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Abstract 

Earth system models have become viable alternatives to traditional hydrological models in 

supporting global hydrological forecasting of river flow during the last decades. Hydrological 

forecasting systems rely on a climatology of flood hazard to derive flood thresholds, which are used 

to generate early flood warnings. However, the derivation of these climatologies is not 

straightforward and limitations, errors and uncertainties may play a major role and can significantly 

influence the quality of the flood warnings. 

This thesis evaluates some of the crucial characteristics of the reanalysis data sets used to produce 

the flood hazard climatologies, such as the land data assimilation and snow scheme complexity. 

Limitations of these data sets are identified, with suggestions presented to further improve the 

hydrological modelling and threshold generation methodologies. This in turn will lead to improved 

climatologies as crucial elements in delivering higher quality flood warnings. 

It was found that increments produced by the land data assimilation of snow and soil moisture can 

lead to systematic water budget errors and subsequently contribute to significant errors in river 

discharge simulations. Results have also shown that a more complex snow scheme with multiple 

layers can generally improve river discharge unless there is permafrost, where improvements 

required further adjustments of the snow and soil freezing parametrisations. In addition, the linear 

trend analysis of a state-of-the-art hydrological reanalysis data set revealed widespread, 

dominantly negative trends globally, that can adversely impact on the use of thresholds in flood 

warnings, derived from these reanalyses. In order to improve the quality of the flood hazard 

climatologies, an alternative threshold generation method, using ensemble reforecasts, has been 

developed and shown to deliver vastly improved forecast reliability and skill. 

This thesis contributes to better understanding of the global flood hazard climatologies in Earth 

system models and implements a more sophisticated method for producing these climatologies 

which will deliver better flood warnings. Additional research avenues are also recommended to 

further improve the hydrological representation of the Earth system models and the generation of 

the flood hazard climatologies in order to achieve the best possible hydrological forecast quality. 
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Chapter 1  Introduction 

Chapter 1 Introduction 

1.1 Motivation and aims 

Flooding is undoubtedly amongst the Earth’s most common and destructive natural hazards. In the 

20-year period from 2000 to 2019, floods have accounted for 44% of all global disaster events, 

affecting 1.6 billion people worldwide and causing an estimated $651 billion (USD) in flood damages 

(UNDRR, 2019 The anticipation and forecasting of flood events are key components of managing 

flood risk that can help mitigating the impacts of these devastating disasters. An essential tool in 

this is the use of flood forecasting systems that provide early flood warnings on time scales up to 

several weeks ahead at local, regional and global scales (Emerton et al., 2016). Guidance on future 

flood events provides invaluable information for organisations that work globally across a range of 

sectors from agriculture to humanitarian aid, such as the Red Cross or the World Food Programme. 

Global-scale hydrological forecasting has become possible during the last decade, due to 

improvements in meteorological and hydrological modelling capabilities and the increasing 

available computational resources (Harrigan et al., 2023). 

The methodology behind the global-scale hydrological systems extends from the application of 

traditional hydrological models to the use of Earth system models. Hydrological models are 

generally input-to-output models that directly simulate (primarily) the evolution of water fluxes, 

such as traditional rainfall-streamflow models (Horton et al., 2021). On the other hand, Earth 

system models seek to simulate all relevant aspects of the Earth system, including interactions 

between the atmosphere, oceans and land as well as the biosphere and human activities (Schneider 

et al., 2017).  

Operational numerical weather prediction (NWP) centres, such as the European Centre for 

Medium-Range Weather Forecasts (ECWMF), have already adopted the Earth system approach. 

Producing hydrological predictions at NWP centres has a clear advantage of working with unique 

access to resources and expertise. This includes, for example, the exploitation of Earth observations 

(either available currently, or expected in the future) and the related use in the data assimilation, 

for variables such as snow, soil moisture, evapotranspiration, groundwater or river discharge, 

especially with the help of remote sensing (Harrigan et al., 2020a). 

On the other hand, the land-surface components of these Earth system models are traditionally 

designed to provide lower-boundary conditions to the atmosphere and not so much to simulate 

the hydrological cycle (Prentice et al., 2015). Therefore, even with state-of-the-art models, there 

can be limitations in the representation of the hydrological cycle by these land-surface models 
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(LSM), and some important processes could still be inadequately modelled or even neglected for 

streamflow simulation (Fisher and Koven, 2020). 

The success of any global Earth-system-model-based hydrological prediction system will be reliant 

on the quality of the models involved, i.e. the land-surface model to produce runoff and the river 

routing model to generate river discharge, after coupling it to the LSM’s runoff output. Another 

major contributing factor is the quality of the meteorological and hydrological data sets that are 

used to generate the initial conditions that the model will run from. In addition, the quality of the 

meteorological forcing for the forecasts, that comes from NWP meteorological predictions, will also 

heavily contribute in determining the quality of the forecast simulations. 

The predictability of the forecast will depend on all these modelling, forcing and initial condition 

errors. Model errors can come from LSM hydrological process representation issues, simplifications 

in the routing component or NWP model errors in generating the meteorological forcings. Initial 

condition errors, on the other hand, are related to the use and quality of the different observations 

and to the way they are assimilated into the reality of the model. These different error sources all 

contribute to the evolution of biases in the forecasts, which can be quite large for global systems 

(Harrigan et al., 2020b). 

The handling of these errors can be supported by the use of probabilistic predictions in the form of 

ensemble forecasts. Ensemble forecasts are often generated by the same modelling system but run 

from perturbed initial conditions to represent the error growth in the future. The state-of-the-art 

systems in use today, such as the Global Flood Awareness System of the European Commission’s 

Copernicus Emergency Management Service (GloFAS, Harrigan et al., 2020b), provide an ensemble 

of equally likely solutions for flood events to occur (Cloke & Pappenberger, 2009; Wu et al., 2020). 

With the use of ensemble forecasts, the predicted events can be expressed in terms of a distribution 

of possible events. This distribution will show the likelihood of each future outcome, or in other 

words, the uncertainty that is associated with all these potential events. 

In addition, ensemble forecasts can be used to express the flood events as probabilities, by 

comparing the predictions to predefined flood thresholds. These thresholds are certain 

climatological properties, such as selected return periods or quantiles, which describe the likelihood 

of different flood magnitudes to occur locally. 

The use of thresholds and the related probabilities offer a way to account for some of the errors 

and biases, as these errors are expected to feature in a similar way in both the climatology (i.e. the 

thresholds) and the actual forecasts. This way, systematic errors (e.g. a generic positive bias) will 
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be removed by transforming the flood signals into the evolution of probabilities exceeding the 

threshold values. 

Traditionally, these thresholds are derived from either observations or model simulations, often 

forced with meteorological reanalysis datasets (Alfieri et al., 2015), preferably based on a long 

enough period of at least 30 years (World Meteorological Organisation [WMO], 2017). However, 

due to the sporadic availability of river discharge observations on the global scale (Lavers et al., 

2019; Rodda et al., 1993) and the lack of remote sensing observational alternatives for river 

discharge to date (Biancamaria et al., 2016), the use of model-simulation-based climatologies 

(generated from river flow reanalyses) is the only viable option for any hydrological application over 

the whole global domain. 

The quality of the model climatologies is of crucial importance. Firstly, they can demonstrate the 

hydrological model performance, through the quality of the 30+ year simulation that is used for the 

model climatology. This will give a major indication about the quality of the forecasts, as the same 

model system is used to produce both the climatology and the forecasts (Harrigan et al. 2020). 

Another very important aspect of the modelling and forecast chain is the consistency of flood event 

representation between the climatology-derived thresholds and the forecasts. All flow events, 

especially the extreme ones such as floods and droughts, should inherently be represented in the 

same way in both the climatology and the forecasts. If this is not the case, the reliability of the 

forecasts would be negatively impacted (Hirpa et al., 2016; Zsoter et al., 2014). For example, the 

flood thresholds that are used to determine the severity of the forecasted flood signal, should 

ideally represent extreme events in the same way, with the same overall frequencies; as they occur 

in the forecasts. If this is not the case and the different biases make an event of the same magnitude 

occur with a different frequency in the climatological data set (used to compute the thresholds) 

than in the forecasts (e.g., the 5% AEP flood magnitude happens more often in the forecasts than 

the expected 5% probability in a given year), then the flood forecast probabilities could become 

unreliable (e.g., leading to flood signals that often overestimate the flood severity). 

An example when the consistency between climatologies and forecasts will inevitable decrease is 

the presence of large trends in the data that is used to produce the thresholds (Faulkner et al., 

2019; Jiang and Kang, 2019). The non-stationary time series with trends or other discontinuities in 

them will lead to thresholds (e.g. return periods) which will either be too high (in case of a negative 

trend) or too low (in case of a positive trend), when compared with the floods that represent the 

forecasts (assuming the forecasts will behave similarly to the latter part of the climatological data 

time series). 
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The derivation of these model climatologies is not straightforward and the quality of the flood 

predictions largely depends on them (Hirpa et al., 2016). Uncertainties and limitations in these 

climatologies may play a major role and can significantly influence the forecast skill and ultimately 

the decision-making process by the users (Coughlan de Perez et al., 2016). Improving the model 

climatologies can increase the skill of the hydrological forecasts and therefore the usability of such 

forecasting systems. 

The hydrological diagnostic of the components of the modelling chain, from the LSM, the routing 

model, the NWP modelling creating the forcing, all the way to the use of climatology, is crucial in 

order to understand the behaviour of the forecasting system (Towner et al., 2019). Identifying the 

limitations and the contributing errors coming from the model climatology can help improving the 

quality of the hydrological simulations and ultimately the forecasts. 

A systematic analysis of the hydrological impacts of the components, focussing on the 

climatological simulations, has not yet been done on the global scale. There are many potential 

areas which could be considered for such an analysis and which promise to bring improved 

knowledge for better hydrological predictions. 

The aim of this research is to understand global flood hazard climatologies, to analyse how well 

they represent the Earth system and to assess their relevance for application in flood forecasting. 

This thesis evaluates some of the crucial characteristics of the data sets used to produce the 

climatologies and aims to identify areas of limitations, where the quality of the applied modelling 

or input data sets can be improved. In addition, it seeks to develop innovative ways of generating 

and using the global flood hazard climatologies, which show better consistency with forecasts and 

are capable of delivering higher skill. This is done through the following specific objectives, 

concentrating on some specific areas: 

1. Analyse how well the land-surface modelling approach in Earth systems is able to support 

hydrological applications, in particular focussing on the impact of land-data assimilation of 

snow and soil moisture on the hydrological cycle in reanalysis simulations. 

2. Evaluate the hydrological impact of the complexity of the snow scheme in the land-

surface models in reanalysis simulations, with special focus on cold climate areas in 

permafrost. 

3. Evaluate the relevant trends in hydrological reanalyses for river discharge and other 

related land-surface variables and analyse how the interactions amongst these variables 

contribute to the trends. 
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4. Assess the impact of innovative ways of generating flood thresholds on the skill of global 

flood forecasts, using hydrological ensemble reforecasts. 

The results presented in this thesis will provide a hydrologically relevant, global-scale analysis of 

flood hazard climatologies and will identify areas of limitations where the quality of these data sets 

can be improved. In addition, they will introduce new methodologies to generate higher quality 

flood climatologies and the related thresholds used in global flood prediction systems. The 

information presented in this thesis can ultimately contribute to increasing confidence in the flood 

forecasts, produced with the improved flood hazard climatologies, and should result in better flood 

preparedness for humanitarian and civil protection partners, thus potentially reducing flood-

related damages and casualties world-wide. 

1.2 Structure of the thesis 

This thesis is structured around four main papers published during the PhD (Figure 1-1). To begin 

with, Chapter 2 introduces a literature review to substantiate the motivation for carrying out the 

study of exploring the flood hazard climatologies in this PhD. 

Chapter 3 introduces the wealth of methodologies and data sets featuring in the papers published 

as part of this PhD, summarising the modelling systems used with their respective hydrological 

models and meteorological forcing data sets. 

Chapter 4, the first paper presented in this thesis, provides an analysis of how the land-atmosphere 

coupling and the land-data assimilation of snow depth and soil moisture impact on the hydrological 

cycle in ECMWF’s Earth system model, in particular the closure of the water budget. 

Chapter 5 follows on from the findings of the first paper and explores a potential route to improve 

the snow processes and their hydrological response in ECMWF’s modelling system by introducing 

the new multi-layer snow scheme, with special focus on cold areas in permafrost. 

Chapter 6 addresses an important aspect of the hydrological reanalysis time series and analyses the 

relevant trends in them. Analysing trends is important as they can significantly impact on the quality 

of the climatologies and the flood thresholds generated from the reanalysis, potentially affecting 

the hydrological forecast skill. 

Chapter 7, the last major paper of the PhD, explores how the use of ensemble reforecasts can help 

generating higher quality flood thresholds and delivering improved global flood forecasts, 

compared with using the traditional reanalysis-based method. 

Chapter 8 lists the co-authored papers that were published during the PhD and gives a short 

summary of the findings and how the papers are connected to the PhD. 
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Figure 1-1. Schematic structure of the PhD. 

Chapter 9 summarises the findings and the wider contribution of this thesis. It discusses the 

importance of land data assimilation by potentially opening the water budget and thus contributing 

to large negative biases in river discharge in the snow-dominant Northern Hemisphere. It also 
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discusses potential improvements to river discharge by using a physically more complex snow-

model. This included a sensitivity study element to the very cold permafrost areas, where 

improvements were only achievable through additional land-surface parametrisation changes. In 

addition, this chapter discusses the widespread non-stationary signals found in a state-of-the art 

hydrological reanalysis for several land surface variables and summarises the new methodology of 

generating range-dependent flood thresholds from ensemble reforecasts instead of reanalysis data 

sets, that are able to deliver much improved flood forecast reliability and skill. Moreover, the 

chapter outlines the scope for future directions, such as ideas for analysing other aspects of land-

surface modelling for hydrological contribution and list some limitations, for example the 

constraints in the availability of the river discharge observations used in the thesis or the extent to 

which the studies presented here can be generalised. 

Finally, Chapter 10 will provide conclusions to the thesis, highlighting the most relevant aspects of 

the hydrological limitations and possible improvements in reanalysis data sets used for flood 

threshold generation and also summarising the potential new approach of using ensemble-

reforecast for the generation of thresholds. Finally, this chapter also presents the reference list and 

the appendix with the most important papers of the PhD, attached as published.  
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Chapter 2 Literature review 

2.1 Advances in Earth system modelling and the impact of land data assimilation on 
hydrology 

Earth system models (ESM) are designed to simulate all relevant aspects of the Earth system. They 

include not only physical processes, such as their predecessor global climate models that primarily 

worked as coupled atmosphere-ocean models, but also chemical and biological processes or human 

activities (Flato, 2011; Schneider et al., 2017). Accurately modelling the complex interactions 

amongst the atmosphere, ocean, sea ice, land surface (including water surfaces) and biosphere 

(Bonan, 2008), will lead to improved and consistent predictions across variables of the various 

systems, including also precipitation and river discharge and other hydrological variables (Harrigan 

et al., 2020a; de Boisseson et al., 2021). 

One of the key modelling components of Earth system models are land surface schemes (LSM), 

which describe the exchange of primarily water, energy and carbon fluxes at the surface–

atmosphere interface of the Earth (Pitman, 2003). These models are traditionally used to provide 

physical boundary conditions to climate and Earth system models supporting atmospheric/climate 

modelling and forecasting activities. These are needed in terms of energy partitioning, surface 

roughness, and albedo, which represent the land influence on meteorological processes (Blyth et 

al., 2021). 

As described in Abramowitz et al. (2008), LSMs are typically provided with meteorological 

conditions as inputs (from an atmospheric model) and produce various outputs, such as latent and 

sensible heat fluxes, CO2 fluxes, solar and longwave radiation, surface and subsurface runoff. In 

addition, they have typical internal state variables such as soil moisture, temperature, vegetation 

and soil carbon pools and also snow and ice volume and density. 

The role of land surface models is not only to provide lower boundary conditions to the atmosphere, 

but they are also used as the terrestrial component for several other research and operational 

applications, depending on the represented processes and their degree of complexity. Applications 

of LSMs can cover various scales from local to global or hourly to climate and various topics, such 

as climate change, floods and droughts, also agriculture or CO2 monitoring (Boussetta et al., 2021). 

Their use in hydrological applications was facilitated by the expansion of the LSMs in scope and 

complexity through integrating and improving important hydrologically-relevant processes during 

the last few decades, for example subsurface lateral water movement, river flow routing and water 

management modules (Archfield et al., 2015; Clark et al., 2015). 
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Figure 2-1. Processes in land surface models. After Blyth et al. (2021). 
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Figure 2-1 highlights the schematic of the wealth of processes that the state of the art LSMs include 

(based on Blyth et al., 2021). This PhD thesis is focuses primarily on the snow and soil physics and 

the water bodies area of the land surface processes in Figure 2-1. 

Earth system models, with LSMs as their land modelling components, are equipped with advanced 

data assimilation algorithms, which combine the large amount of available Earth observations with 

model information to produce the best possible estimate of the current state of the Earth system. 

These initial conditions provide the starting point for the run of the Earth system model to predict 

the likely evolution of the atmosphere and all related Earth system components (Bouttier and 

Courtier, 1999; Rabier, 2005). 

State-of-the-art NWP centres, such as the European Centre for Medium-Range Weather Forecasts 

(ECMWF), include both an LSM and land data assimilation systems (LDAS). The LDAS’s objective is 

to combine the LSM state with the available land surface observations to initialize the LSM’s 

prognostic variables of the forecasting system (Bélair et al., 2003a). For example, the current 

ECMWF LDAS analyses soil moisture, soil temperature, snow mass, density, and temperature (de 

Rosnay et al., 2014), while other NWP centres all have their own LDAS assimilating, at a minimum, 

snow and soil moisture, such as the Global Land Data Assimilation System (GLDAS) by NASA/NOAA 

(Rodell et al., 2004), the Land Surface Data Assimilation (LSDA) by the Met Office (Pullen et al., 2011; 

Gómez et al., 2020) or the Canadian Land Data Assimilation System (CaLDAS) by Environment 

Canada (Carrera et al., 2015). 

While the role of land data assimilation in LSMs is primarily to improve the atmospheric forecasts 

(e.g. de Rosnay et al., 2013; Drusch and Viterbo, 2007; Beljaars et al., 1996), LSMs have also been 

extensively shown to provide improvements for various aspects of hydrological modelling (e.g. 

Lievens et al., 2015; Clark et al., 2006). However, the related increments of snow or soil moisture 

will remove or add water, which will potentially open the water budget. In this sense, LSMs are in 

contrast with traditional hydrological models, which directly concentrate on solving the water 

balance, while LSMs will commonly tolerate errors in runoff as long as the evaporation and energy 

fluxes are in balance (Archfield et al., 2015). 

By opening the water budget in LSMs, LDAS can potentially have a negative impact on the 

hydrological cycle (Zaitchik and Rodell, 2009; Arsenault et al., 2013; Andreadis and Lettenmaier, 

2006a; De Lannoy et al., 2012; Pan and Wood, 2006; Kauffeldt et al., 2015.). On the contrary, 

systems with no LDAS could result in the accumulation of various atmospheric forcing and land 

surface modelling errors, which can also negatively impact on atmospheric or hydrological 

simulations. 
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Generally, data assimilation is shown to work best for unbiassed systems (Dee and Silva, 1998; 

Pathiraja et al., 2018). In the presence of systematic biases, e.g. a model bias such as a 

systematically too slow snowmelt, it is not only that the efficiency of the data assimilation can 

decrease, but the bias can enhance the impact of the open water budget. In the above example, 

the too slow snowmelt in the LSM will force the LDAS to remove snow to correct for the excessive 

snow amounts. This removed water will likely cause a water deficit downstream in the land system, 

potentially causing an incorrect rate of runoff and ultimately river discharge. 

This suggests that by opening the water budget, land data assimilation can cause problems for 

hydrological forecasting applications, which use runoff produced by LSMs to drive the system. A 

prime example is GloFAS (Alfieri et al., 2013; Harrigan et al., 2020b; Harrigan et al., 2023), which 

had used the land surface component (HTESSEL; Balsamo et al., 2009) of the ECLand platform 

(Boussetta et al., 2021) to provide runoff for all the hydrological simulations in its operational model 

versions until May 2021 (Alfieri et al., 2020). In fact, Harrigan et al. (2020b) reported large biases in 

the GloFAS-ERA5 reanalysis (which uses ECLand with land data assimilation) over many global 

rivers, suggesting that data assimilation could potentially be responsible for some of the biases. 

Although the impact of land data assimilation on the water budget has been highlighted in scientific 

publications, comprehensive analysis of the wider global hydrological impact in a state-of-the-art 

land surface model has not previously been undertaken. 

It would be important to investigate how an LSM with LDAS can support the combined task of 

traditional weather forecasting and hydrological simulations at the same time. Analysing the impact 

of the data assimilation on the hydrological cycle and the nature of the water budget issues on the 

global scale could bring invaluable knowledge in helping the development of the future land-surface 

schemes in Earth system models. 

One way to test the LDAS impact could be with reanalysis simulations that can include land data 

assimilation. We explore this in Chapter 4 by using the state-of-the-art ECLand land surface 

modelling platform of ECMWF, together with the meteorological forcing data set of ERA5 (Hersbach 

et al., 2020). For this, two hydrological simulations are generated, one which assimilates land-

surface observations (i.e. at least snow and soil moisture) and another control simulation which 

does not. By comparing these two simulations (i.e. verifying using available river discharge 

observations), the hydrological representation of NWP configurations with LSMs in their core will 

be explored and areas where the coupled Earth system modelling with LDAS does not yet work 

effectively for flood simulations highlighted. 
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2.2 Importance of snow scheme complexity on the quality of global hydrological 
simulations 

As systematic biases can negatively impact on the land data assimilation’s performance, the 

exploration of the land surface process limitations, which have the potential to cause biases, is of 

crucial importance in order to improve the quality of land-surface simulations. 

The variability of snow extent and depth is one of the few crucial aspects of land-surface modelling 

in Earth system models, that can potentially contribute to developing model biases (Pitman, 2003). 

Snow is important, as it has a major modulating effect of the energy and water fluxes in the land-

atmosphere system (Armstrong and Brun, 2008). See Figure 2-2 for the graphical representation of 

the wealth of snow-related physical processes. Snow impacts on the radiative-energy balance, 

through the surface albedo (Riihelä et al., 2021), resulting in large temperature changes in certain 

conditions (Betts et al., 2014). Snow also acts as a water reservoir, releasing snowmelt (mostly in 

spring) and influencing the entire hydrological cycle through runoff, soil moisture, evaporation and 

indirectly also precipitation (Adam et al., 2009; Slater et al., 2001; López-Moreno and García-Ruiz, 

2004; Griessinger et al., 2016). 

 

Figure 2-2. Schematic of principal snow-related physical processes. Adapted from Koczot et al. (2005), Arduini et al. (2019) 

and the SNOWPACK model description (https://www.slf.ch/en/services-and-products/snowpack.html). 

Snow can be represented by snow schemes with different complexities in the land surface models, 

which differ in the snow parameterizations in terms of variables and processes considered. Boone 

and Etchevers (2001) have categorised snow schemes into three general classifications based on 

their complexities. These include the simplest models which use a composite snow–soil–vegetation 

energy budget and a single snow layer; the ‘intermediate complexity’ schemes that are based on 
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more complex physical parameterization with multiple layers (usually 2-10); and finally the detailed 

internal-snow-process schemes with detailed physical parameterization, usually used e.g. in 

avalanche predictions (see e.g. Vionnet et al., 2012). Largeron et al. (2020) summarised these model 

categories, including also the simplest degree-day schemes widely used in hydrological models, 

according to their physical processes and included state variables (Figure 2-3). 

 

Figure 2-3. Description of snow physical processes (bold), state variables (regular) and input variables (italic) required per 

category of snow models complexity for offline applications. Taken from Largeron et al. (2020). 

The intermediate complexity snow schemes, that are characterised by multiple layers and state 

variables such as snow density, snow thickness, temperature and liquid water content, allowing the 

calculation of vertical gradient of temperature and density, offer significant improvement on the 

single-layer schemes with better handling of the snow processes (e.g. Dutra et al., 2012; Burke et 

al., 2013). These schemes are widely used in land surface components of Earth system models, such 

as the land surface models of ECLand developed by ECMWF (Dutra et al., 2012); NOAH developed 

by NCAR, NCEP, NASA and university groups in the USA (Saha et al., 2017); JULES developed by 

researchers in the United Kingdom, coordinated by the Met Office and the UK Centre for Ecology 

and Hydrology (UKCEH) (Wiltshire et al., 2020; Walters at al. ,2019); ISBA developed by the National 

Center for Meteorological Research (CNRM) in France (Decharme et al., 2016) and ORCHIDEE 

developed by the Institut Pierre Simon Laplace (IPSL) in France (d'Orgeval et al., 2008; Wang et al., 

2013). 

The higher complexity snow schemes, with the improving realism of representing the snow 

processes, have been shown to improve various aspects of the land-atmosphere processes, such as 

decreasing the biases in snow depth, melting timing or temperature conditions (e.g. Walters at al., 

2019; Arduini et al., 2019; Day et al., 2020; Wang et al., 2013; Saha et al., 2017; Decharme et al., 
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2016; Dutra et al., 2012). For example, Arduini et al. (2019) have shown that the new multi-layer 

snow scheme, implemented at ECMWF, improved the description of snow density in thick and cold 

snow packs and also improved the representation of sporadic melting episodes due to the 

introduction of a thin top snow layer with low thermal inertia. Moreover, snow depth improved at 

all lead times in coupled forecasts, also generally improving the 2m temperature forecasts by 

refining the diurnal cycle amplitude in snow covered regions, especially in clear sky conditions. 

The more realistic snowpack representation, with better quality snow depth and snowmelt, will 

naturally be expected to contribute to an improved hydrological cycle and thus better river flow 

simulation. Although there have been studies evaluating the hydrological impact of the more 

complex multi-layer snow schemes, these are mostly evaluations in localised settings (i.e. using 

study sites such as Col de Porte in France) and often combined with other aspects of the land-

surface modelling (e.g. snow and other surface variables) (Dutra et al., 2012; Magnusson et al., 

2015; Wang et al., 2013). However, a hydrological impact analysis with river flow as the main focus, 

has not been done at regional or global scales. 

Evaluating modelling improvements using river discharge can be advantageous for different 

reasons. Importantly, river discharge is a unique variable as it aggregates excess water originating 

upstream, resulting in an observation that is representative of various processes not only at the 

measurement location, but of a much larger area (Fekete et al., 2012). Moreover, river discharge is 

an accurately measured element of the water and energy cycle, with global in situ monitoring in 

place (Depetris, 2021), even if certain gaps exist (Lavers et al., 2019; Rodda et al., 1993). 

The evaluation of snow scheme changes for hydrological process representation, with river 

discharge as a diagnostic tool, promises to help identifying existing limitations for most parts of 

Northern Extratropics. Moreover, a relatively large fraction of these areas is permafrost, where the 

ground remains below 0 °C for two or more consecutive years (Romanovsky et al., 2002; Zhang et 

al., 2008). In permafrost, the soil temperature conditions (through the frozen soil) play a key role. 

Soil freezing is important not only for hydrology, by preventing vertical water flow, but also for the 

change in the carbon cycle with a powerful greenhouse gas feedback as a consequence of the 

expected climate change and the thawing of these areas (Koven et al., 2013; Andresen et al., 2020; 

Yokohata et al., 2020). 

As snow has a strong control on the surface energy budget, by insulating the soil (Gouttevin et al., 

2012), understanding the hydrological impact of the snow scheme complexity, such as on runoff, 

infiltration and soil temperature, is of crucial importance especially in relation to permafrost. 

Undertaking this in the global context, using river discharge as a powerful diagnostic tool, would 
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provide a novel approach, with a broad viewpoint on the hydrological processes of different areas 

of the globe. 

The hydrological impact of the snow scheme complexity is explored in Chapter 5 for reanalysis 

simulations, which allows the use of larger number of catchments with available river discharge 

observations over a longer period in the past (Lavers et al., 2019). This is done by comparing the 

new multi-layer snow scheme, implemented at ECMWF (Arduini et al., 2019), with the current 

operationally used single-layer snow scheme (Dutra et al., 2010), using the ECLand land surface 

modelling platform and ERA5 meteorological forcing. Reanalysis simulations of river discharge, 

produced with using either the single-layer or the multi-layer snow models, are compared globally 

over the snow impacted areas. Moreover, the hydrological sensitivity is also investigated with 

special emphasis on permafrost, by including some variations in the snow and soil freezing 

parametrisations. The comparison of these simulations, after verifying them with river discharge 

observations, will highlight areas of the globe, where the land surface processes and variables in 

the Earth system model could benefit most from the introduction of a more complex snow scheme. 

2.3 Trends in hydrological reanalysis data sets 

Global climate reanalysis data sets, such as ECMWF’s latest 4th generation ERA5 reanalysis 

(produced by the Copernicus Climate Change Service of the European Commission (C3S)), or NASA’s 

MERRA-2 and JMA’s (Japan Meteorological Agency) JRA-55 as 3rd generation data sets (Keller and 

Wahl 2020), are important products of Earth system models. These data sets combine observations 

from the past with short-range forecasts using the data assimilation process to generate consistent 

time series over several decades at least, for multiple climate variables of the Earth system, such as 

air temperature, pressure or surface parameters like precipitation and soil moisture, or other 

variables like sea temperature or river discharge (Keller and Wahl, 2020; Mahto and Mishra, 2019). 

The main advantage of reanalysis data is the continuity in space and time, since they are produced 

at global scale and do not have geographical gaps or missing periods, and as such are ideal to study 

the Earth's hydroclimatic system (Hodges et al., 2011). 

Global reanalysis data sets are widely used for hydrological and climate applications. Amongst other 

uses, they are the basis for generating model climatologies, which contain reference information 

on the local climate characteristics (e.g. Alfieri et al., 2020; Harrigan et al., 2020b; Arnone et al., 

2020). For example, as described in Harrigan et al. (2020b), the hydrological reanalysis is used for 

two main tasks in GloFAS. Firstly, to produce the flood thresholds at 2-, 5-, and 20-year return 

periods, which are used to determine the severity of the ensemble river discharge forecasts, by 

comparing them to these predefined flood thresholds. Secondly, it provides the basis to derive 
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initial hydrometeorological conditions (i.e. soil moisture, groundwater, snow cover and water in the 

rivers) for the system, which are also the basis of evaluating the quality of the hydrological 

simulations, used as best estimate of historical hydrological conditions. 

As the forecasts are compared to the thresholds to derive severity (and warnings), the consistency 

between the reanalysis time series, used to derive the thresholds, and forecasts is crucially 

important. The frequency as they represent different severity of hydrological events (e.g floods or 

droughts) should ideally be the same (Alfieri et al. 2019). 

 

Figure 2-4. What is nonstationary? Examples of (a) a stationary time series with constant mean and variance and (b) three 

nonstationary time series in the form of a shift in mean (trend and step change) and a shift in variance. Solid and dashed 

black lines represent the mean and the variance of the time series, respectively. From Slater et al. (2021). 

The forecasts are expected to be essentially from the same climatological period as the end of the 

reanalysis. Therefore, inconsistencies between reanalysis and the forecasts can arise from 

nonstationary behaviour in the long reanalysis time series of usually 30 years or more (WMO, 2017). 

As described by Slater et al. (2021), stationary time series would not exhibit any shift in the mean, 

variance or shape, while nonstationary examples are continuous trends, step changes or shifts in 

the variance (Figure 2-4). 

For example, in the case of a major negative trend in the river discharge reanalysis time series, the 

flood thresholds will represent mainly the earlier period, where the magnitude of the floods will be 

much larger (due to the negative trend). However, the forecasts will be expected to behave similarly 

to the latter period of the reanalysis, where the flood events have lower magnitude (due to the 

negative trend), making the threshold non-representative of the forecast behaviour and ultimately 

decrease the reliability of the warnings. 

There is an extensive literature of trend analysis for different variables of the hydrological cycle in 

regional or global settings. Example studies include the use of in situ or gridded satellite estimate 

observations (or a combination of those) and/or reanalysis data sets for river discharge (Do et al., 

2017; Su et al., 2018; Dai et al., 2009; Archfield et al., 2016; Winkelbauer et al., 2022; Feng et al., 

2021) or the contributing land-surface variables such as precipitation (Sun et al., 2020; Westra et 
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al., 2013; Donat et al., 2016; Nguyen et al., 2018), soil moisture (Pan et al., 2019; Feng and Zhang, 

2016; Dorigo et al., 2012; Albergel et al., 2013), evaporation (Zhang et al., 2016; Anabalón and 

Sharma, 2017), snow conditions (Kunkel et al., 2016; Connolly et al., 2019) or temperature (Hansen 

et al., 2006; Hawkins et al., 2017). 

The above-mentioned studies focus on a single variable and examine either global or in some cases 

regional trends (i.e. as in Winkelbauer et al., 2022 and Feng et al., 2021), while other studies 

consider different land surface variables at the same time. For example, Folton et al. (2019) looked 

at trends in both precipitation and river discharge in the Mediterranean area, Andreadis and 

Lettenmaier (2006b) analysed trends in soil moisture, runoff and drought over the US, Spinoni et 

al. (2017) and Javadian et al. (2020) evaluated trends in precipitation and evaporation over Europe 

and globally, Rosmann et al. (2016) analysed trends in mean and extreme temperature, 

precipitation and river discharge globally and Knowles (2015) looked at trends in snow depth, 

precipitation, snowfall and temperature data in the US. 

However, comprehensive diagnostic studies with global focus, which analyse river discharge trends 

(both observed and reanalysed) together with the contributing trends from the different 

components of the land-surface system, such as precipitation, evaporation, snowmelt or soil 

moisture, have not been previously undertaken. 

A potential candidate data set for such study is the river discharge reanalysis data set of GloFAS-

ERA5 of CEMS (Harrigan et al., 2020b), which uses the ECLand land surface modelling platform 

forced by the latest ERA5 climate reanalysis of ECMWF. It is one of the most widely used river 

discharge reanalysis data sets, and by using ERA5, it provides a consistent representation across all 

land-surface variables, including not just river discharge but precipitation, soil moisture, 

evaporation, etc. Moreover, as ERA5 is also available in near real time (with usually only about 1-2-

day delay), it allows GloFAS-ERA5 to be used in the forecast initialisation, which helps in achieving 

better consistency for extreme event representation between the GloFAS-ERA5-based flood 

thresholds and the forecasts. 

Global climate reanalysis data sets, such as ERA5, are not immune from the impact of the changes 

that occur in their observing system over time. Their long-term temporal consistency is potentially 

impacted by the increase of observation input, that might enhance the quality of a reanalysis, and 

by the evolving observational system (e.g. the introduction of the Advanced Microwave Sounding 

Unit (AMSU-A) in 1998), that could also create potential inhomogeneities if either the observations 

or the model is biased (Thorne and Vose, 2010; Ferguson and Villarini, 2012).  
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The trend analysis of ERA5 and the related GloFAS-ERA5 river discharge data set would provide 

invaluable information on the nature of inhomogeneities and changes in the time series of land-

surface variables in a state-of-the-art Earth system model, highlighting areas for improvements in 

future climate reanalyses. Moreover, this analysis could also help diagnosing the problematic 

geographical areas, where the GloFAS-ERA5 river discharge time series is not stationary and 

therefore the quality of the global hydrological predictions of GloFAS can potentially be impacted 

by the inconsistencies in flood event representation between climatology and forecasts. 

A possible way to test the non-stationarity in the land-surface system of ERA5 with GloFAS-ERA5, 

could be to concentrate on the linear trends in annual maxima time series, which is explored in 

Chapter 6. This directly corresponds to the way as the river discharge return period flood thresholds 

are computed (using the annual maxima; Alfieri et al., 2019). The linear trend analysis is done using 

the global catchments, after transferring all land-surface variables into catchment-representing 

values. This allows a direct comparison of the land-surface trends with the simulated and observed 

river discharge trends and provides an ideal ground to disentangle the different contributions 

coming from the various land-surface processes. 

2.4 Innovative ways of generating global flood thresholds 

Hydrological forecasting systems, on regional or global scales, generally rely on reanalysis model 

simulations to generate flood thresholds and with this to associate a severity information to the 

predicted flood events and ultimately to help in delivering flood warning information. Examples 

include the European EFAS (European Flood Awareness system; Thielen et al., 2009) and E-HYPE 

(Donnelly et al., 2016) and the global GloFAS (Harrigan et al., 2020b; see Figure 2-5 as an example 

of the river discharge forecast and thresholds presented in GloFAS) and World-Wide HYPE (WWH; 

Arheimer et al., 2020), which all rely on reanalysis information to generate climatology for the 

whole river network. 

The reasons why model-simulation-based thresholds are used are multifold. For example, Thielen 

et al. (2009) highlight some of the limitations associated with observations that make them less 

suitable to derive thresholds for operational flood forecasting systems. They mention lakes and 

reservoirs, which are not represented in the same way in observations and the model: this can 

create inconsistencies when the observation-based thresholds are compared with the model-

simulated river discharge and e.g. the model does not have the influence of a reservoir while the 

observations have. In addition, there are differences between the behaviour of simulations and 

observations, i.e. the existence of model biases, which they showed to be significant even on the 

smaller European scale. This again can cause potential inconsistencies in the intended and 
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perceived interpretation of flood warnings, as e.g. the thresholds could be too high and not-

representative of the model simulation behaviour. And finally, the fact that river discharge 

observation time series are only available at selected locations, which will only represent those 

river sections, leaving larger gaps on the river network especially on the global scale (Lavers et al., 

2019; Rodda et al., 1993). 

 

Figure 2-5. 30-day GloFAS ensemble forecast issued on 21 July 2018 for the Ganges river at Hardinge Bridge (Bangladesh) 

with the flood warning thresholds (coloured background areas) for return periods of 1.5-, 2-, 5- and 20-year (source: 

www.globalfloods.eu). Taken from Alfieri et al. (2019). 

Weeink (2010) argued that the choice of thresholds is an essential element of any hydrological 

forecasting system. The strengths and limitations of the underlying modelling system has to be 

taken into consideration when designing the flood thresholds for the system. Having optimally 

behaving thresholds should provide the most reliable flood warnings with the highest rate of flood 

event detection and minimum number of false alerts. Hirpa et al. (2016) have also shown that the 

choice of data set to produce the reference climatology and thresholds has a major impact on the 

threshold magnitudes and the quality of the flood warnings in their evaluated GloFAS system. 

The use of climatological simulations to generate flood thresholds will help in accounting for various 

biases in the forecasts, as these errors are expected to feature in a generally similar way in both the 

climatology (i.e. the thresholds) and the actual forecasts. This way, systematic errors (e.g. a generic 

positive bias) can largely be removed by transforming the flood signals into the evolution of 

information on threshold exceedance (Harrigan et al., 2020b; Alfieri et al., 2013). This is especially 

important on the global scale, where the availability of quality observations can be very limited and 
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thus the biases in global systems can be quite substantial, as demonstrated by e.g. Harrigan et al. 

(2020b) for GloFAS.  

Biases in the forecasts can be nonstationary and will likely change with the increasing forecast lead 

time. As shown by Alfieri et al. (2019), this can make the use of the same nonvarying threshold (i.e. 

based on the ERA5 reanalysis) more and more suboptimal as it is used for increasing lead times out 

to several weeks. 

The use of range-dependent thresholds, which vary across forecast lead times, promise to provide 

more optimal flood warnings. However, in order to generate them, sufficient number of forecasts 

are needed over a long enough period. The use of historical forecasts (produced in real time in the 

past) is an option, but these are created with many different model versions over a longer period, 

therefore will never be optimal. Reforecasts can offer a solution, which are forecasts re-generated 

for past dates. They are a better alternative over historical forecasts, as are produced using the 

same model version, consistently for the whole period. 

In addition, many of the hydrological forecasting systems in use today have evolved into 

probabilistic systems and are based on ensemble forecast information to drive their predictions 

(Cloke and Pappanberger, 2009; Demeritt et al., 2010). These ensemble forecasts include a number 

of ensemble members by perturbing the initial conditions for the model runs, to reflect the full 

range of possible future outcomes (Palmer, 2019). These probabilistic systems can also include 

reforecasts, the so-called ensemble reforecasts, which are the probabilistic equivalent of the single-

member reforecasts, containing a number of ensemble members (Harrigan et al., 2023). They are 

based on meteorological reforecasts produced by global NWP centres, most notably by ECMWF, 

who generate them dynamically in real time twice a week for the past 20 years (Vitart, 2014). As an 

example, Figure 2-6 highlights the schematic of the reforecasts taken from a whole calendar year. 

 

Figure 2-6. ECMWF reforecast schematic for the reference period of January to December 2019, including 104 run dates 

(all Monday or Thursday in 2019). Taken from Harrigan et al. (2023). 
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Despite the recent advancement of the ensemble-based forecast systems, ensemble information 

has not been yet considered anywhere in flood threshold generation. However, as ensembles can 

show different biases to single-member (deterministic) forecasts (e.g. Leutbecher et al., 2017), this 

suggests that using ensemble forecast information in generating range-dependent thresholds could 

be beneficial. 

The use of reforecasts, and more specifically ensemble reforecasts, in generating the model 

climatologies have some examples in the scientific literature. For hydrology, Alfieri et al. (2019) 

showed that range-dependent, reforecast-based flood thresholds were substantially different from 

unique reanalysis-based thresholds in two thirds of the global rivers. This study, however, only 

considered the control member of the ensemble reforecasts (i.e. the member that runs from the 

lower resolution analysis without perturbation). Emerton et al. (2018), on the other hand, used 

hydrological ensemble reforecasts on the seasonal scale to generate the low- and high-flow 

thresholds for the seasonal hydrological predictions, specific for each weekly lead time. Other 

examples exist in meteorology, which use ensemble reforecasts to provide range-dependent 

climatologies in identifying extreme events in NWP meteorological forecasts (e.g. Tsonevsky et al., 

2018). 

The use of ensemble reforecast data promises to deliver not only range-dependent flood 

thresholds, but also thresholds that benefit from the representation of ensemble behaviour. These 

ensemble-reforecast-based thresholds will be expected to help overcoming the problem of 

extreme event representation inconsistencies due to nonstationary forecast biases and will 

ultimately be expected to lead to higher forecast reliability and better skill in predicting global flood 

events. 

The potential benefits of using ensemble reforecasts to define flood thresholds is analysed globally 

in the context of the GloFAS system in Chapter 7, using the river discharge reforecasts available for 

a calendar year period from the Copernicus Climate Data Store (CDS). The impact of the data source 

choice (ensemble reforecasts vs. ERA5 reanalysis) and the sampling strategies to calculate the 

annual maximum values (from the reforecasts, i.e. choosing one member randomly) for the return 

period threshold computation (as described e.g. in Harrigan et al. (2020b) for GloFAS) is evaluated. 

The flood threshold magnitudes are compared and the resulting forecast reliability and skill benefits 

(after applying the respective thresholds to compute exceedance probabilities) explored over 

thousands of global river catchments. This way, the benefit of replacing the non-varying reanalysis-

based thresholds with range-dependent and ensemble-based thresholds can directly be quantified. 
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Chapter 3 Methods and data sets 

This thesis explores several global hydrological data sets, produced by different modelling 

systems. In this section the models, the data sets and the methods used are described. 

3.1 Hydrological and land-surface models 

The hydrological simulations produced and explored in this PhD relied on the following land-

surface and hydrological models, listed below. 

3.1.1 ECLand 

ECLand is the land surface modelling platform (Boussetta et al., 2021) that includes the HTESSEL 

(The Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land; Balsamo et al., 2009; 

Balsamo et al. 2011) land surface scheme, the offline surface modelling driver, the river discharge 

routing scheme of CaMa-Flood (Yamazaki et al., 2011), the urban tile scheme (McNorton et al., 

2021) and the representation of the carbon cycle (Boussetta et al,. 2013). ECLand is expected to 

become open source in 2023 (Sleigh at al., 2022). It represents the vertical transfer of energy, water 

and carbon, and where appropriate, corresponding sub-surface quantities. 

Each grid-box at the interface between the surface and the atmosphere is fractioned into tiles. 

There are currently seven tiles over land (high and low vegetation, bare ground, shaded and 

exposed snow, intercepted water and lake) and up to two tiles over sea and freshwater bodies 

(open and frozen water). Each tile is characterised with its own properties identifying separate 

water and heat fluxes and allow solving an energy balance equation for the tiles skin temperatures 

and taking into account physical processes that limit evaporation of vegetated areas and 

bareground. 

In ECLand, the soil is divided into four layers with fixed layer depths, while runoff is generated as 

fast (surface) and slow (subsurface) components at each grid point (Balsamo et al., 2009). As there 

is no horizontal flow component between grid points in ECLand, it needs to be coupled to a routing 

model with a river network to produce river discharge. 

