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Abstract

This PhD thesis investigates the relationship between network architectures and the robustness
against adversarial attacks using a novel methodology that considers both aspects as part of
the robustness analysis. Through an investigation on the adversarial targeting of neurons,
specifically in the first convolutional layer of a deep neural network (DNN), we observe a
relationship between neurons that affect the test accuracy of the DNN, when inferring on a
clean, unperturbed dataset, subsequently characterising them as fragile, and those neurons
targeted by a potential adversarial attack. We show how the fragile neurons of a DNN
convolutional layer evolve over the network training procedure and propose an algorithm to
show the targeting of fragile neurons by adversarial attacks. Using the developed adversarial
targeting algorithm we show that adversarial attacks focus on specific components of the
convolutional layer, framing the adversarial perturbations as attacks on fragile neurons. The
task of analysing the robustness of DNNs, thus, leads us to the identification of fragile
and non-fragile network parameters, where non-fragile refers to any parameters that do not
degrade the performance when subjected to perturbations, as opposed to fragile parameters
that do degrade network performance. When discussing perturbations, we consider both
variations to the network parameters and the input dataset, in the form of adversarial attacks.

We further extend the analysis to characterise the parameters of deep neural networks as
either fragile, robust, or antifragile, and show that network accuracy is impacted negatively,
invariantly, or positively w.r.t. defined global and local robustness scores that are computed
using a baseline network performance. We design a signal processing technique in the form
of synaptic filters that identify the fragility, robustness and antifragility characteristics of deep
neural network parameters. We subject a network to synaptic filters and compare the network
responses for both clean and adversarial datasets, subsequently exposing parameters targeted
by the adversary. Our results identify the structural fragility of network architectures and
show how they evolve over the training process, thus informing us on the learning landscapes

of DNNs. We find that, for a given network architecture, global and local filtering responses
have invariant features to different datasets over the learning landscape. Vice-versa, for
a given dataset we identify invariant features across different network architectures. Our



x

proposed analysis of fragility, robustness and antifragility of deep neural networks is useful for
designing compact networks by removing particularly the antifragile parameters. We improve
the adversarial robustness of networks using a selective backpropagation method that, upon
identification of parameter characterisations, retrains only the robust and antifrgaile parameter
updates, whilst omitting the fragile parameter updates during the training procedure.

Following this, we develop DNNs for two novel, real-world applications; a DNN designed
to identify the the optimum denoising filter for noisy ECG waveforms, and DNNs designed
to classify human activities and motion intensities from signals measured using an ultra
wide-band radar system. We use original datasets for both tasks and develop novel DNN
architectures for the classification tasks. Subsequently, we apply the developed selective
backpropagation method to train the custom-designed DNNs and observed an increase in
adversarial robustness for the DNNs evaluated. Furthermore, for both the signal denoising
filter selection and activity classification tasks, we discern an improvement in the test accuracy
when applied to the clean, unperturbed dataset. We successfully show that the proposed
selective backpropagation method is capable of improving the adversarial robustness of
networks, and in certain instances, also the regular test accuracy. Supporting results for these
findings are presented across the chapters of this thesis.
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Chapter 1

Introduction

Machine learning (ML) algorithms have been widely adapted to various tasks and domains,
achieving significant performances in both real-world applications and in numerous research
environments [1–3]. Tasks, that decades ago were thought to be exclusively solvable by
humans alone, are now considered standard practice for learning systems [4]. In particular, su-
pervised deep learning, a subclass of machine learning algorithms making use of deep neural
networks (DNNs) [5, 6], have attained near human-level performance on applications ranging
from healthcare [7], speech recognition [8], computer vision [9], physics modelling [10], and
many others [11–14]. Moreover, we are increasingly seeing the emergence of DNNs in areas
such as text-to-image generation, which only a few years ago, were considered not possible
by artificial intelligent agents [15]. Increasing advances in the field have justifiably been
a cause of optimism for the emergence of artificial general intelligence: the ability for an
intelligent agent to learn any intellectual task that a human can [16].

It is, however, important to establish the current distinctions between artificial intelligence
and human intelligence if effective progress in the field is to be made. The notion that an
artificial neural network (ANN), a general structure of DNNs without the condition of
deep layers, is related to a biological neural network is widely invalidated for numerous
reasons [17]. This distinction between artificial and biological neural networks permits us to
investigate the functionality of ANNs, and by extension DNNs, using novel methodologies
to better understand the strengths and natural pitfalls in artificial learning agents. To develop
better, more powerful classes of DNNs, we must first understand the critical weaknesses of
current network architectures and address them comprehensively. A natural entry point into
evaluating the performance of DNNs is using semantically equivalent data that differ from
the dataset learned by the network, sometimes described as counterfactual examples [18].
In evaluating networks to variations of inputs with similar or equivalent meaning, we are,
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in essence, assessing the ability of networks to retain the significant information of the
dataset, during the learning process. This introductory chapter will outline the study by
first contextualising the field and background of the thesis, followed by stating the research
problem, the aims, the objectives, the questions, the significance of the study, and finally, the
limitations.

A specific subset of counterfactual examples, with the conditions of imperceptibility,
are adversarial examples, which have been thoroughly investigated in literature to evaluate
network robustness [19, 20, 18, 21]. To contextualise adversarial examples, they are the
product of an adversarial attack applied on a DNN by an antagonistic adversary and is a
particular realisation of noise applied to an input example, subsequently termed adversarial
example. Such attacks on a network are often imperceptible and can be described as malicious
distortions applied to the input of DNNs, intended to cause the network into missclassifying
or incorrectly predicting otherwise correctly classified or predicted inputs. Adversarial
attacks on DNNs were proposed to exploit network weaknesses and are used to evaluate the
performance of DNNs to critical instances of noise.

In employing adversaries to evaluate networks, we may leverage the property of adver-
sarial attacks to identify input features that are most susceptible to variations, with respect
to the performance of the network on a specific task. Such attacks offer an insight into the
vulnerability of networks and are not strictly a theoretical phenomenon; various instances of
adversarial examples have also shown to appear in real-world settings [22, 23]. Furthermore,
adversarial examples present a possible security threat for practical deep learning applica-
tions, such as facial recognition, autonomous driving systems [24], or automated medical
imaging. The study of adversarial robustness detailed in this thesis is directed at an analysis
of DNNs under adversarial settings and parameter filtering, such that we can identify the
critical weaknesses of network architectures using adversarial attacks. In doing so, the aim is
to highlight significant features of DNN inputs, as well as network parameters, to ultimately
develop more robust network architectures.

Frequently we find that DNNs deployed in real-world environments, as opposed to re-
search environments where variables are often tightly controlled, exhibit inherent randomness
that is difficult to predict and embed within networks. Adversarial examples intrinsically
represent the critical cases for DNNs, and an analysis of networks under such conditions
allows us to estimate the worst-case robustness of networks in real-world settings. The
critical analysis of networks thus offers a unique viewpoint from which to evaluate networks
compared to other methods of analysis, such as random testing, where it can be difficult to
distinguish a network that fails one time in a million trials from a network that never fails.
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Adversarial attacks, however, permits us to distinguish the difference between networks that
seldom fail and networks that never fail. Given that a sufficiently powerful adversary is inca-
pable of bringing a network to failure, we may assume that the network will not be brought
to failure by unforeseen randomness experienced in real-world applications [25]. To follow
this reasoning, we propose enhancing the robustness of DNNs to the randomness exhibited in
real-world applications through identifying and subjugating the critical weaknesses of DNNs
to adversarial attacks.

There have been numerous methods proposed to design adversarial attacks [26]. With
every iteration of a new adversarial attack put forward, a corresponding adversarial defense
method has been suggested to circumvent the attack [27]. Methods designed to form
adversarial attacks can vary depending on input constraints and information on the target
network. We may broadly categorise adversarial attacks into two groups: white-box attacks,
where the adversary has complete knowledge on the target network, and black-box attacks,
where the adversary has no knowledge on the target network. Adversarial defenses, much
like adversarial attacks, can be divided into different categories: (i) defenses focusing on
gradient masking/obfuscation, whereby gradients of the network weight used by adversaries
to form attacks are disguised, (ii) robust optimization [28], where the network parameters are
altered to increase adversarial robustness, and (iii) adversarial example detection, where the
goal is to detect an adversarial input and process this entity differently to ordinary inputs [29].
The task to build a defense model able to remain unbeaten by an ever-growing selection of
adversarial attacks has proven to be a difficult task [30, 31].

When the goal is to make DNNs more robust to adversarial attacks, indeed adversarial
defense methods have proven to be an effective tool in various instances [32], none more so it
should be noted, than adversarial training [33, 34], whereby the critical weaknesses of DNNs
are embedded within the network. When the goal is to understand how to devise robust
DNNs, however, one should be cautious to employ defense methods without identifying
and understanding the particular robust reinforcements, brought about by various defense
methods. It may be the case that a defense strategy shows to improve network robustness
without fully addressing the cause of the critical weakness that it has defended against. To
use a biologically inspired analogy, in such circumstances, an effective defense method may
be acting as a plaster repressing a wound. Even in assuming that we have effective defense
methods, a procedure is required to evaluate the effects of the defense on the DNN and
to highlight the critical weakness of the network, if we are to develop better, more robust
networks.
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Evaluating a network under an adversarial attack is one possible course of action in
measuring the variability of network performance to sub-optimal conditions. Adversarial
attacks, however, are also a limiting factor of network analysis as we are restricted to
changes explicitly to inputs of the network. To holistically analyse a system, DNN and
input included, we must also investigate the variability of network performance to changes
in the network architecture itself. A DNN that has learned dataset noise, or acquired weak
features of the data, is scarcely considered to be fully optimised, and is often referred to as
network overfitting [35, 36]. Identifying the influence of learned representations on network
performance also exposes vulnerabilities of the network. Indeed, it has been shown that
the invariability of DNN performance to adversarial attacks and network overfitting are
intertwined [37].

The analysis of DNNs in this thesis is carried out using a signal processing methodology
that evaluates DNNs using various forms of stress applied to the system; broadly categorising
the stress as internal and external to the network. Where internal stress relates to varia-
tions/perturbations of the network parameters that govern the functionality of DNNs on a
specific task, and where external stress is concerned primarily with variations/perturbations
to the environment (input noise) within which the DNN is applied. We further specify
the external stress on DNNs to be of an adversarial nature, such that the focus is put on
highlighting the critical weakness of DNNs. In analysing DNNs, we use the terms fragility,
robustness and antifragility as characterisations of the composite components that form DNN
systems with respect to DNN performance.

When referring to fragility, we broadly define a system that exhibits a decrease in
performance for a given task, when subjected to stress, be it internal and/or external. When
discussing robustness on the other hand, we define a system that, despite being subjected
to internal and/or external stress, shows an invariance in performance for the specified task.
Following this line of reasoning, we define antifragility to a system that, when subjected to
internal and/or external stress, exhibits an increase in performance for the task [38]. In the
following thesis we offer context to the aforementioned themes of internal stress, external
stress, network performance, fragility, robustness and antifragility.

Applications of the proposed robustness analysis of DNNs are directed towards networks
developed for real world tasks. In this thesis, we consider specifically the task of human activ-
ity recognition using ultra-wide (UWB) radar systems [39, 40] and associated preprocessing
of inherently noisy radar signals [41, 42]. DNNs designed for applications using UWB
radar systems are required to be invariant to the various forms of noise commonly found
in radar acquired data [43]. We work to analyse the adversarial robustness of novel DNN
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architectures designed with newly collected datasets, in order to improve the performance
of the DNN models. Bridging the gap between DNNs designed under controlled, research
environments and those built for real-world datasets is one of the objectives of the work
developed in this thesis. Through applying the proposed analysis on custom-designed DNN
architectures on original datasets, we are able to evaluate the effectiveness of the analysis at
developing stronger networks that are able to perform, even under sub-optimal conditions.

Aim of Thesis Adversarial attacks and defense mechanisms have been at odds in literature
since the inception of robustness analysis of DNNs under adversarial settings. Assuming
that we even have a defense mechanism that is effective against a large subset of all possible
adversaries, little evidence of such methods show to exist in literature, however; the need
for analytical methods to identify the specific reinforcements generated by the defense, is
still required. In this thesis, we aim at developing an experimentally derived analytical
method for DNNs that is capable of identifying the strengths and weaknesses of different
network architectures, to various methods of internal and external stress. The proposed
analysis of DNNs is intended to aid in the development of more robust DNN architectures,
through the identification and post-processing of specific, analytically informed, and isolated
network components. To efficiently characterise the strengths and weaknesses of different
networks, we utilise the notions of fragility, robustness and antifragility [38] to describe
DNNs that, when subjected to stress, respectively either decrease, remain invariant or increase
in performance for a specified task. We develop the work in this thesis to investigate the
connections between DNN architectures and adversarial robustness through an evaluation
networks that considers both external and internal stressors, in adversarial attacks and network
parameter perturbations.

The resulting methodologies will be used on DNNs designed for real-world applications,
such that networks trained on limited and noisy datasets with limited resources are still able
to perform sufficiently. This is particularly useful for applications where data preprocessing
may be resource expensive and the useful features of the datasets are subdued by randomness
from the environment. Developing DNN models capable of performing sufficiently within
such applications and environments will lead to the advancement of deep learning beyond
the realms of research laboratories. Applicable areas where such robust DNNs would be
used include, but are not limited to, DNNs for security [44], monitoring applications using
radar systems [45], speech recognition [46, 8], and computer vision [9]. We aim to apply the
developed analysis to identify and improve weaknesses in DNN architectures, such that we
develop stronger networks able to withstand greater variations to the operating conditions.
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1.1 Research Problems and Contributions

Identifying and addressing the critical weaknesses of DNNs is the focus of the following
thesis. We employ adversarial attacks to expose the fragility, robustness and antifragililty of
DNNs to external stress, representing a change to the environment within which the DNN
operates. Equally, we investigate the effects of internal stress on network parameter, which
is when the internal components of networks are altered in order to measure the affects of
the internal perturbations on the network performance. To better understand the effects of
the stress analysis, we use the characterisations of fragility, robustness and antifragility to
describe how DNN performances vary as a consequence of the applied stress. Using the
different characterisations of DNN performances, we identify and consolidate the constitute
fragile, robust and antifragile components. In carrying out such an analysis, we aim to
establish relationships between adversarial robustness and network architectures through
an experimental analysis of DNNs under adversarial settings. Specifically, the significant
problems addressed, and contributions made, in this thesis are summarised below.

• We formalise, and discuss the rationale for, carrying out an analysis of DNNs through
a dichotomy of internal and external stress to identify the weaknesses of different
network architectures for various datasets. Establishing an experimental procedure
that considers both network input and architecture is essential in comprehensively
analysing DNNs, as to evaluate the learning system from opposing, yet associated,
directions. A central basis of carrying out a stress analysis of DNNs is to subject
networks to sub-optimal conditions and subsequently measure the variations in network
performances for different datasets. Internal and external stress represent sub-optimal
conditions for networks; in this thesis, we formalise these concepts within the context
of DNNs and show how they can be realised for different networks and datasets. We
take internal stress to be perturbations of the network architecture and we develop
a parameter filtering methodology that systematically removes network parameters.
The proposed parameter filtering is agnostic to variations of network architectures,
thus, can be used on any type of DNN using weight parameters. We take external
stress to be perturbations to the network input, and specifically, perturbations of an
adversarial nature. In establishing a standardised analysis method for DNNs, we are
able to compare the DNN responses of different network architectures and datasets,
subsequently highlighting the properties and characteristics of networks that are more
robust compared to others.
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• Thereafter, we construct a methodology for characterising the performances of DNNs,
to internal and external stress, using the notions of fragility, robustness and antifragility
periodically through the network training process. We formulate a scoring method to
encapsulate the effects of the stress analysis on DNNs and detail the conditions used to
characterise the scores as fragile, robust or antifragile. We define fragility to be the
condition where a network, when subjected to internal and/or external stress, shows
a decrease in performance for a given task. Robustness is defined as the condition
where, when a network is subjected to internal and/or external stress, the performance
of the network for a specified task remains invariant, within a bounded threshold.
We introduce the notion of antifragility, within the context of deep learning, to be
the condition where, when a network is subjected to internal and/or external stress,
we observe an increase in performance for a given task. The conditions of fragility,
robustness and antifragility are used to categorise network architectures, using the
developed notions of internal and external stress.

• In the final analysis, we employ the proposed fragility, robustness and antifragility
network characterisations to develop more robust networks through an informed net-
work training procedure. Upon characterising the network components, we selectively
use backpropagation on only the robust and antifragile network parameters. Network
parameters characterised as fragile are omitted from the further re-training after char-
acterisation. We provide a reasoning behind the selective backpropagation procedure
and present results associated with the fragile, robust and antifragile characterisations.
We empirically observe that periodic characterisation of network parameters, using the
proposed mythologies, allow us to apply an informed fine-tuning of specific network
parameters, which in turn, results in networks that are more robust to adversarial at-
tacks. We demonstrate the effectiveness of the proposed methodology on a real-world
application: the classification of human activities and intensities using 24 GHz UWB
radar systems and deep learning. We work with a novel radar signal dataset that is
recorded for a real-world application, and as such, is limited in nature and contains
various irregularities. The proposed methodology shows to improve the performance a
deep learning system on a real world application. This leads us to argue that inherent
weaknesses of DNNs, and the stronger counterparts, inform us on the functionality of
networks.



8 Introduction

1.2 Thesis Outline

This thesis is organised as follows. In Chapter 2, we provide a review of the related works in
literature and offer a technical background on the topics of DNN architectures, adversarial
robustness, network compression methods, and the relationships between the aforementioned
subjects, which are required for the ensuing works in Chapter 3. In addition, for Chapters 3,
Chapter 4, and Chapter 5 we provide related works specific to the contents within each
chapter. Furthermore, in Chapter 2 we provide the related works on the applications of
robustness analysis that are investigated in Chapter 5. Following this, in Chapter 3 we delve
into the novel aspects of robustness analysis where we focus on a sub-section of a network;
the first convolutional layer, to identify fragile and non-fragile neurons (filter kernels). The
work presented in Chapter 3 details the formulations of the adversarial attack employed
and the developed parameter filtering procedure used to identify fragile and non-fragile
parameters.

The work from subsequently Chapter 3 extends onto an evaluation of the complete
network in Chapter 4, where we also expand on the definitions of fragile and non-fragile
parameters to adopt fragile, robust, and antifragile network parameter characterisations. The
expansion on the definitions of fragile and non-fragile, as discussed in Chapter 3, to the
characterisations of fragile, robust, and antifragile in Chapter 4 permits us identify network
parameters that also increase in performance when subjected to adversarial attacks and
parameter filtering, as opposed to the performance only decreasing (fragile), or remaining
invariant (non-fragile). The implications of this is also discussed further in Chapter 4
where we outline a training regime that only trains specific parameters of the network,
termed selective backpropagation. In addition, we provide the formal definitions of network
performance, internal stress and external stress with respect to adversarial attacks and
parameter filtering, fragility, robustness, and antifragility within the context of DNNs.

In Chapter 5 we outline a novel signal denoising filter selection algorithm based on a new
DNN architecture that is capable of predicting the optimal signal denoising filter, given a
noisy unprocessed waveform for applications where focused data preprocessing is unavailable.
Further to this, we outline a second real-world task comprising of an original radar signal
dataset, and a purpose-built DNN architecture for human activity and activity intensity
classification. The contents of Chapter 5 lead us to employ the selective backpropagation
methodology developed in Chapter 3 and Chapter 4, such that we improve the performance of
the DNN applications presented in Chapter 5, for both the adversarial dataset and the regular
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dataset. We conclude the thesis in Chapter 6 by summarising our work and highlighting the
future directions of work instigated by that presented in this thesis.

1.3 Publications

Upon expanding on the findings from Reference [47] in Chapter 4, we aim at applying the
analysis on DNNs developed for real-world applications. This thesis addresses two such DNN
applications using novel datasets and networks, the first of which is from Reference [42], and
details the study of classifying optimal filtering methods for noisy radar signal denoising.
In the work we train a 1-dimensional convolutional neural network (CNN) to predict the
optimal denoising filter, from an elliptical filter and a wavelet filter, given a noisy ECG signal
that emulates signals acquired using a radar system. The second application of the analysis
method developed in this thesis, is to classify human activities using UWB radar system and a
custom-designed DNN. The denoising filter selection algorithm developed in Reference [42]
is also used as the preprocessing step in the activity classification model. The development
of the novel DNN and accompanying custom dataset for human activity classification has
been come to fruition as the result of a collaboration with an industrial partner and has been
the subject of product patenting by the industrial partners. Furthermore, much of the work
presented in Chapter 4 explores and extends on the findings developed in Reference [47], has
been submitted to the Journal of Artificial Intelligence, pending review.

Source Code We provide access to all code and instructions required to replicate the
methods outlined in this thesis. For training the DNN models, we reply primarily on the
PyTorch 1.8.2 [48] and Torchvision 0.11.0 [49] libraries running on the Python 3.7 language.
The adversarial attacks used on the implemented models were generated using auxiliary
PyTorch functions. Techniques used for the computation of parameter scores, that are used
to characterise network parameters, are implemented using the standard PyTorch and NumPy
1.23.3 [50] functions. The full implementable code for the proposed methodology can be
found at https://github.com/SynapFilter/InferLink.

https://github.com/SynapFilter/InferLink




Chapter 2

Background

In this chapter, we provide a review of previous work related to the topics of focus in this
thesis; adversarial attacks, robustness in deep learning and network ablation. The notion
of robustness in deep neural networks, and adversarial robustness in particular, has been
an active area of research within the field of deep learning since the works of Biggio et
al. [20], Szegedy et al. [19] and Goodfellow et al. [51]. Many subsequent works have been
spawned from the early explorations of the adversarial phenomenon on DNNs [52–54, 23].
There is vast literature available on the broader topics of adversarial attacks, adversarial
defenses and DNN robustness. To avoid covering the full spectrum of literature in the
field, we focus our attention on the seminal works relating to techniques of measuring the
robustness of DNNs with a focus on adversarial attacks and network ablation. More in-depth
reviews of adversarial attacks, defense methods, and network architectures are presented
in [31, 26, 27, 55], whilst literature on robustness analysis and verification techniques can be
found in [56, 57]. Further to detailing the seminal works relevant to this thesis, we conclude
the chapter with a review of related applications of robustness analysis in making DNNs more
robust, as these works constitute the benchmarks for our methods, discussed in Chapter 3
and Chapter 4.

It should be noted that this thesis focuses primarily on the robustness of DNNs to various
methods of stress, both under adversarial settings and to network parameter filtering. The
topic of robustness analysis in machine learning (ML) is an extensive topic, and there
exist various techniques and methodologies on evaluating DNN robustness in literature.
Further investigations into the robustness analysis of DNNs against labelling errors [58];
poisoning attacks [59]; principle component analysis (PCA) bounds [60]; distributional
shifting adversaries [61]; and statistical robustness [62, 63] are available in literature.
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This chapter is organised into Section 2.1, Section 2.2 and Section 2.3 that provide
seminal works relating to the themes explored in this thesis. In Section 2.1 we discuss DNN
architectures, and specifically, methods relating to achieving network compression, robust-
ness and how compression and robustness interplay. In Section 2.2 we detail exclusively
adversarial robustness of DNNs, with reference to commonly use defenses and analytical
approaches to evaluating the robustness of networks. In Section 2.3, we explore the applica-
tions of robustness and lay the basis of how the proposed robustness analysis is intended to
be applied on novel, real-world networks and datasets.

2.1 Architectures of Deep Neural Networks (DNNs)

Deep neural network architectures are an extension of the general neural network structure
that consists of multiple (greater than three) layers between input and output. Shallower
neural network architectures have faced various challenges in approximating more complex
problems, such as tasks with sparse and local approximation solutions [64]. The increased
number of layers in deep neural networks are effective in representing higher complexity
functions [65], compared to shallower neural network architectures, however, the use of
DNNs bring with it further constrains regarding data and model tuning [66]. DNNs have
since been applied in numerous domains: speech recognition [67, 68], healthcare [69, 70, 42],
computer vision [71], and human computer interaction applications [72, 73]. An overview
of the challenges and directions of work regarding DNNs can be found in the following
works [74, 7, 75]. The following work focuses on the analysis of DNNs, with the motivation
of understanding the weaknesses and strengths of network architectures. The ultimate
objective is to develop stronger networks capable of performing sufficiently, even under
sub-optimal conditions.

