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Abstract

Data assimilation has often been performed under the perfect model assumption, but in re-

ality, numerical models often contain model errors with spatial and temporal correlations.

The objective of this thesis is to thoroughly investigate the impact of an inaccurate time

correlation in the model error description on data assimilation results, both analytically

and numerically using the ensemble Kalman Smoother (EnKS). Furthermore, we try to

develop an efficient way to perform online estimation of certain model error autocorrela-

tion parameters with the data assimilation scheme.

With a simple linear model and a single-parameter autocorrelation, we find that the per-

formance of the data assimilation scheme can be impacted by the departures between the

actual values of the parameter and the value proposed in the data assimilation process with

sparse observations. However, the impact of the incorrect parameter can be diminished

with dense observations. Furthermore, we show that the correct model error decorrelation

timescale can be estimated after multiple simulation windows using the state augmenta-

tion method with the linear system.

More complex autocorrelation, in which decaying and oscillatory scales are considered,

is later examined on the linear model and, furthermore, a nonlinear logistic map. It seems

impossible for the EnKS to track both decaying and oscillatory parameters in the auto-

correlation, and the iterative variant of the EnKS (IEnKS) is required. With the nonlinear

logistic map, even the IEnKS fails to find the correct values for the two parameters and can

get stuck in local minima. Fortunately, we can find the correct values of the parameters

with careful tuning of the IEnKS and transformation of the solution space.

When the problem confronts a high-dimensional nonlinear system such as the quasi-

geostrophic model, a large part of the state has to be observed in space, even for the
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simplest case of the model error autocorrelation. In this case, it shows the limitations

of our method for practical weather forecast systems since the observation cannot be as

dense as needed for the parameter estimation to work, and result in an affordable scheme.
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Chapter 1

Introduction

1.1 Motivation

With a dense population distributed in major cities, weather forecasts to prevent the dam-

age of high-impact weather are increasingly more critical. New studies (such as Hanlon

et al., 2021) have established that high-impact weather, such as extremely hot days, heavy

rainfall, floods and wildfires, could become more frequent and intense based on the cur-

rent global warming circumstance and its variability. According to the Fifth Assessment

Report published in 2014 by the Intergovernmental Panel on Climate Change (IPCC)

(Pachauri et al., 2014), the economic losses associated with extreme weather will con-

tinue to increase. Besides, extreme weather can also easily affect human well-being and

health. A disaster-related to weather, climate or water hazard occurred every day on av-

erage over the past 50 years, killing 115 people daily (Ebi et al., 2021). Therefore, highly

accurate weather forecasts are needed more than ever to prevent the loss of life and prop-

erties (see e.g. Bauer, Thorpe, and Brunet, 2015).

There are 3 main reasons that weather forecast is not and can never be exact: mea-

sured observation uncertainty, chaotic behaviour of nature and model limitations. The

observational data of the numerical forecast prediction (NWP) system comes from dif-

ferent sources, terrestrial and space based. There is no specific way to know precisely
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what is happening at present by analyzing the data, but the large-scale patterns can be de-

fined with uncertainties. Another factor that diminishes the accuracy of weather forecast

is the chaotic behaviour of the atmosphere. It has been suggested that a butterfly flap-

ping its wings in Tokyo can create a storm in New York because small weather features

can develop into large-scale events over a period of a few days (Lorenz, 1972). Forecast

skills will be appreciable, although forecasts will only be somewhat reliable. By a week

or so skill will be less and forecasts rather hit and miss, and skill will decrease to zero

after 15 days (Toth and Buizza, 2019). This heavily depends on the variable. At last, the

NWP system also has its limitations for various reasons, such as limited computational

power and lack of knowledge of atmospheric and oceanic physics. Imperfect models

create errors that can feed into the weather forecast results. Studies on predictability in

forecasting models have shown that model error has indeed significant impact on the ac-

curacy of weather forecast (Dalcher and Kalnay, 1987; Palmer, 2019; Alley, Emanuel,

and Zhang, 2019; Krishnamurthy, 2019). However, due to various sources of the model

error and its increase over time, measuring the model error is impossible for the present

skills. More efforts to improve the forecast accuracy focus on state variable estimation

through assimilation of the observation and ensemble forecasting (e.g. Anderson, 2001;

Whitaker and Hamill, 2002). Ideally, forecast model deficiencies should be addressed by,

for instance, improving the physical parameterizations (e.g. Couvreux et al., 2021) or ap-

plying higher resolution systems to resolve small-scale processes (e.g. Tonani et al., 2019;

Mukhopadhyay et al., 2019). But even current state-of-the-art parameterization schemes

and high-resolution numerical system cannot remove all the model errors in our forecast

models (see in e.g. Zheng et al., 2016; Comin et al., 2018). Therefore, representing the

model error in the weather forecasting system can be a more direct solution to improving

the forecast accuracy.

Instead of neglecting the model error, one possible way to relax the strong-constraint
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setting is to treat the model error as a random or an uncorrelated white noise with pre-

scribed error covariances (such as in Heemink, Verlaan, and Segers, 2001). However, in

reality, the model errors are often spatially and temporally correlated. Another approach

is using data assimilation schemes with parameter estimation to estimate the model er-

ror or at least certain characteristics of the model error. Some research has shown that

with the updated model error characteristics, data assimilation can provide significantly

improved results (see discussions in Amezcua and Van Leeuwen, 2018; Ren, Amezcua,

and Van Leeuwen, 2021). In this thesis, we investigate the impact of the autocorrelated

model error on the data assimilation results, more specifically the impact of misspecified

autocorrelation of the model error. Furthermore, we try to find a way to estimate certain

parameters in the model error autocorrelation online in order to update the model error

and improve the data assimilation results with the ensemble Kalman Smoother (EnKS)

and its iterative variant (IEnKS).

1.2 Thesis aim

The objective of this thesis is to investigate the impact of the model error, more specif-

ically, temporal auto-correlated model error, on data assimilation results and find a way

to update the model error online within the data assimilation procedure. We propose

different formulations of the model error autocorrelations, and examine the results with

different models, both linear and nonlinear.

Then, we have the following research questions that need to be answered:

1. What impact does the temporal autocorrelated model error have on the data

assimilation results?

Specifically, we investigate:
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• What is the impact of the model error characteristic on the ensemble spread\variance

and RMSE?

• How sensitive are data assimilation results to observation density?

• How would the misspecified autocorrelation of the model error impact the

performance of the data assimilation scheme?

2. Is it possible to establish a way to update the parameters encoded in the model

error autocorrelation online during the data assimilation procedure?

While the temporal autocorrelation of the model error is considered, we want to

implement different formulations of the model error autocorrelations and examine

them on different models, both linear and nonlinear. Specifically, we will look at:

• How sensitive are the parameter estimation results to different model error

formulations?

• Do we need a more efficient data assimilation scheme for the parameter esti-

mation in a nonlinear system instead of the EnKS?

• How many observations are needed to obtain the optimal results for parameter

estimation?

• Furthermore, what impact of the initial guess will the parameters have on the

parameter estimation results?

3. How does our estimation method perform in more complex and higher-dimensional

systems, such as the Quasi-geostrophic (QG) model?

The final goal of our project is to implement our method in a more realistic system,

the QG model. We further investigate:

• With the higher-dimensional and more complex system, would the same method

and data assimilation scheme works for parameter estimation?

• If the original settings fail, what kind of tuning is needed to perform successful

parameter estimation with complex models? Or is there an alternative method
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we can use to achieve our goal?

1.3 Principal new results

The principal new results of this thesis (numbered according to the order of chapters) are:

1. The misspecified model error autocorrelation can significantly affect the perfor-

mance of the data assimilation scheme. We find that to have a fair estimation of the

parameters encoded in the model error, frequent observations are required.

2. Estimating model error autocorrelation parameters is indeed a difficult task, even

within a low-dimensional system. However, practical solutions can be found via a

careful reformulation of the problem.

3. Parameter estimation using the state augmentation method on the high-dimensional

nonlinear system is a much more complex problem compared with state variable

update. We need much more dense observations in space to produce satisfactory

parameter estimation that converges to the correct value of the parameter.

1.4 Outline of the thesis

The general structure of this thesis is as follows:

• Chapter 2 generally introduces different data assimilation methods, and the gen-

eral ideas of various data assimilation approaches. We also highlight the importance

of including model error in the NWP systems and data assimilation process. Fur-

thermore, the treatments of the model error in the data assimilation schemes in the

past years are also discussed. Finally, we review the parameter estimation methods

applied in the data assimilation schemes in the past years.
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• Chapter 3 starts with the formulation of the ensemble Kalman smoother (EnKS)

we use in our experiments, and describes the model error autocorrelation structure.

In detail, we examine the impact of the model error autocorrelation on the ensemble

variance and mean-square error (MSE). Then, we move to a higher dimensional

linear system and evaluate the performance of the EnKS with the autocorrelated

model error by computing the ratio of root-mean-square error over the ensemble

spread. The final part of the chapter is to perform parameter estimation of the

decaying scale encoded in the autocorrelation. This chapter has been published as

Ren, Amezcua, and Van Leeuwen (2021).

• Chapter 4 further investigates the possibilities of performing online parameter es-

timation for the model error. After the results on a linear system with simple de-

caying autocorrelation of the model error, we extend our experiments to a highly

nonlinear system, the logistic map. We also propose a different structure of the

model error autocorrelation, including both decaying and oscillatory scales. First,

we experiment with different formulations of model error autocorrelations on the

simple linear model we used in Chapter 3 using the EnKS and its iterative variant

(IEnKS). Then, we perform the parameter estimation on the logistic map using the

IEnKS with different tunning settings. This chapter has been recently published

(Amezcua, Ren, and Van Leeuwen, 2023).

• Chapter 5 introduces a more complex and realistic model, the quasi-geostrophic

model, for our experiments. As mentioned in Chapter 3, the ultimate goal is to

update the model error in the operational forecasting system. Since the results on

both linear and nonlinear systems are quite promising, we extend our experiments

to a quasi-geostrophic model. We start with the formulation of the 2-layer QG

model and how we solve the model numerically. Then, we introduce an ensemble

smoother in ensemble subspace to simulate more observations with less computa-

tional power. We offer the results for the state update on the QG model. Further-

more, we investigate the performance of the smoother. Then, we show the results
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of parameter estimation using state augmentation with the ensemble smoother in

ensemble subspace for the simplest case in the model error autocorrelation.

• Chapter 6 summarises the results of this thesis regarding the research questions

presented in Chapter 1. We also propose the potential aspects of future work on

autocorrelated model error estimation in data assimilation schemes.





9

Chapter 2

Review of data assimilation methods

and model error treatment

2.1 Data assimilation methods

Data assimilation combines prior information provided by numerical model simulations

with observations from reality to produce the best possible description of the system of

interest and its uncertainty (see in Evensen, Vossepoel, and Van Leeuwen, 2022). The

general solution of the data assimilation problem is given by Bayes’ theorem (Bayes,

1763):

p(x|y) = p(y|x)p(x)
p(y)

, (2.1)

where x represents the state of the system, and y denotes the observations. From Bayes’

theorem, the probability density function (pdf) of the state variable given observations

p(x|y) can be obtained knowing the pdf of the state variable p(x), the conditional pdf of

the observations given the current state of the system, and the marginal pdf of the obser-

vations, which is independent of state variables.

Various approaches in the field of data assimilation have been developed in the past

years, such as the classic variational approach (Courtier and Talagrand, 1987), the statis-

tical approach based on the Kalman filter formulation (Asch, Bocquet, and Nodet, 2016),
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and new approaches such as the hybrid method (e.g. Hamill and Snyder, 2000; Lorenc

et al., 2015; Goodliff, Amezcua, and Van Leeuwen, 2015) which tries to combine the

benefits of the two classic approaches. Variational methods try to find the mode of the

posterior pdf, assuming a Gaussian prior and Gaussian observation error. The maximum

of the posterior pdf p(x|y) appears at the exact location in state space as the minimum of

the cost function, defined as:

J (x) = − log p(x|y). (2.2)

Kalman-Filter-like methods, which assume a Gaussian prior, Gaussian observation error,

and a linear observation operator, are popular and well-examined as members of the sta-

tistical data assimilation approaches. Then the solution can be found analytically using

linear algebra methods. Ensemble variants have been developed to avoid having to store

and propagate the large covariance matrix that is explicitly needed in a Kalman Filter (e.g.

Evensen, 1994; Evensen and Van Leeuwen, 1996). Since both variational and Ensem-

ble Kalman-Filters have their merits, hybrids have been formulated that try to combine

the best of each methodology. Finally, fully nonlinear data-assimilation methods have

been developed based on particle filters (such as in Gordon, Salmond, and Smith, 1993;

Isard and Blake, 1998; Van Leeuwen et al., 2019) and particle flow filters (Daum and

Huang, 2009; Daum, Huang, and Noushin, 2010; Hu and Van Leeuwen, 2021; Lucini,

Van Leeuwen, and Pulido, 2021) that are rapidly approaching maturity (Van Leeuwen

et al., 2019). In the following subsections, we discuss the two classic data assimilation

methods in detail.

2.1.1 Variational data assimilation

Variational data assimilation, which is based on optimal control theory and was formally

introduced by the meteorology community to treat the errors of the NWP system, aims
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at minimizing a cost function that measures the departure between the model output and

the measurement. As its representatives, 3-dimensional and 4-dimensional variational

methods (3D-Var and 4D-Var) have been implemented in operational forecasting systems

in the past years. Observations are collected at the analysis time in 3D-Var (see discus-

sions in Courtier et al., 1998; Mazzarella et al., 2017). The 3D-Var tries to minimize the

following cost function shown in Eq. (2.2) which can be reformulated as:

J (x) ∝ − log p(x)− log p(y|x), (2.3)

in which p(x) comes from the prior and p(y|x) from the likelihood. Then, with the

Gaussian assumption for the prior and observation error, we have

J (x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
(Hx− y)TR−1(Hx− y), (2.4)

where x,xb and y are the state of the system, prior/background and the measured state.

B and R are the background error and observation error covariance matrices, and H

represents the observation operator which maps the state vector into the observation space.

The minimization of the cost function in Eq. (2.4) requires the gradient with respect to x

to vanish:
∂J (x)

∂x
= B−1(x− xb)−HTR−1(y −Hx) = 0. (2.5)

The solution of Eq. 2.5 is given by (Lorenc, 1986):

xa = xb +K(y −Hxb), (2.6)

where K is the optimal gain matrix and can be computed as:

K = BHT (HBHT +R)−1. (2.7)
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When observation operator H is nonlinear, a Gauss-Newton method is typically used to

find the state that minimizes the cost function (Gratton, Lawless, and Nichols, 2007),

which consists of iteratively solving a set of linear problems such, and each linear prob-

lem is itself solved iteratively. A major disadvantage of 3D-Var is that the prior error

covariance B is not evolving in time, hampering the correct spreading of information

from the observations over the model domain.

As an extension of 3D-Var, in 4D-Var, the observations are assimilated at the exact

time of measurement (Mazzarella et al., 2017). The analysis increment is propagated

over the simulation period using tangent linear and adjoint models (Errico, 1997; Errico,

Vukićević, and Raeder, 1993) which requires much higher computational power than 3D-

Var. The cost function that 4D-Var tries to minimize is different from that in 3D-Var since

the time index is taken into account:

J (x0) =
1

2
(x0 − xb

0)
TB−1

0 (x0 − xb
0) +

1

2

L∑
l=0

(Hlx0 − yl)
TR−1

l (Hlx0 − yl), (2.8)

in which

Hlx0 = H̃l(M0→lx0),

where M0→l denotes the nonlinear forward model and H̃ is the observation operator for

time l. Compared with the 3D-Var method, 4D-Var data assimilation requires higher pro-

gramming power for the operational systems. Furthermore, the observation operator Hl is

always nonlinear because it now contains the nonlinear forward model. However, 4DVar

allows the time history of observations to be simulated fully to update the forecast. A

weakness is the use of a fixed B matrix, which is one of the main reasons hybrid methods

were put forward (Bonavita et al., 2016).
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2.1.2 Kalman-Filter-based data assimilation

The Kalman Filter was formally introduced by Kalman (1960). The Kalman-Filter-based

data assimilation methods either make Gaussian assumption on the pdf’s or is based on

the Best Linear Unbiased Estimator (BLUE) from estimation theory. It provides the op-

timal solution (minimum variance) to the data assimilation problem in the case of linear

dynamics and Gaussian error assumption at the time observations occur. The Kalman fil-

ter algorithm contains two steps: the prediction of the system and the update of the prior.

The prediction/prior is produced by a stochastic and linear system:

xb
t+1 = Mt+1x

b
t , (2.9)

where Mt is the model operator to propagate the model from time-step t− 1 to time-step

t and the covariance is propagated from t to t+ 1 via:

Bt+1 = Mt+1BtM
T
t+1 +Q, (2.10)

in which Q is the model error covariance. An observation times Bayes’ theorem is used

with Gaussian prior and Gaussian observation errors, and H is assumed linear. With these

assumptions, the posterior is also Gaussian, and the mean and the mode coincide. Using

the same formulation with the cost fucntion we recover in the previous subsection, but in

the Kalman Filter we explicitly solve this system, so we find:

δxa
t = (B−1

t +HT
t R

−1
t Ht)

−1HT
t R

−1
t (yt −Hxb

t). (2.11)

In the Kalman filter we rewrite this as

xa
t = xb

t +Kt(yt −Htx
b
t), (2.12)
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where Kt is the Kalman Gain at given time-step t where the observations are available:

Kt = BtH
T
t (HBtHt +Rt)

−1. (2.13)

The prior covariance matrix is also updated by the Kalman Gain as:

At = (I−KtHt)Bt. (2.14)

Different from the Kalman Filter, the Kalman Smoother updates a whole simulation

window instead of the observational time-step as the Kalman Filter, using all available

observations from the past, present and possibly the future (see Asch, Bocquet, and Nodet,

2016). Since time as an extra factor is considered in the smoother, the formulation of

the update equation of the smoother is slightly different from the update equation of the

Kalman filter shown in Eq. (2.12):

xa
0:τ = xb

0:τ +K0:τ (y1:L −H1:Lx
b
0:τ ), (2.15)

where the state variable xa
0:τ and prior estimation xa

0:τ are collections of time series from

the initial state to the end of the simulation window (t = τ ), L represents the number of

observations in the simulation period, and Ka
0:τ is now a gain over the whole simulation

period:

K0:τ = B0:τH
T
1:L(H1:LB0:τH1:L +R1:L)

−1. (2.16)

The Kalman Smoother requires more computational power than the Kalman Filter since

the state over the whole assimilation window is updated. According to the update equa-

tions of the Kalman Filter and Smoother, both methods require linear model and obser-

vation operators, which means they are not applicable for nonlinear systems such as the
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numerical forecasting systems. The Extended Kalman Filter and Smoother (e.g. Jazwin-

ski, 2007) can cope with nonlinear operators but require the computation of the Jacobian

of the nonlinar model. Our project involves with both linear with linear and nonlinear

systems. For the linear part, we apply the Kalman Smoother as shown in chapter 3. But

for more complex circumstances, the Monte-Carlo formulations of the Kalman Smoother

(EnKS) (Van Leeuwen and Evensen, 1996) is extensively used in both chapter 3 and chap-

ter 4 and will be discussed in the following subsection.