The snowpack is characterised by considering snow density, thermal insulation properties 

interception of rain and the evolution of the albedo due to metamorphism aging processes. Further 

description of the land surface parametrization is available in Bousetta et al. (2021). ECLand is part 

of the Integrated Forecasting System (IFS) at ECMWF and used in coupled land-atmosphere 

simulations at various spatial resolutions, from short- to seasonal range, including the production 

of the ECMWF reanalysis data sets. 
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3.1.2 Offline simulation methodology 

ECLand can be used in a stand-alone mode, when the model runs uncoupled from the atmosphere, 

forced with near-surface meteorological input data of temperature, specific humidity, wind speed, 

surface pressure, radiative fluxes (downward solar and thermal radiation), and water fluxes (liquid 

and solid precipitation), without land data assimilation. 

This offline research methodology provides an affordable way of testing land surface improvements 

and has been used in various applications (e.g. Agustí-Panareda et al., 2010; Haddeland et al., 2011; 

Zsoter et al., 2019; Arduini et al., 2019). The ERA5-Land dataset is a prime example of this 

methodology, which was produced as an offline ECLand simulation (Muñoz-Sabater et al., 2021). 

3.1.3 Lisflood 

Lisflood is an open source (https://ec-jrc.github.io/lisflood-model/) distributed semi-physically 

based model, primarily developed to simulate major hydrological processes in large catchments at 

the Joint Research Centre (JRC) of the European Commission (van der Knijff et al., 2010). Processes 

simulated by Lisflood include soil freezing, snowmelt, surface runoff, lakes and reservoirs, water 

abstraction, infiltration, preferential flow, redistribution of soil moisture within the soil profile, 

drainage to the groundwater system, groundwater storage, and base flow. 

Surface runoff is produced at every grid cell and then first routed to the nearest downstream river 

channel cell, then the water in the channel is routed through the river network using the kinematic 

wave approach (Chow et al., 1988). Lisflood also simulates the groundwater storage, groundwater 

flow, and flow routing into and through river channels. Groundwater storage and transport are 

represented using two interconnected groundwater zones each consisting of a linear reservoir 

(Burek et al., 2013), which subsequently transport water to the river channel with a time delay. The 

current Lisflood version includes 463 lakes and 687 reservoirs (Zajac et al., 2017), selected from the 

world’s largest lakes and reservoirs.  

3.1.4 Lisflood-routing 

The simplified version of the Lisflood hydrological model is used specifically for flow routing, 

simulation of groundwater processes, human water use and lakes and reservoirs only. This version 

of Lisflood (called Lisflood-routing hereafter) takes surface and subsurface runoff as input variables. 

The sub-surface runoff is used as input for the groundwater module, while surface runoff is used as 

input for the river channel routing module. It includes the same lakes and reservoirs as Lisflood (463 

lakes and 687 reservoirs). 
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3.1.5 CaMa-Flood 

CaMa-Flood (Yamazaki et al., 2011) is a global river-routing model, which is part of ECLand since IFS 

cycle 47r1 (Boussetta et al., 2021). The model can be used to simulate the hydrodynamics and 

produce river discharge from the ECLand runoff outputs. CaMa-Flood routes runoff generated by 

land-surface models to oceans or inland seas. The model calculates river and floodplain water 

storages, discharge, water depth, as well as flood inundation. The CaMa-Flood version (v3) 

described and used in this PhD (and also earlier versions), does not include the representation of 

dams and permanent lakes and wetlands are only treated as part of the floodplain storages. CaMa-

Flood is computationally cheap to run, even though it includes explicit representation of flood 

inundation. It has been used widely in global climatological research studies, such as Emerton et al. 

(2017), Dottori et al. (2018) and Zsoter et al. (2019).  

3.2 Meteorological forcing data sets 

In order to produce the hydrological simulations that were used to generate the climatologies in 

the studies of this PhD, different reanalysis meteorological forcings were applied. In addition, 

meteorological data was also used to force the forecast simulations for the medium-and seasonal 

ranges, which were analysed in different scientific studies, produced during the PhD. These 

meteorological data sets are all generated by ECWMF, listed below. 

3.2.1 ERA-Interim climate reanalysis 

ERA-Interim (ERAI hereafter) is ECMWF‘s global atmospheric reanalysis from 1979 to present 

produced with an older (2006) version of the ECMWF Integrated Forecasting System, cycle 31r2 

(Dee et al., 2011). The system includes four-dimensional variational data assimilation (4D-Var) with 

a 12-hour analysis window. The spatial resolution of the data set is approximately 80 km (T255 

spectral) on 60 levels in the vertical from the surface up to 0.1 hPa. ERAI is available from 1 January 

1979 to 31 August 2019 and was superseded by the ERA5 reanalysis. 

3.2.2 ERA-Interim/Land climate reanalysis 

ERA-Interim/Land (Balsamo et al., 2015; hereafter ERAI-Land) is a global reanalysis of land-surface 

parameters at 79 km spatial resolution, covering originally the period 1979-2010 which was later 

extended for subsequent years until 2018. It was produced with a single ‘offline’ simulation, 

uncoupled from the atmosphere, not including data assimilation and forced by atmospheric forcing 

from ERAI, using a more recent version of the HTESSEL land-surface model (cycle 37r2 for the 

original ERAI-Land data set). It also includes adjusted precipitation forcing, based on the Global 

Precipitation Climate Project (GPCP; Huffman et al., 2009), where the ERAI 3-hourly precipitation 

values are rescaled to match the monthly accumulated precipitation provided by the GPCP v2.1 
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product (for more details please consult Balsamo et al., 2010). ERAI-Land preserves closure of the 

water balance and includes a number of parameterisations improvements in the land surface 

scheme with respect to the original ERAI dataset, which makes it more suitable for climate 

applications than ERAI, where the land data assimilation can add or remove water (Zsoter et al., 

2019).  

3.2.3 ERA-20CM climate reanalysis 

ERA-20CM is an atmospheric model reconstruction of the 20th century, produced by ECMWF 

(Herscbach et al., 2015). It includes a 10-member ensemble estimate of the climate conditions over 

the period of 1899–2010 on horizontal resolution of about 125 km, produced by the IFS cycle 37r3. 

3.2.4 ERA5 climate reanalysis 

ERA5 is the latest global climate reanalysis of ECMWF (Herschback et al., 2020). It is a key 

contribution to the C3S and is open access and free to download for all uses (in the CDS; 

https://cds.climate.copernicus.eu/). ERA5 covers the period 1950 to present, with quality assured 

data available from 1959. ERA5, similarly to ERAI, is a land-atmosphere-ocean coupled application 

which includes the assimilation of conventional in-situ and satellite observations for the analysis of 

soil moisture, soil temperature and snow fields (de Rosnay et al., 2014). ERA5 is based on the IFS 

cycle 41r2, which was operational at ECMWF in 2016. ERA5 thus benefits from 10 years of modelling 

improvements (physics, dynamics and data assimilation) relative to ERAI. In addition to a 

significantly increased horizontal resolution (31 km compared with 79 km for ERAI), ERA5 has also 

include hourly outputs and an uncertainty estimate based on a 10-member ensemble of data 

assimilations with 3-hourly output and 63 km resolution. ERA5 also provides a number of output 

parameters, e.g. including a 100 m wind product. The move from ERAI to ERA5 represents a step 

change in overall quality and level of detail.  

3.2.5 ERA5-Land climate reanalysis 

ERA5-Land is an enhanced global dataset for the land component of ERA5 within the C3S. It 

describes the evolution of the water and energy cycles over land in a consistent manner over the 

production period, which, among others, could be used to analyse trends and anomalies. ERA5-

Land is a product of an offline ECLand simulation (with IFS cycle 45r1), forced by ERA5 atmospheric 

variables (e.g. air temperature or radiation). ERA5-Land is produced at 9 km spatial resolution using 

downscaled ERA5 atmospheric forcing and a vertical lapse rate correction. ERA5-Land shares with 

ERA5 most of the parameterizations that guarantees the use of the state-of-the-art land surface 

modelling applied to NWP models. There is no direct coupling or land data assimilation in ERA5-

Land (there is only an indirect impact through the ERA5 forcing), which can have a large impact on 
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the hydrological cycle (Zsoter et al., 2019). The much higher resolution and the temperature lapse-

rate correction in ERA5-Land are major differences to ERA5, which can further contribute to the 

impacts on the water budget, especially in mountainous areas, changing the snowpack and 

snowmelt through the temperature differences. 

3.2.6 ENS forecasts 

The ECMWF ensemble forecasts (ENS) includes 51 ensemble members operationally out to a lead 

time of 15 days, produced twice per day at 00:00 and 12:00 UTC. There is a single ‘control’ member 

which is generated from the most accurate estimate of current conditions and a remaining 50 

members which have their initial conditions perturbed to provide a range of possible future 

weather scenarios. The ENS forecasts are extended to 46 days twice per week on Mondays and 

Thursdays. These extended-range forecasts are run at coarser horizontal resolution at ~36 km. 

3.2.7 SEAS5 forecasts 

SEAS5 is the 5th version of ECMWF's long-range ensemble forecasting system made operational 

(using IFS cycle 43r1) in November 2017 (Johnson et al., 2018). Similarly to ENS, SEAS5 consists of 

51 ensemble members, and has slightly lower horizontal resolution of ∼36 km. The system 

produces forecasts each month with 7 months lead time. Seasonal forecasts provide predictions of 

how the average atmospheric, ocean and land surface conditions are likely to differ from the long-

term average. The seasonal predictions have generally lower skill than the medium- or extended-

range forecasts, but for some sectors such as agriculture or water management they can be useful 

in predicting potentially unusual conditions months in advance.  

3.2.8 ENS reforecasts 

The ECMWF ENS reforecasts are forecast integrations with 11 ensemble members and 46-day lead 

time, using the same IFS version and starting on the same day and month as the real time forecasts 

for each of the past 20 years (Vitart, 2014). The reforecasts are currently produced for Mondays 

and Thursdays (so twice weekly). For instance, if the starting date of the real-time forecast is 21 

March 2022, then the corresponding reforecasts with 11-member ensemble will be produced 

starting on 21 March 2021, 21 March 2020, ..., 21 March 2002. The reforecasts are thus produced 

with 20 different starting dates from the past 20 years. 

3.2.9 SEAS5 reforecasts 

The SEAS5 reforecasts (also sometimes known as hindcasts or back integrations) start on the 1st of 

every month for the years 1981-2016, go out to 7 months and have 25 ensemble members. From 

2017 the seasonal reforecasts include the same 51 ensemble members as in the real time forecasts. 
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The reforecasts are produced with the same model as the real time seasonal forecasts. They are 

available to users of the real-time forecast data to calibrate the forecast products. 

3.3 Hydrological modelling systems 

During the course of this PhD, three different hydrological modelling systems were used. The first 

two rely on the ECLand land-surface model as the core hydrological engine to produce runoff, either 

as a coupled system with land data assimilation or uncoupled from the atmosphere without 

assimilation, and the river routing component as either Lisflood-routing or CaMa-Flood. 

 

Figure 3-1. Schematic of the hydrological modelling systems used in the PhD with the related data flow. 

In addition, the third system is fully based on Lisflood to produce river discharge. Figure 3-1 

highlights the main components of the modelling systems with the applied forcing data and the 

relationships between them, while Figure 3-2 lists the major model versions with some of the main 

features and the timeline. 

3.3.1 Global Flood Awareness System (GloFAS) 

Many data sets used were produced in the Global Flood Awareness System, which is part of the 

Copernicus Emergency Management Service (CEMS), developed by JRC and ECMWF. GloFAS is one 

of the few global scale operational flood forecasting systems that exist (Harrigan et al., 2020b). 

GloFAS couples global NWP input data with hydrological modelling to produce river discharge on a 

global river network, currently at 0.1 degree resolution (van der Knijff et al., 2010; Alfieri et al., 

2013). 
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GloFAS has a 30-day component with daily updates and a seasonal component with 4 months lead 

time and monthly updates. The 30-day component uses meteorological forcing from the medium- 

and extended-range ENS, while the seasonal system uses SEAS5, the latest version of ECMWF's 

long-range ensemble forecasting system. The GloFAS system also includes reforecasts for both the 

30-day and seasonal components, which are hydrological forecasts produced for past dates to help 

with forecast evaluation and post-processing. These reforecasts use the ENS and SEAS5 reforecasts 

as forcing. 

 

Figure 3-2. Time evolution of the hydrological modelling systems and the related versions used in the PhD. The three 

colours represent the three modelling systems used. 

As part of the current GloFAS configuration, the real-time river discharge forecasts (30-day and 

seasonal) are compared to the hydrological thresholds which are derived from the model 

climatology. In the 30-day component, the flood thresholds are based on the river discharge 

reanalysis, a long simulation usually from 1979 to reconstruct historical river conditions. Whereas 

in the seasonal component, the low flow and high flow thresholds are based on the climatology 

produced from the seasonal reforecasts. All GloFAS data, the reanalysis, the 30-day and seasonal 

real time forecasts and reforecasts are freely available for all use from the CDS.  

The climatologies play a crucial role in GloFAS. The consistency of the climatology-based thresholds 

and the real time forecasts are particularly important, as without it the hydrological warnings for 

floods in the 30-day component or high/low flow conditions in the seasonal would be unreliable. 

GloFAS was operationally implemented in April 2018, while it has been preoperationally providing 

forecasts already from 2011. 

Two hydrological modelling systems have been part of GloFAS in the most recent few years. One 

with coupling ECLand to Lisflood-routing and another with using Lisflood (see Figure 3-1 and Figure 

3-2. Below, a short description of the operational and major preoperational versions of the GloFAS 

modelling and data service are provided. 
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3.3.1.1 GloFAS version 0 

GloFAS v0 was running preoperationally from 2011 on 0.1-degree resolution. It used Lisflood-

routing to route the surface and sub-surface runoff outputs of the land component (HTESSEL) of 

the Integrated Forecast System to produce daily river discharge simulations. Lisflood-routing used 

expert-defined parameters which are uniform across the entire geographical domain, regardless of 

land surface characteristics (i.e. no calibration was performed). For the 30-day GloFAS version, 

meteorological forcing was used only in the first 15 days of the 30-day forecast horizon and the 

model climatology was generated based on the ERAI-Land-forced reanalysis data set. GloFAS v0 

was associated with a reforecast set, containing regenerated forecasts for every day from 2008 to 

2015 (then gradually extended with real time produced forecasts), using the 15-day ENS runoff 

forcing routed by Lisflood-routing and initialised by GloFAS-ERAI-Land-v0. GloFAS v0 was first run 

at the JRC, then adapted to run in ECMWF’s environment in 2015. 

3.3.1.2 GloFAS version 1.0 

The first operational version of GloFAS was introduced in April 2018. It uses the same modelling 

configuration as GloFAS v0, with the uncalibrated Lisflood-routing coupled to ECLand surface and 

subsurface runoff outputs, ERAI-Land-forced reanalysis and ENS meteorological forcing in the first 

15-day period of the 30-day forecasts. The 30-day reforecasts did not change either from GloFAS 

v0. In addition, the first seasonal version of GloFAS was introduced in November 2017 (Emerton et 

al., 2018). It used the same Lisflood-routing model with the surface and subsurface runoff outputs 

of ECLand in the SEAS5 forcing. The GloFAS seasonal forecasts (both real time forecasts and 

reforecasts) are initialised from the ERA5-forced reanalysis, which was first produced for periods 

(separate ERA5-forced simulations) when ERA5 was available (1990-1992, 2000-2007 and 2010-

2016) at the time of setting up the system. The seasonal reforecasts only have 25 ensemble 

members. The reforecasts are used to compute the low/high flow thresholds used in the seasonal 

system, using the available years. 

3.3.1.3 GloFAS version 2.0 

This version of GloFAS v2.0 was implemented in November 2018. It uses the Lisflood-routing model, 

which was enhanced by the first calibration of the hydrological routing scheme (Hirpa et al., 2018b). 

It continues to couple the ECLand surface and subsurface runoff outputs to Lisflood-routing to 

produce river discharge. GloFAS v2.0 introduced the use of the ERA5 reanalysis (pre-release version 

of ERA5) in the 30-day model climatology and the forecast initialisation for both 30-day and 

seasonal, and a different method to generate the 30-day GloFAS reforecast data set was based on 

the 20-year ENS reforecasts of ECMWF with the ensemble runoff routed by Lisflood-routing. The 

30-day reforecasts cover the period 1997-2016 (extended with real-time produced forecasts in 

2017-2018). At the same time, the seasonal reforecasts were extended to include all years in 1981-
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2017, initialised from the ERA5-reanalysis, and to include 2018 using the real-time-produced 

seasonal forecasts. 

3.3.1.4 GloFAS version 2.1 

GloFAS v2.1 was implemented in November 2019, using the same calibrated Lisflood-routing 

version as in GloFAS v2.0. It continues to couple the ECLand surface and subsurface runoff outputs 

to Lisflood-routing to produce river discharge. It includes a revised hydrological reanalysis based on 

the officially released ERA5 meteorological forcing from 1979 to 2019. Due to the updated 

reanalysis, the climatologies with the 30-day flood thresholds and the seasonal flow thresholds 

were also recomputed. The reforecasts were also regenerated, using the new reanalysis data as 

initialisation, covering the period of 1998-2017 (extended with real-time-produced forecasts in 

2018-2019) for the 30-day and 1981-2019 for the seasonal. The GloFAS v2.1 upgrade introduced 

the reanalysis and real time 30-day forecasts in the CDS. 

3.3.1.5 GloFAS version 2.2 

The GloFAS v2.2 upgrade was introduced in December 2020 and included mainly changes in the 

service elements of GloFAS. Amongst others, it introduced the GloFAS reforecasts (both 30-day and 

seasonal) and the real time seasonal forecasts to the CDS. In this upgrade, the 30-day reforecasts 

were regenerated for the 2019 reference year, covering the period 1999-2018, while the seasonal 

reforecasts only got further extended into 2020 with the real-time-produced forecasts. 

3.3.1.6 GloFAS v3.1 

GloFAS v3.1 was implemented in May 2021with a major change of the modelling system and related 

updates of all the GloFAS products and datasets; it was complemented by several new or updated 

web products. The GloFAS v3.1 modelling system is entirely based on the Lisflood model, which 

replaces the earlier setup of coupling the runoff output from ECLand to Lisflood-routing. Lisflood 

was calibrated over 1226 river catchments with a total drainage area of 51 million km2 globally 

(Alfieri et al., 2020). Reanalysis and reforecast data sets were produced with the new modelling 

system. The reforecasts covered the period of 1999-2018, while the seasonal reforecasts covered 

1981-2021. 

3.3.1.7 GloFAS version 3.2 

GloFAS v3.2 was implemented in October 2021 as a minor change to provide access to the Global 

Flood Monitoring (GFM) beta version through the GloFAS web interface. All hydrological data sets 

remained the same as in v3.1. 

3.3.2 ECLand/CaMa-Flood system 

Many of the hydrological data sets used in this PhD were produced with the Lisflood model, either 

as Lisflood-routing with coupling to ECLand or the full hydrological configuration version of Lisflood, 
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described earlier. In addition, several research studies, carried out at ECMWF either as part of this 

PhD or outside of it, used the CaMa-Flood hydrodynamic model, as the river routing component 

coupled to ECLand. Two early examples of using CaMa-Flood, are the flood inundation modelling in 

Pappenberger et al. 2012 and the flood forecast uncertainty analysis in Zsoter et al. (2016), which 

both explored ECLand runoff outputs routed with CaMa-Flood. 

The representation of rivers and their role on the ocean and the land water cycle is very relevant in 

Earth system models, which motivated the integration of CaMa-Flood into the ECLand platform. 

Since IFS cycle 47r1, CaMa-Flood has been part of the IFS at ECMWF, introduced in June 2020 

(Boussetta et al., 2021). 

3.4 Hydrological data sets 

In the following, the data sets produced during the PhD, either within GloFAS or as a research data 

set with the ECLand/CaMa-Flood coupled modelling system, are described. Most of them are 

variations of reanalysis simulations to study the model climatologies. In addition, real time forecasts 

and reforecast data sets have also been generated, which are used for forecast studies, many 

appearing in the four main papers and the co-authored publications produced during this PhD. 

Table 3-1 provides the name, data type, short description and indicates in which of the PhD 

publications these data sets appeared and finally in which section of the thesis to find them. The 

data sets are grouped according to the modelling system versions. For this PhD, all three modelling 

systems (see Figure 3-1 and Figure 3-2) were run with 24-hour coupling and output frequency. 

Therefore, all meteorological forcing data sets (such as ERA5) were used in 24-hour chunks for the 

simulations, and all hydrological output data sets in Table 3-1, many of which are analysed in this 

PhD, have 24-hour (daily) time steps, always following the 00-00 UTC convention. 

Table 3-1. List of data sets produced and analysed in the PhD.  

Name Type Description 
PhD 

publications 
Chapter 

GloFAS version 0  

GloFAS-

ERAI-Land-

v0 

Global 

reanalysis 

Hydrological reanalysis with ERAI-Land 

runoff forcing (on ~80 km) routed with 

the uncalibrated Lisflood-routing on 0.1-

degree (~11 km) river network. The data 

set was first produced for 1980-2010 

and later gradually extended until 2017. 

Bischiniotis et 

al., 2019 

Ch. 8 
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GloFAS-

ERAI-Land-

RFC-v0 

Global 

ensemble 

reforecasts 

Reforecasts produced for every day 

from 2008 with 30-day lead time. Real 

time, 15-day ENS runoff forcing (with 51 

ensemble members; 2008-2009: 50 km; 

2010-2015: 32/64 km; 2016-2018: 18/36 

km) was routed by the Lisflood-routing 

model on 0.1-degree (~11 km) river 

network. The data set was produced for 

2008-2015 in 2015 and regularly 

extended until 2018 by adding the real 

time forecasts produced pre-

operationally. The initialisation was 

provided by GloFAS-ERAI-Land-v0. 

Bischiniotis et 

al., 2019 

Ch. 8 

GloFAS version 1.0  

GloFAS-

ERAI-Land-

v1.0 

Global 

reanalysis 

Hydrological reanalysis simulation with 

ERAI-Land runoff forcing (on ~80 km) 

routed through the uncalibrated 

Lisflood-routing, produced for 1980 to 

2017 on 0.1-degree (~ 11 km) river 

network. This version of ERAI-Land did 

not include GPCP precipitation 

correction anymore. 

Towner et al., 

2019 and 

Ficchi et al., 

2021 

Ch. 8 

GloFAS-

ERA5-v1.0 

Global 

reanalysis 

Hydrological reanalysis simulation with 

ERA5 runoff forcing (on ~32 km) routed 

through the uncalibrated Lisflood-

routing, produced for 1980 to 2016 on 

0.1-degree (11 km) river network. 

Towner et al., 

2019 and 

Passerotti et 

al., 2020 

Ch. 8 

GloFAS-

ERAI-Land-

RFC-v1.0 

Global 

ensemble 

reforecasts 

The reforecast data set in v1.0 is 

identical to the v0 reforecast. The only 

difference is the extended period 

covered with daily real time forecasts 

added in 2018. The initialisation was 

provided by GloFAS-ERAI-Land-v1.0. 
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GloFAS-

ERA5-

SRFC-v1.0 

Global 

seasonal 

ensemble 

reforecasts 

Seasonal reforecast simulations with 

SEAS5 runoff forcing (on ~36 km) routed 

through the uncalibrated Lisflood-

routing, produced for each month in the 

years of 1990-1992, 2000-2007 and 

2010-2016 with 25 ensemble members 

on 0.1-degree (~11 km) river network. 

The initialisation was provided by 

GloFAS-ERA5-v1.0. 

Emerton et 

al., 2018 

Ch. 8 

GloFAS version 2.0  

GloFAS-

ERAI-Land-

v2.0 

Global 

reanalysis 

Hydrological reanalysis with ERAI-Land 

runoff forcing (on ~80 km) routed 

through the calibrated Lisflood-routing 

on 0.1-degree (~ 11 km) river network. 

The data set was produced for 1980-

2017. 

Towner et al., 

2019 

Ch. 8 

GloFAS-

ERA5-v2.0 

Global 

reanalysis 

Hydrological reanalysis with pre-release 

version of ERA5 runoff forcing (on ~31 

km) routed through the calibrated 

Lisflood-routing on 0.1-degree (~ 11 km) 

river network. This data set was 

produced from 1979 to 2018. 

Towner et al., 

2019 

Ch. 8 

GloFAS-

ERA5-

Land-v2.0 

Global 

reanalysis 

Hydrological reanalysis with the early 

release part of ERA5-Land surface and 

subsurface runoff forcing (9 km 

resolution) routed through the 

calibrated Lisflood-routing, on 0.1-

degree (~11 km) river network. This 

data set covers 2001-2018. 

Hersbach et 

al., 2018; 

Muñoz-

Sabater et al., 

2021 and 

Zsoter et al., 

2020a 

Ch. 7-8 

GloFAS-

RECF-v2.0 

Global 

reanalysis 

Hydrological reanalysis with reforecast 

ensemble control runoff forcing (the 

first 3- and 4-day periods of the twice-

weekly reforecasts on ~18 km) routed 

Towner et al., 

2019 and 

Hirpa et al., 

2018b 

Ch. 8 
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through the calibrated Lisflood-routing 

on 0.1-degree (~ 11 km) river network. 

This data set was produced for 1997-

2016. 

GloFAS-

ERA5-RFC-

v2.0 

Global 

ensemble 

reforecasts 

The first version of GloFAS reforecasts 

with the 20-year ENS meteorological 

reforecast forcing. It was produced on 

0.1-degree river network with 11 

ensemble members. All available ENS 

reforecasts were used from the calendar 

year of 2017, which provided twice-

weekly coverage of 1997-2016. The 

remaining period until June 2018 was 

covered by reforecasts using forcing of 

the 51-member real time ENS. Twice a 

week runs until Jun 2018 and daily from 

July 2018. The initialisation was 

provided by GloFAS-ERA5-v2.0. 

Bischiniotis et 

al., 2020; 

Passerotti et 

al., 2020 and 

Zsoter et al., 

2020a 

Ch. 7-8 

GloFAS-

ERA5-

SRFC-v2.0 

Global 

seasonal 

ensemble 

reforecasts 

Seasonal reforecasts using SEAS5 runoff 

forcing (on ~36 km) routed through the 

calibrated Lisflood-routing for each 

month in the years of 1990-1992, 2000-

2007 and 2010-2018 on 0.1-degree (~11 

km) river network. The seasonal 

forecasts had 25 ensemble members 

until 2016 and 51 members thereafter. 

The initialisation was provided by 

GloFAS-ERA5-v2.0. 

  

GloFAS version 2.1  

GloFAS-

ERA5-v2.1 

Global 

reanalysis 

A hydrological reanalysis forced with the 

officially released ERA5 data covering 

1979-2019 on 0.1-degree river network. 

Harrigan et 

al., 2020b; 

Zsoter et al., 

2020b; Titley 

Ch. 6 

and 8 
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et al., 2021 

and 

Winkelbauer 

et al., 2022 

GloFAS-

ERA5-RFC-

v2.1 

Global 

ensemble 

reforecasts 

These reforecasts used the 20-year ENS 

reforecasts from the calendar year of 

2018, providing twice-weekly coverage 

of 1998-2017 with 51 ensemble 

members on 0.1-degree river network 

(Harrigan et al. 2023). The remaining 

period was covered by reforecasts 

forced with 51-member real time ENS, 

twice a week runs until Jun 2019 and 

daily from July 2019. The initialisation 

was provided by GloFAS-ERA5-v2.1. 

  

GloFAS-

ERA5-

SRFC-v2.1 

Global 

seasonal 

ensemble 

reforecasts 

Seasonal reforecasts forced with SEAS5 

covering 1981-2019 with 25 ensemble 

members until 2016 and 51 members 

thereafter on 0.1-degree river network. 

The initialisation was provided by 

GloFAS-ERA5-v2.1. 

  

GloFAS version 3.1  

GloFAS-

ERA5-v3.1 

Global 

reanalysis 

A hydrological reanalysis forced with 

ERA5 covering 1979-2021 on 0.1-degree 

river network 

Winkelbauer 

et al., 2022; 

Alfieri et al., 

2019 and 

Alfieri et al., 

2020 (with 

slightly 

earlier model 

version). 

Ch. 8 
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GloFAS-

ERA5-RFC-

v3.1 

Global 

ensemble 

reforecasts 

In this version of the reforecasts, the 

calendar year of 2019 was used (same 

as in v2.2), which provides coverage for 

1999-2018 with 51 ensemble members 

on 0.1-degree river network. The 

initialisation was provided by GloFAS-

ERA5-v3.1. 

Alfieri et al., 

2019 

Ch. 8 

GloFAS-

ERA5-

SRFC-v3.1 

Global 

seasonal 

ensemble 

reforecasts 

Seasonal reforecasts forced with SEAS5 

covering 1981-2021 with 25 ensemble 

members until 2016 and 51 members 

thereafter on 0.1-degree river network. 

The initialisation was provided by 

GloFAS-ERA5-v3.1. 

  

ECLand/CaMa-Flood  

CAMA-

ERA20CM-

R 

Global 

reanalysis 

Hydrological reanalysis forced with ERA-

20CM runoff (125 km resolution), using 

CaMa-Flood river routing (0.5-degree, 

55 km river network) and covering the 

period 1901-2010. 

Emerton et 

al., 2017 

Ch. 8 

CAMA-

ERAI-Land 

Global 

reanalysis 

Hydrological reanalysis forced with 

ERAI-Land runoff (meteorological 

forcing on ~80 km, runoff produced by 

offline ECLand simulation on ~32 km), 

using CaMa-Flood river routing and 

covering 1979-2015. CaMa-Flood run on 

a ~25 km river network 

Towner et al., 

2019 

Ch. 8 

CAMA-

ERA5 

Global 

reanalysis 

Hydrological reanalysis forced with ERA5 

runoff, using CaMa-Flood river routing 

and covering 1979-2018. The ERA5 

runoff has a ~31 km resolution, while 

CaMa-Flood run on a ~25 km river 

network. 

Zsoter et al., 

2019 and 

Zsoter et al., 

2022 

Ch. 4-5  
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CAMA-

ERA5-off 

Global 

reanalysis 

Hydrological reanalysis forced with 

runoff simulated offline by ECLand 

forced with ERA5, without land-

atmosphere coupling and land data 

assimilation, using CaMa-Flood river 

routing and covering 1979-2018. The 

runoff input was produced on a ~31 km 

resolution grid (the ERA5 grid), while 

CaMa-Flood run on a ~25 km river 

network. 

Zsoter et al., 

2019 and 

Zsoter et al., 

2022 

Ch. 4-5 

CAMA-

ERA5-off-

snow 

Global 

reanalysis 

Hydrological reanalysis experiments 

forced with runoff simulated offline by 

ECLand forced with ERA5, without land-

atmosphere coupling and land data 

assimilation, using CaMa-Flood river 

routing and covering 1979-2018. These 

experiments differ to CAMA-ERA5-off by 

having modifications in the ECLand 

snow soil freezing schemes (i.e multi-

layer parametrisation and other changes 

for the permafrost). 

Zsoter et al., 

2022 

Ch. 5 

3.4.1 Data production 

To generate the 23 data set types, listed in Table 3-1, during the course of the PhD, in total hundreds 

of experiments were run at ECMWF. Each of these has produced data from few tens of GB to few 

TB, depending on the type of simulation and the list of variables outputted. In total, tens of TB of 

simulation data was produced during the 6 years of the PhD. 

3.4.1.1 IT infrastructure 

The simulations to produce the data sets were run primarily on the ECMWF High Performance 

Computer Facility (HPCF; Figure 3-3), which has two identical Cray XC40 clusters, each self-sufficient 

with their own storage to provide resilience to system failures and flexibility in performing 

maintenance and upgrades. 
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Figure 3-3. Picture of the Cray supercomputer at ECMWF. 

The two clusters provide a total of about 260000 CPU (Central Processing Unit) cores, about 0.9 

petabytes of memory and 8499 teraflops peak performance. Each of the XC40 systems has about 

10 petabytes of storage and offers more than 350 gigabytes per second of I/O bandwidth. The HPCF 

processes more than 200,000 jobs per day on each cluster on average. 

 

Figure 3-4. The ecFlow workflow manager software of ECMWF. 

The majority of the experiments were run using ECMWF’s in-house open-source workflow manager 

software, ecFlow (Figure 3-4). ecFlow enables users to run a long list of tasks, with dependencies 

on each other and on time, in a controlled environment.  It provides tolerance, for hardware and 

software failures, combined with good restart capabilities. It is used at ECMWF to run all the 

operational and research suites (and produced the experiments) across a range of platforms. In 
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total, ECMWF run over 750,000 jobs per day on the supercomputer and other systems in a 

controlled manner. 

3.4.1.2 Data archival 

There is a large-scale data handling system (DHS) in place at ECMWF that help users to store and 

manage data related to weather and climate simulations, either for any required input data or for 

any model outputs. ECMWF's data archival currently contains hundreds of petabytes of operational 

and research data. The data is stored on a hierarchy of disks and tapes to store the files and their 

associated metadata. There are two data archival applications through which users can access the 

data: 

• MARS (Meteorological Archival and Retrieval System) provides access to a powerful 

abstraction engine that allows users and applications to access data sets collected or 

generated at ECMWF for more than 30 years. MARS stores files in GRIB and BUFR formats 

only. 

• ECFS (ECMWF's File Storage System provides users with the possibility of archiving any data 

that is not suitable for storing in MARS. UNIX-like commands enable users to copy files to 

and from any of ECMWF's computing platforms. Unlike MARS, data on ECFS is not curated 

or indexed. It is designed to store unstructured data. 

MARS data represents about 75% of the volume of data stored in the DHS, but only about 4% of 

the number of files. ECFS data represents almost all of the remaining 25% of the data, 

corresponding to 96% of the files. The DHS provided access to over 360 PB of primary and about 

350 million files in ECFS and over 13 million in MARS in August 2020. All data related to simulations 

carried out in this PhD are archived on ECFS as a primary location. 

All data produced during the PhD was archived on ECFS, while the more recent river discharge data 

sets were also stored in the MARS archive.  

3.4.1.3 Data accessibility and the Copernicus Climate Data Store 

All the official GloFAS river discharge data sets (reanalysis, real time forecasts, reforecast, seasonal 

real time forecasts and seasonal reforecasts) are currently archived in MARS for the two latest 

versions, 2.1/2.2 and v3.1 (operational). These data sets are accessible either directly through 

MARS (from ECWMF computers or the WEB API), or the Copernicus Climate Data Store. All other 

data sets, produced and analysed in this PhD, are archived on ECFS and available upon request. 

The Climate Data Store is the cornerstone infrastructure which supports the implementation of the 

Copernicus Climate Change Service. It enables the provision of various climate reanalyses, 

projections and indicators at temporal and spatial scales. The CDS offers seamless web-based and 
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API-based search and retrieve facilities to access climate data and information. It is an easy way for 

users to access climate-related data. In addition, the CDS also provides a generic software toolbox 

that allows users to develop web-based applications that make use of the datasets available in the 

CDS. All data in the CDS, including the GloFAS data sets, are free and open, subject to the user 

agreeing to the relevant dataset licence(s). The GloFAS data sets are available via the CDS website 

at https://cds.climate.copernicus.eu/cdsapp#!/search?text=glofas. 

3.5 Limitations of the modelling systems and data sets used 

The models and data sets used in this PhD have all some generic uncertainties and limitations that 

need to be considered when interpreting the results of the PhD. The global nature of the modelling, 

with the very high computational cost, means that some meteorological and hydrological processes 

are either simplified or neglected (Harrigan et al., 2020). It has to be acknowledged, that regardless 

of the vast amount of Earth observations assimilated in the production of the meteorological 

forcing data sets listed in Section 3.2 (https://www.ecmwf.int/en/research/data-

assimilation/observations), there can still be large uncertainties in the accuracy of the 

meteorological data, especially for surface variables such as precipitation. For example, 

precipitation is known to be less predictable in the tropical areas, where convection is dominant 

and NWP models are known to be struggling to predict convection (Lavers et al., 2022). In addition, 

surface observations, such as precipitation, are not currently used in these global hydrological 

modelling systems for the initialisation of the river conditions. This means, the initial uncertainty of 

river discharge can be large, especially in areas where the meteorological forcing data is of lower 

quality, for example the tropics. This can have a large negative impact on the quality of the flood 

forecasts even several days into the forecast horizon (Zsoter et al., 2016). 
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Chapter 4 How Well Do Operational Numerical Weather Prediction 

Configurations Represent Hydrology? 

The first area that I wanted to explore in the PhD concentrated on the way in which LDAS impacts 

hydrology in reanalysis simulations. Data assimilation is one of the most important components of 

the Earth system models. The extent to which LDAS impacts on river discharge was particularly 

important to look at, as data assimilation is not always active in hydrological simulations, which can 

potentially create inconsistencies in the flood forecasting systems if LDAS is not used in each 

component consistently. The paper addressing this research question has been published in Journal 

of Hydrometeorology (JoHM) with the following reference (https://centaur.reading.ac.uk/83453/): 

Zsoter, E., Cloke, H., Stephens, E., de Rosnay, P., Muñoz-Sabater, J., Prudhomme, C., and 

Pappenberger, F., 2019: How well do operational Numerical Weather Prediction setups represent 

hydrology?, J. Hydrometeorol., 14, https://doi.org/10.1175/JHM-D-18-0086.1. 

The contributions of the authors of this paper are as follows: E.Z. designed the experiment, 

produced the datasets, carried out the river discharge data analysis, and led the writing of the 

manuscript. H.C. and E.S. assisted with posing the research question and designing the analysis, 

P.deR. and J.M-S. helped with the scientific analysis of data assimilation and coupling issues and 

C.P. and F.P. helped design the research methodology. All authors assisted with writing the 

manuscript. Overall, 90% of the writing was undertaken by E.Z. 

The published article can be found in the Appendix A1. 

Abstract. Land surface models (LSMs) have traditionally been designed to focus on providing lower-

boundary conditions to the atmosphere with less focus on hydrological processes. State-of-the-art 

application of LSMs includes a land data assimilation system (LDAS), which incorporates available 

land surface observations to provide an improved realism of surface conditions. While improved 

representations of the surface variables (such as soil moisture and snow depth) make LDAS an 

essential component of any numerical weather prediction (NWP) system, the related increments 

remove or add water, potentially having a negative impact on the simulated hydrological cycle by 

opening the water budget. This paper focuses on evaluating how well global NWP configurations 

are able to support hydrological applications, in addition to the traditional weather forecasting. 

River discharge simulations from two climatological reanalyses are compared: one “online” set, 

which includes land–atmosphere coupling and LDAS with an open water budget, and an “offline” 

set with a closed water budget and no LDAS. It was found that while the online version of the model 

largely improves temperature and snow depth conditions, it causes poorer representation of peak 

river flow, particularly in snowmelt-dominated areas in the high latitudes. Without addressing such 
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issues there will never be confidence in using LSMs for hydrological forecasting applications across 

the globe. This type of analysis should be used to diagnose where improvements need to be made; 

considering the whole Earth system in the data assimilation and coupling developments is critical 

for moving toward the goal of holistic Earth system approaches. 

4.1 Introduction 

Land surface models (LSMs) have traditionally been designed to focus on providing lower-boundary 

conditions to the atmosphere by describing the vertical fluxes of energy and water between the 

land surface and the atmosphere, with less focus on predicting runoff (Mengelkamp et al., 2001). 

LSMs therefore maximize the quality of the atmospheric forecast, but do not necessarily bring the 

same benefits in the representation of the hydrological cycle (Kauffeldt et al., 2015). 

There is a wide literature on assessing the hydrological capabilities of LSMs and describing various 

improvements in the modelling of the hydrological cycle (e.g., Wang et al., 2016; Blyth et al., 2011; 

Wu et al., 2014). However, there are significant limitations in the representation of hydrological 

fluxes and storages in LSMs, largely due to the large-scale focus of LSM applications, which has led 

to the neglect of some important processes for runoff generation (Overgaard et al., 2006; Le Vine 

et al., 2016), including inadequate snowmelt processes (Dutra et al., 2012; Zaitchik and Rodell, 

2009). 

Data assimilation is an essential part of any numerical weather prediction (NWP) system (Rabier, 

2005). It is designed to provide initial conditions for the Earth system by updating the model in all 

of the components: atmosphere, land, ocean, and sea ice. State-of-the-art NWP configurations, 

such as used at the European Centre for Medium-Range Weather Forecasts (ECMWF), include both 

an LSM and a land data assimilation system (LDAS). The objective of the data assimilation in this 

context is to combine the land surface model state with the available land surface observations to 

initialize the land surface model prognostic variables of the forecasting system (Bélair et al., 2003a). 

The current ECMWF LDAS analyses soil moisture, soil temperature, snow mass, density, and 

temperature (de Rosnay et al., 2014). Land data assimilation was shown to contribute significantly 

to more skilful atmospheric forecasts, with the soil moisture data assimilation also proven essential 

in countering a positive precipitation/evapotranspiration feedback which can cause large positive 

precipitation biases (e.g., de Rosnay et al., 2013; Drusch and Viterbo, 2007; Beljaars et al., 1996). 

While the improved surface conditions make LDAS an essential component of the ECMWF NWP 

system, by design the related increments remove or add water which can potentially have a 

negative impact on the representation of the hydrological cycle by opening the water budget 

(Zaitchik and Rodell, 2009; Arsenault et al., 2013; Andreadis and Lettenmaier, 2006a; De Lannoy et 
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al., 2012; Pan and Wood, 2006). On the contrary, in a system without LDAS and coupling, the errors 

resulting from atmospheric forcing insufficiencies and imperfect land surface process 

representations are not corrected by the assimilation of land surface observations. 

As an ideal configuration, an Earth system model should always maintain a closed water budget, 

where the amount of water in the system remains the same. By opening the water budget, river 

discharge biases could emerge in situations where the LSM has an energy balance bias that is not 

corrected by the assimilation but only by accurate precipitation and snow accumulation forcing. For 

example, if the snow in the LSM is melting too slowly, this forces the LDAS to remove water (through 

snow) artificially to correct for the excessive amount of snow on the surface. If the water that is 

removed with the snow (and thus could not melt) is not retained within the Earth system that could 

lead to soil water deficit downstream, potentially causing an incorrect rate of river discharge. In 

such cases, LDAS could lead to replace incorrect snowmelt timing issue with incorrect snowmelt 

runoff amount. 

Thus, an open water budget could cause problems for associated hydrological forecasting 

applications, which uses runoff calculated from LSMs with LDAS, such as the Global Flood 

Awareness System (GloFAS; Alfieri et al., 2013). As global hydrological modelling is increasingly 

possible with the improved realism that the state-of-the-art LSMs can nowadays offer (Overgaard 

et al., 2006), it is important to investigate how an LSM with LDAS can support the combined task of 

traditional weather forecasting and hydrology at the same time. This investigation was undertaken 

with this dual focus in mind, by analysing the hydrological cycle and the open water budget issues 

that can help the Earth system model developments with highlighting areas where the coupled 

system with LDAS does not yet work effectively for flood simulations. 

To understand how well an NWP configuration with LSM and LDAS represents hydrology, and in 

particular to interpret the influence of the LDAS on hydrological simulations from LSMs, in this 

paper river discharge simulations from two climatological reanalyses of GloFAS are compared: one 

operational set, which includes land–atmosphere coupling and LDAS with an open water budget, 

and also an ‘‘offline’’ set with a closed water budget and no LDAS. From these two datasets, a range 

of hydrological and atmospheric variables will be analysed globally. 

4.2 System description, datasets, and methods 

Two hydrological experiments, ONLINE (run in operational mode with active land–atmosphere 

coupling and LDAS) and OFFLINE (run in offline mode without coupling and LDAS) provide time 

series of various surface variables (e.g., 2-m temperature, snow depth, and runoff), and also 

discharge after routing the runoff. Figure 4-1 highlights the schematic of ONLINE and OFFLINE with 
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the main characteristics, components and data periods. In this section the two experiments with 

the model and data aspects, and the data analysis methods will be described in detail. 

4.2.1 Land surface model HTESSEL 

The hydrological component of the analysed datasets is based on the Hydrology Tiled ECMWF 

Scheme of Surface Exchanges over Land (HTESSEL) land surface model (Balsamo et al., 2009, 2011). 

HTESSEL is part of the ECMWF NWP system and used in coupled land–atmosphere mode on time 

ranges from short-range to seasonal forecasts. It includes a snow parameterization based on a 

single-layer snowpack model (Dutra et al., 2010). 

 

Figure 4-1. Schematic of the ONLINE and OFFLINE experiments that were carried out to produce the ERA5-D25 dataset. 

The years in parentheses for the discharge indicate the first spinup year in each period that was excluded from the analysis. 

The soil vertical diffusion solves the Richards equation using a four-layer vertical discretization with 

layer depths at 7, 28, 100, and 289cm (Balsamo et al., 2009). HTESSEL provides boundary conditions 

for the atmosphere (heat, moisture, and momentum) by simulating water and energy budgets on 

the surface and through the soil, snowpack, and vegetation interception. HTESSEL generates 

surface (fast) and subsurface (slow) runoff components at each grid point (Balsamo et al., 2009). 

