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A B S T R A C T   

The use of small-angle scattering (SAS) in the study of the self-assembly of peptides and peptide conjugates 
(lipopeptides, polymer-peptide conjugates and others) is reviewed, highlighting selected research that illustrates 
different methods and analysis techniques. Both small-angle x-ray scattering (SAXS) and small-angle neutron 
scattering (SANS) are considered along with examples that exploit their unique capabilities. For SAXS, this in-
cludes the ability to perform rapid measurements enabling high throughput or fast kinetic studies and mea-
surements under dilute conditions. For SANS, contrast variation using H2O/D2O mixtures enables the study of 
peptides interacting with lipids and TR-SANS (time-resolved SANS) studies of exchange kinetics and/or peptide- 
induced structural changes. Examples are provided of studies measuring form factors of different self-assembled 
structures (micelles, fibrils, nanotapes, nanotubes etc) as well as structure factors from ordered phases (lyotropic 
mesophases), peptide gels and hybrid materials such as membranes formed by mixing peptides with poly-
saccharides or peptide/liposome mixtures. SAXS/WAXS (WAXS: wide-angle x-ray scattering) on peptides and 
peptide hybrids is also discussed, and the review concludes with a perspective on potential future directions for 
research in the field.   

1. Introduction 

1.1. Peptide nanostructures and peptide-based biomaterials 

Appropriate design of peptide sequences including hydrophobic and 
hydrophilic domains can lead to self-assembly of peptides or peptide 
hybrids such as conjugates of peptides with lipids, polymers or poly-
saccharides. Self-assembly (and/or aggregation) of peptides and peptide 
hybrids has been extensively reviewed [1–14]. The incorporation of 
peptides within biomaterials endows them with the diversity of func-
tionalities of peptides, for example recognition or binding of specific 
sequences by target molecules or catalytic activity. Examples include 
peptide-functionalized gels for applications in cell culture and tissue 
engineering or peptide-based biomaterials with activity in catalysis or 
analyte detection, or in the delivery of therapeutics. Other examples rely 
on the aggregation of amyloid peptides based on the unique materials 
properties of peptide β-sheet fibril structures, of which examples can be 
found in nature as well as designed materials. There are many reviews 
that cover peptide biomaterials, examples include references [15–32]. 
Here, the use of small-angle scattering to probe self-assembling peptide- 

based molecules and materials is discussed. SAXS and SANS measure-
ments on peptide nanostructures that result from self-assembly in so-
lution are considered. In addition, SAS data from peptide gels and 
mixtures with polysaccharides or lipids are discussed, along with SAXS/ 
WAXS studies on hierarchically ordered peptide-based systems and 
materials. 

1.2. Small-angle scattering 

Small-angle scattering is a powerful method to probe the structure of 
peptides and peptide-based biomaterials in situ. This valuable tool, in 
our work and that of many other researchers, is often complemented 
with real-space imaging of nanostructures using microscopy methods 
including electron microscopy or atomic force microscopy (AFM) along 
with optical microscopy for larger structures or liquid crystal texture 
analysis etc. 

Given that this Special Issue is aimed at small-angle scattering spe-
cialists, we do not provide an overview of the technique itself here. 
Anyway, further information on the technique is available in many 
books [33–40] and reviews [41–55]. The method provides information 
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on mesoscopic or nanoscale structure in the system (typically on a 5–50 
nm length scale) based on analysis of the scattered intensity as a function 
of wavevector q = 4πsinθ/λ where 2θ is the scattering angle and λ is the 
wavelength. In the following, we consider both form factor scattering 
from nanostructure shape and size (intra-particle scattering) as well as 
structure factor (inter-particle scattering) effects for peptide-based as-
semblies and materials. 

X-rays are scattered by electrons, so small-angle x-ray scattering 
depends on electron density variations in a system. In contrast, neutrons 
are scattered by nuclei and SANS depends on the scattering length 
density profile (this depends on the nuclear scattering factors). Lab- 
based instruments are available for SAXS (or SAXS/WAXS) or there 
are synchrotron sources of x-rays including SAXS (or SAXS/WAXS) 
beamlines at synchrotron facilities around the world [39]. SANS may be 
performed at central facilities, with a nuclear reactor source of neutrons 
or a spallation source. Again, facilities are located around the globe 
[39]. Many SANS instruments enable short camera lengths covering a 
wide-angle range (i.e. WANS, although this term is not used in the field) 
and there is also the possibility to perform neutron fibre diffraction. 
SAXS benefits from the ability to do laboratory measurements or from 
the availability of high flux synchrotron instruments, enabling rapid 
measurements (including fast time-resolved experiments) as well as 
experiments on dilute solutions with weak scattering features. A major 
advantage of SANS is the ability to perform contrast variation mea-
surements using mixtures of deuterated and protonated molecules. 
SANS also enables longer measurements without the risk of beam 
damage of samples (leading to ionisation and molecular dis-assembly) 
which can occur with synchrotron SAXS [39]. 

Previous reviews of SAS on peptide assemblies and biomaterials are 
available [56,57]. 

In this Review, we first discuss small-angle scattering measurements 
from peptide and peptide conjugates in solution using SAXS and SANS. 
Most measurements are for aqueous solutions and involve analysis of the 
form factor, which is obtained in sufficiently dilute solution, for which 
structure factor effects are negligible. We then describe structure factor 
effects, exemplified in a range of peptide-based systems including gels, 
lyotropic mesophases or mixtures with lipid vesicles etc. Then ab initio 
methods to model SAS data for peptides are outlined, in particular 
BioSAXS data, using techniques typically used for proteins, including 
analysis of the pair distance distribution function, shape reconstruction, 
bead models, atomistic models and others. 

We also discuss anisotropic SAS data obtained from self-assembled 
peptide solutions that show flow alignment such as dispersions of am-
yloid peptide fibrils or peptide nanotubes, or from other aligned peptide 
biomaterials such as hybrid membranes. We finally provide examples of 
SAXS/WAXS studies on peptide assemblies and peptide-based bio-
materials, which have a degree of local order (i.e. on the length scale of 
ca. 1–10 Å) which can be probed by WAXS. This is exhibited by as-
semblies with ordered secondary structure (such as α-helix or β-sheet) 
and in systems such as peptide gels or hybrid biomaterials such as 
peptide/saccharide mixtures, as well as polymer/peptide conjugates 
with hierarchical order due, for example, to polymer crystallization. 

This review is intended to outline key concepts via examples from 
selected studies that highlight the state-of-the-art in the use of SAS to 
study peptide-based systems. SAXS and SANS are powerful and widely- 
used methods, and it is not possible to review every example of their 
application to study peptide structures. We apologise for any egregious 
omissions. 