2.1.2.1 Ensemble Kalman Filters

The KF-based ensemble methods such as the Ensemble Kalman Filter (EnKF) (Evensen,

1994; Houtekamer and Mitchell, 1998) are Monte-Carlo approximations of the Kalman

filter and proposed to avoid the difficulties of storing and propagating the error covariance

of the state. In the case of the EnKF, the covariance matrix is replaced by the sample

covariance matrix computed from the ensemble members (see e.g. Evensen, 2009; Asch,

Bocquet, and Nodet, 2016; Evensen, Vossepoel, and Van Leeuwen, 2022). The ensemble

methods also fix part of the problem of the inapplicability of Kalman Filter/Smoother

in the nonlinear systems. The EnKF has the similar update equation for each ensemble

member as the Kalman Filter shown in Eq. (2.12):

xa,e = xb,e +Ke(y −Hxb,e − ηe), (2.17)

in which the index e represents the number of ensemble member, and the y is the obser-

vation with observation error η drawn from: η ∈ N (0,R), and ηe is a perturbation of

Hxb,e drawn from the same distribution as η. The observation y is mapped from the true

state of the system, xr, into the observation space as:

y = Hxr + η. (2.18)
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Ke can be computed as:

Ke = Pb,eHT (HPb,eHT +R)−1, (2.19)

where Pb,e denotes to the prior ensemble error covariance that can be computed using the

differences between ensemble mean x̄b and ensemble members xb,1:Ne as:

Pb,e =
1

Ne − 1
(xb,1:Ne − x̄b)(xb,1:Ne − x̄b)T . (2.20)

When the observation operator H is nonlinear we can use an iterative version of the

ensemble data assimilation, based on a Gauss-Newton iteration as in 3D and 4D-Var.

The EnKF has been extensively applied in diverse research fields including oceanography

(Bertino, Evensen, and Wackernagel, 2003), numerical weather forecast (Szunyogh et al.,

2005), and hydrology (Liu, Chen, and Zhang, 2008).

2.1.2.2 Ensemble Kalman smoother and its iterative variant

The main goal of our project is to perform online parameter estimation to update some

of the characteristics of the model error. We choose the EnKS (e.g. Evensen and Van

Leeuwen, 2000; Khare et al., 2008; Nerger, Schulte, and Bunse-Gerstner, 2014) and

its iterative form (IEnKS) (e.g. Bocquet and Sakov, 2014; Evensen et al., 2019) as the

main method in our experiments, so we can assimilate all observations available in an

assimilation window to update the parameters and state of the system. In this case, the

update equation for eth ensemble member (Ne ensemble members in total) is different

from Eq. 2.17:

xa,e
0:τ = xb,e

0:τ +K0:τ (y0:L −H0:τx
b,e
0:τ − ηe0:τ ), (2.21)
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where L is the number of observations available, and the time series of the Kalman gain

of each ensemble member can be computed as:

Ke
0:τ = Pb,e

0:τH
T
0:τ (H0:τP

b,e
0:τH

T
0:τ +R0:L)

−1. (2.22)

To achieve successful parameter estimation with the EnKS, we implement a cycling

scheme in which the simulation period is divided equally into multiple windows. De-

tails of the formulation of the EnKS and cycling scheme are thoroughly demonstrated

in chapter 3. Instead of the tangent linear of the evolution and observation models, the

IEnKS requires sensitivities (gradient and Hessian) obtained from the ensemble. Out of

the many possible choices, we consider the algorithm proposed by Evensen et al. (2019),

in which the IEnKS is formulated in the ensemble subspace and requires less computa-

tional power when dense observations are available. First, we obtain the observations

using Eq. (2.18). Then, the perturbed ensemble measurements for each of the ensemble

member, ye, can be computed as:

ye = Hxb,e + ηe. (2.23)

We define a projection Π ∈ RNe×Ne as:

Π = (I− 1

Ne

11T )/
√
Ne − 1, (2.24)

with 1 ∈ RNe a vector with ones and I ∈ RNe×Ne an identity matrix. The matrix Π is

used to subtract the mean of the ensemble and scale the result with 1/
√
Ne − 1. Then the

centered measurement-perturbation matrix is defined as:

E = yenΠ, (2.25)
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whose columns are sampled from N (0,R). Now, we start the iteration with defining a

quadratic matrix:

Ωi = I+WiΠ, (2.26)

where i is the iteration index and

Wi = Wi−1 − γ(Wi−1 − SiT (SiSiT + EET )−1D̃i). (2.27)

where W 0 is a matrix of zeros and the innovation term D̃i can be computed as:

D̃i = SiWi + ypert − yen, (2.28)

in which the term S is the product of the scaled ensemble measurements mean and the

quadratic matrix:

Si = EΩi−1
. (2.29)

Finally, we have the update for the prior of the system for ith iteration:

xa = xb(I+Wi/
√
Ne − 1), (2.30)

The coefficient γ is a factor that allows us to use this algorithm as a iterative variant of the

EnKS. In the case of EnKS, we set γ = 1. To be able to fully concentrate on the parameter

estimation problem without having to deal with issues related to a small ensemble size,

our experiments are typically run with an ensemble size of 200 (Ne = 200).

2.2 Model error in data assimilation

2.2.1 Introduction to model error

Numerical models are imperfect since the discrete geophysical model is unable to prop-

erly represent all spatial and temporal scales, nor all physical processes in nature. Model
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errors, which is essentially the mismatch between the model output and the true state of

nature, generated during the forecast can proliferate and have impact further on a large

scale (Palmer, 2001). In numerical weather prediction (NWP), model errors are normally

attributed to model deficiencies and inaccurate initial conditions. Since the atmosphere is

a chaotic system that is sensitive to the initial conditions (Lorenz, 1963), much attention

has been paid to producing more accurate initial conditions. However, only considering

the error in the initial condition can lead to a prior error covariance matrix smaller than

the actual error covariance matrix (Li et al., 2009). The error not coming from the initial

condition starts to play an essential role in the forecasting system and hence the data as-

similation schemes (Ren, Amezcua, and Van Leeuwen, 2021).

Due to limited computational power and insufficient observations from reality, model

error was originally considered in relatively simple cases, extending from one-dimensional

systems to two-dimensional shallow-water systems (see e.g seminal papers by Ghil et al.,

1981; Cohn and Parrish, 1991). Later, the increase in computational power allowed for

the successful application of weak constraint DA into more complex models (Ghil, 1989).

For simplicity, model error has often been treated as a random variable with Gaussian dis-

tribution and no time auto-correlation in time, i.e. white in time. The reality can be quite

different. The impact of model error caused by unresolved processes on the forecast and

DA results can last for several model time steps. Bennett (1992) extensively discussed the

use of correlated model errors and solution of the problem using the representer method.

In a Bayesian formulation of data assimilation, generating the posterior update re-

quires knowledge of or certain error characteristics and the prior. It is hard to represent

or measure the model error in the data assimilation procedure due to the large size of a

typical geophysical problem and enormous amount of information required (Carrassi and

Vannitsem, 2010). Fortunately, with the improvement of numerical forecasting skills and

data assimilation algorithms, there have been many methods developed to deal with model
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error in the data assimilation process, which will be discussed in the following subsection.

2.2.2 Treatment of the model error in data assimilation

As mentioned in chapter 1, one way to deal with model error in the data assimilation

(weak-constraint) process is to treat the error as a random variable or white noise and add

it to the state prior at any given time (Evensen and Van Leeuwen, 1996). Alternatively,

a random multiplicative factor can be inserted in the tendencies of the model govern-

ing equations (Arnold, Moroz, and Palmer, 2013). Of course, there are many other ap-

proaches to address the model error problem, such as inflating the prior error covariance

with multiplicative inflation (Anderson and Anderson, 1999) and the covariance relax-

ation method (Zhang, Snyder, and Sun, 2004). Some researchers take the model error

as bias and furthermore, develop a method to perform an online bias correction (see an

example in Dee and Da Silva, 1998), which has been successfully tested on 3D-Var (e.g.

Dee and Todling, 2000; Carton et al., 2000). Treating the model error as random or biased

is one simple way to deal with it but far from the truth. Model error often has impact on

different scales in space and time which depends on its sources (Maraun, 2016). This

thesis is based on the idea of Amezcua and Van Leeuwen (2018), where the model error

is considered correlated in both space and time. Our focus is on the temporal correla-

tion with certain formulations (see details in chapter 3 and chapter 4). Amezcua and Van

Leeuwen (2018) propose a decaying autocorrelation for the model error and formulate an

EnKS to adapt this specific structured model error. In chapter 3 and chapter 4, we extend

the experiments from evaluating the performance of the data assimilation scheme with

the autocorrelated model error to establish a possible way to estimate the characteristics

of model error autocorrelation online on different models with different formulations of

autocorrelation of the model error.
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2.3 Parameter estimation

Data assimilation is predominantly implemented for state estimation but can be used for

parameter estimation. Ruiz, Pulido, and Miyoshi (2013) state that the suboptimal settings

of model parameters can lead to a significant increase in model error. Data assimilation-

based parameter estimation can provide us with the optimal values of parameters that can

efficiently reduce the model error in a certain metric (Hansen and Penland, 2007). How-

ever, with imperfect models, a single optimal value of a parameter doesn’t exist (Smith

and Mees, 2000). We have to point out that parameter estimation can be extremely dif-

ficult and sometimes impossible to solve since the parameters are often unknown and

cannot be compared with the actual values of the parameters since we have no direct ob-

servations of them. There may be situations in which parameter estimation is simple. It

is not our case, but in general, there can be linear relationships. The experiments from

observing system simulation experiments(OSSE) where the estimated parameters can be

compared with the true parameters, show that the optimal solution can be found when es-

timating a single parameter (see a discussion in Kotsuki et al., 2018). However, previous

research (Aksoy, Zhang, and Nielsen-Gammon, 2006; Tong and Xue, 2008) has shown

that estimating multiple correlated parameters can degrade the accuracy of estimating the

individual parameter.

In this project, we apply a widely implemented method to perform parameter es-

timation with the EnKS, the state augmentation method (see an example in Carrassi

and Vannitsem, 2011). The state augmentation method is to formulate an augmented

state vector by considering the parameters as an auxiliary state and then using the data

assimilation method to estimate the original state variable and the parameters simul-

taneously. The state augmentation method has been previously proven successful in

model error or bias estimation (see in e.g. Martin, Nichols, and Bell, 1999; Griffith and
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Nichols, 2000; Bell, Martin, and Nichols, 2004). Trudinger et al. (2008) applies the tech-

nique using the extended Kalman filter and EnKF for parameter estimation with a sim-

plified bio-geochemical model, and the technique is also evaluated with the Korteweg–de

Vries–Burgers (KdVB) numerical model within the framework of maximum likelihood

ensemble filter (MLEF) (Zupanski and Zupanski, 2006). However, we find that the state

augmentation methods is not always valid for parameter estimation, especially for com-

plex circumstances, and details will be demonstrated in chapter 3, 4 and 5.

2.4 Summary

In this chapter, we started by introducing the general concept of data assimilation. A

brief overview of the basics of variational data assimilation has been provided. Then,

a more detailed overview of the Kalman-Filter-like data assimilation methods has been

given. As mentioned previously, more details about the formulation of the ensemble

methods we used will be presented later in chapter 3 and chapter 4. After introducing

the data assimilation methods, an introduction of the model error in data assimilation

and its treatments has been introduced. At last, we briefly introduced the difficulties of

parameter estimation in data assimilation schemes and the state augmentation method we

used to perform parameter estimation in our experiments. In the following chapter, we

will further discuss the formulation of the EnKS we use for the autocorrelated model error

and its performance, including a brief test of parameter estimation.
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Chapter 3

Effect of autocorrelated model error on

data assimilation results with linear

model

This chapter uses a model-error-space formulated EnKS introduced by Amezcua and Van

Leeuwen (2018) to investigate the performance of the EnKS under the assumption of

model errors being autocorrelated. In this chapter, we answer the first research question

and part of the second question: 1. What impact does the temporal autocorrelated model

error have on the data assimilation results? 2. Is it possible to establish a way to update

the parameters encoded in the model error autocorrelation online during the data assim-

ilation procedure? This chapter is strongly based on the paper published on Quarterly

Journal of the Royal Meteorological Society (Ren, Amezcua, and Van Leeuwen, 2021).

3.1 Introduction

In the atmospheric and oceanic sciences various approximate data assimilation methods

have been developed in the past few decades, typically originating in either variational ap-

proaches (Courtier and Talagrand, 1987) or (Ensemble) Kalman Filter-based approaches

(Evensen, 1994). Recently there has been a surge in hybrid methods trying to combine the

advantages of the variational and KF-based methods (e.g. Axell and Liu, 2016; Bannister,
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2017; Lorenc and Jardak, 2018; Lee, Amezcua, and Bannister, 2022).

In the past few decades, data assimilation methods like 4-dimensional variational

method (4DVar) have been often performed under the assumption that the numerical mod-

els are perfect, known as the strong-constraint setting (see a discussion in e.g. Amezcua

and Van Leeuwen, 2018). Typically, it is assumed that the model errors can be neglected

when compared with other error sources in the systems, such as the errors in the initial

condition and observations (Tremolet, 2006). Since many dynamical systems of interest

are chaotic, which means they are highly sensitive to the initial condition (Lorenz, 1963),

a lot of research has focused on the errors in the initial condition in order to improve the

accuracy of the weather forecast.

There are cases, however, when errors not coming from initial conditions become im-

portant in the accuracy of the forecasts and hence the data assimilation process. In fact,

there is ample evidence that this is the case for most, if not all, geoscience disciplines

(see e.g. Fox-Kemper et al., 2019; Bony et al., 2015; Kuma et al., 2018; Muelmenstadt

and Feingold, 2018; Fisher and Koven, 2020; Fennel et al., 2019). These model errors

are often hard to estimate, which has hampered their inclusion in the data assimilation

process. However, there are many reasons why a proper estimate of model errors needs

to be included, apart from the fact that they are there in our prediction models. Jazwinski

(2007) points out that in order to obtain an optimal estimate of the system, we need a

better understanding of the error covariance matrices from all error sources. Furthermore,

including random model errors in smoothers for chaotic systems such as the atmosphere

and the ocean makes these system less dependent on initial conditions, allowing for more

efficient optimisation and longer smoother windows. Indeed, with better understanding

of initial and observational errors, and a strong reduction in the former, there has been an

increasing number of works taking model errors into account in data assimilation process

(e.g. Carrassi and Vannitsem, 2010; Howes, Fowler, and Lawless, 2017; Amezcua and



3.1. Introduction 25

Van Leeuwen, 2018; Farchi et al., 2021).

Model error is essentially the mismatch between the true evolution of the system and

the forecast produced by the numerical model over one model time step. There are var-

ious sources for model errors in numerical models, such as numerical discretization of

the underlying differential equations describing the system, incorrect parameterizations,

missing physical processes, etc. Some works implement a random additive variable at any

given time-step as model error (e.g Evensen and Van Leeuwen, 1996), or insert a random

multiplicative factor in the tendencies of the model governing equations (Arnold, Moroz,

and Palmer, 2013). For simplicity, model errors are often considered Gaussian random

variables with zero mean and no correlation over time. Alternatively, the model error can

be considered to be fixed over the simulation period, resulting in a model bias. However,

in operational systems real model errors will be complex in both spatial and temporal

behaviour, as can be inferred directly from the sources of these errors (e.g. Griffith and

Nichols, 2000; Mao et al., 2015; Bonavita, 2021).

In this chapter we study the case in which the spatial structure of the model error is

known, but its temporal structure is uncertain. In reality both space and time structure are

unknown, but we focus on the latter. We consider that the nature run evolves with a true

model error; i.e. a random model forcing with a certain decorrelation time scale ωr. We

label this time scale memory. The imperfect forecast model uses a guessed memory ωg,

which is different from the real one.

This chapter has two main purposes. The first is to investigate the effect of the in-

correct time-correlated model error on data assimilation results under different observa-

tional frequencies, and different number of observations in an assimilation window. More

specifically, we aim to quantify the change in performance of the Kalman Smoother when

the time statistics of the model error are misspecified, and the sensitivity of this change to
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different assimilation parameters. These results are extended to the ensemble case. The

second objective is to use the data assimilation process to diagnose the memory of the

model error. This is of great importance since it allows to discriminate between a bias and

a completely time-independent model error, and identify cases in between.

Before continuing, a simple illustration can illuminate the issue. In Figure 3.1 we

show results of a smoothing process for a simple one-dimensional system over a time

window of 20 nature time steps. We use an ensemble Kalman Smoother with two dif-

ferent observation densities in time (the details are discussed in a later section). The

memories in the nature model and the forecasts models do not coincide. We can see

that with ωr = 0.0, when the actual model error is a white-in-time random variable, the

evolution of the true state of the system behaves rather randomly with the present model

settings. If we do not know the memory and assume the model error is a bias in the data

assimilation process (ωg → ∞), the estimation made by the data assimilation method is

not even close to the truth, even with very dense observations in the simulation period, as

shown in the left two subplots in Figure 3.1. On the other hand, if the model error in the

true model evolution behaves like a bias, and we assume that the model error is white in

time in the data assimilation process, the results are quite different with different observa-

tion frequencies. As shown in two subplots on the right in Figure 3.1, with very frequent

observations, we can see a fairly good performance of the data assimilation process, but

with a single observation, the estimation is still not accurate.

The general structure of this chapter is as follows. In section 2, we investigate the

performance of the Kalman Smoother on a linear model with time-correlated model error

analytically. When we are unable to find closed expressions, we numerically evaluate the

(open) analytical expressions when necessary. We determine the behaviour of the pos-

terior variance and mean-square error for different values of true and guessed memory.
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FIGURE 3.1. Plots of the trajectories of the true state of the system (black),
three posterior ensemble members (pink, randomly chosen from 200 mem-
bers), and the posterior ensemble mean (red). The left subplots show results
for a true white noise model error and an assumed bias model error for two
observation densities. Note that the posterior estimates are poor in both
cases. The right subplots depict a bias true model error and an assumed
white noise model error. The result with one observation is poor, while if
many observations are present the assimilation result is consistent within

the ensemble spread.

Next, a higher dimensional system is explored via numerical experiments using the En-

semble Kalman Smoother in section 3. In section 4 we use state augmentation to try to

infer the memory time scale from the assimilation process, with satisfactory results. Sec-

tion 5 contains a summary and a discussion of the results.

In this chapter we follow the notation introduced by Amezcua and Van Leeuwen

(2018). Identifying different attributes in a variable can be difficult in some expressions.