Surface runoff depends on the standard deviation of the orography, soil texture, and soil moisture, 

while subsurface runoff is determined by the soil water percolation. 

4.2.2 Land data assimilation 

The ECMWF LDAS is part of the ECMWF Integrated Forecasting System (IFS). It is coupled to the 

atmospheric four-dimensional variational data assimilation (4D-Var) scheme (Rabier et al., 2000), 

both using a 12-h assimilation window. The upper-air and land surface analyses are running 

separately and are used to initialize a coupled land–atmosphere short-term forecast, which 

provides the background for the next data assimilation window. The land data assimilation relies 

on advanced methods to optimally combine in situ and satellite observations with model 

background information. A schematic diagram of the ECMWF LDAS is provided in Figure 4-2. Initial 



47 

Chapter 4  How Well Do Operational Numerical Weather Prediction Configurations Represent 
Hydrology? 

implementations of the ECMWF LDAS relied on simple assimilation methods for snow and soil 

moisture analyses (Drusch et al., 2004; Mahfouf et al., 2000), with air temperature and humidity 

measurements being the main input for the soil moisture analysis (Mahfouf et al., 2000; Drusch and 

Viterbo, 2007). The system has evolved in the past decade to use a more physically based approach 

and to combine satellite and in situ data in the soil analysis (de Rosnay et al., 2014; de Rosnay et 

al., 2013; Albergel et al., 2012). 

 

Figure 4-2. Schematic diagram of the land data assimilation system at ECMWF. 

In the current LDAS, a simplified extended Kalman filter (SEKF) is used to analyse soil moisture. The 

approach combines analysed 2-m air temperature and humidity with satellite measurements from 

the Advanced Scatterometer (ASCAT) sensor on board of MetOp, as described in de Rosnay et al. 

(2013) and Albergel et al. (2012). For snow, a two-dimensional optimal interpolation (OI) is used to 

analyse snow mass and snow density following the method described in Brasnett (1999). In situ 

snow depth observations, available on the SYNOP network are used along with the 4-km resolution 

snow cover product from the NOAA National Environmental Satellite, Data, and Information Service 

(NOAA/NESDIS) Interactive Multisensor Snow and Ice Mapping System (IMS) product (Helfrich et 

al., 2007). 

Even though it provides significant improvements to the atmospheric forecasts and independent in 

situ snow depth measurements (de Rosnay et al., 2015), the current ECMWF snow data assimilation 

follows a relatively basic method. Operational NWP configurations generally rely on simple 

approaches, compared to research environment, that are based on more sophisticated snow 

assimilation methods using in situ and remotely sensed observations (e.g., Helmert et al., 2018; De 

Lannoy et al., 2012; Pan and Wood, 2006; Slater and Clark, 2006). 

The ECMWF LDAS and its performance is presented and discussed in de Rosnay et al. (2014) and de 

Rosnay et al. (2015). A full description of the technical implementation is provided in the IFS 
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documentation (https://www.ecmwf.int/en/forecasts/documentation-andsupport/changes-

ecmwf-model/ifs-documentation). The system used for this study is that used for the production of 

ERA5 (section 4.2.5), with IFS cycle 41r2 at a resolution of ~31 km. 

4.2.3 CaMa-Flood river routing 

The Catchment-based Macroscale Floodplain model (CaMa-Flood; Yamazaki et al., 2011) was 

applied in this study to simulate the hydrodynamics and produce river discharge from the HTESSEL 

runoff outputs. CaMa-Flood is a distributed global river-routing model which uses a river network 

map and routes runoff to oceans or inland seas. The CaMa-Flood model was chosen for the routing 

component as it had already been used in several similar climatological research experiments such 

as Emerton et al. (2017). 

4.2.4 GloFAS 

GloFAS is one of the few global scale flood forecasting systems that currently exist (Emerton et al. 

2016). It is part of the Copernicus Emergency Management Service (CEMS), developed by the Joint 

Research Centre of the European Commission and ECMWF. The HTESSEL runoff output is coupled 

to the Lisflood hydrological model over a global river network to produce river discharge with a 

forecast horizon of 30 days across a global river network at 0.1 degree resolution (van der Knijff et 

al., 2010; Alfieri et al., 2013). 

As part of the GloFAS configuration, the real-time river discharge forecasts are compared with 

climatological simulations (called reanalysis) to detect the likelihood of high-flow situations. These 

real-time and climatological datasets also present a unique opportunity for experimental analysis 

(Emerton et al., 2017; Stephens et al., 2015). 

4.2.5 Offline land surface modelling 

The current GloFAS operational setup uses a climatology based on the ERA-Interim/Land reanalysis 

of ECMWF (Balsamo et al., 2015). ERA-Interim/Land is an improved version of the ERA-Interim 

reanalysis (Dee et al., 2011) produced with an improved version of HTESSEL, run offline, using a 

rescaling of monthly precipitation totals with GPCP v2.2 (Huffman et al., 2009; Balsamo et al., 2010). 

Offline HTESSEL simulations, such as the OFFLINE experiment in this study, are uncoupled from the 

atmosphere, without the LDAS and forced with near-surface meteorological input data such as 

temperature, specific humidity, wind speed, surface pressure, radiative fluxes, and water fluxes. 

Offline land-surface-only simulations are an affordable way of achieving land surface 

improvements, and this offline research methodology has been used in numerous studies with 
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HTESSEL in the last few decades (e.g., Agustí-Panareda et al., 2010; Dutra et al., 2010, 2011; 

Haddeland et al., 2011). 

4.2.6 ERA5 reanalysis 

The fifth-generation global climate reanalysis (succeeding ERA-Interim) at ECMWF is ERA5 

(Hersbach and Dee, 2016). ERA5 is a key contribution to the EU-funded Copernicus Climate Change 

Service (C3S). ERA5 will cover the period from 1950 to present and is in production with 2008–17 

already officially released. The release of the remaining period is foreseen by end of 2018. ERA5 

will then continue running in (non-quality-assured mode) near–real time with only a few days’ 

delay. The data are open access and free to download for all uses (https://climate.copernicus.eu/). 

ERA5 uses the IFS cycle 41r2 and it relies on land surface model and assimilation configuration that 

are consistent with those used for operational NWP with coupled land–atmosphere simulations 

and the latest soil moisture and snow assimilation (see sections 4.2.1 and 4.2.2 above). ERA5 has a 

high-resolution component at ~31km which is used in this study (hereafter called ERA5-HRES). In 

ERA5-HRES, variables (analysis and short-range forecasts generated at 0600 and 1800 UTC) are 

available hourly. Variables that are valid for a period, for example, precipitation or runoff with an 

accumulation time, are provided as hourly forecasts. 

At the time of writing, approximately 28 years of ERA5-HRES data were available in the ECMWF 

MARS data archive in three separate periods: 1985–87, 1989–95, and 1999–2016. The first years 

(1985, 1989, and 1999) were used as spinup years, so in total 25 years of daily river discharge and 

other surface data could be processed for the analysis (hereafter called ERA5-D25). 

4.2.7 Experimental setup 

In the ONLINE experiment, the operational ERA5-HRES reanalysis data were used directly from all 

three ERA5-HRES periods for land surface variables, including runoff, produced by coupled land–

atmosphere model with LDAS and an open water budget (Figure 4-1). In the OFFLINE experiment, 

on the other hand, three stand-alone HTESSEL runs were set up, one for each of the periods, to 

reproduce the land surface variables in land surface only mode without the impact of coupling and 

LDAS, but with a closed water budget. As ERA5 has a recent model cycle (41r2), the same HTESSEL 

version could be used in the offline experiment as in the operational ERA5. 

In the ECMWF NWP system, there is no option currently to run the land–atmosphere coupling and 

LDAS separately. Either both are active as in ONLINE, or neither of them as in OFFLINE. It would be 

interesting to separate the impact of these two contributing modelling options, but as they are too 

strongly interwoven the separation would require a very large effort, which is outside of the scope 

of this study. 
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In the OFFLINE experiment, the offline HTESSEL model was forced with hourly ERA5-HRES 

atmospheric data, wherever it was possible on the lowest model level, with an hourly model time 

step. The model was run on the original horizontal resolution of ERA5-HRES (~31 km). For 

precipitation, temperature, specific humidity, wind speed, and surface pressure the hourly analysis 

fields were applied, while for radiation and precipitation fluxes the first 12-h period of the 0600 and 

1800 UTC short-range forecasts were used to cover each 24-h periods. 

The river discharge was generated by routing the runoff using CaMa-Flood for both the ONLINE and 

OFFLINE datasets over the ~25 km river network. CaMa-Flood was run with a 1-h time step and a 

24-h output frequency to match the 24-h reporting frequency of the river discharge observations. 

4.2.8 River discharge observations 

In this study, daily river discharge observations used in the GloFAS system are selected. These are 

mostly from the Global Runoff Data Centre (GRDC) archive, an international depository of river 

discharge observations and associated metadata. 

 

Figure 4-3. Geographical distribution of river discharge observations with sufficient record length selected for the analysis. 

Colours indicate the length of the available data in years (from 9 to 25). 

The observations consist of a network of approximately 900 river gauging stations with upstream 

areas over 10 000km2, selected from the catchments used in Zsoter et al. (2016). After visual 

inspection those catchments that showed a clear non-realistic behaviour and/or influence of dams 

were excluded. During the visual checks, the focus was on excluding stations that have obvious 

observation errors, such as constant values, linearly interpolated periods or unrealistic jumpiness, 

and stations with signatures of regularities that are unlikely to come from weather and suggests 

dam operation impact on the observed river discharge. In total, about 15% of the catchments were 

excluded for quality reasons. A minimum of 9 years, with at least 330 days in each of those calendar 
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years, was selected as criteria for the stations to be included in the river discharge analysis. This is 

quite a short period, but due to the limited availability in more recent years, it was accepted as a 

compromise. In total 590 stations could be processed globally leaving large blank areas mostly in 

Asia and Africa (Figure 4-3). 

4.2.9 Annual peak river discharge 

For the river discharge verification, the annual peak river discharges from the two ERA5-HRES 

simulations were determined in each calendar year as the highest value in the ±30-day window 

around the observed annual maximum river flow. The 30-day window was defined as a safeguard 

to avoid detecting high skill with similar peaks in observation and simulation of completely different 

flood waves at very different periods of the year. 

4.2.10 Water budget increments 

This study focuses on the impact of the water budget closure on river discharge. To analyse this, 

the daily (0000–0000 UTC) water budget error term dA was computed as 

 𝑑𝐴 = 𝑃 − 𝐸 − 𝑅 − 𝑑𝑆, (4-1) 

where P is precipitation, E is evapotranspiration, and R is runoff, all taken as the sum of the hourly 

forecast values (24 in total) in the ONLINE experiment from the 0000–0000 UTC period, and dS is 

the change in the storage term (water content in the soil including all four layers and also in the 

snow cover) computed as the difference between the two subsequent 0000 UTC analysis values in 

ONLINE (representing the change in the water content during the 24-h period). Even though the 

water budget error is zero in OFFLINE (the water budget is closed), the contributing variables can 

help identifying the behaviour of the surface processes in both the ONLINE and OFFLINE 

simulations. 

The imbalance in the amount of water that is not accounted for in the OLINE water budget 

effectively comes from the snow depth and soil moisture increments in LDAS which remove or add 

water in the system. The daily increments (valid for a 0000–0000 UTC 24-h period) are computed 

as the sum of two increment values at 0600 and 1800 UTC (each day). Both of these increments are 

computed as the ERA5-HRES analysis value minus the corresponding 12-h ERA5-HRES forecast value 

(initialized 12 h earlier). 

4.2.11 Daily 2-m temperature and snow depth 

The in situ surface synoptic observations (SYNOP) were used to verify 2-m temperature and snow 

depth for both the OFFLINE and ONLINE experiments. The observing stations were filtered 

according to the station altitude difference to the model orography and only those were used which 
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had less than 150-m discrepancy, as orography has control on both variables and large differences 

would make the comparison unreliable. This maximum orography difference value was chosen in 

accordance with the general practice at ECMWF, where 100m is used to filter stations in the 2-m 

temperature verification. For our study, a less stringent compromise value was preferred in order 

to increase the sample size and still guarantee good match between model and real orography. 

The 2-m temperature was verified for around local noon (Table 4-1), while for snow depth the first 

measurement of the calendar day was evaluated in case of subdaily records. In total, observations 

from about 4000 stations for 2-m temperature and 1500 stations for snow depth were available for 

verification. For each catchment, a representative daily observation was also determined for both 

variables. 

Table 4-1. Criteria for selecting daytime 2-m temperature. 

Longitude band 30°W–60°E 60°–150°E 150°–180°E 120°–180°W 30°–120°W 

Approx. local noon 1200 UTC 0600 UTC 0000 UTC 0000 UTC 1800 UTC 

For catchments with more than one SYNOP station available, these were calculated as the 

arithmetic average of the stations within the catchment. It has to be acknowledged that the 

observation network available was not dense enough to represent the full spatial variability of these 

surface variables, especially snow depth, which vary dramatically in space from one point to 

another (Molotch and Bales, 2005). However, for a global study on the hydrological impacts it is 

expected to be sufficient. 

4.2.12 Climatologies 

Daily climatologies were used for river discharge and other surface variables in this work for both 

observations and the two simulations. These datasets were produced with all potentially available 

25 years of data in ERA5-D25, always matching the number of available nearly complete calendar 

years (with minimum 330 river discharge observations) for all the catchments. For each day of the 

year a 21-day window, centred over the day, was used, which provided a minimum of about 180 

values in the climate sample (with the 9 years minimum criteria). The only exceptions are 2-m 

temperature and snow depth, where a fixed shorter period of 2000–07 was used without the 

criteria of nearly complete years. As the 2-m temperature and snow depth observation availability 

is much better in more recent periods and less prone to missing values than river discharge, a 

shorter fixed period (when ERA5-HRES was available) is sufficient. 
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Table 4-2. List of verification scores used in the analysis with a short description and the areas where they were applied. 

Score Description Used for 

ME Mean error 
Daily river discharge, snow depth, 

and 2-m temperature 

MAE Mean absolute error 
Daily river discharge, snow depth, 

and 2-m temperature 

NSE Nash–Sutcliffe efficiency Daily river discharge time series 

R Pearson correlation coefficient Daily river discharge time series 

PMnE Percentage sample mean error Whole river discharge sample 

PMnAe Percentage sample mean absolute error Whole river discharge sample 

PStE Percentage sample standard deviation error Whole river discharge sample 

PStAe 
Percentage sample standard deviation absolute 

error 
Whole river discharge sample 

PkTiMe Peak timing mean error Annual river discharge peaks 

PkTiMae Peak timing mean absolute error Annual river discharge peaks 

PPkMgMe Percentage peak magnitude mean error Annual river discharge peaks 

PPkMgMae Percentage peak magnitude mean absolute error Annual river discharge peaks 

4.2.13 Verification statistics 

A number of statistics were applied to evaluate the overall performance of the two climatological 

simulations in ERA5-D25 (Table 4-2). Several scores were selected in order to give a more 

representative description of the general behaviour including the differences between the ONLINE 

and OFFLINE experiments. This is recommended, for example, by Legates and McCabe (1999) as 

different scores demonstrate different aspects of the model attributes ultimately providing a more 

complete picture. 

The climatological daily time series were compared to the observed data using mean error (ME), 

mean absolute error (MAE), Nash–Sutcliffe model efficiency (NSE; Nash and Sutcliffe, 1970), and 

Pearson correlation coefficient R (Pearson, 1896) in order to measure the fit between model and 

observations. In addition, the mean and standard deviation of the observed and modelled values 

were analysed with four additional indices, the percentage sample mean error, the percentage 

sample mean absolute error, the percentage sample standard deviation error, and the percentage 

sample standard deviation absolute error. 
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Another very important aspect of hydrological model verification is the ability of the systems to 

correctly predict the extremes, as these events can cause the highest impact. To measure this, the 

timing and magnitude errors of the annual peaks were considered. Both the ME and MAE measures 

(mean of all years in the sample) were computed for the timing and for the percentage magnitude 

errors using the annual peaks over the 25 analysed years (for details on how the annual peaks were 

computed, see section 4.2.9). For the analysis of the data assimilation impact on 2-m temperature 

and snow depth the ME and MAE scores were used. In this study verification was conducted on 

homogeneous samples across all compared scores for all the verified surface variables. 

4.3 Results 

The river discharge behaviour provides a useful indication of the hydrological differences between 

the ONLINE and OFFLINE simulations. However, in order to understand the underlying processes 

better, the coupling and LDAS impact was also analysed globally and regionally based on the water 

budget and the related surface variables. 

4.3.1 Snow depth and 2-m temperature impact 

The LDAS is designed to provide adequate initial surface conditions to the NWP forecasts. The 

impact on the hydrology could be demonstrated on two important surface variables: 2-m 

temperature and snow depth (at least in snow impacted areas) which are relatively well observed 

variables and can be used to analyse the impact of the land–atmosphere coupling and LDAS on the 

surface globally in the two experiments. For details on how the observations were used please see 

section 4.2.11. 

The picture for 2-m temperature is rather mixed geographically with an overall MAE improvement 

in ONLINE of around 0.3–0.4°C as a global average up to 1–2°C locally (not shown). This corresponds 

to about 20–30% decrease in MAE on average in ONLINE, with the impact of coupling and LDAS, 

compared to OFFLINE. 

The improvement in the snow depth, which has much larger direct impact on the hydrology, is more 

pronounced, based on the stations used in this study. The errors in ONLINE are significantly reduced 

with most stations showing below ±1–2cm of ME (not shown), and decrease of MAE by as much as 

10–20cm in some of the snow dominant locations in the 50–70° latitude band (Figure 4-4). This is a 

very large improvement in ONLINE by removing 70–80% (as global average) of the errors found in 

the OFFLINE experiment. Countries of Central America, including Mexico, Venezuela, and Columbia, 

tend to provide snow information in their SYNOP observations. 
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Figure 4-4. Difference in the snow depth mean absolute errors between ONLINE and OFFLINE for January based on 

observations in 2000–2007 (cm). Points are shown where observations are available. Blue colours indicate lower errors in 

the ONLINE experiment. 

* An additional similar figure (4-4b) was added for the impact on 2m temperature in Appendix A8. 

Please be aware that this figure does not appear in the published version of this chapter. 

In these regions both the model and the in situ stations mostly indicate snow free conditions, 

leading to very low MAE as shown in Figure 4-4. Although the improvements are large, this does 

not necessarily mean that the simulation is generally better. In situ snow observations are 

associated to potential representativeness issues, particularly in mountainous areas. When 

assimilating a nonrepresentative dataset at a coarse special scale, the results can potentially 

degrade, even though the match to the actual observations is better (Molotch and Bales, 2005). As 

the 2-m temperature and snow depth observations used in this study for verification were also 

assimilated in ERA5, the result will favour to some extent the ONLINE experiment. 

4.3.2 Global water budget analysis 

The water budget is closed in OFFLINE by design, while in ONLINE the LDAS increments can add or 

remove water, which could potentially lead to large errors in the budget over a long period. The 

first aspect that was important to check is the amount of water that is lost or gained in a day on 

average in the hydrological cycle. 

Figure 4-5 shows the average daily water budget errors (Figure 4-5a) and the related snow water 

equivalent (Figure 4-5b) and soil water content (Figure 4-5c) increments (for the definition of these 

terms please see section 4.2.10). In Figure 4-5, negative values (red) indicate water removal by 

LDAS, while positive values (blue) show where water is added to the hydrological cycle. 
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The three figures highlight significant biases in the ONLINE experiment as these water budget errors 

represent generally ±10–25% of the total precipitation with locally even higher ratios (not shown). 

 

Figure 4-5. Average daily water budget analysis (mm/day) of the ONLINE experiment based on the ERA5-D25 dataset for 

(a) the total 24-h water budget errors, (b) the 24-h snow water equivalent increments, and (c) the 24-h soil water content 

increments. Negative values (red) indicate water removal by LDAS, while positive values (blue) show where water is added 

to the hydrological cycle. 

In addition, at latitudes higher than 50°N the dominant pattern is a negative water budget error 

(Figure 4-5a). The major contributing factor to the clearly negative errors in this area is the 

correction of snowpack with LDAS removing snow to account for possible inaccuracies in the 



57 

Chapter 4  How Well Do Operational Numerical Weather Prediction Configurations Represent 
Hydrology? 

HTESSEL snow scheme (Figure 4-5b). On average snow water increments are negative almost 

everywhere where snow is present. The only notable exception is in Canada, where some central 

areas have positive water budget errors which could possibly come from a negative precipitation 

bias that needs to be compensated by LDAS. 

Other areas of the world—the central United States, most of Amazonia, Africa, South Asia with 

India, and large parts of Australia—show positive errors in Figure 4-5a, where extra water is added 

by LDAS. However, the positive errors are not exclusive, as large parts of China, the southeastern 

United States, and areas in central South America experience negative water budget errors in these 

mostly warm climatic conditions. Most of these increments come from the soil moisture 

assimilation impact (Figure 4-5c). The soil moisture assimilation can generally compensate for 

precipitation or 2-m temperature biases. For example, if the 2-m temperature is too low, the 

assimilation will remove water, therefore reducing evaporative cooling which subsequently 

increase the temperature in general. 

4.3.3 Catchment-level process examination 

To demonstrate how HTESSEL handles the land surface processes with and without coupling and 

LDAS, an in-depth case study analysis of the annual water budget cycle was performed for an 

example catchment on the Amur River in east Russia (see Figure 4-6, catchment 13). This catchment 

is heavily snow impacted during winter and can demonstrate nicely the important aspects of the 

hydrological cycle behaviour with the LDAS in action. 

 

Figure 4-6. Map of the catchments analysed in section 4.3.3 (Figure 4-7), where the catchment-level process is examined 

over the Amur River (blue area, 13), and in section 4.3.4 (Figure 4-8), where the simplified representation of the annual 

water cycle is shown for some selected regional catchments of the world (red areas, 1-12). The catchment details are 

provided in Table 4-3. 

In the HTESSEL hydrological cycle representation the input precipitation combined with the melted 

part of the snowpack (snowmelt) is distributed into evapotranspiration, runoff (as sum of surface 
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and subsurface runoffs), snow water storage (falling snow part of the precipitation) and soil water 

storage (soil moisture in the four soil layers). The daily water budget error, computed as in Eq. (4-

1) (without the snowmelt separated), is zero in OFFLINE, while ONLINE can show errors due to the 

increments adding or removing water. Figure 4-7 summarizes the annual cycle of all the water 

budget contributing variables. The displayed variables are daily climatological means calculated as 

described in section 4.2.12. The following variables are shown in Figure 4-7: simulated precipitation 

(same for both experiments), evapotranspiration, runoff, soil water, and snow water storage terms 

[in Eq. (1)] for both ONLINE and OFFLINE; snow and soil water content increments for ONLINE; 

simulated snowmelt, snow depth, and river discharge for both the ONLINE and OFFLINE 

experiments; and finally the corresponding river discharge and snow depth observations. 

Figure 4-7 shows that for the Amur the ONLINE simulation significantly improves the representation 

of snow depth, but as consequence, by the snow assimilation removing a lot of snow, it drastically 

reduces the river discharge peak seen during the snowmelt season. The explanation of this 

conclusion with detailed analysis of the evolution of the different surface variables in the different 

seasons is given in the following: 

• Winter: During December–February there is relatively little activity. The little amount of 

precipitation falls mostly as snow, building the snowpack. Some snow is removed by the 

assimilation through the small negative snow increments. Water leaves the bottom of the soil 

as subsurface runoff with hardly any surface runoff. The OFFLINE simulation is generally similar 

to ONLINE, but snow depth bias shows increasingly positive values in OFFLINE due to the extra 

amount of water going into the snowpack in the OFFLINE experiment from snowfall (especially 

during first half of the winter). 

• Spring: From March, there is a pronounced snowmelt period in the model, peaking at the end 

of April, lasting until the middle of June (with virtually zero snowpack in catchment average 

after middle of May). The increased precipitation in this spring period, with the large amount 

of snowmelt, increases the soil water content, and results in larger surface runoff output in 

both experiments. However, the snowmelt is much smaller in ONLINE during April–May as a 

direct consequence of the large negative snow increments (peaking early April) removing snow 

in the ONLINE experiment. Similarly, due to the smaller amount of available water in ONLINE, 

the surface runoff is also significantly smaller mainly in April/May. The snow depth errors peak 

in middle of March by about 5 cm in OFFLINE with no errors in ONLINE (as catchment average). 

The data assimilation rightly corrects this substantial positive snow bias, however, the removed 

snow will be missing from the water cycle, as highlighted by the unnoticeable spring peak river 

flow, which is higher in the OFFLINE simulation mainly due to the extra snowmelt.  
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Figure 4-7. Average daily water budget cycle for a catchment on the Amur River in Russia at Komsomolsk. It includes the 

following parameters: precipitation (red line), snow (green line with markers), and soil (mustard line with markers) water 

content increments for the ONLINE simulation; surface runoff (light green), subsurface runoff (grey), evapotranspiration 

(magenta), snowmelt (cyan), and soil (mustard) and snow (green) water storage daily changes for both ONLINE (solid 

lines) and OFFLINE (dashed lines); snow depth (blue); and river discharge (black) for ONLINE (solid lines) and OFFLINE 

(dashed lines) experiments and observations (lines with markers). The snow depth values are based on 2000-2007, while 

all other displayed daily climatological means are based on the ERA5-D25 dataset (for more detail on the computation of 

these values, see sections 4.2.11 and 4.2.12). 
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• Snowmelt problem: This behaviour of HTESSEL with LDAS is rather surprising, and at first it 

might sound like a contradiction. How can the correct snow conditions lead to such poor river 

discharge in the ONLINE experiment? A possible explanation could be the representativeness 

issue of some of the snow observations, which can potentially cause local degradation in some 

of the catchments. It can also be explained by the HTESSEL’s tendency to melt the snow too 

slowly (Dutra et al., 2012). In its simple, single layer snow scheme, too much snow accumulates 

into the snowpack and then that snow melts too slowly. For example, during a 20mm mixed 

snow/rain forecast event (10mm liquid and 10mm solid) the snow scheme will accumulate most 

of the 10mm solid (snow) part of the precipitation into the snowpack regardless of the 

temperature conditions and melt only a little of this 10mm. However, in reality a lot of that 

rain, sleet, or wet snow would not accumulate on the ground, and instead most of it would melt 

straightaway. It seems the OFFLINE simulation gets the river discharge right mainly for the 

wrong reasons. Although the snowpack is clearly more poorly represented, the better timing 

with the delayed snowmelt (through the too slow melting) and the extra water in the snowpack, 

the OFFLINE experiment gets the runoff peak more correct. 

• Summer: The water budget is balanced between precipitation and evapotranspiration with 

some soil water increments. During early summer water is taken out of the soil to cover the 

higher evapotranspiration. In OFFLINE more water leaves the soil which increases the runoff 

and evapotranspiration. By August, however, the excess water from precipitation over 

evapotranspiration goes again into the soil, which is more pronounced in ONLINE where the 

soil is drier. The end of summer river discharge peak is present in both simulations, with the 

OFFLINE showing a better peak due to more water in the soil and subsequently higher surface 

and subsurface runoff during all summer. The OFFLINE river discharge exceeds the ONLINE 

values all summer and the two will level out by September, when the runoffs become similar in 

the two experiments. 

• Autumn: From the middle of September there is another smaller snowmelt period starting with 

the falling temperatures and bringing some negative snow increments in the ONLINE 

simulation. The snow accumulates into the snowpack in both experiments, but again with a 

higher rate in OFFLINE, and with larger snowmelt amounts in OFFLINE. 
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Figure 4-8. The annual cycle of water budget variables for a selection of catchments worldwide numbered from 1 to 12 

(see Fig. 6). The displayed variables are the snowmelt (cyan), evapotranspiration (magenta), and river discharge (blue) for 

both the ONLINE (solid lines) and OFFLINE (dashed lines) experiments; the snow (green) and soil (mustard) increments for 

ONLINE; and the river discharge observations (black line). All values are daily climatological averages based on the ERA5-

D25 dataset (for details on the computation of these values, see section 4.2.12). The river names, the gauge coordinates, 

and the upstream area values are displayed in the subplot titles. The catchment descriptions with the main verification 

score values for the ONLINE and OFFLINE simulations are provided in Table 4-3. In addition, the catchment area contours 

are provided in Figure 4-6. The evaporation scale is provided on the secondary vertical axis, while the scale for all other 

parameters is shown on the main vertical axis. 

4.3.4 Regionally representative catchments 

In the previous section the LDAS response was highlighted for an important weakness of HTESSEL 

with significant consequences on river discharge. In the following, the land–atmosphere coupling 
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and LDAS impact is now demonstrated with a simplified representation of the annual water cycle 

in different geographical areas and also various climatic conditions for a selection of the world’s 

catchments in Figure 4-8. The displayed variables are simulated snowmelt, evapotranspiration, and 

river discharge in both the ONLINE and OFFLINE experiments, the snow and soil water increments 

for ONLINE, and finally the river discharge observations. All values are daily climatological mean 

values as in Figure 4-7. The location of the catchments is provided in Figure 4-6. In Figure 4-8, 12 

catchments are selected to represent all main areas of the world where river discharge observations 

are available. Many of them are very large rivers, some of the catchments are dominated with 

mixed snow and soil moisture influence from the Northern Hemisphere, while others, mainly in the 

tropics, are only soil moisture impacted. In Table 4-3, the main catchment details are provided 

(following the numbering from Figure 4-6), complemented with the NSE and the percentage peak 

magnitude ME and MAE values for the catchments. Bold numbers denote the better score of 

ONLINE and OFFLINE. 

Table 4-3. Details of the 13 catchments analysed in Figure 4-7 (13) and Figure 4-8 (1–12) with the NSE, percentage peak 

magnitude ME (PPkMgMe) and percentage peak magnitude MAE (PPkMgMae) score values for the ONLINE and OFFLINE 

experiments. Bold scores denote better performance. For further details on the scores see section 4.2.13. 

Catchment 

No. 
Station River 

Area 

*1000km2 

NSE PPkMgMe (%) PPkMgMae (%) 

ONLINE OFFLINE ONLINE OFFLINE ONLINE OFFLINE 

1 Salekhard Ob 2541 0.40 0.52 -55.0 -40.7 55.0 40.7 

2 Pilot station Yukon 865 0.31 0.64 -64.7 -50.7 64.7 50.7 

3 Boogojevo Danube 257 0.47 -0.43 -3.5 29.1 19.8 32.4 

4 Lobith Rhine 163 0.45 0.05 -39.1 -14.8 39.1 18.5 

5 Viicksburg Mississippi 2963 -0.02 -2.69 1.6 31.4 17.7 43.5 

6 Quincy Columbia 663 0.25 0.54 -24.0 -7.6 27.5 20.2 

7 Boa Sorte Xingu 207 -1.53 -0.85 159.0 147.9 159.0 147.9 

8 
Obidos-

Linigrafo 
Amazon 4664 -0.17 -0.21 26.6 26.9 26.6 26.9 

9 Hadejia Hadejia 22 -9.01 -11.85 297.1 436.1 297.1 436.1 

10 Bangui Ubangi 496 -5.72 -6.17 162.8 159.1 162.8 159.1 

11 Katima Mulilo Zambesi 331 -7.97 -6.70 196.6 183.0 196.6 183.0 

12 Walkers bend Flinders 106 0.66 0.62 224.5 211.4 46.9 45.9 

13 Komsomolsk Amur 1846 0.43 0.68 233.5 218.7 33.5 18.7 

Figure 4-8 suggests that the decreased snowmelt is a general feature in ONLINE across the Northern 

Hemisphere as predicted already by Figure 4-5b. All displayed catchments have generally lower 
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river discharge in ONLINE, either concentrated over the high river discharge season [e.g., Ob (1) and 

Yukon (2)], or elongated over most of the year [e.g., Danube (3) and Rhine (4)]. The snowmelt is 

universally smaller in the ONLINE simulation, with the LDAS removing snow at different periods of 

the year, which seems to be the driving force behind the river discharge differences. 

The decreased amount of water has a mixed river discharge skill impact. For some catchments [Ob 

(1), Yukon (2), Columbia (6), and the case study catchment on the Amur (13)] the change during the 

high river discharge season is disadvantageous in ONLINE, confirmed by mostly negatively impacted 

scores, such as the NSE and the percentage peak magnitude MAE values in Table 4-3. On the other 

hand, for the Mississippi (5), Danube (3), and Rhine (4), it is rather beneficial as the daily 

climatological mean river discharge is closer to the corresponding observations during the high 

season, accompanied with mainly positive skill changes in the ONLINE experiment as both NSE and 

percentage peak magnitude MAE improves (Table 4-3), except the Rhine catchment (4), where the 

percentage peak magnitude MAE deteriorates. 

In the warm climate, however, where soil water dominates the land surface processes [Xingu, 

Amazon, Hadejia, Ubangi, Zambesi, and Flinders (7–12)], the land–atmosphere coupling and LDAS 

impact on river discharge seems to be smaller than for the snow-influenced catchments, and on 

evapotranspiration it tends to be larger. There are large biases over five of the six highlighted 

tropical catchments (the only exception being the Flinders River in Australia), where both the 

ONLINE and OFFLINE experiments show significant mismatch with the observed values for the total 

river discharge volume and for the annual peaks. For example, as displayed in Table 4-3, on the 

Hadejia River in Nigeria the percentage peak magnitude ME is 297% (the simulation is almost three 

time higher than the observation) in ONLINE, which is significantly better than OFFLINE (the 

improvement is 139% in the percentage peak magnitude MAE). This points to the fact that even 

though the river discharge differences are smaller in relative terms, it can still lead to noticeable 

change in the scores for some of these highlighted catchments (Table 4-3). 

Even though there is no clear systematic difference between the exclusively soil moisture and 

mixed (snow and soil moisture) catchments in terms of river discharge skill impact, the snow clearly 

looks to carry a more direct influence on the river discharge volume and river discharge skill. 

4.3.5 Global river discharge analysis 

In the previous sections it could be shown that the water budget is out of balance in the ONLINE 

simulation over large parts of the world leading to significant impact on the river discharge for the 

analysed list of catchments. As an extreme example, it was demonstrated that the snowmelt-driven 

spring river discharge peak was almost completely missed in a large catchment in east Russia in 
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ONLINE. After the individual catchment examples, a systematic analysis of the river discharge 

quality in the ONLINE and OFFLINE experiments is provided based on all available catchments 

globally. 

 

Figure 4-9. River discharge (a) percentage peak magnitude ME (%) of the ONLINE experiment and (b) change in the 

percentage peak magnitude MAE (%) between ONLINE and OFFLINE based on the ERA5-D25 dataset. Positive error 

differences in (b) indicate deterioration (blue) while negative changes show improvement (red) in the ONLINE simulation 

compared with OFFILE. The catchments are displayed with different marker sizes representing the size of the catchment 

area. Near-zero differences are shown by black crosses, while all other categories are displayed by circles. 

Although a large number of scores was computed in this study, this section will focus only on the 

annual peak flow scores. The timing and magnitude of the high river discharges are both crucial 

aspects of river discharge simulations in any flood prediction system such as GloFAS. The accurate 

simulation of the river discharge peaks is essential to get the best possible guidance for the 

potentially most damaging floods. The analysed performance of the annual peak river flows should 

give a good indication on the general ability of the two experiments to predict peaks. 
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Figure 4-9a highlights a large systematic percentage peak magnitude ME in the ONLINE simulation. 

Many catchments show over 50% error (either positive or negative) of the annual river discharge 

peaks on average. The majority of the Northern Hemispheric higher latitudes is overwhelmingly 

underpredicted, while Amazonia, the western United States, and many catchments in Africa are 

overpredicted in the ONLINE experiment. The geographical pattern in Figure 4-9a is rather similar 

to the one seen in Figure 4-5a. Most of the catchments with significant negative values over the 

Northern Hemisphere and positive ones mainly in lower latitudes do resemble well the water 

budget error pattern seen in Figure 4-5a. 

The water budget imbalance, caused by the increments in LDAS, is only one of the many potential 

contributing factors to peak river flow errors (and in fact to general river discharge errors); 

atmospheric forcing biases, imperfect river routing, and observation errors could also lead to large 

inaccuracies (Zhao et al., 2017). 

The impact of the land–atmosphere coupling and LDAS seems to decrease the amount of water 

overwhelmingly in the rivers (decreased sample mean river discharge, not shown). The sample 

average river discharge increased only in the southern half of Brazil, in the central part of Canada, 

and one or two catchments in Africa, East Asia, and South Australia (not shown). It is expected that 

the decreased average river discharge in ONLINE should generally also result in lower annual peak 

river flows over most of the globe. Figure 4-9b shows that this decreasing tendency of the annual 

peaks in the ONLINE experiment coincides with widespread, quite large deterioration in the 

percentage peak magnitude MAE score (increase of the annual peak magnitude errors) especially 

in Asia and Europe and the northwestern part of North America, where the majority of the 

catchments show significant negative bias in Figure 4-9a. On the other hand, quite a few 

catchments seem to benefit from the coupling and LDAS as the annual peak errors decrease, 

especially in the western parts in North America, where there is a large cluster of catchments with 

noticeably smaller percentage peak magnitude MAE. 

The river discharge peak timing bias in the ONLINE simulation is dominantly positive (peaks are too 

late) in the Northern Hemisphere and mainly negative (peaks too early) in the tropics (not shown). 

However, the coupling and LDAS do not seem to have any systematic impact on this aspect of the 

peak river flows. There are noticeable differences, but they have no distinguishable geographical 

pattern (not shown). It seems the short time series (9–25 annual values only) were not sufficient to 

extract any representative timing differences between the two experiments. 
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Table 4-4. List of global average scores for the ONLINE and OFFLINE experiments based on the ERA5-D25 dataset. Each 

value is a mean of scores from 590 catchments (where a minimum of 9 years of river discharge observations was available) 

weighted by the square root of the catchment area sizes. For further details on the scores, see section 4.2.13. Bold numbers 

denote the better score of ONLINE and OFFLINE. the following scores are displayed: ME, MAE, NSE, R, percentage sample 

mean error (PMnE), percentage sample mean absolute error (PMnAe), percentage sample standard deviation error (PStE), 

percentage sample standard deviation absolute error (PStAe), peak timing ME (PkTiMe), peak timing MAE (PkTiMae), 

percentage peak magnitude ME (PPkMgMe), and percentage peak magnitude MAE (PPkMgMae). 

Score 
ME  

(m3s-1) 

MAE 

(m3 s-1) 
NSE R 

PMnE 

(%) 

PMnAe 

(%) 

PStE 

(%) 

PStAe 

(%) 

PkTiMe 

(day) 

PkTiMae 

(day) 

PPkMgMe 

(%) 

PPkMgMae 

(%) 

ONLINE -264 3017 -0.29 0.67 -2.6 29.0 9.6 48.3 -0.95 11.8 6.3 61.3 

OFFLINE 236 2954 -0.53 0.70 16.9 27.2 34.2 52.1 -0.81 11.8 27.3 59.2 

In addition to the analysis of the annual river discharge peak performance, the general fit between 

modelled and observed daily river discharge time series is also extensively measured by several 

scores. Table 4-4 shows a global summary giving an indication on the overall performance of the 

two experiments. The scores are calculated as global averages weighted by the square root of the 

catchment size. This way a more representative picture can be provided by giving more emphasis 

on the larger catchments. 

The generally decreasing amount of water leads to larger differences for most of the volume-

related bias scores. The percentage sample ME, the percentage sample standard deviation error, 

and the percentage peak magnitude ME scores all decrease significantly in the ONLINE simulation, 

bringing the global biases closer to zero. The only exception is the discharge ME score, which 

changes from a positive value to a negative one with similar magnitude. The better biases, however, 

do not necessarily help improve the river discharge skill globally; the scores presented in Table 4-4 

provide a mixed picture, with some favouring the ONLINE while others favouring the OFFLINE 

simulation. This agrees with the mixed scores shown in Table 4-3 for the regional example 

catchments. In general, the MAE, R, the percentage sample MAE, and the percentage peak 

magnitude MAE values are all slightly better for OFFLINE, while the NSE and percentage sample 

standard deviation absolute error show improvement for ONLINE. And finally, the peak timing ME 

is slightly better for the OFFLINE experiment, while there is no difference in the global average peak 

timing MAE. 

4.4 Discussion 

In section 4.3, the land–atmosphere coupling and LDAS impact on hydrology, including river 

discharge and the related water budget variables, was analysed. The river discharge scores showed 

a mixed picture between the ONLINE and OFFLINE simulations with relatively similar global 
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performance. Larger differences could be highlighted in certain regions, such as many of the snow-

dominant catchments in the Northern Hemisphere, where over many areas a large amount of water 

is missing from the hydrological cycle and causing downstream issues in river discharge especially 

during the snowmelt season in ONLINE. 

The general decrease in the volume of water in the ONLINE experiment, mainly coming from the 

snow-dominated areas where the assimilation removes snow, seems to be the primary impact on 

the hydrology. In soil moisture-dominated areas the river discharge seems to be less impacted by 

the increments and the evapotranspiration rate holds a more important role. 

Data assimilation is a very important component of any NWP system with a lot of effort and 

research concentrated on the use of observations to correct for random (day-to-day) errors. Data 

assimilation systems are not there to correct for systematic biases. The fact that LDAS produces 

consistent negative increments in snow covered areas in this study is pointing toward an apparent 

snow model bias. In contrast, a model affected by random errors only, would lead to data 

assimilation increments of both signs with close to zero annual mean values. 

Other studies have also highlighted significant snow assimilation impacts on the water balance. For 

example, De Lannoy et al. (2012) showed that on a small catchment in Colorado (United States) the 

season averaged snowpack water content is largely decreased by the snow water equivalent 

assimilation in the Noah land surface model, and could only be overcome by scaling applied (to 

anomalies) to the observations prior to assimilation. Similarly, Arsenault et al. (2013) found that 

assimilating MODIS snow cover fraction observations into the CLM land surface model by a simple 

rule-based direct insertion and the one-dimensional ensemble Kalman filter methods, lead to 

substantial snowpack removal (without melting, thus causing negative bias in runoff), by both 

methods in Colorado and Washington. 

In the ECMWF system, the snow increments are correcting for the systematic overestimation of the 

current HTESSEL snow scheme that melts the snow too slowly. Dutra et al. (2012) highlighted that 

although the current snow scheme provides a significant improvement over the previous one, it 

does not yet improve on the short-duration melting events during late winter and spring. They 

argued that the experimental multilayer snow scheme was able to reproduce, at least partially, 

those snowmelt episodes thanks to the top snow layer having a reduced thermal inertia. 

The findings in this work are specific to the NWP configuration at ECMWF with the HTESSEL land 

surface model and the processes within. However, any LSM’s ability to support hydrological 

simulations can be limited by inadequate handling of the processes, potentially causing a similar 

problem downstream in the hydrology. The areas highlighted here for ECMWF’s HTESSEL in 
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supporting the flood forecasting activities can be improved by some potential developments in the 

future. Some of the areas where substantial improvements could be achieved are described: 

A new multilayer snow scheme is currently being tested at ECMWF, which is similar to the one 

evaluated in Dutra et al. (2012). This improved snow scheme is expected to represent better the 

snowmelt processes and therefore reduce the snow increments that currently remove a significant 

amount of water from the hydrological cycle. The hydrological context developed in this study will 

be used to aid this development of the new scheme. 

Another potential way of improving HTESSEL performance for hydrological applications would be 

to modify the LDAS by special handling of the snow increments in order to retain the water in the 

hydrological cycle during the data assimilation. For example, Zaitchik and Rodell (2009) proposed 

an interesting approach using near-future, snow-covered area observations to adjust the air 

temperature and precipitation forcing data in order to preserve the local hydrological balance. In 

another study, Pan and Wood (2006) developed a constrained ensemble Kalman filter method to 

assure closure of the water balance when assimilating hydrological observations. These types of 

studies rely on uncoupled systems, and they would be difficult to implement in an operational, real-

time environment. However, they provide some insight on water budget closure in data 

assimilation, and they should be further investigated and adapted to coupled land–atmosphere 

NWP systems. In the longer term, further coupling between NWP and hydrological forecasting 

systems will be considered, thereby opening the possibility for coupled land–hydrology data 

assimilation. In this context, joint assimilation of land surface and river discharge observations will 

consistently correct the different components of the Earth system. 

In addition, the land surface development methodology including data assimilation techniques and 

process representation is continuously improved at ECMWF. The future inclusion of the LDAS 

scheme in the offline HTESSEL is in development. It will create an environment where the offline 

research work, including the reanalysis improvements (e.g., ERA5), could be done in a consistent 

way with the real-time forecast generation. In parallel to these developments, addressing the water 

budget closure in land–atmosphere data assimilation systems should be a priority in the future to 

ensure consistent high-quality coupled NWP and hydrological forecasts. 