2. Solution SAXS and SANS 

2.1. Form factors 

The SAXS form factor from unaggregated peptide can readily be 
distinguished from that of peptide assemblies, as shown through the 
examples presented in Fig. 1. Fig. 1b shows the shape of a monomer form 

Fig. 1. Examples of form factor fits to SAXS data from our work on surfactant- 
like peptides and lipopeptides: (a) Gaussian coil representing a monomeric 
peptide, (b) SAXS data for a 1 wt% aqueous solution of P6E (open symbols) with 
fit to Gaussian coil form factor (red line) [58]. (c) Sketch of core-shell spherical 
micelle, (d) SAXS data from a 1 wt% solution of lipopeptide C16-CSK4RGDS 
with fit to core-shell micelle form factor (dashed red line) and also allowing for 
structure factor (solid red line) (e) Schematic of core-shell cylinder, (f) SAXS 
data for a 1 wt% aqueous solution of A6R (open symbols) with fit to core-shell 
cylinder form factor (red line) [59]. (g) Schematic of a bilayer with superposed 
electron density profile represented by bilayer Gaussian model (three Gaussian 
representation), with large dip in the lipid interior (blue lamella) and positive 
relative electron density in the peptide headgroup regions (red domains), (h) 
SAXS data for an 0.5 wt% aqueous solution of lipopeptide C16-YEALRVA-
NEVTLN (open symbols) with Gaussian bilayer form factor fit [60]. (i) Sche-
matic of a nanotube, (j) SAXS data for an 1 wt% aqueous solution of lipopeptide 
C16-KKFFVLK (open symbols) with nanotube (i.e. hollow cylindrical shell) +
Gaussian bilayer (to account for electron density cross-section across the 
nanotube wall) form factor fit [61]. Reproduced from ref. [62]. 
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factor, which has been fitted with a Gaussian coil (Fig. 1a) model to 
represent the unordered conformation [39]. It has a characteristic flat 
shape at low q, curving over at high q. The shape of this form factor can 
be contrasted from those of the assembled structures shown in the other 
parts of Fig. 1. 

SAXS data from a lipopeptide or peptide micelle can often been fitted 
using a core-shell (two electron density level) sphere (Fig. 1c) form 
factor [63–69], an example being shown in Fig. 1d. This figure also 
shows the influence of the structure factor (solid red line model fit) 
which leads to a broad peak at low q. For the spherical micelle case, the 
structure factor may be the simple hard-sphere structure factor model as 
in the fit in Fig. 1d. 

SAXS can be used to probe the evolution of peptide nanostructures 
such as spherical micelles in response to triggers such as enzymatic 
cleavage. Addition of α-chymotrypsin to a conjugate of βAβAKLVFF (βA: 
β2-alanine) and PEG300 leads to cleavage of the F-F bond and the initial 
spherical micelle structure is disrupted and instead monomers of 
βAβAKLVF peptide are produced, as shown by SAXS form factor analysis 
[70]. Remarkably, addition of one extra terminal F in βAβAKLVFF leads 
to fibril formation, the SAXS data being fitted with a core-shell cylinder 
form factor. In a related vein, SAXS form factor data (with cryo-TEM 
images) shows that C16-KKFFVLK forms nanotubes and helical ribbons 
at room temperature but cleavage using α-chymotrypsin releases lip-
opeptides C16-KKF and C16-KKFF which instead self-assemble into 5–6 
nm diameter spherical micelles, while the other released products, 
peptides FVLK and VLK, do not adopt well-defined aggregate structures 
[63]. In another example, SAXS (and TEM) data for a C16 lipopeptide 
bearing a cell-penetrating peptide sequence as well as an matrix 

metalloprotease (MMP-2) substrate sequence shows a transition from 
core-shell cylindrical micelles to spherical micelles after enzymatic 
cleavage [71]. 

For fibrils (Fig. 1e) formed by peptides (in particular those with a 
β-sheet conformation) or conjugates such as lipopeptides, a uniform 
[41] or core-shell [72] cylinder form factor can be used to fit SAXS or 
SANS data. A representative fit is shown in Fig. 1f. A core-shell model is 
generally required since there is usually a contrast difference between 
the core of the peptide fibril and the exterior. This is evident for instance 
in the case of PEG-peptides with a PEG corona [72,73]. However, SANS 
data for Aβ(10–35)-PEG (conjugate with PEG3000) and the Amyloid 
β(10–35) peptide alone was analysed (at different pH values) consid-
ering a simple homogeneous cylindrical structure [74]. Modified Guin-
ier plots (analysis of ln[qI(q)] vs. q2) were used to obtain the cylinder 
radius, and the intercept I(0) of such plots gives the mass per unit length 
provided the data are obtained on an absolute scale [74]. 

Contrast variation SANS using selectively deuterated molecules is a 
powerful tool to elucidate the structure of core-shell structures and has 
been used to probe the structure of core-shell cylinders formed by the 
conjugate 2-Nap-FF (Nap: naphthyl) [75], using the undeuterated 
parent compound and a series of partly deuterated derivatives with 
either the naphthyl ring deuterated (termed 2dNapFF) or either or both 
of the phenylalanine residues in 2NapdF, 2NapFdF or 2NapdFdF. Fig. 2 
shows SANS data obtained in D2O for these derivatives. The notable 
differences in form factor can be fitted corresponding to different shell 
thicknesses (shown schematically above the SANS intensity profiles) in a 
core-shell cylinder form factor model. 

For nanotapes (observed for lipopeptides for example), a form factor 

Fig. 2. Contrast-variation SANS data from a series of partially deuterated derivatives of 2-Nap-FF (2-naphthyl-diphenylalanine). (a) Schematic of hollow cylinder 
structures obtained from form factor fitting of the SANS data for 2NapFF, 2dNapFF, 2NaphFdF, 2NapdFhF, and 2NapdFdF in D2O from the fits to the SANS data in 
(b)–(g). (b–g) SANS data (open circles) and fits (blue lines): (b) 2NapFF in D2O, (c) 2dNapFF in D2O, (d) 2NaphFdF in D2O, (e) 2NapdFhF in D2O, (f) 2NapdFdF in 
D2O, (g) 2NapdFdF in H2O. From reference [75]. 

I.W. Hamley and V. Castelletto                                                                                                                                                                                                              



Advances in Colloid and Interface Science 318 (2023) 102959

4

developed for lipid bilayers can successfully be used to fit data. This so- 
called Gaussian bilayer form factor comprises three Gaussian functions, 
one of which represents the electron density (in the case of SAXS) of the 
lipid-chain rich core (negative amplitude), the other two being (positive 
amplitude) Gaussians representing the electron density of the charged 
head-groups (Fig. 1g). The form factor equations and definitions can be 
found in the original paper where this form factor was reported [76], 
and are used in many papers from our group [77–83], an example of 
data fitted to such a model is shown in Fig. 1h. Other approaches have 
been used to fit form factors for solutions containing lipopeptide nano-
tape assemblies such as the use of a core-shell parallelepiped form factor 
[84]. 

Peptide β-sheets may twist to form twisted tapes or helical nano-
ribbon structures. The latter may be considered to be “unwound” pep-
tide nanotubes, indeed in some systems twisted nanoribbons and closed 
nanotubes coexist. SAXS from helical ribbon peptide structures may be 
fitted using form factors available in the literature [85–89]. A form 
factor for twisted ribbons has been derived and applied to fit SAXS data 
obtained from solutions of C16-K [89]. The self-assembly of other Cn-K 
lipopeptides with n = 12, 14, 16 was also studied (including different 
enantiomers of C16-K) and the nanostructure was also examined for a 
given lipopeptide as a function of pH and salt concentration. Fig. 3 
shows helical ribbons formed by C16-K (AFM image) along with fitted 
SAXS data at several pH values and a schematic of a ribbon showing the 
parameters for the form factor [89]. 