In general, superscripts are used as time indices. If there is a comma in the superindex it

is because we have also added a label corresponding to the role in the data assimilation

process. For instance, the variable µb,x
t would be the background mean of x at time t.
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There are some cases in which the function is unclear, for instance a superscript applied

to a vector cannot mean exponentiation. In the case where superscripts correspond to

exponents, this is clearly specified in the text. An example of more complicated uses is:

Kx,ωg

t which refers to the Kalman gain evaluated in x space at time t computed with the

covariance matrix which uses the guessed memory ωg. More complicated uses of the sub-

and superscripts are clearly identified in the text, and we also recommend the reader to

check Amezcua and Van Leeuwen (2018) for clarity.

3.2 Time-correlated model error in the Kalman Smoother

Let us consider a simple linear model with the governing equation over 1 model time step:

xt+1 = Mt→(t+1)xt + νt+1, (3.1)

where Mt→(t+1) ∈ RNx×Nx represents the linear model operator and its size depends on

the number of variables in the system Nx, xt ∈ RNx is the state variable at given time-

step t, and νt+1 ∈ RNx is an additive model error which contains correlation in time and

space. The initial condition of the random variable, x0 ∈ RNx , is drawn from a multivari-

ate Gaussian distribution (MGD), x0 ∼ N (µb,x
0 ,B), where µb,x

0 ∈ RNx is the mean of

the random variable and B ∈ RNx×Nx is its covariance matrix.

The time-correlated model error at time t also comes from a MGD, νt ∼ N (0,Q),

with zero mean and the covariance matrix Q ∈ RNx×Nx . We also consider spatial cor-

relations for the model errors, hence Q is not diagonal. We follow Amezcua and Van

Leeuwen (2018) and assume that the model errors are correlated in time as:

Cov(νi,νj) = ϕ(|i− j|, ω)Q, (3.2)
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where ϕ(|i− j|, ω) represents the memory of the model errors, |i− j| is the absolute dif-

ference between time steps i and j, and ω represents the characteristic memory timescale

of the model error. Then, a one-step propagation of the model error can be formulated as:

νi+1 = ϕ(1, ω)νi +
√
1− ϕ(1, ω)2νrandom

i+1 , (3.3)

where νrandom
i+1 is the random part of the model error at time-step t + 1. The function ϕ

decreases monotonically to 0 as |i− j| increases, and the maximum value of the ϕ is 1.0

as the absolute difference between time steps i and j tends to 0. For simplicity, we choose

an exponentially decaying memory for the model error:

ϕ(|i− j|, ω) = e−
|i−j|
ω . (3.4)

When the correlation timescale ω tends to 0.0, which indicates no temporal correlation

in model errors, the ϕ function becomes a Kronecker delta function and the linear model

becomes a 1st-order Markov model:

ϕ(|i− j|, ω) =

1, if i = j.

0, otherwise.
(3.5)

In the other limit when ω tends to infinity, the memory of the model errors becomes

1.0 and the model error is fixed in time.
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3.2.1 Formulation of the Kalman Smoother

We start with the formulation of the Kalman Smoother as described in (Amezcua and

Van Leeuwen, 2018). It uses an extended control variable, z0:τ ∈ R(τ+1)×Nx over τ + 1

model time steps. This construction simplifies the representation of the covariance matrix

and the exposition of the method. This extended variable can be written as the initial state

of the system x0 ∈ RNx , plus a collection of the model errors over time, ν1:τ ∈ Rτ×Nx:

z0:τ =
[ x0

ν1:τ

]
. (3.6)

The extended variables can be transformed back to state space via:

xt = M0:tz0:t, (3.7)

where M0:t ∈ R(t+1)Nx×Nx is the extended model operator and can be formulated as a

block-matrix:

M0:t = [M0→t,M1→t,M2→t,M3→t, · · · ,M(t−1)→t, I] . (3.8)

The extended form also follows a MGD z0:τ ∼ N (µb,z
0:τ ,D0:τ ), with mean µb,z

0:τ ∈ R(τ+1)Nx:

µb,z
0:τ =

[
µb,x

0

µb,ν
1:τ

]
=

[
µb,x

0

01:τ

]
. (3.9)

In this case, the prior covariance matrix D0:τ ∈ R(τ+1)Nx×(τ+1)Nx has a simple form,

which can be written as a block-matrix:

D0:τ =

[
B 0
0 Q1:τ

]
. (3.10)

The covariance matrix of the extended control variable has two separate and independent

parts: the part that comes from the initial condition, B ∈ RNx×Nx , and the part that

originates purely from the correlated model errors, Q1:τ ∈ RτNx×τNx . The covariance
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matrix Q1:τ is a block-matrix and can be written as a Kronecker product of a Toeplitz

matrix and the spatial covariance matrix of the model error, Q:

Q1:τ = Φ1:τ ⊗Q, (3.11)

where the Toeplitz matrix Φ1:τ ∈ Rτ×τ contains all the memory coefficients. This

Toeplitz matrix, Φ1:τ , has different forms in different scenarios:

• When ω → 0, the Toeplitz matrix becomes an identity matrix, I ∈ Rτ×τ , and the

Kronecker product Q1:τ becomes a block-diagonal matrix.

• When ω → ∞, the Toeplitz matrix Φ1:τ is a matrix of ones and Q1:τ becomes a

block-matrix, in which every block element is the spatial covariance matrix Q.

To demonstrate the structure of the Kalman Smoother solution, we consider only one

single observation at time-step τ . Details of the formulation with multiple observations

can be found in Amezcua and Van Leeuwen (2018). Then, the Kalman gain acting upon

the whole simulation period in extended-variable space, Kz
0:τ , can be computed as:

Kz
0:τ = D0:τ (M0:τ )

THT (HM0:τD0:τ (HM0:τ )
T +R)−1. (3.12)

With the Kalman Gain we can update the extended control variable using the Kalman

equation, assuming that the state initial x0, the observation error η and the model error ν

are statistically independent of each other. Hence, the analysis mean is:

za0:τ = zb0:τ +Kz
0:τd, (3.13)
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where d is the innovation between observations and the model output at observational

time t, which can be calculated as:

d = y −HM0:τz
b
0:τ . (3.14)

The vector y represents the observations obtained from the true evolution of the sys-

tem by the observation operator, H ∈ RNy×Nx , including the observational error:

yt = Hxr
t + ηt, (3.15)

where ηt ∈ RNy is the observational error which follows a zero-mean MGD ηt ∼

N (0,R) and its size depends on the number of variables observed from the system Ny,

xr
t represents the real state of the system at time-step t, and R ∈ RNy×Ny represents

the covariance matrix of the observation errors. Note that the observational time can be

anywhere inside the assimilation window 0 ≤ t ≤ τ . Finally, the covariance matrix is

updated via:

Az
0:τ = (I−Kz

0:τHM0:τ )D0:τ . (3.16)

Considering more than 1 observation per assimilation window does not yield simple

expressions. Instead, it can be done in two ways. First, we can consider modified expres-

sions as in the Appendix of Amezcua and Van Leeuwen (2018). Second, the observations

can be assimilated serially one after the other. Since the observation error covariance ma-

trix is assumed diagonal, this is equivalent to updating observations all-at-once.
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3.2.2 Evaluating the performance of the Kalman smoother with time-

correlated model error

Amezcua and Van Leeuwen (2018) established a framework to handle time time-correlated

model errors in the Kalman Smoother and its ensemble implementation. Nonetheless,

they did not evaluate the performance of the methods they discussed, and they did not

study the consequences (in this performance) of using wrong memory of the model error

in the forecast. This is one of the two new contributions of this work, and it is detailed in

this chapter.

A data assimilation system should be able to produce accurate estimations of the pos-

terior density function of the state variables. In practice assuming a unimodal posterior,

it should at least be able to produce a mean trajectory which remains "close" to the (un-

known) truth, and provide an uncertainty measure corresponding to the true uncertainty

of the mean with respect to the truth.

One common approach is to compare the root-mean-square error (RMSE) which is the

true error of the posterior mean, with the posterior standard deviation, or spread, which is

the error estimated by the data assimilation method (Fortin et al., 2014). When the data

assimilation results give us the "best" estimation of the system, the ratio of the RMSE

and the spread should approximately be equal to 1.0. To simplify the situation, instead of

comparing the RMSE with the spread, we use the ratio of the mean-square error (MSE)

and the variance of the state variable.

Before proceeding to actual experiments we find the analytical expressions for both

the MSE of the background and analysis. We also analyse in detail the variance expres-

sions shown in Amezcua and Van Leeuwen (2018). To simplify calculations we assume

that the state is one-dimensional and the model operator is a damping coefficient, α. The

model is pure noise if α tends to 0.0, and a random walk model when α = 1.0. We choose



34 Chapter 3. Effect of autocorrelated model error with linear model

a damping coefficient between 0.0 and 1.0 to ensure that the linear model is stationary.

This leads to a model equation:

xt+1 = αxt + νt+1. (3.17)

For the next subsections we work in the state variable space, i.e. our control variable is

x0:τ . This follows two reasons: the meaning of the expressions is more tractable, and the

implementation in the ensemble case is more straightforward. The general expressions

are obtained as double sums which are not easy to visualise. In some cases these dou-

ble sums can be evaluated, leading to expressions provided in the tables in the Appendix.

In other cases we evaluate the expressions numerically and provide graphical illustrations.

3.2.2.1 Posterior variance in the Kalman smoother

The prior variance at any time and covariance between two different time steps in our

scalar system have the following expressions:

Var(xbt) = α2tb2 + q2
t∑

i=1

t∑
j=1

α2t−i−jϕ(|i− j|, ω)

Cov(xbt1 , x
b
t2
) = αt1+t2b2 + q2

t1∑
i=1

t2∑
j=1

αt1+t2−i−jϕ(|i− j|, ω),
(3.18)

where b2 is the variance of the initial x0, the superscript b denotes the prior, and q2 is

the variance of the model error. In (3.18), in the expressions involving the scalars α, b

and q the exponent actually means the constant raised to a power, as opposed to being a

super-index.
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According to (3.18), the prior covariance and variance have two sources: the initial

condition which is the first term on the right-hand side (RHS), and the auto-correlated

model errors as the double sum term on the RHS. Of course, Equation (3.18) is only

suitable for t > 0, t1 > 0, t2 > 0. As a special case, since the initial condition xb0 is

independent from the model errors at any given time, its variance and covariance are

given by:

Var(xb0) = b2

Cov(xb0, x
b
t) = αtb2.

(3.19)

Once more, the expression αt means the constant α raised to the power t. To obtain

a feeling for Equation (3.18), Tab. I, which is listed in the Appendix , contains results

on limiting cases for ω and α where the results of the sums can be evaluated analyti-

cally. Figure 3.2 shows that the prior variance is a monotonically increasing function of

both α and ωg, and, not surprisingly, of time. The prior variance is almost constant when

FIGURE 3.2. Prior variance as function of time in the window and of the
damping coefficient with ωg = 1.0 (left), and as function of ωg with α =
0.8 (right). Note that the y-axis of the left panel has a logarithmic scale.

α < 0.5. For larger values of α the prior variance increases much faster with ωg. The
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prior variance as function of ωg shows the opposite behaviour: When ωg is between 0.0

and 10.0 the prior variance increases significantly with increasing ωg, but for larger ωg

values the increase of the variance slows down.

Since the posterior variance is the estimated error resulting from the data assimilation

scheme, and in linear data assimilation the posterior variance is independent of the actual

value of the observations, the posterior variance has no knowledge of the real decorre-

lation timescale of the model errors, ωr. The posterior variance at a given time-step,

assuming that we have a single observation at time-step τ , can be simplified as:

Var(xat ) = Var(xbt)−Kx,ωg

t Cov(xbτ , x
b
t), (3.20)

whereKx,ωg

t is the Kalman Gain formulated in the x-space acting on the current time-step

t and in this scalar case can be computed as:

Kx,ωg

t =
Cov(xbt , x

b
τ )

Var(xbτ ) + r2
, (3.21)

where r2 is the variance of the observation error, and clearly the exponent means the

second power. We can see that the Kalman gain depends on the covariance between the

state at the present time and at the observational time, the state variance at the observa-

tional time and the observation error. These expressions correspond to the state-space-

formulation in Amezcua and Van Leeuwen (2018). We also compute some limiting cases

on the posterior variance with a single observation for ω and α shown in Tab II, which is

in the Appendix at the end of this thesis.

When more than one observation is present within an assimilation window, it is diffi-

cult to find simple analytical expressions and we refer to numerical evaluation. We start

our numerical experiments with a fixed damping coefficient α = 0.8, but with different

memories ω. The results are shown in Figure 3.3.
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The first thing that strikes the eye is the low posterior variance at observation times,

which is as expected. Another clear trend is the decrease of posterior error with increasing

ωg. This is directly related to the spread of observation information in the system: a larger

ωg gives more memory in the system, and hence observations have a larger influence over

time. In some plots the posterior variance is decreasing towards the initial time, while in

others it is increasing. This, however, is mainly due to the different color scales in the

plots, the posterior variance at initial time is mainly set by the prior variance, although

observations do have an influence for larger decorrelation timescales. Finally, one can

notice a decrease of the posterior variance for ωg close to zero. This behavior has its roots

in the behavior of the prior, which has minimal variance for small ωg.

FIGURE 3.3. Posterior variance as function of time in the window and of
ωg, for two fixed damping coefficients, α = 0.2 (left panels) and α = 0.8
(right panels), using different numbers of observations in the simulation

window (top, middle, bottom panels). Note the different color scales.

To see this latter point better we resort back to the analytical treatment of the case of a
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single observation at the end of the simulation period, at t = τ . We focus on the posterior

variance at the initial time and at the observational time as those times show most inter-

esting behaviour. As we have seen above, the initial variance and the covariance between

the initial state and the state at any time is independent of the decorrlation timescale, so:

∂Cov(xb0, x
b
t)

∂ωg
=
∂Var(xb0)
∂ωg

= 0. (3.22)

Using this, we find for the Kalman gain from Equation (3.21) and Figure 3.2:

∂Kx,ωg

0

∂ωg
= −∂Var(xbτ )

∂ωg

Cov(xb0, x
b
τ )

(Var(xbτ ) + r2)2
< 0, (3.23)

and so the Kalman gain for initial time is a decreasing function of the decorrelation

timescale. Using this we find for the posterior variance at initial time:

∂Var(xa0)
∂ωg

= −∂K
x,ωg

0

∂ωg
Cov(xb0, x

b
τ ) > 0, (3.24)

which is an increasing function of the decorrelation timescale. At the observational time

we can do a similar derivation:

∂Kx,ωg

τ

∂ωg
=
∂Var(xbτ )
∂ωg

r2

(Var(xbτ) + r2)2
> 0, (3.25)

leading to:

∂Var(xaτ )
∂ωg

= (1−Kx,ωg

τ )
∂Var(xbτ )
∂ωg

− ∂Kx,ωg

τ

∂ωg
Var(xbτ )

=
∂Var(xbτ )
∂ωg

r4

(Var(xbτ ) + r2)2
> 0.

(3.26)

We thus find that both at initial and at observation times the posterior variance in-

creases with ωg. In fact, this derivation shows that this is true for all values of ωg, at initial
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and final times, not only for small ωg values as Figure 3.3 might suggest.

3.2.2.2 Mean-square error (MSE) of the posterior in the Kalman Smoother

Different from the posterior variance, for the MSE between the analysis mean and the

true state of the system differences between the real decorrelation timescale and the one

assumed in the data assimilation are important. We calculate the MSE of the prior as the

difference between the prior mean µb
t and the truth. The truth is a realization of the true

prior pdf at the initial time. The MSE at any time t is defined as:

MSEb
t =

∫
(µb

t − xrt )
2p(xrt ) dx

r
t . (3.27)

When the statistics of the model error used in the data assimilation is different from that of

the truth the prior pdf used in the data assimilation will deviate from the pdf that the truth

is drawn from. Writing the pdf from which the truth is drawn as: xrt ∈ N (νt, Bt), where

νt is its mean at time-step t and Bt represents its variance the MSE at time t becomes:

MSEb
t = Exr

t
[(µb

t − xrt )
2] = Bt + (µb

t − νt)
2, (3.28)

in which the last term represents the bias in the prior. Using this in a Kalman Smoother

we can compute the posterior MSE as:

MSEa
t = Exb

t
[(µa

t − xbt)
2]

= Exb
t
[(µb

t − xrt ) +Kx,ωg

t (xrτ − µb
τ ) +Kx,ωg

t (yτ − xrτ )
2]

= Bt + (µr
t − νt)

2 +
(
Kx,ωg

t

)2 (
Bτ + (µb

τ − ντ )
2 + r2

)
− 2Kx,ωg

t

(
Cov(xrt , x

r
τ ) + (µr

t − νt)(µ
b
τ − ντ )

)
.

(3.29)
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In the ideal case when ωg = ωr, the MSE of the posterior can be simplified as:

MSEa
t = Bt +

(
Kx,ωg

t

)2 (
Bτ + r2

)
− 2Kx,ωg

t Cov(xrt , x
r
τ )

= Bt −Kx,ωg

t Cov(xrt , x
r
τ ).

(3.30)

As expected, the posterior MSE in the ideal case is the same as the posterior variance

shown in Equation (3.20) because the statistics of the prior and the truth are the same in

this ideal case. When more than one observation is present in the time window we can

write the Kalman Smoother MSE as:

MSEa
0:τ = Exr

0:τ
[µa

0:τ − xr
0:τ ][µ

a
0:τ − xr

0:τ ]
T

= Exr
0:τ
[µb

0:τ +Kx,ωg

0:τ (H1:Lx
r
0:τ −H1:Lµ

b
0:τ + η0:τ )− xr

0:τ ][. . .]
T

= Exr
0:τ
[(I−Kx,ωg

0:τ H1:L)(µ
b
0:τ − xr

0:τ ) +Kx,ωg

0:τ η0:τ ][. . .]
T

= (I−Kx,ωg

0:τ H1:L)B0:τ

+ (I−Kx,ωg

0:τ H1:L)(µ
b
0:τ − ν0:τ )(µ

b
0:τ − ν0:τ )

T (I−Kx,ωg

0:τ H1:L)
T ,

(3.31)

where µa
0:τ is the time-series of the posterior mean from the Kalman Smoother, B0:τ rep-

resents the covariance matrix derived from the true pdf, Kx,ωg

0:τ is the Kalman Gain matrix

calculated with ωg, and µb
0:τ is the prior mean time-series. The observation operator H1:L

maps L observations, from the state space into the observation space. Written in this form

it is relatively easy to understand what the influence of a mis-specified model error is.

However, this is slightly deceiving in that the result is written in terms of the true covari-

ance and mean, which are unknown in the real world, and the Kalman Gain using the

incorrect model error description. In the ideal scenario the MSE can be simplified to:

MSEa
0:τ = (I−Kx

0:τH1:L)B0:τ , (3.32)

where Kx
0:τ is the optimal gain for the KS. Equation 3.32 shows the exact solution for the
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FIGURE 3.4. Posterior MSE as function of time in the window and of
ωg. The different panels show results for different fixed ωr (left, middle
and right panels), and different number of observations in the simulation
window (top, middle and bottom panels). The solid black line indicates

where ωg = ωr.

posterior covariance matrix shown in Equation 3.16 in the variable space.