GloFAS is one of the few existing flood forecasting systems that utilizes an LSM (HTESSEL) for 

representing the hydrology (Emerton et al. 2016). Although we acknowledge that in some cases a 

simple routing model, initialized from observed upstream river levels (either from river gauges or 

satellite measurements), could be a simpler alternative to simulate downstream discharge on large 

rivers a few days in advance, for example, in Hossain et al. (2014); in other cases where forecasts 
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are required further in advance or where observations are unavailable or of too low quality, a more 

complex modelling configuration, which represents hydrological fluxes, becomes essential. 

Regardless of some limitations (e.g., the one highlighted in the ECMWF NWP configuration), these 

complex models play crucial roles in harnessing the available predictability in the land–atmosphere 

system. 

4.5 Conclusions 

Understanding the impacts of both the data assimilation and land surface process representation 

in land surface models on simulated hydrological variables is very important, not only for improving 

the weather and climate forecasts, but specifically for supporting flood forecasting and other 

hydrological applications such as drought forecasting, and for giving feedback about the Earth 

system. In this paper, the influence of land–atmosphere coupling and land data assimilation on 

global hydrological simulations from LSMs was evaluated. Two river discharge simulations from two 

climatological reanalyses (based on ERA5) were compared: one operational set which includes 

land–atmosphere coupling and LDAS with an open water budget, and an offline HTESSEL set with a 

closed water budget and no LDAS. 

It was found that while the ONLINE version of the model largely improves the 2-m temperature and 

snow depth conditions, it is causing poor representation of peak river flow in snowmelt-dominated 

areas, particularly in the high latitudes. However, there are also localized improvements to peak 

river flow, such as in the western United States. The LDAS increments remove or add water even 

on an annual average scale which inevitably leads to systematic water budget errors and 

subsequently contribute to significant errors in river discharge during times of peak flow 

downstream, something that is critical during times of flooding. 

4.5.1 Implications for hydrological forecasting 

This study has highlighted the impact of using land data assimilation in reanalysis products. Where 

data assimilation is adjusting snowpack in forecasting mode then there will also be important 

implications for hydrological predictions. Future studies should address how far ahead the impact 

of data assimilation propagates in hydrological forecasts. In addition, hydrological forecasting 

systems often use initial river conditions derived from climatology. In these circumstances using 

climatological products derived using data assimilation methodologies could lead to issues with the 

hydrological forecasts. There are also related issues for forecasting systems such as GloFAS that 

compare model output to climatology to provide early awareness of extreme events—consistency 

between operational and climatological configurations goes some way to bypass this problem, and 
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this conclusion has directly influenced the design of the new GloFAS-seasonal system (Emerton et 

al., 2018). 

4.5.2 Implications for land surface modelling and data assimilation 

Data assimilation is designed to compensate for noise errors and not systematic bias. In the case of 

the current HTESSEL snow assimilation scheme it is doing the latter—compensating for system 

deficiencies such as the slow snowmelt process. This paper has discussed potential ways of 

addressing water budget deficiencies in land surface approaches, for example, including multiple 

layers within the HTESSEL snow scheme or moving toward data assimilation that conserves the 

water budget. 

Without addressing such issues there will never be confidence in using LSMs for hydrological 

forecasting applications across the globe. This type of analysis should be used to diagnose where 

improvements need to be made; considering the whole Earth system in data assimilation and 

coupling developments is critical for moving toward the goal of holistic Earth system approaches. 
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Contribution of this chapter to the thesis. This chapter addressed the objective: ”Analyse how well 

the land-surface modelling approach in Earth systems is able to support hydrological applications, 

in particular focussing on the impact of land-data assimilation of snow and soil moisture on the 

hydrological cycle in reanalysis simulations.” This work demonstrated that land data assimilation 

can have a large impact on river discharge, especially in snow dominated areas, which potentially 
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can create problems in the forecasting system if data assimilation is not used in all components of 

the modelling chain. This chapter also highlighted some potential limitations of the handling of 

snow in the land-surface modelling as potential contributing factors to the documented impacts. 

The next chapter will follow up on this and analyse the hydrological impact of the snow model 

complexity. 
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Chapter 5 Hydrological Impact of the New ECMWF Multi-Layer 

Snow Scheme 

Chapter 4 demonstrated, using Earth system reanalysis simulations, that the inclusion of LDAS can 

create large differences in river discharge, especially in the snow dominated areas. One of the 

highlighted potential causes was a limitation of the evaluated land-surface modelling system that 

the simple single layer snow scheme melts snow too slowly. This chapter addresses this area and 

evaluates how the snow model complexity, through using a new multi-layer snow scheme, can 

improve the river discharge simulations. This chapter has been published in Atmosphere (MDPI) 

with the following reference (https://centaur.reading.ac.uk/105034/): 

Zsoter, E., G. Arduini, C. Prudhomme, E Stephens and H. Cloke, 2022: Hydrological Impact of the 

New ECMWF Multi-Layer Snow Scheme. Atmosphere, 13, 727. 

https://doi.org/10.3390/atmos13050727. 

The contributions of the authors of this paper are as follows: E.Z. designed the research 

methodology with the help of H.C., E.S. and C.P. G.A. has designed and produced the land-surface 

simulations while E.Z. run the CaMa-Flood simulations. E.Z. carried out the data analysis and lead 

the writing of the manuscript. All authors assisted with writing the manuscript. Overall, 90% of the 

writing was undertaken by E.Zs. 

The published article can be found in the Appendix A2. 

Abstract. The representation of snow is a crucial aspect of land-surface modelling, as it has a strong 

influence on energy and water balances. Snow schemes with multiple layers have been shown to 

better describe the snowpack evolution and bring improvements to soil freezing and some 

hydrological processes. In this paper, the wider hydrological impact of the multi-layer snow scheme, 

implemented in the ECLand model, was analyzed globally on hundreds of catchments. ERA5-forced 

reanalysis simulations of ECLand were coupled to CaMa-Flood, as the hydrodynamic model to 

produce river discharge. Different sensitivity experiments were conducted to evaluate the impact 

of the ECLand snow and soil freezing scheme changes on the terrestrial hydrological processes, with 

particular focus on permafrost. It was found that the default multi-layer snow scheme can generally 

improve the river discharge simulation, with the exception of permafrost catchments, where 

snowmelt-driven floods are largely underestimated, due to the lack of surface runoff. It was also 

found that appropriate changes in the snow vertical discretization, destructive metamorphism, 

snow-soil thermal conductivity and soil freeze temperature could lead to large river discharge 

improvements in permafrost by adjusting the evolution of soil temperature, infiltration and the 

partitioning between surface and subsurface runoff. 

https://www.mdpi.com/2073-4433/13/5/727/pdf?version=1651481464
https://www.mdpi.com/2073-4433/13/5/727/pdf?version=1651481464
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5.1 Introduction 

Land-surface models (LSMs) are vital tools for simulating water and energy fluxes at the land–

atmosphere interface of the Earth (Fisher and Koven, 2020). Although LSMs were originally 

designed to provide lower-boundary conditions to the atmosphere (Mengelkamp et al., 2001), with 

the improving realism of these models they are increasingly used for simulating the hydrological 

cycle (Prentice et al., 2015) and supporting hydrological applications (e.g. Bouilloud et al., 2010; Le 

Vine et al., 2016; Harrigan et al., 2020b). 

However, there are still significant limitations in the representation of the hydrological cycle in 

LSMs, as important processes can still be inadequately modelled or even neglected for runoff 

generation, for instance groundwater simulation, snow-vegetation interactions, representation of 

frozen soil and lateral flow between adjacent grid cells among others (Fisher and Koven, 2020; Le 

Vine et al., 2016; Overgaard et al., 2006; Dutra et al., 2012; Kauffeldt et al., 2015; Koren et al., 2014; 

Krogh et al., 2017). 

Simulating the extent and variability of the snow cover is a crucial aspect of land surface modelling, 

as it strongly influences the energy and water balances (López-Moreno and García-Ruiz, 2004; 

Griessinger et al., 2016). Snow schemes have various complexities in the representation of the snow 

physics (Boone et al., 2001; Best et al., 2011; Decharme et al., 2016; Dutra et al., 2010; Wang et al., 

2013), differing largely in their handling of the snowpack and the creation of snowmelt, which in 

turn impacts runoff generation and river flow in snow dominated areas (Dutra et al., 2012; Slater 

et al., 2011). 

The snow scheme currently used operationally in the ECLand land-surface model at the European 

Centre for Medium-Range Weather Forecasts (ECMWF) (Balsamo et al., 2009; Boussetta et al., 

2021) and which is used in the production of the ERA5 (Hersbach et al., 2020) and ERA5-Land 

(Muñoz-Sabater et al., 2021) reanalysis datasets, is a single-layer snow scheme (SLS hereafter) with 

an additional snow layer on top of the soil (Dutra et al., 2010). The use of only one layer limits the 

handling of the temporal evolution of the snow, as changes on multiple time scales (i.e., diurnal to 

seasonal) cannot be accurately represented. This has a significant impact on the quality of the snow 

depth, mainly during periods of accumulation and ablation, which then impacts the soil freezing, 

the snowmelt and ultimately the hydrological cycle (Dutra et al., 2012; Saha et al., 2017). 

Snow schemes using multiple layers to represent the snowpack offer significant improvement on 

the single-layer schemes with better handling of the snow processes. For hydrological and climate 

applications, so-called “intermediate complexity” snow schemes are generally used, following the 

terminology introduced by Boone and Etchevers (2001). Such schemes include a description of 
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snowpack properties, such as density and temperature, using a limited number of vertical layers, 

as opposed to detailed snow physics models, which aim at simulating the microstructure properties 

of the snowpack as well (see for instance Vionnet et al. (2012)). Such intermediate complexity 

schemes have been implemented in various LSMs used in Earth system modelling during the last 

decade. Examples are ECLand (Dutra et al., 2012; Arduini et al., 2019), Noah (Saha et al., 2017), 

JULES (Walters et al., 2019), ISBA (Boone and Etchevers, 2001; Decharme et al., 2016) and the 

ORCHIDEE (Wang et al., 2013) land-surface models. 

The multi-layer snow scheme (MLS hereafter), introduced experimentally in ECLand, is an 

intermediate complexity scheme representing the vertical structure and evolution of snow 

temperature, density, liquid water content and surface snow albedo with a maximum of five layers 

(Arduini et al., 2019). It has been shown to increase the realism of snow representation, including 

decreasing snow depth and snowmelt timing errors, and has been shown to largely improve 2-

metre temperature in coupled forecasts, especially in clear sky conditions (Arduini et al., 2019). 

The more realistic snowpack representation, with better snow water equivalent, snow depth and 

snowmelt, is expected to improve the hydrological cycle and thus have a positive impact on river 

flow simulations (Magnusson et al., 2015). Preliminary studies have demonstrated improvements 

in localized settings (Dutra et al., 2012; Wang et al., 2013) or combined with other land-surface 

improvements (Decharme et al., 2019). However, the hydrological impact analysis of MLSs, focusing 

on river flow, has not been done at regional or global scales. 

Areas in which snow plays an important role are predominantly found in the Northern Hemisphere 

over higher latitudes. A large fraction of these areas is permafrost (Romanovsky et al., 2002), where 

soil freezing/thawing conditions play a major role in controlling the hydrological processes (Koven 

et al., 2013; Andresen et al., 2020). Representing permafrost in LSMs is important for better 

understanding of the hydrological variability and the impacts of climate change (Andresen et al., 

2020; Yokohata et al., 2020; Gouttevin et al., 2012). 

In this study, the hydrological impact of the MLS implemented in ECLand is analysed on more than 

400 catchments globally, with over a third located partially or entirely in permafrost areas. To 

achieve this, ECLand experiments forced with ERA5 over the period 1979–2018 are coupled to the 

Catchment-based Macro-scale Floodplain model (CaMa-Flood; Yamazaki et al., 2011) to generate 

river discharge, allowing direct comparison with gauged observations. Different sensitivity 

experiments are conducted to evaluate the impact of the more physically complex snow scheme 

on the terrestrial hydrological processes, with particular focus on permafrost, where complicated 

error dynamics arise from different land-surface processes. Two main questions are posed: 
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• How does the MLS impact the simulated hydrological processes and river discharge, 

especially in the snowmelt-driven flood season? 

• How sensitive is the hydrological representation of permafrost to the snow and soil 

parametrization? 

5.2 Materials and methods 

In this section, the data set, models and methods used will be described. 

5.2.1 ECLand land-surface model and offline methodology 

The hydrological core of the analysed data sets was provided by the ECLand land surface model, 

formerly known as HTESSEL (The Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land 

(Balsamo et al., 2009; Boussetta et al., 2021; Balsamo et al., 2011). ECLand is part of the Integrated 

Forecasting System (IFS) at ECMWF and used in coupled land-atmosphere simulations for 

describing the evolution of soil, vegetation and snow conditions over land, at various spatial 

resolutions, from short- to seasonal-range. 

In ECLand, up to six tiles are present over land (bare ground, low and high vegetation, intercepted 

water, shaded and exposed snow) and three over water (inland, open and frozen water) that 

provide the interface between the atmosphere and the one-dimensional soil column, with all tiles 

having their separate energy and water balances. 

The snowfall (the solid fraction of precipitation) is collected in the snowpack, which overlays the 

soil (Balsamo et al., 2009). The fraction of the soil that is covered by snow (snow cover fraction) is 

parametrized as a linear function of snow depth (Dutra et al., 2010). This assumes that a model 

grid-box is fully covered for snow depth greater than 10 cm. The same parametrization is used for 

exposed and shaded snow (i.e., snow under high vegetation) tiles in ECLand. The soil is divided into 

four layers with fixed layer depths (0–7, 7–28, 28–100 and 100–289 cm). Runoff is generated as fast 

(surface) and slow (subsurface) components at each grid point (Balsamo et al., 2009; Boussetta et 

al., 2021). 

Snowmelt occurs when the temperature of the snow is high enough, contributing to surface runoff, 

soil infiltration and evaporation. Some part of rain and snowmelt will be removed as surface runoff. 

This surface runoff fraction depends on the standard deviation of the sub-grid scale orography (a 

measure of unresolved orographic features), the soil texture and the soil water content. Subsurface 

runoff is the water leaving the soil column at the bottom. It depends on the infiltration and surface 

evaporation as top boundary conditions, while water can be extracted by roots in each soil layer 

where vegetation is present (Balsamo et al., 2009; Boussetta et al., 2021). 
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ECLand can be used in a stand-alone mode, when the model runs uncoupled from the atmosphere, 

usually with hourly time step, forced with near-surface meteorological input data of temperature, 

specific humidity, wind speed, surface pressure, radiative fluxes (downward solar and thermal 

radiation) and water fluxes (liquid and solid precipitation), without land data assimilation. This 

offline research methodology provides an affordable way of testing land-surface improvements and 

has been used in various applications (e.g. Arduini et al., 2019; Agustí-Panareda et al., 2010; 

Haddeland et al., 2011; Zsoter et al., 2019). The ERA5-Land dataset is a prime example of this 

methodology, which was produced as an offline ECLand simulation with downscaled ERA5 

meteorological forcing on higher resolution, including an elevation correction for the 

thermodynamic near-surface state (Muñoz-Sabater et al., 2021). 

5.2.2 ERA5 reanalysis 

The meteorological forcing for the offline ECLand simulations was taken from ERA5, the latest global 

climate reanalysis of ECMWF (Hersbach et al., 2020). ERA5 is a key contribution to the EU funded 

Copernicus Climate Change Service (C3S) and is open access and free to download for all users 

(https://cds.climate.copernicus.eu/ (accessed on 24 October 2021)). It covers the period 1979 to 

present, with a preliminary version also available from 1950. It includes a high-resolution 

component (~31 km) and a lower resolution (~62 km) ensemble component with 10 members. In 

this study, the high-resolution component (hereafter referred to as ERA5) was used from 1979 with 

~31km horizontal resolution and hourly output frequency. 

5.2.3 CaMa-Flood river-routing 

The hydrodynamics to produce river discharge from the ECLand runoff output were simulated by 

CaMa-Flood (Yamazaki et al., 2011), a global river-routing model, which is part of ECLand since IFS 

cycle 47r1 (Boussetta et al., 2021). CaMa-Flood routes runoff generated by land-surface models to 

oceans or inland seas. The model calculates river and floodplain water storages, discharge, water 

depth, as well as flood inundation. CaMa-Flood does not currently include the representation of 

dams and permanent lakes and wetlands are only treated as part of the floodplain storages. CaMa-

Flood is computationally cheap to run and has been used widely in global climatological research 

studies, such as Emerton et al. (2017), Dottori et al. (2018) and Zsoter et al. (2019). 

5.2.4 ECLand snow and soil freezing schemes 

The current SLS, used operationally in ECLand, is a basic energy balance model describing the 

temporal evolution of the heat and mass contents of the snowpack (Dutra et al., 2010). The MLS, 

used experimentally in ECLand, is an intermediate complexity snow scheme (Boone and Etchevers, 

2001), which represents the vertical structure and time evolution of snow temperature, density, 
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liquid water content and surface snow albedo with up to five active snow layers. In this section, the 

important model features are described that are necessary to understand the scheme variations 

tested in this paper (described later in Section 5.2.8). Further details of MLS, including a detailed 

comparison of snowpack properties to SLS, are given in Arduini et al. (2019). 

5.2.4.1 Snow vertical discretization 

The number of active snow layers and their associated thicknesses are defined diagnostically at 

each time step before the updating of the other snow variables. The number of active layers (𝑁) is 

dependent on the snow depth 𝐷𝑠𝑛 and varies from one layer to a maximum of five (𝑁𝑚𝑎𝑥). The 

topmost snow layer, in contact with the atmosphere, is assumed to be the first one, whereas layer 

𝑁 is the one in contact with the soil. 𝑁 is determined as the lowest number that satisfies the 

following inequality for 𝑁 = 1,… ,𝑁𝑚𝑎𝑥 − 1: 

 
∑ 𝐷𝑚𝑖𝑛,𝑗 > 𝐷𝑠𝑛

𝑁+1

𝑗=1
, 

(5-1) 

where 𝐷𝑚𝑖𝑛,𝑗  is the minimum snow depth allowed for layer 𝑗. It is by default set to 0.05 m for all 

layers (denoted hereafter as 𝐷𝑚𝑖𝑛 for all layers). The depth of the first layer is defined as: 

 
𝐷𝑠𝑛,1 = {

𝐷𝑠𝑛 ,   𝑖𝑓 𝐷𝑠𝑛 < 2𝐷𝑚𝑖𝑛
𝐷𝑚𝑖𝑛 ,   𝑖𝑓 𝐷𝑠𝑛 > 2𝐷𝑚𝑖𝑛

. 
(5-2) 

Note that with this choice, MLS has only one active snow layer for 𝐷𝑠𝑛 < 0.1 m. For the remaining 

layers, the vertical discretization is defined as: 

 

𝐷𝑠𝑛,𝑖=2,…,𝑁𝑚𝑎𝑥 =

{
 
 

 
 0,                                                        𝑖𝑓 𝐷𝑠𝑛 <∑ 𝐷𝑚𝑖𝑛,𝑗

𝑗=𝑖

𝑗=1

𝑚𝑖𝑛 [
𝐷𝑠𝑛 − 𝐷𝑠𝑛,1
𝑁 − 1

,𝐷𝑚𝑎𝑥,𝑖] , 𝑖𝑓𝐷𝑠𝑛 >∑ 𝐷𝑚𝑖𝑛,𝑗
𝑗=𝑖

𝑗=1

, (5-3) 

where 𝐷𝑚𝑎𝑥,𝑖  is the maximum snow depth allowed for the i-th active snow layer. This effectively 

means, the snow is evenly divided into the remaining layers, as long as the maximum layer depths 

allow it. By default, these maximum values are 0.05, 0.10, 0.20, ∞ and 0.15 for layers 1 − 𝑁𝑚𝑎𝑥, 

respectively. This definition of the maximum layer depths means that when all 𝑁𝑚𝑎𝑥 snow layers 

are active, the 𝑁𝑚𝑎𝑥 − 1 layer is used as the accumulation layer for thick snowpacks. This layering 

allows a relatively high vertical resolution both at the interfaces to the atmosphere above and to 

the soil underneath the snowpack. Take 𝐷𝑠𝑛 = 1.25 m as an example, for this depth the snowpack 

is discretized into 5 layers with thicknesses of 0.05, 0.1, 0.20, 0.75 and 0.15 m from top to bottom. 

5.2.4.2 Destructive metamorphism of the snow 

The density of freshly fallen snow can vary rapidly with time due to metamorphic processes, that 

is, the change in shape and size of snow grains once they settle in the snowpack. The rate of change 
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of snow density due to destructive metamorphic processes of the snow (𝜉) is parametrized in both 

SLS and MLS using the formulation introduced by Anderson (1976): 

 1

𝜌𝑠𝑛,𝑖
[
𝜕𝜌𝑠𝑛,𝑖
𝜕𝑡

]
𝜉
= 𝑎𝜉  exp[−𝑏𝜉(𝑇𝑓 − 𝑇𝑠𝑛,𝑖) − 𝑐𝜉max(0, 𝜌𝑠𝑛,𝑖 − 𝜌𝜉)], (5-4) 

where 𝑇𝑠𝑛,𝑖  and 𝜌𝑠𝑛,𝑖  are the snow temperature and snow density for each snow layer (for SLS, 𝑖 =

1) and 𝑎𝜉 = 2.8 ∗ 10
−6𝑠−1, 𝑏𝜉 = 4.2 ∗ 10

−2𝐾−1, 𝑐𝜉 = 460 𝑚
3𝑘𝑔−1, 𝑇𝑓 = 273.16 𝐾 and 𝜌𝜉 =

150 𝑘𝑔 𝑚−3. 

5.2.4.3 Snow-soil thermal conductivity 

In SLS and MLS, the thermal coupling between the snowpack and the soil underneath is described 

using a thermal conductance between the two media (𝜆𝑏), thus the heat flux (𝐺𝑏) can be written 

as: 

 𝐺𝑏 = 𝜆𝑏( 𝑇𝑠𝑛,𝑁, − 𝑇𝑠𝑜), (5-5) 

where 𝑇𝑠𝑛,𝑁 is the snow temperature of the bottom active snow layer (𝑁 = 1 for SLS) and 𝑇𝑠𝑜 is the 

temperature of the topmost soil layer. Given that the heat resistances are in series, the sum of the 

inverse of the conductance of each medium yields the total conductance of the snow-soil system, 

that is: 

 
𝜆𝑏
−1 = 

𝑙𝑏∆𝑧𝑠𝑛,𝑁
𝜆𝑠𝑛,𝑁

 +
𝑙𝑏∆𝑧𝑠𝑜
𝜆𝑠𝑜

 , (5-6) 

where ∆𝑧𝑠𝑛,𝑁 and 𝜆𝑠𝑛,𝑁 are the thickness and conductivity, respectively, of the bottom active snow 

layer, and ∆𝑧𝑠𝑜 and 𝜆𝑠𝑜 are the thickness and conductivity of the topmost soil layer. The parameter 

𝑙𝑏 is set as 0.5 in SLS, whereas it was changed to 1 in MLS, as described in Arduini et al. (2019), to 

account for the additional insulation effect due to organic material or vegetation between the snow 

layer and the soil. 

5.2.4.4 Soil freezing scheme and relationship to runoff generation 

Frozen soil is characterized by very different thermal and hydrological properties compared to 

unfrozen (wet) soil. For instance, precipitation infiltrates less into a frozen soil, thus more water 

goes into runoff than into the soil. In ECLand, a simplified representation of unfrozen soil was 

introduced by Viterbo et al. (1999) to account for the latent heat release/absorption of soil water 

around 0 °C, reducing a pronounced cold bias in 2-metre temperature in the ECMWF forecasts. In 

this simplified approach, the frozen water fraction in each soil layer (𝜃𝑖𝑐𝑒,𝑖, 𝑖 = 1,… ,4) is given as a 

function of the soil temperature (𝑇𝑠𝑜,𝑖) as: 
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𝜃𝑖𝑐𝑒,𝑖  =  

{
 
 

 
 

0                                                                  𝑓𝑜𝑟 𝑇𝑠𝑜,𝑖 > 𝑇𝑡ℎ

0.5 (1 −  𝑠𝑖𝑛 (
𝜋 (𝑇𝑠𝑜,𝑖  −  0.5 (𝑇𝑇ℎ  +  𝑇𝐹𝑟)) 

𝑇𝑇ℎ − 𝑇𝐹𝑟
))  𝑓𝑜𝑟 𝑇𝐹𝑟 ≤ 𝑇𝑠𝑜,𝑖 ≤ 𝑇𝑇ℎ

1                                                                    𝑓𝑜𝑟 𝑇𝑠𝑜,𝑖  <  𝑇𝐹𝑟

 , (5-7) 

where 𝑇𝑇ℎ = +1 °C (thaw temperature) and 𝑇𝐹𝑟 = −3 °C (freeze temperature) are the soil 

temperature thresholds for which soil water is totally unfrozen or frozen, respectively, and [𝑇𝑇ℎ, 

𝑇𝐹𝑟] is the temperature interval for which phase change can occur. Both SLS and MLS use this soil 

freezing scheme. 

The runoff generation in EC-Land follows the formulation described in Balsamo et al. (2009), which 

includes a dependency of surface runoff on soil textures as well as subgrid scale orography features 

not resolved at the resolution used in the simulation. The surface runoff can be as large as 50% of 

the available precipitation and snowmelt, for large standard deviation of the sub-grid scale 

orography and finer soil textures. 

When the soil is partially frozen, the surface runoff is enhanced, as less water infiltrates and 

percolates within the soil column. This soil freezing mechanism is represented by reducing the soil 

hydraulic conductivity and diffusivity. This is done by computing the soil hydraulic conductivity and 

diffusivity as a weighted average of the values for the unfrozen soil water fraction and for the frozen 

water fraction (Balsamo et al., 2009). 

As previously stated, the frozen water fraction parametrization described in Equation (5-7) has been 

developed to address temperature errors in weather forecasting applications. Such simplified 

approach can have limitations for hydrological applications in cold regions, where the interaction 

between frozen soil and runoff is key in modulating river streamflow (see e.g. Niu and Yang 2006). 

5.2.5 River catchment selection 

The river catchments were selected for this study only if they experience regular snowfall and they 

have adequate river discharge observations available. Observations are selected from the Global 

Runoff Data Centre (GRDC; https://www.bafg.de/GRDC/ (accessed on 20 November 2019)) 

supplemented by additional data collected by the Copernicus Emergency Management Service for 

floods in the Global flood Awareness System (GloFAS), as described in Harrigan et al. (2020b). The 

catchments and associated river discharge observations are selected with the following set of 

criteria: 

• Minimum 8 years of river discharge observations in 1980–2018. Gaps are not considered a 

problem, as long as the climatological mean can be computed for each day of the year (see 

Section 5.2.7); 
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• Stations in snow impacted climate, defined by the percentage ratio of ERA5 snowfall and 

total precipitation being at least 10%, based on the 1979–2018 mean for each catchment; 

• Catchment area of at least 5000 km2 (e.g., minimum of 8 river pixels); 

• Good general quality. After visual inspection of the river discharge time series, the 

catchments that showed observation errors, problems with station metadata (wrong or 

uncertain location, etc.) or visible influence of dams and lakes were excluded. To help with 

identifying reservoir and lake influence, the Global Reservoir and Dam Database (GRAND; 

Lehner et al., 2011) and the Global Lakes and Wetlands Database (GLWD; Lehner and Döll, 

2004)) were used as visual tools. 

Out of the 2119 stations in the Copernicus Emergency Management Service GloFAS station 

database with at least 1 year of observations, 1913 met the criteria of at least 8 years of data, 889 

catchments had also at least 10% snowfall ratio and 849 were additionally over 5000 km2 area. 

 

Figure 5-1. Stations used in this study with the number of river discharge observation years available (8 years is the 

minimum). In total, 453 catchments worldwide. The darker grey shading indicates the permafrost areas (defined as the 

area where the lowest soil layer’s temperature is below 0 °C in the ERA5 climate mean on 1st of June, based on 1980-2018), 

while the blue rectangle shows the sensitivity area defined in the permafrost. The distribution of the catchment upstream 

area values is provided in the inset table (please note the area values are divided by 1000). 

In total, 453 catchments were selected after the quality checks, almost entirely in the Northern 

Hemisphere (Figure 5-1). For the sensitivity analysis in the permafrost, a specific area was defined 

in the 60–80N belt containing parts of northern Siberia, Alaska and western Canada. It focuses on 

the coldest parts of the permafrost. The eastern area of Canada was omitted due to the large 

number of lakes in the area to avoid unduly influencing of the overall results. Figure 5-1 shows the 

bounding box, together with the permafrost, as defined by areas of below 0 °C climatological mean 

temperature in the lowest soil layer of ECLand in ERA5 for 1st of June. Within ECLand, the land use 

of the catchments in the permafrost sensitivity area are mainly a mixture of tundra and boreal 

forest vegetation, whereas the soil textures are medium-coarse and coarse soil types, which are 
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characterized by a relatively low field capacity and higher hydraulic conductivity (for details on land 

use and soil hydraulic properties see Balsamo et al., 2009 and Boussetta et al., 2021). 

5.2.6 Verification statistics 

Hydrological performance is assessed with the modified Kling–Gupta efficiency (kge; Gupta et al., 

2009; Kling et al., 2012). The kge is increasingly considered as the standard performance metric in 

hydrology (Knoben et al., 2019; Lin et al., 2019). It can be decomposed into three components, 

measuring the correlation, bias and variability errors, which makes it an easy to interpret metric, 

ideal for assessing hydrological dynamics: 

 

𝑘𝑔𝑒 = 1 − √(𝑝𝑐𝑜𝑟𝑟 − 1)2 + (
𝜇𝑠
𝜇𝑜
− 1)

2

+ (

𝜎𝑠
𝜇𝑠⁄

𝜎𝑜
𝜇𝑜⁄
− 1)

2

. (5-8) 

In the kge decomposition, pcorr is the Pearson correlation coefficient between daily simulation (s) 

and observation (o) time series, measuring the temporal errors; μ is the mean and σ is the standard 

deviation of the time series. In Eq (5-8), 
𝜇𝑠

𝜇𝑜
 is the bias ratio, while 

𝜎𝑠
𝜇𝑠⁄

𝜎𝑜
𝜇𝑜⁄

 is the variability ratio, which 

highlight how close the mean and the variability (normalized by the means) are in the simulated 

and observed time series. The kge and its three components are all dimensionless. The correlation 

ranges from -1 to +1, with +1 showing perfectly strong linear relationship and 0 no linear 

relationship (-1 being perfect inverse relationship). In the kge definition, the bias and variability 

ratios both range from 0 to infinity, with 1 being the optimal value. The bias and variability errors, 

used in this study, were defined by the bias and variability ratio components of the kge as follows: 

 
𝑏𝑖𝑎𝑠 =  

𝜇𝑠

𝜇𝑜
− 1 and 𝑣𝑎𝑟 =

𝜎𝑠
𝜇𝑠⁄

𝜎𝑜
𝜇𝑜⁄
− 1, (5-9) 

This way, the optimal score value transforms to 0, highlighting the direction of the biases more 

intuitively, with negative values showing underprediction, while positive ones overprediction. To 

aid comparison between different experiments, the absolute version of the bias (abias) and var 

(avar) errors are also used. Change in these metrics can directly highlight improvement or 

deterioration, while they also share the optimal value of zero. 

5.2.7 Daily climatology computation 

The land-surface contribution to the water budget is diagnosed qualitatively at specific catchments 

by using daily climatological mean time series of simulated and observed river discharge, runoff 

(surface and subsurface components), snowpack water content and snowmelt, evaporation, soil 

temperature and water content (at different layers) and precipitation, computed from daily values 
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in the 1980-2018 period. All water related variables are converted into catchment totals as the sum 

of all the grid point values in the catchment, in order to compare them directly to river discharge. 

For temperature variables, the catchment averages are used. 

These climatological means are computed for every day of the year (1 January - 31 December), by 

applying a 21-day window, centred over the day of the year. To aid direct comparison with observed 

river discharge, only those days of 1980-2018 are considered for the climatological mean 

computation, which have river discharge observations available. For the climatological mean, the 

minimum data length was lowered to 4 years, in order to maximize the likelihood of being able to 

compute the mean for every day of the year. With this choice, the climate sample size could range 

from 84 values (4 years, 21 values each) to over 800 (most years in 1980-2018) to compute the daily 

climate mean. 

5.2.8 Experimental setup 

In this study, the hydrological impact of the MLS is analysed on ECLand/CaMa-Flood coupled 

experiments. The runoff is produced by ECLand, while the CaMa-Flood model is used to produce 

river discharge by routing the runoff over the 15 arcmin (~25 km on the Equator) river network, 

which is an appropriate horizontal resolution for the related meteorological forcing of ERA5. 

CaMa-Flood uses a 1-h time step and a 24-h output frequency to match the 24-h reporting 

frequency of the river discharge observations. All experiments are generated for the ERA5 period 

of 1979-2018, while for the hydrological analysis 1980-2018 is used with 1979 omitted to account 

for the spin-up in the simulations. Preliminary analysis showed that a 1-year spin up period is 

appropriate, as a longer spin up period did not have a large influence on results but considerably 

reduced the sample size. 

In total, 13 experiments are produced and compared (Figure 5-2). Two experiments use SLS, while 

the other 11 are produced with variations of MLS and the soil freezing parametrization in ECLand, 

for analysing the hydrological sensitivity, focusing on permafrost areas. The very high 

computational cost of running these experiments meant that it was not possible to run all 

permutations of the schemes and parameters tested, instead possible modifications build on each 

other incrementally. 

Single-layer, online, fully coupled with land data assimilation: SL-CDS 

The first experiment involves a single CaMa-Flood run, using the original ERA5 runoff data 

(downloaded from the Copernicus Climate Data Store), which is produced online with land-

atmosphere coupling, including atmospheric and land data assimilation and SLS (SL-CDS). 
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Figure 5-2. Experiments analysed in this study, describing the main simulation features including the snow and soil scheme 

modifications for sensitivity analysis in permafrost. The experiments are displayed with the star shapes, using a short 

name and a colour to help identifying them throughout the paper. 

Offline experiments 

All other experiments that follow include a surface only (offline) ECLand simulation, without land-

atmosphere coupling and land data assimilation, to produce runoff, which is then routed with 

CaMa-Flood. This is because online experiments with coupling and data assimilation would be 

infeasible to run due to the very high computational cost. The offline experiments are initialized 

from the ERA5 state on 1 January 1979 and forced with ERA5 near-surface meteorological data on 

~31 km horizontal resolution and hourly output frequency (see Section 5.2.1 for further details). 

Single-layer snow scheme: SL 

In order to compare the online and offline modelling approaches directly, one of the offline 

experiments is run with the SLS (SL), to be compared with SL-CDS (see Zsoter et al. (2019) for further 

details on online/offline comparison). 

Multi-layer snow scheme: ML 

The first MLS experiment uses the default snow parametrization, introduced by Arduini et al. (2019) 

and default ECLand soil freezing parametrizations (see Section 5.2.4) and can be considered the 

default multi-layer experiment (ML). 

ECLand sensitivity experiments 

The following 10 experiments are variations of the ECLand snow and soil freezing schemes, 

designed to evaluate the river discharge sensitivity in permafrost. 
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Vertical snow discretization: ML-Vert 

The first change is for the vertical snow discretization in MLS (ML-Vert). It introduces thicker snow 

layers over complex terrains with deep snowpack and reduces issues related with excessive melting 

over mountainous regions (Boussetta et al., 2021). Complex terrain is defined as areas with 

standard deviation of the sub-grid scale orography over 50 m. For flat terrain and for 𝐷𝑠𝑛 < 0.25 m 

over complex terrain, the same vertical discretisation is used as in ML (described previously in 

Section 5.2.4). For 𝐷𝑠𝑛 > 0.25 m over complex terrain, 𝐷𝑚𝑎𝑥,𝑖 and 𝐷𝑚𝑖𝑛,𝑖 can vary with snow depth 

in Eq (5-1)-(5-3) as follows: 

 𝐷𝑚𝑖𝑛,𝑖 = min(0.25, 0.10 + 𝛼0(𝐷𝑠𝑛 − 0.25))  for 𝑖 = 1 (5-10) 

 
𝐷𝑚𝑎𝑥,𝑖 = {

min(0.25, 0.10 + 𝛼0(𝐷𝑠𝑛 − 0.25))  for 𝑖 = 1

min(0.30, 0.15 + 𝛼0(𝐷𝑠𝑛 − 0.25))  for 𝑖 = 2, . . , 𝑁𝑚𝑎𝑥
, (5-11) 

where 𝛼0 = 0.1 is a predefined parameter. For the example of 𝐷𝑠𝑛 = 1.25 m (as in Section 5.2.4), 

the thickness of the 5 layers changes to 0.20, 0.25, 0.25, 0.30 and 0.25 m, which means the 

snowpack is more evenly distributed for this large depth. 

Destructive metamorphism of the snow: ML-Meta1 and ML-Meta2 

The second group of changes is for the snow metamorphism. The parametrization for the 

destructive metamorphism of the snow (Eq (5-4)), as used in SL, SL-CDS and ML with the default 

value of 𝑐𝜉 = 460 𝑚
3𝑘𝑔−1, implies that the rate of snow density changes due to the 2nd density-

dependent term in the exponential, and is active only for 𝜌𝜉 < 150 𝑘𝑔 𝑚
−3, that is for relatively 

fresh snowpack. Cao et al. (2020) pointed out, while evaluating soil temperature and snow 

characteristics of ERA5-Land in permafrost regions, that this can partly explain the underestimation 

of the snow density of ERA5-Land. They have argued that the underestimation of the snow density 

could lead to an overestimation of the thermal decoupling between the atmosphere and the soil 

underneath. This could contribute to the warm bias of soil temperature over permafrost regions as 

less heat is diffused from the soil towards the colder atmosphere above. 

To address this, the impact of the representation of the snow density on river discharge is explored 

in two experiments, by changing the value of the parameter 𝑐𝜉. In the first experiment (ML-Meta1), 

the parameter 𝑐𝜉  is varied for the five snow layers, using values closer to the 0.046 𝑚3𝑘𝑔−1, 

reported in Anderson (1976), as follows: 

 𝑐𝜉 = (0.112, 0.152, 0.192, 0.288, 0.488) 𝑚
3𝑘𝑔−1. (5-12) 

These values are chosen as they were the best compromise in terms of land-surface and 

atmospheric impact (i.e., in particular 2-metre temperature) in coupled land-atmosphere forecast 

experiments, which were conducted for the foreseen implementation of the MLS in operational 
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weather forecasts at ECMWF. The decreasing values towards the first (top) snow layer imply that 

the destructive metamorphic process is more active for the top layer, whereas for the settled snow 

at the bottom of the snowpack it is less active, which makes the snow compaction process slower. 

Another experiment (ML-Meta2) uses the original value of 𝑐𝜉 = 460 𝑚
3𝑘𝑔−1 for all snow layers, 

as reported by Anderson (1976), which is a commonly used approximation in land-surface models. 

This latter unified and low value option of 𝑐𝜉  gives the opportunity to explore the maximum 

sensitivity to the destructive metamorphic process of the snow in the snow density representation, 

without considering the implication for the snow-atmosphere coupling (e.g., atmospheric scores), 

given that the feedback to the atmosphere is not considered in the offline experiments presented 

in this work. In coupled experiments, the impact of this change would be expected to be substantial 

on the near surface variables, like 2 m temperature, possibly requiring an additional tuning of other 

land-atmosphere coupling parameters. Both experiments build on ML-Vert by adding the snow 

metamorphism corrections to the vertical snow depth discretization adjustment. 

Snow-soil thermal conductivity: ML-Cond1 and ML-Cond2 

The next two experiments use the parameter 𝑙𝑏 = 0.5 in the snow-soil thermal conductivity 

computation (Eq (5-6)), the same value as in SLS and reduced by half compared with MLS. Organic 

material distribution is highly variable both in horizontal and vertical (within the soil) scales and its 

handling requires more sophisticated parametrizations (Decharme et al., 2016). 

For this reason, in these two experiments we relax the hypothesis of 𝑙𝑏 = 1 in MLS, removing the 

additional thermal insulation effects caused by organic material, effectively considering half of the 

topmost soil layer in the computation of the conductance between the two media (see Eq (5-6)), 

consistently with what is done for the other snow-free land-surface tiles of ECLand. Effectively, this 

increases the thermal coupling between the snow and soil and thus also increases the heat flux 

between the two media in these experiments. Both experiments include the vertical discretization 

change (ML-Vert), while ML-Cond1 is run together with the first snow metamorphism change in 

ML-Meta1 and ML-Cond2 with the change in ML-Meta2. 

Soil freeze and thaw temperatures: ML-T-1, ML-T-1/0, ML-T10 and ML-T-10 

The next step in the experiment design is to test the sensitivity of river discharge simulations to the 

fraction of frozen water in the soil. Soil freezing and thawing is particularly important during the 

snowmelt season, when the thermal coupling of the topmost soil layers to the atmosphere 

increases quickly as the snow melts and phase changes of the soil water can occur. Out of the two 

temperature parameters, the freeze temperature has a more direct impact on runoff generation 

during the spring period, whereas the thaw temperature could be more important for energy fluxes 
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and the coupling to the atmosphere in the fall/winter season. Gouttevin et al. (2012) suggested that 

a shorter temperature interval for phase change works better for permafrost. 

These soil temperature experiments are run including the changes in ML-Vert and ML-Meta1. First, 

while keeping the 𝑇𝑇ℎ at the default value of +1 °C in Eq (5-7), the 𝑇𝐹𝑟 parameter is increased from 

the default -3 to -1 °C (ML-T-1). Similarly, in another experiment, while keeping 𝑇𝐹𝑟 at the higher 

level of -1 °C, 𝑇𝑇ℎ is decreased from the default +1 to 0 °C (ML-T-1/0). 

In addition, the extreme boundaries of the soil freezing contribution to river discharge are also 

tested, by setting the [𝑇𝐹𝑟, 𝑇𝑇ℎ] phase change interval unreasonably high at [+10, +10.5] (ML-T10) 

and unreasonably low at [-10.5, -10] (ML-T-10). These extreme temperature thresholds allow the 

soil to remain almost always or never frozen, which consequently should increase or decrease the 

amount of infiltration to the soil and thus the amount of surface runoff to an extreme level. 

Optimal combination: ML-Opt 

Finally, a prospective experiment is defined with combinations of some evaluated changes that are 

expected to work best for permafrost. ML-Opt combines incremental changes in ML-Vert, ML-

Meta2, ML-Cond2 and ML-T-1 into one experiment. This experiment aims at exploring the 

interactions among the proposed changes, as feedbacks between different processes can be highly 

non-linear. For instance, testing the proposed changes in combination can indicate if singular 

modifications that improve the river discharge simulation, actually (over-) compensate for other 

sources of errors. 

5.3 Results 

5.3.1 Default multi-layer vs. single-layer snow schemes 

The default MLS generally improves on the SLS, mainly through better bias and variability, with the 

exception of some parts of the permafrost, where the multi-layer simulation is suboptimal. 

The impact of the MLS is analysed first in this section by comparing the default parametrization 

option ML with the single-layer SL (Figure 5-3). The ML improves the river flow predictions for the 

majority of stations over the midlatitudes (about two thirds of them), with a larger cluster of 

improved catchments (with higher kge) present in western/central North America (Figure 5-3a). 

The kge mean, computed across 453 catchments, is 0.43 for ML while 0.40 for SL, highlighting a 

small overall improvement. However, in some higher latitude areas, especially in the northern half 

of Siberia in Asia and also near Alaska in North America (coinciding with the blue box permafrost 

sensitivity area in Figure 5-3), the river discharge performance is deteriorated in ML, with many 

catchments showing a drop of at least 0.05–0.1 (some even above 0.3) in kge. 
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Figure 5-3. Difference of performance metrics between the default multi-layer (ML) and the single layer (SL) snow scheme 

experiments, across all 453 stations, calculated on daily river discharge over 1980–2018. (a) Modified Kling–Gupta 

efficiency (kge) and (b) Pearson correlation (pcorr), (c) absolute bias ratio (abias) and (d) absolute variability ratio (avar). 

Improvements in ML are indicated by blue dots in (a,b), while by red dots in (c,d). Size of the dots represent the catchment 

area. The sensitivity area in the permafrost is shown by blue rectangles, while the test catchment on the river Olenek at 

station Sukhana is indicated by black arrow in (a). 
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Figure 5-4. Daily climatological mean time series of (a) river discharge, (b) snowmelt, (c) surface runoff, (d) subsurface 

runoff, (e) water content and (f) temperature in the top 7 cm of the soil from SL-CDS, SL and ML experiments for the Olenek 

river at the station of Sukhana in eastern Siberia (with area of 127.000 km2). All water related variables are displayed as 

catchment totals in order to compare them directly to river discharge, while for soil temperature catchment averages are 

shown (please note the values are divided by 1000 for river discharge, snowmelt and subsurface runoff and by 1.000.000 

for soil water volume). The kge and its bias, var and pcorr component scores are provided in an inset table for river 

discharge. 
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The improvements in midlatitudes seem to come mainly from the smaller bias errors (abias 

decreasing), especially pronounced in central North America (Figure 5-3c) and to a lesser extent 

from the smaller variability errors (avar decreasing; Figure 5-3d) and higher correlation (Figure 

5-3b).  