The assembly of different types of peptides into several classes of 
nanotubes (Fig. 1i) has also been observed, and data have been fitted 
with corresponding form factors (e.g. Fig. 1j) [78,90,91]. A simple form 

factor is available for nanotubes in the case of long fibrils with a thin 
wall [92]. This expression has been used to fit SAXS data from aqueous 
solutions of the surfactant-like peptide A6K, and is able to reproduce the 
periodicity of the form factor oscillations that arise from the nanotube 
diameter, even at higher concentration where a nematic phase of 
nanotubes is reported [92]. Longer alanine-sequence homologues A8K 
and A10K form ribbon structures, the SAXS data being fitted using 
elliptical cylinder form factors [93]. Another approximation applies if 
the nanotube radius R >> t, where t is the tube wall thickness (e.g. of a 
bilayer), then the high q part of the small-angle scattering data results 
from the structure of the tube wall, which can be described using models 
such as the Gaussian bilayer form factor [61]. 

The cyclic octapeptide Lanreotide (a therapeutic peptide hormone 
inhibitor) forms nanotubes for which SAXS shows a well-defined radius 
and wall thickness (Fig. 4) [94]. Modelling of the molecular packing 
constrained by the wall thickness and spacings from fiber diffraction 
leads to the model shown in Fig. 4 with peptides tilted with respect to 
the nanotube axis. The peptide nanotubes form a hexagonal phase in 
aqueous solution at concentrations 14 wt% and above, as revealed by 
structure factor peaks in the low q SAXS data [94,95]. SAXS also shows 
heating-induced dissociation of the β-sheet-based nanotubes [95]. The 
(re-)association involves intermediate species including dimers and 
helical ribbons which finally close into tubes, as eludicated in a detailed 
study using SAXS and electron microscopy [96]. The packing of the 
molecules in the nanotube walls is stabilized by close contacts between 
D-Nap (2-D-naphthylalanine) and D-Trp residues and a study using a li-
brary of non-natural (and natural) aromatic D-amino acids variants of 
these showed, via SAXS, a large difference in nanotube diameter (4-fold 

Fig. 3. Helical ribbons formed by lipopeptides. (a) AFM image of C16-K at pH ~ 8.5, (b) Parameterization of form factor for helical ribbons, R denotes radius, ψ the 
twist angle, P the pitch, h and W the tape and membrane width, ρt and ρh are electron densities and tt, th are thicknesses of tape layers (subscript t indicates hy-
drophobic tail and h denotes headgroup), (c) SAXS data for C16-K at pH values shown (coloured lines) along with form factor fits (red lines, based on a planar bilayer 
for pH = 4.5 data or helix for pH = 6, 7, 11 form factors). Observed peaks are shown by arrows or dotted circle. From reference [89]. 
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variation) [97]. The nanotube diameter can also be tuned by choice of 
counterion [98,99]. The mineralization of Lanreotide gels in the pres-
ence of silica was also monitored by time-resolved SAXS and electron 
microscopy which revealed the silica nanotube structure [100]. 

Reversible thermal dissociation of nanotubes was also observed in 
SAXS studies of the lipopeptide C16-KKFFVLK which contains the (in-
verse) KLVFF sequence Aβ16–20 [63,61]. SANS measurements along 
with complementary SAXS provides data under two contrast conditions, 
as observed for example for nanotubes of the Aβ16–22 peptide KLVFFAE 
at pH 2 in mixed solvent (acetonitrile/D2O) [90]. As well as thermal 
transitions, nanotube structures can be controlled via choice of solvent, 
for example SANS on solutions of peptide KI4K showed a transition from 
nanotubes to helical/twisted ribbons and then to thin fibrils with addi-
tion of acetonitrile [101]. This was ascribed to the reduced hydrophobic 
interactions and the consequent weakening of the lateral stacking be-
tween the β-sheets. Other work on peptide nanotubes that includes SAXS 
studies has been reviewed [9,102]. 

Irregular peptide assemblies have been observed for systems such as 
bola-amphiphilic or ‘blocky’ peptides. The SAXS data for R4F4 has been 
fitted using a combination of mass fractal form factors and long cylin-
drical shell form factors, whereas the bola-amphiphile homologue 
R2F4R2 has nanotape form factor features [103]. A mass fractal model 
was also used to fit SAXS data for [RF]4 and was combined with a long 
cylindrical shell form factor to model data from mixtures with P[RF]4 
[104]. SAXS data for the Penetratin cationic cell-penetrating peptide 
was fitted using a combination of a Fisher-Burford fractal form factor 

[39,105] to describe the low q part and a generalized Gaussian coil 
function for the high q part [106]. Addition of (200 base pair calf 
thymus) DNA led to the development of a Bragg peak due to the for-
mation of ordered complexes with the peptide. SAXS and SANS data for 
peptides from the [RF]n (n = 1–5) series were fitted using a fractal model 
to describe the low q power law intensity decay [107]. based on a fractal 
form factor with exponential cut-off due to Teixeira [108] along with 
other components to describe the high q scattering or a cylinder form 
factor for [RF]4 or [RF]5. The form factor developed by Beaucage to 
describe fractal objects with multi-level structure [39,109,110] was 
used to fit SAXS data for the [EF]4 analogue containing anionic glutamic 
acid in the alternating peptide oligomer sequence [111]. A heptapeptide 
KIWFQNR derived from Penetratin forms irregular fractal-like structures 
for which the SAXS data could be described by a low q power law and a 
high q Gaussian coil form factor for the local structure [112]. In contrast, 
a cylindrical core- shell form factor is observed when DNA is added, 
which leads to fibril formation. 

Although there are many examples of SANS studies of self-assembled 
peptides in D2O or H2O/D2O mixtures, contrast variation SANS using 
selectively labelled peptides has very rarely been employed in the 
measurement of peptide form factors (actually we surprisingly could not 
find any examples in a literature search), although it has been used in a 
few studies (as mentioned above) on peptide conjugates [75] or for self- 
assembled polymer-peptide conjugates using deuterated polymers 
[113,114]. Contrast variation SANS using mixtures of protonated and 
deuterated lipids has been used to probe interactions of peptides with 

Fig. 4. SAXS data and model for nanotube structure for cyclic octapeptide Lanreotide. (a) SAXS data from 14 wt% aqueous solution with nanotube diameter ϕ and 
wall thickness e indicated (b,c) Model for nanotube packing, hydrogen bond donors and acceptors indicated in yellow and blue respectively, selected residues 
interdigitating are shown (Nap = 2-D-naphthylalanine, Trp = D-tryptophan), (d) Packing of nanotubes in hexagonal phase with lattice parameter shown. From 
reference [94]. 
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lipid membranes as described in the following Section. This is presum-
ably in part due to the commercial availability of deuterated lipids or 
monomers, whereas deuteration of peptides requires custom synthesis, 
with the added cost of deuterated amino acids. Peptides can be syn-
thesized using established methods (solid phase synthesis) using 
deuterated monomers, or via recombinant methods, with the expression 
system acting in media containing deuterated amino acids. Further in-
formation on deuteration methods for peptides is available elsewhere 
[115]. 