Recent DNNs are comprised of a variety of different layers that can be broadly categorised
into the following: input layers [76], convolutional and fully-connected layers [77], sequence
layers [78], activation [79], normalisation [80], pooling [81], object detection [82] and output
layers [83]. Whilst all of the different types of DNN layers address specific requirements of
networks, we focus our study on specifically the convolutional layers and fully connected
(linear) layers. The convolutional layers transform the input in order to extract high-level
features for inference, whilst the linear layers are the classifiers that connect the features to
outputs.

In this thesis, the internal analysis of DNN architectures is directed towards the convolu-
tional layers of networks. Even considering only the convolutional layers of networks, the
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works of Zhang et al. [84] show that not all layers are equal in importance to the network.
Studies have previously investigated layer importance in DNNs, the works of [85] investigate
layer-wise pruning based on explainability of networks. An application of the robustness
analysis methods explored in this thesis is to identify the the layer-wise importance of
network layers grounded on adversarial vulnerabilities of the layers.

This section is divided as per the following: in Section 2.1.1, we detail the adversarial
robustness of DNN architectures, Section 2.1.2 presents how compressing network archi-
tectures affect the performance on specified tasks, and in Section 2.1.3 we relate network
compression to the adversarial robustness of different networks.

2.1.1 Robustness of DNNs

Despite the wide use of DNNs and extensive applications in numerous fields, several foun-
dational properties of DNNs are yet to be deciphered and have been the subject of analysis
in literature for some time now. Particularly, the robustness of DNNs to different forms
of perturbations has been the topic of increasing attention, due to the importance of DNN
applications in safety critical systems, such as medical image classification and autonomous
driving implementations [86]. The predominant definition of perturbations when analysing
the robustness of DNNs has been directed to the network inputs [19, 51]. The vulnerabilities
of networks to small input perturbations can be encapsulated in adversarial examples and
attacks. A more detailed review of adversaries is presented in Section 2.2. To elaborate briefly
however, adversarial robustness relates to small, carefully crafted perturbations applied to the
input of networks that subsequently result in a large variation in the performance of different
network architectures [87, 26]. Such perturbations provide novel insights into developing
better networks that are more resistant to input variations. The ability, or inability in most
cases, of a DNN to resist perturbations can be attributed to the structure of the network itself.
Indeed, through an analysis of polynomial classifiers, the works of Fawzi et al. [88] suggest
that higher-degree classifiers, relating to the complexity of the network architecture, tend to
result in classifiers that are more robust to perturbations. The relationship between network
complexity and robustness can be realised by the increased adversarial performance observed
in DNNs with deeper layers [89]. The depth of networks have shown to improve both regular
and adversarial performance on a variety of tasks [90, 91]. Currently, however, there exists
no universally accepted network architecture that can be considered robust to all forms of
adversaries that may be formed.
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We consider the perturbations applied to network inputs as an external stressor on a
network; the change brought about by the perturbation directly affects the environment
exposed to the network, hence labeled as external. Following this reasoning, naturally we
must also consider internal stress on DNNs, if we are to be comprehensive in the analysis [92].
We define internal stress to be systematic perturbations applied to the parameters/connections
or nodes/filters of network architectures. The objective of perturbing network parameters,
as opposed to the input of networks, is to evaluate the impact of the learned network
representations on the task performance. The dichotomy of the internal-external stress on
systems has previously been explored in the biological sciences [93, 94], and in this thesis,
we take inspiration on the notions of internal and external stress developed for biological
systems. In particular, the works of Oken et al. [95] describe stress on biological systems
as the result of perturbations arising from the internal or external environment, henceforth
referred to as stressors. The variation in network performances to adversarial perturbations
on inputs (external stress) is used to evaluate the critical features of networks with respect
to the input domain. In analysing the variation of network performances to parameter
perturbations [96, 97], we are in essence evaluating the critical features of the network with
respect to the network architecture. The works of Molchanov et al. [97] developed a method
for estimating the impact of network parameters on network performance, and importantly,
show that composite filters from various network architecture can be removed whilst retaining
performance for a given task.

2.1.2 DNN Architecture Compression

The ability of deep neural networks to perform a specified task to near-human levels relies on
various factors, an important one of which, is the depth of network layers used. The question
as to whether DNNs need deeper layers in order to perform on tasks sufficiently, has been
explored in various studies in the field [98]. The work of Urban et al. [89] suggest that DNNs
are required to be both deep and convolutional if they are attain high levels of performance
on more complex problems. Deeper network layers result in more resource hungry networks,
which can be a limiting factor for many real-world applications. The works of Zhang et
al. [84] show that not all layers, however, are critical to network performance, thus, leading us
to the study of network compression [99]. Network compression deals with reducing network
size without greatly affecting network performance. As deep learning researchers begin to
push the limits of big compute [100], compression techniques have become a particularly
important area of study in deep learning research for developing more efficient architectures.
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To investigate methods of making networks more efficient, the topic of network compression
naturally leads us to network pruning methods [101]. Network pruning tackles the task
of over-parameterised DNNs through two primary directions; network parameter-based
methods [102] that focus on the weights of DNNs, and unit-based methods [103, 104] that
consider individual neurons for removal.

A different group of techniques for network compression are quantisation methods [105],
where the goal is to reduce the number of bits representing network weights. This can
be achieved through approaches such as binary characterisation of weights, low-precision
representations, and parameter quantisation. Another notable way in which practitioners
have achieved network compression is through low-rank factorisation methods [106], where
matrix or tensor decomposition methods are employed to determine and retain only the most
informative network parameters. The general objective of pruning methods is to achieve
sufficient network compression through eliminating unimportant, redundant, or unnecessary
network components, which can be either parameters or neurons. In turn, a network processed
through a good compression method is expected to perform similarly to the original, pre-
compressed network, with a smaller parameter load and decreased computational costs [107].

In the following thesis, we employ various methods of network compression, from unit-
based pruning [104], as presented in Chapter 3, to applications of low-rank factorisation
methods [106, 47], also presiding in Chapter 3, and network parameter filtering, as detailed
in Chapter 4. Network compression has also been a topic of increased attention in research,
as practitioners attempt to extract the far-reaching capabilities of DNNs without expending
equally extensive resources. Applications of network compression is not only limited
to research, in practice, real-world use cases of DNNs benefit greatly from compressed
networks that consume less power, occupy less memory and require fewer resources to
train [108]. In essence, network compression appears to be a natural progression of deep
neural networks, both with regards to efficient resource management, and explainability of
deep neural network decisions [85]. One may come across a resource constricted task, for
which, a suitable yet over-parameterised DNN is readily available, and consider this an ideal
circumstance to deploy any one of the numerous network compression techniques that are
available in literature [99]. A side of caution should be taken when confronted with such a
scenario, as there are various other challenges to consider when deciding which, or if, to
use compression methods on a given network [107]. For instance, the complexity of the
objective task may be safety critical, in which case, network compression may degrade the
network performance on a particular type of detrimental of noise, such as naturally occurring
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adversarial examples [109]. For such scenarios, we must consider network robustness in
conjunction with network compression.

Although the purpose of this thesis is not primarily associated to network compression,
the notion of internal stress developed throughout this work is strongly influenced by network
compression techniques [106, 104]. We consider an internal stressor on DNNs to be any form
of perturbation applied to the network connections/parameters or nodes/filters. This definition
of internal stressors is closely linked to that of several network pruning methods [101], with
a key distinction; we apply internal stress to DNNs in order to investigate the effects of
external stress on specific network parameters. The motivations behind perturbing network
components in this thesis arise from an analytical perspective, rather than one explicitly
aiming to reduce network size. Thus, with the introduction of internal stress to the robustness
analysis formulation, we are able to carry out an investigation on the impacts of external
stressors, such as adversarial perturbations, on network performance, with an emphasis on
the composite components of networks.

2.1.3 Robustness and Compression

Thus far we have discussed robustness of DNNs in Section 2.1.1 and network compression in
Section 2.1.2. It is appropriate within the context of this thesis to also review works related to
the adversarial robustness, with respect to network compression, as the two themes interplay
consistently throughout this work. Network compression has, on numerous occasions,
confirmed to be an effective method of network regularisation [110]; a countermeasure to
deal with overly complex network architectures that overfit [35]. Ina similar manner, the
works of Rice et al. [37] investigate the case of overfitting when networks are trained on
adversarial data, such that the attacks are used as part of the training process, and suggest
that network regularisation also benefits adversarial robustness under such circumstances.
It should be noted however, that in their work, the authors ultimately conclude that early
stopping [111], which is a different form of network regularisation whereby network training
is concluded based on a validation loss criterion, achieves the most significant gains on
adversarial robustness. Studies have previously tackled the question of input and network
perturbations simultaneously to analyse robustness [112]. The works of Dhillon et al. [79]
investigate a stochastic activation pruning method that is designed to make networks more
robust to adversarial attacks. The works of Jordão and Hélio [113] explicitly investigate
the effects of pruning on adversarial robustness, and in their work the author conclude that
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network pruning not only address issues related to generalisation, but also increases network
robustness to adversarial attacks.

In order to combine the topics adversarial robustness and network compression techniques
cohesively, let us first consider how effective adversarial robustness can be achieved. One
of the most effective methods of making networks more robust to adversarial attacks has
been adversarial training [114, 34, 33]. Adversarial training is, within itself, an increasingly
studied sub-field of adversarial robustness research [27, 115, 33]. The primary premise of
the technique is to include adversarial examples within the network training data, such that
the network learns the adversarial perturbations, that it is attempting to resist. Despite being
one the most effective, consistent methods at defending networks to adversarial attacks, the
performance of the adversarially trained networks on clean images is reduced if careful
regularisation of the network is not implemented [116, 117, 24]. The works of Xie and
Yuille [118] showed the effectiveness of adversarial training to improve DNN robustness
require deeper networks, as the conventional "deep" neural networks that are currently used
in practice are still too shallow for the task of adversarial learning. This necessity for deeper
layers for improved performance on tasks is found for clean data, as well as adversarial
data [89]. To provide a counter-argument, however, the works of Jordão and Hélio [113]
show that shallower networks (where network layers have been post-processed) are still able
to provide robustness gains.

It has been observed in studies of network compression techniques, that not all of the
composite networks components are required to maintain performance on a task. Indeed,
many redundancies and inefficiencies can be found, and subsequently removed from network
architectures [99, 104], whilst retaining sufficient network performance [107]. The works of
Ye et al. [112] extend on the proposition that network parameters can be removed without
significant detriment to performance by applying a compression method under adversarial
settings. The authors find that network compression can be applied whilst also retaining
adversarial robustness. The works of Croce and Hein [119] also discuss the interplay
between adversarial robustness and network architecture components. Principally, the
authors suggest that some network architectures appear better suited for robustness and that
careful modifications of non-robust architectures may significantly improve robustness and
generalisation to unseen attacks. In this thesis, we utilise the findings of [112, 104, 85, 102]
to form the basis of our study; we propose the use of network compression techniques, such
as pruning methods and low-rank factorisation, to inform us on how to retain, and improve,
adversarial robustness of networks.
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2.2 Adversarial Robustness

Adversarial robustness relates to the ability of ML models to resist adversarial attacks, which
is a broad category of methods developed to compute adversarial examples, using the inputs
of ML models. Adversarial examples, in turn, are the result of an adversarial attack on an
input, can be loosely defined as inputs corrupted with noise that have been intentionally
crafted by an attacker, an adversary to the network. The motive of the attack is to deceive
learning models into incorrectly predicting or missclassifying otherwise correctly predicted
or classified inputs. In this thesis, we consider adversarial attacks as external stressor on a
network, as the effects of the adversary, despite often being calculated using the network
itself, is applied to the input of learning models. Whilst the origins of adversarial attacks
and examples within the context of ML cannot be attributed to a single study or author, the
findings by Szegedy et al. [19], who were initially examining image recognition networks to
determine explainability of network decisions, prompted an accelerated interest on adversarial
attacks within the field. Intriguingly, the authors observed that, guided by network gradients,
performing minute and precise manipulations to correctly classified inputs subsequently
resulted in adversarial examples that were able to fool the network into misclassifying
the previously correctly classified input. Further to this, it was also found that the input
manipulations could be focused to force the network into misclassifying to a specifically
different class, also referred to as a targeted attack [120, 121].

Formally, for a given trained network f and a correctly classified input image x, it was
possible to calculate a manipulation δε with magnitude ε ∈R that is a form of noise generated
using gradient information of the network, and that results in an adversarial example xε ,
such that f (x) ̸= f (x+δε) and signifying a missclassification of the input. The magnitude
of the noise ε in question need not be large, relative to the initial input x; to the human eye,
differences between x and xε are often imperceptible.

Since the formal conception of adversarial attacks and examples in deep learning, various
studies were carried out for different applications and learning models, including but not
limited to: speech-to-text translation [121], radar image recognition [122], natural language
processing [123] and healthcare [124]. Numerous approaches were, and continue to be,
proposed to design adversarial attacks [30, 26, 53], form defense mechanisms against at-
tacks [125, 27, 32], and attempt to explain the reasons for the effectiveness of adversarial
attacks [18, 126, 51].

Perhaps the most interesting aspect on the effectiveness of adversarial attacks is the
relative ease, from the perspective of the magnitude of input noise required, with which
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even state-of-the-art DNNs can be broken down [51]. When we investigate the methods
with which adversarial attacks are formed, primarily using a gradient-guided approach, it is
apparent that the very way in which networks learn data distributions is also the facilitator of
potential adversaries. Gradient-based learning methods, which are commonly used to train
neural networks, are designed to optimise networks training data to generalise on un-seen
data, using error metrics to quantify the accuracy of the predictions [127]. Such error metrics
are based on statistical assumptions about the distribution of data used to train the network,
and do not naturally consider adversarial examples, as is observed in [128]. The ability of a
network to predict a dataset does not equate to the ability of the network to predict adversarial
data. An independent method of evaluating networks to adversarial data is thus required.

Several methods exist that address the task of evaluating networks under adversarial
settings. A commonly used method of evaluating DNNs is to compute adversarial attacks for
all input instances in a test dataset and subsequently calculate the ratio between unsuccessful
attacks and the total number of attacks applied [88, 129]. To provide provable guarantees in
computing such robustness measures, the task can be formulated by establishing a bound on
the norm of the adversarial perturbation magnitude ε , to which the network can be considered
robust to. Formally, we take an input example x within an lp-normed neighbourhood
B = {x+δε |∥ε∥p < γ} around x and given the condition γ > 0 to verify the following:

f (x+δε) = f (x) ∀x ∈ B.

Using the above verification [57], we can also compute the largest γ to which the verification
is still satisfied. As evident by the variety of adversarial attacks proposed in literature [30, 26,
53, 121], the above verification can only ever provide an approximation on the robustness
of neural networks. If an adversarial attack is successful, the above check will fail. If an
adversarial attack in unsuccessful, the verification above remains and can either still be valid
or not, as other attacks may prove otherwise.

Robustness verification offers a provable method by which neural networks can be
evaluated under adversarial settings, and are one direction of analysing network stability to
adversarial attacks. If the objective is shifted to not only analysing the robustness of neural
networks, but to identifying the specific constituting components of neural networks that
are most targeted by an adversary, we must equally adapt the approach with which we form
the analysis [130]. In doing so, we extend the robustness analysis to evaluating networks,
and also to explain how adversarial attacks work [131]. Adversarial attacks first came to
attention through the works of Szegedy et al. [19] whilst the authors were studying network
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decision boundaries, and interestingly, there are strong commonalities between adversarial
attacks and the interpretability and explainability of machine learning models [132–134].
The interpretability and explainability of neural networks is of particular importance if
adaptation of DNNs is to be expected in real-world applications, especially safety critical
systems [86, 25]. Adversarial examples too have relevance to real-world applications; in
the works of Zhao et al. [109] the authors propose a method to generate natural and legible
adversarial examples from real-world applications. There are other works that explore the
possibility of adversarial examples in the real world, without the need for an adversary or
maliciously designed noise [22].

The focus of this thesis is to utilise the adversarial phenomenon in ML in order to bridge
the gap between models developed in research and models designed for real-world applica-
tions. Particularly, in Chapter 3 we present a methodology to identify how an adversarial
attack targets specific neurons in the first convolutional layer of networks. In Chapter 4, we
extend the methodology presented in Chapter 3 to identify all network parameters targeted
within various networks, and identify commonalities between different network architectures
and datasets. In identifying the components of networks most susceptible to adversarial
attacks, we may also fortify the networks through fine-tuning the highlighted elements; we
explore improving network performances using the proposed methodologies in Chapter 5.

2.3 Applications of Robustness Analysis

Primary applications of robustness analysis are to evaluate networks to a particular class
of noise; adversarial perturbations that often require deliberate, and sometimes resource
expensive, computations to calculate [135]. Whilst computationally efficient attacks have
previously been proposed in literature [136], the attack perturbations nevertheless represent
an unlikely worst-case scenario for inputs, and thus, actively computing adversaries is still
required in most cases. It should be noted that adversarial examples have been observed in the
physical world [22]. Nevertheless, there remains a relative disconnect between adversarial
robustness and the ability of networks to perform under other, more common types of
perturbations [137], though several works have investigated this relationship [76, 138, 139].
Notably, Tsipras et al. have shown that robustness achieved through adversarial training
comes with a trade-off of standard accuracy. The cause of this inversely proportional
relationship between robustness and standard accuracy inherently stems from the difference
of features learned by regular networks and more robust networks, trained using adversarial
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data. The works of Li et al. [140] draw a connection between adversarial robustness and
additive random noise through a certifiable analysis method.

Much of the research carried out on robustness analysis within deep learning research has
been based primarily within the domains of image classification, natural language processes
and speech recognition [29]. In this thesis, we explore DNN applications on radar systems and
signals [141, 72, 142]. Conventional ML approaches to radar signal classification have been
widely researched in literature [143]. Although widely used for radar-based classification
systems, conventional ML approaches exhibit several drawbacks that hinder improvement in
performance, specifically related to random noise robustness and generalisation [72, 144].
We look to evaluate the robustness of novel DNN architectures designed for noisy radar signal
classification. In Chapter 5, we consider two tasks related to radar signal processing and
classification, which is the focus of the robustness analysis methods developed in Chapter 3
and Chapter 4. The task of robustness analysis, particularly on the adversarial robustness
of DNNs developed for radar systems, has yet to explored in depth. The question as to how
adversarial attacks can aid in making radar-based classification networks more robust, even to
random perturbations observed in practice, is one of the addressed themes in this thesis. This
task is particularly interesting due to the sensitivity of radar systems to subtle movements
from the target objective, as well as various forms of environmental noise which are both
unpredictable and potentially damaging to the performance of the network [43].

Deep Learning for Radar Systems There are applications proposed that incorporate
deep learning models with radar systems, including but not limited to: fall detection [145],
automated target recognition [146], environmental monitoring [147], vital signs monitor-
ing [148, 40], line-of-sight estimation [45], and human activity recognition [142, 72]. In
the works of [142] the authors develop a system for recognising daily life activities such as
sitting, standing, picking up objects, drinking water and fall events. The authors detail that
optimal results were achieved by using data pre-processing techniques such as PCA and data
augmentation prior to application of the classification network. Efficient data preprocessing
has been highlighted as a recommended precursor to effective classification. Indeed the task
of radar signal preprocessing for use with learning models has been explored in the following
works [149, 150, 41]. In this thesis, we focus on the task of human activity recognition using
UWB radar and deep learning, as detailed in Chapter 5, relates to the classification of human
activities using 24 GHz UWB radar system and DNNs. Furthermore, based on the works
of Pravin et al. [42], we apply an automated DNN-based radar signal denoising algorithm
to preprocess the developed activity classification network. Both the activity classification
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network and radar signal denoising network will be the subject of the robustness analysis
method developed in this thesis. We use the proposed robustness analysis at evaluating and
improving the adversarial robustness of both networks. We subsequently asses the reinforced
networks on the ability to withstand random perturbations, as well as adversarial ones.
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Adversarial Robustness for DNNs:
Attacks on Fragile Neurons

In this chapter we identify fragile and non-fragile neurons of deep learning architectures
using nodal dropouts of the first convolutional layer. Using an adversarial targeting algorithm,
we correlate the identified fragile and non-fragile neurons with the distribution of adversarial
attack targeting on the convolutional layer. We define fragile neurons to be those that, when
perturbed, reduce the network performance for a given task. Accordingly, we define non-
fragile neurons to be those that, when perturbed, do not reduce the network performance on
a specific task. It should be noted that in this chapter non-fragile refers to any neurons that
do not reduce network performance, which may entail a relative invariance or increase of
performance. Further discussions on this is presented in the following Chapter 4.

Adversarial robustness of neural networks has gained significant attention in recent
times and highlights the intrinsic weaknesses of deep learning architectures against carefully
constructed distortions applied to the input. In this section, we evaluate the robustness of state-
of-the-art image classification models trained on the MNIST [151] and CIFAR10 [5] datasets
against the fast gradient sign method attack, a simple yet effective method of deceiving neural
networks.

Our method identifies the specific neurons belonging to the first convolutional layer of
DNNs that are most affected by the applied adversarial attack. We, therefore, propose to
make fragile neurons more robust against adversarial attacks by compressing features within
non-fragile neurons and amplifying the fragile neurons proportionally. Furthermore, we
also propose back-propagation filters that address fragile and non-fragile neurons seperately
during the network training process.
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3.1 Overview

Deep neural networks have been widely adapted to various tasks and domains, achieving
significant performances in both the real world and in numerous research environments [1].
Previously considered state-of-the-art DNNs have been subjected to a plethora of tests and
experiments in an attempt to better understand the underlying mechanics of how and what
exactly these learning models actually learn [152]. In doing so, we now better recognise the
strengths, and more importantly the weaknesses of DNNs; subsequently we have developed
better networks by building on from previous architectures [29].

The contents of this chapter are organised as follows: in the following section we provide
an overview and motivations for the study, in Section 3.2 we provide relevant literature on the
topic, Section 3.3 offers a breakdown of adversarial attack and defense formulation methods,
in Section 3.4 we propose the adversarial targeting algorithm, in Section 3.5 we put forward
the results and discussions of the findings, and conclusively, in Section 3.6 we present a
summary of the work.

3.1.1 Adversarial Vulnerabilities

A particular method of analysing the robustness of a DNN is through the lens of an adversarial
attack. Such methods introduce a small, carefully crafted distortion to the network input
in an attempt to deceive the network into misclassifying the input with a high level of
confidence [51, 19]. The small distortions to the input, termed adversarial perturbations,
are hardly perceptible to humans even when the perturbation is amplified by several orders
of magnitude [19]. The ability of adversarial attacks to fool DNNs with hardly perceptible
changes in the input highlights an intrinsic difference between artificial intelligence and true
intelligence, as human perception cannot easily be fooled by small perturbation of increasing
magnitudes. Thus, adversarial attacks are a logical entry point to evaluate DNNs and the
vulnerabilities they may contain.

Adversarial Formulation

There are many ways in which an adversarial perturbation can be crafted, utilising various
tools and assumptions on the target network and intended input. Existing adversarial attacks,
and methods for designing such distortions, can be broadly categorised into white-box and
black-box attacks. The distinction between the two different types of attacks being the
information that the adversary, the attack formulation method, has on the network and its
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parameters. With the white-box attacks, the adversary is assumed to have complete access
to the target network in question, including network parameters and architecture [153].
Conversely, the black-box attack is a type of perturbation method used by an adversary with
limited or no information on the interested network, including knowledge on parameters or
architecture [30].

In this chapter, we focus our efforts at evaluating the robustness [154] of ResNet-18,
ResNet-50, and ResNet-101 networks against a simple yet effective white-box adversarial
attack, the fast gradient sign method (FGSM) attack [51]. We apply the FGSM perturbations
on the MNIST and CIFAR10 datasets for the mentioned networks and present a correlative
relationship between the distribution of neurons with high influence and targeting by the
adversarial attack. Furthermore, we evaluate methods in minimising the effects of such
distortions through dealing with neuron features differently dependent on the influence of the
neuron on the network performance.

Adversarial Defenses

With the numerous adversarial attack methods proposed against DNNs, there have been
as many defense techniques also proposed in literature [30]. As discussed in Chapter 2,
defense models struggle to remain unbeaten by newer, stronger adversarial attacks in an ever-
growing area of adversarial research [30, 31]. Adversarial defenses, much like adversarial
attacks, can be divided into different sub-categories: (i) defenses focusing on gradient
masking/obfuscation, whereby the network weight gradients used by adversaries to form
attacks are disguised; (ii) robust optimisation [28], where the network structure/parameters
are altered to increase adversarial defenses; and (iii) adversarial example detection, where the
goal is to detect an adversarial input and process this entity differently to ordinary inputs [29].