On the other hand, the deterioration in the higher latitudes over the permafrost seems to relate 

to much higher variability errors (many catchments with an increase of at least 0.3) and to 

somewhat higher bias errors and lower correlation in ML. 

5.3.2 ML struggles in permafrost 

Analysis in Siberia demonstrates that the deterioration of the daily river discharge representation 

and the largely missed snowmelt-driven flood wave is caused by too low surface runoff, which 

primarily comes from warmer soil in ML, allowing more water infiltrating into the soil and thus 

reducing surface runoff. 

A test catchment on the Olenek river in Siberia (Sukhana station from within the permafrost 

sensitivity area; indicated in Figure 5-3) is used to demonstrate this large negative impact through 

analysing the daily climate time series of some key water budget related land-surface variables 

(snowmelt, surface and subsurface runoff, soil water content and soil temperature) for SL-CDS, SL 

and ML (Figure 5-4). 

The ML-produced river discharge is clearly inferior compared with both SL and SL-CDS, as it shows 

a much larger underestimation of the observed flood peak in May-June (Figure 5-4a). Even though 

the secondary flood period is better represented by ML in August-September, due to the generally 

higher river discharge with the exception of May-June. The deterioration of the flow is reflected in 

the ML scores being the lowest across all three experiments (inset table in Figure 5-4a). The only 

exception is the bias ratio which is lowest for SL-CDS. This very low negative bias is a consequence 

of the snow data assimilation that removes water from the rivers in high latitudes. It is related to 

the current single layer snow model’s tendency to melt the snow too slowly, which is compensated 

by the assimilation system during snowmelt periods, as documented in Zsoter et al. (2019). 

The snowmelt peak in May-June is slightly higher and delayed in ML, compared with SL and even 

more so with SL-CDS (Figure 5-4b). At the same time, the soil is better insulated by the multi-layer 

snow in ML during March-May, as the temperature is higher by up to 2 °C than in SL (Figure 5-4f). 

As the snow is better insulated in ML, the melting will start later during spring, which then delays 

the faster soil temperature increase in ML, occurring in end of May. The surface runoff is highest in 

SL and lowest in ML during April-June, also highlighting a similar delay seen on the snowmelt peaks 

(Figure 5-4c). 
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The higher soil temperature in ML implies that a smaller fraction of the water is frozen in the soil, 

compared to SL, during the crucial snowmelt period and more water can infiltrate into the soil, 

which then reduces the amount of water that can runoff directly. The higher infiltration will 

increase the water content in the soil during May-July (Figure 5-4e), which will result in increased 

subsurface runoff (Figure 5-4d). This happens with a delay, as the water needs to reach the bottom 

of the soil to leave as subsurface runoff, producing a delayed peak to around end of July-September 

(Figure 5-4d). 

The missing river discharge in ML is clearly related to the too low surface runoff during the April-

June snowmelt, which period is clearly better represented in both SL and SL-CDS. The small 

differences in snowmelt cannot explain the lower surface runoff amounts. If anything, it should 

likely contribute to an increase in ML. In addition, the deficit in surface runoff is offset by the higher 

subsurface runoff in ML. However, the excess water from subsurface runoff spreads out over most 

parts of the year and thus cannot compensate for the missing surface runoff during the snowmelt 

flood period. Instead, the crucial aspect of the changes in ML is the higher soil temperature. This 

soil temperature difference is most critical in the middle of May, when the snowmelt is rapidly 

increasing in the catchment. 

5.3.3 Improving the multi-layer snow scheme performance in permafrost 

In this section, the ECLand sensitivity experiments (Figure 5-2 and Section 5.2.8) are evaluated for 

their ability to improve the river discharge simulation, focusing on permafrost. 

5.3.3.1 Impact of the ECLand experiments on a test catchment in Siberia 

The ECLand permafrost sensitivity experiments are demonstrated to increase the surface runoff in 

a test catchment in permafrost, by primarily making the soil colder through a series of incremental 

changes in the snow and soil freezing parametrizations, including modifications of the snow vertical 

discretization, snow density metamorphism, snow-soil thermal conductivity and soil freeze 

temperature. 

In the Sukhana test catchment, the modifications are clearly effective in altering the amount of 

water distributed amongst different parts of the water budget (Figure 5-5). Generally, the impact 

on snowmelt (Figure 5-5b) is the smallest (maximum of a few days delay and a slight change in 

magnitude), while all other variables show much larger variability between the experiments (Figure 

5-5a,c–f). 
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Figure 5-5. Daily climatological mean time series of (a) river discharge, (b) snowmelt, (c) surface runoff, (d) subsurface 

runoff, (e) water content temperature in the top 7 cm of the soil from ML, ML-Vert, ML-Meta1, ML-Meta2, ML-Cond1, ML-

Cond2, ML-T-1, ML-T-1/0, ML-T-10, ML-T10 and ML-Opt experiments for the Olenek river at the station of Sukhana in 

eastern Siberia (with area of 127,000 km2). All water related variables are displayed as catchment totals in order to 

compare them directly to river discharge, while for soil temperature catchment averages are shown (please note the 

values are divided by 1000 for river discharge, snowmelt and subsurface runoff and by 1,000,000 for soil water volume). 

The kge and its bias, var and pcorr component scores are provided in an inset table for river discharge. 
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The surface runoff shows very large sensitivity to the ECLand changes in May-June, coinciding with 

the main snowmelt period (Figure 5-5c). The river discharge behaviour (Figure 5-5a) is directly 

determined by the variability in surface runoff in this period. The vertical discretization adjustment 

(ML-Vert), which is active for about 25% of the test catchment area, usually during October-May, 

and the combination with the first snow metamorphism change (ML-Meta1) both add small 

increase. However, ML-Vert combined with the second snow metamorphism setting (ML-Meta2) 

produces a much larger impact on surface runoff. On the other hand, the change in surface 

conductivity does not appear to be effective as both ML-Meta1 with ML-Cond1 and ML-Meta2 with 

ML-Cond2 (both pairs sharing the same snow metamorphism change respectively) show similar 

levels of surface runoff. 

The experiments with the largest impact on surface runoff (and thus river discharge) are those 

including changes of the soil freezing. The experiments of ML-T-1 and ML-T-1/0 help reaching the 

surface runoff level of SL by resetting the freeze temperature to -1 °C and the thaw temperature to 

0 °C. ML-Opt shows even further improvement with a surface runoff peak that closely matches the 

shape and magnitude of the observed river discharge until middle of June. This is achieved by the 

combined impact of the vertical discretization, second snow metamorphism, surface conductivity 

and freeze temperature changes. On the extreme end of the spectrum, the ML-T10 experiment 

shows too high surface runoff, by setting the freeze and thaw temperatures to an unrealistically 

high level (at around +10 °C), consequently partitioning much of the runoff into surface runoff. 

The soil temperature changes are in agreement with the surface runoff behaviour described above. 

The soil is warmest in ML, while it gradually gets colder by the ECLand modifications (Figure 5-5f). 

The soil is coldest for ML-Opt and the two extreme temperature experiments, ML-T-10 and ML-

T10, during the main snowmelt season in March-May. The cooling soil means, the temperature will 

be more and more likely closer or below the freeze temperature threshold (TFr), which progressively 

decreases the infiltration into the soil. This leads to generally reduced soil water content (Figure 

5-5e) and decreased subsurface runoff (Figure 5-5d), although with large variability depending on 

the actual parametrization changes and the time of year. 

The kge and the three component scores (inset tables in Figure 5-5a,b) confirm the gradually 

improving behaviour of these experiments from ML to ML-Opt, through the introduction of the 

incremental ECLand parametrization changes. The bias improves from -0.17 to -0.06, var from -0.66 

to -0.17, pcorr from 0.51 to 0.71 and finally the kge from 0.16 to 0.75, representing a very large 

jump in skill. 
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5.3.3.2 Impact of the ECLand experiments in permafrost 

The series of ECLand experiments are shown to provide widespread improvement for river 

discharge in the permafrost sensitivity area, based on all available catchments. They result mainly 

in reduced bias and variability errors, with optimal performance achieved by the ML-Opt 

experiment, including the combined changes of vertical discretization, second snow 

metamorphism, surface conductivity and freeze temperature. 

The 69 catchments, found in the sensitivity area defined in the 60-80N latitude belt over the 

permafrost (Figure 5-1), were collectively analysed to see if the conclusions obtained from the test 

catchment in Siberia can be generalized to the permafrost. Figure 5-6 provides a visual summary of 

the overall performance in simulating river discharge, averaged over the sensitivity area, where the 

default configuration ML performs unfavourably. Each experiment is represented by a dot in a 3-

dimensional graph showing bias (x-axis), var (y-axis) and pcorr (symbol size). 

 

Figure 5-6. Scatter plot of area average scores for the 13 analysed experiments. The scores are computed from 69 

catchments in the 60–80 N belt of the permafrost (see Figure 5-1 for the area). The size of the dots represents pcorr. The 

outlier ML-T10 is displayed in an inset graph for better readability. The area average score values are provided for all 

analysed experiments in the inset table. 

The ECLand parametrization changes are effective to improve the simulation of river flow in the 

permafrost area, in particular the bias and variability errors, which improve from ML-T-10 to ML-

Opt (see also the average scores of 69 catchments in an inset table in Figure 5-6). The correlation is 

less impacted by the modifications, the difference between all experiments is mostly within a few 

percent (the two extremes have average correlation of 0.59 (SL-CDS) and 0.71 (ML-T10)). 



95 

Chapter 5  Hydrological Impact of the New ECMWF Multi-Layer Snow Scheme 

The furthest from the optimum [0; 0] bias/var point are the ML-T-10 and ML-T10 extreme 

temperature experiments. Nevertheless, the highest average correlation is achieved with the 

positive extreme, when the soil remains mostly frozen. The fact that an unrealistically extreme-

setup simulation, with excess surface runoff, produces the highest correlation shows that the 

current land-surface process representation in ECLand is still suboptimal in the permafrost, even 

after the parametrization changes. Another outlier is the online produced SL-CDS, which has lower 

scores, especially the very low negative bias, due to the snow data assimilation removing water 

from the rivers in the northern latitudes, as a compensation for the slow snowmelt in SLS (Zsoter 

et al., 2019). 

Overall, there is a notable improvement achieved by the ECLand experiments, shown by the 

increase in kge from 0.42 (ML) to 0.54 (ML-Opt), while the single-layer experiments highlight lower 

kge of 0.48 (SL) and 0.39 (SL-CDS). 

5.3.4 Global impact of the ECLand experiments 

The changes in the snow and soil parametrization schemes in ECLand could improve the river 

discharge in the permafrost sensitivity area in eastern Siberia and Alaska. However, in other areas 

these changes are dominantly suboptimal, as the difference between ML-Opt, the highest 

performing ECLand experiment, and ML highlights (Figure 5-7). 

The worst ML-Opt performance is found in the western part of USA, Canada and catchments in 

central Asia, directly in those areas where ML could improve the most on SL (see Figure 5-2). 

Interestingly, the Canadian Arctic regions (Nunavut) do not show similarly improving results to 

other permafrost regions. One source of error, which can contribute to this, is the underlaying 

physiographic data used to drive the simulations, e.g., lake cover. Boussetta et al. (2021) showed 

that recent lake cover datasets are substantially different from those used in this work for the 

Nunavut region. The use of more realistic physiographic data will be explored in future work. 

Furthermore, unrepresented physical processes in the land-surface model can affect the 

hydrological cycle of these regions, e.g., wind-driven sublimation of the snowpack which can change 

the amount of snow mass available for melting at the end of the season. Similarly, the handling of 

frozen lakes with, e.g., snow not accumulating on top of lake ice in ECLand, may introduce 

compensating errors with the changes tested in ML-Opt. 

Nevertheless, even though only about one third of the stations show improvement by ML-Opt, the 

globally averaged scores show that ML is only slightly better (inset table in Figure 5-7). Moreover, 

the score variability amongst all the experiments, in general, is quite small as well. The only real 

exception is ML-T10 that has very low scores throughout. The geographical maps of the kge 
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differences between the experiments (from ML-Vert to ML-T10) and ML is provided in the 

Supplementary Materials (Figures 5-S1 - 5-S9). 

The deterioration of ML-Opt and the other ECLand experiments in milder climate areas is related 

to the surface runoff increase during the snowmelt period, demonstrated earlier. Especially in 

catchments where the bias in ML (and similarly in SL) was originally positive, e.g., around the 

Rockies (as suggested by Zsoter et al. (2019)), any further increase in snowmelt-related surface 

runoff will dominantly be detrimental and contribute to further increased bias and thus lower kge. 

 

Figure 5-7. Difference of the modified Kling–Gupta efficiency (kge) between ML-Opt and ML. Blue areas show better 

performance in ML-Opt, while red indicates better performance in ML. The sensitivity area in the permafrost is shown by 

blue rectangles, while the test catchment on river Olenek at station Sukhana is indicated by black arrow. The area average 

scores are provided for all analysed experiments in the inset table. 

5.4 Discussion 

It was shown in this study that the MLS has an improved representation of the hydrology, with the 

notable exception of the coldest areas in permafrost, where the SLS is superior. To improve the 

MLS hydrological representation in permafrost, modifications of the ECLand snow and soil freezing 

schemes were tested. It was shown that a series of incremental changes could noticeably improve 

the quality of the river discharge simulation over a large area in permafrost, primarily through 

decreasing the soil temperature and thus increasing the amount of surface runoff in the critical 

spring snowmelt period. 

Improving the hydrological process representation 

The results have demonstrated that the use of uniform parameters in ECLand in the snow and soil 

freezing schemes, currently applied in ECLand, are too simplistic and will not work for both the 

permafrost and non-permafrost areas in the snow-impacted climate. Spatially variable 

parametrization for variables, such as cξ in the destructive metamorphism of the snow, lb in the 
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snow-soil thermal conductivity and TFr freeze temperature in the soil freezing scheme, explored in 

this work, promise to bring a more balanced approach for delivering improved hydrological process 

representation. 

However, this could technically be complex to implement in ECLand and needs a substantial amount 

of further research. As a first step, the parametrization part of ECLand has recently been refactored 

(by removing hard-coded parameter values) and the Multiscale Parameter Regionalization (MPR; 

Schweppe et al., 2021) has been implemented for estimation of spatially varying parameters. This 

change will make it easier in the future to work on aspects of ECLand, such as the one explored in 

this study for the snow and soil parametrization impact on hydrology. 

This study has also contributed to the understanding of the hydrological importance of each tested 

change in the ECLand parametrization, which could be based on the average verification metrics in 

the permafrost (distance between dots in Figure 5-6), supported by the land-surface processes 

representation at the example catchment (Figure 5-5). 

The thaw temperature adjustment from +1 to 0 brought deterioration, while all other changes 

could improve river discharge. The smallest improvement seems to come from the snow-soil 

thermal conductivity adjustment (updated lb), closely followed by the first snow metamorphism 

change (variable cξ). The snow vertical discretization change looks to bring larger improvements 

(adjustment over complex terrain), while the second snow metamorphism change (uniform cξ) is 

even more beneficial in the permafrost. Finally, the biggest contribution appears to come from the 

adjustment of the lower temperature threshold in the soil freezing scheme (freeze temperature) 

from -3 to -1 °C. 

Land-surface modelling challenges 

Due to the presence of a unique soil column within a grid cell in EC-Land, the soil temperature may 

be largely affected by the repartitioning of the sub-grid tiled surfaces, as these can be characterized 

by different surface energy fluxes. In high latitude during transition seasons (e.g., snow 

accumulation and ablation), the tile fraction subdivision depends on the snow cover fraction, 

exerting a large control on the heat flux conducted through the soil (Slater et al., 2001; Yang et al., 

1997; Bélair et al., 2003b). When the snow cover fraction is less than one, part of the soil directly 

interacts with the atmosphere above, without the thermal insulation effect of the snowpack. This 

in turn, may affect the soil temperature and therefore the fraction of frozen water within the soil. 

Future modelling work should evaluate the hydrological sensitivity to snow cover fraction 

parametrization in global land-surface simulations (see for example Niu and Yang, 2007), 

considering the combined effect that this can have on the soil below and the atmosphere above. 
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In addition, future modelling work should also evaluate the effect of unrepresented or poorly 

represented hydrological processes in ECLand. These include, for example wind-driven snow 

sublimation, snow interception by forests, as well as of a more physically complex representation 

of frozen/unfrozen water phases in the soil column, which all promise to bring benefits to the 

hydrological cycle, especially in permafrost regions (see for instance Koren et al., 2014; Krogh et al., 

2017; Niu and Yang, 2006). Moreover, the impact of a deeper soil column, with additional vertical 

layers, has also been shown to work better for permafrost simulation in land-surface models 

(Melton et al., 2019). More complex models for hydrological applications in high-latitude regions 

have been proposed in the literature (e.g., Niu and Yang, 2007; Melton et al., 2019; Clark et al., 

2021). Their implementation in ECLand could be considered in the future. 

Relevance for ECMWF 

The next operational IFS cycle (48r1) of ECMWF will include multi-layer snow representation. Based 

on this study, the slightly modified version of ML-Meta1 was selected for operationalization, which 

includes the snow vertical discretization and first snow metamorphism changes on top of the 

default ML configuration. The results of this study highlighted that this new snow model did show 

moderate hydrological improvements in permafrost and could still retain most of the good 

performance of the default MLS in other areas. 

Earth system modelling implications 

Modelling improvements in the Earth system process representation, such as the use of any 

prospective MLS version explored in this study, require thorough testing in coupled forecast mode 

with data assimilation, similarly as in Arduini et al. (2019). This is necessary to check the 

transferability of the offline-demonstrated hydrological improvements, and make sure other 

variables, such as 2-metre temperature and surface fluxes of sensible and latent heat, will not 

deteriorate. 

This study has proven that further development of the snow and soil parametrizations in ECLand is 

crucial to achieve better hydrological performance everywhere globally; however, it could not be 

part of this study and will only be explored in the future as an important research area. 

The success of helping the operational development of the ECLand model’s snow component has 

shown that hydrological studies, such as the work presented in this paper, have great potential to 

help improve the land-surface realism in Earth system models and can contribute to improvements 

in not just the hydrological variables, such as river discharge, but potentially other components of 

the Earth system as well. 
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Limitations of the study 

The authors acknowledge that even with the best care taken in the experimental setup of this study, 

some limitations remain. The network of analysed catchments is still under-representative in some 

areas, also with the relatively short minimum observation length of eight years as a compromise. 

Similarly, this study was not designed to be a full sensitivity experiment for the land-surface 

processes in the permafrost, which would have required a much higher computational cost. In 

addition, the choice of testing ECLand changes in MLS was because of practical reasons, but most 

of the modifications would be expected to show improvements in a similar manner even if tested 

within the SLS. 

5.5 Conclusions 

The representation of snow is a crucial aspect of land-surface modelling, as it has a strong influence 

on the energy and water balances. Snow schemes with multiple layers can better represent the 

snowpack evolution and bring improvements on single-layer schemes in simulating the snow 

processes and contribute to better soil freezing and hydrological cycle. 

In this paper, the hydrological impact of the MLS, implemented in ECLand, was analyzed globally 

with ERA5-forced experiments over the period of 1979–2018. The CaMa-Flood model was used to 

generate river discharge from the ECLand runoff output, allowing direct comparison with gauged 

observations over more than 400 snow-impacted catchments. Different sensitivity experiments 

were conducted to evaluate the impact of changes in the ECLand snow and soil freezing schemes 

on the terrestrial hydrological processes, with particular focus on permafrost. 

It was found that while the default MLS generally improves the river discharge simulation, mainly 

through better bias and variability errors, the performance is suboptimal in large parts of the high 

latitude permafrost regions. The analysis of the climatological mean time series, in a test catchment 

in Siberia, demonstrated that the largely underestimated snowmelt-driven floods in late spring to 

early summer are caused by too low surface runoff. The MLS better insulates the soil, which allows 

more water to infiltrate into the soil and thus surface runoff is reduced. 

It was also found that the ECLand experiments provide widespread improvement for river discharge 

in the sensitivity area, defined in permafrost. The incremental changes of the snow vertical 

discretization, destructive metamorphism, snow-soil thermal conductivity and soil freeze 

temperature lead to gradually colder soil, which resulted in increased surface runoff and thus better 

river discharge simulation during the critical snowmelt-driven flood period. The ML-Opt 

experiment, as the combination of the best performing ECLand changes, has shown higher overall 

kge, mainly through reduced bias and variability errors. 
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The results, presented here, have directly influenced the MLS version that will be introduced in the 

next Integrated Forecasting System cycle of ECMWF (48r1). This has demonstrated that 

hydrological analyses, such as the work presented in this paper, can provide a useful platform to 

diagnose areas where improvements are needed in the land surface representation of the Earth 

system models. 
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Contribution of this chapter to the thesis. This chapter addressed the objective: ”Evaluate the 

hydrological impact of the complexity of the snow scheme in the land-surface models in reanalysis 

simulations, with special focus on cold climate areas in permafrost.” This work demonstrated that 

by replacing the single-layer snow scheme with a physically more complex multi-layer scheme can 

improve the river discharge reanalysis simulations. The chapter also highlighted that in the coldest 

areas of permafrost, river discharge could only be improved by further adjustments of the snow 

and soil freezing parametrisations. 
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5.6 Supplementary figures 

 

Figure 5-S1. Difference of the Kling-Gupta efficiency (kge) between ML-Vert, the experiment with modified snow vertical 

discretisation over complex terrain with at least 25 cm snow depth, and ML, the default multi-layer experiment, across all 

453 stations, calculated on daily river discharge over 1980-2018. Improvements in ML-Vert are indicated by blue dots. Size 

of the dots represent the catchment area. 

 

Figure 5-S2. As Figure 5-S1, but kge difference between ML-Meta1 (the 1st modification of the destructive metamorphism 

of the snow with variable cξ parameter values across the snow layers, together with ML-Vert) and ML. 
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Figure 5-S3. As Figure 5-S1, but kge difference between ML-Meta2 (the 2nd modification of the destructive metamorphism 

of the snow with one cξ parameter value as in Anderson et al. (1976), together with ML-Vert) and ML 

 

Figure 5-S4. As Figure 5-S1, but kge difference between ML-Cond1 (ML-Meta1 together with the snowsoil thermal 

conductivity computation with the revised parameter lb=0.5) and ML. 

 

Figure 5-S5. As Figure 5-S1, but kge difference between ML-Cond2 (ML-Meta2 together with the snowsoil thermal 

conductivity computation with the revised parameter lb=0.5) and ML. 
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Figure 5-S6. As Figure 5-S1, but kge difference between ML-T-1 (change of the soil freeze parameter TFr from the default -

3 to -1 °C added onto ML-Meta1) and ML. 

 

Figure 5-S7. As Figure 5-S1, but kge difference between ML-T-1/0 (change of the freeze temperature TFr to -1 °C and thaw 

temperature TTh from the default +1 to 0 °C, added onto ML-Meta1) and ML. 

 

Figure 5-S8. As Figure 5-S1, but kge difference between ML-T-10 ([TFr, TTh] changed to [-10.5, -10], added onto ML-Meta1) 

and ML. 
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Figure 5-S9. As Figure 5-S1, but kge difference between ML-T10 ([TFr, TTh] changed to [+10, +10.5], added onto ML-Meta1) 

and ML. 
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Chapter 6 Trends in the GloFAS-ERA5 river discharge reanalysis 

After analysing the hydrological contributions of land data assimilation and snow model complexity 

in Earth system models in Chapter 4 and Chapter 5, this chapter analyses the presence of non-

stationarity in the reanalysis time series. Non-stationarity is an important aspect, as it is one of the 

potential limiting factors in the applicability of these Earth-system-based hydrological reanalysis 

data sets for the generation of flood hazard climatologies and the related flood warning thresholds. 

This chapter has been published as an ECMWF technical memoranda with the following reference 

(https://centaur.reading.ac.uk/93047/): 

Zsótér, E.,H. L. Cloke, C. Prudhomme, S. Harrigan, P. de Rosnay, J. Munoz-Sabater and E. Stephens, 

2020b: Trends in the GloFAS-ERA5 river discharge reanalysis. ECMWF Technical Memoranda. 871. 

Technical Report, doi:10.21957/p9jrh0xp 

The contributions of the authors of this paper are as follows: E.Z. designed and carried out the 

analysis and led the writing of the manuscript. H.C., E.S., S.H, P.deR. and J.M-S. all helped with the 

research methodology design. All authors assisted with writing the manuscript. Overall, 90% of the 

writing was undertaken by E.Zs. 

The published article can be found in the Appendix A3. 

Abstract. The main objective of this study is to analyse the GloFAS-ERA5 river discharge reanalysis 

for any noticeable change (including gradual trends or discontinuities) in the annual mean time 

series across the 1979-2018 (40-year) period, and to evaluate how realistic these are compared 

with available observed river discharge time series. These variabilities are quantified by linear 

regression in order to highlight any concerning features in the GloFAS-ERA5 time series. This work 

is particularly important for GloFAS, as large trends, discontinuities or other similar features could 

have a major consequence on the GloFAS flood thresholds in around 50% of catchments, which are 

based on GloFAS-ERA5, and thus subsequently on the issuing of flood warnings. In addition, this 

study also contributes to the understanding of the water cycle variable behaviour in ERA5 (driver 

of GloFAS-ERA5) and ERA5-Land (higher resolution land reanalysis forced by ERA5, produced 

offline) by exploring the linear trends in river discharge and related hydrological variables. In 

exploring the stability of the time series in ERA5, we seek to trigger potential further discussions 

and research studies, which subsequently should help with the planning and development for the 

next generation ECMWF reanalysis, ERA6. 

http://centaur.reading.ac.uk/view/creators/90005657.html
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6.1 Introduction 

In November 2019, the GloFAS (Global Flood Awareness System) was upgraded to version 2.1 

(https://confluence.ecmwf.int/display/COPSRV/GloFAS+v2.1). This included two important 

changes: the release of the official GloFAS-ERA5 river discharge reanalysis, and the revision of the 

flood threshold computation. The flood thresholds are predefined and specified as a magnitude of 

river flow for specific return periods; these are used operationally to highlight where upcoming 

flows may be severe and trigger alerts accordingly. They are computed from river discharge 

reanalysis by fitting an extreme value distribution onto the annual maxima time series. In the v2.1 

upgrade, flood thresholds were recomputed using the 40-year (1979-2018) GloFAS-ERA5 river 

discharge reanalysis, which is an ERA5-forced hydrological simulation (Harrigan et al., 2020b). In 

addition, the analysis of the v2.1 vs. v2.0 thresholds revealed that over large parts of the world the 

GloFAS-ERA5 river discharge time series has very noticeable linear trends across the 40-year period. 

Linear trends can highlight noticeable change across the 40-year period, be that a gradual shift (i.e. 

a trend) or a discontinuity (i.e. a step change at one point in the time series). Any noticeable shift 

in the time series is particularly important as it can hinder the representativity of the GloFAS 

thresholds, through the characteristically different extreme flood event behaviour in different parts 

of the 40-year period. 

In this study, the changes/shifts in the GloFAS-ERA5 annual mean time series are analysed and 

quantified by linear regression. The linear trend magnitudes, along the regression lines, are 

computed for river discharge, as well as for all ERA5 and ERA5-Land variables that directly affect 

the water budget: precipitation, snowfall, evaporation, 2m temperature, soil water content, runoff 

and snowmelt. The linear trends in the available river discharge observations are used as verifying 

truth and compared with the GloFAS-ERA5 river discharge (and also ERA5 runoff) trends. 

6.2 Data and methods 

6.2.1 Global Flood Awareness System 

The Global Flood Awareness System (GloFAS; www.globalfloods.eu) is part of the Copernicus 

Emergency Management Service (CEMS) and has been developed in collaboration between 

ECMWF, the Joint Research Centre of the European Commission with help from research 

institutions such as the University of Reading (UoR). It monitors and forecasts floods across the 

world. GloFAS has two complementary systems: 

• GloFAS 30-day, that includes daily ensemble flood forecast predictions, out to 30 days 

ahead, updated daily, based on the ECMWF medium- and extended-range ensemble runoff 

as input forcing 
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• GloFAS Seasonal, that provides ensemble hydrological forecasts of unusually low or high 

flow for calendar weeks up to 16 weeks ahead, updated monthly, based on the ECMWF 

SEAS5 ensemble runoff as input forcing 

• GloFAS forecasts possible flood episodes and unusually high/low river flow for all major 

rivers of the world. It has been an operational service since April 2018 (following a pre-

operational phase which started in 2011) with information shown on a dedicated web 

platform (www.globalfloods.eu; Figure 6-1). 

 

Figure 6-1. Snapshot of the GloFAS website’s landing page. 

GloFAS is designed to complement existing national and regional services, and to support national 

civil protection and international organisations in decision making before major flood events, 

particularly in large transnational river basins. Forecast information is used by a variety of decision 

makers, including national and regional water authorities, water resources managers, hydropower 

companies, civil protection and first line responders, and international humanitarian aid 

organisations. GloFAS only focuses on larger rivers (mainly over 10.000 km2 catchment area) and 

does not provide real-time forecast information on flash flood risk, pluvial or coastal flooding. 

GloFAS river discharge data is produced by coupling the Lisflood hydrological and channel routing 

model (van der Knijff et al., 2010) to the runoff output of the land-surface model of ECMWF NWP 

system. The river routing runs with surface and sub-surface runoff inputs on a 0.1×0.1° (~10 km 

resolution) global river network. The surface runoff component directly enters the river channel, 

while the sub-surface runoff first enters a groundwater module that outputs the water into the 

river channel after a time delay (Harrigan et al., 2020b). 

The river state of the real time ensemble GloFAS forecasts is initialised from a hydrological 

simulation, forced by the fast release version of ERA5 (ERA5T) up until when it is available (a few 

days behind real time) and then subsequently by the ECMWF ensemble control forecast. 
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A long-term river discharge dataset is required in order to compute the return period flood 

thresholds in GloFAS 30-day: currently this is the GloFAS-ERA5 reanalysis. Further description on 

the GloFAS system is available on the GloFAS internal website at (https://confluence.ecmwf.int/ 

display/COPSRV/Global+Flood+Awareness+System) and in Harrigan et al (2020b). 

6.2.2 ERA5 and ERA5-Land 

ERA5 is ECMWF’s 5th generation global climate reanalysis (Hersbach et al., 2020). ERA5 covers the 

period January 1979 to near real time with a plan to extend to 1950. ERA5 includes one high-

resolution component (~31 km horizontal resolution) and a lower resolution ensemble component 

with 10 members (~62 km horizontal resolution). 

There are two flavours of ERA5 reanalysis available: the raw ERA5, based on consolidated, quality 

checked data, lagging ~2-3 months behind real-time; and ERA5T, which is available 5 days behind 

real time, but is not fully quality-checked (Hersbach et al., 2020). ERA5-Land 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land) is also analysed for 

comparative purposes in this study. ERA5-Land is the offline land surface only improved version of 

ERA5. 

ERA5 and ERA5-Land runoff are both produced by the HTESSEL (Hydrology Tiled ECMWF Scheme 

for Surface Exchanges over Land; Balsamo et al., 2009) land-surface model of the ECMWF 

Integrated Forecasting System (IFS). 

The HTESSEL scheme follows a mosaic (or tiling) approach where the grid boxes are divided into 

patches (or tiles), with up to six fractions over land (bare ground, low and high vegetation, 

intercepted water, shaded and exposed snow) and two extra tiles over water (open and frozen 

water) exchanging energy and water with the atmosphere. HTESSEL is used within the ECMWF IFS 

in coupled atmosphere-surface mode on time ranges from medium-range to seasonal forecasts. 

ERA5 is a coupled application which includes the operational land data assimilation system of 

ECMWF to assimilate conventional in-situ and satellite observations for land surface variables for 

the analysis of soil moisture, soil temperature and snow fields (de Rosnay et al., 2014). 

ERA5-Land, on the other hand, is a product of an offline HTESSEL simulation without atmosphere 

land coupling and land data assimilation, forced by the atmospheric variables (e.g. air temperature 

and radiation). ERA5-Land is produced at 9 km spatial resolution using downscaled ERA5 

atmospheric forcing and a vertical lapse rate correction on temperature. There is no direct coupling 

or land data assimilation in ERA5-Land (there is only an indirect impact through the ERA5 forcing) 

and this can have a large impact on the hydrological cycle (Zsoter et al., 2019), and potentially also 

on the trends. Other major differences between ERA5 and ERA5-Land are the much higher 
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resolution and the lapserate correction in ERA5-Land, which also can have a large impact on the 

water budget, especially in mountainous areas, changing the snow pack and snowmelt through the 

temperature differences. 

ERA5-Land is analysed in a similar way to ERA5 for hydrological variables, apart from river discharge 

which is not yet produced for ERA5-Land. In addition, precipitation and snowfall are identical in 

ERA5 and ERA5-Land (apart from the downscaling) and therefore are not considered further within 

the ERA5-Land analysis. 

6.2.3 GloFAS-ERA5 reanalysis 

The GloFAS-ERA5 river discharge reanalysis is a product of the European Commission’s Copernicus 

Emergency Management Service (CEMS) and is officially available in the Copernicus Climate Data 

Store free of charge after registration (https://cds.climate.copernicus.eu/). 

 

Figure 6-2. Schematic of the key components of the GloFAS-ERA5 river discharge reanalysis dataset production, including 

the ERA5 and ERA5-Land climate reanalyses. Adapted from Harrigan et al. (2020b). 

GloFAS-ERA5 uses surface and sub-surface runoff input from the high-resolution component of the 

ERA5 reanalysis. It has a fast release version, GloFAS-ERA5T, forced by ERA5T, available 2-5-days 

behind real time, used in the initialisation of the GloFAS real time forecasts. 

A schematic of the key components of the GloFAS-ERA5 and its potential extension GloFAS-ERA5- 

Land is given in Figure 6-2. GloFAS verification studies often use GloFAS-ERA5, serving as a proxy 

for river discharge observations. More detailed information on GloFAS-ERA5 is available in Harrigan 

et al. (2020b). 

6.2.4 Trend analysis methodology 

Although GloFAS-ERA5 starts in 1979, ERA5-Land data are only available from 1981, and thus the 

trend analysis is based on the common 1981-2018 period of 38 years. At the time of writing, no 
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ERA5-Land river discharge is available, and instead annual averages of runoff are used as a proxy, 

which is a very good estimate of the river discharge in annual means. 

 

Figure 6-3. Length of observed river discharge records available for the trend analysis, represented at the catchment 

outlets. A total of 1324 stations with a minimum of 16 years was processed. 

6.2.4.1 Choice of catchments 

The GloFAS diagnostic catchments are used in this study to analyse the linear trends: a list of 6122 

stations with catchment areas varying from about 1.000 km2
 to 5.4 million km2. On a subset of these 

catchments, where river discharge observations were available (collected and managed by the JRC), 

the GloFAS-ERA5 river discharge trends are compared to the equivalent trends, determined from 

observed river discharge, available in the 1981-2018 period (Figure 6-3). A total of 1324 stations 

were selected with a minimum of 16 years of observed daily data. Unfortunately, large parts of the 

world are poorly observed with large gaps in space and time in the 38-year period (Lavers et al., 

2019; Rodda et al., 1993; Pavelsky et al., 2014). 

 

Figure 6-4. Global river catchments where the trends are provided in Table 6-2, Table 6-3 and Table B1 in Appendix B, and 

where the hydrographs are shown in the Appendix C with the annual mean time series. 
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Additionally, 33 major world river catchments with good observations are selected for providing 

detailed analysis of the annual mean time series and linear trend magnitudes (Figure 6-4). The 

catchments were selected to cover different parts of the world with the longest possible 

observation time series. 

6.2.4.2 Choice of variables 

In addition to the simulated and observed river discharge (Table 6-1), the surface variables that 

directly affect the water budget are analysed from ERA5 and ERA5-Land for linear trends. In the 

HTESSEL terrestrial water budget, precipitation (P) is the incoming water source. The water can stay 

in one of the water storage reservoirs or leave the land surface. Water reservoirs are the soil, the 

canopy interception and in solid form the snowpack (the water stored in the snowpack is the snow 

water equivalent, SWE). The interception accounts for only a very small fraction of the storage and 

thus it was left out of the analysis. From the soil, which has four layers in HTESSEL, two water 

reservoir versions are chosen to be analysed. The top layer (SWV7, 0-7cm), which provides an 

immediate impact to the atmosphere, and the combination of the top three layers (SWV100, 0-

100cm) which represents the slower evolving part of the soil that is still more strongly connected 

to the atmosphere through the vegetation roots. 

The snowfall, the solid part of the incoming precipitation (SF), contributes to building the snowpack. 

Some part of the rain (liquid part of precipitation) and the water from the melting snowpack (SMLT) 

leave the land surface system as surface runoff (SRO, the surface fraction of RO). Another fraction 

of the precipitation leaves as intercepted water evaporation. The remaining water (from the 

incoming rain and the snowmelt) enters the soil and contributes to the soil water reservoir.  

Table 6-1. List of variables analysed for linear trends in this study with their short names, MARS archive codes (see 

https://apps.ecmwf.int/codes/grib/param-db/), the number of processed catchments and a short description. 

Short 

name 
Unit 

MARS 

parameter 

Number of 

catchments 
Periods Parameter description 

DIS m3/s 240.024 5695 
1981-2018, 1981-

2003 and 2004-2018 
GloFAS-ERA5 river discharge 

OBS m3/s - 

1324 
Only 1981-2018 (with 

variable length) 

River discharge observations 

DIS-

match-

OBS 

m3/s 240.024 

River discharge observation dates 

matched GloFAS-ERA5 river 

discharge 

RO-

match-

OBS 

m3/s 205.128 

River discharge observation dates 

matched runoff outputs of 

HTESSEL 
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P m3/s 228.128 5698 
1981-2018, 1981-

2003 and 2004-2018 
Precipitation 

SF m3/s 144.128 3774 
1981-2018, 1981-

2003 and 2004-2018 

Snowfall part of precipitation 

(same in ERA5 and ERA5-Land 

apart from downscaling) 

RO m3/s 205.128 

5694 

1981-2018, 1981-

2003 and 2004-2018 

ERA5 sum of surface and sub-

surface runoff outputs of 

HTESSEL 

RO-Land m3/s 205.128 
1981-2018, 1981-

2003 and 2004-2018 

ERA5-Land sum of surface and 

sub-surface runoff outputs of 

HTESSEL 

SMLT m3/s 145.128 

3789 

1981-2018, 1981-

2003 and 2004-2018 

ERA5 snowmelt output of 

HTESSEL 

SMLT-

Land 
m3/s 145.128 

1981-2018, 1981-

2003 and 2004-2018 

ERA5-Land snowmelt output of 

HTESSEL 

E m3/s 182.128 

5698 

1981-2018, 1981-

2003 and 2004-2018 

ERA5 evaporation output of 

HTESSEL 

E-Land m3/s 182.128 
1981-2018, 1981-

2003 and 2004-2018 

ERA5-Land evaporation output of 

HTESSEL 

P-E m3/s - 

5686 

1981-2018, 1981-

2003 and 2004-2018 

ERA5 precipitation minus 

evaporation as net water flux to 

the land-surface in HTESSEL 

P-E-Land m3/s - 
1981-2018, 1981-

2003 and 2004-2018 

ERA5-Land precipitation minus 

evaporation as net water flux to 

the land-surface in HTESSEL 

SWV7 m3/s 39.128 

5698 

1981-2018, 1981-

2003 and 2004-2018 

ERA5 water content in the top 

7cm of the soil (layer 1) in 

HTESSEL 

SWV7-

Land 
m3/s 39.128 

1981-2018, 1981-

2003 and 2004-2018 

ERA5-Land water content in the 

top 7cm of the soil (layer 1) in 

HTESSEL 

SWV100 m3/s 39-41.128 5698 
1981-2018, 1981-

2003 and 2004-2018 

ERA5 water content in the top 1 

meter of the soil (layers 1, 2 and 

3 together) in HTESSEL 
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SWV100-

Land 
m3/s 39-41.128 

1981-2018, 1981-

2003 and 2004-2018 

ERA5-Land water content in the 

top 1 meter of the soil (layers 1, 2 

and 3 together) in HTESSEL 

T2 C° 167.128 

5698 

1981-2018, 1981-

2003 and 2004-2018 

ERA5 temperature output at 2 

metres in HTESSEL 

T2-Land C° 167.128 
1981-2018, 1981-

2003 and 2004-2018 

ERA5-Land temperature output 

at 2 metres in HTESSEL 

Some of this water evaporates, either directly from the soil or through the vegetation as 

transpiration. In total, evaporation in HTESSEL (E, where negative E means the land-surface losing 

water) is the sum of evaporation of the soil and the interception and plant transpiration. Finally, 

some of the water drains from the soil at the bottom at layer 4 and leave the system as subsurface 

runoff (SSRO, the subsurface fraction of RO). In order to compare directly with river discharge, the 

trend analysis is carried out on whole catchment values for each ERA5 and ERA5-Land water budget 

variable introduced above, after the values on the GloFAS grid are summed together in each of the 

catchments. This way, essentially the catchment average value is multiplied by the area for the 

water related variables. The only exception is 2m temperature which was analysed as area average. 

6.2.4.3 Trend analysis presentation design 

This analysis documents the linear trends in the GloFAS-ERA5 river discharge and in the main ERA5 

and ERA5-Land water budget variables (Table 6-1). The trends are shown as maps for all these 

variables, where the catchment outlets are represented by circles, colour coded by the trend 

magnitudes, with the size representing the catchment area. In addition, the annual mean time 

series of all variables are also shown for some major world rivers in the Appendix C, supplemented 

by some trend related statistics. 

As a preliminary check, before the linear trends are computed on the actual river catchments, the 

global land average annual mean time series of the water cycle variables are analysed for ERA5 

(1979-2018) and ERA5-Land (1981-2018). All simulated variables are included in Table 6-1, 

extended by snow water equivalent (SWE), surface runoff (SRO) and subsurface runoff (SSRO). This 

step is carried out to identify if there is any major shift or discontinuity in the global time series. All 

land grid points are used in the averaging, with exception of the snow water equivalent (SWE), 

where a mask is applied to remove the glaciers, which are represented by a fixed value of 10 metre 

(of water equivalent) and thus would severely distort the average values. 

The linear trends in the GloFAS-ERA5 river discharge simulations are also compared to the linear 

trends in the observed river discharge. The river discharge trend errors are assumed to be the 
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difference between the trends in the simulation and the observation annual mean time series. To 

allow fair comparison, this error computation is done on a special subset of the GloFAS-ERA5 time 

series that matches the dates when the observations are available (DIS-match-OBS). As trends in 

runoff and river discharge are expected to be very similar, the linear trend error, i.e. the difference 

between the runoff and observed river discharge trends, is calculated to assess how ERA5 and 

ERA5-Land estimate the changes in river discharge. For runoff trend errors, the observation 

matching time series are used for both ERA5 (RO-match-OBS) and ERA5-Land (RO-Land-match-

OBS), similar to DIS-match-OBS. The impact by ERA5-Land is expressed as the difference between 

the absolute value of the ERA5-Land runoff linear trend error minus the ERA5 runoff linear trend 

error. 

Even though reanalysis systems are designed with the intention of being independent of the 

changes in the observing system, it is inevitable that the 38-year reanalysis period has some 

inhomogeneities in the use of the different meteorological observations, including a known major 

change in the IMS snow observation use which was analysed further. The operational snow analysis 

was changed in the ECMWF IFS in 2004, when the 24-km Interactive Multi-Sensor Snow and Ice 

Mapping System (IMS) snow cover information was introduced, in addition to the SYNOP snow 

depth measurements. 

This led to a more realistic representation of the extent of snow cover in the operational analysis 

(Drusch et al., 2004). Details on ECMWF’s snow assimilation can be found in an ECMWF Newsletter 

article (de Rosnay et al., 2015). In ERA5, the higher resolution (4 km) IMS snow products could be 

used from 2004, as the high-resolution data was reprocessed and made available to this date. 

Moreover, the snow scheme in ECMWF’s HTESSEL land-surface model is documented to melt the 

snow too slowly (Dutra et al., 2012). This, in combination with the use of the IMS snow cover data, 

could lead to a negative shift in ERA5 snowmelt from 2004, as the excess snow that is not melted 

by the model could then be removed by the assimilation in areas where in situ observations are not 

available.  