SAXS has played an essential role in elucidating changes in the 
nanostructure of peptide conjugates upon changing the number or 
length of lipid chains. For example, lipopeptides with the Toll-like re-
ceptor agonist hexapeptide CSK4 and bearing one, two or three hex-
adecyl (C16, palmitoyl) lipid chains form distinct nanostructures, 
predominantly micelles for the variants with one and two lipid chains 
but nanotapes (coexisting with globules) for the three lipid chain 
analogue [66]. This was confirmed by SAXS form factor analysis as well 
as cryo-TEM images. Lipopeptides bearing the bioactive RGDS sequence 
attached via a GGG or WGG linker to C14 or C16 lipid chains also show 
different nanostructures, the C14-WGGRGDS lipopeptide in particular 
shows a nanotube form factor in contrast to the others which show 
nanotape form factor features [83]. The two tryptophan-containing 
peptides also show oriented SAXS patterns from a flow-aligning 
nematic phase. SAXS shows notable differences in the form factor of 
solutions of lipopeptides PRWG-C18 and PRWG-(C18)2 the first showing 
features of the form factor of cylinders including a low q intensity scaling 
I ~ q-1 whereas the latter shows I ~ q-2 characteristic of a layered 
structure (vesicles were observed by cryo-TEM) [116]. These lip-
opeptides are of interest due to their interaction with the model pesti-
cide glyphosate [N-(phosphonomethyl) glycine] and as a potential 
colorimetric detection system. Thus, SAXS was also used to probe the 
effect of the pesticide on the peptide aggregates, a transition to spherical 
micelles being observed for PRWG-C18 but no transition was noted for 
PRWG-(C18)2 [116]. The ordering of residues in lipopeptide homologues 
(constitutional isomers) also influences their self-assembly as probed by 
SAXS form factor features, as exemplified by SAXS data for C16- 
VEVEGRGD compared to C16-VVEEGRGD [117]. 

A range of downloadable software is now available to analyse and fit 
SAS data. Lists are available in the literature [39,55]. We have exten-
sively used the software SASfit [118] to fit form factor data from 
amphiphilic peptide assemblies. The software includes many different 
form factors including those described above and many others, and it 
also has a powerful least-squares fitting algorithm. Other software to fit 
SAS data is available including SASView [119], GENFIT[120] or FISH 
(SANS specific) [121]. In addition, software is available to calculate SAS 
profiles from pdb files (which can be constructed or generated from 
simulations of peptide assemblies) including CRYSOL [122]/CRYSON 
(x-ray and neutron versions) available within the ATSAS SAS data 
analysis and modelling package [123] and FoXS [124,125], and others 
[126]. More information on these methods is provided in Section 2.3. 

2.2. Structure factors 

Structure factor effects for peptides in solution are observed at higher 
concentration (and also in gels) and lead to peaks in small-angle scat-
tering data. In more highly ordered soft materials, series of Bragg peaks 
are observed that provide information on the nanostructure [39,127]. 

The pH-dependent self-assembly into spherical micelles, cylindrical 
micelles and hexagonal-packed cylinders (showing structure factor 
peaks) has been examined using SAXS for double tailed (C12 chains) 
lipopeptides bearing 18-residue intrinsically disordered peptide se-
quences [128,129]. Singular value decomposition (SVD) was used to 
determine the number of components present at pH values corre-
sponding to morphological transition regimes. Interestingly, longer 
chained lipopeptide analogues (with C14 chains) can form FCC or BCC 
cubic phases (at 5 mg/ml concentration) with speckle-like (‘powder 

diffraction’) SAXS patterns with multiple rings of reflections [129]. 
Lipopeptides comprising four heptyl chains can form lamellar phases 
depending on conditions of pH or salinity [128]. 

SANS was used to probe the order within hydrogels (in D2O with 
buffer) of the VKVKVKVKVDPPTKVEVKVKV-NH2 containing a central 
β-hairpin VDPPT motif. The data were fitted to a structure factor 
comprising a low q power law scaling of the intensity (Porod-type 
scattering) combined with a Lorentzian to describe the scattering at high 
q [130]. A similar model has been used with a low q power law and a 
Lorenzian function to account for the ‘polyelectrolyte hole’ peak 
observed by SAXS for charged homopolypeptides poly(L-arginine) and 
poly(L-glutamic acid), and their mixtures although an additional form 
factor term is required at high q to account for wormlike chain local 
structure (excluded volume) [131] effects [132]. A related model was 
used to fit SAXS data for poly(L-lysine)/poly(D-glutamic acid) with a low 
q power law and a wormlike chain form factor and a PRISM (Polymer 
Reference Interaction Site Model) structure factor [133]. 

The presence of a structure factor peak is a feature of peptide gels and 
the peak position is related to the mesh size in the gel (e.g. spacing 
between peptide fibrils), while the peak width is related to the corre-
lation length. Such peaks are often fitted using generic peak functions 
such as a Gaussian or Lorentzian. In one example, a function containing 
modified Lorentzian (with variable power of q in the denominator) has 
been used to fit SANS data from the bola-amphiphile DGRL4DGW in 
D2O, enabling determination of the mesh size (correlation length) [134]. 
Kratky plots also revealed that the degree of folding of peptide fibrils in 
the hydrogels decreases at higher temperatures. In another example, 
contrast variation SANS showed a peak due to inter-fibril correlations in 
hydrogels formed by a PNIPAM-FEFEFKFK conjugate with a deuterated 
poly(N-isopropylacrylamide) (PNIPAM) chain linked to the model 
β-sheet peptide FEFEFKFK [113]. The scattering arising from the non- 
deuterated peptide component with much higher contrast than that of 
the deuterated polymer with respect to the D2O solvent led to the peak 
which enabled the mesh size to be determined. 

SAXS has been used to probe the fibrillar nanostructure within 
peptide conjugate hydrogels such as those formed by naphthalene 
diimide-histidine bola-amphiphiles [135]. or telechelic YY-PEG-YY 
conjugate (with PEG Mw = 1500 gmol-1) [136]. In another example, 
SAXS revealed the lamellar structure in hydrogels of lipopeptide de-
rivatives of phenylalanine or tryptophan, from which the molecular 
packing could be modelled [137]. Similar SAXS data showing Bragg 
peaks was obtained for histidine-derivative peptide and lipopeptide 
hydrogels [138,139]. 

A number of lipopeptides have been shown to form multi-lamellar 
nanosheet or nanotape structures in aqueous solution. One example is 
C16-KTTKS which is a commercial lipopeptide from the MatrixylTM 

family of collagen-stimulating lipopeptides used for anti-wrinkle skin-
care applications. This molecule shows strong Bragg peaks in SAXS 
patterns, which exhibit alignment under flow of the peptide nanotapes 
which comprise a stack of interdigitated bilayers (Fig. 5) [140]. SAXS 
also shows that the lamellar phase melts on heating and spherical mi-
celles are formed (spherical micelles are also formed at room tempera-
ture upon reduction of pH [141]). The lipopeptides C16-KT (containing a 
shorter fragment of the procollagen-derived KTTKS sequence) and C16- 
GHK also show Bragg peaks in SAXS patterns, due to proposed lamellar 
bilayer structures [142] The lipopeptide C16-βAH containing the 
bioactive carnosine (β-alanine-histidine) dipeptide also shows SAXS 
patterns with Bragg peaks corresponding to layered structure within the 
observed nanotapes [77]. Its interaction with multilamellar vesicles of 
the lipid dipalmitoylphosphatidylcholine (DPPC) were also studied by 
SAXS. The peptides RF and [RF]4 induce a transition from multilamellar 
to unilamellar vesicles of DPPC as shown by SAXS [143]. 

