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Abstract

Forming and comparing subjective values (SVs) of choice options is a critical stage of deci-

sion-making. Previous studies have highlighted a complex network of brain regions involved

in this process by utilising a diverse range of tasks and stimuli, varying in economic, hedonic

and sensory qualities. However, the heterogeneity of tasks and sensory modalities may sys-

tematically confound the set of regions mediating the SVs of goods. To identify and delin-

eate the core brain valuation system involved in processing SV, we utilised the Becker-

DeGroot-Marschak (BDM) auction, an incentivised demand-revealing mechanism which

quantifies SV through the economic metric of willingness-to-pay (WTP). A coordinate-based

activation likelihood estimation meta-analysis analysed twenty-four fMRI studies employing

a BDM task (731 participants; 190 foci). Using an additional contrast analysis, we also inves-

tigated whether this encoding of SV would be invariant to the concurrency of auction task

and fMRI recordings. A fail-safe number analysis was conducted to explore potential publi-

cation bias. WTP positively correlated with fMRI-BOLD activations in the left ventromedial

prefrontal cortex with a sub-cluster extending into anterior cingulate cortex, bilateral ventral

striatum, right dorsolateral prefrontal cortex, right inferior frontal gyrus, and right anterior

insula. Contrast analysis identified preferential engagement of the mentalizing-related struc-

tures in response to concurrent scanning. Together, our findings offer succinct empirical

support for the core structures participating in the formation of SV, separate from the

hedonic aspects of reward and evaluated in terms of WTP using BDM, and show the selec-

tive involvement of inhibition-related brain structures during active valuation.

Introduction

In human decision-making, where an individual compares their options and select the course

of action with the highest SV, the construction of SV of potential outcomes is critical [1].
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Previous theories of decision-making have highlighted rational expectations [2–4] and refer-

ence points [5,6] as prominent factors in SV formation. A set of regions have been identified

as comprising the brain valuation system, including the ventromedial prefrontal cortex

(vmPFC) [7–9], ventral striatum (VS) [10–13], anterior insula (AI) [14–17], posterior parietal

cortex (PPC) [18,19], orbitofrontal cortex (OFC) [20–22], amygdala [7,23–26] and anterior

cingulate cortex (ACC) [27–30].

Subjective valuation is a complex process requiring the amalgamation of an individual’s

perceptions, prior knowledge, and reward expectations of a given stimulus. It has often been

implicitly defined through differing methodology; such as liking scales, unpleasantness ratings

and binary forced choice decisions in monetary gambling tasks. However, this heterogeneity

in methodology can have the consequence of implicitly defining varying conceptualisations of

value under the umbrella term of SV, with the potential to conflate SV with other closely

related concepts. For example, hedonic understandings of attractiveness [1] and pleasure [31]

can be understood as distinct from utilitarian concepts of worth [3] and a willingness to exert

effort or a motivation to take on costs [32]. Further, there are established differences in the

brain circuitry involved in the liking, wanting, and pleasantness of a reward, in particular in

subregions of the VS [33–36]. Whereas finding a reward pleasant or likeable refers to an emo-

tional state and its experiential qualia, the wanting of a reward refers more to the underlying

motivational processes and is linked to decision utility [37]. In this way, heterogeneity in the

definitions of SV and task paradigms may confound the findings to date, and it is likely that

the range of brain regions associated with SV is smaller than indicated by available meta-analy-

ses owing to SV being estimated by hedonic measures. For example, in the interest of maximis-

ing the pool of viable studies, Bartra et al. (2013) used simple search parameters of “fMRI”

AND “reward”. However, as receiving a reward entails multiple other processes in addition to

the representation of the SV of the object, such as the pleasantness of positive feedback, the

perceived attractiveness of the object, and other hedonic processes, it is not known which part

of the brain valuation system would specifically encode SV.

In behavioural economics and neuroeconomics, valuation consolidates multiple determi-

nants of a goods’ value into a singular figure of a given currency. Methodologically, this has

several advantages. Firstly, one can assign an economic value to any type of outcome stimulus,

such as food, music, pain, or lottery tickets [20,21,38,39]. In this way, experiences in different

mediums can all be translated into monetary worth that is subjective to the individual. Sec-

ondly, multiple facets of reward receipt, such as the outcomes’ temporal immediacy and proba-

bility of reward, can be integrated into a single discounted SV, and so complex options can be

compared against each other. Thirdly, economic valuation is applicable to both rewards and

punishments: tasks can explore paying for the opportunity to receive a good outcome or to

avoid a bad one [40], which allows the relationships between loss and gain to be explored.

Fourthly, as monetary scales are linear, the relative relationships of a theoretically infinite

number of outcomes can be compared and ranked. Finally, it is intuitive to participants, as

individuals are well-versed in weighing up purchasing decisions to maximise their utility in

their everyday lives.

