaction
estimated as −0.45 [−1.2 to 0.0] W�m−2 (Gulev et al., 2021
IPCC AR6, Chapter 2). Globally, the aerosol optical depth
increased from pre-industrial times up to 1990, slowly
decreasing afterwards. Since aerosols have the opposite
impact on the GMST than GHGs (Forster et al., 2021),
their effect is included in the term L(t) (see Equation (1)).
The early period of our analysis (�1950–1983) was a rela-
tively cool period due to anthropogenic aerosol
(e.g., Wang & Wen, 2022), and therefore the magnitude of
the signals is potentially amplified in our calculations. Fur-
thermore, since aerosol radiative forcing is more uncertain
than GHGs (Forster et al., 2021) this contributes to an
additional spread in the model simulated signal of climate
change as the spatial pattern and magnitude of aerosol
forcing changes over time (Forster et al., 2021).

Another potential influence in the signals is volcanic
eruptions. Explosive volcanic eruptions can affect the global
climate by injecting large quantities of aerosols (especially
sulphur compounds) into the stratosphere (e.g., Hansen
et al., 1997). The aerosols tend to cool the surface, warm the
stratosphere and, in some instances, modify the meridional
temperature gradients and the tropospheric circulation pat-
terns (e.g., Robock, 2000). However, the e-folding residence

time of aerosols in the stratosphere is about 1 year and only
two major eruptions, the 1963 Agung eruption and the 1982
El Chichon, occurred in our baseline period. Moreover, no
major eruption occurred at the end of the analysed period, so
the direct impact of volcanism in the signals should be small
overall. However, there is evidence that volcanism as well as
anthropogenic aerosol could also impact the climate at the
decadal time scale by forcing changes in oceanic modes of
variability such as the ENSO or the AMOC (e.g., Ding
et al., 2014; Hermanson et al., 2020; Iwi et al., 2012; Menary
et al., 2020) which likely affect our results.

5.3 | Emergent constraints

An emergent constraint is a relationship between the
intermodel spread of the climate change response of
some variable to present-day biases or short-term varia-
tions that can be observed (e.g., Brient, 2020). These rela-
tions can potentially be used to constrain the future
response in climate projections. In this work, we have
analysed the relationships between the models signals and
their climatological biases and found a relationship in south-
ern Europe between SAT signal biases and SAT mean
biases, suggesting that the climatologically too-warm models
tend to warm less. Several conditions/uncertainties must be
considered when evaluating the robustness of an emergent
constraint: (1) An emergent constraint must be supported
with a physical understanding of the mechanisms underly-
ing the statistical relationship. (2) The observational period
must be long enough, and the uncertainty of the observa-
tions small enough so that not all the models are consistent
with the observations. (3) The emergent constraint inference
method treats the model set as a random sample, but models
share components and often derive from each other (Knutti
et al., 2013). These limitations must be taken into account
when evaluating the emergent constraint robustness.

We have proposed that the reported relationship for
SAT in southern Europe could be related to the position
of the subtropical highs, and we have found the same
relationship for two observational datasets (E-OBS and
ERA5). However, the physical hypothesis requires further
analysis and the set of CMIP6 models used is relatively
small. To consider the reported relationship an emergent
constraint and use it to constrain future SAT projections
would require analysing an extended model set and fur-
ther quantifying observational uncertainty. Furthermore,
as proposed by Hall et al. (2019) to verify that the statisti-
cal relationship has not been found by chance, the same
relationship should also be found in sensitivity experi-
ments in which a range of climatological SAT are imposed
in a model. Overall, we consider that the reported
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relationship merits further inquiry and its potential as
emergent constrain will be the topic of future research.

6 | SUMMARY

In this manuscript, we have assessed the emergence of
climate change signals in CMIP6 during the 1950–2014
period over Europe, compared these with observations
and investigated the reasons for discrepancies. Climate
change signals are evaluated from the signal-to-noise
ratio (S/N) of three variables with a significant societal
impact: surface air temperature (SAT) and precipitation
(PREC), which are evaluated against ERA5 and E-OBS,
and soil moisture (SM) which is compared solely against
ERA5 due to the lack of dense SM observational net-
works. In the following, we summarize the main results.

6.1 | Temperature climate change
signals

In JJA, the CMIP6 multimodel ensemble mean SAT S/N
is larger than one across the entire domain, indicating
that during the last decade, all of Europe experienced
“unusual” SAT compared to the mid-XX century. The
pattern and magnitude of the CMIP6 ensemble mean
S/N are similar to ERA5. In contrast, E-OBS has gener-
ally smaller S/N values, especially in eastern Europe, Scan-
dinavia and the UK. An analysis of the individual models
shows that all agree on the warming signal positive sign,
although the warming magnitude varies among models.
The magnitude of the discrepancy is especially large over
western Europe, UK and Scandinavia and smaller over
eastern Europe. An analysis of the models SLP signals
reveals a large range of circulation responses involving dif-
ferent advection patterns, which could partially explain
the differences in the SAT signals (Figures S10 and S11).