The interaction of peptides with lipid membranes (vesicles) has been 
probed via SAXS and SANS, especially for cationic peptides and peptide 
conjugates interacting with anionic or zwitterionic membrane models of 
bacterial or mammalian cell membranes. Such peptides have been 
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studied due to potential antimicrobial or cell-penetrating activity. Multi- 
lamellar vesicles will produce a SAS profile containing Bragg peaks, 
whereas unilamellar vesicles have a SAS form factor arising from the 
layer structure, which can be described with a Gaussian bilayer model 
used for nanotape structures, as discussed in the previous section. Our 
group has extensively used SAXS to probe the interaction with a number 
of arginine-functionalized surfactant-like peptides (SLPs) e.g. A6R 
[144,59]. A9R [145], RA3R [146], RA6R [147], RA9R [147], R3F3 [82] 
or R4F4 [82], among others) with model lipid membranes including 
several anionic phosphoglycerol (PG), or zwitterionic phosphoethanol-
amine (PE) or phosphocholine (PC) lipids (as mimics of anionic bacterial 
or zwitterionic eukaryotic membranes). Arginine can form bidendate 
hydrogen bonds with the phosphate groups within lipid headgroups 
[148]. The arginine-rich SLP peptides are of interest due to antimicro-
bial activity against a range of pathogens. Fig. 6 shows representative 
SAXS data for lipid vesicles in the presence of A6R (capped at both 
termini). The SAXS data for capped A6R itself (above the critical ag-
gregation concentration) was fitted using a cylindrical shell form factor 
[59]. whereas the uncapped peptide shows SAXS form factor features of 
nanotapes or nanotubes (at higher concentration) [78]. The data in 
Fig. 6 are for two types of mixture POPG/ POPE and DOPC/POPC (full 
lipid names given in figure caption), the former are anionic mimics of 
bacterial membranes and the latter are zwitterionic lipids as a mimic of 
eukaryotic membranes. The POPG/POPE mixed vesicles are initially 
unilamellar as shown by the SAXS data in Fig. 6a, however addition of 
the peptide leads to a restructuring to multilamellar vesicles as shown by 
the development of Bragg peaks. In contrast, the DOPC/POPC vesicles 
are multilamellar, but there is a decorrelation of lipid bilayers and loss of 
structure factor peaks upon addition of the peptide [59]. 

Time-resolved SANS H/D exchange experiments have been used to 
investigate the influence of antimicrobial peptides on lipid membranes 
and the associated kinetic processes [149,150]. Fig. 7 shows time- 
resolved SANS profiles for H/D exchange due to lipid flip/flop in mix-
tures with and without the antimicrobial peptide indolicidin [150]. The 
experiment involves studying the change in contrast upon mixing 
deuterated and nondeuterated vesicles as shown in Fig. 7a. Lipid ex-
change leads to reduced contrast, tending towards matching with the 
50% H2O/50% D2O solvent. The lipids studied were mixtures of DMPC 

Fig. 5. SAXS data and model of bilayer structure for C16-KTTKS in aqueous solution. (a) 2D SAXS pattern showing spontaneous alignment of flow-aligning nanotapes, 
qe and qv indicate the wavevectors along with neutral and flow velocity directions, (b) 1D SAXS profiles at 20 oC showing lamellar structure and 65 oC with a micellar 
form factor, (c) Schematic of bilayer packing in nanotape (also showing alignment direction). From reference [140]. 

Fig. 6. SAXS data measured for vesicles with (a) ϕPOPG = 0.2 and (b) ϕDOPC =

0.2, mixed with 0.08, 0.25 or 0.5 wt% A6R (capped peptide Ac-A6R-NH2). Here 
ϕPOPG denote the fractional content of POPG (2-oleoyl-1-palmitoyl-sn-glycero-3- 
phospho-rac-(1- glycerol) sodium salt in mixtures) in mixtures with POPE (2- 
oleoyl-1-palmitoyl-sn- glycero-3-phosphoethanolamine. Correspondingly, 
ϕDOPC is the fractional content of DOPC (1,2-dioleoyl-sn-glycero-3-phos-
phocholine) in mixtures with POPC 
(2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine). The SAXS data has been 
multiplied by an arbitrary factor to aid visualization of the data. Bragg peak 
spacings are indicated. From reference [59]. 
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(1,2-dimyristoyl-sn-glycero-3-phosphocholine) and DMPG (1,2-dimyr-
istoyl-sn-glycero-3-phospho-(1′-rac-glycerol)) (in a 75 mol% to 22.5 mol 
% ratio), with DMPE-PEG (1,2-dimyristoyl-sn-glycero-3-phosphoetha-
nolamine-N-[methoxy(polyethylene glycol)-2000]) (2.5 mol%) as 
PEGylated vesicle suspension stabilizer. The starting vesicles are mix-
tures of DMPC and DMPG (protonated vesicles) and perdeuterated d54- 
DMPC and d54-DMPG as deuterated vesicles (both with DMPE-PEG 
stabilizer). The data in Fig. 7b shows that the radius of the vesicles in-
creases with time, and fitting analysis of the overall H/D contrast 
reduction enables the flip-flop rates to be obtained. The antimicrobial 
peptide accelerates lipid transport and additionally limits vesicular 
growth [150]. The presence of laterally phase separated domains 
(‘rafts’) in the mixed lipids was excluded on the basis of SANS under 
contrast matching conditions [151]. In an earlier study, SANS was used 
to investigate the effect of peptide hormone angiotensin II on the 
structure of unilamellar d54-DMPC vesicles [152]. 

The arginine-rich cell-penetrating peptide KKRRQRRR sequence 
from the HIV TAT protein domain can induce negative Gaussian cur-
vature in membranes from mixed anionic phosphoserine and zwitter-
ionic phosphoethanolamine lipids, leading to the formation of cubic 
phases (Pn3m) as shown by SAXS profiles containing many orders of 
reflection (Fig. 8) [153,154]. Machine learning on antimicrobial pep-
tides (with 8-60 residues, from the antimicrobial peptide database) 

Fig. 7. Time-resolved SANS data due to H/D exchange in mixed lipid vesicles. 
(a) Scheme of process. (b) SANS profiles for mixed DMPC/DMPG vesicles (with 
small amounts of DMPE-PEG stabilizer) over the timescales (and at the tem-
peratures) indicated with changes resulting from reductions in contrast and 
increase in radius of vesicles with and without added antimicrobial peptide 
indolicidin (1:20 ratio). From reference [150]. 

Fig. 8. SAXS from the TAT cell-penetrating peptide with a mixed zwitterionic/ 
anionic lipid system, (a) SAXS data showing Bragg peaks induced by the peptide 
causing curvature of the lipid membrane and bicontinuous cubic phase for-
mation, (b) Indexation of the peaks indicates a ‘double diamond’ Pn3m struc-
ture with lattice parameter a = 10.97 nm, (c) Schematic of the corresponding 
bicontinuous cubic phase. From reference [154]. 
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enabled identification of a parameter which by comparison with 
experimental SAXS data and antimicrobial activity (growth inhibition 
assays) was found to relate to the propensity to form negative Gaussian 
curvature in bacterial membranes [155]. 

The Stupp group have used SAXS in their studies on the formation of 
hybrid membranes formed by complexation of self-assembling lip-
opeptides with oppositely charged polysaccharides such as hyaluronic 
acid (HA), heparin or alginate. Membranes with an inner structure of 
fibrils perpendicular to the surface are formed by mixing a heparin- 
binding lipopeptide C16-A4G3LRKKLGKA with hyaluronic acid and 
heparin [156]. Actually, SAXS also revealed the time-resolved devel-
opment of cubic ordering at a particular defined lipopeptide/HA con-
centration in heparin-free mixtures [156]. Complexation with HA was 
also studied for a photocleavable lipopeptide bearing a nitrobenzyl ester 
unit in the peptide backbone (which is responsive to UV light) and again 
SAXS was used to study the self-assembly of the PA before and after 
cleavage, as well as in sacs formed in the complexes with HA [157]. 