The behaviour of the posterior MSE when the memory in the prior differs with that

of the true system, i.e. ωg ̸= ωr, is found from the numerical evaluation of the analytical

expressions shown in Equation (3.29), and the results are shown in Figure 3.4. Figure 3.4

shows that, in general, the magnitude of the posterior MSE decreases as the observation

frequency increases. This matches the results shown in Figure 3.3 for the posterior vari-

ance. As we expected, the posterior MSE reaches its minimum at the observational time.

From the top three subplots, we can see that with a single observation at the end of the

simulation window, the MSE is minimized when ωg = ωr for the time-steps that are away

from the observational time and initial state. However, when the number of observations

in the window increases the difference between ωr and ωg becomes less important: the

solid lines do not dominate large changes in MSE.
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The Appendix contains derivations and analytical results for the Ensemble Kalman

Smoother, where we specifically study the influence of sampling errors.

3.2.3 Evaluation of the Kalman Smoother for a 1-dimensional system

To evaluate the performance of the Kalman Smoother we compute the ratio of the MSE

over the variance of the posterior averaged over the simulation window, with different

observational frequencies. Figure 3.5 shows the numerical evaluation of analytical ex-

pressions which contain ratio’s of double sums and are hence difficult to visualise without

plotting them.

As we can see, the Kalman Smoother works well when ωg = ωr for all the cases,

with the ratio of MSE over the variance equal to 1.0. With relatively high observational

frequency, 5 observations or more in the simulation window, the MSE is larger than the

estimated posterior variance when ωg > ωr, and vice versa. From the numerical results

shown Figure 3.4, the mismatch between the two timescales ωr and ωg barely has any

impact on the MSE. The ratio is dominated by the posterior variance.

To understand the behavior of the ratio in Fig 3.5 for small observation numbers we

refer to Figure 3.6, which shows the time average posterior variance as function of ωg for

the case of one observation in the time window, as the black line. The concave shape is

due to a combination of two effects. Firstly, the prior variance grows with ωg as a larger

ωg gives rise to a larger decorrelation timescale, so errors persist in the time window. This

effect leads to a growth in posterior variance with ωg. Secondly, a larger ωg reduces the

posterior variance because the larger decorrelation timescale allows the observation ob-

servation information to spread more over the time window. These two competing effect
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(A) with single observation
at the end of each window

(B) with 2 observations in a
simulation window

(C) with 5 observations in a
simulation window

(D) with observations at ev-
ery time-step

FIGURE 3.5. Ratio of MSE over the posterior variance for the 1-
dimensional system, calculated using numerical evaluation of the exact an-
alytical expressions. The different panels show results for different num-

bers of observations.

lead to a maximum in posterior variance.

Fig 3.6 also shows the MSE for 3 different values of ωr. The MSE curves are all con-

vex, with a minimum when ωg = ωr, as expected since the minimum value of the MSE

happens when the guess decorrelation time scale is equal to the real time scale. The ratio

the MSE to the posterior variance is equal to one when their curves cross, and we see
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FIGURE 3.6. The time-averaged posterior variance (black) and posterior
mean-square error with different ωr (red,blue,brown), as a function of ωg,

using a fixed damping coefficient α = 0.8.

immediately that the curves cross twice when the position of the minimum of the MSE

is different from that of the maximum in the posterior variance. This is exactly what Fig

3.5 shows for 1 observation, and the structure of that solution is fully determined by the

position of the peak in the posterior variance. For 2 observations we see qualitatively

similar behavior, with the peak in the posterior variance shifting closer to zero. For 5

and 20 observations the peak in the posterior variance shifts all the way to zero because

the influence of the observations becomes more important than the prior, so the posterior

variance becomes a decreasing function of ωg, as can also be observed in Figure 3.3. This

means that the MSE and posterior variance curves only cross once, where ωg = ωr, as

Figure 3.5 indeed shows.

Ideally we would be able to show this behavior exploring the analytical expressions

of Eq (3.18), but the expressions become rather complicated as we would have to analyt-

ically evaluate ratio’s of integrals over double sums, which we were unable to perform.
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Finally, it should be noted that Figure 3.5 first calculates the MSE over posterior variance

ratio and then averages over time, while Figure 3.6 and the argument above first average

over time and then calculate the ratio. The results are qualitatively the same because Fig-

ure 3.3 and 3.4 show a similar behavior over time.

3.3 Time-correlated model error in a higher dimensional

system

In this section we explore how the analytical results from the 1-dimensional system carry

over to systems with a relatively higher dimensions. To this end we implement an Ensem-

ble Kalman Smoother (EnKS) (Evensen and Van Leeuwen, 2000) using perturbed model

forecasts (Van Leeuwen, 2020) with 200 ensemble members on a 10-dimensional system

in which the deterministic model consists of a diagonal matrix with the damping coeffi-

cient on the diagonal,and spatially and temporally correlated model errors. This means

that although the elements of the state are evolving independently over time they become

more and more correlated due to the correlated model error. The large ensemble size with

respect to the size of the state variable ensures that sample effects are small. Four cases

with four different observation frequencies are discussed, similar to the experiments we

do for the 1-dimensional system.

We generate the true trajectory of the system, xr
0:τ with ωr, and all the prior ensemble

members are generated using ωg. The assimilation is run over 50 time windows, in which

the results from one window provide the prior for the initial conditions for the next win-

dow (i.e. cycling). There are 20 time-steps (τ = 20) in each time window.

We experiment with different combinations of ωr and ωg with the same range from

0.0 to 20.0, and the 4 observation settings explored above. To evaluate the performance
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on the EnKS we calculate the ratio of the MSE and the ensemble variance. The MSE at a

given time-step t is computed as:

MSEt =
(xr

t − x̄a
t )

T (xr
t − x̄a

t )

Nx

, (3.33)

where x̄a
t is the mean of the posterior ensemble and xr

t is the true state of the system.

After obtaining the MSE and the variance for each time step, we calculate the their

ratio and the average of this ratio over the whole simulation period, and the results are

shown in Figure 3.7. We find that the ratio of MSE over the posterior variance matches

with the results for 1-dimensional system shown in Figure 3.5. The EnKS performs well

with a correct guessed decorrelation timescale (ωg = ωr). With different observation

frequencies, the ratio shows a similar behavior as the ratio of MSE over the variance of

the posterior in the 1-dimensional system, but the differences are about 10% larger in the

higher dimensional case. For the higher dimensional system, it seems that the posterior

ensemble spread is still the main factor to the ratio, which has a non-monotonic behaviour

with ωg and becomes monotonically decreasing as ωg increases.

3.4 Estimation of the memory in the model error

In the previous sections we showed that using an incorrect memory timescale in the model

error can have a significant impact on the data assimilation results. Unfortunately, in

many practical situations we do not know this memory timescale. However, it is possible

to treat that correlation time scale as an unknown quantity and perform parameter estima-

tion along the state estimation.

Parameter estimation via state augmentation has been used before, e.g. with an ex-

tended Kalman Filter (Carrassi and Vannitsem, 2011), and even to determine parameters



3.4. Estimation of the memory in the model error 47

(A) with single observation
at the end of each window

(B) with 2 observations in a
simulation window

(C) with 5 observations in a
simulation window

(D) with observations at ev-
ery time-step

FIGURE 3.7. Ratio of MSE over the variance of the posterior for a 10-
dimensional system with different observation frequencies. These plots
come from numerical experiments with a 200-member EnKS. Note that
the results are qualitatively and also quantitatively very similar to those in

figure 3.5.

in Lagrangian Data Assimilation (Kuznetsov, Ide, and Jones, 2003). Evensen (2009) uses

the EnKF to update the state while performing the parameter estimation.

Even for the simple linear regressive model that we used in the previous section, since

the correlation timescale is deeply encoded inside the governing equation of the system,

parameter estimation becomes a non-linear problem. As an example of such a correlation
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time scale estimation problem we will use state augmentation in an EnKS, in which the

time scale is simply added to the state vector.

Instead of the memory timescale, ωg, we use the log scale of the memory timescale

to avoid negative memory estimates. The initial log-timescale values are drawn from a

normal distribution: lnωg
i ∈ N (lnωg, 1.0). Hence we assume that the prior distribution

of the memory time scale is lognormal distributed.

The results are shown in Figure 3.8. The top two plots show experiments with only one

(A) with with ωr<ωg and a
single observation

(B) with ωr>ωg and a single
observation

(C) with with ωr<ωg dense
observations

(D) with ωr>ωg and dense
observations

FIGURE 3.8. PDFs of the prior (blue) and posterior (reddish colors) esti-
mated ωg, using an increasing number of assimilation windows. The differ-
ent panels show results for different observation densities and prior mean
larger (A,C) or smaller (B,D) than ωr. The vertical black line denotes the

true value ωr.
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observation at the end of the window, in which either our first estimate of the timescale

is larger or smaller than the real timescale. With an increasing number of windows we

obtain better estimates, but the variance of the estimate does not change. Also, the conver-

gence is slow. We experimented with different values for first guess and true timescales,

and in some cases the solution did not converge to the correct value. This is not surprising

given the highly nonlinear character of the parameter estimation problem, especially with

only one observation per window.

When we observe every time step the convergence is much faster, and the variance in

the estimate decreases, as shown in the lower two subplots. In this case we always found

fast convergence with different first guess and true timescale combinations, demonstrat-

ing that more observations bring us closer to the truth, and hence make the parameter

estimation problem more linear.

3.5 Conclusion

In this section we investigated the influence of a miss-specified model error decorrelation

time scale in linear models, using an (Ensemble) Kalman Smoother, and investigated es-

timation of that timescale in an EnKS.

Using a Kalman Smoother, analytical results were derived for the posterior variance

and Mean-squared Error (MSE) for a zero-dimensional model. We find that the poste-

rior variance, which only depends on the guessed correlation timescale ωg, has different

behaviour with different observation frequencies. With a single observation, the poste-

rior variance has a maximum at a certain ωg value, and that maximum and the ωg value

decrease when propaating in time. When we increase the number of observations, the

posterior variance becomes a monotonic decreasing function of ωg.
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Since the posterior variance represents the error of the posterior estimated by the data

assimilation process, with more information from the observations the estimated error be-

comes significantly smaller. The MSE, which is the actual error of the posterior mean,

decreases as well when more observations are included. But unlike the posterior variance,

the mean-square error of the posterior mean does not only depend ωg, but also on the real

memory time scale ωr. The results for the posterior MSE with a single observation show

that it increases with both ωr and the mismatch between ωg and ωr. It means if we don’t

have a fair estimate of the correlation timescale, the actual posterior error will be larger.

For a higher-dimensional model we used an EnKS. The results agree with the results

from the analytical and numerical evaluations of the Kalman Smoother. For many ob-

servations we found that the MSE is larger than the estimated error for ωg > ωr, and

vice versa. For a low number of observations a new regime appears where for very small

ωr the MSE is smaller than the estimated error, and vice versa for very small ωg. This

behavior is mainly dictated by the behavior of the estimated error.

Since the influence of an incorrect decorrelation timescale in the model error can be

significant we investigated the estimation of this timescale within an EnKS. We found that

when the observation density is high state augmentation is sufficient to obtain converging

results. However, with only one observation in a time window the problem becomes too

nonlinear and the estimation process is slow, or does not even converge. These results

are consistent with parameter estimation via state augmentation in the literature. The new

element is that online estimation is possible beyond a relatively simple bias estimate of

the model error.

As a next step we will explore the influence of incorrectly specified model errors in

nonlinear systems, with the goal to come up with a robust estimation method for time-

correlated model errors.
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Chapter 4

Using the (iterative) ensemble Kalman

smoother to estimate the time

correlation in model error

We further investigate the possibilities of estimating the parameters encoded in the model

error autocorrelation with different assumptions of the formulations of the model error

autocorrelations, with both linear and nonlinear models. In this chapter, we investigate

further for the second research question: Is it possible to establish a way to update the pa-

rameters encoded in the model error autocorrelation online during the data assimilation

procedure? This chapter is reproduced from the paper published on Tellus A: Dynamic

Meteorology and Oceanography (Amezcua, Ren, and Van Leeuwen, 2023).

4.1 Introduction

Forecast models have often been considered perfect representations of the processes in

the real world, the so-called strong constraint in the DA literature. This leaves the uncer-

tainty in initial conditions as the sole culprit for any forecast errors. In reality, however,

model error can become as important as initialisation error in degrading forecast accuracy

(Orrell et al., 2001). In numerical weather prediction (NWP) systems, model error arises

from time and space discretisations, approximate parameterisations of physical processes
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that are not represented explicitly, unresolved sub-grid processes, etc. While these errors

are often ignored in the DA process, it is common knowledge that more accurate solutions

can be obtained if they are included.

The impact of model error caused by unresolved processes on the forecast and DA

results can last for several model time steps. Bennett (1992), typically way ahead of his

time, extensively discussed the use of correlated model errors and solution of the problem

using the representer method, Amezcua and Van Leeuwen (2018) formulated the time-

correlated problem for ensemble smoothers, and Evensen (2021) extended this to iterative

ensemble smoothers. An obstacle in this endeavor, however, is that it is hard to describe a

prior on the model errors, especially if one is to include non-trivial probabilistic elements

in both space and time. As a result, there has been interest in estimating model errors

in DA schemes in the last two decades (Brasseur et al., 2005; Crommelin and Vanden-

Eijnden, 2008; Zhu, Van Leeuwen, and Zhang, 2018; Lucini, Van Leeuwen, and Pulido,

2021; Bonavita and Laloyaux, 2020; Brajard et al., 2021; Pathiraja and Leeuwen, 2017;

Evensen, 2021).

It is important to recall that DA has two components: the forecast, where an initial

condition is evolved using the dynamical model, and the analysis, where forecast and ob-

servations from the truth are combined (e.g. Asch, Bocquet, and Nodet, 2016). Including

model error in DA, therefore, requires actions in both steps. In the forecast, it is necessary

to simulate the action of model error in the evolution of model trajectories. This can be

by inflating the forecast error covariance in a single-trajectory setting, or by explicitly

including realisations of the model error in an ensemble setting like the ensemble Kalman

filter (Evensen, 1994). In the analysis step, one has to be able to update the model er-

ror parameters (or actual realisation values), i.e. go from background to analysis values.

This task is often more complicated, and thus is often skipped, or done in an approximate
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manner (e.g. Howes, Fowler, and Lawless, 2017). Using the wrong model error param-

eters, however, decreases the ability of the analysis step to obtain correct updated values

for the state variable. This was shown for time-correlated model error in Amezcua and

Van Leeuwen (2018) and Ren, Amezcua, and Van Leeuwen (2021).

Let us provide a simple illustration of the way time auto-correlated model error arises.

Consider the time evolution of the logistic map with coefficient γtrue = 3.75, which is

shown in Figure 4.1. This zero-dimensional non-linear discrete map was made popular

FIGURE 4.1. Simple illustration for the origin of auto-correlated model
error. The system evolves under a real system represented by the logistic
map (black line). 1-lag forecasts are produced with an imperfect model
(blue line), persistence. The 1-lag model errors are computed by taking the

differences of the two values (dashed magenta lines).

by May (1976), and is described with more detail in section 3. The nature (or true) evo-

lution is shown by the black solid lines and the black dots. Now, consider an imperfect

forecast model. The simplest one we can think of is persistence, i.e. no evolution over

one model time step. If we take the exact values of the nature run at every model time

step, and evolve them with this imperfect forecast model over one step, we obtain the blue

lines. Taking the difference between the true value of the variable and the imperfect 1-step

forecast renders the dashed magenta lines. These are 1-step model error values diagnosed

offline, and therefore useful only retrospectively.
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To characterise this model error, we run the described process for a long time period

(104 model steps), save the model error values for each time step, and compute statis-

tics on these values (similar to Evensen and Fario, 1997). Figure 4.2 shows three statis-

tics: mean (left panel), standard deviation (centre panel), and lag-1 auto-correlation (right

panel).

FIGURE 4.2. Model error statistics (mean in left panel, standard deviation
in centre panel, lag-1 auto-correlation in the right panel). These statistics
are computed off-line, after a long model run, in the way illustrated in figure
4.1. These are computed for different coefficients in the forecast model

(linear) (horizontal axis in panels).

To make the experiment more general, we keep the true model fixed, but in the forecast

model we vary the coefficient multiplying the value in the previous time step (persistence

is when the coefficient is one). In each panel, the horizontal axis corresponds to values of

this coefficient, while the vertical axis corresponds to the value of the statistic. The three

statistics vary as function of the coefficient in the forecast model. Moreover, the lag-1

auto-correlation shows a non-trivial behaviour, and is zero in only one occasion. Hence,

only for a very particular coefficient choice the model error is independent in time, and

in general it is not. This model error has been diagnosed offline. The question we aim to

answer is whether it is possible to obtain these estimates online.

This chapter has the specific objective to perform online estimation of the time-related

characteristics of this model error. Our goal is to improve the accuracy of the forecast

by sequentially updating the error using an ensemble Kalman-based method (Kalman,
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1960; Kalman and Bucy, 1960). In particular, we use the Ensemble Kalman Smoother

(Evensen and Van Leeuwen, 2000; Evensen, 2018; Amezcua and Van Leeuwen, 2018).

As a smoother, instead of only updating fields at observation time, it updates the whole

trajectory over a simulation window using all available observations in that window. The

EnKS uses ensemble integrations to approximately represent the density for the prior

model evolution. This ensemble is then used to solve the DA problem under the Gaussian

assumption for model states, parameters and observation errors, and an observation oper-

ator that does not deviate too much from linear. Ren, Amezcua, and Van Leeuwen (2021)

performed parameter estimation for the model error with spatial and temporal autocor-

relation using an EnKS, and, while successful in some cases, the parameter estimation

failed in others. It was argued that the failures were due to the linear correlations that are

assumed in an EnKS. We will investigate this claim by using a nonlinear iterative EnKS

(IEnKS) (Sakov, Oliver, and Bertino, 2012; Evensen, 2018). The IEnKS can be regarded

as an ensemble variational method that does not require the tangent linear of the evolution

and observation models, nor the adjoint of these models (Bocquet and Sakov, 2014).

This chapter is organised as follows. In section 2 we show how the problem of jointly

estimating state variables and time-related parameters in the model error is a difficult

one. We show that even when the state variables follow linear dynamics, the time-related

model error parameters appear in a very non-linear fashion within the associated cost

function. This complicates the estimation problem, and makes the minimum variance and

maximum a posteriori solutions differ considerably. In practice, it requires the use a non-

linear DA method such as the IEnKS for the joint estimation problem. In section 3 we

describe our experimental setup. We choose two types of memory for the model error:

one with pure exponential decay, and one with a mixed oscillatory-exponential decay. In

this section we also describe the two models used in our experiments: the simple model

of section 2, and also the logistic map, which provides insight into what happens with

non-linear dynamics. Results of these experiments are presented and discussed in section
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4. Finally, section 5 provides a summary and discussion of the work.