WTP is the standard measure of value in economics, and is defined as the maximum

amount of currency a customer is willing to part with in order to purchase a product or ser-

vice. There are several methods that can estimate WTP, either directly or indirectly, and ascer-

tain a consumer’s hypothetical or actual WTP [41]. However, most methods, such as 2

alternative-forced-choice tasks (2AFC), open-ended questions (“what would you be willing to

pay for this item?”) or choice-based conjoint analysis (“pick one item from this list of options”)

can produce unreliable results [42,43]. This is due to a lack of incentive to induce truth-telling:

within the parameters of these mechanisms, participants are not appropriately compensated
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for revealing the private information of their SVs. Therefore, they may not wish to do so, and

the responses may be arbitrarily chosen or due to other motives, reporting SVs that they do

not necessarily hold or would act upon. As the participants responses do not hold real conse-

quences, such as a purchasing commitment, their choices may not reflect their true prefer-

ences. Consequently, researchers cannot rely on the values participants provide [44,45].

Furthermore, hypothetical purchasing scenarios has been shown to produce consistent

behavioural overestimations of WTP in comparison to that of real purchasing scenarios,

termed the Hypothetical Bias [46–49]. This effect is strongest in indirect measures, such as in

2AFCs, leading to consistent overestimation of WTP values [50]. Crucially for this work, valu-

ation areas of the brain are also differentially activated by hypothetical and real choices, with

greater activity for real purchasing decisions in the orbitofrontal cortex, and conflicting evi-

dence of activation in the ventral striatum for hypothetical choices [51,52].

In contrast, the auction paradigm Becker-DeGroot-Marschak mechanism (BDM), equiva-

lent to a second-price sealed-bid auction, is an incentivized experiment [53]. During a BDM, a

player submits a single bid for a given item. Their bid value is compared to a randomly gener-

ated price, and if the player’s bid exceeds or equals this price they win the item and pay the ran-

dom price. If the player’s bid does not exceed that of the random number generator, they win

nothing and lose nothing. As the player’s bid value is used to produce the outcome directly

affecting the player, bidding one’s true SV is the dominant strategy. If the player underbids, they

only risk not winning the item for a price that they would be willing to pay, and if the player

overbids, they only risk winning the item for more than they are willing to pay. In this way,

their bid value can also be thought of as their reservation price, or indifference point [54]. For-

mal proof of the dominant strategy in BDM Auctions can be seen in Supporting information.

The present study proposed to compare brain activations associated with SV as defined by

WTP through a BDM by employing a coordinate based meta-analysis with activation likeli-

hood estimation (ALE) [55,56]. A single paradigm was utilised, therefore avoiding the con-

founding effects of task heterogeneity. The BDM has become increasingly popular in

neuroeconomics in recent years, in no small part to its use in the seminal paper by Plassmann,

O’Doherty and Rangel (2007), so that there now exists a sufficient body of work to conduct a

meta-analysis of fMRI studies evaluating WTP using the BDM.

Activation in the brain valuation system tends to increase when considering the SV of the

available options during choice, as well as with the value of the reward received, and responds

to both primary and secondary forms of reward [17,57,58]. This suggests that a domain-gen-

eral system in the brain is responsible for the encoding of SV across multiple decision stages

and reward types [59]. Furthermore, evidence for automaticity in value attribution has been

provided in a number of previous studies [7,60–62]. For instance, the brain valuation system

scales the SV of objects even if participants are asked to make value-irrelevant judgements,

such as perceptual discernment of stimuli characteristics [60,61,63]. To investigate automatic-

ity of subjective valuation, we also compared the WTP contrasts in studies for which WTP was

elicited during fMRI scanning (concurrently) or outside of the scanner (consecutively). We

posited that the brain regions encoding WTP would be invariant to the concurrency of the

BDM auction session and fMRI recording, as the WTP values would be automatically invoked

even in non-incentivized tasks or during the passive viewing of objects even in absence of

choice selection.

Methods

An a priori protocol for this meta-analysis was preregistered at The Open Science Framework:

https://osf.io/vpt3d.

PLOS ONE Economic value in the Brain: A meta-analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0286969 July 10, 2023 3 / 21

https://osf.io/vpt3d
https://doi.org/10.1371/journal.pone.0286969


Information sources and search strategy

The formal search strategy consisted of systematically examining 3 electronic databases

(PubMed, Scopus, PsycINFO) through August 2022 using the MeSH search terms (fMRI OR

functional magnetic resonance imaging OR neuroimaging) AND (willing to pay OR willing-

to-pay OR willingness to pay OR willingness-to-pay OR WTP OR BDM OR Becker–DeG-

root–Marschak OR Becker DeGroot Marschak OR economic valuation). Searches were

restricted to terms found in the title or abstract of the articles. No date limit was set for the

searches.