3.1.2 Targeted DNN Neurons

The goal of all adversaries is to deceive the network into predicting, classifying, or recognising
an input as a different class to its true self. When the adversary has knowledge of the
information learned by the network, as is the case for white-box attacks, it utilises the
information to craft a perturbation that exploits weaknesses within the learned network
representations of the data [30]. In this chapter, we propose viewing an adversarial attack as
an exploitative method that targets specific neurons within a given layer. We refer to targeted
DNN neurons as neurons whose outputs are most affected by an adversarial attack. We also
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draw a relationship between the adversaries’ targeted neurons and neurons that show to have
higher influence on the unperturbed network performance.

We assume that, for a given layer, information about the input learned by the layer through
back propagation is distributed unevenly amongst individual neurons. We propose using
nodal dropout to identify influential and uninfluential neurons within an evaluated layer of
a network [155]. In doing so, we find fragile neurons that carry more information about
the input [156] and consequently affect the network performance more than other neurons.
Additionally, we identify non-fragile neurons that, once removed, do not significantly affect
the overall network performance. We consider such neurons to carry less information about
the dataset. We examine how the FGSM attack affects different DNN models (ResNet-18,
ResNet-50, and ResNet-101) at different stages (epochs) of learning, whilst also comparing
how deeper network architectures affect the effectiveness of the formed attack. Therefore,
we propose to reinforce the features within the identified non-fragile neurons by amplifying
the neuron weights and leaving fragile neurons unchanged.

The FGSM attack utilises learned representations of a network, in the form of the network
layer weights, to calculate an effective adversarial example. We aim to identify the fragile
and non-fragile neurons within the first convolutional of the network, and post-process them
separately during network training to investigate how they affect the overall robustness of the
network against an adversarial attack.

3.2 Related Works

Robustness analysis of DNN against adversarial attacks aims to evaluate the ability of
networks to resist malicious distortion applied to network inputs [26, 51, 31]. There are
different types of attacks available for a potential adversary, each with their own strengths
and limitations. Szegdey et al. [19] initially proposed adversarial examples for DNNs using
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, an expensive
linear search method to form adversarial examples. Thereafter, the FGSM attack proposed by
Goodfellow et al. [51] had become one of the early benchmarks for adversarial attacks due
to its computational process being less resource intensive when compared to other attacks.
The FGSM attack performs a pixel-wise one step update along the gradient sign direction of
increasing loss, thus ensuring the perturbation is uniform with respect to increasing network
loss. Moosavi-Dezfooli et al. [157] developed another popular attack formulation method,
the Deepfool method, which performs an iterative attack using linear approximations to
identify the minimum distance between an unperturbed and perturbed input that is required
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for the model to misclassify. A targeted adversarial attack method was proposed by Carlini
and Wagner [158], the C&W attack, was designed to make the model misclassify to a
specific class, rather than the closest decision boundary class. There are several other attack
methods available in the literature. In this study however, we focus specifically on the FGSM
adversarial attack due to its one-step gradient calculation and effective performance against
state-of-the-art DNN models. Furthermore, we propose a method of highlighting network
weaknesses when subjected to malicious input distortions and hence, the formulation method
of the distortion is not the focal point of the study.

3.2.1 Adversarial Defenses

In terms of defenses against adversarial attacks, there are an equal number of approaches
proposed in literature [31]. One method of defending a DNN against adversarial attacks is
through masking network parameters, therefore making it more difficult for an adversary to
exploit the information learned by a network to generate adversarial examples. This method,
however, has shown to be ineffective against many types of attacks and there exist techniques
to circumvent such defensive measures [29]. The works of Grosse et al. [62] show that
adversarial examples are drawn from a different distribution to the regular dataset, and thus,
can be identified using particular techniques. Methods based upon utilising the difference
in input distributions to defend against adversarial examples are concerned primarily with
the identification of adversarial examples form the dataset, such that they can be processed
separately to regular inputs [29]. These methods are also subject to exploitation by techniques
that bypass the adversarial examples detection, making such defense methods weaker to
certain types of attacks [21].

3.2.2 Adversarial Learning

One of the most effective methods of defending against adversarial attacks is through
adversarial training. In adversarial training, the network is simply trained on as many different
adversarial examples as possible in an attempt to learn the different types of perturbations an
adversary can utilise. This method, although proven to be highly effective [34], is limited
to the variation of adversarial examples the network is trained upon and newly developed
adversaries may be still able to deceive the network [159]. Another promising area of study
is certifiable robustness against adversarial attacks [26, 160, 31]. Certifiable robustness
aims to impose theoretical upper and lower bounds for an evaluated DNN using techniques
such as Lipschitz constant estimation, interval bound propagation, and convex adversarial
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polytopes [161, 57]. There exist other methods to ensure that a network learns a dataset
more efficiently, and in doing so, reduces the effects a potential adversarial attack has on a
network [162]. These methods can be classed within the broad category of regularisation
techniques that aim to make small modifications to the network learning algorithm, such that
the network is able to generalise with greater efficiency, even under an adversarial attack.

3.2.3 Targeting and Influence

In this section we try to find a relationship between highly influential neurons, when consid-
ering network performance on a regular dataset, and the likelihood of the identified neurons
being targeted by an adversary. Upon identification of the fragile neurons, we propose
a method of regularising the specific neurons during a post-training process. As we, the
observer, propagate through the network we notice that the deconstructed, abstract character-
istics of the data begin to take a shape of salient features, which are then assigned semantic
meaning in the form of target labels [163]. Literature on leveraging the information content
of features learned by DNNs have been used for various applications. We direct the reader
to the works of Golatkar et al. [164] who suggest a method of selective forgetting, in which
the authors investigate the erasing of information about a particular subset of a dataset from
the trained weights of a DNN. We take inspiration from this framework and put forward the
following proposition; that adversarial robustness is hinged on the distribution of influential

and uninfluential neurons, referred to as sets of fragile and non-fragile neurons respectively
within the context of this study.

We are motivated by the works of Li and Chen [155] along with related literature in
reducing network complexity by using techniques such as nodal pruning. We leverage the idea
that there exist neurons within a network that can be classified as redundant, or uninfluential,
to the overall network performance. Removing redundant neurons in some cases also shows
to improve robustness against attacks [165]. Conversely, we also consider the works of [156]
that prove the existence of multi-model neurons within networks; representations that hold
a higher degree of influence to the network performance. We investigate the correlation
between neurons that show to have a higher influence towards the network performance and
the average concentration of an adversarial targeting on influential neurons. In consequence,
we draw attention to the nature of adversarial attacks and how such perturbations target the
learned representations of a network that are most important to performance on the clean
dataset.
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3.3 Adversarial Attack and Defense Formulations

We consider an image classifier f with l layers, and trainable parameters θ that accepts an
input image x and its associated true class label y. The network returns ŷ as its prediction for
input x. The goal of the model is to reduce loss function L (ŷ,y). The image xε = x+δε , is
an adversarial example produced by an adversarial attack δε applied to image x, where ε is
the magnitude of the perturbation. The network prediction for an adversarial example xε is
defined as ŷε .

Our objective is to minimise the difference in network predictions ŷ obtained for un-
perturbed input x, and adversarial prediction ŷε for perturbed input xε . We examine the
trainable parameters θ (l) ∈ θ of a network for layer l at various stages of the training pro-
cess. It should be noted that while assessing the significance of the neurons, we remove
one-neuron at a time from θ (l). We, therefore, identify two sets of neurons indices, S and S̄

respectively representing (i) neuron indices within the layer L showing a higher influence
on the overall model performance, and (ii) neurons indices with lower overall influence on
model performance. In our work, we are concerned with removing one-neuron at a time;
removing multiple neurons from the model f (x,θ) would warrant an alternative method
that considers neuron sampling methods. We focus on removing single neurons to evaluate
network performance, and specifically, assessed neurons of the first layer of networks. We
investigate the first layer only, due to the high importance and influence of features learned
by the first layer, with respect to the whole network [165].

3.3.1 Attack Formulation

The adversarial attack used in this work if formulated using the FGSM attack. This method
leverages a learned representations of a network, in the form of layer weights θ (l), to construct
an efficient and effective adversarial perturbation xε . The FGSM attack is a perturbation for
an input x computed as:

δε = ε sign(∇xL (x,y,θ)), (3.1)

where ∇x are the gradients calculated using backpropagation. The adversarial example
therefore is xε = x+δε , as detailed in [26, 51].

We find that for a 100 epoch pre-trained ResNet-50 model on the CIFAR10 dataset, a
baseline model accuracy of 75.87% on the unperturbed inputs x is observed. The same model
applied to the CIFAR10 dataset with an FGSM attack, using a perturbation magnitude of
ε = 0.01, results in an accuracy of 58.88%. If we consider the same ResNet-50 architecture
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trained equally for 100 epochs, with the input dimensions adjusted to comply with the MNIST
dataset, the baseline model accuracy on unperturbed MNIST dataset is 99.42%. While the
model accuracy is found to be 79.4% when perturbed with an ε = 0.34 attack. These are
examples of the FGSM attack performance on the CIFAR10 and MNIST datasets using the
ResNet-50 DNN model.

If we consider a metric to assess the complexity of a given dataset, such as the cumulative
spectral gradient (CSG) method [166], we notice that the CSG complexity measure for the
for the CIFAR10 dataset is 1.00 and MNIST dataset is 0.11. As we may expect, the FGSM
attack is more effective on more complex data (e.g., CIFAR10) compared to less complex
data (e.g., MNIST). This can be realised from the perturbation magnitude ε required for
the model performance to decrease proportionally. For example, to decrease performance
by approximately 20%, a lower value of ε (smaller perturbation magnitude) is required for
CIFAR10 and a higher value of ε (larger perturbation magnitude) is required for the MNIST
dataset.

3.3.2 Defense Formulation

To better understand how to form a suitable defense against an adversarial attack, we may
consider how an adversary is able to form an effective attack. With the FGSM attack, a
single step in the input space is taken in the direction of increasing loss. The perturbation
is calculated using the network weights gradients, and subsequently the input data features
are distorted in the direction of increasing loss with respect to the gradient updates. Then
it is natural to consider that this informed way of creating adversarial perturbations may,
even with relatively low magnitudes, affect the neurons that are more influential to the model
performance (e.g., set of highly influencing neurons S).

We aim to show this effect of adversarial perturbations experimentally by comparing
the output of the layer-wise convolution of the clean inputs x, and perturbed inputs xε that
are computed using the pre-trained parameters θ . We define the model prediction f (x,θ)

on clean inputs and the model prediction f (xε ,y,θ) on perturbed input to not be equal
( f (x,θ) ̸= f (xε ,θ)), such that the adversarial attack affects the network performance. In our
defense formulation, we aim to modify the network layer parameters θ (l) to θ̃ (l), such that
a potential adversary is forced to distribute the attack targeting throughout the layer. We
propose that this will make the network layer θ̃ (l) more robust against an adversarial attack.
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Fig. 3.1 Evaluated ResNet-50 model trained for 10 epochs. Fragile kernels S shown in blue
below mean performance line in red and non-fragile kernels S̄ are shown in black star above
mean line in red.

3.3.3 Fragile and Non-fragile Kernels Identification

We identify fragile neurons (filter kernels) S and non-fragile neurons S̄ through removing the
neurons out systematically one-by-one, and measuring the variance in model performance.
In Figure 3.1, we show the network performance for each removed neuron from the first
convolutional layer of the network, represented by the indices along the x-axis. The indices
of fragile kernels S are indicated with blue circled symbols and are observed to be less than
the mean performance of the network. The mean network performance to neuron removal is
indicated using a red dotted line and is computed over all neurons of the first convolutional
layer. The filtering of the fragile neurons has a higher influence on the network performance
when compared to the dropping of the non-fragile neurons, indicted by the black star symbol
and observed to be above mean performance line.

3.4 Adversarial Targeting Algorithm

We assume that the sub-set of parameters θ
(l)
S̄ relating to non-fragile kernels S̄ in layer l,

carry within them artefacts of noise that render the overall influence of these kernels, with
respect to the model performance, to be lower than that of the fragile kernel S. We propose to
filter parameters θ

(l)
S̄ in order to remove this noise. We group the sub-set of identified fragile

neurons of the layer parameters θ (l) as a matrix of neurons KS, and equally, the subset of
layer parameters identified as non-fragile, as a matrix KS̄. We assume the distribution of the
noise in the matrix KS̄ to be of a Gaussian distribution. Using this approach, we can use the
works of Gavish and Donoho [167] to recover a lower rank matrix from KS̄ to retaining only
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the most important features and remove noise from the neurons. The filtering of parameters
KS̄ results in the modified parameters θ̃

(l)
S̄ . The filtered parameters relating to non-fragile

kernels KS̄, are considered to be more robust, if the probability of predicting the true class
using modified model parameters θ̃ is higher than θ as per:

P(ŷ = y|xε ,θ
′)> P(ŷ = y|xε ,θ). (3.2)

We compose the matrix KS̄ by stacking flattened non-fragile kernel parameters θ̃
(l)
S̄ and

propose compressing the features of KS̄ to remove noise or redundant information, thus
increasing the influence of the non-fragile kernels S̄ on the overall network performance.
While filtering the non-fragile kernels S̄, we proportionally amplify fragile kernel S. The
amplification of S is carried out to maintain relative magnitude of local features of weights
in layer l and to propagate only the essential representations to subsequent layers of the
network.

3.4.1 Filtering Non-fragile Kernels

We decompose the non-fragile kernel matrix KS̄ using singular value decomposition (SVD)
and reduce the complexity of the representations by clamping all singular values below a hard
filtering threshold τ . The value of τ used, is computed using the method presented in Gavish
and Donoho [167] that outlines the optimal hard threshold for singular values. We apply the
proposed filtering method only to the first convolutional layer, due of the susceptibility to
distortions having a higher influence on the overall network performance [165]. We use SVD
to decompose our non-fragile kernel matrix KS̄, which is an m×n matrix, into its respective
eigenvalues Σ along with the the eigenvectors matrices U and V as per:

KL,S̄ =UΣV T . (3.3)

We thereafter, compute a truncated matrix of singular values Σ̃ by clamping all values to be
at most equal to threshold value τ as per:

σ̃i = argmin(σ ,τ), (3.4)

where σ is the diagonal of Σ and σ̃i is the row up to which the matrix σ is truncated. The
thresholding value τ , for m×n matrix is given as per:

τ = λ (ρ) ·
√

nε, (3.5)
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where ρ = m/n, ε is the noise level within the matrix, and the term λ (ρ) is expressed as:

λ (ρ) =

√
2(ρ +1)+

c1ρ

(ρ +1)+
√

ρ2 + c2ρ +1
, (3.6)

where constants c1 and c2 respectively are 8 and 14 as per [167].
We then find the noise level value ε in (3.5) experimentally through a systematic search

method using a sample set of the parameters. As the final filtering step, we reconstruct
the filtered weight matrix K̃S̄ by using the clamped singular values and corresponding
eigenvectors as per:

K̃S̄ =U Σ̃V T . (3.7)

3.4.2 Amplification of Fragile Kernels S

The amplification of the fragile kernel parameter matrix KS is carried out applying a scaling
factor of η . The value of η is computed using (3.3) and (3.7), as per:

K̃S = ηKS, (3.8)

where scaling factor of η is
η = 1+ ||KS− K̃S̄||2. (3.9)

The aim of this process is to amplify the features within fragile kernels S, such that a
greater magnitude of adversarial perturbation is required to affect kernels. The magnitude of
amplification being equal to the reduction in magnitude of kernels S̄, such that the overall
magnitude of the layer remains the same as before applying the framework.

3.4.3 Back-propagation Filters

Another method from that is proposed in Sections 3.4.1 and 3.4.2 is based on back-propagation

filters; a method in which the back-propagation weight updates during network training are
processed differently for fragile and non-fragile kernels. The premise of the regularisation
technique can be succinctly described as a learning filter that governs the weight update of
kernels dependent on the importance of the kernel through nodal dropouts. It should be noted
that the mentioned back-propagation filters are not filters for the specific kernels, rather the
method is a masked filter for the gradient updates during network training.
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3.4.4 Adversarial Targeting of Fragile and Non-fragile Kernels

We assess the robustness of the fragile kernels S and non-fragile kernels S̄ using our ad-
versarial targeting algorithm, as shown in Algorithm 1. The FSGM attack is varied for a
range of perturbations ε , which in turn, is used to compute the outputs of the evaluated
first convolutional layer for both clean prediction ŷx and the adversarial prediction ŷε . The
average difference between each kernel in the outputs ŷx and ŷε is calculated and compared
to see which is highest, indicating a greater average concentration of the attack.

Algorithm 1 Adversarial targeting

1: Initialise f ()→ fL() ▷ fL() is the L-th layer of full network f ()
2: Compute indices of fragile kernels S and non-fragile kernels S̄ as per Sec 3.3.3
3: Sattack = {} ▷ an empty list to store examples that attacks S
4: for perturbation ε ∈ R do ▷ where ε is perturbation magnitude
5: attack = FGSM( f (L),ε)
6: Scount = 0
7: for (x,y) in (Xtest ,Ytest) do
8: xε = attack(x,y) ▷ create an adversarial example xε for input x and level y
9: ŷx = f (l)(x) ▷ output of l-th layer on unperturbed input x

10: ŷε = f (L)(xε) ▷ output of l-th layer on perturbed input xε

11: d = ||ŷx− ŷε ||2 ▷ Euclidean distance d = (d1, . . . ,dk) between ŷx and ŷε

12: S f = (∑
|S|
j d j,S)/|S| ▷ Average of distances d j,S of all S select from d

13: Sn = (∑
|S̄|
j d j,S̄)/|S̄| ▷ Average of distances d j,S̄ of all S̄ select from d

14: if S f > Sn then
15: Scount = Scount +1 ▷ increase counter of attacks for fragile kernels
16: end if
17: end for
18: Sattack← Scount ▷ add Scount to the list Sattack
19: end for

3.5 Results and Discussion

In first series of experiments, we use the two sets S and S̄ obtained as per Figure 3.1 on the
ResNet-50 model and apply them to Algorithm 1 using the CIFAR10 dataset, resulting in
Figure 3.2 and the MNIST dataset, resulting in Figure 3.3:

For Figure 3.2, we measure the robustness of ResNet-50 models and compare the per-
centage of examples attacking fragile kernels S when evaluated against the FGSM attack. In
Figure 3.2 (Left), we observe that as the number of training epochs increases, the network
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accuracy also increases for both the unperturbed (ε = 0) and perturbed (ε > 0) examples. In
Figure 3.2 (Right), using the results from the adversarial targeting Algorithm 1, we also notice
that the percentage of examples attacking fragile kernels S is higher for highly perturbed
examples. However, for smaller perturbation magnitudes, 100 epoch model is more robust.
This suggests that as the model becomes more robust (from epoch 10 to 100), the percentage
of examples attacking fragile kernels S and non-fragile kernels S̄ tends to distribute equally.
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Fig. 3.2 Left: ResNet-50 model trained on the CIFAR10 dataset for epochs 10, 50 and 100
against the FGSM attack, with ε increasing linearly, marked by dots. Right: ResNet-50
model trained on the CIFAR10 dataset for epochs 10, 50 and 100 against the FGSM attack,
with attack magnitude increasing logarithmically, marked by star symbols. Epoch 10, 50,
100 respectively indicated in colors grey, green, violet.

After applying our framework proposed in sections 3.4.1 and 3.4.2 using ε value of
0.015 to the first convolutional layer θ (l), resulting in filtered layer parameters θ (l), we
observe the difference in attack distribution between original model and modified model
using Algorithm 1.

We apply the parameter filtering framework to a ResNet-50 model trained on the MNIST
for 10 epochs. The results of which is shown in Figure 3.3. In this experiment, although
the number of fragile kernels S are 37% of the total kernels within the layer, these kernels
show a larger average distance between the outputs of the original layer θ (l) and modified
layer θ (l) for almost 89% of the tested input examples on original model. Furthermore, as
the attack strength is increased, through a logarithmic increase of ε , the average magnitude
of the attack on kernels S also increased. However, our method of filtering parameters θ (l)

resulted in a lower percentage of test examples attacking fragile kernels S, compared to the
original model with parameters θ .

We observe from Figure 3.4 how the influence of kernels in the first convolutional layer
varies during the training process while we systematically drop and assess the kernels. In
Figure 3.4, red circles are the kernels that carry a higher influence through all stages of
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Fig. 3.3 Concentration of the adversarial attack on fragile kernels S for both the original
model with parameters θ (l) and the modified model, with θ (l) in a ResNet-50 model trained
on the MNIST dataset for 10 epochs, using the methods proposed in Sections. 3.4.1 and 3.4.2.

model training. We notice that as we change the model from ResNet-18 to ResNet-50 and
ResNet-101, the number of influential fragile kernels increases on the CIFAR10 dataset. This
is as we may expect; model architectures with greater complexities are able to learn the
important features from the dataset faster than shallower model architectures. We notice
from Figure 3.4, that the average model performance of the kernels in θ (l) increases to a
limit for models trained on the CIFAR10 dataset and shows to increase and then decrease
for the models trained on the MNIST dataset. This characteristic invites a separate set of
experiments to better understand how model overfitting affects nodal dropouts.

3.6 Summary

In this chapter we showed how an FGSM attack targets specific neurons within the first
convolutional layer of ResNet-18, ResNet-50, and ResNet-101 models trained on both the
CIFAR10 and NNIST datasets. To prove this property, we first identify fragile kernels S

and non-fragile kernels S̄ sets within the evaluated layer using an iterative dropout method
and measuring the variance in model performance. We use the kernel indices of S and S̄ to
evaluate the highest average distance between the outputs of the layer using the original input
x and perturbed example xε . In doing so, we find that for a ResNet-50 model trained on the
CIFAR10 dataset for 50 epochs, the number of fragile kernels S account to 37% of the total
number of kernels in the layer yet show to have a higher average difference for approximately
89% of the examples evaluated.

We also show how the robustness against the FGSM attack, and the targeting of fragile
kernels S, varies as the model is trained, thus showing a correlation between a model
becoming more robust and the targeting of fragile kernels. Furthermore, we propose a layer
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Fig. 3.4 Variance of model performance to individual kernels being dropped out within the
first convolutional layer. Red circles indicate fragile kernels that remain fragile throughout
the all training epochs, whereas red crosses indicate kernels that are observed as fragile for
the specific training epoch length.

parameter filtering algorithm that improves robustness in a model by removing information
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from non-fragile kernels S̄ and amplifying the information in S. This simple method, despite
only being applied to the first convolutional layer, improves the robustness of a model with
less training. It should be noted that, although our study focuses on the first convolutional
layer only, due to the layer being highly influencing on the network performance, other layers
can also be evaluated using this proposed framework.



Chapter 4

Fragility, Robustness and Antifragility
for DNNs

We define three filtering scores for quantifying the fragility, robustness and antifragility
characteristics of DNN parameters based on the performances for (i) clean dataset, (ii)
adversarial dataset, and (iii) the difference in performances of clean and adversarial datasets.
We validate the proposed systematic analysis on ResNet-18, ResNet-50, SqueezeNet-v1.1
and ShuffleNet V2 x1.0 network architectures for MNIST, CIFAR10 and Tiny ImageNet
datasets. The filtering scores, for a given network architecture, identify network parameters
that are invariant in characteristics across different datasets over learning epochs. Vice-
versa, for a given dataset, the filtering scores identify the parameters that are invariant in
characteristics across different network architectures. We show that our synaptic filtering
method improves the test accuracy of ResNet and ShuffleNet models on adversarial dataset
when only the robust and antifragile parameters are selectively retrained at any given epoch,
thus demonstrating applications of the proposed strategy in improving model robustness.

4.1 Overview

Deep neural networks (DNNs) are extensively used in various tasks and domains, achieving
noteworthy performances in both research and real-world applications [1, 3]. It is the critical
weaknesses of DNNs however, that warrant investigation if we are to better understand how
they learn abstract relationships between inputs and outputs [152, 168]. We propose to inves-
tigate the effects of a systematic analysis on DNNs by using a signal processing technique
for network parameter filtering (the terms DNN and network are used interchangeably), in
contrast to random filtering [35, 104, 169] methods.
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Our work analyzes the performance of a DNN under (a) internal stress (i.e., the synaptic
filtering of DNN parameters) and (b) external stress (i.e., perturbations of inputs to the DNN).
We define internal and external stress within the context of DNNs as a novel concept taking
inspiration from the applications of stress on biological systems [95]. Through analyzing the
performance of a network to input perturbations (external stress) formed using an adversarial
attack [19, 20], we bring the weakness of the DNN to the foreground. We simultaneously
apply synaptic filtering (internal stress) to the network parameters in order to identify the
specific parameters most susceptible to the input perturbations, thus characterizing them as
fragile. Similarly, we identify parameters of the DNN that are invariant to both internal
and external stress when considering the network performance, thus characterizing them
as robust to the applied stress. Following this reasoning, we introduce a novel notion of
antifragility [38] in deep learning as the circumstance in which any applied perturbations
(internal and external) on a network result in an improvement of the network performance.