4.2 Estimating auto-correlated model error in a simple

linear model

Estimating model error is a difficult problem, especially when these errors are correlated

in time. We explore a systematic approach in which we aim to estimate parameters of

the time-correlation part of the model error formulation. Specifically, we assume a model

error structure that is separable in space and time. We parameterise the time-dependent

behaviour with decaying and oscillatory parameters, and then use use DA to estimate

them.

This section illustrates how the parameters related to time-dependent model error are

involved in a nonlinear manner in the imperfect model evolution. Therefore, the online

estimation of these parameters becomes a challenge for Bayesian estimation. For simplic-

ity, let us consider zero-dimensional systems, which serves two purposes. First, it allows

for analytic steps to be feasible and provide important insight. Second, we do not need to

worry about spatial structures in the model error and can focus on the time structures.

In the following we first formulate the problem of jointly estimating state variables

and parameters, followed by the full Bayesian problem set up. We show that, because the

time-related parameters in the model error are related nonlinearly to the state variables,

the parameter estimation problem is always nonlinear, even when the prior on the para-

maters is Gaussian and the model is linear in the state. Then we formulate two solutions,

one that finds the mode of the posterior, and the other first linearizes the problem and

then finds the mean. The solution without linearization will be more accurate, but also

much more computationally expensive as it relies on an iterative procedure that employs
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the adjoint model, and does not provide an error estimate. The solution to the linearized

problem is computationally much more efficient, but differs significantly from the solu-

tion to the nonlinear problem. We then formulate an iterative ensemble method, which is

a more accurate solution to the full nonlinear problem. No explicit solution exists for this

ensemble method, but the method is computationally efficient. This is the method we use

in our numerical experiments we perform to achieve online estimation.

4.2.1 Problem formulation

Let x ∈ ℜ be the state variable of our system with initial conditions x0 at t = 0. Con-

sider τ independent model error jumps ϵt, for t = {1, · · · , τ} with zero mean. We de-

note the control variable as the column vector z ∈ ℜτ+1, with background distribution

N
(
µb,z,Dz

)
:

z = [x0, ϵ1, · · · , ϵτ ]T , (4.1a)

µb,z =
[
µb
0, 0, · · · , 0

]T
, (4.1b)

Dz = diag
[
b2, q2, · · · , q2

]
, (4.1c)

where µb,z ∈ ℜτ+1 and Dz ∈ ℜ(τ+1)×(τ+1) are the background mean vector and back-

ground error covariance matrix, respectively. The scalars b2 and q2 represent the back-

ground and model error variances. Note that z has a diagonal covariance matrix since we

consider statistical independence amongst its elements. We use these elements to con-

struct a simple linear system with time auto-correlated model errors in its evolution. The

real linear evolution over one time step is prescribed by:

xt+1 = αxt + vt+1, (4.2)
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i.e. a simple auto-regressive component plus a model error realisation, where the autocor-

related model error can be generated as:

vt+1 = ϕ (1, θ) vt +

√
1− ϕ (1, θ)2ϵt+1, (4.3)

in which ϕ (1, θ) represents the lag-1 autocorrelation of the model error. This model error

has distribution v(t) ∼ N (0, q2), and the following structure in time:

Corr(vt, vt′) = ϕ (|t− t′|, θ) . (4.4)

Eq. (4.4) indicates that the model errors are auto-correlated in time, and this only depends

on the lag |t − t|′ and a vector of Nθ parameters θ ∈ ℜNθ . For τ time steps, this yields

an auto-correlation matrix Φ ∈ ℜτ×τ . This symmetric Toeplitz matrix has the following

elements:

Φ =


1 ϕ(1) · · · ϕ(τ − 2) ϕ(τ − 1)

ϕ(1) 1 · · · ϕ(τ − 3) ϕ(τ − 2)
...

... . . . ...
...

ϕ(τ − 2) ϕ(τ − 3) · · · 1 ϕ(1)
ϕ(τ − 1) ϕ(τ − 2) · · · ϕ(1) 1

 . (4.5)

Being a positive-definite symmetric matrix, a Cholesky decomposition Φ is possible, i.e.:

Φ = LLT, (4.6)

where L ∈ ℜτ×τ is lower triangular.

We now take Eq. (4.2) and write the time evolution of the system from t = 0 to t = τ

in terms of the control vector z and the Cholesky factor L. Explicitly:

xτ = M0:τ

[
1 0
0 L

]
z, (4.7)
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where M0:τ ∈ ℜ1×(τ+1) is a row matrix with the model evolution from 0 to any time t.

For this simple model, the elements are decreasing powers of α:

M0:τ =
[
ατ , ατ−1, · · · , 1

]
. (4.8)

Let us define the composed evolution matrix M̂ ∈ ℜ1×(τ+1):

M̂ = M0:τ

[
1 0
0 L

]
. (4.9)

This includes the effect of the deterministic dynamics and the auto-correlation of the

model error, and it will become useful in the next subsections. Separating the initial

condition and the model errors, we write Eq. (4.7) as:

xτ = ατx0 +M1:τLϵ, (4.10)

where M1:τ ∈ ℜ1×τ and ϵ ∈ ℜτ are obtained by removing the first element of M0:τ and z

respectively. In fact, we can recover the value xt at any time (not just the final time) using

(4.10) with the corresponding truncated elements in the second term.

We consider an observation of the truth at the end of the forecast window, i.e. at time

t = τ . For simplicity, let the observation operator be the identity, so the observation

equation is:

y = xτ + η, (4.11)

with the observation error: η ∼ N(0, r2). Obtaining the analysis values for z was already

discussed in Amezcua and van Leeuwen (2018), and Ren et al (2020). In this chapter we

discuss the solution of the joint state-variable estimation problem.
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4.2.2 Bayesian solution for the joint state-parameter estimation

Considering both the control variable z and parameters θ to be random variables, the

Bayesian solution of this problem is to obtain the posterior joint pdf of z and θ given the

observation y. Namely,

p(z,θ|y) = p(y|z,θ)p(z,θ)
p(y)

. (4.12)

The numerator is the joint pdf of z, θ and y. This is obtained as the product of the

likelihood of y times the prior joint pdf of z and θ. If we consider these two to be

statistically independent, then we have:

p(z,θ) = p(z)p(θ). (4.13)

The marginal pdf of the observations is:

p(y) =
∫ ∞

−∞

∫ ∞

−∞
p(z,θ, y)dzdθ. (4.14)

The prior distribution for the control variable and the likelihood are easy to characterise.

Recall that we have:

z ∼ N
(
µb,z,Dz

)
, (4.15a)

y|z,θ ∼ N
(
M̂ (θ) z, r2

)
. (4.15b)

From now on, we explicitly note that M̂ (θ) depends on θ. Note that the joint estima-

tion problem is complicated since we have the product M̂ (θ) z in the likelihood, which

limits the possibility of obtaining an analytical expression for the posterior p (x,θ|y). For

this reason, we now discuss two solutions based in statistics of this pdf: the maximum-a-

posteriori solution, and a popular approximation, the extended Kalman smoother solution.
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4.2.3 The Maximum-a-posteriori solution

We can try maximising the joint pdf to obtain a maximum-a-posteriori (MAP) solution.

This is equivalent of finding the minimum of the cost function:

J(z,θ|y)) = −ln (p(z,θ|y)) . (4.16)

Using the distributions in Eq. (4.15) and an arbitrary prior for θ, the minus logarithm of

Eq. (4.13) is:

J(z,θ|y) = constant +
1

2
(z− µb,z)TDz−1(z− µb,z) +

1

2r2
(y − M̂ (θ) z)2 − ln(p(θ)).

(4.17)

The minimisers {z∗,θ∗} of the cost-function can be obtained by taking the gradient of

J(z,θ|y) with respect to both control variables and parameters and equating to zero:

[
∇zJ

∇θJ

]
=
[
0
0

]
, (4.18)

with the gradients ∇zJ ∈ ℜτ+1 and ∇θJ ∈ ℜNθ . If we also assume that the parameters

follow a MVG –i.e. θ ∼
(
µθ,Dθ

)
– we are able to compute the gradients explicitly. This

yields the following system of τ + 1 +Nθ equations:

Dz−1
(
z− µb,z

)
− 1

r2
M̂(θ)T

(
y − M̂ (θ) z

)
= 0, (4.19a)

Dθ−1 (
θ − µb,θ

)
−

(
∂M̂ (θ)

∂θ

)T

z

(
y − M̂(θ)z

r2

)
= 0, (4.19b)

with the Jacobian matrix ∂M̂(θ)
∂θ

∈ ℜ(τ+1)×Nθ defined as:

∂M̂ (θ)

∂θ
=


∇θTM̂1(θ)

∇θTM̂2(θ)
...

∇θTM̂τ+1(θ)

 . (4.20)
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One can solve z from Eq. (4.19a) to get:

z = µb,z +K
(
y − M̂(θ)µb,z

)
, (4.21)

with K and γ2 defined as

K =
1

γ2
DzM̂(θ)T, (4.22a)

γ2 = M̂(θ)DzM̂(θ)T + r2, (4.22b)

and similarly from Eq. (4.19b):

θ = µb,θ +
Dθ

r2

(
∂M̂ (θ)

∂θ

)T

z
(
y − M̂(θ)z

)
. (4.23)

Eq. (4.21) is the Kalman analysis equation for the posterior mean (Kalman, 1960; Kalman

and Bucy, 1961). The complication, however, is in our case θ is an unknown. Hence, Eq.

(4.21) needs to be solved in tandem with Eq. (4.23), which cannot be done analytically in

general.

To actually calculate the derivative of the model with respect to the parameters, we

note the following. For the jth parameter θj , Eq. (4.20) can be readily computed using

the Cholesky factor L defined in Eq. (4.6) in the following manner:

(
∂M̂ (θ)

∂θj

)T

= M0:τ

[
1 0

0 ∂L
∂θj

]
. (4.24)

The derivative of the Cholesky matrix can be found using Theorem A.1 of Särkkä (2013):

∂L

∂θj
= LT

(
LT ∂Φ

∂θj
(
L−1

)T)
, (4.25)
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where the matrix T ∈ ℜτ×τ is defined as:

Tij(A) =


Aij if i > j,

1
2
Aij if i = j,

0 if i < j.

(4.26)

4.2.4 The extended Kalman Smoother solution

The extended Kalman Smoother solution can be derived directly from the MAP solution

by centering the derivative of the model to the state and the parameters on the background

values. Tracing back these derivatives we can rewrite Eq. (4.21) and Eq. (4.23) as:

z = µb,z +
1

γ2
DzM̂(µb,θ)T

(
M̂(µb,θ)DzM̂(µb,θ)T + r2

)−1 (
y − M̂(θ)µb,z

)
, (4.27)

θ = µb,θ +
Dθ

r2

 ∂M̂ (θ)

∂θ

∣∣∣∣∣
µb,θ

T

µb,z
(
y − M̂(θ)z

)
. (4.28)

Furthermore, in Eq. (4.28) we use a first-order Taylor expansion for M̂ (θ) as:

M̂ (θ) = M̂
(
µb,θ

)
+

 ∂M̂ (θ)

∂θ

∣∣∣∣∣
µb,θ

T (
θ − µb,θ

)
. (4.29)

We can solve then solve Eq. (4.27) and Eq. (4.28) by introducing a new augmented

variable z̃ =
(
zT,θT

)T
and after some algebra we obtain:

µa,z̃ = µb,z̃ + K̃
(
y − M̂(µθ,b)µb,z

)
, (4.30a)

Az̃ = Dz̃ − K̃

[
M̂
(
µb,θ

)
,
(
µb,z

)T ∂M̂ (θ)

∂θ

∣∣∣∣
µb,θ

]
Dz̃, (4.30b)
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where Az is denoted as the posterior variance in model error space. In this case, the aug-

mented gain K̃ ∈ ℜ(τ+1+Nθ)×1 and augmented residual variance γ̃2 ∈ ℜ≥0 are different

from Eq. (4.22)

K̃ =
1

γ̃2

 DzM̂(µb,θ)T

Dθ

(
∂M̂(θ)
∂θ

∣∣∣
µb,θ

)T

µb,z

 , (4.31a)

γ̃2 = M(µb,θ)DzM(µb,θ)T +
(
µb,z

)T ∂M̂(θ)

∂θ

∣∣∣∣∣
µb,θ

Dθ

(
∂M̂(θ)

∂θ

∣∣∣∣
µb,θ

)T

µb,z + r2.

(4.31b)

In the last step we have again assumed that state variables and parameters are statisti-

cally independent in the prior. Notice that even with a Gaussian prior p (θ) and a model

that is linear in the state z the MAP and the extended KS solution can differ considerably.

The MAP solution results in an implicit equation that needs to be solved iteratively. How-

ever, even if we manage to do this an uncertainty estimate is still lacking. It is possible,

if the system is low-dimensional, to solve this problem with e.g. a particle filter. Unfor-

tunately, for higher dimensions particle filters are degenerate, and a potential solution for

that, localization, is difficult to use with global parameters. Instead, we resort to a popular

approximate solution based on an iterative Ensemble Kalman smoother that can easily be

scaled up to higher dimensions.

4.2.5 The (Iterative) Ensemble Kalman Smoother

The Iterative Ensemble Kalman Smoother (IEnKS) does solve the parameter estima-

tion problem approximately, but it does introduce nonlinearity in the solution procedure.

Hence, it will provide a solution that is closer to the MAP than the Extended Kalman

Smoother solution. In an IEnKS parameter estimation is typically performed via state
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augmentation, as in the extended Kalman Smoother. We define a variable u ∈ ℜ1+τ+Nθ

as:

u = [x0, x1, · · · , xτ , θ1, · · · , θNθ ]T, (4.32)

where the augmented variable includes the state variable at all time steps and all the model

error parameters, sometimes called the state formulation. Notice that this is slightly differ-

ent than Eq. (4.1), where the augmented variable contains the initial conditions, the model

error jumps, and the model error parameters, leading to the so-called forcing formulation.

In a linear system, it is trivial to go from one formulation to the other, as explained in

Tremolet (2006) and Amezcua and Van Leeuwen (2018). For ensemble implementations

it is easier to work with state variables directly, so this is how we implement the experi-

ments in the chapter.

Ren, Amezcua, and Van Leeuwen (2021) studied the consequences of wrongly pre-

scribing the model error decorrelation time scale, which was the only parameter. This is,

they performed DA with a model error auto-correlation which was different from the one

’guessed’ in the ensemble forecast. In the last part of the work, they used state augmen-

tation in an EnKS –as formulated in Amezcua and Van Leeuwen (2018)– to estimate one

time parameter in the model error. The authors did not, however, perform a systematic

analysis with different types of model error structure. In this work we perform a deeper

analysis and more extensive experiments.

In this work we perform state augmentation experiments using two DA methods, the

stochastic EnKS and its iterative variant (IEnKS), as formulated in Evensen (2018). This

formulation aims to find the minimum of a cost function using ensemble members, either

in one step (EnKS) or multiple steps (IEnKS). In the IEnKS a cost function is defined

for each ensemble member e by rewriting the cost function Eq. (4.17) in terms of the
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extended variable u as:

Je(u) = constant +
1

2
(u− µu,e)TDu−1(u− µu,e) +

1

2r2

(
ye − M̂ (u)u

)2
, (4.33)

in which µu,e is the prior ensemble member e, and

ye = y + ηe, (4.34)

is a perturbed observation with the perturbation drawn from the observation error pdf, so

ηe ∼ N(0, r2). In Eq. (4.33) it is clear that the product M̂(u)u is responsible for the

difficulty of this problem. Evensen (2018) proposed a simple Gauss-Newton iteration for

each ensemble member as:

ui+1,e = ui,e − δC−1 ∇Je(ui,e)
∣∣
ui,e , (4.35)

where i is the iteration index, C ∈ ℜ(1+τ+Nθ)×(1+τ+Nθ) is a symmetric approximation of

the Hessian of the cost function in which the second derivative of M̂ (u)u is neglected,

so

C = Du−1 +
1

r2

(
uT∂M̂(u)

∂u
+ M̂(u)

)T(
uT∂M̂(u)

∂u
+ M̂(u)

)
, (4.36)

and ∇Je(u) ∈ ℜ1+τ+Nθ is the gradient of the cost function for ensemble member e. The

iteration step length δ is tunable. The iteration is started at ue
0 = µu,e.

The simple descent algorithm can be used with the ensemble gradient and the ensem-

ble approximated Hessian information, as shown in equation (36) of Evensen (2018). For

efficiency, we use the particular implementation described in Evensen et al. (2019). Tun-

ing factor δ is an art. In our implementation we reduce the step size the closer we get to

the minimum via:

δi+1 = cδi, (4.37)
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with 0 < c < 1. The stochastic EnKS can be obtained from this formulation by using

only one iteration and setting δ = 1.

4.3 Experimental setup

For our experiments, we use two types of model error (with one and two parameters), and

two types of evolution models (linear and nonlinear).

4.3.1 Model error formulations

The first type of model error was used both in Amezcua and Van Leeuwen (2018) and

Ren, Amezcua, and Van Leeuwen (2021). The correlation of model error between two

time steps is:

Corr(vt, vt′) = exp

[
−|t− t′|

ω

]
. (4.38)

In this case, the auto-correlation decays exponentially, and it only has one parameter –

the decay time scale ω (ω>0). When ω tends to 0 the model error becomes a white-noise

process. When ω tends to infinity, the model error becomes fixed (a bias). Summarizing:

Corr(vt, vt′) →

1, if t = t′ or ω → ∞

0, if |t− t′| → ∞ or ω → 0.

(4.39)

The second model error structure we explore contains both decaying and oscillatory

elements:

Corr(vt, vt′) = ϕ|t−t′| cos(2πf |t− t′|). (4.40)
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The first term is a geometric memory term, with base −1 < ϕ < 1, which can be con-

sidered a decay parameter. The second term is oscillatory with frequency f . To avoid

instability of the system, the decay parameter ϕ is bounded as 0 ≤ ϕ ≤ 1, and the fre-

quency f is bounded by 0 < f < 0.5. When the frequency is 0.5, the covariance becomes

purely decaying with time and it becomes purely oscillatory when the decaying parameter

tends to 1.0. Summarising:

Corr(vt, vt′) =

ϕ
|t−t′|, if f = 0.5

cos(2πf |t− t′|), if ϕ = 1.

(4.41)

4.3.2 Evolution models

To illustrate the issues that arise when estimating model error parameters that are related

to temporal correlations, we restrict our experimental set up to two zero dimensional

models. The first is the simple linear scalar model used for the analysis in section 2. The

true model is:

xt+1 = αxt + vt+1. (4.42)

Note that this true model is a stochastic model and we assume v ∼ N(0, q2). The true

model uses a real decay timescale ωr, while the forecast model assumes a guessed time

auto-correlation parameter ωg. This value needs to be updated in the DA cycle.