During the search process, the authors noticed that several potentially eligible papers did

not refer to the task as a BDM auction; for example, one article in the final corpus cites Plas-

smann, O’Doherty and Rangel (2007) and not Becker, DeGroot and Marschak (1964) as the

task originators [64]. Therefore, for completeness, a comprehensive manual search of the ref-

erence sections and citation lists of identified articles was conducted to supplement the formal

searches. Previous meta-analyses of fMRI studies on human reward [16,65–67] were also

screened for additional articles.

Article selection and extraction of data

Formal database searches were conducted by ANF, as were supplementary and manual

searches. One author (ANF) was responsible for assessment of articles for inclusion, with three

authors (AS, JH and DH) conducting 2nd reviews of 10% of the collected articles each (totalling

30% of the initially identified articles). Decisions regarding final article inclusion were deter-

mined by discussion. One author (ANF) extracted the relevant coordinate data, and these were

cross-checked by a second author (CR).

Eligibility criteria

The criteria for inclusion were 1) any human fMRI studies published through to August 2022; 2)

original English language articles; 3) published in a peer-reviewed journal; 4) used a Becker-DeG-

root-Marschak task to elicit WTP; 5) computed the correlation of Blood Oxygenation Level

Dependent (BOLD) activity to the WTP value; 6) coordinates were reported in the article or sup-

plementary material in Montreal Neurological Institute (MNI) [68] or Talairach space [69]; 7)

data were obtained from a healthy population (systemic disease-free); 8) whole-brain analysis

were reported with thresholding of (or equivalent to) p< 0.001 uncorrected voxelwise throughout

the whole brain with at least p< 0.05 cluster level correction (or equivalent) declared [70].

Additional handling of data

We excluded papers which only reported region of interest (ROI) analysis, which may bias

results towards more established or accepted regions [71]. One of the studies in the final sam-

ple, Chib et al. (2009), reported three separate activation maps for the computation of WTP for

three different categories of goods: money, trinkets and snacks. In the interest of including a

wide variety of stimuli, the activation map for trinkets was selected for inclusion in the meta-

analysis. Studies that reported coordinates in Talariach space were converted into MNI coordi-

nates using GingerALE (Brainmap GingerALE version 3.0.2; Research Imaging Institute;

http://brainmap.org) [72].

Activation likelihood estimation meta-analysis

A primary ALE meta-analysis was conducted for experiments using BDM paradigms to elicit

WTP measures, contrasting increasing WTP with increasing BOLD responses. Decreasing
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activations in line with increasing WTP were not investigated. See Table 1 for data on the

included studies. Subsequently, an exploratory secondary analysis was performed on the same

dataset, split by concurrency of BDM task with fMRI scanning, with 16 BDM tasks performed

inside the scanner (concurrently) and 8 BDM tasks performed outside the fMRI scanner

(consecutively).

To determine consistency in reported regions of neural activation, for our primary analysis

we conducted a coordinate-based ALE meta-analysis (single dataset analysis). The analysis was

performed using Brainmap GingerALE version 3.0.2. Standardized procedures and default

parameters for performing ALE using GingerALE were followed, as outlined in the Ginger-

ALE user manual (Research Imaging Institute; http://brainmap.org) and Eickhoff et al. (2016).

The concordance of ALE values throughout the brain for WTP were evaluated in compari-

son to random distributions using permutation analysis [94] with 10,000 permutations. An

initial cluster forming threshold (uncorrected p< .001) was implemented followed by cluster-

level Family-wise error (FWE) correction (p< .05) to identify relevant ALE regions as previ-

ously recommended [71,95]. Multi-image analysis GUI (http://ric.uthscsa.edu/mango) was

used to overlay ALE maps onto an anatomical image using MNI coordinates.

Resulting ALE maps for WTP for concurrency of BDM task were compared using conjunc-

tion and contrast analyses. The same protocol as previous ALE meta-analyses conducted in

our lab was followed [96,97]. Again, permutation analysis was first performed on the concur-

rent/consecutive sub-groups with 10,000 permutations, an initial cluster forming threshold

(uncorrected p< .001) and a cluster-level Family-wise error (FWE) correction of p< .05. For

cluster analysis, an uncorrected threshold of p< 0.05 and a minimum cluster size of 200 mm3

was adopted as previously recommended [72,95,98–100].

To facilitate future research, ROIs created using the resultant unthresholded meta-analytic

clusters are available via NeuroVault (https://neurovault.org/collections/IBLCLBYH/images/

785459/).