When considering external stress, such as variations to the network input, we focus
our analysis specifically on varying magnitudes of adversarial attack perturbations [19, 20]
due to their ability to exploit the learned representations of a network to decrease network
performance [18]. In our study, we focus on the fast gradient sign method (FGSM) attack for
its equal single-step perturbation calculation for increasing network loss [51]. Our synaptic
filtering methodology (see Fig. 4.1) offers a comparative study of state-of-the-art DNNs
using clean and adversarially perturbed datasets, and therefore, the study is relevant for
any variation of perturbation introduced to the input space. We apply our methodology to
expose the fragility, robustness and antifragility of network parameters over network learning
epochs, which subsequently enables us to examine the landscape (performance variations
over epochs) of the network learning process.

In order to better understand how an adversarial attack is effective in bringing a network to
failure [53], we take a novel methodology that considers network susceptibility to adversarial
perturbations in conjunction with network architecture and the learning processes (see
Fig. 4.1). The proposed synaptic filters are considered to be the lenses under which we can
characterize parameters of network architecture. Introducing an adversarial attack to the
methodology in Fig. 4.1 offers a unique insight into how the characterization of network
parameters varies between clean and adversarial inputs. We validated the analysis on the
ResNet-18, ResNet-50 [170], SqueezeNet-v1.1 [171], and ShuffleNet V2 x1.0 [172] networks
for the MNIST [151], CIFAR10 [5] and the Tiny ImageNet datasets [173].

The main contributions of this Chapter, therefore, are as follows:
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Fig. 4.1 Our methodology of parameter filtering and evaluating DNN performances on clean
and adversarial datasets. Passing a DNN through parameter filters is equivalent to internal
stress and applying an adversarial attack with various magnitudes on clean data is equivalent
to external stress on a DNN. In this methodology, the DNN performances (labeled 1, 2, 3,
and 4) are individually compared against a defined baseline DNN performance (sold green
line in the illustration shown on the lower left) in order to characterize DNN parameters as
fragile (red shaded area), robust (green shaded area), or antifragile (blue shaded area).

• We offer a novel methodology based on signal processing techniques that apply
internal stress (parameter removal) and external stress (adversarial attack) on DNNs to
characterize the network parameters as either fragile, robust, or antifragile.

• We offer parametric filtering scores that use a defined baseline network performance

to quantify the influence of specific parameters on the network performance.

• We apply internal stress on networks in the form of synaptic filters and use the filtered
network performances to show that networks trained on different datasets contain
parameter characterizations that are invariant to different datasets throughout the
network training process.

• We apply external stress to networks, in the form of an adversarial attack, to identify
the specific parameters targeted by the adversary through a comparison of the synaptic
filtering performances of the clean and adversarial test datasets.

• We show that our synaptic filtering method boosts the test accuracy of ResNet and
ShuffleNet models on adversarial dataset when only the robust and antifragile param-



42 Fragility, Robustness and Antifragility for DNNs

eters are retrained at any given epoch, thus proving a useful strategy for improving
network robustness.

The following Section 4.2 gives insights into the background and related works. Sec-
tion 4.3 offers definitions of the terms and concepts introduced in the proposed methodology.
Section 4.4 reports the proposed methodologies. Section 4.5 shows the experimental results
acquired using the proposed methodologies, and Section 4.6 concludes the work.

4.2 Related Work

We propose evaluating the resilience of DNNs using a physiologically inspired approach
concerning the resilience of humans to stress on their physiology [95, 174]. Therefore, we
analyze the performance of DNNs to internal and external stress. Within the context of
deep learning, we consider internal stress to be the perturbations to the network parameters
(i.e., synaptic filtering) [96, 97] and we take external stress to be variations to the learning
environment of the network (i.e., input perturbations) [175, 176, 54].

There exist various avenues of research when considering an analysis of DNNs to input
perturbations [51, 139] and synaptic filtering [97, 104]. The works of Szegedy et al. [19]
and Goodfellow et al. [51] invited attention to investigate the vulnerability of DNNs to a
particular method of crafting input perturbations in the form of adversarial attacks. The
rapid development of new adversarial attacks [26] and equally abundant adversarial defense
techniques [125, 31], call for methods of analyzing the resilience of DNNs to carefully
crafted input perturbations, designed to bring networks to failure.

The scrutiny of DNN resilience to these perturbations can be expanded to incorporate
perturbations into network architectures. The study proposed by Han et al. [102] details how
network parameters can be filtered out to reduce network size, without significantly affecting
network performance. However, there may be conditions when filtering parameters may lead
to improvements in the network performance. Therefore, we use a notion of antifragility to
describe an increase in network performance whilst being subjected to internal and/or external
stress, in the form of synaptic filters [169, 97, 104] and adversarial attacks [53, 26, 31]. Our
notion of antifragility in DNN is in line with the antifragility notion described by Taleb
and Douady [38]) to refer to a phenomenon whereby a system subjected to stress shows to
improve in performance. We describe the related works on internal and external stress as
follows:
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Internal Stress (Parameter Filtering) Network architecture affects how and what DNNs
learn [177–180]. Therefore, the works of Ilyas et al. [126] highlight the presence of robust
and non-robust features within networks. In a similar context, we highlight the presence
of fragile, robust and antifragile [38] parameters of different network architectures on both
clean and adversarial test datasets. For the characterization of the network parameters, we
propose a synaptic filtering methodology (see Fig. 4.1).

Identifying fragile, robust and antifragile parameters informs us about the compressibility

of a network based on the variation and degradation in the network performance [47]. A
central principle of network compression techniques is to reduce network size whilst retaining
network performance [102]. A method of achieving network compression is through using
network pruning techniques [101, 97, 104]. Our work of parameter filtering differs from the
objective of pruning techniques that aim to reduce DNN size, whereas we aim to analyze
the characteristics of DNN parameters by systematically filtering them. As well as our
works differ from those systematic tuning of DNN hyperparameters such as the number of
layers and number of neurons in a layer to analyze the DNN performance [181], i.e., we
systematically internal architecture of the DNN.

Siraj et al. [117] proposed a robust sparse regularisation method for network compactness
while simultaneously optimizing network robustness to adversarial attacks. Similarly, we
use our synaptic filtering methodology (a network parameter removal technique) to study
the performances of a DNN on clean and adversarial datasets, which enable us to identify
parameters that cause a decrease in network performance on the adversarial dataset [112]
compared to the clean dataset, thus characterized as fragile in our work. We characterize
parameters that are invariant to synaptic filtering on both clean and adversarial datasets as
robust. Whereas the parameters that, when filtered, show to increase the network performance
on the adversarial dataset compared to the clean dataset are characterized as antifragile.

External Stress (Adversarial Attacks) There are numerous methods for computing adver-
sarial attacks on DNNs in the literature [176, 54]. The primary objective of adversarial attacks
is to deceive a network into misclassifying otherwise correctly classified inputs [19, 51]. The
importance of the analysis of adversarial attacks on DNNs is significant due to the existence
of adversarial examples in real world applications [182, 23]. Similarly, in our work, we
analyze the adversarial attack in order to characterize network parameters into the parameters
that affect network performance negatively (fragile), invariantly (robust), and positively
(antifragile). Adversarial examples are by design created to decrease network performance,
however, when simultaneously carrying out synaptic filtering methods [112] it is possible to
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observe an increase in network performance, even under an adversarial attack, thus requiring
the notion of antifragility.

4.3 Definitions

In this Section, we define fragility, robustness, and antifragility within the scope of DNNs.
For defining fragility, robustness, and antifragility, we also need to define the internal stress,
external stress and baseline network performance of DNNs. Here the stress on a DNN is a
systematic perturbation, either internal (synaptic filtering) or external (adversarial attack).
The purpose of applying the stress on DNN is to test the operating conditions of the DNN
for both learned and optimized states, when evaluated on unseen datasets. The concepts of
network fragility, robustness, antifragility, and stress are shown in Fig. 4.2, where Fig. 4.2a
shows the application of stress on a DNN and Fig. 4.2b shows the interpretation of DNN
performance for parameter characterization. The ε bounds around robustness indicate a
variable For detailed definitions of the above-mentioned concepts, we consider the following
notations.

(a) Evaluation overview (b) Response characteristics

Fig. 4.2 (a) Showing an overview of the proposed system evaluation method. (b) shows the
characteristics of fragility, robustness and antifragility through analyzing the performance of
a system f whilst under stress.

Consider a neural network architecture as a set of functions f (x, ·) that consists of a
configuration of parameters, such as convolutions, batch normalization, pooling layers,
activation functions, etc. [101], we define a parameterized neural network as f (x,W), for
specific parameters W and input x. For an l-layer network with a d dimensional input x ∈Rd;
the K-class classification function is thus f : Rd → RK . The prediction of f (x,W) is given
by ŷ = argmax1≤k≤K fk(x,W). The network parameters W are assumed to be optimized,
either partially or fully, using back-propagation and a loss function L : R×R→ R given by
L (ŷ,y) to calculate the network error.
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4.3.1 Stress on DNNs

To formulate internal stress on the network, we consider two filtering domains: local (the
parameters of any specific layer) and global (the parameters of the whole network). We
apply synaptic filtering to filter the parameters of trainable convolutional layers and fully

connected layers of the network, the non-trainable parameters, however, remain unaffected
by the synaptic filtering procedure. The l-th layer network parameters (local parameters) are
given as W(l), while the global network parameters are W. For convenience, we denote the
network parameters to be evaluated by the synaptic filtering methods as θ , where θ = W(l) is
the local parameter analysis [102] and θ = W is the global parameter analysis, as mentioned
in [183].

Definition 1 (Synaptic filtering). The synaptic filtering involves taking a network f (x,θ)

with parameter θ as an input and producing a filtered network f (x, θ̃α) with filtered parameter
θ̃α) as:

θ̃α = Bα ⊙θα , Bα ∈ {0,1}|θα |, (4.1)

where α = {α0,α1, . . . ,αA} is the synaptic filtering threshold with a lower bound α0, upper
bound αA and step size α1 =α0+∆α . For synaptic filtering of a network, we have ŷ= f (x,θ)

as the network predictions for the unperturbed network and ŷα = f (x, θ̃α) as the network
predictions for the perturbed network. In Eq. 4.1, Bα is a binary mask for a threshold α that
filters parameters, θα are the set of parameters to be filtered that may be different to θ , and
⊙ is the element-wise product operator

To further constrain the internal stress analysis, we define that the network parameters
to be filtered θ is not a zero vector prior to the synaptic filtering, i.e., θ must be a trained
network: θ ̸= 0. If this constraint is not met, the prediction of the network f (x,θ) will result
in output values zero for all inputs.

Definition 2 (Internal stress - synaptic filtering of the DNN parameters.). The internal stress
on a DNN is the application of the synaptic filtering method with various magnitudes of α

ranging from a minimum filtering threshold α0 to the maximum filtering threshold αA in
order to obtain a set of |α| filtered networks Sα :

Sα = { f (x, θ̃α0), f (x, θ̃α1), . . . , f (x, θ̃αA)}. (4.2)

With evaluating a network to internal stress, we examine how the filtering of learned
parameters of a network influences the network performance, thus identifying the specific
filtering thresholds required to bring the network to failure.



46 Fragility, Robustness and Antifragility for DNNs

Considering external stress as variations to the input x, we introduce xε = x+δε as the
perturbed example of x with an adversarial perturbation δε ∈ Rd , where ε = {ε0,ε1, . . . ,εE}
is the perturbation magnitude with minimum perturbation magnitude ε0 and maximum
perturbation magnitude εE with step size ε1 = ε0 +∆ε . Using a single adversarial attack
formulation method δ we define ŷ = f (x,θ) as the network predictions on clean dataset and
ŷε = f (xε ,θ) as the network predictions on the adversarial dataset [Fig. 4.1(Left)]. When
dealing with external stress only, θ is taken as the complete set of network parameters W.

The performance of f (xε ,θ) can inform us of the ability of the network to remain stable
to external stress (input perturbations) applied to the network. This is achieved through a
comparison of the network performance on a clean dataset and an adversarially perturbed
dataset. There are numerous variations of δ that can be used to form external stress to
the network, from targeting specific features of x to drawing distortions from a different
distribution [176, 54]. However, in this work, we only focus on one perturbation method
δ , i.e., FGSM attack, as our objective is to only compare DNN performance on clean and
perturbed inputs (Fig. 4.1).

When applying external stress with various magnitude ε , we get a set of perturbed inputs
for the network Sε :

Definition 3 (External stress - adversarial attack on DNN). The external stress on a DNN is
the application of an adversarial attack with various perturbation magnitudes ε ranging from
a minimum perturbation magnitude ε0 to the maximum perturbation magnitude εE in order
to obtain a set of |ε| inputs to the network Sε :

Sε = [ f (xε0,θ), . . . , f (xεE ,θ)]. (4.3)

With external stress on a network we examine how the variations in the input environment
influence the network performance, thus identifying the specific magnitudes of the attack
required to bring the network to failure.

An important consideration to make when analyzing networks using internal and external
stress in Definitions 2 and 3, is that a resultant perturbed network (Sα and Sε ) may offer
equal performance to the unperturbed network, i.e., for all inputs x in test set, we observe:

p(ŷα = y| f (x, θ̃α))≈ p(ŷα = y| f (x,θ)) for internal stress threshold α,and

p(ŷε = y| f (xε ,θ))≈ p(ŷε = y| f (x,θ)) for external stress magnitude ε,
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where p(·) is a function that measures the network accuracy over all inputs x. This
indicates that even under stress, a DNN may perform equivalently to an unperturbed network.
Therefore, in order to evaluate the performance of a network to stress, we must define a
baseline network performance against which we can measure the performance of perturbed
and unperturbed networks.

A baseline network performance can vary for different types of stress (internal or external),
as there may arise instances where the response of the baseline network performance, defined
as f̂ (x,θα) for internal stress and f̂ (xε ,θ) for external stress, is not necessarily the same as
the performance of the initially trained network (unperturbed network) f (x,θ). The baseline
network performance for a combination of internal and external stress is defined as f̂ (xε ,θα),
where the baseline network is a function of ε and α .

To give context on why baseline network performance may not necessarily be the same
as the performance of an unperturbed network, take an example when we apply internal
stress, it produces a set of various filtered networks Sα . If we define the upper bound of the
stress magnitude equal to the total number of network parameters, i.e., αA = |θ |, then we
obtain a network with parameter value zero θ̃αA = 0. Hence, the performance of maximally
perturbed network f (x, θ̃αA) cannot equal to the performance of unperturbed network f (x,θ),
i.e., f (x, θ̃αA) ̸= f (x,θ). Thus we require the baseline network performance to be a function
of the magnitude of stress applied on the DNN. A detailed description of baseline network
performance is given later in Section 4.4.1.

For a given stress function, we must define a corresponding baseline network performance
such that the unperturbed network performance can be compared to the baseline. The baseline
network performance is defined as a dependent to the stress magnitude parameters, α for
internal stress and ε for external stress. This is so that we can define the baseline network
response to have different characteristics for different magnitudes and types of stress.

4.3.2 Fragility, Robustness and Antifragility

Here we define the three characterizations of network parameters: fragility, robustness and
antifragility. In order to define the different characterizations of network parameters, we must
establish the stress to which we can evaluate network parameter fragility, robustness and
antifragility. The stress in question may be internal (Sα ) or external (Sε ), or a combination
of the two.
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For simplicity, we consider only internal network stress for the definitions provided below.
However, the change of variables from Sα to Sε , from f̂ (x, θ̃α) to f̂ (xε ,θ), and ∆α to ∆ε

will give the definition of fragility, robustness and antifragility for external stress.

Definition 4 (Fragility). The parameters of a network are fragile if the performance of the
networks decreases below a threshold−ε , compared to the baseline network performance for
all magnitudes of the applied stress. Formally, the fragility to internal stress can be defined
as:

αA

∑
i=α0

[ f̂ (x, θ̃α)−Sα ]∆α <−ε, (4.4)

where ∆α is the change in synaptic filtering threshold α , ε ≥ 0 and asserts a variable fragility
measure, as shown in Fig. 4.2b (red shaded region). When the threshold ε = 0, we have a
strict fragility condition. Equation (4.4) computes the discrete area difference between the
stressed network performance and the baseline network performance for all stress magnitudes
of α .

Definition 5 (Robustness). The parameters of a network are robust if the performance of the
networks is invariant to a threshold ±ε , compared to the baseline network performance for
all magnitudes of the applied stress. Formally, the robustness to internal stress can be defined
as:

− ε ≤
αA

∑
i=α0

[ f̂ (x, θ̃α)−Sα ]∆α ≤ ε, (4.5)

where ∆α is the change in synaptic filtering threshold α , ε ≥ 0 and asserts a variable
robustness measure, as shown in Fig. 4.2b (green shaded region). When the threshold ε = 0,
we have a strict robustness condition. Equation (4.4) computes the discrete area difference
between the stressed network performance and the baseline network performance for all
stress magnitudes of α .

Definition 6 (Antifragility). The parameters of a network are antifragile if the performance
of the networks increases to a threshold ε , compared to the baseline network performance
for all magnitudes of the applied stress. Formally, the antifragility to internal stress can be
defined as:

ε <
αA

∑
i=α0

[ f̂ (x, θ̃α)−Sα ]∆α , (4.6)

where ∆α is the change in synaptic filtering threshold α , ε ≥ 0 and asserts a variable
robustness measure, as shown in Fig. 4.2b (blue shaded region). When the threshold ε = 0,
we have a strict antifragility condition. Equation (4.4) computes the discrete area difference
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between the stressed network performance and the baseline network performance for all
stress magnitudes of α .

4.4 Methodology of DNN parameters characterization

In this Section, we present the methodology of DNN parameter characterization that is
shown in Fig. 4.1. Concisely, Fig. 4.1 shows that this methodology has two major aspects
a) the application of internal and external stress on DNN in terms of synaptic filtering and
adversarial attack, and b) the need of a process to characterize parameters into fragile, robust
and antifragile. This section first explains how we apply internal and external stress on DNNs
in Section 4.4.1 and then introduces parameter scores that characterize the parameters in
Section 4.4.2. Finally, we discuss the experiment setting in Section 4.4.3.

4.4.1 Framework of internal and external stress on DNNs

We systematically apply internal and external stress on DNNs. The process of internal and
external stress on DNNs is shown in Fig. 4.3, which is a three-step framework (adversarial
attack on DNNs, synaptic filtering of DNNs, combined network performance) that leads to
parameter score calculation for the DNN parameter characterization.

Attack on DNNs

In evaluating networks to internal stress, we compare the network performances to the
synaptic filtering procedure for clean and adversarial (external stress) datasets (discussed in
the following Section 4.4.1). In this study, we work primarily with the FGSM attack [51] for
the adversarial perturbation formulation; other attack formulation methods would not affect
the synaptic filtering described in this section. The synaptic filtering technique is designed to
be applied to a network with any variation on the inputs, therefore, the nature of the attack
formulation method can be changed without affecting the synaptic filtering technique.

In order to experiment with an adversarial dataset, we must define some constraints of
the attack [Fig. 4.3(Left block)], such that the synaptic filtering responses are comparable
between different network architectures and datasets. The constraints imposed upon the
adversarial attack magnitude ε are, as follow:

Definition 7 (minimum attack bound ε0 – constraint 1.). We limit the adversarial attack to
follow p(ŷε = y|x+ δε0) < p(ŷ = y|x), for all inputs x in the test dataset. This constraint
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Fig. 4.3 Synaptic filtering framework. Left block (1) shows the input x at time t0; network
f (x,W) with parameters W; the adversarial attack δ [this study computes δ using f (x,W)];
the perturbation magnitude ε and the resultant adversarial example xε at time t1. The
perturbation magnitude ε is bounded by (ŷε ≈ ŷ) and (ŷεK > 1) for K classes; ŷ and ŷε

are clean and adversarial accuracies. Middle block (2) outlines the set of synaptic filters h,
containing h1,h2 and h3 filters at each point αi applied to layer W(l), resulting in the network
performance to the filters. There are R sets of h for each αi ∈ [α0, αA]. Right block (3)
shows β (l) = f (x,h(θ ,R)) as the system performances for all values of α , where θ is W(l)

for a local analysis at layer l. The function g(·) combines β
(l)
1 ,β

(l)
2 and β

(l)
3 into a combined

system performance ˆ̄
β (l).

allows us to select a suitable minimum attack magnitude ε0, such that otherwise correctly
classified inputs are misclassified, due to the adversarial attack.

Definition 8 (maximum attack bound εE – constraint 2.). We limit the adversarial attack to
a suitable maximum attack magnitude εE , such that the network test accuracy is above a
random guess (ŷεE K > 1), i.e., we have the constraint: p(ŷεE = y|x+δεE )K > 1, for all inputs
x in the test dataset.

Definition 9 (relative attack ε – constraint 3.). To compare the performance of different
network architectures and datasets to the synaptic filtering procedure, we must consider
values of ε for different networks/datasets that reduce the network performance equally.
Considering two different networks f1 and f2, we use a single attack δ , for which ε1 and
ε2 are the relative attack magnitudes for f1 and f2. Suitable values of ε1 and ε2 should be
chosen, such that f1(x,θ)− f1(x+δε1,θ)≈ f2(x,θ)− f2(x+δε2 ,θ) thus ensuring that the
adversarial perturbations affect the network performances equally.
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Synaptic filtering of DNNs

We investigate a set of synaptic filters h = {h1,h2,h3} containing three different synaptic
filters [Fig. 4.3(Middle block)]: h1, the ideal high-pass filter; h2, the ideal low-pass filter and
h3 the pulse wave filter.

We apply filter h1 to the learned (unperturbed) network parameters θ , resulting in
perturbed network parameters θ̃1,αi:

θ̃1,αi = h1(θ ,αi) =

{
0 if θ ≤ αi,

1 otherwise
, (4.7)

for an αi ∈α , where α = {α0,α1, . . . ,αA} and we create |α| thresholds between the lower and
upper bounds α0 = min(θ) and αA = max(θ). This results in a set of filtered networks Sα

with each threshold defined as αi = αi−1 +∆α for a step length ∆α = [max(θ)−min(θ)]/A

and i = {i ∈ N : 0≤ i≤ |α|}.
Similar to filter h1, we apply the filter h2 to the learned (unperturbed) network parameters

θ from the opposite direction, resulting in perturbed network parameters θ̃2,αi for an αi ∈ α :

θ̃2,αi = h2(θ ,αi) =

{
0 if θ ≥ αi,

1 otherwise
, (4.8)

where αi = αi−1−∆α , α0 = min(−θ), and αA = max(−θ).

The pulse wave filter h3, applied to θ results in equal filtered parameters θ3,αi for values
of αi increased from min(θ) to max(θ) or decreased from max(θ) to min(θ). The results of
filter h3 is given by:

θ̃3,αi = h3(θ ,αi) =

{
0 if αi− ∆α

2 < θ ≤ αi +
∆α

2 ,

1 otherwise
, (4.9)

where αi = αi−1± ∆α , α0 = min(±θ), and αA = max(±θ). In Eq. (4.9), the threshold
window shifts by ∆α centred at threshold αi with either side having a length ∆α

2 .
These three filters h1,h2, and h3 with distinct properties when applied to a DNNs

with threshold αi offers three sets of distinct perturbed networks f (θ̃1,αi,x), f (θ̃2,αi,x), and
f (θ̃3,αi,x). Therefore, we require three baseline network performances corresponding to the
properties of the respective synaptic filters against which the three sets of perturbed networks
are compared.
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Baseline Network Performances We denote φ1,φ2 and φ3 to be the number of parameters
filtered out by the synaptic filters h1,h2 and h3 corresponding to filtering threshold αi. If the
synaptic filtering procedure is only applied to a local layer l (e.g., only on a convolutional
layer or a linear layer) then φ (l) is the maximum number of parameters in local layer l. For
the whole network φ denote the maximum number of parameters in the network. Let us
consider φ

(l)
1 to the number parameters filtered out by the filter h1 for the layer l at threshold

αi, then the base network performance φ̄
(l)
1,αi

at threshold αiis given as:

φ
(l)
1,αi

= 1−
φ
(l)
1,αi

φ (l)
, (4.10)

Similarly, the baseline network performances for filters h2 and h3 are φ
(l)
2,αi

and φ
(l)
3,αi

. In

Eq. (4.10), the fraction φ
(l)
1

φ (l) is a ratio between the number of parameters removed to the total
number of parameters in the layer, defining the compactness of the filtered layer.