Complexation of cationic lipopeptides C16-V3A3Kn (with n = 2 for 
sample termed PAK2, n = 3 for PAK3 and n = 4 for PAK5) with elastin- 
like peptides (ELPs) leads to robust membranes, which can be manipu-
lated to draw out tubes [158]. SAXS reveals that there is a lamellar 
structure within the tubes, as shown by the presence of Bragg peaks in 

the data (Fig. 9a). Meanwhile, SAXS reveals differences in conformation 
above the critical transition temperature (Tt) of the ELP for the ELP/ 
lipopeptide mixtures compared to the ELP itself. Kratky plots [39] (q2I 
(q) vs. q) of SAXS data show hydrophobic collapse is observed for the 
ELP, whereas an expanded conformation is present in the membranes 
containing lipopeptides (Fig. 9b) [158]. 

SAXS has been used to probe the order within planar or spherical 
membranes formed by β-sheet PK(FK)5P with alginate (an anionic 
polysaccharide). The preparation conditions and method (especially 
order of mixing) have a large influence on the presence of lamellar 
structure factor peaks in the SAXS data [159]. The peptide itself forms a 
nematic phase of fibrils (at 5 wt%) which spontaneously align, pro-
ducing highly anisotropic SAXS patterns [160]. The development of 
anisotropy was observed during aging, over a period of several days. 
Analysis of Kratky plots for alginate/peptide gels show differences 
(presence or absence of a peak) depending on the peptide sequence 
when comparing peptides X6KRGDY with X = G, A or V [161]. This 
indicates differences in the gel mesh structure, i.e. compactness or 
branch density of the gel crosslink regions. SAXS was used to determine 
the fibrillar structure in solutions of cationic peptides K2XnF4 (Xn = A3, 
A5, A7, S5 or G7) used in the fabrication of membranes with HA, which 
SAXS showed are characterized by Bragg peaks characteristic of the 
average mesh size [162]. 

At most synchrotron SAXS beamlines (and on many lab instruments) 
and SANS instruments the data is measured on a 2-dimensional area 
detector and it is straightforward to check for sample alignment which is 
manifested in anisotropy in the SAS pattern. In some cases, spontaneous 
alignment of the sample is observed. This has been noted for several 
peptide and lipopeptide samples (forming aligning fibril or nanotube 
structures) when flowing them through a capillary at SAXS and BioSAXS 
beamlines (as mentioned for example in the discussion of Fig. 5). 
However, orientation is best studied under precisely defined flow con-
ditions such as steady shear (with a Couette cell for example) or with 
simultaneous rheology and SAXS or SANS (rheoSAXS or rheoSANS). 
Representative SANS data obtained for a solution of RFL4FR peptide 
nanotubes in a commercial rheometer are shown in Fig. 10 [91]. The 
SANS pattern (here the data correspond to the radial configuration 
where the beam passes through the centre of the Couette cell) develops 
anisotropy under steady shear, although this is lost upon cessation of 

Fig. 9. SAXS data from mixtures of an elastin-like peptide (ELP5) with lip-
opeptides C16-V3A3Kn n=2 (PAK2), n=3 (PAK3) or n=4 (PAK4). (a) Bragg peaks 
from lamellar order within membranes (inset SEM micrographs, colour coded 
to correspond to SAXS curves), (b) Kratky plot of SAXS profiles above critical 
transition temperature, comparing ELP5 with mixtures of ELP5 with the lip-
opeptides. From reference [158]. 

Fig. 10. SANS patterns obtained from a 1 wt% solution of RFL4FR in D2O in the 
radial configuration [91]. (i) Zero shear (ii) under shear at γ̇ = 100 s-1, (iii) 
under shear at γ̇ = 1000 s-1, (iv) Following shear at γ̇ = 1000 s-1. The shear 
direction is horizontal and the intensity scale is logarithmic. 
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shear (i.e. this sample only aligns under flow). 
Certain peptides and peptide conjugates can form lyotropic liquid 

crystal phases (e.g. nematic, hexagonal-packed cylinder or lamellar) in 
high concentration solution (typically aqueous solution). These phases 
also have the tendency to align under flow. Examples of SAS data from 
such systems include anisotropic SANS and SAXS patterns measured for 
the amyloid peptide conjugate FFKLVFF-PEG (containing the KLVFF 
Aβ16-20 peptide and PEG3000) which forms flow-aligning nematic and 
hexagonal phases [72,73]. or the SAXS data showing hexagonal phase 
formation of cyclic peptide Lanreotide mentioned above [94]. Strongly 
anisotropic SAXS data is observed for aligned bundles of lipopeptide 
fibrils, prepared as ‘strings’ or ‘noodles’ by injection of the lipopeptide 
solution into buffer solution [163]. 

2.3. Ab initio modelling of SAXS from peptide solutions 

As mentioned in Section 2.1, much software is available to analyse 
and model SAS data including methods to calculate SAS profiles from ab 
initio models. The most widely used is ATSAS, which is a comprehensive 
software package for SAS (mainly SAXS) data from biomolecules 
(especially proteins) in solution [123,164]. It comprises a series of 

routines to analyse and model SAXS data including ab initio methods. 
Several of these approaches are described below, as well as the literature 
[37,39,123,165]. In the following, some of the ATSAS routines have 
been superseded by those with other names as the package has 
developed. 

For systems for which SAXS data for a multi-component system is 
additive, singular value decomposition (SVD) may be performed (a 
routine to do this is available in PRIMUS within the ATSAS package 
[164]). Examples of such systems include peptides where monomers 
aggregate into amyloid fibrils (intermediate oligomers can also be 
detected). This method has been used by Vestergaard and Otzen and 
their coworkers to investigate the aggregation of amyloid formed by a 
number of peptides including insulin [166], glucagon [167], α-synuclein 
[168]. and the yeast prion peptide GNNQQNY [169] Fig. 11 shows SAXS 
data obtained during the fibrillisation of insulin under acidic conditions. 
SVD indicated the presence of three species – monomers, oligomers and 
fibrils [166]. Ab initio shapes of the insulin fibril repeat unit and the 
oligomer were obtained using DAMMIN from ATSAS in which the 
scattering object is represented by a bead model which is iterated 
minimizing the discrepancy between the experimental and calculated 
SAXS curves. The search volume was first estimated using the program 

Fig. 11. A) SAXS data for insulin aqueous solution (pH 2, with NaCl, T = 45 oC) as a function of time (in h, the successive curves labelled 1 to 15 are displaced by one 
logarithmic unit for clarity). Blue dots: experimental data, red lines: fits for the three-component mixtures (for the bottom curve, a fit from an ab initio shape model 
obtained for fibrils is displayed, B) Relative fractions of components present. Grey squares: insulin monomer, blue circles: helical oligomer, beige triangles: fibril. C) 
Comparison of oligomer fraction (blue circles and fitted curve) with rate of formation (first derivative) of fibril component (beige triangles). Reproduced from 
ref [166]. 
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BODIES, and averaged bead models (20 independent models) were 
calculated using DAMAVER. The oligomer structure was modelled as a 
helical structure [166]. DAMMIN and DAMAVER were also used to 
generate ab initio SAXS intensity curves for glucagon [167]. For the 
oligomer, such models (produced using DIMFOM) were compared to 
those generated from the pdb file of the crystal structure (using CRY-
SOL). For the fibril, bead models based on stacked hexamers with a fibril 
twist were also used to calculate SAXS curves [167]. Small aggregates up 
to hexamers were detected in the early oligomerization stage (lag phase 
before fibrillization), for which concentration-dependent data were 
analysed using a generalized indirect Fourier transform (GIFT) method 
[170], which provides the pair distance distribution function. In another 
case, ab initio calculations based on atomic coordinates from MD simu-
lations were used to compute (via the Debye formula) the SAXS profile 
for micelles of C16-IKPEAP using the software FoXS [124,125], usually 
used for proteins but which can compute solution SAXS from a pdb of a 
globular structure such as a micelle as well, provided the shell hydration 
layer is adequately represented [171]. 