Fail-safe N analysis

Co-ordinate-based meta-analyses can be affected by publication bias, where unpublished null

results may alter or invalidate findings: known as the “file drawer problem” [101,102]. The

fail-safe N (FSN) analysis addresses this issue, assessing the robustness of ALE clusters by

introducing null pseudo-studies as noise to the ALE cohort to calculate the amount of contra-

evidence that the ALE can tolerate [103]. It is posited that the number of unpublished fMRI

studies is lower than behavioural studies due to their greater expense and time-demands.

Recent estimations propose that for every 100 published fMRI studies, there are between 6–30

unpublished studies which report no local maxima [104]. Using the upper bound, an estimate

for the number of unpublished WTP studies using BDM used in the FSN analysis (minimum

FSN) was set at 7 null pseudo-studies [105]. Further, to ensure that no single study is driving

the ALE scores of each cluster, a maximum FSN was set at 146, requiring at least a 10% contri-

bution from the cohort studies [95].

Results

Fig 1 illustrates a flowchart indicating the study selection steps. A total of 8065 records were

returned from initial searches. Of these, 1940 were duplicates from repeated searches and

removed in the first step. A further 5791 articles were removed following the initial review of

titles and abstracts. Studies excluded at this stage included: those that were not reported in

English (7) those where it was clear and obvious that no suitable (i.e. healthy, human adult)

population was reported (291), where it was clear and obvious that they did not utilize a WTP
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Table 1. Studies and experiments included in ALE meta-analyses on willingness-to-pay in human adults.

Authors Year Title N

(men)

Mean age

(SD)

Concurrency of

recordings

Main Findings

Chib et al. [73] 2009 Evidence for a common representation of

decision values for dissimilar goods in human

ventromedial prefrontal cortex

32

(25)

23 Consecutive Common currency mechanism for decision,

outcome and anticipatory values encoded in the

vmPFC

De Martino

et al. [21]
2009 The neurobiology of reference-dependent value

computation

18

(10)

22.2 (3.1) Consecutive OFC and dorsal striatum encoded absolute

WTP, VS indexed endowment effect

De Martino

et al. [74]
2013 Confidence in value-based choice 20

(NA)

24.24 Consecutive VmPFC encodes SV comparisons and

subjective confidence in decisions

Enax et al. [75] 2015 Nutrition labels influence value computation of

food products in the ventromedial prefrontal

cortex

25

(11)

23.3 (4.4) Concurrent VmPFC, ACC, caudate nucleus and putamen

encode WTP. vmPFC modulated by the

inferior frontal gyrus / dorsolateral prefrontal

cortex (dlPFC) when rating unhealthy foods,

and by the posterior cingulate cortex (PCC)

when rating healthy foods

Gluth et al. [76] 2015 Effective Connectivity between Hippocampus

and Ventromedial Prefrontal Cortex Controls

Preferential Choices from Memory

30

(12)

26.1 (3.9) Consecutive VS, vmPFC and hippocampus encode the value

of the chosen option, vmPFC encodes the value

of the unchosen option

Grueschow et al.
[61]

2015 Automatic versus Choice-Dependent Value

Representations in the Human Brain

26

(13)

RG 20–28 Consecutive Medial PFC and VS activity correlated with SVs

during purchasing but not perceptual decisions.

PCC activity correlated with both

Hare et al. [77] 2008 Dissociating the role of the orbitofrontal cortex

and the striatum in the computation of goal

values and prediction errors

16 (9) 24.1, RG

19–38

Consecutive Goal values correlated with medial OFC

activity, decision values correlated with central

OFC activity, and prediction errors correlated

with VS activity

Hutcherson

et al. [78]
2012 Cognitive regulation during decision making

shifts behavioral control between ventromedial

and dorsolateral prefrontal value systems

26

(17)

22, RG

19–28

Concurrent VmPFC and dlPFC correlated with WTP,

indulging upregulated vmPFC signals,

behavioural control modulation increased

dlPFC contribution

Janowski et al.
[79]

2013 Empathic choice involves vmPFC value signals

that are modulated by social processing

implemented in IPL

32

(32)

22.8 (3.9) Concurrent Playing in a BDM for others engages vmPFC,

modulated by activity from inferior parietal

lobule (IPL)

Linder et al. [80] 2010 Organic labeling influences food valuation and

choice

30

(15)

26.03, RG

23–38

Concurrent Activity in VS increased with WTP for organic

foods

Mackey et al.
[81]

2016 Greater preference consistency during the

Willingness-to-Pay task is related to higher

resting state connectivity between the

ventromedial prefrontal cortex and the ventral

striatum

19 (9) 31.5 (11) Concurrent Ventral precuneus, vmPFC and PCC activity

increased with WTP

McNamee et al.
[82]