Biases in the SLP patterns also seem to be associated
with the models SAT mean biases. Most models have a
warm bias in southern Europe and a cold bias in north-
ern Europe which appears to be related to a too-strong
SLP pressure over the North Atlantic, which advects cold
air towards Scandinavia and likely suppresses convection
and warms the rest of Europe.

We also analyse whether model differences in SM are
related to their SAT differences. Interestingly, we found
no relation between models SM bias and their SAT sig-
nals; drier models do not generally warm faster. This sug-
gests that the mechanisms by which SM-atmosphere
interactions affect climate variability did not have the

same effect on the mean climatic changes during
the studied period and cannot explain model differences.

In DJF, there is a good agreement between the CMIP6
ensemble mean SAT S/N and the S/N from ERA5 and
E-OBS. The S/N spread among CMIP6 models is similar
to summer but relatively much larger when compared to
DJF S/N values. In particular, five models show extensive
cooling areas, clearly at odds with observations. We
found evidence that these intermodel discrepancies could
be related to differences in the models mean biases. In
particular, we have found a robust relationship in south-
ern Europe between SAT signal biases and SAT mean
biases, suggesting that the climatologically too warm
models tend to warm less. Tentative evidence suggests
that this could be related to the position of the subtropi-
cal highs (see section 5).

6.2 | Precipitation climate change
signals

The CMIP6 ensemble mean does not show any signifi-
cant change in PREC in all the domain during summer
or winter (jS/Nj < 0.5) for the 1950–2014 period. In JJA,
the CMIP6 ensemble S/N pattern is strikingly different
from ERA5 and E-OBS, which show a SW–NE diagonal
divide with decreasing PREC to the south and increased
PREC to the north. An analysis of the individual model
patterns shows that these discrepancies are due to the
large diversity of S PREC patterns among models, with
several showing opposite patterns. For example, 7 of the
18 models analysed show an overall increase in southern
Europe PREC, which is clearly at odds with observations.
This result suggests that the PREC S/N ensemble mean
does not represent the forced response well.

In DJF, the ensemble mean S/N pattern indicates an
increase in PREC over most of Europe except south Ibe-
ria and some small regions of the Mediterranean coast.
This pattern resembles that of the E-OBS but is remark-
ably different from ERA5, which exhibits a clear SW–NE
divide with increased PREC to the north and a decrease
to the south. The difference between models and ERA5
could be attributed to a too-zonal North Atlantic jet
stream in the models, resulting in the jet intercepting the
European continent too far south.

Both in DJF and JJA, the SLP S/N patterns for indi-
vidual models correlated well with their PREC S/N, sug-
gesting that the intermodal differences in the PREC
signals can be attributed to divergent circulation changes
as a response to global warming together with the mean
jet stream bias.
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6.3 | Soil moisture climate change
signals

In summer, the CMIP6 ensemble mean S/N indicates
that the SM has decreased over all of Europe, although
the S/N has not crossed the threshold for an “unusual”
climate (jS/Nj > 1). ERA5 also shows a decrease in SM
over most of Europe except Southern Scandinavia, the
UK and Ireland. The S/N is smaller than −1 (signifying
unusual soil drying) over some areas of Spain, the Alps and
Scandinavia and larger than +1 (unusually wet) in Ireland.
Despite the broad agreement between the CMIP6 ensemble
mean and the observations, the individual models S/N
response is very diverse, sometimes showing opposite pat-
terns. Over continental Europe, the models SM S/N closely
follow their S/N PREC pattern. However, this is not the
case in Scandinavia, where some models show a PREC
increase but soil drying, which could be linked to a
reduced/early snowmelt in spring (e.g., Manabe et al., 1981;
Mitchell & Warrilow, 1987; Ruosteenoja et al., 2018).

In winter, the CMIP6 ensemble mean S/N indicates a
decrease in SM over most of Europe except over some
areas of Scandinavia. This pattern differs from ERA5,
which shows a SW–NE diagonal divide with an increase
of SM to the north and a decrease to the south, which
resembles its S/N PREC pattern. The diversity in the cli-
mate change signals of SM among individual models is
striking, with many models showing opposite patterns.
Interestingly, several models show a decoupling between
the SM and PREC signals, with extensive SM decreases
despite increased PREC.

The relationship between soil-moisture signal
biases and mean biases shows that in winter, both
in the north and southern Europe, the models with
excess SM tend to dry faster. This could be a simple
consequence of dry models being unable to dry
further and perhaps with the vegetation stomata regu-
lation with models with no SM limitation increasing
evapotranspiration.

Finally, a key message from this work is also that the
emergence of climate change signals, even for tempera-
ture, is affected by data coverage. This is evidenced by
the remarkably different S/N temperature and PREC pat-
terns between ERA5 and E-OBS. This pattern diversity in
the observations complicates the evaluation of climate
models at the regional scale and highlights the critical
importance of creating and maintaining high-quality,
dense observational networks.
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