We consider the baseline network performance for all values of α , which we use to
determine the parameter characteristics to synaptic filtering, as a function that reduces the
network performance proportionally to the internal stress (synaptic filtering) applied on the
network (see Fig. 4.4a). Using this definition of the baseline network performance, we expect
the network performance to decrease proportionally to the number of parameters filtered by
the synaptic filtering procedure (see Fig. 4.4b). The underling assumption of the baseline
network performance is that the parameters being filtered out have an overall influence on
the network performance. Hence, the baseline network performance represents the expected
behaviour of the network, given as the classification accuracy on the test set, whilst the
network is subjected the synaptic filtering procedure for all synaptic filtering threshold values
α .

Network Compactness Our synaptic filtering method is a systematic ablation of DNN
parameters to analyze variations in network performance caused by parameter filtering. We
show that a proportion of the network parameters can be filtered out from a DNN, whilst
retaining (and occasionally improving) the network performance on both clean and adver-
sarially perturbed test sets [117]. The characteristics of the baseline network performance,
describes a network with parameters that, when filtered, proportionally influence the network
performance. From Eq. (4.10), the proposed baseline network performance is linked to
the the compactness of the network/layer; the characteristics of the baseline network per-
formance is inversely proportional to the compactness ratio of the network/layer weights.
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(a) Baseline Network Performance.
(b) Baseline Network Performance and Scaled
Synaptic Filtering Performance.

Fig. 4.4 (a) Baseline network performance (green dotted line) φ̄
(l)
1 [Eq. (4.10)] for ResNet-

18 trained for 100 epochs on CIFAR10. φ
(l)
1 is the function that contains the number of

parameters filtered (teal solid line) for filtering thresholds in α for filter h1 on layer l. The
maximum number of parameters in layer l is denoted by φ (l) (yellow dot). (b) Comparison of
the scaled of synaptic filtering performance with baseline network performance, and synaptic
robustness computation. The network performance to the synaptic filter is β

(l)
1 (blue dotted

line), which is scaled w.r.t the unperturbed network accuracy f (x,θ) (red dot), resulting in
β̄
(l)
1 (blue solid line). The blue shaded region rx, enclosed by base network response φ̄

(l)
1

(green dotted line) is the area [Eq. (4.14) and Eq. (4.15)] of synaptic robustness.

For a specific non-random synaptic filtering method, the compactness characteristics of a
network is constant for different variations to the input (e.g. adversarial attacks). Thus, we
can compare the scaled network performances of a network to both clean and adversarial
datasets, against the baseline network performance.

Network vs. adversary For a network, we define the network performances for all synaptic
filtering thresholds α to be an |α|-length vector of the network prediction accuracies p(ŷα =

y| f (x, θ̃α)) on the test set x. The network performance to the synaptic filtering h1 [Eq. (4.7)],
h2 [Eq. (4.8)] and h3 [Eq. (4.9)] are given as β1, β2 and β3 respectively. We construct a clean
network performance matrix β on inputs x by combining β1, β2 and β3 as:

β =

β1

β2

β3

=

p(ŷα = y| f (θ̃1,x))

p(ŷα = y| f (θ̃2,x))

p(ŷα = y| f (θ̃3,x))

 . (4.11)

We further apply the synaptic filtering to the network under an adversarial attack δ with
perturbation magnitudes ε , resulting in adversarial network performance matrix βε .
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βε =

β1,ε

β2,ε

β3,ε

=

p(ŷα = y| f (θ̃1,xδε
))

p(ŷα = y| f (θ̃2,xδε
))

p(ŷα = y| f (θ̃3,xδε
))

 (4.12)

Targeted parameters The matrices β and βε are the network performances on clean and
adversarial datasets to the synaptic filtering method that are the two different DNN states to
compared. Thus, through a comparison of β and βε (see Fig. 4.5), we expose the specific
parameters (targeted parameters) that are either negatively, invariently or positively affecting
the synaptic filtering performances for the adversarial dataset, compared to the clean dataset.

Fig. 4.5 Learning landscape of layers and the regime change of test accuracy. Targeted
parameters of ResNet-18 trained on MNIST using filter h1. Showing the combined responses
for layer ‘layer3.0.conv2’, measured every 10 epoch up to 100 epochs. The difference
between clean (left) and adversarial (middle) responses results in the targeted parameters
(right). Every pixel on the clean and adversarial images represents the network test accuracy
and for targeted image it is the difference between former two over all evaluated epochs and
α .

Combined network performance of synaptic filters

Different synaptic filtering methods expose different characterisations of parameters of the
network. Thus we combine the network performances of different synaptic filters using a
function g(·) to form a combined network performance β̃ , as shown in the synaptic filtering
framework in Fig. 4.3(right). In order to combine the performances, let us consider β as the
network performance to be combined; the procedure is the same for the adversarial network
performances to the synaptic filters βε . We take β̄ as the performance of the perturbed
network (synaptic filtering performance) relative to the unperturbed network performance
f (x,θ). Subsequently, we take the mean of the performances of the network of all three
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different filters, as such:

β̃i = g(β̄i) =
1
|h|∑j∈h

β̄ j,i for i = 1, . . . , |α|. (4.13)

Similarly, the combined adversarial network performance β̃ε is computed by replacing β̄

with β̄ε in Eq. (4.13), where β̄ε is the performance of the perturbed network (synaptic filter-
ing performance) relative to the unperturbed network performance f (xε ,θ) on adversarial
perturbed datasets xε . Although the combined network performances β̃ and β̃ε offer a more
descriptive information to examine the network parameters, a single synaptic filter is also
able to expose the targeted network parameters. As calculating β̃ and β̃ε is computationally
expensive for local analysis (as this increases exponentially to the number of local layers in a
DNN), we suggest computing β̃ and β̃ε for all network parameters (i.e., global analysis).

Fig. 4.6 Network accuracy results of the synaptic filtering procedure applied to layer ’conv1’
of ResNet-18 trained on CIFAR10, shown to illustrate the combined system response (green
line and shaded area). Synaptic filtering performance results for filter h1 (blue lines and
shaded area), h2 (yellow lines and shaded area), and h3 (red lines and shaded area).
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Fig. 4.7 Combined synaptic filtering performances for ResNet-18 trained on CIFAR10,
MNIST and Tiny ImageNet datasets every 10 epochs up to 100 epochs. (1) Local layer-wise
system response to the filtering methods for all α values. (2) Global network responses using
the full network for all α values. Pixel intensities on the shown images represents the average
network accuracy using the different synaptic filters on the clean test dataset, for each αi in
α .

4.4.2 Parameter scoring for DNN parameter characterization

To expose the network parameters targeted by the adversary, let us consider the network
performance β

(l)
1 for synaptic filter h1 on layer l. We scale β

(l)
1 relative to f (x,θ) resulting

in β
(l)
1 ; the baseline network performance is φ

(l)
1 [Eq. (4.10)] and the procedure is captured

in Fig. 4.4. Similarly, we compute β
(l)
2 and β

(l)
3 for synaptic filters h2 and h3. The combined

performance of the three different synaptic filters is ˆ̄
β (l) [Eq. (4.13)].

Parameter score for clean data

We take the baseline network performance φ̄
(l)
1 [Eq. (4.10)] for synaptic filter h1 as the

point to which we evaluate the filtered network responses to. We take φ̄
(l)
1 to describe a

network/layer that contains neither an excess nor a deficiency of parameters that influence the
network performance (i.e. the removal of any parameter affects the network performance).
The network performance, on average will react inversely proportional to ablation of network
parameters to synaptic filtering. The parameter score to synaptic filtering for a network using
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(a) Clean and Adversarial Performances (b) Parameter Score Computation

Fig. 4.8 (a) Synaptic parameter score computation for clean and adversarial inputs (ResNet-
18, CIFAR10, 100 epochs, layer ’conv1’). The scaled network performance to the clean
β̄
(l)
1 (top) and adversarial β̄

(l)
1,ε (bottom) datasets. The clean and adversarial parameter scores

are rx and rxε
. (b) The behaviour of the network responses (ResNet-18, CIFAR10, 100

epochs, layer ’conv1’) using synaptic filtering on the CIFAR10 clean β̄
(l)
1 and adversarial

β̄
(l)
1,ε datasets over normalised α (top). The area rε [Eq. (4.16)] is the adversarial parameter

score (bottom).

a clean dataset is rx is shown in Fig. 4.8a(top)] and given as:

rx =
|α|

∑
i=0

(β̄
(l)
1 − φ̄

(l)
1 )∆α , (4.14)

Where ∆α is the change in the α threshold window. A parameter score equal to 0 signifies that
the network/layer responds, on average, proportionally to synaptic filtering, i.e., proportional
to variations in architecture and thus is considered robust. Where the score rx is less than 0,
this indicates that the network/layer contains fragile parameters to the network performance.
Conversely, where the value of rx is greater than 0, the parameter score indicates that the
network/layer contains antifragile parameters, where the removal of parameters from the
network/layer results in a network performance that is better than the baseline network
performance.

Parameter score for adversarial data

The parameter score to synaptic filtering for a network using an adversarial dataset is
rxε

, and is calculated using the baseline network performance φ̄
(l)
1 . The baseline network

performance is compared with the adversarial dataset performance β̄
(l)
1,ε to give the parameter
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characterization score rxε
, as per:

rxε
=

R

∑
i=0

(β̄
(l)
1,ε − φ̄

(l)
1 )∆α , (4.15)

Where ∆α is the change in the α threshold window. A parameter score equal to 0 signifies
that the network/layer responds, over all magnitudes of internal stress, proportionally to
synaptic filtering, i.e., proportional to variations in architecture and thus is considered robust.
Where scores rx and rxε

are less than 0, this indicates that the network/layer contains fragile

parameters w.r.t. the network performance. Conversely, where rx and rxε
are greater than 0,

the scores indicate that the network/layer contains antifragile parameters.

Difference of parameter scores

To compute the effects of the adversarial attack on the parameter characterisation, using
our proposed synaptic filtering method, we take the baseline network performance to be
the synaptic filtering performance on the clean dataset (φ̄ (l)

1 = β̄
(l)
1 ). The difference in the

adversarial dataset performance β
(l)
1,ε and clean dataset performance β

(l)
1 (baseline network

performance), results in the effects of the adversary on the synaptic filtering performance of
the network. We take the area of the residual as the effects of the adversary on the network.
The value of rε is computed by taking the discrete area difference, as shown in Fig. 4.8b
(bottom) and expressed as:

rε =
R

∑
i=0

(β
(l)
1,ε −β

(l)
1 )∆α . (4.16)

If the network performs equally to clean and adversarial datasets for all filtering thresholds
α the value of rε = 0. Where rε < 0, the network performance on the adversarial dataset is
greater than the network performance on the clean dataset. This signifies that the evaluated
network/layer contains parameters that increase the network performance on the adversarial
dataset, compared to the clean dataset. Conversely, rε > 0 signifies that the network per-
formance on the clean dataset is greater than the network performance on the adversarial
dataset. This signifies that the evaluated network/layer contains parameters that decrease the
network performance on the adversarial dataset, compared to the clean dataset. Hence, the
magnitude of rε gives us a scalar value of the difference in clean and adversarial responses to
the filtering.
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4.4.3 Experimental set-up

Our experiment setting includes standard training of state-of-the-art DNNs on popular
benchmark datasets.

State-of-the-art datasets used All experiments1 in this study are performed on three
datasets; MNIST [151], the collection of handwriten digits from 0-9, CIFAR10 [5], which
is a cluster of 32x32 RGB pixel images representing 10 different classes, and the Tiny
ImageNet [173] datasets, which is a group of 64x64 RGB pixel images representing 200
different classes. The MNIST and CIFAR10 datasets both respectively contain 80,000
examples in the training set and 10,000 examples in the test set. The Tiny ImageNet dataset
contains 80,000 training and 20,000 test examples from the original training set [173].

State-of-the-art DNNs studies On the benchmark datasets, we train ResNet-18, ResNet-
50 [170], SqueezeNet v1.1 [171] and ShuffleNet V2 x1.0 [172]. Each network was trained
for 100 epochs, and the model of every 10 epochs was stored for analysis of our methodology.
We investigated all convolutional and fully connected layers of ResNet-18, ResNet-50,
SqueezeNet v1.1 and ShuffleNet V2 x1.0 only, any intermediary functions, such as the batch
normalization layers, activation functions and pooling layers remain unaltered.

Training of DNNs on clean datasets For the training, the parameters of each DNN were
initialised using the Kamming Uniform [184] method. We use a cross-entropy loss function
and the Adam optimizer [185] configured with γ = 0.001, β1 = 0.9, β2 = 0.999, λ = 0 and
ε = 1×10−08 for training networks. We train the networks using clean datasets only and
apply the adversarial attack only to the test datasets for analysis using the synaptic filtering
methodology. Networks are saved at every 10 epochs during network training to a maximum
of 100 epochs. Saved networks are subsequently evaluated using the proposed synaptic
filtering methodology, the results presented in Section 4.5 are shown for the saved networks.

Adversarial attack on datastes For the adversarial attack, we use the single-step FGSM
attack [51] and analyze the difference in network performance on the test set to the proposed
synaptic filtering methods (Section 4.4). The effectiveness of an adversarial attack on a given
dataset can be attributed

1Source code: https://github.com/SynapFilter/InferLink
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Collection of results We normalize the rx and rxε
parameter score values from Section 4.4.2

to be between -0.5 (indicating fragility) and 0.5 (indicating antifragility) with the mid-point
being 0 (indicating robustness). We carry out the same normalization procedure independently
for all rε values from Section 4.4.2 to be between -0.5 and 0.5.

For each network and dataset, the synaptic filtering responses are averaged over three
different randomly initialised (as per [186]) and trained networks. In order to satisfy constraint
3 from Section 4.4, we use a line search algorithm to find the optimal ε value for each model
and dataset, that satisfies: f (x+δε ,W)≈ 0.5 · f (x,W).

4.5 Results and Analysis

The results of global (full network parameters) and local (network layer parameters) analysis
shown in Figs. 4.9 and 4.10 describes the fragility, robustness, and antifragility characteristics
of parameters (cf. Section 4.4.2 and Figs. 4.10 and 4.9). Furthermore, the results show the
adversarially targeted (rε ) parameters (cf. Section 4.4.2 and Figs. 4.10 and 4.9). We identify
parameter characteristics that are invariant for clean and adversarial datasets across different
datasets and networks. Further local layer results on the network performances to synaptic
filtering and adversarial attacks are presented in Appendix A.

Fragile, Robust, and Antifragile The global parameter scores for networks on different
datasets are shown in Fig. 4.9. We find that ResNet18 and ResNet50 networks exhibit
invariant parameter characteristics to different datasets: particularly for rx and rxε

values
related to the CIFAR10 and ImageNet Tiny performances, over 100 epochs. The adversarial
targeting results (rε values) are comparable for the CIFAR10 and ImageNet Tiny responses,
with rε values for MNIST suggesting that the clean dataset response is consistently greater
than the adversarial dataset performance. From the ShuffleNet V2x1.0 parameter scores, we
find distinctions in rx and rxε

, for the MNSIT dataset, over 100 epochs. We see the ShuffleNet
V2x1.0 parameters as transitioning from fragile to antifragile, for the ImageNet Tiny dataset.
From the SqueezeNet-v1.1 results for the ImageNet Tiny dataset, we observe a convergence
of rx and rxε

to 0 over 100 epochs, indicating the network performance as robust, for both
clean and adversarial datasets.

The local parameter scores provides a learning landscape to examine individual network
parameters (Fig. 4.10). All of the evaluated network and dataset parameter scores exhibit
invariant fragility characteristics (marked as ‘Fr’) at the 1-st convolutional layer and the
l-th linear layer, for both clean (rx) and adversarial (rxε

) parameter scores. This is further
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(a) ResNet-18 (b) ResNet-50

(c) SqueezeNet-v1.1 (d) ShuffleNet V2 x1.0

Fig. 4.9 Global parameter scores of (a) ResNet-18, (b) ResNet-50, (c) SqueezeNet-v1.1 and
(d) ShuffleNet V2x1.0 over all datasets are rx,rxε

and rε , measured every 10 epochs up to
100 epochs for the whole network parameters using synaptic filter h1. The parameter score
interpretation is given in Section 4.4.2 and Section 4.4.2.

shown in Fig. 4.10a ImageNet Tiny; Fig. 4.10c MNIST, CIFAR10 and ImageNet Tiny, and
Fig. 4.10d ImageNet Tiny. We see the presence of robust parameters (marked as ‘Ro’) in
Fig. 4.10a CIFAR10 and ImageNet Tiny; Fig. 4.10b ImageNet Tiny; Fig. 4.10c MNIST
and CIFAR10, and Fig. 4.10d CIFAR10 ImageNet Tiny. Antifragile parameters (marked as
‘Af’) are distinctly visible in Fig. 4.10a MNIST and CIFAR10; Fig. 4.10b MNIST, CIFAR10
and ImageNet Tiny; Fig. 4.10d MNIST and CIFAR10. Furthermore, periodic robustness
characteristics are shown in Fig. 4.10a ImageNet Tiny; Fig. 4.10b MNIST, CIFAR10 and



62 Fragility, Robustness and Antifragility for DNNs

ImageNet Tiny; Fig. 4.10c MNIST, CIFAR10, ImageNet Tiny, and Fig. 4.10d CIFAR10 and
ImageNet Tiny.

Adversarially Targeted Parameters In Fig. 4.5, we present targeted parameters to an
adversarial attack using the combined network response for ResNet-18 trained on MNIST.
We further see targeted parameters using the parameter scores rε (Section 4.4.2) from
Fig. 4.9 and Fig. 4.10. In Fig. 4.10, we show that the network response is greater for the
adversarial dataset than the clean dataset (marked by ‘rxε

’), as shown in layers of Fig. 4.10c
CIFAR10 and ImageNet Tiny. We find instances where both the adversarial performance
and clean performance are equal, indicating that the layer response is robust (marked by
‘Ro’) and shown in Fig. 4.10a MNIST, CIFAR10 and ImageNet Tiny; Fig. 4.10b MNIST,
CIFAR10 and ImageNet Tiny; Fig. 4.10c MNIST, and Fig. 4.10d CIFAR10 and ImageNet
Tiny. Furthermore, we see instances of the network performances for the clean dataset being
greater than that of the adversarial dataset (marked by ‘rx’), shown in Fig. 4.10a MNIST and
CIFAR10; Fig. 4.10b MNIST, CIFAR10 and ImageNet Tiny, and Fig. 4.10d MNIST and
CIFAR10.

Adversarial Robustness and DNN Compression The results for the synaptic filtering
procedure applied to the different networks and datasets evaluated, in relation to network
compression, is presented in Figure 4.11 and Figure 4.12. The results on compression show
the network test accuracy plotted against the fraction of parameters retained, alternatively, the
number of parameter unaffected by the synaptic filtering procedure of network parameters
over the total number of parameters. We can observe that when network compression is
considered, the performance of networks is similar across datasets.

In Figure 4.11, we can notice a similar gradual drop off in network test accuracy for the
ImageNet Tiny dataset measured from all networks, as the fraction of parameters retained
approaches 0, signifying the removal of all evaluated parameters. We also find that we are
able to retain small fractions of parameters and still maintain sufficient network performance,
as shown in the results for ResNet-18 (MNIST, CIFAR10), ResNet-50 (MNIST, CIFAR10,
ImageNet Tiny), SqueezeNet-v1.1 (CIFAR10), ShuffleNet V2 x1.0 (MNIST).

The response to synaptic filter h2, as presented in Figure 4.14, shows similar gradually
declining performance characteristics to that of filter h1 on the ImageNet Tiny dataset,
for all networks. We also observe difference in the responses to filters h1 and h2. In the
performances of ResNet-18 (MNIST, CIFAR10), ResNet-50 (MNIST, CIFAR10), ShuffleNet
V2x1.0 (CIFAR10), we notice imrpoved performances when using the h2, compared to the
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(a) ResNet-18

(b) ResNet-50

(c) SqueezeNet-v1.1

(d) ShuffleNet V2 x1.0

Fig. 4.10 Local parameter scores of (a) ResNet-18, (b) ResNet-50, (c) SqueezeNet-v1.1 and
(d) ShuffleNet V2 x1.0 over all datasets. The parameter scores rx,rxε

and rε are measured
every 10 epochs up to 100 epochs and for all layers in the network for filter ha. The parameter
score interpretation is given in Section 4.4.2 and Section 4.4.2.
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Fig. 4.11 Network performance to the synaptic filtering procedure showing test accuracy
as the dependent variable to the fraction of parameters retained post-filtering. Results are
presented for filter h1 for the global filtering procedure on all network layers, showing the
averaged results from 10 individual trials on 10 initialised and trained networks. The results
are given for networks trained to 100 epochs (dark blue plots) and measured at 10-epoch
intervals beginning from epoch 10 (light green plots).

h1 filter, for all epochs and lower fractions of parameters retained. This signifies that the two
filters affect the network differently and this is evident from the performance responses.

Furthermore, we present examples of local layer synaptic filtering results for ResNet-18
on the MNIST dataset in Figure 4.13 for filter h1 and Figure 4.14 for h2. The results are
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Fig. 4.12 Network performance to the synaptic filtering procedure showing test accuracy
as the dependent variable to the fraction of parameters retained post-filtering. Results are
presented for filter h2 for the global filtering procedure on all network layers, showing the
averaged results from 10 individual trials on 10 initialised and trained networks. The results
are given for networks trained to 100 epochs (dark green plots) and measured at 10-epoch
intervals beginning from epoch 10 (light green plots).

shown for convolutional layers ’conv1’, ’layer2.1.conv1’ and the fully connected ’fc’. We
present both the regular test dataset accuracy, as well as the adversarial dataset accuracy for
comparison and give the scaled difference of clean and adversarial performances (c.f. Fig-
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Fig. 4.13 Network performance to local layer-wise application of the synaptic filtering
procedure, showing the test accuracy as the dependent variable to the fraction of param-
eters retained post-filtering. Results are presented for filter h1 applied to layers ’conv1’,
’layer2.1.conv1’ and ’fc’. Showing the averaged results from 10 individual trials on 10
initialised and trained networks. Results are shown for on the clean dataset performance
(light blue to dark blue), the adversarial dataset (light yellow to dark red), and the scaled
performance difference (white to blue).

ure 4.4). The scaled difference between the adversarial and clean dataset performances show
how the network responds to both the adversarial attack and synaptic filtering simultaneously.

For both filters h1 and h2, we can observe similarities in the scaled difference of network
performances, for the same layer. Taking layer ’conv1’ as example, in Figure 4.13 we notice
a sharp and large scaled difference between clean and adversarial dataset, which gradually
decreases and increases before sharply decreasing to as we filter all parameters. A similar
response characteristic is also evident from Figure 4.14. Layers ’layer2.1.conv1’ and the
’fc’ layer show similar behaviour for both filters. Furthermore, we can notice that we are
able to reduce the fraction of parameters retained in the layer, particularly layer ’fc’, and still
maintain sufficient test performance.
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Fig. 4.14 Network performance to local layer-wise application of the synaptic filtering
procedure, showing the test accuracy as the dependent variable to the fraction of param-
eters retained post-filtering. Results are presented for filter h2 applied to layers ’conv1’,
’layer2.1.conv1’ and ’fc’. Showing the averaged results from 10 individual trials on 10
initialised and trained networks. Results are shown for on the clean dataset performance
(light green to dark green), the adversarial dataset (light pink to dark purple), and the scaled
performance difference (white to blue).

Effects of Batch Normalization We investigated the phenomenon of the network retaining
classification performance despite all features at layer l being removed (see column αA in
Fig. 4.5). Even as the network layer parameters are filtered maximally, resulting in a null
layer, the network is able to achieve sufficient performances on the test set, respective to both
the clean and adversarial dataset performances pre-filtering.

When we investigate the output of layers deeper than l, we discover that residual features
continue to propagate through the network despite the filtering out of network weights
at the l-th layer. This is attributed to the Batch normalization (BN) layers that follow
convolutional layers and are tasked with minimising covariance shift in the network [80].
When implementing a network architecture, we utilise the standard models in accordance
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with literature; the functionality of batch normalization layers are also predefined and remain
unaltered in our analysis. Consider the condition where a convolutional layer l has been
filtered maximally using a synaptic filter, the subsequent batch normalization computation is
given as:

ŷ(l) =
x(l)−E[x]√

Var[x]+ ε
∗ γ

(l)+β
(l) (4.17)

Where ŷ(l) is the output of the batch normalization process at the output of convolutional layer
l; y(l−1) is the output of the previous convolutional layer l− 1 given by f (θ̃ (l)

{1,2,3}, ŷ
(l−1)).