2013 Category-dependent and category-independent

goal-value codes in human ventromedial

prefrontal cortex

13 (8) 22.1 (3.6) Concurrent Medial PFC implements a goal-value code

independent of stimulus category, medial OFC

and vmPFC contain category dependent value

codes

Medic et al. [83] 2014 Dopamine modulates the neural representation of

subjective value of food in hungry subjects

47

(23)

23.8 (3.2) Concurrent Infusion of dopamine agonist increased the

inferior parietal gyrus/intraparietal sulcus

response to WTP

Merchant et al.
[84]

2020 Neural Substrates of Food Valuation and Its

Relationship With BMI and Healthy Eating in

Higher BMI Individuals

93

(16)

39.25

(3.5)

Concurrent vmPFC, anterior VS, bilateral AI, and the ACC

activity correlated with WTP, vmPFC activity

linked to valuation of healthy (vs unhealthy)

items

Motoki et al.
[85]

2019 Common neural value representations of hedonic

and utilitarian products in the ventral stratum:

An fMRI study

27

(21)

20.37

(1.15)

Concurrent Values of hedonic and utilitarian goods are

similarly processed in the VS during BDM

Plassmann et al.
[86]

2010 Appetitive and aversive goal values are encoded

in the medial orbitofrontal cortex at the time of

decision making

20

(15)

23.25, RG

19–34

Concurrent Medial OFC and the dlPFC correlated with

appetitive and aversive goal values

(Continued)
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task (2560), not an experimental report (e.g. review articles) (732), not fMRI method (2201).

Furthermore, following full-text review a further 309 articles were removed including those

which exhibited an inappropriate contrast (e.g. donation task) (287), or which only reported

ROI analyses (22), leaving a total of 24 studies for the analyses of WTP (Table 1).

Significant ALE clusters for WTP

The WTP ALE meta-analysis pooled data from a total of 731 participants and 190 reported

foci from the 24 studies. The results (see Table 2) revealed six significant clusters, where ALE

values represent consistent spatial activations which increased in line with WTP. The largest

cluster was elicited in the vmPFC (Brodmann areas 10 and 32) centring on the medial prefron-

tal gyrus and extending into the left subgenual ACC (sgACC, Brodmann area 32) and right

pregenual ACC (pgACC, Brodmann areas 24 and 32). Further clusters were found encompass-

ing the bilateral VS, in the right dorsolateral prefrontal cortex (dlPFC) (Brodmann areas 45

and 46), the right inferior frontal gyrus (IFG) (Brodmann area 44) and the right AI (Brodmann

area 13). We found satisfactory robustness of our results against publication bias, with all but

the right AI cluster showing an FSN above the minimum imposed, indicating an overall robust

convergence of foci. Fig 2 illustrates the location of significant ALE clusters from the meta-

analysis of WTP.

Contrast and conjunction analyses. To investigate to what extent the relationship

between brain activation and reported WTP is automatically engaged, a contrast analysis was

conducted comparing the ALE maps of concordant activations for concurrency of BDM per-

formance and fMRI recording. Data was pooled from the entire cohort of 24 studies, with a

total of 16 studies (535 participants and 158 reported foci) for concurrent recording and 8

studies (196 participants and 32 reported foci) for consecutive recordings. The contrast

Table 1. (Continued)

Authors Year Title N

(men)

Mean age

(SD)

Concurrency of

recordings

Main Findings

Plassmann et al.
[20]

2007 Orbitofrontal cortex encodes willingness to pay in

everyday economic transactions

19

(16)

25.45, RG

18–46

Concurrent Medial OFC and the dlPFC correlated with

WTP

Rihm et al. [87] 2019 Sleep deprivation selectively upregulates an

amygdala–hypothalamic circuit involved in food

reward

32

(32)

26.13

(3.8)

Consecutive WTP increased when sleep deprived.

Upregulation of hypothalamic valuation signals

and amygdala–hypothalamic coupling after

sleep deprivation

Seak et al. [88] 2021 Single-Dimensional Human Brain Signals for

Two-Dimensional Economic Choice Options

24

(11)

25.4, RG

19–36

Concurrent Activity in striatum, midbrain, and OFC

correlated with revealed preference across

choice indifference curves

Setton et al. [89] 2019 Mind the gap: Congruence between present and

future motivational states shapes prospective

decisions

25

(10)

22.52

(2.79) RG

18–30

Concurrent VS activity positively correlated with level of

prospection bias towards food items

Tang et al. [90] 2014 Behavioral and neural valuation of foods is driven

by implicit knowledge of caloric content

29

(NA)