3. SAXS/WAXS 

Combined (simultaneous) SAXS/WAXS is available on several syn-
chrotron beamlines internationally, as well as some lab instruments. It 

has been used in a relatively small number of studies on peptide mate-
rials to probe the order on multiple lengthscales, in particular the 
nanostructure from SAXS and the local molecular packing (e.g. sec-
ondary structure) from WAXS or hierarchical order in conjugates where 
the non-peptide component may show local ordering, for instance in a 
crystalline polymer. A few selected examples are described in the 
following. 

SAXS and WAXS have been used to probe the hierarchical order 
within hybrid membranes formed in mixtures of the cationic lipopeptide 
C16-KKFF with alginate [172]. Soft membrane sacs are formed by elec-
trostatic complexation with this polyelectrolyte (cf. discussion in Section 
2.2) but addition of graphene oxide (GO) leads to capsule formation. The 
capsules can be further stiffened by addition of CaCl2 producing self- 
supporting capsules. Fig. 12 shows images of the sacs and capsules 
along with SAXS and WAXS data. The Bragg peak in the SAXS profile for 
each sample arises from a layered structure and the WAXS data shows 
reflections from GO and/or sodium alginate along with a 4.4 Å peak due 
to the β-strand spacing within a β-sheet structure (except for the stiffer 
capsules) [172]. Neutron fibre diffraction (wide-angle neutron scat-
tering) can similarly provide information on peptide secondary struc-
ture, such as that of amyloid fibrils [173]. 

The combination of SAXS and WAXS provides in situ information on 
the hierarchical order within hydrogels of fibril-forming surfactant-like 

Fig. 12. Images and SAXS/WAXS data from hybrid capsules formed by hybrids lipopeptide C16-KKFF with sodium alginate, producing soft sacs and with additional 
graphene oxide (GO) producing capsules of type cap I) and GO + CaCl2 producing self-supporting stiff capsules (cap II). (a–c) Images: (a) membrane sac, (b) cap I, (c) 
cap II, (d) SAXS profiles – open symbols: measured data, lines: lamellar structure factor/bilayer form factor fits, Bragg peak spacings indicated, (e) WAXS data with 
indexed reflections. Reproduced from ref [172]. 
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peptide A9R (Fig. 13) [145]. The SAXS data can be fitted to the form 
factor of a cylindrical shell, while the WAXS data contains peaks from 
the β-sheet structure (5.4 Å oligo-alanine β-sheet spacing and 4.4 Å 
β-strand spacing with other intra-sheet spacing peaks). Combined SAXS/ 
WAXS has also provided detailed information on the packing of A6K in 
nanotubes, since WAXS on partly oriented samples gives information on 
molecular packing in the tube wall [93,174]. WAXS (actually extended q 
range SAXS) reveals a peak due to α-helical ordering in a different class 
of peptide nanotubes formed by the self-assembly of surfactant-like 
peptide R3L12 into nanotubes [175]. In situ SAXS/WAXS on lip-
opeptide C16-ETTES designed in our group as an analogue of the 
MatrixylTM lipopeptide C16-KTTKS shows a SAXS profile with Bragg 
peaks from a lamellar structure (actually coexisting hydrated and 
dehydrated lamellar structures were proposed), while the WAXS peaks 
are consistent with β-sheet ordering of the peptide [176]. Co-assembly in 
mixtures of C16-ETTES and C16-KTTKS leads to SAXS profiles showing 
Bragg peaks. Another study used SAXS/WAXS to probe ordering of 
β-sheet fibrils containing light neurofilament chain peptide coupled with 
biotin or the fluorescence label 5-carboxy-fluorescein [177]. SAXS 
shows a peak due to lateral packing and the WAXS data contain a peak 
due to β-sheet ordering (which was observed to be aligned in a 2D 
pattern obtained from a dried sample). Such a peak has also been 
observed for peptide F4R4 at sufficiently high concentration in aqueous 
solution [103]. Synchrotron SAXS/WAXS provided unique insights into 
the transition to nanoscrolls observed for the cationic cyclic peptide 
Lanreotide (Section 2.1) in mixtures with anionic lipids, a thermal lipid 
gel-to-fluid lipid phase transition within the nanoscrolls being observed 
by WAXS, with concomitant changes in the SAXS peaks [178]. 

Synchrotron SAXS/WAXS has provided valuable in situ insight into 
the ordering of several other bioactive lipopeptides. Mixtures of β-sheet- 
forming lipopeptide E3A3V3-C16 with the constituent E3A3V3, E3A3 or E3 
peptides (none of the peptides themselves form β-sheet structures, as 
shown by WAXS) were investigated using techniques including SAXS/ 
WAXS as part of a study of co-assembly [179]. This revealed that the 
lipopeptide fibrils can incorporate the peptides at low content but at 
higher concentrations copolymerization of peptide and lipopeptide is 
observed with disrupted β-sheet secondary structure [179]. This is 
illustrated in a schematic in Fig. 14 which also shows SAXS data for 
annealed and unannealed samples, with better defined form factor 
minimum in the former case (and a slightly different low q scaling) 
together with VT-WAXS (VT: variable temperature) which shows the 

development of β-sheet peaks upon annealing (heat-cool treatment) 
[179]. In a further example, SAXS/WAXS and cryo-TEM reveal differ-
ences in the final morphology (fibrils/twisted ribbons) of model β-sheet 
lipopeptides C16-AAEE and C16-AEAE depending on the preparation 
method (addition of salt and or high temperature annealing and the 
ordering of these treatments) [180]. VT-WAXS showed the disappear-
ance of the β-sheet features on heating and their pathway-dependent 
reappearance or otherwise on cooling. SAXS/WAXS has also been used 
to probe the hierarchical order in mixtures of oppositely charged lip-
opeptides which form different fibril morphologies depending on pH as 
electrostatic interactions are modulated [181]. The ‘cohesiveness’ of 
aggregates was also tuned via incorporation of β-sheet domains between 
the lipid chain and charged terminal domain. This influences both the 
SAXS profile due to the formation of cylindrical or flat (nanotape) 
structures (and also the extent of bundling of these aggregates) and the 
intensity and/or position of WAXS peaks (which in some cases show 
lattice ordering of β-strands) [181]. A hexagonal phase was observed for 
lipopeptide C16-A3E3 by SAXS, and WAXS showed a peak due to the 4.6 
Å β-sheet repeat [182]. This lipopeptide spontaneously forms a hexag-
onal phase at high concentration but also x-ray induced hexagonal 
ordering was observed at lower concentration (1 wt% aqueous solution) 
due to beam damage which leads to ionisation, which in turn was pro-
posed to lead to ordering of peptide nanostructures due to increased 
charge density on the fibrils [182]. 