The variables γ(l) and β (l) are learnable parameter vectors and ε is a value added to the
denominator for numerical stability (set to 1×10−5).

(a) Filter h1

(b) Filter h2

Fig. 4.15 Synaptic filtering network performances of ResNet-18 trained on CIFAR10 for
layers ’layer2.0.conv1’, ’layer3.0.conv1’ and ’layer4.0.downsample.0’. Purple dotted lines
marked at Φ(l) (gold dot marker) show the network performance when the maximum number
of parameters are filtered using the synaptic filters.
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Implementations of networks compute the expectation and variance from Eq. (4.17)
as running statistics during network training; the statistics calculated during training are
used during network inference. In consequence, when the input to the BN layer following
convolutional layer l is a 0 vector, the case where layer l has been filtered maximally through
synaptic filtering, the BN layer retains features of the training batches, even when evaluating
test sets. This is shown from the results in Fig. 4.15, where the filtering of parameters from
certain layers results in only a slight decrease of network performance. The ability of the
network to retain sufficient performance, despite the filtering out of certain layer parameters,
is due to the features propagated during the forward pass by the batch normalization layer
following the filtered layer.

Selective Backpropagation of Robust and Antifragile Parameters Upon identifying
robust, fragile and antifragile parameters using the difference in parameter scores (see
Section 4.4.2) we consider fragile parameters to be parameters that, when perturbed, result
in a greater degradation of synaptic filtering performance on the clean dataset compared to
the adversarial dataset. Robust parameters show to be invariant to both clean and adversarial
datasets, and antifragile parameters show to have an increased network performance on the
clean dataset compared to the adversarial dataset.

Thus, we consider fragile parameters to be parameters that are important to the network
performance on the adversarial dataset. We propose selectively retraining only the robust
and antifragile parameters using backpropagation. In order to carry out this operation during
network training, we take a layer-wise approach that considers the parameter characterization
scores of individual network layers and we subsequently omit the characterized fragile
layers corresponding to negative parameter characterizations scores from network training
by zeroing out the update gradients during training.

The results from our selective backpropagation method is shown in Fig. 4.16 where the
mean (solid lines) and standard deviation (coloured shaded regions) of network performances
are shown for networks tested at epoch 10 to epoch 100 measured every 10 epochs. We test
each network to a maximum perturbation magnitude (external stress magnitude) of εE , which
is selected using Definitions. 7, 8 and 9. As can been seen from the results, our proposed
method, shown in teal, out-performs the networks trained using regular backpropagation
training, shown in orange, when considering robustness to adversarial attacks. Our proposed
method shows to improve network robustness better on the CIFAR10 (Fig. 4.16b) and
ImageNet Tiny (Fig. 4.16c) dataset compared to the MNIST (Fig. 4.16a) dataset. The
effectiveness of the selective backpropagation method on CIFAR10 and ImageNet Tiny
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(a) MNIST (b) CIFAR10 (c) ImageNet Tiny

Fig. 4.16 Network accuracy of ResNet-18 on (a) MNIST, (b) CIFAR10, (c) ImageNet Tiny
datasets to external stress (adversarial attack) with magnitude ε using the FGSM attack.

compared to MNIST can be attributed to the complexity of the datasets [166], where MNIST
can be considered to have a lower complexity relative to CIFAR10 and ImageNet Tiny.

4.6 Summary

We can examine deep neural networks using our proposed synaptic filtering technique to
characterize parameters of the network as fragile, robust and antifrgaile on both clean and
adversarial inputs as a test bed.When subjected to synaptic filtering and an adversarial attack
the fragile parameters are the parameters that cause a decrease in DNN performance. Whilst
parameters characterized as robust cause the DNN performance to remain within a defined
tolerance threshold (e.g. ±2% change in DNN performance). Parameters characterized as
antifragile cause an increase in DNN performance.

Such an identification method can be applied to distill a trained network in order to make
it usable in several resource constrained applications, such as wearable devices. We offer



4.6 Summary 71

parameter scores to evaluate the affects of specific parameters on the network performance
and expose parameters targeted by an adversary. We find that there are global and local
filtering responses that have invariant features to different datasets over the learning process
of a network. For a given dataset, the filtering scores identify the parameters that are invariant
in characteristics across different network architectures.

We analyse the performance of DNN architectures through a selective backpropagation
technique, where only the identified robust and antifrgaile parameters are retrain upon identi-
fication of parameter characterisations, at the evaluated epoch. The selective backpropagation
technique is compared to the regular training procedure to show that retraining only robust
and antifrgaile parameters improves DNN robustness to adversarial attacks on all evaluated
datasets and network architectures. Furthermore, we also see instances of the test accuracy
on the standard dataset increase with the use of selective backpropagation. We successfully
implement a novel method of making DNNs more robust that, built on knowledge of the
parameter characterisations, entails less computations than regular training. The selective
backpropagation technique, and the prerequisite task of identifying fragile, robust, and antifr-
gaile parameters is applied to the DNN tasks outlined in Chapter 5 to evaluate and improve
the performance of custom DNN architectures and original datasets.





Chapter 5

Robustness of Deep Learning in
Real-World Applications

In the following chapter, we apply the robustness analysis methods developed in Chapters 3
and 4, on real-world problems that are comprised of custom datasets and novel network
architectures. The two tasks we consider are (1) The preprocessing of inherently noisy radar
signals using a DNN-based denoising filter selection algorithm, and (2) the classification
of human activities using 24 GHz radar and deep learning. Thus, the chapter is divided
into Section 5.1 and Section 5.2 corresponding to tasks (1) and (2) respectively. It should
be noted that the filter selection algorithm detailed in Section 5.1 acts as a preliminary
preprocessing stage of the activity classification network developed in Section 5.2. The
robustness analysis method developed in Chapter 3 and Chapter 4 are applied to both the
filter denoising selection algorithm presented in Section 5.1 and the activity classification
network presented in Section 5.2.

5.1 Signal Denoising Filter Selection Algorithm

In this section, we propose a novel deep learning based denoising filter selection algorithm
for noisy Electrocardiograph (ECG) signal preprocessing with the aim of applying the DNN-
based denoising method for filtering noisy radar signals. ECG signals measured under clinical
conditions, such as those acquired using skin contact devices in hospitals, often contain
baseline signal disturbances and unwanted artefacts; indeed for signals obtained outside
of a clinical environment, such as heart rate signatures recorded using non-contact radar
systems, the measurements contain greater levels of noise than those acquired under clinical
conditions. In this section we focus on heart rate signals acquired using non-contact radar
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systems for use in assisted living environments. Such signals contain more random noise
than those measured under clinical conditions, and thus require a novel signal noise removal
method capable of adaptively determining denoising filters. Currently the most common
method of removing noise from such waveforms is through the use of filters, the most popular
filtering method of which is the wavelet filter. There are, however, circumstances in which
using a different filtering method may result in higher signal-to-noise-ratios (SNR) for a
waveform. In this section, we investigate the wavelet and elliptical filtering methods for the
task of reducing noise in ECG signals acquired using a convolutional neural network (CNN).
Our proposed CNN architecture classifies (with an initial accuracy of 92.8%) the optimum
filtering method for noisy signal with respect the the expected SNR value, using which the
network is trained.

We further modify the network using the proposed selective backpropagation training
procedure detailed in Chapter 3 and Chapter 4 that increases the test accuracy of the network
from 92.8%, using regular training, to 96.3%, using the proposed methodology. Furthermore,
we evaluate the network to two different types of adversarial attacks; the fast gradient sign
method (FGSM) attack and the projected gradient descent (PGD) attack to anlayse the
adversarial robustness of the CNN. WE find that the selective backpropagation methodology
is successful in making the CNN more robust to the FGSM and PGD adversarial attacks.
We further apply the signal denoising selection algorithm presented in this section, to the
application of activity signal denoising recorded using UWB radar systems detailed in
Section 5.2. The purpose of the CNN methodology developed in this section is to be used as
an automated preprocessing tool by which noisy, real-world recorded signals can be denoised
using the optimal denoising filter.

5.1.1 Overview of The Application

With the emergence of embedded devices capable of artificial intelligence and learning
abilities, there remains the problem of effective data processing, which has been a task for
engineers and data analysts alike since the development of embedded systems entirely [187].
Acquiring signals and analysing information (signal processing) from the natural phenomena
that occurs in the real-world comes with various difficulties; none more so prevalent than the
task of differentiating between information that is important for analysis, from that which is
not. Signals acquired using assistive technologies from applications outside of a laboratory
setting are inherently subjected to greater levels of signal fluctuations from the recording
environment. These fluctuations, considered as noise to the system, are often detrimental to
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the analysis of the objective event. The role of a digital signal processor, for the majority of
the data used in modern applications is considered electronically, is to adequately remove
unwanted artefacts or disturbances from the recorded signals that represent some target,
real-world event. We propose a Deep Neural Network (DNN) architecture to recognise
minute variations of an objective signal and classify the optimum method for removing
noise from the waveform. The objective application of this study is to outline an effective
and automated denoising method for Electrocardiograph (ECG) signals measured using
ultra-wideband (UWB) radar systems, such that the method can be used in real world settings,
such as assisted living environments.

The application of the ECG signal denoising filter selection algorithm is extended to the
task of activity signal denoising in Section 5.2. The work outlined in this section considered
ECG signals as the target signal, however, the proposed methodology is able to be adapted
for denoising other types of signals, such as activity signals recorded using UWB radar.
Measurements made using UWB radar systems use micro-Doppler signatures to identify
subtle movements from an individual’s body, such as movement [142, 72], heart rate and
respiration rate [148, 40]. Due to the unobtrusive method of data acquisition, recorded
signals are often contaminated with varying levels of noise from different sources that need
to be removed in order to analyse the vital signs effectively [39] efficiently. We propose an
automated method of removing noise from inherently noisy ECG signal recordings using a
DNN architecture to learn the subtle variations of signals.

Oftentimes the disparity between studies carried out under clinical environments and
the technology being used in real-world applications stem from the attention paid to the
data being considered, or there lack of. Classical machine learning models, and more
recently deep learning models, have already made significant strides in recognising important
information from noisy and often weak signals [188, 189]. The need for an automated model
to recognise random, seemingly unpredictable variances in the environment is therefore
needed to understand how best to process raw signals. For this study, the signals considered
as the base ECG waveforms are from the MIT-BIH normal sinus rhythm database [190]. In
this section, we propose a model to predict the best method for removing unwanted artefacts
from a noisy ECG waveform. In regular applications, disturbances in a recorded waveform
are removed using various signal processing techniques; methods primarily based around
filtering-out unwanted noise perturbations and retaining the important features from the
signal. The task of filtering a raw signal involves determining the optimum filter, along with
other hyperparameters, such that the filter is able to effectively remove noise present in the
signal. This requires careful consideration and analysis of the data at hand, often in the
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frequency domain. Furthermore, static methods of filtering where the system function does
not adapt in behaviour to changes in the input, are at risk of attenuating important features
from the waveform, or equally, being unable to sufficiently remove certain aspects of noise,
both of which may affect further analysis of the evaluated signal [191].

Signals measured outside of a laboratory, such as assisted living spaces where environ-
mental factors are seldom controlled, the acquired waveforms are intrinsically noisy and
irregular, thus such signals require a filtering methods that are able to adapt to random
variations. Haykin [192] details the process of adaptive filtering where an optimisation
algorithm is used to determine the adjustable filter parameters, however, such a method is still
frequently inadequate in dealing with subtle deviations of the noise distribution, particularly
where the noise in a signal varies irregularly, requiring a more stochastic approach to filtering
noise [193]. Deep learning models in contrast, have the innate capacity for recognising
detailed patterns, and as such, make them ideal for differentiating signals with minute dif-
ferences between the waveforms. The intended real-world applications for such models are
assistive technologies that are used to remotely monitor the cardiac health of individuals
in an environment. This task also introduces a constraint of signal windowing in order to
reduce the number of elements to be considered at a given time, such that the signals may
be analysed in real-time. This constraint consequently, works to reduce the computational
complexity of the overall process [194].

In Section 5.1.4, we detail how commonalities can be found between different signals
that result in higher SNR values for a given filter, thus also outlining the training process of
the proposed model. The architecture outlined in this study is that of a binary classifier and
is designed to predict an optimum filtering method, between wavelet filtering and elliptical
filtering, given a noisy ECG input signal. The Elliptical filter was chosen as an alternative to
the wavelet filter due to its narrow transition response at the cut-off frequency, respective
to other similar finite impulse response (FIR) filter functions such as the Chebyshev and
Butterworth filters [191]. After classifying the optimum filter, a newly presented waveform
is filtered using the filter label and predefined filter coefficients, which are determined during
the model training process.

The section is organised as follows: Section 5.1.2 contains a review of relevant techniques
and methods explored in this Section, Section 5.1.3 and Section 5.1.3 outlines a definition of
the signals used, model training algorithm is defined in Section 5.1.3, classification model
parameters in Section 5.1.3, feature reduction techniques used in Section 5.1.3 and finally,
the experimental set-up in Section 5.1.3. This is followed by the results and discussions in
Section 5.1.4, which details the experimental results 5.1.4 and a discussion of the results 5.1.4.
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In conclusion, we make remarks on the study carried out and possible future avenues of
research are presented in Section 5.1.6.

5.1.2 Related Work

Physiological signals have been recorded and studied extensively for many years, none more
so than human vital signs, particularly ECG signals. The analysis of ECG signals is vital in
diagnosing, and often treating, the cardiac health of a person, which has until recently been
a task carried out by medical professionals exclusively [195]. With the power of modern
machine learning tools and the availability of assistive technologies to monitor, process
and analyse ECG signals remotely and in real-time, the task of detecting and predicting
cardiac abnormalities have become a task for medical professionals and machine learning
practitioners alike [70]. We focus on the noise perturbations of ECG signals, which varies
from one segment of the signal to another and is often unable to be removed effectively with
standard filtering methods [194]. For such instances, machine learning and deep learning
networks have previously been applied to remove noise [150, 69]. The effectiveness of these
models, however, decreases as the noise power within the signal increases, as is the nature
signals acquired using UWB radar systems.

With instances of vital signs monitoring using UWB radar systems, various investigations
have been carried out into ECG signal denoising and classification tasks [40, 148]. The
studies described go as far as providing a holistic overview of the data acquisition process,
and demonstrating various signal processing techniques to extrapolate vital signs form radar
signatures. Similar to ECG detection, Liang et al. [196] proposed a method of detecting
respiration signs using a frequency accumulation algorithm followed by the discrete short-
time-Fourier transform to suppress random signal harmonics that are the combined products
of heartbeat and respiration signals. A model proposed by Shikhsarmasr et al. [149] makes
use of the wavelet packet decomposition method to suppress random noise in ECG signals,
and subsequently makes use of a vital sign estimation model on a defined region of interest to
improve the overall system efficiency. The wavelet transform has shown to be used in many
similar studies [41, 197], where a thresholding method is used to attenuate certain frequency
amplitudes and suppress others.

There exist studies using deep learning and machine learning algorithms in various forms,
to carry out the task of ECG signal denoising. Antczak [150], proposed using synthetic data
to train a deep algorithm for signal denoising and fine-tuning the network parameters to
learn higher-level features using real data. More recently, a layer-by-layer denoising neural
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network has been developed based on factor analysis [198], where the model attempts to
learn Gaussian noise present in the signal, thus being able to remove it. A similar study
has been carried out for an audio equalisation task by Pepe et al. [199], in which, given
a noisy signal, the FIR filter coefficients are predicted using a DNN architecture. Indeed,
various attempts have also been made into developing learning models capable of determining
optimum filtering coefficients for reducing noise in ECG signals [197, 200]. To the best of
our knowledge and through a review of relevant literature, we for the first time propose a
novel study detailing the use of machine learning techniques for the task filter selection in
ECG signal denoising.

5.1.3 Denoising Filter Classification Modelling

The primary application for the model proposed in this study is to classify the optimum
method of attenuating unwanted artefacts from noisy ECG signals acquired using an UWB
radar system. To simulate additional noise to the signals, as would be expected from radar
data of this nature [201], noise perturbations drawn from a Gaussian distribution were added
to the original dataset. The new signals were then processed using a wavelet filter and a
low-pass elliptical filter to determine the optimum method for reducing the noise in a signal.
Finally, a classification model was trained and tested using the labelled dataset for the purpose
of predicting the optimum filtering method that results in the highest SNR value. This process
is possible due to the fact that the additive noise is known pre-classification, and thus the
SNR values can be calculated accurately.

ECG Signal Definition

A raw ECG waveform is a continuous-time signal and through sampling, can be viewed as a
discrete time signal x(k), as per the following definition:

x(k)≜ x(t) | t = kT , (5.1)

where k = {1, . . . ,K} and represents the number of discrete data points in the waveform.
The parameter T is the sampling period of the discrete-time signal and thus, the sampling
frequency is given as νs = 1/T . The raw signal is represented by x(k), however, having been
originally recorded under clinical conditions, is regarded as the optimum ECG waveform for
this investigation. This primary aim of this study is to improve the signal quality of ECG
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signals recorded using UWB radar systems, which exhibit greater levels of noise than the
raw signal used in this study.

To modify the raw signal in order to make it more noisy, artificial noise perturbation g(k)

is generated using the Gaussian distribution function as per:

g(k) =
1

σ
√

2π
e−

(r(k)−µ)2

2σ2 , (5.2)

where r(k) is a random value between 0 and 1 and µ and σ , are the mean and standard
deviation of the signal x(k). The noise is modelled on the statistical characteristics of the
original signal itself. The waveform to be considered by the classifier is z(k); a noisy ECG
signal that is generated by combining the original signal x(k) with the generated Gaussian
distributed noise g(k), as per:

z(k) = x(k)+g(k). (5.3)

The objective of the classification model is to determine the optimum method to reduce the
noise perturbation g(k), from the noisy signal z(k).

Filter Label Identification Algorithm

The resultant signal z(k) is foremost normalised using min-max normalisation, and sub-
sequently processed through the SNR optimisation function Ω(·). The SNR optimisation
function returns the signal label y, as shown in (5.6), which is a composition of α , the
optimum filtering label; β which is maximum SNR value from the optimisation function,
and δ , which the filter hyperparameter value. We reshape the clean signal x(k) and noisy
signal z(k) of lengths K into a M×N shaped matrices as follows:

X ∈QM×N ,Z ∈QM×N | QM×N ←Q1×K, (5.4)

where X= [x1,x2, . . . ,xM]T and Z= [z1,z2, . . . ,zM]T are the clean and noisy signals reshaped
into a matrix of windowed signals. The reshaping parameters M and N are non-zero and are
defined as M = K/λ and N = λ . The chosen window period is given as λ . The variables
m and n are the matrix indices given as natural numbers, such that m = {1,2, . . . ,M} and
n = {1,2, . . . ,N}. This process is carried out to reshape the original signal of length K into
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M windowed signals of length N, an example for Z is shown in the following form:

Z =


z1

z2

...
zM

≡


z1
1 z1

2 . . . z1
N

z2
1 z2

2 . . . z2
N

...
... . . . ...

zM
1 zM

2 . . . zM
N

 , (5.5)

where the noisy windowed signal is given as zm = (zm
1 ,z

m
2 , . . . ,z

m
N), and equally, the windowed

clean signal is given as xm = (xm
1 ,x

m
2 , . . . ,x

m
N). The function Ω(·) is applied to the resultant

windowed signals and returns the corresponding filter labels ym, given by:

ym = (αm,β m,δ m) = Ω(xm,zm,θ f ). (5.6)

The maximum value of the filter boundary parameter is θ f and f is the filter label. We assign
f = 0 for elliptical filter and f = 1 for wavelet filter. The variable θ f depends on the filter
being used, since the elliptical and wavelet filters have different types of hyperparameters.
When considering the elliptical filter, θ0 represents the maximum cut off frequency for a
low pass filter. As for the wavelet filter, θ1 represents the maximum number of wavelets
to be investigated and must satisfy θ ≤ Θ, where Θ is the maximum number of wavelets
available. The clean signal xm, is used within the SNR optimisation function for calculating
the individual SNR values of the filtered signals.

For a given filter f and the windowed signal index m, the maximum SNR value β m
f , as

shown in (5.7), and optimum filter variable δ m
f that returns β m

f , as shown in (5.8), is obtained
by:

β
m
f = max[SNR(xm,rm

f )] (5.7)

δ
m
f = argmax

ωc

[SNR(xm,rm
f )]. (5.8)

The resultant signal of function R f (zm,ωc) for a filter f , and windowed signal with index m,
is rm

f . The filtered signal rm
f carries the same length as zm, such that rm

f = (rm
f ,1,r

m
f ,2, . . . ,r

m
f ,N).

The filter hyperparameters is ωc ∈ N and θ f ,0 ≥ ωc > θ f , where the term θ f ,0 holds the
initialising value of ωc. As the elliptical and wavelet filters accept different function hyper-
parameters, the values of ωc and θ f ,0 carry different representations for each filter. For the
elliptical filter, where f = 0, the value θ0,0 is the lowest frequency to be tested and is chosen
to be 1Hz. Given the condition where f = 1, the value of θ1,0 is the first element from an
ordered set containing numerically encoded wavelets, such that each element from the set can
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be decoded to retrieve its corresponding wavelet type. The function R f (zm,ωc) is defined as:

rm
f = R f (zm,ωc) = T−1

f [H f (ωc) · ẑm], (5.9)

where T−1
f is the general inverse transform operator. The condition that when f = 0, the

inverse transform operator T−1
f is the inverse fast Fourier transform (FFT), and when f =

1, the inverse transform operator is the inverse discrete wavelet transform (DWT). This
transformation is applied to a convolution of the filter function H f (ωc) and ẑm. Where zm is
the windowed signal transformed in the Fourier domain, given the condition f = 0, and in
the wavelet domain, given the condition f = 1, and ωc represents the filter hyperparameters.

When using the elliptical filter function H0(ωc), the Nyquist theorem must be satisfied
before applying the filter, as shown:

H0(ωc) = {Ψp(ω,ω0) | ω0 =
ωc

0.5 νs
)} , (5.10)

Ψp(ω,ω0) =
1√

1+ ε2R2
p(ξ ,

ω

ω0
)

(5.11)

where ω0 is the cut-off frequency, ω is the angular frequency given as 2πν (where ν is the
ordinary frequency in Hz), ε is the ripple factor and ξ is the selectivity factor. The p-th-order
elliptical filter is indicated by Ψp(ω,ω0), and the function Rp referred to as a Chebyshev
rational function that controls the stopband ripple response. The ripple factor specifies the
passband ripple, whereas the stopband ripple is given by the combination of the ripple factor
and selectivity factor.

Similarly, an example function H1(ωc) representing a wavelet filer is used. When we use
the wavelet filtering method, we apply DWT using a wavelet, denoted by ωc, that results
in a transformed signal ẑm. Following this, we apply thresholding to the wavelet detail
coefficients u using a soft threshold û, defined in [202], as per:

u =

[sgn(u)](|u|− û) |u| ≥ û

0 |u|< û
(5.12)

û = σ
√

2logN , (5.13)
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where N and σ are the length and standard deviation of the input signal zm respectively. The
noise present in the signal is then attenuated using a thresholding function, given by (5.13),
before reconstructing the original signal using the inverse of DWT, as shown in (5.9).

From (5.7) the value of β m
f is given as the maximum SNR value achieved for a windowed

signal m being processed through filter f and it can be seen from (5.8) that δ m
f takes the

value of ωc for which β m
f is achieved. The standard SNR function used in both (5.7) and

(5.8) is given by:

SNR(xm,zm) = 20log10


N
∑

n=1
[xm

n ]
2

N
∑

n=1
[xm

n − zm
n ]

2

 , (5.14)

where xm is the clean signal and zm is the signal to be compared. The root-mean-square error
(RMSE) calculation is used in Section 5.1.4 to compare the average power difference between
noisy signals and their corresponding clean signals, as given by (5.15). The definition of
RMSE is the standard deviation of the residuals (predicted errors) between two signals xm

and zm, given by:

RMSE(xm,zm) =

√
1
N

N

∑
n=1

(xm
n − zm

n )
2 . (5.15)

The equivalent values of the window label ym, comprised of the filter label αm, the
maximum SNR value β m, and the optimum filter variable δ m, are given as per:

α
m =

{
0 if β m

0 ≥ β m
1

1 if β m
0 < β m

1
(5.16)

β
m = max{β m

0 ,β m
1 }. (5.17)

Here the filter label αm and the maximum SNR value β m are shown by (5.16) and (5.17)
respectively. Note that the individual signal filter labels are assigned using (5.16), depending
on which maximum SNR value, for a given filter β m

f , results in the highest overall SNR value,
when comparing signals xm with rm

f according to (5.7).
The values of δ m are given by (5.18) and show that for instances where αm = 0, the value

of δ0 is assigned to δ m and conversely, where α = 1 the value of δ m is given as δ1.