(NA) Concurrent Activity in the vmPFC linked with caloric

density of auction food items

Verdejo -Román

et al. [91]
2017 Brain reward system’s alterations in response to

food and monetary stimuli in overweight and

obese individuals

81

(38)

33.35

(6.28)

Concurrent Obese group showed greater activation in VS

and dorsal striatum than overweight and

normal weight groups

Waskow et al.
[92]

2016 Pay what you want! A pilot study on neural

correlates of voluntary payments for music

25

(13)

35.08

(17.71)

Concurrent Compared “Pay What You Want” (PWYW) to

fixed price condition of BDM. OFC, medial

PFC and ACC activity correlates with WTP in

BDM, no correlation for PWYW found

Zangemeister

et al. [93]
2019 Neural activity in human ventromedial prefrontal

cortex reflecting the intention to save reward

22

(NA)

NA Consecutive vmPFC activity correlates with value and one’s

intention to save during sequential economic

choices

https://doi.org/10.1371/journal.pone.0286969.t001
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analysis revealed 3 clusters indicative of increased activation likelihood estimates for concur-

rent scanning relative to consecutive scanning. These regions were in the right IFG, right

dlPFC and right caudate (Table 3, Fig 3).

Fig 1. Flow chart outlining the formal search and eligibility screening process.

https://doi.org/10.1371/journal.pone.0286969.g001

Table 2. Locations of significant clusters from the ALE map of WTP.

Cluster Label Volume (mm3) # Studies
(foci)

ALE peak Brodmann area MNI co-ordinates (x, y, z) Talairach co-ordinates (x, y, z)

1 vmPFC L 4584 17 (19) 0.02463 10/32 -2, 40, -12 -2, 35, -12

vmPFC L 0.02412 10/32 -8, 48, -6 -8, 43, -6

Subgenual ACC L 0.01898 32 -4, 28, -12 -4, 24, -10

Pregenual ACC R 0.01955 10/32 6, 46, 0 5, 41, 0

2 dlPFC R 1072 5 0.02479 45/46 46, 42, 12 45, 41, 13

dlPFC R 0.01652 45/46 48, 38, 22 47, 38, 22

3 VS L 1056 5 0.01670 n/a -10, 8, -4 -10, 5, 0

4 VS R 1008 4 (5) 0.02956 n/a 10, 14, -4 9, 11, 0

5 IFG R 968 6 0.01982 44 50, 10, 20 48, 9, 21

6 AI R 784 4 0.02132 13 34, 22, 0 32, 19, 3

L, left hemisphere; R, right hemisphere.

https://doi.org/10.1371/journal.pone.0286969.t002
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Additionally, given the likelihood of an extended network of reward processing, a conjunc-

tion analysis was conducted to establish commonalities in activation profiles between the two

types of recording. The results highlighted an overlap of activation likelihood coordinates in

two clusters, in the left vmPFC and the left OFC (Table 3, Fig 3).

Fig 2. The location of significant ALE clusters from the meta-analysis of concordant activations for WTP. A–F

show coronal and sagittal slices at the cluster peak in: (A) vmPFC with sub-cluster in the ACC, (B) right dlPFC, (C) left

VS, (D) right VS, (E) right IFG and (F) right AI. (G) shows all clusters in axial orientation. Results are displayed

overlaid onto a standardized MNI template anatomical brain. ALE scores are indicated by the colour bar.

https://doi.org/10.1371/journal.pone.0286969.g002
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Discussion

Performing subjective valuation judgements, and carrying out choices based on these valua-

tions, is an integral part of everyday life. In no case is this more pertinent than in economic

purchasing decisions. The present meta-analysis was conducted to identify the core brain valu-

ation system subserving computation of SV as determined by an incentive-compatible WTP

metric. The primary ALE analysis identified the locations of positive effects of SV on BOLD

activity, where positive effects elicited larger BOLD responses increasing with WTP. The larg-

est concordant activation to WTP was located in the left vmPFC, with a sub-cluster of activa-

tion extending into the right pgACC and left sgACC. Additionally, the bilateral VS, right

dlPFC, right IFG and right AI also demonstrated significant levels of consistent spatial activa-

tion for WTP. Secondary contrast and conjunction analysis established distinct and overlap-

ping neural substrates underlying value-related activations according to concurrency of BDM

and fMRI recordings, contrary to our hypothesis. As the pool of studies used a wide range of

stimuli types, this analysis shows that the regions elicited play a central role in the encoding of

decision values in a wide number of economic settings. Critically, by using an experimental

design that allowed us to identify areas that encode for WTP, we were able to isolate those

involved in economic choice from other areas that are related to hedonic aspects such as

arousal or familiarity.

The results from this meta-analysis confirm the vmPFC as a core brain area of SV computa-

tion, with 71% of the pool of studies contributing to the vmPFC cluster in the main analysis.