This change is expected to produce a clear discontinuity in the snow related time series, and 

contribute indirectly to creating potential shifts in other variables. This would make it possible that 

the 38-year-based linear trend would reflect mostly the discontinuity. Therefore, in order to see 

the trends not dependent on this discontinuity, the 38-year period is split in two parts, 1981-2003 

(period1, with 23 years) and 2004-2018 (period2, with 15 years). The linear trends are then 

computed for both periods in the same way as for the whole 38-year period for all variables other 

than the observation related ones (see Table 6-1).  
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6.2.4.4 Criteria for catchment inclusion 

The availability of the river discharge observations varies from catchment to catchment and can be 

as low as 4-5 years (which is the minimum criteria to include them in the GloFAS observation 

database). For the trend computation a longer minimum length is needed. The criteria of 16 

minimum available years, with at least 330 days available in each year, is set as a compromise 

considering both the observation availability and the minimum record length for reliable regression 

analysis (Dai et al., 2009).  

For all analysed variables (Table 6-1), only catchments which have at least 1 m3/s whole catchment 

value (or river discharge) as sample mean over the 38-year period (or shorter for the observations) 

and also the 2-year return period flood thresholds are above 20 m3/s are considered for trend 

analysis. This filters out the very dry catchments for which trends would not be necessarily 

meaningful or representative, and similarly filters out snowfall and snowmelt for catchments in the 

warm climate, where the whole catchment values for these variables will be very small. However, 

for some of the catchments in the tropical belt the trend could still be computed, for those which 

have some areas over higher orography and thus some snow contribution. These snow related 

trends should only be interpreted with caution, as especially in the large catchments, such as the 

Amazon, the snow has extremely small contribution to the total river discharge. 

With these criteria, about 1300 catchments could be used for observed river discharge, roughly 

3800 catchments for snowfall and snowmelt and about 5700 catchments for all other water cycle 

variables (see Table 6-1 for the exact numbers). Regarding the gaps in the available river discharge 

observation time series, these were simply left out of the analysis, but the catchments that had at 

least 16 years of data in total (even if gaps in between) were used regardless of the gaps. 

6.2.4.5 Definition of trend magnitudes 

The trend magnitudes are defined after applying a linear regression to the annual mean time series 

sample. With this the trends are assumed to be linear. This assumption will not be true for all 

catchments, however, for the sake of this study, this is considered to be sufficient. Linear trends 

are expected to show if the time series is impacted by larger changes, discontinuities, etc., which 

could make the flood threshold computation problematic in GloFAS. To help the relative 

comparison between catchments and variables, the trend T is defined by (following Stahl et al., 

2012): 

 T = (10*S) / M, (6-1) 

as the change over a fixed 10-year period, relative to the mean (M) of the n-year period. Here T 

stands for the trend magnitude at a catchment, S is the slope (annual change as a result of the linear 

regression), and M = Mean(Var1,…,n), with Var1 to Varn denoting the annual mean values from year 
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1 to year n. The T value gives a measure of the change in a decade. For example, a value of +/-0.1 

effectively means the variable increased (decreased) by 10% of the sample mean value over the 

course of the 10 years. The 10-year fixed period is chosen as a common ground to allow trend 

comparability for catchments with different observation length. 

For 2m temperature, as the only non-water-related variable, the intercomparability with other 

variables is less important, and the division by the mean (M) would cause problems (being near 0 

in some areas of the world), therefore the trend magnitude is defined as the temperature change 

in 10 years along the linear regression line (T=10*S, where M is replaced by 1). 

An alternative trend magnitude was also calculated for all variables, including 2m temperature, by 

calculating the linear regression on the standardised variable (each annual mean value divided by 

the standard deviation of the annual mean time series) and T defined by the 10*S. The standardised 

trend improves the comparability across variables with very different value ranges (e.g. river 

discharge and evaporation) and suffer less from the potential issue of division by near 0 values (as 

it can happen in some isolated cases for P-E). However, the M-based trend (Eq. 6-1) is more intuitive 

when interpreting the size of the trends and therefore was selected as the focus of our analysis. In 

the rest of the paper the ‘raw’ trend, i.e. the original definition of the linear trend with the raw 

variable (in Eq. 6.1), is analysed and displayed, with only few exceptions where the standardised 

trend is mentioned. 

In Eq. 6-1, n is either 38 (1981-2018), 23 (1981-2003) or 15 (2004-2018) for all variables other than 

the river discharge observation related variables (OBS, DIS-match-OBS, RO-match-OBS and RO-

Land-match-OBS; see in Table 6-1) where it varies between 16 and 38 for the catchments, 

depending on observation availability. 

6.3 Results 

6.3.1 Global land average annual mean time series for ERA5 and ERA5-Land 

The discontinuity in the use of the IMS product from 2004 is a known issue in ERA5. This is clearly 

present in the global land average annual mean time series of the snow, both for SWE and SMLT 

(Figure 6-5). For snowmelt, the change happens from 2004, while for SWE from mainly 2005. This 

discontinuity, however, seems to be mostly embedded in a general decreasing trend for both 

variables. ERA5-Land, which does not have land data assimilation as in ERA5, does not show any 

sign of this change in 2004. 
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Figure 6-5. Annual mean time series of global land averages for precipitation (TP), runoff (RO), surface runoff (SRO), 

subsurface runoff (SSRO), snowfall (SF), snow water equivalent (SWE), snowmelt (SMLT), evaporation (E), soil water 

content in the top 7 cm (SWV7) and 100 cm (SWV100) and finally 2m temperature (T2) from ERA5 (solid lines) and ERA5-

Land (dashed lines) for the 1979-2018 period (ERA5-Land is only available from 1981). TP and SF are the same in ERA5 

and ERA5-Land (apart from downscaling to higher resolution in ERA5-Land), so only displayed for ERA5. All variables’ unit 

is mm/day other than 2m temperature which has °C. 

Another very clear shift is seen for precipitation and all the runoff variables in the 1999-2004 period, 

when these variables suffer a very large drop (Figure 6-5). There is no such tendency in snowfall, 

which suggests that the source of this drop must come mainly from warm climate areas where snow 

is not dominant. 

Finally, as expected, the strong upward tendency is present for 2m temperature, with over 1 degree 

difference between the start and end years of the 40-year period (Figure 6-5). 
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ERA5-Land is slightly warmer and generally has more water in the water cycle. It produces more 

runoff, even though as a balance of much less surface runoff and lot more subsurface runoff. There 

is more snow in the snowpack with consequently more snowmelt. The soil also has more water but 

finally less evaporation than in ERA5 (Figure 6-5). 

6.3.2 Trends in GloFAS-ERA5 river discharge 

Over the 1981-2018 period, GloFAS-ERA5 river discharge shows a dominantly negative raw linear 

trend with almost 80% of catchments exhibiting negative trend magnitudes and about 40% showing 

a negative value stronger than -0.1 (fraction/decade), i.e. decreasing at least by 10% of the 1981-

2018 mean value across the 10-year reference period (Figure 6-6). 

 
Figure 6-6. Raw linear trends (fraction/decade) at global river catchments for GloFAS-ERA5 river discharge, based on the 

1981-2018 period. The circles represent the catchment outlets, while their size the catchment area. 

The most negative river discharge trends are found in many of the larger world rivers such as: the 

Congo and the Nile in Africa; the Ob, Lena, Yenisei and Amur in Russia; the Dnieper and Volga in 

Europe; the Colorado, Mackenzie and the Yukon in North America; the Yellow and the Yangtze in 

China; the Tiger and Euphrates in the Middle East and the Sao Francisco, Tocantins and Paraguay in 

eastern South America. 

Positive linear discharge trends can be seen in a few smaller areas, most notably around larger 

rivers like the Zambezi in South Africa, the Ganges in India and the Nelson in central Canada. 

According to the DIS column in Table 6-2 (and also Table B1 with the standardised trends in 

Appendix B), only 8 out of 33 catchments show a positive trend (~25%), while 18 catchments (~55%) 

reveal larger trends at least with 10% decrease in the 10 years (or more than 1/3 of the standard 

deviation of the annual mean time series for the standardised trend in Table B1 in Appendix B), 

making it a very substantial drop in GloFAS-ERA5 river discharge for the whole 1981-2018 period. 
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Table 6-2. Raw linear trends (fraction/decade) for selected catchments (see Figure 6-4) for 1981-2018, for GloFASERA5 

river discharge (DIS), ERA5 precipitation (P) and snowfall (SF) and both ERA5 and ERA5-Land snowmelt (SMLT), runoff 

(RO), evaporation (E), precipitation minus evaporation (P-E), soil moisture in the top 7 cm (SWV7) and 100 cm (SWV100) 

and 2m temperature (T2). Raw linear trends are also provided for observed river discharge (OBS) and the observation 

matched GloFAS-ERA5 river discharge (DISm) and ERA5 and ERA5-Land runoff (ROm). Differences in the absolute raw 

linear trend errors between ERA5-Land and ERA5 are also indicated (Imp). Empty cells correspond to cases for which trend 

computation was not possible. Coloured cells indicate negative (orange) and positive (blue) trends and decreasing (green) 

and increasing (purple) trend errors in ERA5-Land (Imp column). Where there is no raw trend, defined for absolute values 

less than 0.025, cells are not coloured. Darkening shades show increasing trend magnitudes. 

 

(continues on next page) 
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6.3.3 Trends in precipitation, snowfall and 2m temperature 

Precipitation shows the same trend signs to river discharge over much of the world (Figure 6-7a). 

The raw linear trend magnitudes are generally smaller than in river discharge, but a lot of the 

differences are in fact related to the larger M-term in Eq. 6-1, as precipitation is generally much 

larger than river discharge. The standardised linear trends highlight (see Table B1 for the selected 

global catchments in Appendix B) that in tropical and subtropical areas of the world, including 

Africa, Central and South America, South Asia and Australia, precipitation and river discharge trends 

are very similar, while over the Northern Extratropics river discharge trends tend to be more 

pronounced than precipitation.  

The largest linear trends (both raw and standardised) in precipitation are for the Colorado and Rio 

Grande basins in the United States and also the Congo and upper Nile basins in Central Africa, where 

the negative raw trend is between -0.1 and -0.2 (10-20% decrease in just 10 years, see also the P 
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column in Table 6-2; or over 0.5 standard deviation of the annual mean time series sample, see 

Table B1 with the standardised trends in Appendix B). 

 
Figure 6-7. Raw linear trends (fraction/decade) at global river catchments for ERA5 a) Precipitation (P) and b) Snowfall 

(SF), based on the 1981-2018 period. The circles represent the catchment outlets, while their size the catchment area. 

Although some of the tropical and subtropical basins, mainly the rivers downstream of the Andes 

in South America and areas in South Asia, show clearly more negative trends, the snowfall 

contribution to precipitation is usually very little in those areas (Figure 6-7b). On the other hand, in 

the more snow dominant higher latitude areas of the Northern Hemisphere, some areas such as 

Alaska, central parts of Europe or northern parts of Russia, there is a moderate tendency to more 

negative trends. 

The main reason for the decreasing snowfall is very likely to be the generally increasing 

temperature. Figure A1 in the Appendix A highlights that the 2m temperature trend is positive 

almost everywhere. The largest positive trends, above 0.4 degree change in 10 years, are in the Nile 

basin in Africa, the southwest part of the USA, the eastern parts of Europe, the Middle-East and 
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also many of the smaller rivers in the northern-most latitudes. Trends in ERA5 and ERA5-Land are 

generally similar, if anything, ERA5-Land tends to be slightly warmer (see the annual mean time 

series for the selected global river basins in Appendix C), but the trends are almost the same 

everywhere. These differences can originate from the snow cover and evaporation processes which 

can differ in coupled (ERA5) vs offline (ERA5-Land) systems. 

These large global temperature increases in ERA5 are consistent with the scientific literature (e.g. 

Hansen et al., 2006; Parmesan and Yohe, 2003, IPCC, 2007 and 2014). 

It is difficult to determine how realistic the identified ERA5 precipitation and snowfall trends are, 

due to the sparse precipitation observing network and the highly variable quality of the satellite 

derived precipitation data (Sun et al., 2018).  

The AR4 (IPCC, 2007) and AR5 (IPCC, 2014) IPCC reports disagree on precipitation trends in many 

parts of the world, the worst being West Africa where significant positive (AR4) trends turn to 

significant negative (AR5). Part of the reason is the different periods (1979-2005 in AR4 - Figure 3.13 

vs. 1951-2010 in AR5 - Figure 1.1), however, the shortness of the first period (through capturing 

more of the natural climate variability as trends) and the differences between the used data sets 

must have also contributed. The estimation uncertainties in precipitation changes were 

acknowledged in the AR5 report when it concluded that ‘Confidence in precipitation change 

averaged over global land areas since 1901 is low prior to 1951 and medium afterwards’. In fact, 

neither of the two IPCC reports are similar to the ERA5 precipitation linear trends presented here. 

In particular, there is no clear sign of either of the two most prominent trend areas in ERA5. While 

the southwestern USA is represented in AR4, although with smaller negative values in AR4 than in 

ERA5 (3-10% vs. 10-20%), the large negative ERA5 trends in central Africa are not there in any of 

these two sources. 

Nguyen et al. (2018) analysed precipitation trends with satellite derived data in the 1983-2015 

period, which is directly comparable with our period. They concluded that although only few 

percent of the land mass show pixel-by-pixel significant trends, this increases by regional- or 

catchment-based analysis, but even on the large catchment-scale (over 200 large rivers), only a 

smaller fraction has significantly large trends. The catchment-scale precipitation trends in Nguyen 

et al. (2018) show a lot of similarities, at least in sign, to the ERA5 precipitation linear trends in 

Figure 6-7a. For example, the trend patterns are similar in most parts of Australia, Central and South 

Africa, South America, but also in Europe and large parts of Asia. Major differences are present 

mainly in Central America, around Canada and Central Asia where the trends show mainly opposite 

signs between ERA5 (Figure 6-7a) and the satellite-derived precipitation in Nguyen et al. (2018). 
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The dominantly decreasing trend in ERA5 is not supported by either of GPCC or GPCP, two of the 

available global precipitation estimate data sets, as described in Hersbach et al. (2020); see Figure 

23. ERA5 seems to produce more precipitation than either GPCC or GPCP, and the difference gets 

smaller from 2000. It seems, after the large decline around 2000-2002 (see also Figure 6-5), the 

ERA5 precipitation is more realistic in the 21st century, which could potentially come from some 

changes in the used satellite data in ERA5. Nevertheless, further analysis is going to be needed in 

the future to better understand the behaviour of the ERA5 precipitation changes. 

6.3.4 Trends in runoff and snowmelt 

The linear trends for runoff in ERA5 (Figure 6-8a) are almost identical to the GloFAS-ERA5 river 

discharge trends (Figure 6-6). This is expected, as the annual mean values of these two variables 

can usually differ only little, the river routing’s time delay is averaged out by computing the mean 

over the whole year. However, the trends for runoff in ERA5-Land (Figure 6-8b) are different from 

ERA5 in the Northern Extratropics, namely the ERA5 trends are more negative in Alaska, western 

Canada and most of northern Eurasia. As the atmospheric forcing are the same in ERA5 and ERA5-

Land, and the land-surface model is also mainly the same, differences in runoff and other surface 

variables will come from the missing coupling and land data assimilation and the much higher 

resolution and lapse-rate correction in ERA5-Land. The land data assimilation impact on the 

hydrological cycle can be substantial, considering both snow and soil moisture, as shown in Zsoter 

et al. (2019), and the resolution change, through the different temperature conditions with the 

lapse rate correction, is also expected to have a potentially large impact. 

As the ERA5 and ERA5-Land runoff trends are very similar in the tropics and subtropics (see Figure 

6-8 and also the bottom half of Table 6-2 and Table B1 in Appendix B), the likely culprit for the 

differences in the higher latitudes is the handling of the snow with the possible differences in 

snowmelt. 

The runoff raw linear trend differences seem to come from snowmelt which are very different in 

ERA5 (Figure 6-9a) and ERA5-Land (Figure 6-9b). The snowmelt trends in ERA5 are much more 

negatively oriented in the Northern Extratropics such as the Lena, Amur (in Russia) or the Yukon (in 

Alaska) rivers. The exceptions are the central part of North America and some catchments in 

Northern Europe and near the Himalaya, where ERA5 has more positive trends (see the Churchill 

and Thames rivers in Table 6-2 and Table B1 in Appendix B; SMLT columns), where snowmelt 

appears to have increased in the last ~40 years in ERA5. These ERA5 snowmelt linear trends can be 

partially explained by the changes in snowfall, i.e. the amount of snow available to melt, as the sign 

of the snowfall and snowmelt trends is the same over large parts of the world. However, the 
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magnitude is clearly different in the Northern Hemisphere, with the snowmelt trends being lot 

more pronounced. 

 
Figure 6-8. Raw linear trends (fraction/decade) at global river catchments for runoff in a) ERA5 (RO) and b) ERA5-Land 

(RO-Land), based on the 1981-2018 period. The circles represent the catchment outlets, while their size the catchment 

area. 

The scientific literature has documented trends in the snowpack related variables (snowfall, snow 

depth, snow cover) extensively. Studies are either based on available in situ observations, or 

satellite derived measurements. However, only snow cover extent (e.g. the IMS snow cover product 

used at ECMWF) seems to be reliable enough to be used quantitatively from satellites and snow 

water equivalent (SWE) and snow depth (SD) have higher uncertainty and thus offer limited help 

(Hancock et al., 2013). 

The 5th IPCC report states that there is very high confidence that the extent of Northern Hemisphere 

snow cover has decreased since the mid-20th century (IPCC, 2013, see Figure SPM.3). The declining 

snow cover is strongly related to the increasing global temperatures.  
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For example, Kunkel et al. (2016) provided a summary of several snow climatology studies and also 

found a strong decrease in maximum seasonal snow depth in the studied North America and 

Europe. Connolly et al. (2019) evaluated the snow cover extent trends in the Northern Hemisphere 

based on the Rudgers University snow cover dataset and found that the trend in the satellite-

derived observations is poorly explained by the CMIP5 climate models, the models exhibiting a 

steadier decline during the 1967-2018 period. 

 

Figure 6-9. Raw linear trends (fraction/decade) at global river catchments for snowmelt in a) ERA5 (SMLT) and b) ERA5-

Land (SMLT-Land), based on the 1981-2018 period. The circles represent the catchment outlets, while their size the 

catchment area. 

In our study no snow cover extent is analysed, however, both the snow water equivalent and 

snowmelt similarly show a steady decline over the global land areas in Figure 6-5, at least until 

2004. Similarly, Knowles (2015) evaluated the trends in the GHCND climate observations for snow 

related variables in the 1950-2010 period for the United States. It was found that both snowfall and 

snow depth showed more negative than positive trends, which is in agreement with our analysis, 
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even though the geographical distribution of their trends is different to the linear trends 

documented for snowfall and also for snowmelt in this study (Figure 6-7b and Figure 6-9). 

It can be concluded that the ERA5-Land runoff linear trends (the signs at least) are generally similar 

to the precipitation trends everywhere in the world. In ERA5, however, the runoff (and thus river 

discharge) trends seem to be dominated by precipitation in the tropics and subtropics, while the 

trends in higher latitudes resemble the snowmelt trends, as a consequence of the additional land 

data assimilation (see the SMLT and RO columns in Table 6-2 and Table B1 in Appendix B). Note 

that the attribution of the ERA5/ERA5-Land trend differences to the observed and simulated trends 

in existing studies, and the interpretation of these global and regional differences, were beyond the 

scope of this study, but would be a very important further piece of analysis. 

6.3.5 Trends in evaporation, precipitation minus evaporation and soil moisture 

The evaporation (E) and the two soil moisture variables (top 0-7 cm, SWV7 and top 0-100 cm, 

SWV100 layers) all show smaller raw linear trends for both ERA5 and ERA5-Land (Figure A2 and A4-

5 in Appendix A). The smaller trend magnitudes mainly come from the much larger volume in these 

variables, thus a larger M term in Eq. 6-1 and thus a smaller trend magnitude (T) in relative terms. 

This is supported by Table B1 in Appendix B which shows that the standardised trends, defined by 

using the standardised variables, are generally in the same magnitude range as the other variables. 

More noticeable trends (both raw and standardised) are present e.g. in the Nile basin and Middle 

East regions or the southwestern United States area for evaporation and the soil water content 

variables, both showing decrease. Please be aware that for evaporation positive trend (such as in 

these areas) actually means increase of negative values, which equals to decreasing evaporation 

(as the analysed evaporation variable is generally negative everywhere). 

The scientific literature agrees that during the last few decades the global land evaporation has 

generally increased (e.g. Jung et al., 2010; Zhang et al., 2016; Anabalon and Sharma et al., 2017). 

However, there seems to be evidence that this stopped in the 1998-2008 period (Jung et al., 2010), 

and then evaporation is relatively stable since (Javadian et al., 2020). 

In contrast, the ERA5 and ERA5-Land global land average evaporation trend (in Figure 6-5) is more 

positive than negative, somewhat contrary to the literature (showing slightly decreasing absolute 

values). However, the first period shows a small increase until 1998, followed by a marked decrease 

and then mainly no change in the last 10 years which is broadly similar to what is reported in the 

literature. 

ERA5/ERA5-Land agrees with the large negative evaporation trends shown by Zhang et al. (2016) in 

the Middle East, western United States and the generally positive trends in the northern latitudes 



127 

Chapter 6  Trends in the GloFAS-ERA5 river discharge reanalysis 

and also in Southest Asia. However other areas show marked differences, especially parts of Africa 

and much of Australia. 

Soil moisture has been shown to be generally decreasing in the last few decades by several studies 

(e.g. Feng and Zhang et al., 2016; Albergel et al., 2013; Pan et al., 2019; Dorigo et al., 2012), agreeing 

with the dominantly negative trends documented in this study. About 30% of land is shown to have 

significant trend in these studies, a majority of being negative. However, there are large differences 

in the actual pattern depending on the data set used. For example, as shown in Albergel (2013), the 

ERAI-Land, MERRA-Land and SM-MW (a microwave-based multisatellite surface soil moisture 

dataset) all show marked differences in the trend patterns. Similarly, the ERA5 and ERA5-Land soil 

moisture trends show notable similarities to the SM-MW trends only in Central Asia, the Middle 

East, central South America, otherwise the match is poor. 

The precipitation minus evaporation (P-E), i.e. the water source to the land-surface, and the two 

analysed soil moisture variables show roughly similar trend signs (see Figure A3-A5 in appendix A). 

Moreover, ERA5 and ERA5-Land are broadly similar for all these four variables and only exhibit a 

few regional variations, most notably in Africa where they change noticeably in ERA5-Land. This 

happens over areas like the Niger, White-Volta and Cunene rivers, where evaporation even changes 

trend sign from negative to positive (Niger, White-Volta), which actually means decreasing amount 

of water leaving the land-surface through evaporation in ERA5-Land, as evaporation is dominantly 

negative over the world, or the Cunene river where evaporation changes from positive to negative, 

or the Nile river where the positive trend gets more pronounced, all these changes coinciding with 

also large swings in soil water content (see Table 2 and Table B1 in Appendix B; the E, P-E, SVW7 

and SWV100 columns). 

6.3.6 Trends in observed river discharge 

The obvious question about the large trends in GloFAS-ERA5 river discharge is whether they are 

also present in the observations. Figure 6-10 highlights the match between the simulated and 

observed raw linear river discharge trends.  

The observed trends (Figure 6-10a) show a mixed picture with few more positive than negative 

changes. Almost all catchments show positive trends in Africa (Congo, Nile, Niger, Orange rivers), 

but also many in Russia, Canada, northern Australia and some in Amazonia (see for trend details in 

Table 6-2; OBS). 
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Figure 6-10. Raw linear trends (fraction/decade) at global river catchments for a) river discharge observations (OBS), b) 

GloFAS-ERA5 river discharge matching the available observations (DIS-match-OBS) and c) the difference (DIS-match-OBS 

minus OBS) catchments that have at least 16 years of available observations based on the 1981-2018 period. The circles 

represent the catchment outlets, while their size the catchment area. 

Other scientific studies, for example Su et al. (2018) or Dai et al. (2009) found similar results after 

analysing hundreds of the world’s largest ocean-reaching rivers with mixed positive and negative 



129 

Chapter 6  Trends in the GloFAS-ERA5 river discharge reanalysis 

trends. Although the main emphasis of their trends is shifted to generally more rivers showing 

negative than positive trends, this could likely be related to the different period (1948-2004) or the 

different geographical distribution of the analysed catchments. 

In contrast, the GloFAS-ERA5 linear trends are dominantly negative, even though these trends are 

calculated over the exact same periods as for the observations. The observation-matched-period-

based GloFAS-ERA5 raw linear trend (Figure 6-10b) can be quite different to the 38-year-based 

version in Figure 6-6, but the overall pattern is the same in both. The GloFAS-ERA5 trends are 

dominantly negative, while the observation trends are more positive than negative, therefore the 

difference between them is overwhelmingly negative (Figure 6-10c). This can be demonstrated by 

the rather different colours in Table 6-2 and Table B1 in Appendix B (columns of OBS and DIS-m as 

abbreviated from DIS-match-OBS), the simulation trend being dominantly orange (negative), while 

the observation trend is blue (positive). Clusters of positive differences (i.e. observations have a 

stronger tendency to increase) can mainly be seen in South-Asia, southern Australia and parts of 

central North America (Figure 6-10c). 

The trends in the GloFAS-ERA5 river discharge are thus only a poor match for the trends of the 

available observations. Apart from the likely reason of the unrealistic trends in the ERA5 forcing, 

some of this can might be explained by the inadequate handling of the human influence in GloFAS-

ERA5, which in some areas can have very large impact on river discharge, even though this is not 

necessarily will impact the sign of the trends. For example, see the Nile river in Appendix C, which 

has observed river discharge that is only a fraction of the GloFAS-ERA5 value. A large part of this 

comes from the fact that the river is highly regulated with also irrigation being important in the 

area. 

6.3.7 Trend error comparison ERA5 vs ERA5-Land 

It was shown earlier that the ERA5 and ERA5-Land snowmelt trends are markedly different in the 

Northern Hemisphere higher latitudes, which then directly influences the runoff trends. The error 

of ERA5 and ERA5-Land runoff raw linear trends, computed against the observed river discharge 

raw linear trends, are compared in Figure 6-11 (the raw trend values are shown in Table 6-2, while 

the standardised trends in Table B1 for selected catchments in Appendix B, with green and purple 

colours). It shows the difference of the absolute trend errors, with blue (green in Table 6-2 and 

Table B1 in Appendix B) catchments showing where the ERA5 runoff trends are closer to the 

observed trends, while red (purple in Table 6-2 and Table B1 in appendix B) showing where the 

ERA5-Land trends are closer. It is clear that, due to the large difference in snowmelt, the ERA5-Land 

runoff linear trend is clearly closer to the observed trends in the higher latitudes (see the 
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dominantly green cells in Table 6-2 and Table B1 in appendix B, ROm/Imp column, over North Asia, 

North America and Europe). However, in the tropical and subtropical areas, and in the central part 

of the United States, ERA5 is closer to the observations or the two have similar trends (see in Table 

6-2 and Table B1 in Appendix B the slightly more purple colours over South America, Africa, South 

Asia and Australia). 

 
Figure 6-11. Difference between ERA5-Land and ERA5 absolute raw linear trend errors (simulated trend minus observed 

trend; fraction/decade) at catchments that have at least 16 years of available river discharge observations based on the 

1981-2018 period. The circles represent the catchment outlets, while their size the catchment area. 

6.3.8 ERA5 and ERA5-Land trends in 1981-2003 and 2004-2018 

In this section the trend is compared in the two subperiods, 1981-2003 (period1, 23 years) and 

2004-2018 (period2, 15 years), after removing the impact of the IMS satellite snow cover caused 

discontinuity in the time series. 

The linear trends are generally different in the two periods, and usually larger for period2, although 

this shorter period would be expected to show larger random variability anyway. Figure 6-12 shows 

the raw linear trends for a few variables, while Table 6-3 highlights them for several variables for 

the selected global rivers, similarly to Table 6-2 and Table B1 in Appendix B (for location see Figure 

6-4). 

For precipitation, the rivers in southwestern United States, eastern South America, central Africa, 

the Middle East and eastern Australia stand out with their large negative trends in period1 (Figure 

6-12a). In fact, these trends are very similar to the original 38-year trends in Figure 6-8a, for the 

majority of the world, especially for the stand-out negative areas. The second part of the 38-year 

period, on the other hand, does seem to show less stand-out geographical areas, the picture more 



131 

Chapter 6  Trends in the GloFAS-ERA5 river discharge reanalysis 

mixed, even though the trend values are quite large, likely related to the shortness of the period. 

For snowmelt (Figure 6-12c-d) the same is valid. 

 

 
Figure 6-12. Raw linear trends (fraction/decade) at global river catchments for 1981-2003 (left column) and 2004-2018 

(right column) for ERA5 precipitation (a-b), snowfall (c-d) and for ERA5 (e-f) and ERA5-Land (g-h) snowmelt. The circles 

represent the catchment outlets, while their size the catchment area. 

Regarding snowmelt, the behaviour of ERA5 (Figure 6-12e-f) and ERA5-Land (Figure 6-12g-h) clearly 

differ, even after splitting the 38-year period in two. While period 2 behaves similarly for both 

(compare Figure 6-12f and Figure 6-12h), the magnitude of the linear trends is in the same range, 

period1 shows larger differences between ERA5 and ERA5-Land (compare Figure 6-12e and Figure 

6-12g), Eurasia is more negative, while North America is somewhat more positive. This is also visible 

amongst the selected catchments in Table 6-3 (SMLT and SMLT-Land columns), where the 1981-

2003 column for ERA5 is more orange than for ERA5-Land over Europe and North Asia, and 

generally more blue for North America. The pronounced differences between the ERA5 and ERA5-
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Land snowmelt for period1 suggests that the snow assimilation likely plays a role in producing the 

negative trends even before the introduction of the IMS snow product in 2004. 

Table 6-3. Raw linear trends (fraction/decade) for selected catchments (see Figure 6-4) for two periods, 1981-2003 and 

2004 2018, for GloFAS-ERA5 river discharge (DIS), runoff for ERA5 (RO) and ERA5-Land (RO-Land), precipitation (P), 

snowfall (SF) and snowmelt for ERA5 (SMLT) and ERA5-Land (SMLT-Land). Empty cells correspond to cases for which trend 

computation was not possible. Coloured cells indicate negative (orange) and positive (blue) trends. Where there is no raw 

linear trend, defined for absolute values less than 0.025, cells are not coloured. Darkening shades show increasing trend 

magnitudes. For location of the catchments see Figure 6-4. 

 

 

6.4 Conclusions 

This study has analysed the GloFAS-ERA5 river discharge reanalysis data set, the related ERA5 and 

ERA5-Land surface variables, and the available river discharge observations, for noticeable changes 

in the time series characterised by linear trends, in the 38-year period of 1981-2018, also including 

the 1981-2003 and 2004-2018 subperiods. It was found that the river discharge simulation shows 

a dominantly negative change across the world during 1981-2018, with some major world rivers 

having quite substantial decrease (Yenisei, Volga, Congo, Amur, Colorado, Yukon, Nile, Lena, Yellow, 

see Table 6-2 and Table B1 in Appendix B). 
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* For a geographical summary of the trends, Figure 6-A is added in Appendix A8 showing trends for 

the all the analysed surface variables in both ERA5 and ERA5-Land for all the 33 selected 

catchments. Please be aware that this figure does not appear in the published version of this 

chapter. 

The river discharge observations do not support such dominantly negative linear trends, and 

although varied, observations show overall more positive than negative changes in the 38-year 

period. The scientific literature generally documents a similar behaviour to the observational trend 

analysis presented here, with mixed trends globally, but with slightly more major rivers showing 

negative than positive changes in observed river discharge during the period of 1948-2004 (Su et 

al., 2018; Dai et al., 2009). 

The linear trends in GloFAS-ERA5 seem to be driven by changes in precipitation over the tropical 

and subtropical areas of the world, with the snowmelt changes showing a very strong influence in 

determining the river discharge trends in the northern latitudes of the Northern Hemisphere. The 

reason for this atypical behaviour in the northern latitudes is likely to be related to changes in the 

snowmelt producing processes, including the snow assimilation.  

The snowmelt exhibits a pronounced negative linear trend in large parts of the world in ERA5, while 

this is not present in ERA5-Land. This suggests that the negative trends are, at least partially, related 

to the snow assimilation tendency to remove water from the water cycle as a consequence of the 

suboptimal snow scheme in HTESSEL (Zsoter et al., 2019). Some of the issues stem from the use of 

the IMS snow product from 2004 in the snow assimilation, which creates a discontinuity in the ERA5 

time series (see Figure 6-5).  

It has to be acknowledged that such discontinuity can make any trend analysis unreliable. However, 

as Figure 6-5 suggests, the snow evolution in ERA5 and ERA5-Land seems to be more complex than 

a single discontinuity in 2004, so linear trends can still deliver valuable information even on the 

whole 1981-2018 period. 

After splitting the period into 1981-2003 and 2004-2018 and removing the impact of this 

discontinuity on the linear trends, it could still be shown, that even in the first subperiod of 1981-

2003 there is a large area globally with significant negative snowmelt trends in ERA5, mainly in Asia 

and Europe, which is not present in ERA5-Land. This highlights that there should be other 

contributing factors in generating such negative trends in the ERA5 snowmelt, other than just the 

introduction of the IMS satellite product. Potentially the generally lower temperatures in 

mountains due to the higher orography in ERA5-Land could also contribute to this by decreasing 

the snowmelt amount compared with ERA5. 
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Two particularly interesting areas with the largest linear trends, that were highlighted by this study, 

are the central region of Africa (e.g. Congo and Nile river basins), and the southwestern part of the 

United States (e.g. Colorado river basin). Both these areas show very dominant and large negative 

trends both in precipitation and river discharge, but also in runoff by not just ERA5 but also equally 

by ERA5-Land. However, based on the limited analysis of the scientific literature, there was no 

indication of such strong precipitation trends in the explored studies, and similarly no such large 

trends were shown either in the river discharge observations available in this study. 

It will require more work in the future to better identify the underlying reasons for these very 

dominant negative trends. Moreover, it would also be beneficial to repeat the analysis including an 

improved precipitation observation data set, preferably one that is high quality and merges several 

of the available gauge- and/or satellite-based data sets, such as the MSWEP (Beck et al., 2019), or 

the latest bias corrected ERA5 data set, WFDE5 (Cucchi et al., 2020). This would allow us to directly 

evaluate the quality of the ERA5 trends against the best available observation estimates. 

 

Figure 6-13. Example of the daily GloFAS-ERA5 river discharge (m3/s) time series for an upstream catchment in the Congo 

river basin and the 2- (yellow lines), 5- (red lines) and 20-year (magenta lines) flood thresholds based on two different 

fitting methods. The dashed lines represent the flood thresholds fitted using all annual maxima, while the solid lines were 

produced using only annual maxima over the sample mean discharge shown by the black line. 

A potential driver of the exposed ERA5 trends is the method of production: ERA5 is produced in 

several streams that were later merged into one consolidated data set. These streams have a year 

overlap to allow for long enough spin-up. According to Hersbach et al. (2020), in the deep soil, 

where spin-up can take several years, discontinuities could be observed. The deep soil can certainly 

impact on the runoff through the sub-surface runoff, which can impact on river discharge, however, 
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it is not expected to have any noticeable impact on variables such as precipitation or evaporation 

which vary on a significantly shorter timescale. 

The GloFAS-ERA5 linear trends, presented here, have a direct impact on the quality of the GloFAS 

flood warnings through the use of the flood thresholds. The presence of significant trends, or a very 

substantial regime change, such as in the example provided in Figure 6-13, makes it difficult to 

produce flood thresholds that correctly represent the extreme event behaviour in the forecasts. In 

the provided example, the river discharge level collapses to less than a third after 2000. Thus, the 

thresholds will be much too high and represent only the first half of the period. In this case, the real 

time GloFAS forecast will likely be similar to the latter part of the reanalysis period and will hardly 

ever exceed these flood thresholds, making the flood warnings very unreliable. 

In other catchments, where the river discharge is significantly increasing, the situation is the 

opposite. In such catchments the real time forecasts will be mostly similar to the latter part of the 

reanalysis and the flood thresholds will be biased towards the lower earlier years. In this case, the 

thresholds will be little too low and the real time GloFAS forecasts are expected to show too 

frequent flood events, making the forecasts unreliable again. 

The example in Figure 6-13 is a very extreme one from the upstream part of the Congo basin. 

However, it is not an isolated case causing problems, as areas where the linear trend shows at least 

~20% change in the ~40-year period, extreme value fitting to compute the flood thresholds is likely 

to provide us with difficulties. There is no scientific basis for this 20% minimum value (equivalent 

to ~0.05 raw linear trend magnitude), further tests would be needed to identify the expected 

forecast reliability loss due to such trends in the reanalysis time series. Based on the current 

reanalysis period, as used in GloFAS, at least 50% of land areas show raw linear trends higher (lower) 

than 0.05 (-0.05) (see Figure 6-6 and also Table 6-2) causing a significant issue in the operational 

running of GloFAS. 

The extension of ERA5 back to 1950 (Hersbach et al., 2020) will provide an increase in the period 

used in the flood thresholds computation. However, it is strongly recommended that hydrological 

trends, with any potential discontinuities or regime changes due to merging different streams in 

the ERA5 production, should be analysed in that extended data set before making any change in 

GloFAS. 

In addition, it will be important to explore ways to better derive the flood thresholds for catchments 

that are impacted by large trends in the GloFAS-ERA5 river discharge. An option could be to limit 

the period for the flood threshold computation to most recent decades, on a case by case basis (for 

single catchments, or maybe whole regions) selecting the period length that provides historical time 
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series with low enough trend magnitudes. Based on this study, and the current ERA5 reanalysis, 

this could be as short as the last 15-17 years from ~2004, which although not ideal for estimating 

longer return periods, may provide improvements to make the GloFAS flood warnings more reliable 

in the future. 

Zsoter et al. (2020a) recommends that river discharge ensemble reforecasts should be used to 

compute flood thresholds instead of reanalysis, which would help to create more reliable flood 

warnings especially at longer lead times. The use of the reforecasts would be beneficial, as although 

they are initialised from GloFAS-ERA5 and are thus bound to inherit any trend problems that are 

present in this reanalysis, they are only generated on the most recent 20-year period (currently 

1999-2018), which would undoubtedly lessen the trend impact documented in this study. 

Finally, the documented river discharge linear trends in the GloFAS-ERA5 dataset are large enough 

to warrant further investigation of the underlying causes to the general behaviour of the water 

cycle variables in ERA5. This is crucial in order to provide improvements in hydrological variables 

such as river discharge, especially in the context of any future version of ECWMF reanalysis data 

sets, such as ERA6. 

Contribution of this chapter to the thesis. This chapter addressed the objective: ”Evaluate the 

relevant trends in hydrological reanalyses for river discharge and other related land-surface 

variables and analyse how the interactions amongst these variables contribute to the trends.” This 

work demonstrated that trends are widespread in a state-of-the art reanalysis time series for river 

discharge and the related land-surface variables. These trends have the potential to negatively 

impact the usability of the flood thresholds generated from these time series. The next chapter will 

take this further and explore the impact that the threshold generation method can have on flood 

forecast reliability and skill, by focussing on the used data source and sampling strategy. 
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Chapter 7 Using ensemble reforecasts to generate flood thresholds 

for improved global flood forecasting 

Chapter 6 showed that non-stationarity, measured by linear trends, is widespread in the analysed 

GloFAS-ERA5 hydrological reanalysis. Another aspect of the global flood forecasting systems that 

has the potential to hinder the usability of the reanalysis-derived flood thresholds is non-stationary 

forecast biases. This chapter will analyse this, by comparing the use of the traditional reanalysis-

based thresholds to a newly designed, innovative, ensemble-reforecast-based methodology, that 

has the potential to increase the reliability and skill of the flood forecasts. This chapter has been 

published in Journal of Flood Risk Management (JoFRM) with the following reference 

(https://centaur.reading.ac.uk/91631/): 

Zsoter, E., Prudhomme, C., Stephens, E., Pappenberger, F. and Cloke, H, 2020a: Using ensemble 

reforecasts to generate flood thresholds for improved global flood forecasting, J. Flood Risk 

Management, doi:10.1111/jfr3.12658 

This paper was chosen as one of the three highly commended articles of 2021 as part of the Journal 

of Flood Risk Management’s outstanding paper award. 

The contributions of the authors of this paper are as follows: E.Z. designed the experiment, carried 

out the flood threshold analysis, and led the writing of the manuscript. H.C. and E.S. assisted with 

posing the research question and designing the analysis. C.P. and F.P. helped designing the research 

methodology. All authors assisted with writing the manuscript. Overall, 90% of the writing was 

undertaken by E.Zs. The published article can be found in the Appendix A4. 

Abstract. Global flood forecasting systems rely on predefining flood thresholds to highlight 

potential upcoming flood events. Existing methods for flood threshold definition are often based 

on reanalysis datasets using a single threshold across all forecast lead times, such as in the Global 

Flood Awareness System. This leads to inconsistencies between how the extreme flood events are 

represented in the flood thresholds and the ensemble forecasts. This paper explores the potential 

benefits of using river flow ensemble reforecasts to generate flood thresholds that can deliver 

improved reliability and skill, increasing the confidence in the forecasts for humanitarian and civil 

protection partners. The choice of dataset and methods used to sample annual maxima in the 

threshold computation, both for reanalysis and reforecast, is analysed in terms of threshold 

magnitude, forecast reliability, and skill for different flood severity levels and lead times. The 

variability of threshold magnitudes, when estimated from the different annual maxima samples, 

can be extremely large, as can the subsequent impact on forecast skill. Reanalysis-based thresholds 

should only be used for the first few days, after which ensemble-reforecast-based thresholds, that 
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vary with forecast lead time and can account for the forecast bias trends, provide more reliable and 

skilful flood forecasts. 

7.1 Introduction 

Flood forecasting systems use meteorological data and hydrological modelling to deliver forecasts 

of river discharge and other hydrological variables such as inundation or soil moisture. They provide 

early flood warnings on time scales up to several weeks ahead, essential for managing flood risk at 

local, regional, and recently also on the global scale (Emerton et al., 2016). 

The state-of-the-art systems in use today provide an ensemble of equally likely solutions that can 

be used to define occurrence probabilities for certain flood events (Cloke and Pappenberger, 2009; 

Wu et al., 2020). These flood events are defined by comparing the forecast time series with flood 

thresholds, usually based on a return period magnitude or a quantile. 

 

Figure 7-1. GloFAS forecast on 9 March 2019 for Mozambique showing flood predictions related to tropical cyclone Idai. 

As an example, the inset diagram shows the hydrograph for a river point near the coast in Mozambique for the 30-day 

period of 9 March to 8 April. GloFAS forecasts are openly accessible on www.globalfloods.eu. 

In the Global Flood Awareness System of the Copernicus Emergency Management Service (GloFAS; 

Alfieri et al., 2013, Hirpa et al., 2018b), the severity of the predicted flood is defined according to a 

set of three thresholds, as shown in Figure 7-1 for the example of tropical cyclone Idai in 

Mozambique in March 2019. These thresholds are computed from a 40-year long river discharge 
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reanalysis (Harrigan et al., 2020b). The hydrograph in Figure 7-1 shows the predicted river discharge 

for the next 30 days, highlighting a severe flood event around 18–21 March with 10–15% chance of 

exceeding the 5% annual exceedance probability (AEP) threshold. 

The flood thresholds, defined according to flood magnitude of selected return periods (or flood 

quantiles), and used in many of the existing flood prediction systems (GloFAS Alfieri et al., 2013; 

EFAS Thielen et al., 2009; WW-HYPE Arheimer et al., 2020), are determined by flood frequency 

analysis, usually by fitting an extreme value distribution on a set of annual maxima, sampled from 

a time series as long as possible. These quantities describe the likelihood of different flood 

magnitudes occurring locally based on a “climatological” data set over a long period of time 

(preferably 30 years or more; World Meteorological Organisation [WMO], 2017). Traditionally, 

flood thresholds are produced from observations or deterministic model reanalysis (Alfieri et al., 

2015). River discharge observations can provide a solution only at certain locations, whereas 

hydrological model simulations, forced with meteorological observations, can cover a whole 

geographical domain, delivering flood thresholds at every model river point or catchment. 

Because the flood thresholds determine the severity of the forecasted flood signal, these flood 

thresholds should ideally represent extreme events the same way as they occur in the forecasts. If 

this is not the case and the different biases make an event of the same magnitude occur with a 

different frequency in the climatological data set that was used to compute the thresholds and in 

the forecasts (e.g., the 5% AEP flood magnitude happens more often in the forecasts than the 

expected 5% probability in a given year), then the flood forecast probabilities could become 

unreliable (e.g., leading to flood signals that often overestimate the flood severity). In the case of 

the example in Figure 7-1, this could mean that the predicted severe flood event should in fact 

appear significantly less extreme as the high severity would only be a consequence of the 

unrealistically low thresholds. 