δ
m =

δ0 if αm = 0

δ1 if αm = 1
(5.18)
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δ0 =
1
M

M

∑
m=1

(δ m
0 ) (5.19)

δ1 = mode(δ m
1 ) ∀m . (5.20)

Equation (5.18) and (5.19) show that δ m is equal to δ0, which is the average value of
δ m

0 for all values of m. It can be seen from (5.18) and (5.20) that δ m is is equal to δ1, and
is the modified mode function mode(δ m

1 ) that returns the most frequent element of δ m
1 for

all values of m. Given the condition where multiple values appear equally as frequently in
δ m

1 , the mode(δ m
1 ) function returns a randomly selected δ m

1 from the subset of most frequent
appearing values. For the case where all values of δ m

1 appear equally as frequently, signifying
that M ≤Θ, the modified mode function returns a randomly chosen value of δ m

1 .
For convenience in Section 5.1.3, the labelling algorithm details operations for one signal

z(k) of length K reshaped into a matrix of M windowed signals of length N, however, it
should be understood that the complete model is trained on multiple noisy signals reshaped
into windowed waveforms. Thus, in the training process there will be a concatenation of
multiple signals z(k), each windowed into MxN matrices. Further details on this matter are
presented in Section 5.1.3.

Classification Model

The task of identifying the optimum filtering method between a low-pass elliptical filter and a
wavelet filter can be formulated as a binary classification problem. As such, various machine
learning models, including DNN models, can be applied to this problem. In this section, we
propose a convolution neural network (CNN) classification model for the given task. The
CNN model is chosen due to its ability to learn unknown variations in the input distribution
in the input data [203], such as noise. This model is compared against other machine learning
models, such as support vector machines (SVM), logistic regression, K-nearest neighbours
(KNN) and a DNN.

The hyperparameters for DNN is be shown in Fig. 5.1, which details the number of layers,
activation functions, pooling layers and flattening layers used. To summarise, a 128 dense
layer, followed by a max-pooling layer of size 2 with an equal stride value with a stride
value, and a 64 dense layer were added, the dense layer using rectified linear unit (ReLu)
activation functions. This is followed by a 32 dense layer and a flattened 16 layer, all using
the ReLu activation. The ReLu activation function was chosen based on fine tuning of the
model on the training dataset. The final layer consisted of 2 dense layers using a SoftMax
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activation function. This model was configured with a kernel size of 3. The optimisation
function chosen for this model was Adam: a method for stochastic optimization [204] with
parameters: learning rate = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e−07. A categorical cross-
entropy function was used to calculate loss and the model was trained for 20 epochs of time
and a batch size of 16 was used.
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Fig. 5.1 The DNN was configured with the following parameters in sequential order: a 128
dense layers, a maximum pooling layer with pooling size of 2, a 64 dense layers, a 32 dense
layers and a 16 dense layers, all using ReLu activation functions. A unit dropout rate of
25% was used after the 128 dense layer and 64 dense layer, followed by a 50% rate after the
flattened 16 dense layer, this was applied in order to avoid overfitting [35]. An stochastic
gradient decent (SGD) optimizer using backpropagation was used for the learning method
and the model was trained for 20 epochs.

Feature Reduction Techniques

Two different feature reduction techniques, principal components analysis (PCA) and in-
dependent analysis (ICA), were used for the models evaluated for this task. Reducing the
dimensions of the data being considered, particularly using techniques that retain any sig-
nificant information from the data such as PCA and ICA, have shown to be effective in
improving classification accuracies in tasks involving ECG signal analysis [205].
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When applying PCA, the dimension of the data was reduced by 95% such that only the
top 5% of the principal components were used. For ICA, 36 independent components were
used, being 10% of the initial signal length. These parameters for PCA and ICA were chosen
to retain the most important features whilst reducing the length of the data, thus improving
the performance of the classification models.

Experimental Set-up

For the classification task at hand only the filter labels αm from ym for a windowed noisy
signal zm are required for the filter classification model. The parameter δ m is used for
selecting the data being applied to the models and β m is used to assign the optimum filter
with an appropriate filter parameter. Particularly when calculating δ m, the complete dataset of
windowed signals should be used after construction, such that the value of M used for (5.19)
and (5.20) is replaced by the total number of windowed signals for all full signals, shown
in (5.21).

Using the elliptical filter, given by (5.10) and (5.11), requires the presetting of parameters
such as the filter order, passband ripple and stopband ripple. For this study, a 7-th-order filter
with a 3 dB passband and 4 dB stopband was chosen. These parameters control the elliptical
filter response characteristics and were chosen based on prior testing of signals that returned
the best average performance by the filter.

The value of β m for a windowed signal is used to remove any signal anomalies; there are
cases where clean signals from the dataset are corrupted, such that the original waveform
shows zero-amplitude and in some cases the clean signal itself exhibits noise. We require
an ideal, clean signals in order to control the variables of the study, thus we choose remove
signals where the underlying waveforms are distorted. It was observed, from prior analysis
of the training data, that instances where signals are corrupted have a β m value less than
−3.00 dB approximately, thus signals where β m ≤−3.00 dB are removed from the dataset
being used on the models.

Detailed in 5.1.3, the signal reshaping and labeling method is specified for one noisy
signal z(k) reshaped into a matrix Z of windowed signals. The proposed models are trained
and tested on multiple noisy signals zl(k), generated from multiple different clean signals
xl(k), where l = {1,2, . . . ,358} and the resultant noisy windowed waveforms are given as
per:

Ztotal = [{Z1,yT
1 },{Z2,yT

2 }, . . . ,{Z358,yT
358}] . (5.21)
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A λ value of 360 was chosen, thus M and N values in (5.4) are 10 and 360 respectively.
For all 358 signals in our dataset, the total training sets of signal matrix Z is given in (5.21)
which adds up to 3580 labelled waveforms (examples of noisy signals. For our classification
models, we split the data into training and test sets respectively of sizes 67% and 33%, which
gives us 2399 windowed waveforms in training set and 1181 windowed waveforms in the
test set.

5.1.4 Results and Discussions

Table 5.1 Classification accuracies of filter selection classifier. Models tested include SVM,
logistic regression, KNN, DNN and CNN. Learning models were applied to the regular
dataset and dataset after having applied feature reduction techniques such as PCA and ICA,
see 5.1.3.

Classification model Classification accuracy (%)

SVM 89.77
Logistic regression 84.20
KNN 82.06
DNN 89.82
CNN 92.80

SVM (PCA) 89.89
Logistic regression (PCA) 84.62
KNN (PCA) 82.23
DNN (PCA) 90.05
CNN (PCA) 92.27

SVM (ICA) 89.78
Logistic regression (ICA) 84.20
KNN (ICA) 84.46
DNN (ICA) 89.81
CNN (ICA) 91.56

The results presented in table 5.1 lists the performance (classification accuracies) of classifiers.
It can be seen from Fig. 5.2 that SVM, logistic regression and DNN showed an improved
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model performance using only the principal components, compared to using the full data or
independent components only. The CNN model achieved the highest classification accuracy
for all three forms of input data; regular signal, principal components and independent
components.
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Fig. 5.2 Classification accuracies of SVM, KNN, logistic regression, DNN and CNN for the
task of classifying the optimum filtering method for a given windowed signal.

Experimental Results

The results of a test signal za, representing a noisy signal with an arbitrary index a, such that
a ∈ m and is applied to both the wavelet filter and elliptical filters; this can be observed from
Table 5.2 along with their corresponding waveforms in Fig. 5.3. Comparatively, the filter
responses for a signal zb, where b is an arbitrary signal index such that b ∈ m and a ̸= b, is
shown in Fig. 5.4 with its corresponding data displayed in Table 5.2. It should be noted that
the two signals considered, za and zb, both result in differing optimum filtering methods.

Discussion

It can be observed from Table 5.2 where the SNR and RMSE values, given by (5.14)
and (5.15), for noisy signals za and zb are presented with their corresponding filtered signals.
The signals ra

0 =R0(za,δ0) and ra
1 =R1(za,δ1) are the elliptical and wavelet filtered responses

respectively for the noisy signal za. Whereas the signals rb
0 = R0(zb,δ0) and rb

1 = R1(zb,δ1)

represent the elliptical and wavelet filtered signals respectively for noisy signal zb.
For noisy signal za, the lowest RMSE and highest SNR values were obtained using the

elliptical filter response ra
0. Contrastingly, given the noisy signal zb, the lowest RMSE and
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Table 5.2 Comparing the wavelet filter and elliptical filter on two signals: xa and xb. Where
the signals ra

0 and rb
0 represent the elliptical filtered responses for za and zb respectively. The

filtered signals ra
1 and rb

1 represent the wavelet filtered responses of za and zb respectively.
Showing the SNR and RMSE values of the noisy signal, signal filtered by wavelets and signal
filtered through elliptical filtering.

Signal RMSE SNR (dB)

xa - -

za 0.154 6.846

ra
0 0.122 8.505

ra
1 0.138 7.809

xb - -

zb 0.125 8.914

rb
0 0.122 9.591

rb
1 0.112 10.024

highest SNR values were given by the filtered signal rb
1, being the wavelet filter response.

This proves that for a noisy signal, the successful classification of an optimum filter would
indeed result in a response with a higher SNR value and lower RMSE value compared
to the alternative filtering method. The results for which presented in Table 5.2 and thus
reaffirm the understanding that different windowed noisy signals ultimately result in differing
optimum filtering methods, this can be further noticed from Figure 5.3 and Figure 5.4. Such
a finding can be attributed to various signal characteristics; the two waveforms presented
show differences in noise levels, baseline characteristics and average signal power, which all
show to affect the optimum filtering method used for the signal.

From Table 5.1 it can be found that feature reduction methods, such as PCA and ICA, do
not necessarily result in the highest classification accuracy for all models. This is evident
particularly for the proposed CNN model, where the best classification performance was
obtained with the original dataset, without having applied any feature reduction methods.
Reduction of the dataset dimension should be dismissed entirely, as the DNN model per-
formance in Fig. 5.2 shows that PCA being used as the input data resulted in the highest
classification accuracy for that model. As stated by [199], tasks involving signals with high
levels of noise, where filter parameters are to be determined by a learning model, require fine
tuning and experimentation. The findings in this section show that it is possible to develop a
DNN model to recognise noisy signals based on their optimum predicted filtering method.
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Fig. 5.3 Signals shown where the optimum filter is determined to be the elliptical filter (αa =
0). Showing the clean signal xa (a), the signal with additive Gaussian noise perturbations
applied to it za (b), the noisy signal after having been processed through an optimum elliptical
filter ra

0 (c), and finally the noisy signal after having been filtered by an optimum wavelet
filter ra

1 (d). Outlined in black are the target waveforms and the green dotted lines represent
the RMS values of each signal.

This investigation is an exploratory venture into developing and applying deep learning
techniques to tasks involving digital signal processing, specifically for the selection of digital
filtering methods. For the task of removing noise from ECG signals we investigate the wavelet
filter, as proposed by various studies carried out for similar applications [202, 149, 41, 197],
and an elliptical filter, due to its frequency response at the defined cut-off frequency [192, 194].
Consequently, various avenues of research are yet to be explored, such as using novel complex
networks capable of processing complex signals and developing graphical representations of
signals to be used is conjunction with machine learning models.

5.1.5 Selective Backpropagation for Signal Denoising Filter Selection

Here we present the parameter scores and adversarial robustness of the ECG signal denoising
filter selection algorithm following the application of the robustness improvement methods
using selective backpropagation, using the three synaptic filters h1, h2, and h3 as outlined
in Chapter 4. It should be noted that the identification of of fragile, robust and antifrgaile
network parameters, which is a prerequisite of applying the selective backpropagation method,
is carried out using on the FGSM attack only. We test the effectiveness of the selective
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Fig. 5.4 Signals shown where the optimum filter is determined to be the wavelet filter (αb = 1).
Showing the clean signal xb (a), the signal with additive Gaussian noise perturbations applied
to it zb (b), the noisy signal after having been processed through an optimum elliptical filter
rb

0 (c), and finally the noisy signal after having been filtered by an optimum wavelet filter rb
1

(d). Outlined in black are the target waveforms and the green dotted lines represent the RMS
values of each signal.

backpropagation method on the fast gradient sign method attack and the projected gradient
descent attack (PGD). The PGD attack is considered to be a universal first-order adversarial
attack and stronger than the FGSM attack, due to the increased steps taken to increase loss.
We test the trained networks on the PGD attack to evaluate the ability of the network to
generalise on other adversarial datasets.

From Figure 5.6 and Figure 5.7 we can see that the adversarial robustness of the ECG
signal denoising filter selection network is improved as the network is subjected to both the
FGSM and PGD attacks. The local layer-wise parameter scores used to identify which of
the specific network layers to include, and which to omit, from the training procedure is
presented in Figure 5.5.

The three parameter scores for each layer of the network are rx, rxε
, and rε represent

the robustness of the network performance on the clean dataset, adversarial dataset and the
difference in the clean and adversarial dataset performances respectively. Using the parameter
score rε , which is calculated using the difference between rx and rxε

, we select only the
robust and antifragile network layers (rε ≥ 0) to include in the selective backpropagation
procedure. The purpose of applying the proposed selective backpropagation procedure to the
signal denoising filter selection algorithm, is so only the specifically the robust and antifragile
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Fig. 5.5 The layer wise parameter scores for the ECG signal denoising filter selection networks
applied on the clean dataset (rx and marked bu the purple dotted lines), the adversarial dataset
(rxε

and marked by the red dotted lines) and the difference in scaled performances (rε marked
by the teal dotted lines).

parameters of the network that are retrained after identification. The identification of robust
and antifragile parameters allow us to focus on the parameters that are most influential to
increasing the adversarial performance of the network, which are identified using the FGSM
attack during the proposed analysis.

The results observed in Figure 5.6 and Figure 5.7 show that the identification and selective
backpropagation of only the robust and antifragile parameters increases the adversarial
performance of the network to both the FGSM attack, using which we identify the robust
and antifragile parameters to retrain during selective backpropagation, as well as a different
adversary; the PGD attack formulation. We show that the proposed analysis and selective
backpropagation method applied to a new DNN developed for a custom dataset increases
in performance to our method. Furthermore, we notice that the regular network accuracy is
also increased using the proposed methodology (ε = 0), compared to regular training. The
reasoning for this increase in regular accuracy, as well as the adversarial performance, is due
to the dataset of UWB radar signals containing artefacts of additive Gaussian noise that may
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Fig. 5.6 Performances of the proposed ECG signal denoising filter selection network, trained
using a regular training procedure and the selective backpropagation method, as presented in
Chapter 4. Both the regularly trained network (shown in orange) and the network trained
using selective backpropagation (shown in teal) were tested on the FGSM attack with varying
perturbation magnitudes to evaluate the effects of the proposed training. Showing the average
(labelled ’Avg.’ and shown as a solid line) and standard deviation (labelled ’Std.’ and shown
by the shaded coloured regions) of the results all trained networks evaluated.

limit the ability of the network to perform optimally on the regular, unperturbed, dataset. The
consequences of this is an increase in both the adversarial and regular network performances,
using a method that retrains specific parameters of the network that are fewer than those
retrained using a regular training scheme.

5.1.6 Summary of Signal Denoising Filter Selection Algorithm

We propose a convolutional neural network (CNN) architecture, a variant of a DNN, for
classifying an optimum signal denoising filter for a given noisy ECG signal. Furthermore,
we introduce an algorithm for labelling of signal waveforms with the optimum denoising
filters (elliptical filter and wavelet filter). Our three versions of labelled datasets (full features
dataset and reduced features datasets based on principal component analysis and independent
component analysis) was fed to various classifiers such as, support vector machine, K-nearest
neighbour, logistic regression and deep neural network and CNN. Our CNN model was able
to classify the optimum filter with an accuracy of 92.8% when using the full feature dataset.
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Fig. 5.7 Performances of the proposed ECG signal denoising filter selection network, trained
using a regular training procedure and the selective backpropagation method, as presented in
Chapter 4. Both the regularly trained network (shown in orange) and the network trained
using selective backpropagation (shown in teal) were tested on the PGD attack with varying
perturbation magnitudes to evaluate the effects of the proposed training. Showing the average
(labelled ’Avg.’ and shown as a solid line) and standard deviation (labelled ’Std.’ and shown
by the shaded coloured regions) of the results all trained networks evaluated.

Such a high classification accuracy for determining the optimum denoising filter enables us to
effectively remove noise from a signal without affecting the underlying signal characteristics.
We show that when presented with different windowed signals, the optimum filter can be
either the elliptical filter (shown in Figure 5.3) or the wavelet filter (shown in Figure 5.4).

The contents of this section were directed at firstly developing a new dataset that consisted
of an existing dataset [190], corrupted with additive Gaussian noise to represent noisy data
acquired using UWB radar systems. Using the known additive noise, we designed an
algorithm to identify the optimum signal filter for denoising the Gaussian perturbations and
subsequently trained a CNN model to be able to identify the optimum denoising method,
given a noisy raw waveform. The findings of this section are used to preprocess the UWB
radar signals used in Section 5.2. We subsequently apply the selective backpropagation
methodology derived from the works presented in Chapter 3 and Chapter 4, to the denoising
filter selection CNN model and observe an increase to the adversarial robustness of the
network, as well as the regular accuracy of the network, increasing from 92.8% to 96.4%.
We show that applying selective backpropagation successfully increases both the adversarial
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robustness and regular test accuracy of the network. We apply the selectively backpropagated
denoising filter selection network developed in this section, to the task of activity signal
denoising in the following Section 5.2.
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5.2 Activity Classification Application

In this section, we present a method of classifying human activities and activity intensities
using an UWB radar system and deep learning. We conduct a custom experimental procedure
to collate a novel dataset of human activities captured using the radar system. Furthermore,
we design a new DNN architecture to classify human activities and intensities from radar
signals. The task of automated activity classification has previously attracted various avenues
of research, and has inspired different methodologies in solving the problem. We outline an
unobtrusive method of detecting and classifying different activities and exercises using a 24
GHz UWB radar transceiver and a DNN. The radar transceiver module is used to record the
data of a single individual carrying out 6 different activities within a closed environment, and
the subsequently processed radar signals are used to train a CNN, which is used to classify
the human activities and the intensity of the activities. We define the methods used to record
the activity data using the radar transceiver, and the techniques used to process the raw radar
signals in this section using the denoising filter selection method proposed in Section 5.1.

To add, we detail the proposed CNN model, including training regime and parameters
used to learn the custom built dataset. We observe that the developed CNN model achieves a
test accuracy of 92% for 3 classes of activities (squat, star jump and standing still), and a
test accuracy of 74.2% on unseen data for classifying 6 different activities. A classification
accuracy of 80.3% for classifying the intensity of the particular activity. Furthermore, we
evaluate the developed activity and activity intensity classification networks to adversarial
attacks, and using the selective backpropagation method detailed in Chapter 3 and Chapter 4,
we improve the adversarial robustness of the developed networks. For the activity classi-
fication task, the selective backpropagation methodology is also able to imcrease the test
accuracy on the clean, unperturbed, dataset. We summarize the complete system and show
that deep learning can be used in conjunction with radar systems to classify human activities
for application as an assisted exercise tool.

5.2.1 Overview of Activity Classification

Significant developments have been made in technologies relating to home assistants and
artificial intelligence enabled systems for the home [206]. Home assistants are now trained
to carry out complex tasks such as speech-to-text translation [207], searching the internet
for useful information [206, 208] and automation of other household devices connected to a
network [209]. With the ever growing demand for home assistants collecting data to make
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complex decisions, there exists a real security concern regarding collection, storage and
analysis of data recorded using automated systems. Within the scope of this project, we focus
our attention to the task of an automated home gym assistant capable of classifying various
exercises and differentiating between different intensities of exercise, such that it can inform
the user about their performance to the exercises. We investigate the use of an unobtrusive
24 GHz radar system in conjunction with a deep neural network (DNN) for the classification
of physical activities and exercises. The DNN model we focus on in our study particularly, is
a convolutional neural network (CNN).

Global and national guidelines on physical activity constitute as one of the primary
components in a comprehensive framework for public health management and action [210].
The World Health Organisation outline general guidelines for physical activity uptake and
promote regular physical activity amongst the general population. The lack of regular physical
exercise has wide reaching impacts on the greater society, as regular exercise is considered
as a mitigating factor of various diseases and illnesses [211]. Oftentimes, it is apparent
that guidelines alone are not sufficient in increasing the uptake of regular physical exercise
amongst the general population [212], and further communication is required in order to
encourage regular physical activity. From the perspective of public health, research suggests
that activity tracking devices provide a cost-effective method of increasing physical activity
motivation. We propose a system to utilise automated technology, in the form of a deep
learning agent, to recognise different physical activities and exercises whilst also suggesting
recommendations of improving or maintaining the activity intensity and movement.

There exists various technologies providing methods of physical activity and movement
tracking, many of which using wearable devices equipped with accelerometers, vibration
sensors and visual sensors [213]. One of the major concerns with on-person devices capa-
ble of regular activity and exercise monitoring are the privacy vulnerabilities of wearable
technologies [214, 213]. The system proposed within the context of this study is capable of
circumventing the issue of data security by utilising the unobtrusive 2.4 GHz radar system for
data measurement. The main contributions and innovation points of this work are as follow:

• We collect an original dataset consisting of radar measurements recording basic
activities such as squatting, star jumps, walking and standing. The collected dataset
also includes three different levels of exercise intensity relating to the range of motion
for each exercises, from light motion, medium motion and full motion.
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• We develop a novel CNN based methodology, outlined in Section 5.2.4 and train the
model to classify different activities using radar signals. We validate the CNN model
on unseen data and show that automated classification of different activities is possible.

• We extend the CNN model to classify three levels of motion intensity for each exercise
and present our findings in Section 4.5.

• We evaluate and increase the adversarial robustness of the developed network using
selective backpropagation, as detailed in Chapter 3 and Chapter 4, which also increases
the test accuracy of the network on un-perturbed data.

5.2.2 Related Work

The following section presents state-of-the-art work with regards to using deep learning
in conjunction with radar systems to classify/predict various properties from the radar
measurements. The current commercially available state-of-the-art devices for physical
activity classification and monitoring can be broadly categorised within the domains of (i)
wearable technologies [215, 213] that are equipped with an array of sensors to measure
various motions, and (ii) visual systems that use video data to classify specific activities.
Wearable and visual technologies, however, pose concerns regarding data security, as the
data collected may consist of sensitive information about the users and environment [214].
We circumvent this security concern by using unobtrusive radar system as the method of
acquiring data.

There exists various studies and models proposed to applying deep learning for the task
of physical exercises recognition [213, 216, 40]. It should be noted that the majority of
methods proposed for the task of activity recognition, use forms of wearbale technologies to
acquire data. Ravi et al. [217] also suggest a deep learning approach using on-node sensor
data analytics for classifying activities using wearable devices. The primary direction of the
work presented in this section relates to the task of human activity classification using radar
systems. We direct the reader to the works of [72] which details an overview of deep learning
for human activity classification using radar systems. To add, in their work Gurbuz and
Amin [141] detail numerous different applications of deep learning for radar-based human-
motion recognition. There has also been research conducted into using deep learning enabled
radar systems for safety critical activity classification amongst elderly people [142, 145].
The inherently noisy and random nature of the data acquired using radar systems also pose
questions on the robustness of developed learning models, such as not to misclassify, or fail
to classify safety-critical activities.
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The task of exercise recognition using DNNs poses distinct problem specifications, par-
ticularly when considering repetitions, exercise intensities and response to unpredictable
noise from the environment. In their work, Soro et al. [218] present an end-to-end deep
learning approach to classifying complex physical exercises using data recorded from wear-
able technologies. The primary divergence between the the works of Soro et al. [218] and
work and the work proposed in this research is the type of data used and the method of
recording the data. We aim to utilise the ability of radar systems to recognise minute and
often complex motions, similar applications can be found in the works of [145, 142, 141],
where they outline a method to recognise and classify different exercises.