Notably, activations in vmPFC and bilateral striatum are in good agreement with a previous

fMRI meta-analysis [16] which highlighted these regions, alongside the PCC, ACC, pre-sup-

plementary motor area and insula, as parts of the brain valuation system. The role of vmPFC

in the construction of SV also corroborates with positron-emission tomography studies [106],

as well as single-cell recordings [107], lesion [108,109] and animal studies [110,111]. Further,

our conjunction analysis showed that the vmPFC is the only region to display consistent spatial

activation regardless of concurrency of explicit valuation responses and fMRI recording. This

suggests that the vmPFC may be the principal region responsible for SV processing in the

brain.

The activation shown in the vmPFC extended into the rostral portions of the ACC. Typi-

cally, ACC activations are linked to emotions [112,113]; resting-state fMRI studies show that

Table 3. Locations of significant clusters from conjunction and contrast analyses of WTP for concurrent and consecutive recordings.

Cluster Label Volume (mm3) ALE peak Brodmann area MNI co-ordinates (x, y, z) Talairach co-ordinates (x, y, z)

Conjunction Analysis

1 OFC L 192 0.0100 11 -2, 40, -10 -2, 35, -10

2 vmPFC L 104 0.0096 10/32 -6, 50, -4 -6, 44, -5

Contrast Analysis–Concurrent > Consecutive

1 IFG R 864 0.0173 6 43, 4, 31 42, 4, 31

IFG R 0.0328 44 45, 8, 26 43, 8, 26

IFG R 0.0328 44 50, 6, 24 48, 5, 25

2 dlPFC R 336 0.0333 10 46, 45, 16 45, 45, 16

dlPFC R 0.0494 10 46, 40, 20 45, 40, 20

3 Caudate R 272 0.0246 n/a 14, 18, -4 13, 15, 0

Subgenual ACC R 0.025 25 4, 18, -4 3, 15, -1

Caudate R 0.0265 n/a 10, 18, -6 9, 15, -2

L, left hemisphere; R, right hemisphere.

https://doi.org/10.1371/journal.pone.0286969.t003
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the ACC is most functionally connected with areas implicated in affective processing, with

pgACC having more widespread connections than sgACC [114]. Both the pgACC and sgACC

have also been shown to be modulated by an overestimation of probabilities of good outcomes

[115], and sgACC activity in particular positively correlates with expected value of an outcome

[116,117]. Further to this, ACC neurons in non-human primates encode the values of the cho-

sen options during decision-making [118–120]. It may be that activity found in the ACC is

due to the uncertainty implicit in the BDM, with the risk of good and bad outcomes being

directly linked to the participant’s expressed expected values.

The VS is also frequently cited as a primary region of reward processing [67,77,121,122].

Both the vmPFC and striatum are key dopaminergic areas, receiving dopaminergic projections

from the midbrain [123], and are well established to be involved in option valuation and com-

parison [124–126]. Single-cell recordings in rhesus macaques show extensive similarities in

neuron firing patterns in the VS and vmPFC during risky reward-based choice [121]. Activity

in the VS has been shown to be mediated by the magnitude of expected reward in both

Fig 3. The location of significant clusters from conjunction and contrast analyses of ALE maps for concurrent (inside) and consecutive (outside)

recordings. Results are displayed overlaid onto standardized MNI template anatomical brain in as a montage of sagittal, coronal and axial slices through the

clusters. ALE scores are indicated by the colour bars.

https://doi.org/10.1371/journal.pone.0286969.g003

PLOS ONE Economic value in the Brain: A meta-analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0286969 July 10, 2023 11 / 21

https://doi.org/10.1371/journal.pone.0286969.g003
https://doi.org/10.1371/journal.pone.0286969


humans [106,127,128] and non-human primates [121,129]. Our findings confirm that the

vmPFC and VS have signals that are directionally related to SV in a similar way as they both

scale in activity with WTP.

The present meta-analysis also showed the right AI was consistently activated by SV. This

brain region has considerable functional heterogeneity, being involved in a wide variety of

functions such as interoception [130,131], emotion processing [132,133] and arousal [134].

With regards to reward processing, the AI is extensively connected to dopaminergic regions

such as the vmPFC, amygdala and ventral striatum [135], and is implicated in loss prediction

[136], aesthetic appraisal [137] and in economic uncertainty [123,138,139]. The AI has been

proposed as a candidate for generalized uncertainty processing, as the perception of risk and

uncertainty involves integrating both external probability computation and the internal qualia

of emotions [17,140]. Our findings support this hypothesis, as the parameters of the BDM are

such that players are in a situation of static risk: players are presented with potential economic

losses if they overbid (see the winner’s curse) [141,142] and an increase in likelihood of a social

loss if they underbid (in the form of negative feedback such as “you lose”).