The second set of experiments is much more ambitious since we use a non-linear map

as the real system. In particular, we use the well-known logistic map (May, 1976):

xrt+1 = γxrt (1− xrt ), (4.43)

where γ is the parameter that gives rise to stable solutions when 0 ≤ γ ≤ 4; by stable
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we mean solutions that do not leave the interval [0, 1]. In our experiments we choose

γ = 4 which puts the model in a chaotic regime. Note that in these experiments, the

true model is deterministic. This seemingly simple non-linear map is non-invertible, with

initialisation errors growing and saturating quickly. It has therefore been used before to

test the performance of different configurations of the EnKF (Mitchell and Houtekamer,

2009). The true autocorrelation of the model error (computed offline as described in the

introduction) has both positive and negative values, while decreasing in absolute magni-

tude as a function of the lag. Therefore, a 2-parameter memory is more appropriate for

this case, although it increases the difficulty of the problem by having to estimate an extra

parameter.

As a forecast model, we propose a stochastic linear model

xt+1 = γgxr + vt+1, (4.44)

where γg is a prescribed damping coefficient for the forecast model, with its value within

0 < γg < 1 to keep the model stable. The model error has the same properties as in the

experiments where the real model is linear. In section 1, we described an off-line process

to compute the statistics of this model error from a long-time collection of differences

between perfect and imperfect forecasts. What we look for, instead, is to estimate the

time-related parameters online, along with the state estimation.

4.3.3 Implementation details

Our experiments follow the fraternal (non-identical) twin set up. A real initial condition

is prescribed and the true model is run for a long time. In the case of the true stochastic

linear model shown in Eq. (4.2), a particular realisation of the model error is used for

this true run. For this model we use α = 0.8 for all experiments. Synthetic observations
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are obtained at different times by applying Eq. (4.11) with r2 = (0.01)2. We generate

synthetic observations every model time step, although we use different subsets in dif-

ferent experiments. The ensemble forecast is generated by selecting Ne initial conditions

coming from N (0, b2), with b2 = (0.1)2. The model error realisations are generating

using Eq. (4.10). This is, uncorrelated model errors are generated from N (0, q2), with

q2 = (0.1)2. The time auto-correlation is inserted by computing the desired Cholesky

factor L(θ) which depends in the parameter vector θ, performing the operation indicated

in Eq. (4.10). To separate the true system with the forecast model, the trick is to use a

guessed parameter in the forecast model and data assimilation process, which is different

from the one used in the true run. For model error parameters we have the following:

• For the one-parameter model error, the prior distribution is ωb ∼ N(µb,ω, σω2) with

µb,ω = 0.3 and σω2 = (0.5)2.

• For the two-parameter model error, we consider the two parameters to be uncorre-

lated. Their marginal background distributions are: ϕb ∼ N(µb,ϕ, σϕ2) with µb,ϕ =

0.3 and σϕ2 = (0.2)2, and f b ∼ N(µb,f , σf 2) with µb,f = 0.3 and σf 2 = (0.2)2.

Both the EnKS and IEnKS use stochastic implementations, (Van Leeuwen, 2020) i.e.

one needs to add observational noise to observation values predicted by each ensemble

member. In this way the real observation and the predicted observations are generated in

the same way. In all our experiments, we use an assimilation window of τ = 20 time steps

plus the initial condition. When we assimilate 1 observation per window, this is located

at the end time. When we assimilate 20 observations per window, these correspond to

all time steps except that of the initial conditions. In order to avoid the introduction of

sampling errors –which would be difficult to disentangle from the other effects we study–

, we use a relatively large ensemble with Ne = 200. This size is kept constant for all

experiments.
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For the IEnKS, we vary the number of iterations and the step length δ. We consider

the IEnKS to have converged to a solution when the difference |ui+1 −ui| < 0.01, which

is approximately 1% of the range of the parameters.

4.4 Experimental results

4.4.1 Illustration of state estimation

In the first set of experiments we aim to illustrate the performance of the EnKS for state

estimation. To this end, we use the 1-parameter memory setting and choose background

values very close to the real parameter, both the linear and non-linear models. The results

of these experiments are displayed in Figure 4.3. In all panels, the truth is shown with a

black thick line, randomly selected background ensemble members in blue, and randomly

selected analysis members in red. For the analysis, the thick red line corresponds to the

mean. We do not show all members to avoid visual cluttering. For this experiment, we

only study a single assimilation window.

The top row of this figure shows the results with the linear model. In this case, the

EnKS is capable of recovering an analysis mean quite close to the truth. The availability

of more observations makes an important difference, as noted in the results shown in the

two columns (left shows 1 observation per window, right shows 20 observations per win-

dow). In this simple linear case, even with very sparse observations. the EnKS can still

provide a fair estimation of the state.

The bottom row shows the results with the logistic map. In the case with a single

observation at the end of the simulation window, the EnKS was unsuccessful, which is

expected considering the length of the assimilation window, and that joint estimation is

being performed. To obtain a better results, more information from the observations is
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(A) Linear model, 1 obser-
vation per window

(B) Linear model, 20 obser-
vations per window

(C) Logistic map, 1 observa-
tion per window

(D) Logistic map, 20 obser-
vations per window

FIGURE 4.3. State update for both linear model and logistic map with
different number of observations over a single simulation window using

EnKS.

needed. With dense observations, observing every time-step for instance, the EnKS pro-

vides a correct estimation of all the state values at all time steps.
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4.4.2 Parameter estimation in the linear model

4.4.2.1 One-parameter estimation

Our first experiments with the linear model consist of trying to estimate the parameter ω

via the EnKS, using the one-parameter autocorrelation shown in Eq. (4.38). The results

are shown in Figure 4.4. This figure has four panels. Panels (A), (B) and (C) have the

same format, the difference amongst the panels is the number of observations per assimi-

lation window. In each panel, the black vertical line shows the true value of the parameter.

Different pdfs are displayed, computed as histograms (smoothed using Kernel Density Es-

timation (KDE)) using the ensemble members. The blue line shows the background pdf

for the estimated parameter, whereas the orange-red lines correspond to the analysis pdfs

after different number of assimilation windows. We see that the DA system works well

for one-parameter estimation, especially with multiple observations. In fact, even with a

single observation at the end of each simulation window, the analysis pdf moves towards

the true ω, and the variance of the posterior pdfs is smaller than that of the prior, and it

gets smaller as the number of consecutive assimilation windows increases. The effect of

using more observations in each simulation window is to accelerate the convergence of

the posterior pdf towards a stationary distribution. Panel (D) illustrates more clearly the

evolution of the analysis estimator for sequential assimilation windows (in the horizontal

axis). The blue horizontal line shows the value of the background mean ω̄b ≈ 1, whereas

the horizontal black line shows the true value of the parameter ωr = 0.5. In this case,

we only track the analysis mean (solid colour lines) and the analysis standard deviation

(shaded colour areas). With one observation at the end of the assimilation window, the

convergence of the analysis mean is slow, taking about 50 assimilation windows before

the analysis mean and standard deviation stabilise. There is, however, a considerable bias

with respect to the true parameter. Increasing the number of observations in the assimi-

lation window accelerates the convergence of the mean estimator. The cases with 5 and

20 observations per assimilation window approach their final value between 10 and 20

assimilation windows. The final estimate with 5 observations is still slightly larger than
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(A) 1 observation per win-
dow

(B) 5 observations per win-
dow

(C) 20 observations per win-
dow

(D) evolution of the estima-
tor for multiple assimilation

windows

FIGURE 4.4. (A)∼ (C)Exponential scale estimation with different num-
bers of observations and simulation windows using the EnKS and (D) the
convergence of the mean of posterior pdf with the number of simulation

windows (the shading is the standard deviation of each case).

the true parameter. The estimate with 20 observations satisfactorily converges toward the

real parameter from below, although at the end of the 80 assimilation windows a small

gap still remains, much larger then the estimated uncertainty in the ensemble.
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We perform similar experiments with the IEnKS. Recall that in this case the number

of iterations can influence the performance of the smoother. We analyse the effect of the

number of iterations in Figure 4.5. This figure has two similar panels corresponding to

(A) 1 observation per win-
dow

(B) 20 observations per win-
dow

FIGURE 4.5. Analysis mean and standard deviation resulting from using
IEnKS with different number of observations (panels), iterations (horizon-

tal axis), after different number of simulation windows (lines).

1 observation (left) and 20 observations (right) per window. The blue horizontal line de-

notes the background mean, and the black line the real parameter value. In each panel we

plot several lines corresponding to analysis mean after different number of assimilation

windows, as well as a shaded area corresponding to the analysis standard deviation. In

the horizontal axis we have the number of iterations in each window. These iterations

use a fixed step length δ. Perhaps the most important message of this figure is that the

IEnKS results are independent of the number of assimilation windows, and there is not

a noticeable difference between the different lines. For one observation at the end of the

assimilation window, the estimator has not fully converged after 20 iterations. It seems

that at least 5 iterations per window are necessary for the IEnKS to show reasonable per-

formance. In the case of 20 observations per window, it takes between 15 to 20 iterations

for the IEnKS to converge to the true value of the parameter. Again, the number of assim-

ilation windows does not matter.
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Based on these results we fix the number of iterations in the IEnKS to Niter = 10

for the rest of our experiments. In practice, one aims to perform as few iterations as pos-

sible to minimise computational expenses. We use the IEnKS with a different numbers

of observations and simulation windows. These results shown in Figure 4.6. The over-

(A) 1 observation per win-
dow

(B) 5 observations per win-
dow

(C) 20 observations per win-
dow

(D) convergence of ωa over
simulation windows

FIGURE 4.6. (A)∼ (C)Exponential scale estimation with different numbers
of observations observations and simulation windows using IEnKS and (D)
the convergence of the mean of posterior pdf with the number of simulation

windows (the shading is the standard deviation of each case).
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all format of this figure is the same as that of Figure 4.4. Panels (A) to (C) reveal that

the convergence to the analysis pdf is faster with more observations per window, and the

resulting consecutive analysis pdf’s have smaller variance. Panel (D) reveals that for the

three observation frequencies, the major changes to the analysis mean occur in the first

20 assimilation windows. For the cases with 1 and 5 observations per window, the bias

in the final analysis mean is reduced considerably with respect to the estimators obtained

by the EnKS. With 20 observations per window, the estimation is remarkably accurate,

with the analysis mean oscillating around the real parameter value after 50 windows and

remaining there.

In this subsection we have shown that EnKS converges to the real parameter value but

a small bias remains, while its uncertainty estimate tends to contain that real value. The

results show significant improvement increasing in the number of observations and the

EnKS benefits from more assimilation windows. Next step is to extend our experiments

to a more complex model error setting with two unknown parameters.

4.4.2.2 Two-parameter estimation

For this part of the experiments, we implement the model error with formulated in Eq.

(4.40), which contains both decaying and oscillatory parameters. We start by experiment-

ing with the EnKS. This method, however, fails to find the correct values for both param-

eters even in the case with observations every time step. This case is shown in Figure 4.7.

This figure shows the background (blue line) and analysis (orange-red lines) pdf’s for the

oscillatory (left) and decaying (right) parameters. The vertical black lines correspond the

true parameter values. The figure illustrates how the mean of the analysis pdf converges

towards wrong values of the parameters, with noticeable variance reduction after succes-

sive assimilation windows. This behaviour suggests that the minimisation process in the

IEnKS is converging to an incorrect local minimum. To explore the failure of the EnKS in
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(A) 20 observations per win-
dow

(B) 20 observations per win-
dow

FIGURE 4.7. Two-parameter estimation, f (left) and ϕ (right), using the
EnKS with 20 observations and different number of simulation windows.

this case, it is useful to display the cost function of the problem. This requires computing

Eq. (4.33) using Eq. (4.40) and Eq. (4.42). For simplicity, we do this for the case of a

single observation at the end of the assimilation window. Before explaining the result, we

need to recall some aspects of this cost function:

• The input of this function is the vector u and the output is a scalar. The function

maps 1 + τ +Nθ values into a single one.

• The background elements needed by the cost function are the background mean

µb,u and and covariance Du.

• The observation elements needed by the cost function are the actual observation y

and its variance r2,

In Figure 4.8 we start with a simple setting.

We use the exact mean µb,u and covariance Du, as well as the observational variance

r2 from section 4.3.3. Since we are not interested in the behaviour of the cost function

with respect to the state variables, we set the state variables to a fixed value. and we only
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FIGURE 4.8. Exact cost function including the two-parameter model error,
the state variable, observations with different number of time-steps and val-
ues of observations using the EnKS. The green point represents the analysis
value predicted after 1 EnKS step (with no extra iterations), and the pink

point represents the exact global minimum.

let the values θ = [f, ϕ]⊤ vary freely. We plot a cross-section of the cost-function in the

two-dimensional parameter space. We choose x0 = 0 and ϵ1 = · · · = ϵτ = 0.1 –note that

we have to choose a value different from zero, otherwise the cost function would be blind

to the variation in model error parameters.

Figure 4.8 has nine panels. Each one of the rows correspond to a different length of

the assimilation window (recall that the observation is taken at the end), and each one

of the columns correspond to a different given observation. We already know that the

resulting cost function is not quadratic, and that the deformation from a quadratic cost

function grows as the number of time step grows, and as the difference between the given

observation and the predicted observation is larger. This is exactly what we observe in the

figure. Both the first and third columns, when the observations are y = ∓4.0 respectively,

show the largest deformation of the cost function and this grows for the rows from top to

bottom. The middle panel (y = 0) sees little deformation from a paraboloid. For each
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panel, the green dot represents the background mean values of the parameters, and the

pink dot corresponds to the global minimum of the cost function. In all cases, the cost

function is still concave and there is a unique minimum to be found.

The simple case shown before is not what the EnKS encounters in practice. First of

all, we do not know the real background covariance matrix, so this comes from a sample

estimator. Second, the cost function is applied to each ensemble member separately, and

therefore the background mean is just the background value for each member. The final

analysis estimator is the mean of the Ne estimated minima. We explore this in Figure

4.9. First of all, we fix given observation to y = −4. Each column represents a different

FIGURE 4.9. Sample cost function of different ensemble members (from
left to right, Ne = 2, 4, 8) including the two-parameter model error, the
state variable, observations with different number of time-steps and values
of observations using the EnKS. The green point represents the analysis
value predicted after 1 ENKS step (with no iterations), and the pink point

represents the exact global minimum.

ensemble member (3 members out of the 200 we used to compute background statistics),

and each row represents a different length of the assimilation window. To produce these

cost functions, the background values are random realisations of the distributions for the
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initial conditions, model errors and parameter values shown in section 4.3.3. Again, we

are interested in the behaviour in the two-dimensional parameter space, so we fix all the

state variables to the same constants as before. What we see is very different from Figure

4.8. Figure 4.9 shows cost functions which are not convex, in fact they have very intricate

topographic features such as narrow elongated ridges and valleys, and even some local

mimima and maxima. The global cost minimum is difficult to converge to in a single

application of the EnKS. In fact, this does not happen. We see that as the assimilation

window length increases, the complicated features of the cost function increase. This

agrees with the unsuccessful results we had seen in Figure 4.7. Therefore, it is necessary

to apply a number of smaller steps via iterations in an IEnKS.

We now apply the IEnKS to avoid getting stuck in a valley or a local minimum in

the minimisation process. The results for the two-parameter estimation using IEnKS are

shown in Figure 4.10 and 4.11. We apply the IEnKS with 10 iterations and a fixed step

length δ = 0.3.

Figure 4.10 shows the ensemble background and analysis pdfs (after different number

of assimilation windows) for the oscillatory (top row) and decaying (bottom row) param-

eters, for 1 observation (top row) and 20 observations (bottom row). This figure reveals

that the IEnKS works fairly well with more observations in this case. Similar to the results

with the single parameter estimation, the two-parameter estimation results improve with

the increase in the number of observations and assimilation windows in the simulation

period. The IEnKS estimation converges towards the correct values of both parameters.

In the case of only 1 observation in the assimilation window, the pdf stops short of the

real value (black line), while in the case of 20 observations the estimation is better. Figure

4.11 tracks the evolution of the analysis mean and standard deviation for the two param-

eters (one for each panel) as the number of assimilation windows increases, and for three

total number of observations: 1, 5 and 20. The true and background mean values are
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(A) 1 observation per win-
dow

(B) 20 observations per win-
dow

(C) 1 observation per win-
dow

(D) 20 observations per win-
dow

FIGURE 4.10. Two-parameter estimation using the IEnKS with different
number of observations and simulation windows, and 10 iterations.

shown with horizontal lines, black and blue correspondingly. Note the improvement in

the estimation as the number of observations increase. Even for observations every time

step, there is a bias in the final estimation of the frequency parameter, while the decay

parameter is captured in the ensemble uncertainty. Compared with the results from the

one-parameter estimation, the two-parameter estimation problem seems to be much more

complicated, and requires more observations to make the estimation work.
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(A) f
a

with the number of
windows

(B) ϕ
a

with the number of
windows

FIGURE 4.11. Posterior mean of the two parameters over the number of
simulation windows with different number of observations.

In closing the experiments for this subsection, we want to see how the IEnKS works

with different initial guess for the two parameters. Given the complicated shape of the cost

function, it is conceivable that we may get stuck in local minimums, even when using this

sophisticated iterative method. We divide the two-dimensional parameter space into four

quadrants, and we choose starting points in each one of the quadrants. These results are

shown in Figure 4.12.

This figure shows results in the case of one observation (left) and 20 observation

(right). In both cases, the true values of the parameters are at the centre of the quadrants

(denoted with a black dot). We see that the position of the initial condition can have se-

rious impact on the estimation results. When we only observe at the end of the window

most initial conditions do not lead to a value close to the true value. In fact, we see that the

DA system cannot distinguish between parameter values lying roughly on a straight line

defined by the red dots. On the other hand, when we have observations at every time-step,

the posterior seems to get fairly close to the true values of the parameters, but many local

minima exist around the true values. The results show the importance of the initial guess

of the parameters on the parameter estimation results.
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(A) 1 observation per win-
dow

(B) 20 observations per win-
dow

FIGURE 4.12. Two-parameter estimation for different priors using the
IEnKS with different number of observations and simulation windows af-
ter 10 iterations. The blue dots show different background values, used
as initial conditions for the minimisation. The red dots show the obtained
analysis values. The black dot in the centre shows the true values for the

parameters.

After experimenting with the linear model, our next step is extending the experiments

of two-parameter model error autocorrelation to the nonlinear model, the logistic map.