The extreme event representation of flood thresholds can be heavily influenced by the data set and 

method used to derive them. The value of the flood quantiles can be impacted by the choice of the 

extreme value statistical distribution (Papalexiou and Koutsoyiannis, 2013), the data set that is used 

for the annual maxima extraction (observation, reanalysis or forecasts; see, for example, Hirpa et 

al., 2016) and its length (Kjeldsen et al., 2014). These can all lead to potential differences in the 

flood threshold magnitudes, subsequently resulting in differences in the forecast probabilities to 

exceed the thresholds, and ultimately causing an impact on the quality of the flood warnings. 

By definition, conventional observation- or reanalysis-based data sets provide a single time series 

to compute flood thresholds, meaning that only one set of thresholds, with different severities, is 
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going to be applied to all lead times in the forecast range. This might cause further inconsistencies 

if the forecast biases have trends across lead times. For example, forecasts might show increasing 

river discharge overprediction with lead time, which would result in a growing number of forecasts 

exceeding the 5% AEP flood threshold (which stays unchanged as it is computed from the reanalysis 

time series), with an increasingly higher frequency than the expected 5% of the years occurrence 

on average (Alfieri et al., 2019). As trends and biases in a forecast are model specific, using different 

meteorological forcing models within the same forecasting system (such as in the European Flood 

Awareness System, EFAS, Thielen et al., 2009) might cause even more complex inconsistencies 

between the observation- or reanalysis-based flood thresholds and the forecasts. 

Bias correction methods can help to achieve consistency between forecasts and thresholds (e.g., 

Verkade et al., 2013; Yuan and Wood, 2012). They have the potential to make the extreme event 

representation of the forecasts and the climatology, that is used to define the thresholds, similar. 

However, bias correction, even in its simplest form with only hydrological output postprocessing 

(without correction of the meteorological forcing data), would introduce further complexity into 

the river discharge production chain with its associated uncertainties. 

Alternative approaches have been investigated (e.g., Alfieri et al., 2019). Generally, flood thresholds 

are not produced from forecasts. Part of the reason could be the limited sample of available 

historical forecasts and the convenience for the users to work with only a single threshold set that 

does not show evolution with lead time. The consequence is that, as said earlier, the same threshold 

is applied to all forecast lead times. However, Alfieri et al. (2019) showed that range-dependent, 

reforecast-based thresholds were substantially different from unique reanalysis-based thresholds 

in two thirds of the global rivers. Moreover, despite the recent advancement of ensemble-based 

forecast systems, ensemble forecasts are generally not considered in the flood threshold 

generation. However, this can be a problem as ensembles can have different biases to single 

deterministic forecasts (Leutbecher et al., 2017), which can further contribute to the extreme event 

representation inconsistencies between reanalysis-based thresholds and ensemble forecasts. 

The use of ensemble reforecasts in generating the climatological sample can provide a range-

dependent threshold set (e.g., as in Emerton et al., 2018 and Tsonevsky et al., 2018), which has the 

potential to overcome the issues associated with extreme event identification. In addition, multi-

value ensembles can also contribute to increased effective sample size, from which to define flood 

thresholds, and therefore help to improve the representation of extreme events (Zsoter et al., 

2014). This could be important for very extreme events which might not occur in the typical 30–50-

year-long sample of traditional observation or reanalysis time series (e.g., the median length of the 

daily data in the GRDC archive is 39 years, as of January 22, 2020 at www.bafg.de/GRDC). 
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In this study, the potential benefits of using river discharge ensemble reforecasts to define flood 

thresholds are analysed globally. Two main research questions were explored in our study, 

targeting specifically the sampling strategy to extract the annual maxima sample on which the flood 

frequency analysis is conducted: 

• How adequate it is to use a reanalysis dataset to define flood thresholds and apply them 

for all forecast lead times? 

• How best to use reforecast ensemble information in the flood threshold generation to 

improve flood forecast performance? 

The work is carried out in the context of GloFAS, for a 30-day forecast range, with a selection of 

over 5,000 catchments. The impacts of the choice of data source (reanalysis or reforecasts) and of 

the annual maximum sampling strategies (from the reforecasts) are analysed by comparing the 

flood threshold magnitudes and the resulting forecast reliability and skill benefits for four different 

flood severity levels. 

7.2 System description, datasets and methods 

This section describes the data sets, methods, and experimental set-up used to generate flood 

thresholds and compare their value and impact on the flood forecast skill. 

7.2.1 GloFAS 

GloFAS is part of the Copernicus Emergency Management Service (CEMS) and has been developed 

by the Joint Research Centre of the European Commission and the European Centre for Medium-

Range Weather Forecasts (ECMWF) with help from research institutions such as the University of 

Reading (UoR; e.g., Stephens et al., 2015; Emerton et al., 2017 and Towner et al., 2019). It is a 

probabilistic hydrological prediction system, which has a 30-day (Alfieri et al., 2013) and a seasonal 

component (Emerton et al., 2018). This study is based on the 30-day component, which predicts 

daily flood occurrences on the global scale. 

In GloFAS, ensemble runoff outputs from the HTESSEL land surface model (the Hydrology-Tiled 

ECMWF Scheme for Surface Exchange over Land; Balsamo et al., 2009; Balsamo et al., 2011) are 

coupled to the Lisflood hydrological model (van der Knijff et al., 2010) to produce an ensemble of 

daily river discharge across a global river network at 0.1° resolution (Alfieri et al., 2013; Hirpa et al., 

2018b). To detect the likelihood of high flow situations, to forecast flood events, the real time river 

discharge forecasts are compared with a set of flood thresholds derived from a 40-year long 

climatological simulation, a daily river discharge reanalysis time series. 

7.2.2 River discharge reanalysis 
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The GloFAS-ERA5 river discharge reanalysis (Harrigan et al., 2020b) is produced with ERA5 forcing, 

ECMWF's fifth generation global climate reanalysis (Hersbach et al., 2018; Hersbach et al., 2020), 

which is part of the EU-funded Copernicus Climate Change Service (C3S). ERA5 covers the period 

1979 to present and is updated with two to 3 months delay. ERA5 is open access 

(https://climate.copernicus.eu/) and includes one high resolution component and a lower 

resolution ensemble component with 10 members. The GloFAS-ERA5 uses the high-resolution ERA5 

component at ~31 km horizontal resolution with the configuration of the GloFAS operational 

forecasting systems. GloFAS-ERA5 is a key component of GloFAS verification, serving as a proxy for 

river discharge observations and it is also openly available from the Copernicus Climate Change 

Service Climate Data Store (Harrigan et al., 2020b). 

7.2.3 Ensemble river discharge reforecasts 

The ensemble river discharge reforecasts are GloFAS reforecasts produced for the 20-year period 

of 1997–2016. These are 30-day river discharge forecasts generated for past dates by the same 

GloFAS system that is used for the real time forecasts. They are initialised from GloFAS-ERA5 and 

forced by runoff from the twice weekly (Monday and Thursdays in 2017), 11-member, 20-year 

ECMWF meteorological ensemble reforecasts (Vitart, 2014). This data set includes a batch of 20 

reforecasts (one for each year in 1997–2016) for each Monday and Thursday in 2017. Altogether 

2080, 11-member, 30-day reforecasts were produced for the 20-year period (104 in each year). 

7.2.4 Flood thresholds 

In the 30-day GloFAS, flood quantiles of three severity levels (2-, 5-, and 20-year return periods) are 

used as flood thresholds. Flood quantiles are commonly used in risk analysis, typically estimated 

using time series data of generally twice the length of the return period of interest. Because of the 

relatively short length of daily discharge data available, the 10-year return period severity was also 

considered in this study. 

A return period T is an estimate of the likelihood of an event to occur (Gumbel, 1941), expressed as 

average number of years for an event of same or higher magnitude to occur. It can also be 

expressed as an Annual Exceedance Probability AEP (given by AEP = 100/T). To facilitate the 

interpretation, AEP is used in the rest of this study. 

The flood thresholds were computed as currently done operationally in GloFAS: the Gumbel 

Extreme Value Distribution (EVD) is fitted to the annual maximum river discharge sample using the 

method of L-Moments (Hosking, 1990). This method is appropriate for relatively small sample sizes, 

such as used in GloFAS (Alfieri et al., 2019) and in this study (20 years of reforecast data from 1997 

to 2016). 
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7.2.5 River catchments 

The study is based on the GloFAS network (Figure 7-2), a set of 6,122 catchments of which about 

one-third are always highlighted on GloFAS website as reporting points (www.globalfloods.eu). This 

network provides a global coverage and includes all points where daily historical river discharge 

observations are made available to the GloFAS team. Catchments that have 50% AEP magnitude 

below 20 m3/s in GloFAS-ERA5, that is, too dry or too small, were excluded from the study, resulting 

in 5,665 catchments in total for the analysis. 

 

Figure 7-2. The 5,665 GloFAS stations used in this study. The six contrasting catchments of Figure 5 are indicated by red 

stars, along with the river names and GloFAS upstream areas. 

7.2.6 Analysis methods 

The impact of flood threshold estimation for all four severity levels was analysed for each 

catchment by direct comparison of the quantile magnitudes. Additionally, the flood forecast 

performance was evaluated for day 1 to day 30 lead times by: 

• Comparing the number of events forecasted (i.e., when the discharge exceeds the flood 

threshold) with the number of events identified in the benchmark set (i.e., GloFAS-ERA5 

river discharge reanalysis which is the nearest equivalent to the “observations”), expressed 

as percentage occurrence frequency (or event/forecast probability). This step analyses the 

simplified forecast reliability with only one probability category; 

• Calculating the Brier score (Murphy, 1973) and the reliability diagram (Hsu and Murphy, 

1986). This step assesses both the skill and reliability in the resulting probability forecasts 

of exceeding the thresholds. 

7.2.7 Experimental set-up 

For consistency and comparability, the annual maxima sampling for the flood threshold 

computation was done from daily time series containing only the calendar days corresponding to 
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the dates of the day 1 to day 30 reforecast values (for all Monday and Thursday reforecast runs of 

1997–2016). 

 

Figure 7-3. Schematic of the annual maximum sampling for flood threshold estimates from daily river discharge time 

series. Dotted black line: GloFAS-ERA5, solid red line: GloFAS reforecast control member, light red lines: GloFAS reforecast 

perturbed ensemble members. Small red dots show individual daily river discharge values in the ensemble reforecasts. The 

x-axis shows the date of the forecasts, while the y-axis the river discharge values. 

For each lead time, three sets of time series were used: 

• Benchmark set: GloFAS-ERA5 river discharge reanalysis (independent from the lead time). 

This is as close as possible to the flood thresholds used operationally in GloFAS and can be 

considered as proxy observation-based thresholds; 

• Reforecast set: the time series of the control member, plus three time series corresponding 

to the minimum, median and maximum values from each run of the 11-member GloFAS 

reforecasts; 

• Extended reforecast set: 1,000 time series, each generated with randomly selecting one of 

the 11 ensemble members from each GloFAS reforecast. 
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After applying the flood threshold generation method, described earlier, this resulted in 1 + 4 + 

1,000 threshold values summarised graphically in Figure 3 for the annual maxima selection 

differences. From the 1,000 random-member-based thresholds only the minimum, 25th percentile, 

median, 75th percentile, and maximum values were analysed further. The exercise was conducted 

on all study catchments, flood severity levels, and forecast lead times. The major methodological 

steps of this study are provided in Table 1. 

Table 7-1. Major methodological steps of this study. 

Steps Description 

Setup Ensemble reforecasts for day 1 to day 30 lead times, over 20 years 
(1997-2016), with 104 forecasts in each year, flood thresholds 
computed by fitting an extreme value distribution on the 20 annual 
maxima, for 5665 global catchments and 4 return periods (50, 20, 10 
and 5% AEP) 

Benchmark 
(reanalysis) 
thresholds 

Produce reanalysis-based reference thresholds (T-ERA5) for all lead 
times, always with the days of the reforecasts, to guarantee 
homogeneous samples 

Reforecast thresholds Produce ensemble-reforecast-based alternative thresholds (T-CON, T-
MIN, T-MED, T-MAX) 

Extended reforecast 
thresholds 

Produce random-ensemble-member-based thresholds 1000 times (T-
RAN) 

Extended reforecast 
threshold distribution 

Define the key statistics of the extended reforecast threshold 
distribution (T-RANMIN, T-RAN25, T-RANMED, T-RAN75 and T-
RANMAX) 

Probabilities Compute the exceedance probabilities over the 20-year period with 
all threshold versions (10 in total)  

Scores Compute the Brier scores and produce the reliability diagrams with all 
threshold versions (10 in total), for all catchments including a global 
average  

Note: For all lead times, catchments and return periods if not otherwise stated. 

7.3 Results 

The impact of the data set and sampling strategy choice in the flood threshold generation was 

analysed globally on selected river catchments, with the flood threshold magnitude and forecast 

skill compared geographically. 

7.3.1 How similar are the flood thresholds? 

In this section, we analyse the impact of the annual maxima sampling strategy on the flood 

threshold magnitude for day 1 and day 30 lead times, focusing on the 10% AEP severity level. 
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Figure 7-4. Percentage difference of 10% AEP flood thresholds between (a, b) T-CON and T-ERA5, (c, d) T-RANMED and T-

ERA5 and (e, f) T-RANMED and T-CON based on the 1997–2016 period. The left column (a, c, e) is for day 1 while the right 

one (b, d, f) is for day 30 lead time. Percentage differences of orange (blue) colour palette mean lower (higher) flood 

thresholds respectively in T-CON (vs. T-ERA5) and in T-RANMED (vs. T-ERA5 and T-CON). Panel (g) shows the reference T-

ERA5 threshold magnitudes as specific river discharge (river discharge divided by the upstream area in km2 in order to 

scale better between different catchment sizes). 

Flood threshold magnitudes, derived from reforecasts, depend on lead-time with values less than 

5% different from those derived from the reanalysis (T-ERA5) for day 1 (Figure 7-4a,c,e), but 
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exceeding 50% difference over large parts of the world by day 30 (Figure 7-4b,d,f), regardless of the 

ensemble reforecast sampling strategy. However, there is a large spatial variability, with most of 

the world showing reforecast flood thresholds larger than T-ERA5, except in north Canada, Central 

and northern South America, Central Asia, the Horn of Arica, and some of east Russia. This confirms 

earlier finding from Alfieri et al. (2019) that for extended-range lead times, the flood frequency 

distribution of hydrological forecasts is not well represented by reanalysis simulations. 

Figure 7-4 also shows that using the control member of the reforecasts to derive the flood threshold 

(T-CON) leads to different results than sampling the full reforecast ensemble (T-RAN family). 

Specifically, T-CON is systematically smaller than T-RANMED in most regions (Figure 7-4e,f), with 

differences growing with lead time, generally below 20% but reaching 100% in some places by day 

30. This suggests that the control forecasts do not fully represent the flood frequency distribution 

of the ensemble reforecasts and their use could potentially lower the forecast skill. 

Results for other severity levels (5, 20, and 50% AEPs) show very similar behaviour. Although there 

are some variabilities across the severity levels with differences in flood threshold magnitude 

increasing with the severity level, the percentage differences appear to be in the same order of 

magnitude (Figures 7-S1 - 7-S3). 

 

Figure 7-5. Flood thresholds of 10% AEP severity level based on the 1997–2016 period as function of forecast lead time for 

six contrasting catchments: benchmark T-ERA5 (blue), reforecast control T-CON (orange), minimum T-MIN (dotted grey), 

median T-MED (solid grey)  and maximum T-MAX (dash-dotted grey) and also the extended reforecast T-RANMIN, T-

RAN25, T-RANMED, T-RAN75, and T-RANMAX (red box and whiskers). 

Figure 7-5 shows the flood thresholds for the 10% AEP severity level as a function of lead time for 

six contrasting catchments (consult Figure 7-2 for the catchment locations). The influence of the 
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ensemble reforecast sampling strategy on the flood threshold magnitudes gets larger with the 

increasing forecast lead time. For some catchments, such as the Ob and Amazon rivers, the impact 

is small (interquartile range of below 1% of T-ERA5 by day 30 as shown by the red boxes), but for 

some other catchments the difference could be as large as 10–20% of the T-ERA5 value at day 30 

lead time (Tana and Mississippi rivers). Moreover, the flood thresholds, generated using the control 

member, are dominantly below the envelope of the ensemble reforecast (e.g., Ubangi and Tana 

rivers), confirming the general positive pattern already seen in Figure 7-4f. 

Analysis on other flood threshold severity levels indicates that differences between reforecast- and 

reanalysis reanalysis-based thresholds and sampling strategies are generally increasing with both 

severity level and lead time (Figures 7-S4 - 7-S6). 

7.3.2 How reliable are the forecast probabilities? 

In this section, we investigate the match between the flood forecast probabilities and the flood 

occurrence frequencies, using the benchmark, the reforecast control, and the extended reforecast 

median flood thresholds, defined for the 10% AEP severity level (Figure 7-6). 

 

Figure 7-6. Scatter plot of day 1 (top) and day 30 (bottom) flood forecast probability (y-axis) against flood occurrence 

frequency (x-axis) using flood thresholds of T-ERA5 (a and d, blue), T-CON (b and e, orange), and T-RANMED (c and f, red) 

based on the 1997-2016 period. Dot size is proportional to catchment size. 
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At day 1 (Figure 7-6a–c), flood forecasts are very reliable regardless of the flood threshold 

generation used (points close to the diagonal line), but this is lost by day 30 (Figure 7-6d–f). The 

largest loss of reliability is found when using the benchmark flood threshold (T-ERA5), with many 

catchments showing too high flood forecast probability (points way above the diagonal line), 

suggesting that the T-ERA5 thresholds are too low. The performance using reforecasts-based 

thresholds shows a clear improvement over using T-ERA5, especially reducing the number of 

catchments with large flood forecast probability overestimation. Results based on T-RANMED are 

slightly better than those using T-CON with a larger cluster around the diagonal line (91 vs. 86% of 

the catchments with less than 0.5% absolute difference between forecast probability and 

occurrence frequency), showing a stronger, more linear relationship. 

7.3.3 What is the impact on forecast reliability and skill? 

Forecast reliability and skill were further examined using the reliability diagram and the Brier score 

for flood forecasts produced with the 10% AEP severity level. 

 

Figure 7-7. Reliability diagram for flood event forecast probabilities above 10% AEP based on the 1997–2016 period for 

(a) day 1 and (b) day 30 using flood thresholds based on the benchmark (T-ERA5), reforecast (T-CON, T-MIN, T-MED, and 

T-MAX), and extended reforecast (T-RANMIN, T-RAN25, T-RANMED, T-RAN75, and T-RANMAX) sets. The inset shows the 

distribution of number of cases in all 11 probability categories. The first category (0 ensembles member forecasting the 

event) is only indicated as a number. 

As suggested by Figure 7-7, the reliability of the flood forecasts, based on the T-ERA5 thresholds, is 

low, especially for day 30 lead time, with an event frequency of less than 10% for almost all flood 

forecast probability categories (except the largest when it is just above 20%, see blue line close to 

x-axis). Using reforecast-based flood thresholds can greatly improve the flood forecast reliability, 

the only exceptions being T-MIN and T-RANMIN for day 1 lead time. T-MAX and T-RANMAX tend to 

systematically underestimate flood event frequency up to 70–80% forecast probability, whilst 
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overestimation of flood events is systematic for all other thresholds. The response is similar across 

all considered four severity levels except for flood thresholds of 50% AEP, where the reforecast 

thresholds become too high, making the flood forecast probabilities too low (points are above the 

diagonal; Figures 7-S7 - 7-S9). Generally, thresholds based on the full ensemble can provide better 

reliability than using T-CON, this is especially clear by day 30, when all T-RANMED, T-RAN25, and T-

RAN75 are closer to the diagonal line. 

Figure 7-8 shows the general skill of the flood forecasts for the 10% AEP severity level from day 1 

to day 30 lead times, based on the Brier score. The benchmark flood thresholds (T-ERA5) can 

provide the lowest error only up to day 2 lead time (blue line below the other lines; for other flood 

severity levels this maximum lead time ranges from day 1 (5% AEP) to day 4 (50% AEP), Figures 7-

S10 - 7-S12). 

 

Figure 7-8. Brier score for flood event forecasts above 10% AEP over the 1997–2016 period for day 1 to day 30 using the 

benchmark (T-ERA5), reforecast (T-CON, T-MIN, T-MED, and T-MAX), and extended reforecast (T-RANMIN, T-RAN25, T-

RANMED, T-RAN75, and T-RANMAX) flood thresholds. The inset shows the scores of the first 4 days only for better 

readability. 
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From day 3, the flood forecasts with reforecast-based thresholds become gradually more skilful 

than with T-ERA5 (the only exception is T-MIN), consistently with the conclusions of Figure 7-7b. In 

fact, both T-ERA5 and T-MIN show poor skill with multiple times higher Brier score values by day 30 

(this higher section of the Brier score range is not shown in Figure 7-8 for better readability). The 

best performance is achieved by the median (T-RANMED) and the interquartile range boundaries 

(T-RAN25 and T-RAN25) of the extended reforecast threshold set and the reforecast control 

thresholds (T-CON), with skill slowly degrading with lead time. The skill improvement, using T-

RANMED over T-CON, is statistically significant at the 99% level from day 5–6 lead time (tested by 

bootstrapping the dates in the verification sample, Figure 7-S13). The pattern is similar for flood 

events of higher severity (5% AEP), whilst for less severe floods (20 and 50% AEP), the highest skill 

is achieved using T-RAN25 or T-RANMIN, but T-RANMED is still achieving high skill (Figures 7-S10 - 

7-S12). 

7.4 Discussion 

The global analysis conducted here showed that using flood thresholds based on reforecasts 

improved substantially the forecast performance after the first 1-4 days of the forecast range 

(depending on the flood severity levels) compared with using thresholds based on reanalysis, as 

done operationally in most forecast systems. One of the key advantages is the lead time specific 

definition of thresholds, which accounts for the changing representation of extreme event 

frequencies in the forecasts. Overall, forecast errors are reduced by up to 2-4 times compared with 

reanalysis-based thresholds, depending on the flood severity and lead time. Results also showed 

that using the single unperturbed control member to define the thresholds is not sufficient and 

exploring the full ensembles of the reforecasts in the threshold derivation further increases the 

forecast reliability and skill. 

7.4.1 Ensemble member independence 

Using ensemble members allows a better representation of the extreme events in the forecast 

climatology by increasing the sample size. The ensemble members are correlated to some extent 

by sharing the same initial condition, especially at the beginning of the 30-day forecast horizon. 

Correlation between ensemble members reduces with increased lead time when each ensemble 

member drifts towards becoming an independent and identical random sample from the mode 

climate. In addition, for each of the reforecast-based threshold methods, only one member was 

chosen from all the twice weekly reforecasts in the 20-year period in order to increase 

independence. This guaranteed that the correlation between the individual reforecast values in the 

climatological sample remained very small. This made them an effectively independent realisation 
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of the true underlying model climate distribution, ultimately providing an appropriate basis for the 

extreme value distribution fitting in the flood threshold computation. 

7.4.2 Best performing thresholds 

The median of the extended reforecast threshold set, produced by using one random ensemble 

member from the reforecasts, provides the best overall performance, however, for lower severity 

levels some other reforecast-based thresholds can be slightly better. This can be related to the 

nonlinear response between reforecast ensemble time series and flood quantile estimation. In 

particular, with increasing lead time, outliers associated with very high forecasted river discharge 

become more likely within the 11 ensemble members. The annual maximum selection then will 

over-represent the high outliers through the random member selection process, as even if only one 

very high forecast value is selected in 1 or 2 years, it is likely to shift the estimate of the 5–10% AEP 

flood quantile to a high value. This potential increase of flood threshold value with lead time does 

not affect the forecast probabilities of flood event occurrence to the same extent, as the 

probabilities are calculated considering the full ensemble and are influenced much less by these 

relatively rare outliers in some of the reforecast members. This different effect of outliers on flood 

thresholds and flood forecast probabilities will translate into inconsistent reliability and skill impact 

associated with the various ways to sample the reforecasts to produce flood threshold, and could 

result, in some cases, in favouring a different sampling strategy than picking up the median. 

7.4.3 Biases in the forecasts 

Using range-dependent flood thresholds, based on ensemble reforecasts, can account for the 

evolving biases in the forecasts across the forecast range. This study demonstrated that biases can 

grow large, affecting the extreme event representation and the use of flood thresholds in medium 

to extended range hydrological forecast systems like GloFAS 30-day. These biases can originate 

from the meteorological forcing and impact the hydrological simulations, mainly through 

precipitation and marginally also temperature, humidity, wind, and radiation, as shown by Zsoter 

et al. (2016) for the first 10 days of the forecasts. Another likely source for the biases is the land 

data assimilation (LDAS) impact documented by Zsoter et al. (2019). The LDAS can result in not 

conserving the water budget in coupled land surface models such as used in GloFAS, possibly 

contributing to biases seen in the GloFAS-ERA5 reanalysis across large parts of the world (Harrigan 

et al., 2020b). In GloFAS, the reforecasts are initialised from GloFAS-ERA5, but with increasing lead 

time, the influence of LDAS on reforecast gradually decreases. This means that biases coming from 

the LDAS impact will remain present in any reanalysis-based flood threshold (in our case GloFAS-

ERA5) but will slowly disappear with lead time in reforecasts-based flood thresholds. This 
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inconsistency is likely to contribute to the large differences between the GloFAS-ERA5- and the 

ensemble-reforecast-based thresholds shown in this study. 

7.4.4 Forecast post-processing 

Post-processing of the forecasts against the reference dataset used to derive the flood thresholds 

(i.e., in our case, GloFAS-ERA5) is an alternative to ensemble reforecast-based thresholds. By 

removing biases in the forecasts (e.g., linear regression or quantile mapping; see Wentao et al., 

2017 for a review of methods), the extreme event representation of the forecasts would be 

expected to become similar to that of the reference dataset or climatology. The use of post-

processing techniques to create a consistent system between forecasts and flood thresholds was 

beyond the scope of this paper but could be pursued in the future. 

7.4.5 Modelling system independence 

Whilst the research was conducted on the GloFAS flood forecasting system (based on the HTESSEL 

land surface model), the main findings of this work are expected to be independent of the modelling 

system, the extreme value fitting method or the sampling period length used. Although a different 

fitting method or sampling length could inevitably change the flood thresholds locally, in the global 

context, they are expected to have a neutral impact on the relation of the threshold magnitudes 

amongst the different annual maxima sampling methods. In addition, the forecast biases are bound 

to be modelling system related, which will inevitably change the flood threshold behaviour across 

the forecast lead times. However, the benefit of using ensemble-based, lead-time-specific 

thresholds is expected to be general and not dependent on the actual underlying bias behaviour. 

This is supported by the consistent results found using the Lisflood hydrological model in Alfieri et 

al. (2019), where the reforecast-control-member-based flood thresholds showed significant biases 

compared with the ERA5-based thresholds, confirming the benefit of using ensemble reforecasts. 

7.4.6 Practical recommendations for flood applications 

Severe problems can arise in flood forecasting because of the potential issue with inconsistencies 

between the representation of extreme event frequencies in the thresholds and the forecasts, due 

to the biases that might be present especially for longer lead times. We recommend that forecast 

system developers should evaluate these potential inconsistencies for themselves using the 

methodology presented in this paper. We further recommend that this should be carried out with 

the use of reforecasts where they are available. But even where this is not the case, attempts should 

be made to diagnose the biases in the climatological data and the available historical forecasts for 

potential inconsistencies. Without addressing this inconsistency issue, the reliability and skill of the 

forecast flood events, and thus the quality of the flood warnings, could be substantially reduced, 
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which could strongly impact on the decision-making process and ultimately lead to loss of 

confidence in the products. 

In addition, even though the reanalysis-based flood thresholds are proven to be preferred in the 

first days of the forecast range, the difference in forecast skill to the reforecast-based thresholds is 

small. We recommend that it is both sensible and practical using the ensemble reforecasts for 

computing the flood thresholds for all forecast lead times and flood severity levels. Similarly, the 

best performing thresholds for the more impactful high floods (below 20% AEP) were generated 

from the median of a large number of random ensemble member selections from each reforecast. 

Although they are not necessarily the most favourable thresholds for smaller floods, they are the 

best overall choice and are recommended to be used for flood predictions across all flood severities 

and forecast lead times. 

This study highlighted that flood forecasting applications, such as GloFAS, which use flood 

thresholds generated from a single time series (reanalysis or observation), can greatly benefit from 

using ensemble-reforecast-based thresholds instead, as a practical and effective way to resolve 

inconsistencies between forecasts and flood thresholds, and therefore increasing the flood forecast 

skill. 

7.5 Conclusions 

Using reliable thresholds in global flood forecasting, that truly reflect the flood event frequencies 

of the real-time ensemble forecasts across all forecast lead times, is very important. The generation 

of flood signals with such thresholds can provide the highest forecast reliability and skill, which then 

gives the best chance to create trust in the users for the application. 

In this paper, different annual maxima sampling methods were analysed to generate flood 

thresholds, using both GloFAS-ERA5 river discharge reanalysis and ensemble reforecasts. The flood 

thresholds were compared and their impact on the forecast reliability and skill was evaluated. 

Reanalysis-based thresholds were found appropriate for the first 1–4 days of the 30-day (depending 

on the flood severity level) forecast range only. For longer lead times, both global average forecast 

reliability and skill deteriorate, effectively due to the increasing forecast biases over large parts of 

the world not accounted for in the reanalysis-based thresholds. The ensemble-reforecast-based 

thresholds provide increasing improvement over the reanalysis-based thresholds for up to the 

evaluated day 30 lead time. Additionally, using flood thresholds that sample the full ensemble in 

the reforecast, was found to be overperforming a simple, single member sampling strategy (e.g., 

using the control reforecast), with generally better reliability and higher skill of the forecast 

probability. 
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The results of this study suggest that acknowledging the large uncertainty coming from the data 

sampling method in flood threshold generation is a crucial step in understanding and improving 

forecast skill, so that the system configuration that provides the highest reliability and lowest error 

globally can be found. In turn, better flood forecasts and better flood warnings could be delivered 

to the public, increasing the confidence and uptake of these products. Ultimately, the increase in 

confidence in the flood forecasts should result in better flood preparedness for humanitarian and 

civil protection partners, potentially reducing damages and casualties world-wide. 
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7.6 Supplementary figures 

 

Figure 7-S1. Percentage difference of 50% AEP flood thresholds between a-b) T-CON and T-ERA5, c-d) T-RANMED and T-

ERA5 and e-f) T-RANMED and T-CON based on the 1997-2016 period. The left column (a-c-e) is for day1 while the right 

one (b-d-f) is for day30 lead time. Percentage differences of orange (blue) colour palette mean lower (higher) flood 

thresholds respectively in T-CON (vs T-ERA5) and in T-RANMED (vs T-ERA5 and T-CON). 
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Figure 7-S2. Percentage difference of 20% AEP flood thresholds between a-b) T-CON and T-ERA5, c-d) T-RANMED and T-

ERA5 and e-f) T-RANMED and T-CON based on the 1997-2016 period. The left column (a-c-e) is for day1 while the right 

one (b-d-f) is for day30 lead time. Percentage differences of orange (blue) colour palette mean lower (higher) flood 

thresholds respectively in T-CON (vs T-ERA5) and in T-RANMED (vs T-ERA5 and T-CON). 
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Figure 7-S3. Percentage difference of 5% AEP flood thresholds between a-b) T-CON and T-ERA5, c-d) T-RANMED and T-

ERA5 and e-f) T-RANMED and T-CON based on the 1997-2016 period. The left column (a-c-e) is for day1 while the right 

one (b-d-f) is for day30 lead time. Percentage differences of orange (blue) colour palette mean lower (higher) flood 

thresholds respectively in T-CON (vs T-ERA5) and in T-RANMED (vs T-ERA5 and T-CON). 
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Figure 7-S4. Flood thresholds of 50% AEP severity level based on the 1997-2016 period as function of forecast lead time 

for six contrasting catchments: benchmark T-ERA5 (blue), reforecast control T-CON (orange), minimum T-MIN (dotted 

grey), median T-MED (solid grey) and maximum T-MAX (dash-dotted grey) and also the extended reforecast T-RANMIN, 

T-RAN25, T-RANMED, T-RAN75 and T-RANMAX (red box-whiskers). 

 

 

Figure 7-S5. Flood thresholds of 20% AEP severity level based on the 1997-2016 period as function of forecast lead time 

for six contrasting catchments: benchmark T-ERA5 (blue), reforecast control T-CON (orange), minimum T-MIN (dotted 

grey), median T-MED (solid grey) and maximum T-MAX (dash-dotted grey) and also the extended reforecast T-RANMIN, 

T-RAN25, T-RANMED, T-RAN75 and T-RANMAX (red box-whiskers). 
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Figure 7-S6. Flood thresholds of 5% AEP severity level based on the 1997-2016 period as function of forecast lead time 

for six contrasting catchments: benchmark T-ERA5 (blue), reforecast control T-CON (orange), minimum T-MIN (dotted 

grey), median T-MED (solid grey) and maximum T-MAX (dash-dotted grey) and also the extended reforecast T-RANMIN, 

T-RAN25, T-RANMED, T-RAN75 and T-RANMAX (red box-whiskers). 

 

 

Figure 7-S7. Reliability diagram for flood event forecast probabilities above 50% AEP based on the 1997-2016 period for 

a) day1 and b) day30 using flood thresholds based on the benchmark (T-ERA5), reforecast (T-CON, T-MIN, T-MED and T-

MAX) and extended reforecast (T-RANMIN, T-RAN25, T-RANMED, T-RAN75 and T-RANMAX) sets. The insert shows the 

distribution of number of cases in all 11 probability categories. The first category (0 ensemble member forecasting the 

event) is only indicated as a number. 
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Figure 7-S8. Reliability diagram for flood event forecast probabilities above 20% AEP based on the 1997-2016 period for 

a) day1 and b) day30 using flood thresholds based on the benchmark (T-ERA5), reforecast (T-CON, T-MIN, T-MED and T-

MAX) and extended reforecast (T-RANMIN, T-RAN25, T-RANMED, T-RAN75 and T-RANMAX) sets. The insert shows the 

distribution of number of cases in all 11 probability categories. The first category (0 ensemble member forecasting the 

event) is only indicated as a number. 

 

 

Figure 7-S9. Reliability diagram for flood event forecast probabilities above 5% AEP based on the 1997-2016 period for a) 

day1 and b) day30 using flood thresholds based on the benchmark (T-ERA5), reforecast (T-CON, T-MIN, T-MED and T-

MAX) and extended reforecast (T-RANMIN, T-RAN25, T-RANMED, T-RAN75 and T-RANMAX) sets. The insert shows the 

distribution of number of cases in all 11 probability categories. The first category (0 ensemble member forecasting the 

event) is only indicated as a number. 
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Figure 7-S10. Brier score for flood event forecasts above 50% AEP over the 1997-2016 period for day1 to day30 using the 

benchmark (T-ERA5), reforecast (T-CON, T-MIN, T-MED and T-MAX) and extended reforecast (T-RANMIN, T-RAN25, T-

RANMED, T-RAN75 and T-RANMAX) flood thresholds. The inset shows the scores of the first seven days only for better 

readability. 
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Figure 7-S11. Brier score for flood event forecasts above 20% AEP over the 1997-2016 period for day1 to day30 using the 

benchmark (T-ERA5), reforecast (T-CON, T-MIN, T-MED and T-MAX) and extended reforecast (T-RANMIN, T-RAN25, T-

RANMED, T-RAN75 and T-RANMAX) flood thresholds. The inset shows the scores of the first six days only for better 

readability. 
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Figure 7-S12. Brier score for flood event forecasts above 5% AEP over the 1997-2016 period for day1 to day30 using the 

benchmark (T-ERA5), reforecast (T-CON, T-MIN, T-MED and T-MAX) and extended reforecast (T-RANMIN, T-RAN25, T-

RANMED, T-RAN75 and T-RANMAX) flood thresholds. The inset shows the scores of the first four days only for better 

readability. 
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Figure 7-S13. Brier score with significance after bootstrapping the dates in the verification sample, for flood event 

forecasts above a) 50% AEP, b) 20% AEP, c) 10% AEP and d) 5% AEP, over the 1997-2016 period, for day1 to day30, using 

the benchmark (T-ERA5 in blue), reforecast control (T-CON in orange) and extended reforecast (T-RANMED in red) flood 

thresholds. 
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Chapter 8 Summary of co-authored PhD publications 

This PhD has provided a good opportunity to collaborate with numerous scientists in 

hydrometeorology, mostly around GloFAS and more generally in global hydrology. These papers 

have extended the horizon of the topics covered in the four main papers (and four objectives), as 

they cover various aspects of global hydrological simulations. They explore the capabilities for 

simulating several hydrological aspects in the various reanalysis and forecast data sets, produced 

during the six-year period of the PhD (listed in Table 3-1). In addition, they include studies about 

the quality of meteorological forcing data sets and about different methodological aspects of the 

flood predictions. 

In the following, these papers are summarised, presenting the main findings and the paper-specific 

contributions to the PhD. 

8.1 Exploring hydrological reanalysis data sets 

8.1.1 Cao et al. (2022) 

https://centaur.reading.ac.uk/106794/: This paper contributes to the PhD with additional 

understanding of the impact of the new ECMWF multi-layer snow scheme specifically on soil 

temperature in permafrost areas. This work is strongly related to the study presented in Chapter 5 

with the impact of the multi-layer snow scheme on hydrology, concentrating on river discharge. It 

evaluates some of the same experiments explored in Chapter 5 and compares them for 

improvements to the soil temperature biases in the cold permafrost areas. Ervin Zsoter contributed 

to the experimental design, the interpretation of results and the writing of the manuscript. 

8.1.2 Winkelbauer et al. (2022) 

https://centaur.reading.ac.uk/106795/: This paper contributes to the PhD with additional understanding 

of the river discharge behaviour produced from land surface models. Different reanalysis products were 

compared, including ERA5, ERA5-Land, GloFAS-ERA5-v2.1 and the latest GloFAS-ERA5-v3.1, for runoff and 

river discharge seasonal cycle and annual trends in the Arctic region and water volumetric budget analysis 

for the atmosphere, land and ocean. It was shown that GloFAS-ERA5-v3.1 outperforms the other data sets 

in the river discharge volume terms and trends in the Arctic region. Ervin Zsoter contributed to the 

production and extraction of the GloFAS-ERA5v3.1 date set and to the interpretation of results and the 

writing of the manuscript. 

8.1.3 Ficchi et al. (2021) 

https://centaur.reading.ac.uk/99016/: This work contributes to the knowledge about the GloFAS river 

discharge reanalysis. It compares different climate modes of ENSO, the Indian Ocean Dipole and the 
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Tropical South Atlantic SST mode for their role in driving flood hazard over sub-Saharan Africa. For this, the 

ERA-Interim/Land-forced river discharge reanalysis (GloFAS-ERAI-Land-v1.0) is used, through flood 

frequency analysis and comparing the flood event probabilities for 5-year return period floods. The results 

show that Indian and Atlantic Ocean modes of climate variability are equally as important as ENSO for 

driving changes in the frequency of impactful floods across Africa. Ervin Zsoter contributed to data curation, 

methodology, investigation and writing the original draft. 

8.1.4 Titley et al. (2021) 

https://centaur.reading.ac.uk/97991/: This study contributes to the knowledge about the GloFAS river 

discharge reanalysis with the relation between tropical cyclones and flood hazard. It examines landfalling 

cyclones to identify characteristics, including size, intensity, speed or antecedent weather conditions, that 

influence the severity of flood hazard arising from these tropical cyclones, based on the GloFAS-ERA5-v2.1 

data set. Ervin Zsoter contributed to the GloFAS data curation, interpretation of the results and writing of 

the manuscript. 

8.1.5 Muñoz-Sabater et al. (2021) 

https://centaur.reading.ac.uk/106796/: This paper contributes to the knowledge about the GloFAS river 

discharge reanalysis with analysing the impact of the offline simulation methodology (without the 

atmosphere-land coupling and land data assimilation) and the temperature downscaling on the river 

discharge quality by using the GloFAS-ERA5-Land-v2.0 data set. Ervin Zsoter contributed by generating the 

river discharge data sets and the skill evaluation. 

8.1.6 Harrigan et al. (2020b) 

https://centaur.reading.ac.uk/106797/: This paper contributes to the PhD by introducing and 

evaluating the GloFAS-ERA5-v2.1 river discharge reanalysis as a global gridded dataset with a 

horizontal resolution of 0.1 degree at a daily time step. The reanalysis was evaluated against a 

global network of 1801 daily river discharge observation station and was found to be skilful in 86% 

of catchments according to the modified Kling–Gupta efficiency skill score. Ervin Zsoter contributed 

to writing the suite to produce the dataset and to the editing of the paper and to the discussion 

and interpretation of results. 

8.1.7 Alfieri et al. (2020) 

https://centaur.reading.ac.uk/106801/: This paper contributes to the PhD by presenting a new and 

improved calibration with evaluation of the GloFAS model for version 3. The calibration was performed 

with the reanalysis period over 1980-2018 using the ERA5 meteorological forcing. GloFAS v3.1 uses the 

operationally implemented version of the Lisflood model, whereas this paper is based on an earlier 
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research version of the same Lisflood model. The paper presented the methodology of the calibration and 

analysed the impact on the GloFAS reanalysis (GloFAS-ERA5-v3.1) skill by comparing it to the previous 

model version v2.1. Ervin Zsoter contributed with reviewing and editing the manuscript. 

8.1.8 Towner et al. (2019) 

https://centaur.reading.ac.uk/85114/: This study contributes to the PhD by comparing various river 

discharge reanalyses, including GloFAS v1.0 and v2.0 and CaMa-Flood data sets (GloFAS-ERAI-Land-

v1.0, GloFAS-ERA5-v1.0, GloFAS-ERAI-Land-v2.0, GloFAS-ERA5-v2.0, GloFAS-RECF-v2.0 and CAMA-

ERAI-Land), for their ability to simulate floods in the Amazon basin. The paper presents an 

intercomparison of eight different global hydrological models from the collaborators of the Global 

Flood Partnership using gauged observations as truth. As well as highlighting regional variability in 

the accuracy of simulated streamflow, these results indicate that the meteorological input is the 

dominant control on the river discharge accuracy and that groundwater and routing calibration of 

Lisflood has no impact on the ability to simulate flood peaks in the Amazon basin. Ervin Zsoter 

provided data and information for all simulations incorporating Lisflood and for the ERAI-Land/H-

TESSEL/CaMa-Flood set-up and also worked on producing the simulations. He was also involved in 

discussions throughout the development and commented on the manuscript. 

8.1.9 Hersbach et al. (2018) 

https://centaur.reading.ac.uk/106838/: This ECMWF report contributed to the PhD by providing an 

overview of ECMWF’s atmospheric, ocean and land reanalysis activities, in particular the latest reanalysis 

system, ERA5, which is the basis for the GloFAS-ERA5 reanalysis product. It presents various aspects of 

ERA5’s performance, including for simulating river discharge by ERA5-Land (using GloFAS-ERA5-Land-v2.0). 

Ervin Zsoter contributed by generating river discharge simulations based on ERA5-Land and analysing its 

quality. 

8.1.10 Hirpa et al. (2018b) 

https://centaur.reading.ac.uk/106869/: This paper contributes to the PhD by presenting the first calibration 

and evaluation of GloFAS for version 2.0, with the related evaluation of the river discharge simulations 

(based on GloFAS-RECF-v2.0). Here, the Lisflood routing and groundwater model parameters are calibrated 

with ECMWF reforecasts as forcing, from 1995 to 2015, using daily streamflow data from 1287 stations 

worldwide. The optimisation and the verification are both based on the KGE metric. Results show that the 

calibration could improve the simulation skill for the large majority of catchments. Ervin Zsoter helped with 

generating the simulations and reviewing and editing of the manuscript. 
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8.1.11 Emerton et al. (2017) 

https://centaur.reading.ac.uk/68946/: This study contributed to the PhD by exploring the river discharge 

reanalysis for the presence of ENSO teleconnections, which can potentially help with reducing flood risk. 

The analysis was undertaken using the CAMA-ERA20CM-R river flow reconstruction for the twentieth 

century. Results show that the likelihood of increased or decreased flood hazard during ENSO events is 

much more complex than is often perceived and reported; probabilities vary greatly across the globe, with 

large uncertainties inherent in the data and clear differences when comparing the hydrological analysis to 

precipitation. Ervin Zsoter produced the centurial river discharge reanalysis data set and also commented 

on the manuscript. 