The delineation of activation patterns between concurrent and consecutive execution of

task and fMRI scanning in the current context is related to the concepts of task relevance, and

the automaticity of value processing [7,60,61]. In line with previous studies demonstrating

task-irrelevant underlying value-related neural computations, we hypothesised that areas of

the brain valuation system would be activated in proportion to WTP regardless of the task

being performed in the scanner. However, activation in the right dlPFC and IFG scaled with

WTP and also showed preferential activation in concurrent over consecutive scanning. Both

the dlPFC and IFG are known to be central to executive functioning, attention and cognitive

control [41,143–148]. Previous work has linked the dlPFC to behavioural restraint and delayed

reward [149], demonstrating that individuals who successfully inhibit their value responses

during self-control tasks exhibit greater dlPFC activity than those who did not [148,150]. The

IFG is involved in the overweighting of private vs public information [151] and conflict resolu-

tion [152] during decision-making. While not being integral members of the brain valuation

system, such as that described by Bartra et al. (2013), the dlPFC/IFG may instead modulate val-

uation activity in the vmPFC to induce behavioural restraint [149,153]. This is supported by

the contrast analysis, as the dlPFC/IFG would only be engaged during active bidding and not

non-incentivised tasks or passive viewing. It is possible that during the BDM, the dlPFC/IFG

acts as a self-control mechanism interacting with the valuation system to optimise bidding out-

comes [148].

As noted earlier, previous investigation has found a large network of brain areas involved in

the formation and updating of subjective valuation [16,67]. To this point, a key finding of this

meta-analysis is the notable absence of some of these areas in the patterns of consistent activa-

tion. For instance, we found no correlation with WTP in the PPC or the amygdala, both of

which have been implicated in reward processing [24,154,155]. Most notably, previous fMRI

meta-analyses of SV using other tasks have found larger clusters in the vmPFC incorporating

the medial OFC [59,77,156], whereas the vmPFC cluster found in our main analysis did not.

Neural activation in the OFC has been consistently linked to subjective pleasantness of various

stimuli [see supplementary materials of 117 for review]. The delineation of SV of an object

from its hedonic pleasure in the present meta-analysis suggests that the OFC may be involved

with evaluation of subjective liking as opposed to WTP [157].

The present study is not without its limitations. It should be acknowledged that the BDM

has been found to be not incentive compatible in certain circumstances, such as when the

object being valued is a lottery [158]. Furthermore, there is evidence that bid values in second-

price sealed bid auctions can be impacted by subjective perceptions of uncertainty [159] and
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social competition [160]. Furthermore, the decision to focus on the BDM task, while allowing

a clean analysis of SV computation without the confounding effects of task heterogeneity,

resulted in a smaller final cohort. This meta-analysis exceeded the recommendation of at least

17 independent studies for ALE analysis in order to be confident that the results are not biased

by any individual experiment from the cohort [95]. However, due to the subsequent split into

two subgroups for recording concurrency, it may be premature to draw strong conclusions

from the secondary contrast and conjunction analysis. These preliminary distinctions between

the effects of concurrency of recordings on SV representation would benefit from clarification

by more, higher powered experiments. This would also afford the opportunity to better disen-

tangle any neural differences between passive viewing, binary choice and bid value activation

patterns. Here, the aim was to focus on concordance of activations across studies which uti-

lized whole-brain analyses and robust statistical thresholding to reveal the core regions of the

brain which demonstrate subjective valuation activations regardless of existing bias. Permit-

ting less stringent search methods would have been detrimental to the integrity of the present

investigation. Many other WTP tasks are not sufficiently incentivised, and therefore the WTP

values are not reliable indicators of SV [44,92]. We should also note that all but one of the clus-

ters (right AI) in the main analysis passed the FSN analysis for potential publication bias, indi-

cating their stability. With the growing popularity of the BDM, a follow up investigation

utilizing a larger cohort would further enhance the robustness of these results.

To conclude, we used ALE analyses to map consistent patterns of cerebral activations

involved in SV as determined by the behavioural-economic tool of BDM, which pinpoints SV

as WTP. The findings document both overlap and dissociations of valuation regions engaged

by concurrency of task and scanning. The BDM paradigm has the ability to differentiate eco-

nomic value from other factors that contribute towards subjective valuation, such as emotional

processing, autonomic responses, associative learning, perceptual attention and motor control.

We believe that the present meta-analysis represents the most succinct evidence to date of the

core brain regions that encode consumers’ economic valuations of goods. Knowledge of the

distinct and overlapping roles of these brain areas offers unique insights for both theoretical

and applied neuroeconomic research.
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