SAXS/WAXS sheds light onto an interesting interplay between am-
yloid fibrillization tendency and PEG crystallization in conjugates con-
taining the KLVFF peptide from Amyloid β (Aβ16–20) conjugated to PEG 
with molar mass 3300 g mol-1. The peptide KLVFF is a weak fibrillizer 
whereas the N-terminal modified variants FFKLVFF and AAKLVFF have 
a stronger aggregation tendency. PEG crystallization can overcome the 
fibril formation of KLVFF leading to a Bragg peak in the SAXS data due to 
the formation of a semicrystalline lamellar structure of PEG whereas 
there is no such peak for FFKVFF-PEG or AAKLVFF-PEG (Fig. 15a) 
[183,184]. The structure of strong fibrillizing peptides is not disrupted 
by PEG crystallization in the latter two samples. Temperature-ramp 
SAXS/WAXS shows the reversibility of the morphology change in 
SAXS as well as the PEG crystallization detected by WAXS (Fig. 15b). 
Low molar mass PEG has less tendency to crystallize, this is confirmed by 
studies on dried samples of PEGn-F6 (n = 8, 12, 18, 24, and F6 denotes 
hexaphenylalanine) for which WAXS and GIWAXS on dried samples 
show β-sheet features, not peaks due to PEG crystallization [185]. 

4. Concluding remarks 

The examples highlighted herein show that small-angle scattering 
techniques are well suited to provide information on the shape and di-
mensions of peptide nanostructures. SAXS is more widely available and 
so is more commonly used, however SANS has unique advantages since 
it is possible to change contrast in a straightforward fashion using 
mixtures of solvents (herein, H2O and D2O) or by deuterium labelling of 
the peptide or peptide conjugate. Wide-angle scattering gives additional 
data on ordering at the local scale, i.e. on secondary structure or local 
organization in conjugates such as those containing crystalline 
polymers. 

The future holds great promise for new developments in SAS mea-
surement techniques arising from improvements in the source, sample 
environment, detectors and data analysis and modelling. Faster kinetic 
measurements will become possible at synchrotrons [186–188] and 
neutron sources [189] as they are developed, and as XFEL (x-ray free- 
electron laser) SAS is further explored [190]. Recently, synchrotron 
SAXS has enabled the dynamics of biomolecules (especially of proteins 
and their complexes and in particular of conformational flexibility) 
[39,48,191–194] to be probed and it will be interesting to extend such 
measurements to investigate the dynamics of peptide self-assembly. This 
will shed light onto self-assembly processes, for example on- and off- 
pathway mechanisms of amyloid formation by β-sheet peptides 

Fig. 13. Combined SAXS/WAXS data from a hydrogel of surfactant- like pep-
tide A9R (9.5 wt% in water). The SAXS data (open symbols) is fitted with a core- 
shell cylinder form factor (red line), the WAXS data provides in situ data 
showing peaks indicating a β-sheet structure within the fibrils [145]. 
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Fig. 14. SAXS/WAXS data from mixtures of lipopeptide E3A3V3-C16 with peptide E3A3V3 (1: 0.4 lipopeptide: peptide). (a) SAXS for annealed and unannealed 
samples showing differences in the width of the form factor minimum (dashed lines) and low q slope (shown), (b) VT-WAXS data during a heat-cool cycle showing 
development of β-sheet peak at q = 1.35 Å-1, (c) Schematic of co-assemblies of peptide (red) and lipopeptide (grey). From reference [179]. 

Fig. 15. Combined SAXS/WAXS data for PEG-peptide conjugates (with PEG 3300 g mol-1) containing the KLVFF amyloid sequence from the Amyloid β peptide 
[183]. (a) SAXS profiles at 20 oC for (*) KLVFF-PEG, (▪) AAKLVFF-PEG, (o) FFKLVFF-PEG, (b) Temperature-ramp SAXS/WAXS for KLVFF-PEG (heating at 2 oC with 5 
min hold at intermediate temperatures -20 and 70 oC) showing successive melting and recrystallization. 
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(relevant to disease) [50,195] or the dynamics of lipopeptide self- 
assembly which have been shown to influence their properties 
[196,197]. It will also enable the elucidation of the fundamental pro-
cesses of self-assembly (n-dimensional aggregation, nucleation and 
growth or coalescence or phase separation mechanisms etc) which for 
peptides will differ from other systems due to their unique patterns of 
hydrogen-bond interactions. Laboratory SAXS instruments are also 
showing significant improvements in performance with new x-ray 
source and detector technologies for example. This enables faster kinetic 
measurements as well as improved signal-to-noise, especially important 
for weakly scattering samples. 

As discussed in Section 2.2, Time-resolved SANS (H/D exchange) has 
been employed to study the kinetics of self-assembly/morphology 
transition in amphiphilic molecules [39,198–201]. and this type of 
measurement is of great interest for peptide assemblies. As mentioned in 
Section 2.1, there is also a lack of studies exploiting the potential of 
deuteration to study the localization via contrast variation SANS of 
particular regions of peptide molecules within self-assembled structures. 

Methods that are so far relatively underused in the peptide field will 
be taken up more widely. One example is anomalous small-angle x-ray 
scattering (ASAXS) (in which the scattering contrast is varied near the 
absorption edge of particular elements by changing x-ray wavelength 
[39]. which could be used to probe the distribution of particular ions 
around peptide structures, as used for nucleic acids [202,203] and other 
systems [204]. Another example is microfocus (also known as micro-
beam) scattering [39,46,205,206] (for instance to scan texture in 
peptide-based materials such as gels and films). GISAXS and GISANS 
may also be used more widely than the limited studies to date to 
examine peptide structures at surfaces (solid surfaces or air/water in-
terfaces. For example, GISAXS has been used to probe peptide/lipid 
membrane interactions [207,208] and GISANS has been used to study 
shear alignment of peptide bola-amphiphile nanotubes [91]. 

Technical developments in other complementary methods such as 
electron microscopy will also enhance the analysis of better SAS data. 
The development of high resolution cryo-TEM methods, now widely 
used for protein structures, also has great potential to shed light on 
peptide nanostructures in vitro, providing a valuable complement to SAS 
data, for instance in terms of improved constraints in modelling SAS 
data. Better molecular modelling (e.g. molecular dynamics simulations 
of larger scale structures) will also aid in the analysis of SAS data. We can 
also look forward to new developments in data analysis and modelling, 
for example using machine learning techniques [155,209,210]. 

Novel peptides and conjugates will be developed with new functions 
and their activities (for instance in next-generation peptide therapeutics 
or in biomaterials for tissue engineering and other applications) may 
relate to nanostructure uncovered by SAS. New sample environments 
and the possibility for new types of in situ measurement under different 
conditions (for example fast mixing cells, novel sample cells to study 
peptide-based biocatalysts, to study hydration and many others) hold 
great potential [211]. In summary, there are many fruitful avenues for 
future research on peptide assemblies using small-angle scattering 
methods. 

Declaration of Competing Interest 

No. 

Data availability 

No data was used for the research described in the article. 

Acknowledgements 

This work was supported by EPSRC (UK) Fellowship grant (reference 
EP/V053396/1) to IWH. We thank all our colleagues in the small-angle 
scattering community, especially the too numerous to mention local 

contacts at many SAXS and SANS instrument beamtime sessions that our 
group has benefited from over the years. 

References 
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