4.4.3 Parameter estimation in a non-linear model

The last experiments we perform are also the most challenging. In this case our true model

is the logistic map with the damping coefficient γ = 3.99, and the proxy model is linear

model with auto-correlated model error. The true model error autocorrelation in this case

has both an oscillatory and decaying behaviour (this can be diagnosed offline as described

in section 4.4), so we directly try two-parameter estimation. Since the EnKS failed on the

two-parameter estimation even with the linear model, we decide to only apply the IEnKS

with 10 iterations, over times windows of 10 time steps long.
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In our first experiments we try to estimate f and ϕ using the IEnKS with a fixed itera-

tion step length δ = 0.3 as used in the linear experiments. The results of these experiments

are shown in Figure 4.13 for both parameters (rows) and for 1 and 20 observations in the

window (columns). With 1 observation at the end of the window the smoother does not

(A) 1 observation per
window

(B) 10 observations
per window

(C) 1 observation per
window

(D) 10 observations
per window

FIGURE 4.13. Two-parameter estimation using the IEnKS with the logistic
map, using a fixed iteration step length (δ = 0.3), 10 iterations per window,

different number of observations and simulation windows.

seem to converge, and with 20 observations convergence seems to occur, but to incorrect

values of the parameters. Increasing the number of iterations per window or the number

of windows did not improve results.
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Since the IEnKS with a fixed step length δ fails to estimate the parameters directly,

we explored three further experimental settings. In the first we transform the estimation

problem to a more linear setting by estimating lag-1 and lag-2 autocorrelations of the

model error (labelled as AC(1) and AC(2) respectively), and then transform the results

to f and ϕ as the following:

ϕ =
√
2AC(1)2 − AC(2)

f =

arccos

(
AC(1)√

2AC(1)2−AC(2)

)
2π

.

(4.45)

In the second setting we use a decaying step length δ while using the untransformed pa-

rameters. However, Figure 4.14 shows that neither method is successful, suggesting that

the problem is highly nonlinear and a more careful tuning of the minimization is required.

In the third setting we both transform problem to first estimating the autocorrelations

and applying a decaying step length. However, with only 1 observation in the assimila-

tion window the IEnKS failed, no matter what we tried. For a fully observed system with

10 observations per assimilation window successful results can be achieved. We show

results for reducing the step length δ by 2% after each iteration (i.e. c = 0.98 in Eq.

(4.37)). From the two top plots in Figure 4.15, we can see that the results are similar

to the successful results for the linear model shown in Figure 4.10. The posterior shows

improvement with more simulation windows, and the variance decreases with more win-

dows as well. Figures 4.15 (C) and (D) show that the posterior mean moves towards the

right values for both parameters, with slowly decaying uncertainty and not monotonically.

Even though the minimization is successful the convergence is extremely slow, even in

this simple zero-dimensional model. This illustrates that estimating parameters in model

errors that are related to temporal correlations is a very hard problem.
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(A) with fixed δ and in-
direct estimation

(B) with fixed δ and in-
direct estimation

(C) with decaying δ
and direct estimation

(D) with decaying δ
and direct estimation

FIGURE 4.14. Two-parameter estimation using the IEnKS with 10 obser-
vations per window after 10 iterations with the logistic map. On the top
panel, (A)∼(B) the iteration step-length is fixed (δ=0.3), and we estimate
the lag-1 and lag-2 autocorrelation then transform them to f and ϕ. On the
bottom panel, (C)∼(D) the parameters are estimated directly with a decay-

ing δ.

4.5 Summary and conclusions

Including the model error in the DA process is a difficult task to tackle, especially when

this model error possesses spatial and temporal correlations. The objective of this work

is to test whether it is possible to include the estimation of time-related model error pa-

rameters in the DA process. We have shown that even in the case of linear dynamics,
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(A) 10 observations per win-
dow

(B) 10 observations per win-
dow

(C) convergence of f
a

(D) convergence of ϕ
a

FIGURE 4.15. Lag-1 and lag-2 autocorrelation are estimated and trans-
form to the parameters (A) f and (B) ϕ, using the IEnKS with a decaying
iteration step length, 10 iterations per window, for different numbers of as-
similation windows with the logistic map. The bottom two figures show
the convergence of the posterior mean of (C) f and (D) ϕ over the number

of simulation windows with observations every time-step.

the model error parameters are involved in an intricate and non-linear way in the model

evolution. We have therefore focused in the use of the EnKS and the IEnKS combined

with parameter augmentation to solve the joint state-parameter estimation problem.

With a simple linear-regressive model and exponential decaying memory in the model
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error, the EnKS works well using the state augmentation method to estimate a single

model error parameter, even with only one observation at the end of the assimilation win-

dow. The estimation results are improving with an increasing number of observations

in each window, and by iterating over more assimilation windows. The IEnKS with 10

iterations gives slightly superior results compared to the EnKS in this case, as expected.

When the complexity of the temporal correlation in the model error is increased by

including an oscillatory component state augmentation with the EnKS fails. Indeed, the

cost functions involved show highly irregular shapes and convergence in one step is not

possible. An IEnKS with a fixed iteration step length is shown to converge to the correct

values when the number of observations in an assimilation window is high enough. The

failure to converge with one observation at the end of the assimilation window can be

traced back to the long valley with minimal gradients in the cost function, identified via

different first guess values. There just isn’t enough information to estimate both model

error parameters. However, we do see that the uncertainty in the estimates remains large,

so the IEnKS does show consistent results. Increasing the number of observations in the

window solves this problem.

The nonlinear logistic map proves to be more challenging when estimating both model

error parameters. The EnKS always fails, and the IEnKF fails with the standard fixed step

length and direct estimation of the parameters. The combination of a step length that

decreases with iteration and transforming the problem by first estimating the autocorre-

lations in the model error improves the results significantly, although we need a fully

observed system, and convergence is very slow.

Overall, we conclude that estimating temporal-correlation related parameters in model

errors is a highly nonlinear problem, and more difficult than expected even in zero-

dimensional systems. The number of observations in an assimilation window needs to
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be high enough for the smoother to have enough information on these parameters, and

for nonlinear models careful tuning of an IEnKS is needed. The bottom line is that it is

very well possible that the data-assimilation system does not have enough information to

pinpoint the exact model error parameters, while at the same time we should realize that

these parameterizations of model errors are approximate by their very nature.

It is important to keep in mind that these results were obtained with a very large en-

semble size of 200 for a zero-dimensional system and two parameters. This choice made

sense for the focus of this chapter, but in reality the limited ensemble size will give rise

to extra noise in the estimates. The IEnKS, while being a very powerful method, does not

converge to the posterior pdf with growing ensemble size for nonlinear data-assimilation

problems (see e.g. Evensen, 2018). Especially when multiple modes are present in the

posterior, as in our case, several of the modes can be missed. This is problematic when

local modes are almost as high as the global mode, in which case the correct solution to

the data-assimilation problem is this family of modes. To find these fully nonlinear meth-

ods like local particle filters or particle flows are needed (see e.g. Van Leeuwen et al.,

2019; Hu and Van Leeuwen, 2021; Evensen, Vossepoel, and Van Leeuwen, 2022).

Our next step is to investigate how these results carry over to more realistic and com-

plex models such as a two-layer quasi-geostrophic model. The challenge in this case is

whether the spatiotemporal model error correlation is separable or not. The ultimate goal

is to have a online update for the model error within an operational system.
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Chapter 5

Parameter estimation of model error

autocorrelation with the

Quasi-geostrophic model

The final part of this project is to apply the online parameter estimation using data assimi-

lation method on a more complex and realistic model, the Quasi-geostrophic (QG) model.

In this chapter, we only experiment with the simplest model error autocorrelation. The

program for the QG is provided by Prof. Peter Jan Van Leeuwen, and the experiments and

chapter are finished by Haonan Ren with the supervision of Prof. Peter Jan Van Leeuwen

and Dr. Javier Amezcua.

5.1 Introduction

In this chapter, we consider the model error in a more realistic and complex situation,

in which the spatial and temporal correlations are both considered in the data assimila-

tion process. We aim to estimate certain parameters in the model error autocorrelation

using ensemble data assimilation schemes, so that we can have a better understanding of

the model error statistics and improve the data assimilation results. We perform parame-

ter estimation using the state augmentation method with the ensemble Kalman Smoother

(EnKS) on the 2-layer QG model. The general structure of this chapter is as follows. In
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section 2, we demonstrate the formulation of the 2-layer QG model, including the gov-

erning equations, the general solution procedure and the experiment settings. Then, we

present the formulation of the model error we used in the QG model and the data assimi-

lation scheme we employ in section 3. In section 4, we will show and discuss the results

from the numerical experiments for both state update and parameter estimation. The con-

clusion of the experiment results on QG model will be presented in section 5.

5.2 The two layer Quasi-geostrophic model

To extend our experiments to more practical models instead of simple, low-dimensional

linear and nonlinear models used in the previous chapters, we apply a two-layer quasi-

geostrophic (QG) model. The QG model simulates mid-latitude synoptic and larger-scale

flow. This flow is almost geostrophic because key features of synoptic weather systems

require a non-geostrophic flow component (Shepherd, 2015). Using this model, we can

more comprehensively understand the impact of the autocorrelated model error on the

numerical forecasting system and data assimilation results, and how to deal with it in the

operational systems in the future with same method applying to the operational system.

5.2.1 Governing equation

The 2-layer QG model solves the following equations:

∂p1

∂t
+ J (ψ1, p1) = A∆q1, (5.1)

∂p2

∂t
+ J (ψ2, p2) = A∆q2, (5.2)
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in which ψi is the streamfunction related to the velocity in layer i, pi represents the po-

tential vorticity in layer i. The Jacobian J (ψi, pi) is defined as:

J (ψi, pi) = ψixpiy − ψiypix. (5.3)

The potential vorticity pi is defined as the sum of the relative vorticity qi, the planetary

vorticity f and a stretching term:

p1 = q1 + f − F 1(ψ1 − ψ2), (5.4)

p2 = q2 + f + F 2(ψ1 − ψ2), (5.5)

where qi is the relative vorticity that represents the vertical component of the curl of the

velocity

qi = vix − uiy = ∆ψi, (5.6)

and F i is a constant related to so-called reduced gravity acceleration g′ = g(ρ2 − ρ1)/ρ2,

and the layer thickness of layer i, H i:

F i =
f 02

g′H i
, (5.7)

Finally, planetary vorticity f is given by the β-plane approximation in which y is the

meridional coordinate:

f = f 0 + βy. (5.8)

5.2.2 Solving the model

The general procedure to solve the 2-layer QG model with the governing equations shown

in Eq. (5.1) and (5.2) is as follow:

1. take the Laplacian to calculate relative vorticities from the streamfunction,
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2. calculate the potential vorticity p by adding the planetary vorticity f and the stretch-

ing terms to the results in step 1,

3. solve the evolution equation for the potential vorticity over one time step (3600s =

1h),

4. determine the new streamfunction fields ψi, by solving the two Helmholtz equations

in Eq. (5.4) and (5.5) with Eq. (5.6), go back to step 1.

The Helmholtz problems in Eq. (5.4) and (5.5) are coupled in this case due to the stretch-

ing term. Therefore, we need to reformulate the layer equations to model equations via

the introduction of the barotropic and the baroclinic streamfunction fields, ψbt and ψbc:

ψbt =
H1ψ1 +H2ψ2

H1 +H2
, (5.9)

ψbc = ψ1 − ψ2. (5.10)

We can do the same for the potential vorticities since the they are linearly related to the

streamfunction fields:

pbt = qbt + f = ∆ψbt + f, (5.11)

pbc = qbc − (F 2 + F 2)(ψ1 − ψ2) = ∆ψbt − (F 1 + F 2)ψbc, (5.12)

where qbt and qbc are the relative vorticity of the barotropic and the baroclinic streamfunc-

tion fields. Setting F 1 + F 2 as λ, then we have:

∆ψbt = pbt − f, (5.13)

∆ψbc − λψbc = pbc. (5.14)

Eq. (5.13) is a Poisson equation and Eq. (5.14) is a Helmholtz equation. Solving these

elliptic equations requires boundary conditions.
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5.2.3 Boundary conditions

The domain we use is rectangular with periodic boundaries in the zonal direction, which

means for any variable x we have xi = xL+i in which L is the dimension of the system

in zonal direction. For the southern and northern boundaries, we decide that the normal

component of the fluid velocity field is equal to zero and the tangential component is

unrestricted along the boundaries (so-called free slip conditions). To avoid energy flow

through the boundary we set tangential velocity u to zero at southern and northern bound-

aries. According the Eq. (5.6), we now have the relative vorticity q = vx−uy = 0, which

sets the boundary conditions for the relative vorticity when calculating q = ∆ψ. Since v

is set to zero at the southern and northern boundaries, and v = ψx, the streamfunction ψ

along these boundaries is constant. Furthermore, we can add an arbitrary constant to each

streamfunction value as the dynamics only use its spatial and temporal derivatives, which

allows us to choose the value of each along either the northern or the southern boundary.

We choose ψbt = ψbc for the southern boundary.

For the streamfunction along the northern boundary, it can be found by using a ve-

locity constraint and integrating the zonal velocity along the northern boundary using the

zonal momentum equation:

∂u

∂t
+ uux + vuy − fv = A∆u, (5.15)

where u is the tangential velocity. Because normal velocity v is zero (no mass flux through

these boundaries), and the system is periodic in zonal direction:

d

dt

∫ L

0

udx = A

∫ L

0

uyydx. (5.16)
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Since dissipation is small in the free atmosphere this is close to zonal momentum conser-

vation along the northern boundary. In fact, in the program we set:

d

dt

∫ L

0

udx = 0, (5.17)

which is equivalent to a small momentum source that counteracts the dissipation to keep

the flow going over longer periods of time. This can be considered the equivalent of the

continuous heating at the equator and cooling at the North Pole by the differential so-

lar insolation, which keeps a meridional temperature gradient that partly enforces the Jet

Stream.

The boundaries can be incorporated via a two-step procedure. The Poisson or Helmholtz

equation in Eq. (5.13) and (5.14) needs us to specify the actual ψ value at the northern

boundary which is unknown beforehand. We solve this problem as:

ψ = ψ̂ + cψ̃. (5.18)

The first streamfunction ψ̂ can be solved using the values: ψ̂S = ψ̂N = 0. For the east

and west, we always have the periodic boundaries. As for the second streamfunction, we

have the values: ψ̃N = 1, ψ̃S = 0. The constant c is to ensure we fulfill the northern

boundary condition that the integrated zonal momentum does not change over time. For

the barotropic case, we specifically have:

∆ψ̂ = pbt − f, (5.19)

∆ψ̃ = 0. (5.20)

Eq. (5.19) can be solved analytically, which indicates that ψ̃ doesn’t depend on x, as

ψ̃y = (y − yS)(yN − yS). Eq. (5.20) is solved using a Poisson solver, in which the
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constant c can be found as:

d

dt

∫ L

0

uNdx = − d

dt

∫ L

0

ψydx ≈ − d

dt

∫ L

0

ψ(yN)− ψ(yN −∆y)

∆y
dx = 0. (5.21)

Then, we plug in Eq. (5.18) and discretize the time derivative we find:

ct+1 = ct − (ŝt+1 + cts̃t+1)/s̃t + (ŝt + cts̃t)/s̃t, (5.22)

where t is the time index and:

ŝ =
d

dt

∫ L

0

ψ̂(yN)− ψ̂(yN −∆y)

∆y
dx, (5.23)

s̃ =
d

dt

∫ L

0

ψ̃(yN)− ψ̃(yN −∆y)

∆y
dx. (5.24)

The baroclinic problem can be solved in a similar way, but the conditions used are

:

• the circulation condition, as for the barotropic case,

• the mean transport in the baroclinic field is zero.

Next, we will present the settings we use for the QG model in our experiments.

5.2.4 QG model settings

The general settings for the QG model are as follow:

Domain grid points zonal dimension of the system nxx = 257, and meridional dimen-

sion of the system nyy = 129, vertical levels nl = 2, distance between grid points

dx = 5000m,

Model thickness upper layer thickness H1 = 500m and lower layer thickness H2 =

4500m,
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FIGURE 5.1. Plots of the QG model, the upper layer streamfunction is
transformed to sea-surface height with the unit of m and lower layer has

the unit of m2/s.

Simulation time domain number of time-steps in each assimilation window t = 10, and

model time-step dt = 1h,

Parameters Coriolis coefficient f = −1.26×10−4, and gravity acceleration g = 9.81m/s2.

As an example of a model run for the 2-layer QG model is shown in Figure 5.1. For the

streamfunction plots, we transform the upper layer streamfunction ψ1 to sea-level height

h with the unit of meter via:

h = ψ1f 0/g (5.25)
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5.3 Model error and experimental settings

5.3.1 Model error

For this part of the project, we apply an additive model error at each time-step. In the

program, we use the model error from the current time-step to create the model error for

next time-step so that we can implement the model error autocorrelation:

νt+1 =

√
1− ϕ12νrandom

t+1 + ϕ1νt, (5.26)

where ν is the autocorrelated model error, ϕ1 is the lag-1 autocorrelation and νrandom

is uncorrelated in time drawn from a normal distribution with zero mean and Q as the

covariance matrix: N (0,Q). The ϕ1 is implemented via:

ϕ1 = e−
1
ω , (5.27)

where ω is the decaying correlation scale which is the parameter we need to estimate.

Besides the model error autocorrelation in time, a Gaussian spatial correlation is assumed

in which the correlation length is 50 grid points. Meanwhile, the model errors in different

layers are correlated similar to how the model error is correlated in time:

ν l2 =
√
1− α2ν l2 + αν l1 , (5.28)

in which α is the vertical correlation coefficient, l1 and l2 represent the levels in the QG

model.

5.3.2 Experiment settings

To obtain better estimations of the state and parameter, we use as many ensemble mem-

bers as we can considering the computational power in the forecast and data assimilation
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scheme Ne = 500. With this large number, we don’t need to consider localization. Based

on the size of the model and the limited computational power, to have as many observa-

tions as we can, we decide to formulate the EnKS in the ensemble subspace (see chapter

8 in Evensen, Vossepoel, and Van Leeuwen, 2022), which avoid to the need of computing

a huge matrix with the size of RNob×Nob and Nob is the number of observations we have

in the field.

5.4 Results of the QG model experiments

The results presented here are preliminary, and it is realized that much more needs to be

done to obtain scientifically sound conclusions. However, they do demonstrate that it is

possible to estimate model error parameters in high-dimensional systems.

5.4.1 State update of the 2-layer QG model

We first run the model for 2000 time-steps (spin-up) for the QG model to reach a state

of statistical equilibrium under the applied initial condition. Using the state at the end

of the spin-up as the initial condition, the truth is generated with the real autocorrelation

timescale. Each ensemble member is generated using the same model but perturbed ini-

tial condition and different timescales in model error. Before we start the experiments for

parameter estimation, we first investigate the performance of the state estimation alone.

For this part of the experiments, we observe every 3rd grid points in both x and y direc-

tions of the field away from the northern and southern boundaries (3 grid-points away),

and only the state at the end of the simulation window is observed. The results for the

state update are shown in Figure 5.2. From the state plots shown in Figure 5.2, for the

upper layer, we can clear see update near the centre of the field and around the southern

boundary. As for the lower layer, the difference between the truth and the prior is much
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FIGURE 5.2. Plots for upper (left) and lower (right) layers (with the unit
of m and m2/s) truth (top) against the prior mean (middle) and posterior
mean (bottom) at the observation time-step (the end of simulation window).

smaller. However, we can still see updates in the centre of the field.