8.2 Exploring hydrological forecast data sets 

8.2.1 Harrigan, et al. (2023) 

https://centaur.reading.ac.uk/106766/: This work contributed to the PhD by introducing the GloFAS model 

components and configuration used to generate the v2.1/v2.2 real-time river discharge forecasts and the 

v2.1/v2.2 reforecasts (GloFAS-ERA5-RFC-v2.2) with 2019 as reference year. It also provides forecast skill 

information using the reforecasts and the persistence and climatology as verification benchmarks, based 

on the v2.1/v2.2 reforecasts with 2019 as reference year. Ervin Zsoter contributed to developing the GloFAS 

suites to produce the reforecasts and real-time forecasts and to the editing of the manuscript and to the 

discussion and interpretation of results. 

8.2.2 Bischiniotis et al. (2020) 

https://centaur.reading.ac.uk/106803/: This study contributed to the PhD by information on the usability 

of the GloFAS reforecasts in forecast-based financing (FbF) decisions. It presents a methodology that 

compares permanent with forecast-based flood-prevention measures on the bases of a 23-year period in 

a case study area in Malawi, based on the GloFAS-ERA5-RFC-v2.0, the v2.0 GloFAS reforecasts with 2017 as 

reference year. The results indicated that the choice between permanent and temporary measures is 

affected by the cost of measures, climatological flood risk, and forecast ability to produce accurate flood 

warnings. Results also showed that a combination of the two types of measures can be the most cost-

effective solution, particularly when the forecast is more skilful in capturing low-frequency events. Ervin 

Zsoter contributed to the generation of the GloFAS simulations and forecasts and the writing of the 

manuscript. 

8.2.3 Passerotti et al. (2020) 

https://centaur.reading.ac.uk/106804/: This paper contributed to the PhD with knowledge about the local 

usability of GloFAS for early warnings in an important catchment in the Sahel. It has compared the 

performance of two glofas versions with reforecasts, the daily reforecasts from GloFAS-ERAI-Land-RFC-v1.0 
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and the twice-weekly reforecasts from GloFAS-ERA5-RFC-v2.0. The comparison considered the raw and 

the post-processed reforecasts with a simple linear regression. The results highlighted the limitations of 

the raw GloFAS forecasts and confirmed that a simple optimization could improve the biases and improve 

the overall performance. It was concluded that the post-processed GloFAS v2.0 forecasts are acceptable 

for the regional early warning system. Ervin Zsoter contributed to the methodology, interpretation of the 

results, reviewing of the manuscript and producing the GloFAS reforecast data sets. 

8.2.4 Bischiniotis et al. (2019) 

https://centaur.reading.ac.uk/106837/: This study contributed to the PhD by evaluating the GloFAS system 

skill in Peru, using both the ERAI-Land reanalysis and the daily reforecasts produced with the 

preoperational version of GloFAS, available at the time. It included verification of the reanalysis (GloFAS-

ERAI-Land-v0) against gauged observations, verification of the reforecasts (GloFAS-ERAI-Land-RFC-v0) 

against reanalysis out to day 15 lead time on each river pixel, including quantile mapping post-processing 

and it also included the comparison with reported flood events in the verification period of 2009-2015. 

Results showed that GloFAS is able to predict the majority of the observed flood events and even though 

the biases are substantial in the raw forecast, the quantile-mapped version is able to provide much higher 

skill for most of the rivers in Peru. Ervin Zsoter contributed by the generation of the GloFAS reanalyses and 

reforecasts and to the reviewing and editing of the manuscript. 

8.2.5 Emerton et al. (2018) 

https://centaur.reading.ac.uk/78570/: This paper contributed to the PhD by introducing and evaluating the 

first operational global-scale seasonal hydrometeorological forecasting system, GloFAS-Seasonal. This 

system was introduced as an extension of the preoperational GloFAS. The paper described the key 

hydrometeorological components and computational framework of GloFAS-Seasonal, alongside the 

forecast products available and some initial evaluation of the forecasts (GloFAS-ERA5-SRFC-v1.0). Ervin 

Zsoter contributed by generating the reanalysis and reforecast data sets and building the operational 

production system. He was also involved in discussions throughout development and gave comments on 

the manuscript. 

8.3 Exploring meteorological forcing data sets 

8.3.1 Lavers et al. (2018) 

https://centaur.reading.ac.uk/106840/: This paper contributed to the PhD by exploring the predictability 

related to precipitation and water vapour transport in the meteorological forcing data. It analysed the skill 

of the Extreme Forecast Index (EFI) for the integrated water vapour transport (IVT) over the Iberian 

Peninsula and compared it to the precipitation EFI using real time 15-day ensemble forecasts. Results show 

that IVT EFI has slightly more skill than the precipitation EFI in discriminating extreme precipitation 
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anomalies across the western Iberian Peninsula at the extended range of day 11 onwards. Ervin Zsoter 

contributed to the preparation of the data sets used and the reviewing and editing of the manuscript. 

8.3.2 Coughlan de Perez et al. (2018) 

https://centaur.reading.ac.uk/77889/: This study contributed to the PhD by exploring the predictability of 

temperature extremes in the reforecast meteorological forcing data. In this study, the areas are assessed 

at global level, where there is a potential to reduce risk from temperature extremes. For this, the 

climatologies of heatwaves and cold waves with the seasonality of these extremes are established and the 

medium-range predictability of these extreme events are explored. Results showed that in fact, almost 5 

billion people live in regions that have seasonality and evidence of predictability for heatwaves and/or cold 

waves, which opens the possibility for climate adaptation investments to reduce risks to vulnerable 

populations. Ervin Zsoter contributed by generating the daily extreme temperature data from the ECMWF 

data sets, helped with interpretation of the results and commented on the manuscript. 

8.3.3 Lavers et al. (2017) 

https://centaur.reading.ac.uk/106883/: This paper contributed to the PhD by exploring the predictability 

of precipitation and water vapour transport in the meteorological forcing data. It analysed the skill of the 

IVT EFI globally and compared it to the precipitation EFI using real time 15-day ensemble forecasts over 

two winters. Results show that the IVT EFI is more skilful than the precipitation EFI in forecast week 2 over 

Europe and western North America. This is related to the large-scale nature of the IVT, its higher 

predictability and its relationship with extreme precipitation, which can potentially lead to earlier 

awareness of extreme precipitation in these areas. Ervin Zsoter contributed to the preparation of the data 

sets used, helped with the design of the study, the interpretation of the results and the reviewing and 

editing of the manuscript. 

8.3.4 Lavers et al. (2016) 

https://centaur.reading.ac.uk/106884/: This work contributed to the PhD by exploring the predictability of 

precipitation and water vapour transport in the meteorological forcing data. It analysed the skill of the IVT 

EFI and compared it to the precipitation EFI using real time 10-day ensemble forecasts over three winters 

over Europe. We show that the IVT EFI is more able (than the precipitation EFI) to capture extreme 

precipitation in forecast week 2 during positive North Atlantic Oscillation (NAO) phase; conversely, the 

precipitation EFI is better during the negative NAO phase and at shorter leads. This can potentially lead to 

earlier awareness of extreme precipitation in the extended-range forecasts. Ervin Zsoter contributed to the 

preparation of the data sets used and the reviewing of the manuscript. 
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8.4 Exploring global flood prediction methodologies 

8.4.1 Baugh et al. (2020) 

https://centaur.reading.ac.uk/106836/: This study contributed to the PhD by exploring the impact of soil 

moisture assimilation on the GloFAS river discharge quality. It analysed the impacts of Soil Moisture and 

Ocean Salinity (SMOS) soil moisture data assimilation in the ECMWF IFS by coupling the surface and 

subsurface runoff outputs to Lisflood (using the Lisflood-routing model as in GloFAS-ERA5-v2.1). Results 

confirmed that GloFAS river discharge skill is generally affected by only a small amount, larger impact can 

be expected only during some high flow events on surface runoff. Ervin Zsoter contributed to the data 

curation, result interpretation and the writing of the manuscript. 

8.4.2 Alfieri et al. (2019) 

https://centaur.reading.ac.uk/106839/: This paper contributed to the PhD by introducing a novel approach 

to estimate flood thresholds from using hydrological reforecasts (similar to GloFAS-ERA5-RFC-v3.1). It was 

based on a 21-year reforecast-based dataset to derive flood thresholds with six-week lead time and 

compared these with thresholds derived from the ERA5 reanalysis (similar to GloFAS-ERA5-v3.1) in order 

to check consistency. This study used an earlier research version of the same Lisflood model that was 

implemented in GloFAS v3.1. Ervin Zsoter helped with generating the reanalysis and reforecast simulations 

and reviewing and editing of the manuscript. 

8.4.3 Santoro et al. (2018) 

https://centaur.reading.ac.uk/106873/: This paper contributed to the PhD by presenting the technological 

complexities for building a use-case scenario of providing river discharge ensemble simulation based on 

the TIGGE (THORPEX Interactive Grand Global Ensemble) meteorological archive and observation data in 

an interoperable web system. The paper describes the work performed to address multidisciplinary 

interoperability challenges related to river discharge modelling, validation and display. This includes 

definition and standardization of domain specific interoperability standards for hydrological data sharing 

and their support in global frameworks such as GEOSS (Global Earth Observation System of Systems). Ervin 

Zsoter contributed by generating the river discharge simulations and in general to the methodology behind 

the hydrological data used, as well as reviewing the manuscript. 

8.4.4 Hirpa et al. (2018a) 

https://centaur.reading.ac.uk/81040/: This book chapter contributed to the PhD by summarising the 

recent advances in large-scale flood forecasting with a focus on already existing global and continental 

flood forecasting systems in operation, such as GloFAS. It presented a review of scientific methodologies 

used for evaluating and improving the forecast skill, such as evaluation methods, precipitation bias 

corrections, multi-model approaches and data assimilation. Ervin Zsoter contributed by writing the section 
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on reducing forecast uncertainty through a multi-model environment. 

8.4.5 Alfieri et al. (2018) 

https://centaur.reading.ac.uk/106882/: This paper contributed to the PhD by summarising the global flood 

products developed by the institutions participating in the Global Flood Partnership (GFP). It introduces 

the emerging role of the GFP, a global network of scientists, users, private and public organizations active 

in global flood risk management, by sharing products in near-real time, developed to predict and monitor 

where and when floods are taking place. Ervin Zsoter contributed with description of the Extreme Forecast 

Index and comments on the manuscript. 

8.4.6 Zsoter et al. (2016) 

https://centaur.reading.ac.uk/106885/: This paper presents a study about hydrological uncertainties and 

skill in reanalysis and ensemble forecast simulations produced using the HTESSEL and CaMa-Flood models. 

It can be considered as a preliminary study I have worked on that lead to the start of this PhD. It presents 

a multi-model approach to producing global flood predictions using multiple reanalysis datasets for river 

initial conditions and multiple ensemble forcing inputs from the TIGGE data archive. It analysed the 

sensitivity to the forcing variables and the potential for improving the forecast skill by bias correction. The 

results highlighted that precipitation is by far the most dominant amongst the forcing variables in producing 

river discharge. The results also highlight that the three applied reanalysis datasets have different error 

characteristics that allow for large potential gains with a multi-model combination. It is shown that large 

improvements to the forecast performance for all models can be achieved through appropriate statistical 

postprocessing. Ervin Zsoter generated the river discharge simulations, carried out the computations and 

the analysis and lead the writing of the manuscript. 
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Chapter 9 Discussion 

The aim of this thesis was to increase the understanding of global flood hazard climatologies, to 

analyse how well they can represent the Earth system and to assess how to improve their relevance 

for global flood forecasting applications. 

 

Figure 9-1. Timeline of the major hydrological system updates and scientific publications during the PhD’s 6-year period. 
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This work evaluated some of the crucial characteristics of the reanalysis data sets used to produce 

the climatologies. Some of the limitations of these input data sets were identified, and suggestions 

presented to further improve the modelling methodologies. This could improve climatologies and 

flood thresholds, which are crucial for delivering higher quality flood warnings. 

To illustrate the wealth of the applied hydrological systems (to produce the hydrological data sets 

listed in Chapter 3) and the published papers, either as the four main ones in Chapter 4 to Chapter 

7 or as additional co-authored papers (Chapter 8), Figure 9-1 gives a graphical representation of the 

PhD’s timeline during the 6-year period from September 2016 to September 2022. 

9.1 Key results and discussion points 

The thesis is structured around four main objectives concentrating on specific areas, which resulted 

in the publication of one scientific paper for each of these areas: 

1. Analyse how well the land-surface modelling approach in Earth systems is able to support 

hydrological applications, in particular focussing on the impact of land-data assimilation of 

snow and soil moisture on the hydrological cycle in reanalysis simulations. 

2. Evaluate the hydrological impact of the complexity of the snow scheme in the land-surface 

models in reanalysis simulations, with special focus on cold climate areas in permafrost. 

3. Evaluate the relevant trends in hydrological reanalyses for river discharge and other related 

land-surface variables and analyse how the interactions amongst these variables contribute 

to the trends. 

4. Assess the impact of innovative ways of generating flood thresholds on the skill of global 

flood forecasts, using hydrological ensemble reforecasts. 

The first two objectives looked at land-surface modelling aspects of the Earth system models, 

focussing on the impacts of the land data assimilation and the snow scheme physical complexity on 

global hydrology. Both were investigated in the context of running ERA5-forced reanalysis 

simulations, which provided a long enough period of around 40 years to analyse using river 

discharge observations. These two studies focussed on identifying limitations in the state-of-the-

art Earth system modelling capabilities for global flood forecasting.  

It was found in Chapter 4 that using land data assimilation in the coupled land-atmosphere 

reanalysis simulation of ECLand can largely improve the ERA5 weather conditions, and can for 

example provide better 2-m temperature or snow depth. However, after comparing experiments 

with and without land data assimilation (LDAS), it could be concluded that the current 

implementation of LDAS in the ECLand land surface system, tends to produce increments that 

remove or add water even on an annual average scale. This inevitably leads to systematic water 
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budget errors that can subsequently contribute to significant errors in the river discharge during 

times of peak flow downstream, which is a crucial aspect of any flood prediction. The sign of the 

average increments in the LDAS experiments appears to be negative and seems to be coming mainly 

from the snow-dominated areas, where the assimilation removes snow. In soil moisture-dominated 

areas the river discharge seems to be less impacted by the increments, as the evaporation rate 

plays a more important role. 

The snow assimilation impact on the water content is not specific to the ECLand land surface 

modelling system. Other studies also highlighted significant negative impacts of the snow 

assimilation on the water balance, for example as described in De Lannoy et al. (2012) on a small 

catchment in Colorado, United States, or in Arsenault et al. (2013) in two areas in Colorado and 

Washington states in the United States. 

The impact of LDAS on the water budget is an important aspect of the Earth system models, as it 

can cause potential issues for flood forecasting systems, in case the climatologies (i.e. the flood 

thresholds) behave differently to the real time forecasts. Prime examples of this problem are the 

early GloFAS systems (v0, v1.0 and v2.0), which had used ECLand as their hydrological modelling 

core before v3.1 (with Lisflood) was introduced in May 2021 (Alfieri et al., 2020). 

These GloFAS versions used climatologies generated from offline, surface-only reanalysis data sets, 

which by design did not include the impact of LDAS (data sets such as: GloFAS-ERAI-Land-v0, 

GloFAS-ERAI-Land-v1.0, GloFAS-ERA5-Land-v2.0 and GloFAS-ERAI-Land-v2.0; see Table 3-1). 

However, the real-time GloFAS forecasts of these versions and the reforecasts in v0 and v1.0, did 

include the impact of LDAS, as they used the ensemble runoff forecasts from ENS, that are initialised 

from the operational 4D-Var analysis of ECMWF, which assimilates millions of observations (Wedi 

et al., 2015). 

This thesis demonstrated that the inclusion of LDAS can create large differences in river discharge. 

For these early GloFAS systems, this created large inconsistencies within the system, with the 

climatologies (i.e. the flood thresholds) behaving differently to the real-time forecasts, resulting in 

a different representation of the flood event frequencies. Model developers should be aware of 

this kind of possible inconsistencies, originating from the use of LDAS, and should analyse their 

systems for the severity of the potential impacts. Addressing this potential inconsistency in the 

Earth-system-model-based flood forecasting systems is of great importance. 

It is well-known that data assimilation is a very important component of any Earth system model, 

because it corrects random (day-to-day) errors by making optimal use of a large set of Earth 

observations. However, data assimilation systems are not designed to account for systematic 
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biases. The fact that LDAS produces consistently negative increments in snow-covered areas in this 

study points towards an apparent snow model bias. In contrast, a model affected by random errors 

only, would lead to data assimilation increments of both signs with close to zero annual mean 

values. 

As Dutra et al. (2012) highlighted, the single-layer snow scheme in ECLand (still operationally used 

in 2022) melts the snow too slowly. This makes the LDAS snow increments compensate for the 

systematic snow depth overestimation bias, shown in Chapter 4. The use of physically more 

complex multi-layer snow schemes is one of the suggested ideas that could provide potential 

improvements. 

Chapter 5 explored this idea, by evaluating the hydrological impact of the new ECMWF multi-layer 

snow scheme in reanalysis simulations. The physically more complex snow scheme was shown to 

be able to provide an improved representation of the hydrological processes, demonstrated mainly 

through reduced bias and variability errors of river discharge. However, the performance was 

proved to be suboptimal in large parts of the high latitude permafrost regions, where the current 

operationally used single-layer snow scheme of ECLand (that was also used in the LDAS study in 

Chapter 4) is superior, producing smaller river discharge errors. 

To improve the multi-layer scheme’s hydrological representation in permafrost, modifications of 

the ECLand snow and soil freezing parametrisations were evaluated. It was shown that a series of 

incremental changes could noticeably improve the quality of the river discharge simulation over a 

large area in permafrost, primarily through decreasing the soil temperature and thus increasing the 

amount of surface runoff in the critical spring snowmelt period. 

Even though it was not possible to carry out a full-blown sensitivity study, which would have 

required testing hundreds of parameter combinations, it already largely contributed to the 

understanding of the hydrological importance of each of the modified aspects of the ECLand 

parametrization, by ranking these parametrisation changes from least contributing to most 

contributing in hydrological improvements, based on the verification results for permafrost. 

In addition, this work had a direct impact on the development of the snow model applied in the 

ECMWF IFS. Based on this study, the slightly modified version of ML-Meta1 was selected for 

operational implementation in the next IFS cycle of 48r1, expected sometime during 2023. This 

version of the snow model will include the snow vertical discretization and the first snow 

metamorphism changes, which has been tested for permafrost, on top of the default ML 

configuration.  
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By reporting on the successful impact of the ECLand model’s snow component on the operational 

development, this study demonstrated that hydrological diagnostic studies, such as the work 

presented in Chapter 4 and Chapter 5, have great potential to help improve the land-surface realism 

in Earth system models and contribute to improvements of the whole Earth system, not just the 

hydrological variables, such as river discharge. 

After analysing the hydrological contributions of the crucial aspects of LDAS and snow modelling in 

Earth system models in the context of reanalysis simulations, the two remaining objectives of the 

thesis considered the applicability of these hydrological reanalysis simulations to the generation of 

flood hazard climatologies with related flood warning thresholds. 

These objectives focussed on identifying limitations in the current use of flood climatologies and 

thresholds, either with the presence of non-stationarity in the reanalysis time series or the 

suboptimal use of the reanalysis-based thresholds in flood forecasting. The findings for these two 

objectives are likely to be transferable to forecasting systems based on global hydrological models 

and are not expected to be specific to the earth-system modelling approach, evaluated in this PhD. 

It was found in Chapter 6 that non-stationarity (measured by linear trends) is widespread in the 

global v2.1 GloFAS-ERA5 reanalysis time series. Moreover, the river discharge trends are closely 

linked to changes and discontinuities in the underlying land surface variables, most notably 

precipitation and snowmelt. The linear trends in GloFAS-ERA5 seem to be driven by changes in 

precipitation over tropical and subtropical areas of the world, while snowmelt changes show a very 

strong influence in determining the river discharge trends in northern latitudes. The snowmelt 

behaviour in northern latitudes is likely to be related to changes in the snowmelt processes, 

especially the snow assimilation combined with inhomogeneities in the use of available 

observations. This is confirmed by more realistic-looking trends in ERA5-Land, which is not 

impacted by land data assimilation. 

The linear trends, analysed in this thesis, highlighted very noticeable issues with the non-

stationarity of the ERA5 (and in many aspects also ERA5-Land) land-surface related variables. The 

majority of the demonstrated, dominantly negative trends in ERA5 could not be confirmed by 

corresponding observed linear trends. Regardless of the often-shorter period of available 

observations there have to be some fundamental reasons behind this discrepancy. 

Some of the trends, in particular the very negative ones in the higher latitudes, could be attributed 

to the land data assimilation impact on the snowmelt, which appears to show a large shift related 

to the use of the IMS satellite-based snow product from 2004. Another potential driver of the ERA5 

trends could be the several streams that were run in the ERA5 production and later merged into 
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one consolidated data set. However, even though this was shown to have produced some 

discontinuities in the deep soil, where spin-up can take several years (Hersbach et al., 2020), it is 

not expected to be a noticeable contributor to the large trends, highlighted in this thesis. 

The findings of the thesis suggest that there have to be other underlying reasons, possibly 

significant observation system inhomogeneities (similar to the IMS data), which could impact the 

land-surface variables and contribute to the large trends in variables like precipitation or snow. The 

future versions of ECWMF reanalysis data sets, such as ERA6, will undoubtedly benefit from studies 

like the one presented in this thesis. These hydrology-focussed diagnostic studies can help the 

research teams by signposting where further developments are needed in order to improve the 

stationarity aspect of the land-surface variables in the reanalyses. 

The presence of large trends can have a very negative impact on flood forecasting systems that use 

reanalysis data sets to generate their flood thresholds, such as GloFAS. The thesis highlighted this 

for an example catchment in the Congo basin in Africa, which suffers a very large drop in river 

discharge from about year 2000. When flood thresholds are computed based on a time series with 

a large decrease in river discharge, the system does not produce flood warnings at all. This is 

actually an existing problem in the operational GloFAS version, which is visible in the missing flood 

reporting points in that area for all forecast dates on the GloFAS forecast website 

(www.globalfoods.eu). Based on the analysis presented in this thesis, it is recommended that flood 

forecasting system developers should carefully analyse the climatologies for the occurrence of large 

trends, such as shown here for the state-of-the-art ERA5 reanalysis and the related GloFAS-ERA5 

river discharge reanalysis.  

As the above example suggests, the way flood thresholds are generated, is expected to have a 

significant impact on the behaviour of the flood forecasting systems and on the related reliability 

and skill of the system. Moreover, the usability of flood thresholds and the related forecast 

performance are not only impacted by large trends in the river discharge reanalysis, but also by 

biases in the forecast simulations that evolve with the increasing forecast range. This can also be 

an issue, as different biases across lead times are likely to lead to different occurrence frequencies 

of extreme events (i.e. floods), which cannot any more be represented by the same set of flood 

thresholds at all those different lead times. 

To address this issue, a methodology of deriving range-dependent flood thresholds from ensemble 

reforecasts was developed in this thesis in Chapter 7. After different annual maxima sampling 

methods were analysed to generate flood thresholds, the ensemble-reforecast-based thresholds 

could be shown to deliver much improved forecast reliability and skill, compared with the use of 
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reanalysis-based nonvarying thresholds, that are usually applied operationally in most forecasting 

systems. Overall, forecast errors could be reduced by up to 50-90% when using the ensemble-

reforecast-based flood thresholds, compared with the traditional reanalysis-based thresholds, 

depending on the flood severity and lead time. Results also showed that using the single 

unperturbed control member to define the thresholds is not sufficient and exploring the full 

ensemble of the reforecasts in the threshold derivation can often further increase the forecast 

performance. 

The thesis highlighted, that using the median of hundreds of threshold sets, generated by taking 

one randomly selected ensemble member-from each reforecast, can deliver the best overall 

results. However, this is not always the case, as for lower flood severity levels there were slightly 

better performing options. In addition, it has to be acknowledged that the methodology presented 

in this study, will become relatively expensive when performed not only for a selection of few 

thousand catchments, but for the whole GloFAS river network (with millions of river pixels). 

Therefore, in case the computational resources are limited, the use of the single ensemble control 

member, which does not require any randomised threshold generation, could provide a good 

compromise with high overall performance. 

Similarly, it was argued in Chapter 7, that the post-processing of the forecasts against the reanalysis 

data set (e.g. by quantile mapping), could be an alternative method to account for the range-

dependent biases in the system. However, this will naturally alter the forecast values, which might 

not be preferable to some users, regardless of how well this method handles skill and reliability.  

Therefore, it is recommended that every hydrological forecasting system should be evaluated for 

the underlying biases, following the method described in this thesis. This will highlight possible 

inconsistencies in the system between the flood hazard climatology and the forecasts. Using 

ensemble reforecasts could provide the best platform to do this, but even if they are not available, 

the consistency between the climatology and the historical forecasts (even if produced with 

different model versions), should be diagnosed. 

This thesis demonstrated that using flood thresholds in flood forecasting systems, which do not 

represent the behaviour of the real-time forecasts well for all lead times (for example in GloFAS), 

will inevitably decrease the skill and reliability of the flood warnings and jeopardise the confidence 

of the users in the system. These systems can greatly benefit from using ensemble-reforecast-based 

thresholds instead, as a practical and effective way to resolve inconsistencies between forecasts 

and flood thresholds, thus increasing the flood forecast skill. 
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9.2 Next steps 

Each of the four main papers presented in this thesis contributed to improving the knowledge about 

flood hazard climatologies. While significant progress was made in exploring possibilities for 

improved quality as well as using these climatologies in global flood predictions, the work also 

raised several questions and provided motivation for further research. While each of the Chapter 4 

to Chapter 7 highlighted some aspects for further studies, this section identifies some key areas for 

future work with examples where work could be extended and built upon. 

Chapter 4 highlighted the hydrological impact of a crucial land surface modelling aspect, 

demonstrating that LDAS can cause significant water budget issues and introduce biases in flood 

predictions. When the study was conducted, there was no feasible option to run the land–

atmosphere coupling and LDAS separately in the ECMWF NWP system. Either both were active as 

in ONLINE (in the coupled modelling system with LDAS), or neither of them as in OFFLINE 

(uncoupled land-surface only simulation without LDAS, using meteorological forcing). Separating 

these two contributing modelling options by running and checking reanalysis simulations with only 

one of them being active would provide an interesting insight into the land–atmosphere coupling’s 

contribution in the future, in addition to the impact of LDAS. 

Even though it was demonstrated that LDAS can cause issues in downstream hydrological 

applications by opening the water budget, the use of data assimilation in hydrological simulations 

is undoubtedly crucial. The inclusion of LDAS in reanalysis simulations is expected to be made 

possible by the stand-alone surface analysis (SSA) configuration, which is a recent, ongoing area of 

developments at ECMWF. The SSA skips the very expensive upper atmosphere 4D-Var part of the 

assimilation by replacing it with the upper-air analyses from another existing experiment, while the 

land data analysis is still performed in the standard way. This offers the possibility of carrying out 

offline reanalysis runs, similar to the experiments evaluated in Chapter 4 and Chapter 5, but this 

time also including land data assimilation. In the future, the applicability of the SSA to generate 

surface-improved hydrological reanalysis data sets should be evaluated. This new methodology 

promises the generation of improved, forecast-consistent climatologies, which include not just 

hydrological modelling improvements and externally enhanced meteorological forcing, similar to 

ERA5-Land, but also the crucial land data assimilation. 

An area where improvements are needed in the future, is to directly address the LDAS’s limitation 

to open the water budget by the potentially systematic increments. For this, different approaches 

(e.g. Zaitchik and Rodell, 2009 or Pan and Wood, 2006) could be explored in ECLand that include 

special handling of the snow and soil moisture increments, in order to retain the water in the 

hydrological cycle during the data assimilation cycle. As a first step, this could be investigated in 
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uncoupled systems, where the closure of the water balance could be easier to achieve when 

assimilating hydrological observations in an offline environment. In the long term, however, a fully 

coupled land–atmosphere NWP system’s hydrological performance is to be explored, with a 

coupled land–hydrology data assimilation at its core. This would provide a true Earth system 

approach, where the joint assimilation of land surface and river discharge observations would 

consistently correct the different components of the Earth system. 

Another area where the Earth system modelling approach could be improved at ECMWF, is the 

handling of the parametrisation in ECLand, as highlighted in Chapter 5, with the evaluation of the 

new multi-layer snow scheme. The results demonstrated that the uniform parameters used 

currently in ECLand are too simplistic and cannot work efficiently for both permafrost and non-

permafrost areas in snow-impacted climate. It was suggested that spatially variable 

parametrization of hydrologically sensitive variables in permafrost (such as the snow and soil 

freezing parameters explored in Chapter 5), could bring a more balanced approach and would 

deliver an improved hydrological process representation. This idea should be tested in the future. 

The first building blocks of this work have already been implemented at ECMWF, with the 

refactorization of ECLand (by removing hard-coded parameter values) and the implementation of 

Multiscale Parameter Regionalization (MPR; Schweppe et al., 2021) for estimation of spatially 

varying parameters. The ambitious attempt to calibrate the parameters in ECLand for an improved 

land–atmosphere–coupled hydrological performance is going to be one of the most important 

future developments in the Earth system modelling. 

The results of this thesis proved that further development of the snow and soil parametrizations in 

ECLand are necessary in order to achieve a better hydrological performance, not just in permafrost, 

but everywhere globally. 

Future modelling work, on the one hand, should focus on improving the hydrological response of 

the existing snow and soil parametrisation areas, for example by analysing the sensitivity to the 

snow cover fraction parametrisation by exploring more complex relationships between snow depth 

and snow cover. On the other hand, there are still some poorly represented or even non-

represented hydrological processes in ECLand, which promise to bring potential hydrological 

improvements in snow-dominated areas. Areas that could be considered include a deeper soil with 

additional vertical layers, wind-driven snow sublimation, snow interception by forests or a more 

physically complex phase representation of the water in the soil. 

Another area that could have a potential impact on the river-discharge-reanalysis-derived flood 

climatologies is the presence of striking and dominantly negative trends, as highlighted in Chapter 
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6, by evaluating the state-of-the-art GloFAS-ERA5-v2.1 reanalysis. Although the presented analysis 

managed to provide a preliminary exploration of the underlying causes for these pronounced linear 

trends, further investigations of the reasons could be crucial for future reanalysis developments at 

ECMWF. This should include further analysis of alternative meteorological reanalyses data sets, 

such as MERRA2 or JRA55, and other gauge- and/or satellite-based climate data sets, such as GPCP, 

GPCC, TRMM 3B42, CMORPH, MSWEP etc. These could be analysed for similarities and differences 

in the trend patterns vs trends in ERA5/ERA5-Land variables, which could highlight further 

explanations behind the demonstrated ERA5 trends presented in Chapter 6. This is especially 

important for areas such as the central region of Africa and the southwestern part of the United 

States, where large negative trends are present across both precipitation and river discharge and 

also ERA5 and ERA5-Land, pointing to a potential observation system inhomogeneity issue. 

It would be beneficial to compare the newer version of the GloFAS-ERA5-v3.1 river discharge 

reanalysis with GloFAS-ERA5-v2.1 (the one analysed in Chapter 6). Winkelbauer et al. (2022) already 

looked at the trends in GloFAS-ERA5-v3.1 (including other reanalysis products), specifically in the 

Arctic regions, and pointed out that v3.1 shows a marked improvement over v2.1 for this area of 

the world. As GloFAS-ERA5-v3.1 uses Lisflood for the hydrological modelling core instead of ECLand, 

the globally extended v3.1 vs v2.1 comparison could highlight differences caused by the 

hydrological modelling and not by the meteorological forcing. For example, land data assimilation 

will impact v2.1, as ERA5 runoff is used in there directly, but will not impact v3.1, as runoff is 

computed by Lisflood from the ERA5 meteorological input. 

Moreover, it is expected that large trends in the river discharge reanalysis will potentially cause 

problems when flood thresholds are derived from these non-stationary time series, as the trends 

make them less representative of the forecast behaviour, ultimately causing unreliable warnings 

when related forecast probabilities are used. Future versions of the flood climatologies could build 

upon studies that analyse the extent of the trend impact on the actual forecast reliability and skill. 

This should preferably be done in a combined evaluation with the ERA5 back-extension to 1959, by 

rechecking the non-stationarities in the longer period, and the alternative threshold generation 

methodologies, such as suggested in Chapter 7, using ensemble reforecasts over a shorter period 

(i.e. 20 years), simply because shorter periods could naturally be less prone to the presence of 

impactful trends. 

The underlying cause for the drop of reliability and skill, when using non-lead-time-dependent flood 

thresholds for longer lead times, as presented in Chapter 7, is related to the non-stationary, 

evolving biases across lead times in the forecasts. As different hydrological forecast systems are 

expected to show different bias structures, applying the methodology of this thesis to other 
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systems could lead to different results. It would be beneficial to test this in the future by repeating 

the study with the most recent modelling version of GloFAS (currently GloFAS-ERA5-v3.1 reanalysis 

and GloFAS-ERA5-RFC-v3.1 reforecasts). The behaviour of the biases and the impact on forecast 

skill and reliability could well be different, for example in the case of v3.1 vs v2.1, as it could possibly 

originate from the contrasting hydrological modelling cores of Lisflood vs ECLand/Lisflood-routing. 

It was also discussed in Chapter 7 that the post-processing of the river discharge forecasts against 

the reference dataset (in our case the reanalysis) could be an alternative route to using range-

dependent flood thresholds based on ensemble reforecasts. This could be explored in a future 

study by applying e.g. a simple linear regression or quantile mapping to the forecasts. The use of 

ensemble reforecasts, presented in this thesis, and the alternative forecast post-processing could 

be compared and the pros and cons evaluated for both methods. 

Moreover, future studies should also focus on investigating the possibility of an operational 

implementation in the GloFAS system of the method recommended in Chapter 7, or potentially the 

alternative forecast bias correction that is to be explored in the future. The implementation 

procedure should also include some careful consideration of the users’ needs by collecting their 

suggestions and feedbacks. The potential benefits and drawbacks of changing the operational 

system’s one-value-for-all-lead-times thresholds should be evaluated and the most beneficial 

method, which can most effectively resolve inconsistencies between forecasts and flood thresholds 

and deliver increased flood forecast reliability and skill, should be identified and carefully 

implemented. 

9.3 Limitations of the thesis 

The findings in this thesis are specific to the Earth system model used at ECMWF, with the land-

surface scheme of ECLand and the processes associated with this scheme, which provided the 

hydrological modelling core for all the main studies presented in Chapter 4 to Chapter 7. However, 

different hydrological modelling systems that include LDAS, should all be susceptible to water 

budget issues through the increments, regardless of the models and processes included, even 

though the impacts are obviously not expected to be enterely the same. 

Similarly, the hydrological impact of the snow model complexity will be expected to be specific to 

the hydrological modelling and the various land-surface process interactions in ECLand, but the 

individual analysed processes, such as the snow vertical discretisation or the change in the snow 

metamorphism, should represent a more general behaviour independent of the model system. 

In addition, the choice of modelling system could also be a potential limitation for the threshold 

impact study, presented in Chapter 7. However, the methodology was designed in a way to ensure 
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that the results are expected to be generally independent of factors like the choice of model, the 

extreme value fitting method or the sampling period length. 

In Chapter 4, the limitations also include the missing option of separating the impact of land–

atmosphere coupling and LDAS in the ECMWF Earth system model. Either both were active as in 

ONLINE, or neither of them as in OFFLINE. Future studies could potentially evaluate, whether the 

land–atmosphere coupling noticeably contributes to the impact of LDAS as the dominant source of 

differences between ONLINE and OFFLINE (as argued in Chapter 4). 

In general, the LSMs’ ability to support hydrological simulations can be limited by inadequate 

handling of numerous underlying processes, causing potential problems downstream in the 

hydrological applications. Even though this thesis could demonstrate this by studying the impact of 

two important processes, the LDAS and the snow model complexity in Chapter 4 and Chapter 5, it 

has to be acknowledged that there are many other areas with expected significant hydrological 

contributions, such as evaporation, runoff generation or soil moisture processes, which could not 

be part of this thesis. 

Similarly, the study of the hydrological impact of the snow model complexity in Chapter 5 could not 

be designed to be a full sensitivity experiment for the land-surface processes in permafrost. That 

would have required a very large computational cost, so instead some of the most important 

processes, such as the vertical discretisation or the snow-soil thermal conductivity, were 

investigated. 

It also has to be acknowledged that even with the best care taken in the experimental setup of the 

studies in Chapter 4, Chapter 5 and Chapter 6, the network of analysed catchments with river 

discharge observations is still under-representative. This is particularly true in tropical areas, which 

are especially poorly observed with large gaps in space and time in the reanalysis period of 1980 to 

2018. Moreover, the 8 and 9 minimum number of years in the hydrological evaluations (in Chapter 

4 and Chapter 5) and the 16 years in the linear trend analysis (Chapter 6) are relatively short 

minimum observation periods, but due to the limited availability of observations especially in more 

recent years, this was accepted as a compromise. 

Regarding the trend analysis, it can be acknowledged that more complex trend analysis methods 

could have been used in Chapter 6 instead of the simple linear method, many of which could have 

also provided information on the significance level. However, the study in this thesis was only 

intended to deliver a general first picture about any non-stationarity in the reanalysis time series. 

Moreover, it is also relevant that large discontinuities, such as the one highlighted in relation to the 

introduction of the IMS satellite-based snow cover product in 2004, can make the linear trend 
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analysis somewhat unreliable. However, it could be argued, that the evolution of snow (and 

probably of other relevant variables as well) in ERA5 and ERA5-Land (see Figure 6-5) appears to be 

more complex than a single discontinuity in 2004, which suggests the linear trend analysis still 

delivers very valuable information even on the whole reanalysis period of 1981- 2018. 
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Chapter 10 Conclusions 

Earth system models have largely improved in physical complexity and land-surface process 

representation in recent decades. This has helped them in reaching the level required to support 

the development of global hydrological flood forecasting applications, with GloFAS as one of the 

prime examples. The flood hazard climatologies and their flood thresholds, usually generated from 

reanalysis, are key elements of these systems. The quality of these climatologies is crucially 

important, as it has a strong influence on the value of the derived flood warnings. 

The main aim of this thesis was to explore some of the crucial characteristics of the data sets used 

to produce these flood hazard climatologies and to identify areas of limitations, where the quality 

of the applied modelling or input reanalysis data sets could be improved. In addition, the thesis also 

explored aspects of the generation and use of the flood hazard climatologies. The presence of non-

stationarity in the reanalysis time series and the suboptimal use of the reanalysis-derived flood 

thresholds in flood forecasting were both investigated. 

It was found that even though the land data assimilation can largely improve surface weather 

conditions, it tends to produce systematic increments even on an annual average scale, which open 

the water budget and potentially cause large river discharge errors in downstream applications. In 

soil-moisture-dominated areas, the river discharge seems to be less impacted by the increments, 

but over snow-dominated areas, the assimilation deteriorates the river discharge quality by 

removing snow in response to an apparent snow model bias. 

The new multi-layer ECMWF snow scheme was evaluated as a potential solution for the snow 

model bias problem. The physically more complex scheme was shown to provide an improved 

hydrological process representation over large parts of snow-dominated areas. However, the 

performance was suboptimal in permafrost regions. This was addressed by modifications in the 

ECLand snow and soil freezing parametrisations. It could be shown that a series of incremental 

changes could noticeably improve river discharge in permafrost, primarily through decreasing the 

soil temperature and increasing the surface runoff in the critical spring snowmelt period. 

The thesis could also show that non-stationarity, measured by linear trends, is widespread in the 

analysed GloFAS-ERA5 hydrological reanalysis time series. The trends seem to be driven by changes 

in precipitation over the tropical and subtropical areas of the world, while snowmelt has a very 

strong influence in determining the river discharge trends in the northern latitudes. 

Although large trends are likely to hinder the usability of the derived flood thresholds, non-

stationary forecast biases will also be expected to reduce reliability and skill, as the same reanalysis-
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based threshold will likely become less and less representative of the forecasted flood events with 

the increasing forecast range. To address this, a new methodology of range-dependent flood 

thresholds, generated from ensemble reforecasts, was developed. These ensemble-reforecast-

based thresholds were shown to deliver much improved forecast reliability and skill. Overall, 

forecast errors could be reduced by up to 50-90%, compared with using the traditional reanalysis-

based thresholds. Results also showed that using all ensemble members in the threshold generation 

could bring further advantages over the use of the single unperturbed control member. 

The four main papers, addressing the objectives outlined in Chapter 1, and many of the additional 

co-authored papers (see Chapter 8) summarised in this thesis, all contributed to improving the 

knowledge about flood hazard climatologies. The topics covered in the scientific studies presented 

in this thesis are generally relevant for any hydrological forecasting systems, not just the ones that 

have an Earth system model with a land-surface scheme as their hydrological core, such as GloFAS 

before its v3.1 upgrade in May 2021. 

This research highlighted hydrologically relevant limitations in the reanalysis data sets, used to 

generate climatologies, and suggested potential avenues for improving those areas. In the case of 

the multi-layer snow model’s impact in permafrost, the recommended ECLand parametrisation 

changes were also analysed. This additional sensitivity analysis led to a change of the multi-layer 

snow scheme’s operational candidate, to be implemented in the next IFS cycle (48r1) in 2023, which 

is specifically due to the highlighted hydrological improvements in permafrost. 

This thesis demonstrated that diagnostic studies, such as the work presented in Chapter 4 and 

Chapter 5 about the hydrological impact of LDAS and the snow scheme complexity in land-surface 

schemes, can have great success in helping the improvement of land-surface realism in Earth 

system models and in contributing to improvements of the whole Earth system and not just of the 

hydrological variables, such as river discharge. 

This thesis also demonstrated that using flood thresholds in flood forecasting systems that do not 

represent the extreme event behaviour of the real-time forecasts well for all lead times (for 

example in GloFAS) will inevitably decrease the skill and reliability of the flood warnings and 

jeopardise the user confidence in the system. This inconsistency between the extreme event 

representation of the climatology and the forecasts can be caused by sources such as large trends 

in the underlying reanalysis time series or the nonstationary biases in the forecasts, as shown in 

Chapter 6 and Chapter 7, respectively. 

The future versions of reanalysis data sets, such as ERA6 of ECMWF, will undoubtedly benefit from 

studies like the ones presented in this thesis. These can help research teams by signposting which 
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areas further development activities should concentrate on, in order to improve the quality of the 

land-surface variables in the reanalysis data sets. 

The findings of this research have implications for both the land-surface modelling and global flood 

forecasting communities. As a take-home message, the thesis contributed practical 

recommendations for system developers, in order to reduce the risk of unnecessary skill loss. 

Firstly, they should look out for a potentially inconsistent use of LDAS in different parts of the 

system (i.e. climatology and real-time forecasts), like the example of GloFAS before May 2021. 

Similarly, climatologies should be analysed for the occurrence of large trends, such as shown here 

for the state-of-the-art ERA5 and the related GloFAS-ERA5 river discharge reanalyses. In addition, 

potential inconsistencies should also be checked in the handling of extreme events in different parts 

of the systems. This should be done preferably using the methodology presented in Chapter 7, with 

the help of reforecasts, or when available, ensemble reforecasts, but even if no reforecasts are 

available, at least the largest possible collection of historical forecasts should be used. 

The presence of these potential issues affecting the flood hazard climatologies and the related flood 

warnings, explored in this thesis, should be always investigated. Without addressing these latent 

issues, the reliability and skill of the flood event forecasts and thus the quality of the flood warnings 

could be substantially reduced. This should be avoided, as it can strongly influence the decision-

making process and ultimately lead to a loss of confidence in the products of the global flood 

forecasting systems. 

The work presented in this thesis has contributed to better understanding and refined use of flood 

hazard climatologies. It has also provided practical recommendations to the hydrometeorological 

community for improved global flood forecasting that can bring better preparedness across the 

world and ultimately can help saving lives and protect livelihoods. 
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A1: How well do operational numerical weather prediction setups represent 
hydrology? 

This paper presents the published version of chapter 4 of this thesis, with the following reference: 

Zsoter, E., H Cloke, E. Stephens, P. de Rosnay, J. Muñoz-Sabater, C. Prudhomme and F. 

Pappenberger, 2019: How well do operational Numerical Weather Prediction setups represent 

hydrology?, J. Hydrometeorol., 14, doi:10.1175/JHM-D-18-0086.1 
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A2: Hydrological impact of the new ECMWF multi-layer snow scheme 

This paper presents the published version of chapter 5 of this thesis, with the following reference: 

Zsoter, E., G. Arduini, C. Prudhomme, E. Stephens, H. Cloke, 2022: Hydrological Impact of the New 

ECMWF Multi-Layer Snow Scheme, Atmosphere, 13(5):727, doi:10.3390/atmos13050727 
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A8: Additional figures 

 

 

Figure 4-4b. Difference 2m temperature mean absolute errors between ONLINE and OFFLINE for January based on 

observations in 2000–07 (degrees). Points are shown where observations are available. Blue colours indicate lower errors 

in the ONLINE experiment. This figure is added to show error differences for 2m temperature, similar to Figure 4-4 for 

snow depth. 
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