Now, we plot the RMSE against the ensemble spread in Figure 5.3 to assess the overall

quality/performance of the data assimilation results. Figure 5.3 shows that for both upper

and lower layer, the posterior RMSE and ensemble spread are significantly smaller than

prior RMSE and ensemble spread. At the observation time-step (the end of the simulation

window), we can see that the posterior RMSE matches the value of the ensemble spread

for both layers. However, it is noteworthy that the lower-layer spread is too low compared

to the RMSE. Since both the truth and the ensemble are drawn from a long model run this

is a random effect that should disappear after a few assimilation windows.

5.4.2 Parameter estimation with QG model

Parameter estimation is a complex problem that might require more information from

the observations to successfully estimate the parameters. Therefore, we experiment with
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FIGURE 5.3. Comparison of the prior/posterior (blue/red) RMSE (top)
with the ensemble spread (bottom) for both upper layer (left) with the unit
of m and lower layer (right) with the unit of m2/s over a single simulation

window observing at the end of simulation window.

different numbers of observations in space. To try to keep some realism, we only use

observations at the end of the 10-hour window. To achieve successful convergence of

the parameter to the correct value, we use a cycling scheme, in which the posterior state

as the end of the previous window is used as the initial condition for the next window

simulation, and the parameter is updated in the previous window and used to generate the

prior model error for the next window. As mentioned before, a single simulation window

contains 10 time-steps, and the whole simulation period has 5 simulation windows (50

hours in total). As indicated in the previous chapters, instead of directly estimating the

parameter, we estimate the lag-1 autocorrelation ϕ1 in Eq. (5.27), then transform it back

to the decaying timescale ω via:

ω = − 1

lnϕ1
. (5.29)

For this part of the experiments, we set the real value of the decaying coefficient ω to 1.0,

and the guessed coefficient used for the ensemble forecast model and data assimilation
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scheme ωg ∈ N (3.0, 1.0). We experiment with different observation densities in space:

observing every 3rd grid points, every 2nd grid points and every grid point in both (x and

y) directions. The Iterative EnKS is used, but, for computational efficiency, we do not

update the linearization point of the observation operator as that would require to rerun

the ensemble at every iteration.

We start with observing every 3rd grid points of the streamfunction field in both lay-

ers, at the end of the 10 hour assimilation window. The pdfs of the model error parameter

are shown in Figure 5.4. The pdf moves towards the true value but its variance decreases

FIGURE 5.4. PDF of the estimated parameter within 5 simulation windows
and with observation every 3rd grid points, the black vertical line is the

value of the real ω of the model error.

too rapidly, and the estimates get stuck in a local minimum around ω = 2.5. To solve

this problem we inflated the posterior pdf after each iteration, but that did not help. We

then increased the observation density at the end of the 10-hour window to every 2nd

grid point. As can be seen in Figure 5.5, the estimated pdfs move closer to the truth, but
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FIGURE 5.5. PDF of the estimated parameter within 5 simulation windows
and with observation every 2nd grid points, the black vertical line is the

value of the real ω of the model error.

the estimations get stuck in local minima around ω = 2.0. A detailed look at the figure

shows that the pdfs wanders around the ω = 2.0 value, with the estimate after 4 windows

closer to the truth value than after 5 windows. This suggests that there is indeed a local

minimum for this parameter estimation problem. We then pushed to observing every grid

point at the end of the 10-hour window, and the result is depicted in Figure 5.6. The

convergence is rapid, and after 3 assimilation windows the parameter pdf has converged

around the true value. This suggests that we need such a high observation density to avoid

local minima in the costfunction of each ensemble member.

Although we managed to obtain a good centering of the posterior pdf around the cor-

rect value of ω, its spread is likely too narrow, especially as it is still reducing with each

assimilation window. This is a well-known problem in sequential parameter estimation,

and is caused by the fact that each assimilation will reduce the spread, but there is no error
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FIGURE 5.6. PDF of the estimated parameter within 5 simulation windows
and with observation every grid point, the black vertical line is the value of

the real ω of the model error.

growth in the parameter pdf between assimilations. This can be solved by artificially in-

flating the parameter pdf between assimilation windows. We have not experimented with

that any further.

5.5 Conclusion

With high-dimensional and nonlinear models, the experiment results can be more realistic

and representative for real numerical forecasting systems. More complex models indeed

bring more challenges that requires more time and higher computational power for the

data assimilation problem. In this chapter, we extend our experiments of model error pa-

rameter estimation to the 2-layer quasi-geostrophic model. Due to the high-computational
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cost of very dense observation in space, we use a smoother in the ensemble subspace (de-

scribed in Evensen, Vossepoel, and Van Leeuwen, 2022). In the experiments, the param-

eter encoded in the model error autocorrelation is updated simultaneously with the state

variables using the state augmentation methods.

The update of the state variables is simpler compared with the parameter estimation.

Even with sparse observations in both time and space, the ensemble smoother manages

to have a decent update for the variable. The ensemble smoother indeed minimize the

ensemble spread (ensemble variance) quite well, and the RMSE matches the results for

the ensemble spread at the observation time-step which indicates the performance of the

smoother is working well. On the other hand, parameter estimation with the QG model

is much more difficult than performing parameter estimation on the linear model and lo-

gistic map. The variance of the ensemble is minimized too fast for the smoother to find

the real ω, and only with very dense observations in space will bring the smoother to the

correct value of the parameter.

Although we managed to create an experimental situation in which estimating the

model error parameter was mostly successful, we are not in a position to say that is now

a solved problem. First, even in the successful case the uncertainty in the posterior pa-

rameter values is underestimated, which is, as discussed, a general problem in sequential

parameter estimation. Second, while we managed to estimate the parameter by only using

observations at the end of a 10-hour window, we did need to observe the full state. It is

not clear why such high observation density is needed, and it is indeed counter-intuitive

given the scales of the features in the QG model.

On the other hand, we can come up with some interesting observations. It is perhaps

remarkable that we can estimate model error parameters using only observations every 10

time-steps, while the real decorrelation time scale of the model errors is only 1 time-step.
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It has to be related to the quality of the smoother, and we speculate that this will be hard

to achieve with a filer. This brings us automatically to the fact that we could use 500

ensemble members in this still low-dimensional model compared to e.g. NWP. This high

ensemble size allowed us to forgo localization. While spatial localization is well studied

and for many cases a tuning problem, time localization is still in its infancy, after at least

20 years of active research. We anticipate that if the ensemble size was much smaller

and especially time localization would be needed the results might be less favorable as

advection will project observation influences to the wrong positions.
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Chapter 6

Conclusion and future work

6.1 Conclusion

The aim of this thesis was to evaluate the influence of misspecified time correlations in

model errors on data assimilation results and devise ways to estimate the statistics of these

time correlations. This is particularly important for next-generation weather forecasting

since much more powerful computers were built that can process much more complex

algorithms now, and the model error has shown its impact on the accuracy of the weather

forecasts. We first investigated the performance of the EnKS with autocorrelated model

error and a simple linear model. We tested the behavior of the EnKS for updating the

state of the system when we overestimated or underestimated the desired parameter in the

model error autocorrelation. We next performed some simple experiments to estimate a

single parameter in the model error autocorrelation. After experimenting with the linear

system, we then extended our investigations to a relatively more complex circumstance,

a simple nonlinear system. Meanwhile, we considered more realistic formulations of

the model error autocorrelation structure. Finally, we ended our project with a relatively

realistic model, the 2-layer quasi-geostrophic model, implemented with the model error

autocorrelation we proposed. In section 1.2, we proposed several research questions in

this thesis, and the main conclusions of the research questions are listed as follows:

1. What impact does the temporal autocorrelated model error have on the data

assimilation results?
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In our experiments, we proposed a first guess of the estimated parameter, which can

be underestimated or overestimated with respect to the true values of the parame-

ters. With incorrect autocorrelation of the model error using an ensemble smoother,

we found that in the low-dimensional linear system, the actual error (MSE) of the

posterior is larger than the estimated error (ensemble variance) from the data as-

similation scheme when the temporal parameter in the model error autocorrelation

is overestimated, and vice versa. The results of a higher-dimensional linear system

with the EnKS agreed with the results in the low-dimensional case. In general, the

influence of a misspecified autocorrelated model error can be significant for the data

assimilation results.

2. Is it possible to establish a way to update the parameters encoded in the model

error autocorrelation online during the data assimilation procedure?

In the experiment with a simple linear system when only a decaying parameter

is considered in the model error correlation, parameter estimation can be success-

fully performed online using the state augmentation method. However, even in this

most straightforward case, to ensure a sufficiently quick convergence of the esti-

mated parameter to the correct value, dense observations are required. For more

complex formulations of the model error autocorrelations when more parameters

are considered, and applied to nonlinear models, parameter estimation confronts

more complications. When more than one parameter is considered, even with the

low-dimensional linear system, the EnKS cannot provide a satisfying estimation of

the parameters. The cost functions show highly irregular shapes, so that the con-

vergence cannot be achieved in one step. Therefore, the iterative version of the

EnKS (IEnKS) was applied to fix the problem and turned out to be successful for

the linear system. However, with extra nonlinearity provided by the nonlinear sys-

tems, there are more challenges when estimating multiple parameters. We have to

carefully tune the IEnKS, and transform the problem by first estimating the lag-1

autocorrelation in the model error, from which the actual parameter values are then
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recovered. Furthermore, we find that the initial guess of the parameters can also

influence the parameter estimation results.

3. How does our estimation method perform in a more complex and higher-

dimensional system, such as the Quasi-geostrophic (QG) model?

A higher-dimensional nonlinear system makes the parameter estimation problem

significantly more difficult finding the right answer, but the results are also more

realistic. With a simple setting for the model error autocorrelation, we manage to

estimate the parameter using the state augmentation method successfully. However,

the uncertainty in the posterior parameter values is underestimated, and in the cases

of successful estimation, we do need to observe the entire streamfunction field,

which can be unaffordable in time and computational power within a real forecast-

ing system. With less dense observations of the field, the posterior of the parameter

finds the right direction but fails to converge to the correct value and gets stuck with

local minima. On the other hand, with only observations every 10 time-steps, the

smoother can still find the correct value of the parameter, even when the real auto-

correlation timescale of the model error is 1. This is perhaps a remarkable result and

has to be related to the quality of the smoother. There are still many aspects of the

experiments on the QG model, and perhaps some other high-dimensional nonlinear

systems, that can be further investigated.

The answers to those questions in section 1.2 summarise the main results of my four-year

PhD research project. We will shortly discuss possible future work in the next section.

6.2 Future work

The experiment of parameter estimation with the QG model is just the start of a much

larger topic. There are still many aspects of this topic that can be investigated. For in-

stance, higher temporal and lower spatial resolution in the IEnKS for the QG model can be
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implemented to understand the temporal-spatial interplay. A possible, more challenging

experiment is to include not only the misspecified temporal autocorrelation in the model

error and perform the parameter estimation online, which is already a challenging prob-

lem, but also consider an incorrect spatial correlation in the model error. Furthermore, as

mentioned in chapter 6, the ensemble size we use in our experiments is quite large and

avoids the need for localization. Thus, in the cases of smaller ensemble sizes, we can

investigate the influence of localization. As the parameter estimation results shown in

chapter 6, we can see that the posterior pdf variances of the parameter are minimized very

small and fast. An alternative way to improve the chance of successful parameter estima-

tion is by using the perturbation method from parameters between assimilation windows

to broaden the posterior pdf.

For the longer term, to implement online parameter estimation on numerical fore-

casting systems, we can apply some more realistic models. We can also use different

data assimilation methods that may be candidates for the next-generation operational data

assimilation schemes, perhaps fully nonlinear data assimilation methods. With higher-

computational power and state-of-the-art data assimilation schemes, model error param-

eter estimation within the operational data assimilation scheme will be improved in the

foreseeable future. With this online-parameter-estimation scheme, we will be able to cal-

ibrate the weather forecasting system to a higher accuracy. On the other hand, it will also

benefit the data assimilation results.
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Appendix A

A.1 The prior variance, prior covariance and prior cor-

relation

TABLE I. Expressions of the prior variance, prior covariance and prior cor-
relation in different scenarios.

α = 0.0 0 < α < 1.0 α = 1.0

ω = 0.0

Var(xn) q2 α2nb2 + q2 α
2n−1
α2−1

b2 + q2n

Cov(xn, xm) q2δnm αm+nb2 + q2 α
m+n−αm−n

α2−1
b2 + q2n

Corr(xn, xm) δnm
Cov(xn, xm)√

Var(xn)Var(xm)

√
b2+q2n
b2+q2m

ω > 0.0,
but finite

Var(xn) q2 α2n + q2
∑n

i=1

∑n
j=1 α

2n−i−je
−|i−j|

ω b2 + q2
∑n

i=1

∑n
j=1 e

−|i−j|
ω

Cov(xn, xm) q2e
−(m−n)

ω αm+n + q2
∑n

i=1

∑m
j=1 α

m+n−i−je
−|i−j|

ω b2 + q2
∑n

i=1

∑m
j=1 e

−|i−j|
ω

Corr(xn, xm) e
−(m−n)

ω
Cov(xn, xm)√

Var(xn)Var(xm)
Cov(xn, xm)√

Var(xn)Var(xm)

ω → ∞

Var(xn) q2 α2n + q2
(
αn−1
α−1

)2
b2 + q2n2

Cov(xn, xm) q2 αm+nb2 + q2 (α
m−1)(αn−1)
(α−1)2

b2 + q2nm

Corr(xn, xm) 1 Cov(xn, xm)√
Var(xn)Var(xm)

b2+q2nm√
(b2+q2n2)(b2+q2m2)
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A.2 The posterior variance with a single observation at

the end of the window

TABLE II. Expressions of the posterior variance in different scenarios.

α = 0.0 0 < α < 1.0 α = 1.0

ω = 0.0 q2 − q4δtτ
q2+r2

lim
ω→0.0

Var(xt, xτ )− Cov(xt,xτ )2

Var(xτ )+r2
(b2 + q2t)− (b2+q2t)2

(b2+q2τ)+r2

0.0 < ω ≪ ∞q2 − q4e
−2(t−τ)

ω

q2+r2
Var(xt, xτ )− Cov(xt,xτ )2

Var(xτ )+r2
lim

α→1.0
Var(xt, xτ )− Cov(xt,xτ )2

Var(xτ )+r2

ω → ∞ q2r2

q2+r2
lim
ω→∞

Var(xt, xτ )− Cov(xt,xτ )2

Var(xτ )+r2
(b2 + q2t2)− (b2+q2tτ)2

b2+q2τ2+r2

A.3 The Mean-Square Error in the finite ensemble and

scalar case

Let us start with the simplest case for the finite ensemble member size with only one

observation at t = τ , with the ensemble members having the same distribution as the

truth and hence the same model-error memory. The ensemble size is Ne, and the ensem-

ble members {xb,1t , xb,2t , ..., xb,Ne
t } and the truth are drawn from N (µb

t , B
t2). The sample

mean, x̄b,Ne
t , has the distribution ∼ N (µb

t ,
Bt2

Ne
), and the MSE of the prior sample mean is

given by:

Exr
t
[(x̄b,Ne

t − xrt )
2] = Exr

t
[{(x̄b,Ne

t − νbt )− (xrt − νbt )}2]

= Exr
t
[(x̄b,Ne

t − νbt )
2] + Exr

t
[(xrt − νbt )

2] =
Bt2

Ne

+Bt2.
(A.1)
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As we can see, the prior MSE under the perfect assumption is just the variance of the truth

if Ne → ∞. In this case, the posterior MSE of the ensemble mean can be computed as:

Exr
t
[(x̄a,Ne

t − xrt )
2] = Exr

t
[{x̄b,Ne

t +Kx,ωr
t (ȳ −Hx̄Ne

τ )− xrt}2]

= Bt2 −Kx,ωr
t Cov(xrt , x

r
τ ) +

Bt2

Ne

−Kx,ωr
t Cov(x̄b,Ne

t , x̄b,Ne
τ ).

(A.2)

Even with the ideal assumptions, the posterior MSE for the finite ensemble case is not as

simple as the prior MSE. The first two terms on the RHS represents the real MSE of the

posterior, and the rest is the sampling error. Note that the Kalman Gain is optimal since

ωg = ωr.

Now, let’s take the different memory scales in the model error into account. These

lead to different variances of the prior ensemble mean and the truth: x̄b,Ne
t ∼ N (µb

t ,
βt2

Ne
),

and xbt ∼ N (µb
t , Bt

2). Thus, we have a slightly different expression for the prior MSE:

Exr
t
[(x̄b,Ne

t − xbt)
2] =

βt2

Ne

+Bt2. (A.3)

Comparing with the expression shown in Equation (A.1), if we increase the ensemble size

to infinity, the prior MSE is the same; it is just the variance of the truth. But the sampling

error part is different. As for the posterior MSE in this scenario:

Exr
t
[(x̄a,Ne

t − xrt )
2] = Exr

t
[{x̄b,Ne

t +Kx,Ne
t (ȳ −Hx̄r,Ne

τ )− xrt}2]

= Bt
2 +

(
K

x,ωg

t

)2
(Bτ

2 + r2)− 2K
x,ωg

t Cov(xrt , x
r
τ ) +

βt2

Ne

−K
x,ωg

t Cov(x̄b,Ne
t , x̄b,Ne

t ).

(A.4)

In this case the Kalman Gain Kx,ωg

t is not optimal.

At last, let’s consider the most different case, when we have no knowledge in both the

model error memory and its mean. In this case, we also have a bias in the mean of the

prior ensemble members besides incorrect variance: x̄b,Ne
t ∼ N (µ̃b

t ,
βt2

Ne
). Then, the prior
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MSE of the ensemble mean has a similar expression as in Equation 3.28:

Exr
t
[(x̄b,Ne

t − xrt )
2] =

βt2

Ne

+Bt
2 + (µb

t − µ̃b
t)

2. (A.5)

In this scenario extra errors come from the bias in the mean. The posterior MSE becomes:

Exr
t
[(x̄a,Ne

t − xrt )
2] = Exr

t
[{x̄b,Ne

t +K
x,ωg

t (ȳ −Hx̄b,Ne
τ )− xrt}2]

= Bt
2 +

(
K

x,ωg

t

)2
(Bτ

2 + r2)− 2K
x,ωg

t Cov(xrt , x
r
τ ) +

βt2

Ne

−

K
x,ωg

t Cov(x̄b,Ne
t , x̄b,Ne

τ ) +
(
K

x,ωg

t

)2
(νt − µ̃b

t)
2.

(A.6)

The posterior MSE in this scenario contains the errors that are introduced by the sampling

error, incorrect auto-correlation timescale, and the bias term.
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