5.2.3 Signal Processing and Experimental Set-Up

In the following section we outline the methods used to process the raw noisy radar signals,
such that we extract important features from the measurements and prepare the signal to be
applied to the CNN model detailed in Section 5.2.4. We also outline the experimental set-up
used to acquire the radar measurements, detailing the procedures designed for acquiring
radar signatures of exercises from individuals.

Signal Processing

We begin by considering the noisy radar signal recorded for an specific activity. The raw
signal contains unwanted features (noise) that we foremost remove using a 2nd-order low-pass
ChebyShev Type II filter with a critical frequency of 1000 Hz and 3 dB ripple to remove
any high frequency components that do not represent regular activities, as mentioned in the
works of Jokanovic et al. [145]. This can be seen in Figure 5.16. Due to the nature of the
recordings, splitting the signal into equal individual repetitions from the full signal cannot be
done efficiently due to the overlapping nature of each activity repetition signal, and noise
contained within the signal. To segment the full signal into 5 repetitions we must manually
identify the discrete time points at which the signal can be split. To aid this process, the
signal is first transformed into frequency-time using mel-spectrogram [68].

As can be seen from Figure 5.8 (bottom), the time-series signal is noise, even post-
filtering and as such, definitive repetition breaks cannot be easily identified. When the
signal is transformed into a mel-spectrogram, as shown in Figure 5.8 (Top), identification
of individual repetitions, as well as specific motions of the repetitions, can be identified
with less effort. From the signal spectrogram, we can see the frequency spectrum of the
signal with respect to time and measure the points in time where the signal shows to contain
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lower average frequency components, indicating a still motion or relative lack of activity.
We separate each repetition from the full signal containing 5 repetitions using the signal
spectrogram. When recording the activity measurements, the motion routine is noted and
referenced when carrying out the signal segmentation procedure. Upon windowing the

Fig. 5.8 (Top) figure shows the radar signal transformed into a spectrogram, such that we can
analyse the signal over time at various frequencies and identify each repetition of an exercise.
(Bottom) figure shows how the noisy, full signal is split into its constituent repetitions using
the spectrogram.

full signal into 5 repetitions, the window lengths are not expected to be the equal for all
repetitions. This is due to the fact that certain repetitions may be longer or shorter in duration,
and thus different repetitions are expected to yield varying lengths of windowed signals. In
order to standardise the windowed dataset, we take the length of all signals to be of length N,
where N is the maximum length from all individual windowed signals.

Once the radar signals have been segmented and standardised to have equal length, the
dataset is then manually filtered using a Chebyshev Type II bandpass filter, and a discrete
wavelet filter to identify the optimum filtering method that results in the highest SNR,
indicating a more effective removal of noise. The calculation of SNR is carried out, similar
to that detailed in Equation 5.14, is given as 20log10(z/(z−g)), where z is the noisy signal
and g is the background noise. The noise in question is the measured from the environment
during the data collection process with no participants in the field of view of the radar module.
We use the procedures outlined in Section 5.1, which is based on Reference [42], to carry out
the processes of effective signal denoising.
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The network presented in Section 5.1.3 is used to identify the optimum filtering method
for a given noisy windowed waveform. It can be seen from Figure 5.9 and Figure 5.10 that
two different waveforms, xa and xb, result in different levels of filtering using a Chebyshev
Type II band-pass filter and a wavelet filter, using the same filtering parameters for both
operations. The filtered waveforms ra

0 and ra
1 in Figure 5.9, are the result of waveform za

Fig. 5.9 Filtering example of waveform xa using a wavelet filter, the resultant waveform
for which is labelled ra

0, and a 5-th order Chebyshev Type II band-pass filter, the resultant
waveform for which is labelled as ra

1.

filtered using a Chebyshev Type II band-pass filter and a wavelet filter respectively. The
filtered waveforms rb

0 and rb
1 in Figure 5.10, are the result of waveform zb filtered using a

Chebyshev Type II band-pass filter and wavelet filter respectively. It can be seen from the
Figure 5.9, that the optimum SNR value of 25.5 dB calculated using the raw waveform xa

was observed to result from the DWT filtered signal ra
0, compared to the Chebyshev type II

filtered signal, which obtained an SNR value of 12.08 dB. Whereas for the raw waveform xb,
the optimum calculated SNR value of 19.37 dB was calculated for the Chebyshev Type II
filtered waveform rb

1, compared to an SNR value of 8.59 dB for the DWT filtered waveform.
It can be seen from the presented examples that an optimum filter selection has the potential
of significantly improving the signal quality. We employ the CNN-based denoising filter
selection algorithm to automate the task of identifying an optimum pre-processing filter for
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Fig. 5.10 Filtering example of waveform xb using a wavelet filter, the resultant waveform
for which is labelled rb

0, and a 5-th order Chebyshev Type II band-pass filter, the resultant
waveform for which is labelled as rb

1.

signal removing noise. We achieve this objective through training the network on noisy
waveforms labeled with the optimum denoising filter that are identified using a manual
denoising procedure of the waveforms.

From the example waveforms shown Figure 5.10 and Figure 5.9, we can observe that
selecting an effective filtering method results in filtered signal with higher SNR values. In
Figure 5.9 we see that the noisy waveform xa The CNN model outlined in Section 5.1 is
applied to the task of removing noise from human activity data recorded using an UWB radar
system. As shown in Figure 5.11, classification accuracy of 89% is achieved for predicting
the optimum denoising filter, between a Chebyshev Type II and wavelet filter. The effects of
selecting the optimum filter for a given noisy waveform.

5.2.4 Activity and Intensity Classification

Within this section we outline the proposed activity and intensity classification framework,
and the accompanying novel CNN architecture and dataset processing algorithms for exercise
recognition and intensity classification. We also outline the signal preprocessing techniques
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Fig. 5.11 Activity classification signal denoising filter selection training results.

used to to prepare the raw radar data for the subsequent classification models, as each model
requires different data transformations to be applied to the waveforms for effective classifica-
tion, prior to application. The activities measured were: squats, star jumps, wall push-ups,
sitting down on a chair, standing upright, and walking across the field of measurement.

Activity and Intensity Datasets

From the measured activities, each exercise signal set contained within it, 5 individual
repetitions of the exercise. For the walking, sitting, and standing activities a continuous
signal of the participant carrying out the activities was recorded, without specified repetitions.
Each repetition signal is further processed prior to the classification task. We are left with
a resultant of 100 signals for each exercise (squats, star jumps, wall push-ups, sitting still,
walking and standing) and each person. The procedure for measuring activity and intensity
data for each participant, is summarised in Table 5.3.

We take a signal x and apply a digital 4th-order Chebyshev Type II bandpass filter to
remove frequencies below 0.1 Hz, for the purpose of stabilising the signal, and 500 Hz, which
from analysis of the signals, found to not contain significant activity features. The enclosed
frequency bandwidth is then filtered using a 3th-order Chebyshev Type I notch filter with
critical frequencies at [(15−30),(30−60),(60−120),(120−240),(240−280)], resulting
in 5 filtered signals from one original repetition signal. The notch filter critical frequencies
are decided upon through an analysis of a Fourier transformed log-magnitude spectrum of a
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Table 5.3 Experiment set up for activity intensity recording

Activity Experiment

Squats 5 repetitions of 3 sets
Star jumps 5 repetitions of 3 sets
Wall push ups 5 repetitions of 3 sets
Sitting on a chair continuous signal of 3 sets
Standing for a period of 10 seconds continuous signal of 3 sets
Walking across the field of measurement continuous signal of 3 sets
Low intensity star jumps 5 repetitions of 3 sets
Medium intensity star jumps 5 repetitions of 3 sets
High intensity star jumps 5 repetitions of 3 sets

sample dataset. The purpose of the notch filter windowing on the raw signal is to carry out a
transformation of the raw signal through removing prominent frequencies, such that we may
better understand the nature of motions and their accompanying frequencies.

Activity and Intensity Classification Network Architectures

The DNN was configured with the following parameters in sequential order: a 32 dense
layers, a maximum pooling layer with pooling size of 2, a 64 dense layers, a 32 dense layers
and a 16 dense layers, all using ReLu activation functions. A unit dropout rate of 25% was
used after the 128 dense layer and 64 dense layer, followed by a 50% rate after the flattened
16 dense layer, this was applied in order to avoid overfitting. An Adam optimizer [204] using
backpropagation was used for the learning method and the model was trained for 20 epochs.
The motions of activities are presented in the example Figure 5.12

Presented in Figure 5.13 is the network architecture of the activity classification network
with an output of 6 classes representing the different activities outlined in Table 5.3. Presented
in Figure 5.14 is the network architecture of the intensity classification network with 3
different classes representing low, medium, and high intensity activities. It should be noted
that the intensity classification network is designed for the squat and star jump activities only,
with both activities exhibiting the 3 different intensities of the activity.

Experimental Set-Up

The radar system used in this study is the 24 GHz I/Q channel K-LC2 radar transceiver with
the ST100 evaluation board to control system power, data transfer and radar tuning. The
radar transceiver, and the accompanying development board used for and data transfer, were
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Fig. 5.12 Shown here is a condensed figure for the CNN model developed in this study for
the classification of different exercises. The input of the model is controlled by the parameter
L and represents the length of the signal. The output of the model is a vector of length 5
representing sit ups, squatting, star jumps, body twisting and standing.

powered using a 5V DC power supply. All radar recordings were carried out under laboratory
conditions and the raw dataset consisted of seven individuals (3 males and 4 females).

Each full-length recording signal consists of 5 repetitions of each exercise and there are 3
recording trials per exercise measured. All recordings were carried out with the individual
being recorded carrying out the 6 different activities with a distance of 2m away from he radar
transceiver. From Figure 5.15 we show two example exercises and the signal segmentation
method in which we manually classify the different motions that constitute each exercise.
The resultant signal is segmentation of the original radar signal and represents one instance
of a given activity.

5.2.5 Results and Analysis

In this section we begin by describing the resultant methodology from analysis of the 24
GHz radar signals for the purpose of human activity classification. The complete methodol-
ogy for processing the radar signals can be found in Figure 5.16, containing initial signal
preprocessing (A), the signal transformation through windowed filtering resulting in different
signals from the original signal (B) and the notch filter windowing carried out to remove
specific frequencies (C).
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Fig. 5.13 Activity classification network architecture designed to classify between 6 different
activities: squats, star jumps, wall push ups, sitting, standing and walking.



106 Robustness of Deep Learning in Real-World Applications

Fig. 5.14 Intensity classification network architectures designed to recognise between the
different intensities of 6 activities, from low, to medium, and high intensity of activities.

(𝑎)

(𝑏)

Fig. 5.15 (a) shows the expected motions when recording for a squat exercise with accompa-
nying labels for the three motions considered to make up the squat exercise. (b) Shows the
expected motions when recording for a star jump exercise with accompanying labels for the
three motions considered to make up the squat exercise.

Classification Results

The model detailed in Section 5.2 results in a classification accuracy of 92% when tested
against 3 classes (squats, star jumps and standing still). The network accuracy for the six
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activity classes of squats, star jumps, wall push-ups, sitting still, standing still and walking re-
duces to 74.2%. For motion intensity classification we consider a signal activity and measure
three different levels of intensity; high intensity, mid intensity and low intensity. The custom
recorded dataset consists of 300 segmented signals (100 signals of each intensity range)
which are the result of the moving notch filter transformation, as described in Section 5.2.4.
The dataset is split into a test set (30% of total signal) and train set (70% of total signal),
furthermore the base signals for standing still are also added into the dataset, resulting in
135 test signals and 255 training examples. The intensity classification task using the CNN
model detailed in Section 5.2.4) results in a classification accuracy of 84% over a test set of
135 signals.

Filter Bank

From Figure 5.16 part A we have (1.) two exercises a (squat) and b (star jump) which are
both filtered using a (2.) low pass filter with a critical frequency of 1000 Hz, as detailed in
Section 5.2.3. The resultant signals (3.) of a and b are filtered for high frequency components.
Following this, part B shows the two signals a and b transformed using T ( f , t) into the signal
frequency f and time t, resulting in a spectrogram. We use the spectrogram (1.) to segment
the signal in time to extract 5 repetitions from the original signal. An example of a segmented
signal (2.) is shown with frequency components. This results in (3.) two signals which
have the same motion label as the original, but contain different information. We utilise
this behaviour to form C, where we take an input signal x (1.) and systematically remove
specific frequency bands (2.,3.) and form the final dataset (4.,5.), with only specific frequency
components remaining (6.).

Upon retrieving the windowed waveforms, we filter each waveform using a Chebyshev
Type II filter and a wavelet filter to remove background noise of the same frequencies. The
selection of the filters, between a wavelet filter and a Chebychev type II filter, is chosen using
the signal denoising filter selection method presented in Section 5.1 and further detailed
in Section 5.2.3. Using this method we are able to filter all waveforms using the optimal
window filtering method, as discussed in Section 5.2.3.

5.2.6 Selective Backpropagation for Radar Signal Classification

Here we present the parameter scores and adversarial robustness of the developed activity and
intensity classification networks. This is achieved through the application of the robustness
improvement methods, using the three synaptic filters h1, h2, and h3 outlined in Chapter 4,
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Fig. 5.16 Diagram showing data prepossessing A, the result of isolating specific frequencies
B and the moving notch filter C used to extract different features form the original signal.
Further details on the diagram can be found in Section 5.2.5.
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that use selective backpropagation to retain only the robust and antifragile parameter update
gradients. It should be noted that the identification of of fragile, robust and antifrgaile network
parameters, which is a prerequisite of applying the selective backpropagation method, is
carried out using on the FGSM attack only. We test the effectiveness of the selective
backpropagation method on the fast gradient sign method attack and the projected gradient
descent attack (PGD) [135]. The PGD attack is considered to be a universal first-order
adversarial attack and stronger than the FGSM attack, due to the increased steps taken to
increase loss. We test the trained networks on the PGD attack to evaluate the ability of the
network to generalise on other adversarial datasets. The results presented in this section are
averaged over 10 different trained and initialised networks.

Activity Classification The local layer-wise parameter scores for the custom-designed
activity intensity classification DNN are shown in Figure 5.20. It can be noticed form the
clean dataset parameter scores (rx), that the parameters of the network with less than 50
epochs training show to be more fragile overall, compared the parameters of networks that
were trained for longer. This relative fragility of parameters at earlier stages in training
can be observed at all layers of the network. Similarly, the adversarial parameter scores
(rxε

) show a concentration of more fragile parameters at earlier stages in network training.
From the adversarially targeted parameter score difference (rε ), we can see that the most
fragile parameters are located in the middle layers of the network. We use the information
from Figure 5.17 to identify fragile, robust and antifragile network parameters, such that
the selective backpropagation procedure only propagated robust and antifragile parameter
weight updates. It should be noted that the activity classification network is designed for
one-dimensional inputs and thus the convolutional layers are one-dimensional in width.

Upon identification of fragile, robust and antifragile parameters we apply the proposed
selective backpropagation training procedure in parallel to regular training 10 epoch intervals
in the classification model training procedure. The results of the selective backpropagation
method is displayed in Figure 5.18 for the network under an FGSM attack, and Figure 5.19
for the network under a PGD attack. We can observe the activity classification network
improves in performance against both the FGSM attack and PGD attack as the external stress
(perturbation magnitude ε) is increased.

Furthermore, for the FGSM attack, we also observe an increase in network performance
for the clean dataset (ε = 0). The increase in performance on the clean dataset is also observed
on the PGD attack for the activity classification model. This suggests that the robust and
antifragile network parameters relate to both the adversarial robustness, as well as random
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Fig. 5.17 Local layer-wise parameter scores for the activity classification model. Results
measured periodically every 10 epochs from epoch 10 to epoch 100. Presented are the
parameter scores rx (clean dataset), rxε

(adversarial dataset), and rε (scaled difference in
clean and adversarial dataset scores). The layer depth represents the layers of the network
ranging from the 1st convolutional layer to the lth fully-connected layer.

noise artefacts that may be found in the ’clean’ dataset that is hindering the performance of
the network to reach optimal accuracy. The results in Figure 5.18 and Figure 5.19 show that
the proposed analysis to identify fragile, robust, and antifragile parameters, along with the
subsequent selective backpropagation method, is capable of improving both the regular clean
dataset and the adversarial dataset.
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Fig. 5.18 Performances of the activity classification DNN, trained using a regular training
procedure and the selective backpropagation method. Both the regularly trained network
(shown in orange) and the network trained using selective backpropagation (shown in teal)
were tested on the FGSM attack with varying perturbation magnitudes. Showing the average
(labelled ’Avg.’ and shown as a solid line) and standard deviation (labelled ’Std.’ and shown
by the shaded coloured regions) of the results for all networks evaluated.

Fig. 5.19 Performances of the activity classification DNN, trained using a regular training
procedure and the selective backpropagation method. Both the regularly trained network
(shown in orange) and the network trained using selective backpropagation (shown in teal)
were tested on the PGD attack with varying perturbation magnitudes. Showing the average
(labelled ’Avg.’ and shown as a solid line) and standard deviation (labelled ’Std.’ and shown
by the shaded coloured regions) of the results for all networks evaluated.
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Intensity Classification The local layer-wise parameter scores for the custom-designed
activity classification DNN are shown in Figure 5.17. It can be noticed that as the layer depth
increases from the first convolutional layer to the last fully-connected layer, the parameter
scores indicate that the layers situated centrally to the network, are identified as more fragile
compared to the first and last layers of the network, when considering only the clean dataset
(rx). This fragility in the middle section of the network can be observed throughout network
training process, as shown for all epochs from epoch 10 to epoch 100. Conversely, the
adversarial parameter scores (rxε

) do not show a defined concentration of fragile parameters
in the central region of the network layers as the distribution of fragile parameters shows to
vary over epochs and layer depth.

Fig. 5.20 Local layer-wise parameter scores for the intensity classification model. Results
measured periodically every 10 epochs from epoch 10 to epoch 100. Presented are the
parameter scores rx for the clean dataset, rxε

for the adversarial dataset, and rε for the scaled
difference in clean and adversarial performances. The layer depth represents the layers of the
network ranging from the 1st convolutional layer to the lth fully-connected layer.

The adversarially targeted difference in parameter scores (rε ) show that the most fragile
parameters are situated at the beginning of the network, the most prominent amongst which,
is the first convolutional layer (labelled 1st). Using the parameter scores rε we categorise the
layers are fragile (rε <−ε), or robust, and antifragile (rε >=−ε). The value of ε was chosen
to to be equal to 0, defining a strict robustness where clean and adversarial performances
must be exactly alike for the parameter to be characterised as robust.
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Fig. 5.21 Performances of the proposed intensity classification network, trained using a regu-
lar training procedure and the selective backpropagation method, as presented in Chapter 4.
Both the regularly trained network (shown in orange) and the network trained using selective
backpropagation (shown in teal) were tested on the FGSM attack with varying perturbation
magnitudes to evaluate the effects of the proposed training. Showing the average (labelled
’Avg.’ and shown as a solid line) and standard deviation (labelled ’Std.’ and shown by the
shaded coloured regions) of the results all trained networks evaluated.

Fig. 5.22 Performances of the proposed intensity classification network, trained using a regu-
lar training procedure and the selective backpropagation method, as presented in Chapter 4.
Both the regularly trained network (shown in orange) and the network trained using selective
backpropagation (shown in teal) were tested on the PGD attack with varying perturbation
magnitudes to evaluate the effects of the proposed training. Showing the average (labelled
’Avg.’ and shown as a solid line) and standard deviation (labelled ’Std.’ and shown by the
shaded coloured regions) of the results all trained networks evaluated.
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With the identification of fragile, robust, and antifrgaile network parameters we can
subsequently carry out the selective backpropagation procedure to retrain only the robust and
antifragile parameters. Similarly to the activity classification analysis shown previously, we
test the selectively backpropagated, and regularly trained intensity classification networks to
the FGSM attack and the PGD attack. The results for which are presented in Figure 5.21 for
the FGSM attack and Figure 5.22 for the PGD attack. We observe that the average intensity
classification network performance increases in performance to both the FGSM attack and
PGD attack as the external stress magnitude (perturbation magnitude ε) is increased. This
shows that the selective backpropagation methodology is successful in increasing adversarial
robustness of the network to two different methods of attack, whilst only the FGSM attack is
considered during the identification process of fragile, robust, and antifragile parameters.

5.2.7 Activity Classification Summary

The work in this chapter investigates the use of 24 GHz radar system for the measurement
and classification of home exercises using signal processing and deep learning. We record a
custom dataset for this study consisting of 500 total signals, 25 repetitions of each exercise
considered and collected from 2 individuals for activity classification and intensity classi-
fication. The three exercises considered in this study are: squats, star jumps, walking and
standing upright. We also conduct a study to show how motion intensity (high intensity,
medium intensity and low intensity) can be classified using the proposed CNN model.

In this work, we offer a method of processing the raw radar signals, such that important
exercise features are identified and extracted efficiently using a sliding notch filter over an
identified frequency range. The networks developed in this section and results acquired
utilised the selective backpropagation methodology, as detailed in Chapter 3 and Chap-
ter 4. We process the signal using a signal denoising filter selection method, as outlined in
Section 5.1, that achieves an optimum filter classification with an accuracy of 82.4% for
noisy ECG signals. We propose a 1D CNN model to classify the 3 different exercises that
achieves a classification accuracy of 92% for the 3 different exercises (squat, star jump and
standing still). Using the developed network, we classify 6 different activities (squat, star
jump, wall push ups, sitting, standing and walking) with an accuracy of 72.2%. We also
develop a 2D CNN network designed to classify the intensity of the activities recorded using
a UWB radar system that is able to classify activity intensity between low, medium, and
high. The 2D CNN network achieved a test accuracy of 80%. The developed networks
were also test against the fast gradient sign method (FGSM) and projected gradient descent
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(PGD) adversarial attacks to evaluate the robustness of the classification tasks and using
the selective backpropagation methodology, we observed an increase in both adversarial
robustness and the clean, unperturbed, datasets. We successfully improved the ability of
networks to classify the objective functions and remain robust to adversarial attacks using
the methodology developed throughout this thesis.





Chapter 6

Conclusions

In this thesis we have considered the robustness analysis of deep neural networks (DNNs) to
different forms of input distortions and network parameter perturbations. We adopt the task of
understanding how the architecture and the adversarial robustness of DNNs are related. Our
investigations of network robustness have led us to approach the analysis from the perspective
of various forms of stress applied to the overall system, input and network included. The
types of stress we investigate can be broadly classified as internal and external to the network.
With internal stress we refer particularly to perturbations of the trainable network parameters,
in the convolutional and linear layer filter weights of DNNs. With external stress we refer
particularly to distortions to network inputs, primarily of an adversarial nature. The two
approaches of stress on DNNs allow us to evaluate the network with a greater level of scrutiny
and also to highlight the specific internal components of networks that are most susceptible
to external distortions to inputs. The proposed analysis goes into understanding the decision
boundaries of DNNs and calling to attention the importance of network architecture to the
robustness of networks.

The definition of robustness is considered to be a relative invariance when confronted
with stress. We utilise the characterisations of fragility, robustness, and antifragility to
define the conditions where the performance of a network is either impacted negatively,
invariantly, or positively by the applied stress. We use the notions of fragility, robustness,
and antifrgaility as central concepts when analysing the behaviour of deep neural networks,
to the developed internal and external stress methods. We observe network fragility when
the performance of the network degrades as stress is applied in increasing magnitudes. We
can observe network robustness when the performance of a network remains constant, or
bounded within a defined range, as stress of increasing magnitudes is applied to the network.
Naturally, we must consider the condition where an increase in network performance is
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observed, as increasing magnitudes of stress is applied. For such a circumstance, we use the
notion of antifragility, as defined by Taleb and Douady [38], to characterise the condition
where applied stress improves performance. In the thesis, we provide formal definitions
of fragility, robustness, and antifragility within the context of DNNs and specific to the
definitions of internal and external stress that we develop. The defined characterisations
enable the grouping of particular network components dependent on the response of the
network to the applied stress, be internal, external, or a combination of the two.

We have also discussed, in the context of classification networks, how adversarial ro-
bustness is closely related to network architectures. The work presented in this thesis offers
novel insights into this relationship between adversarial robustness and network architectures.
Through using adversarial attacks, we offer information on the importance of the composite
components of architectures, and equally, through an analysis of network architectures we
draw insights into the adversarial robustness of DNNs. The central methodology that we
develop throughout this thesis is a general analysis of DNNs, which in practice, vary in
shape and size. The method of applied stress is systematic and agnostic to different network
architectures applied to tasks. This allows us to evaluate different networks on a common
basis, and thus, compare the robustness of different network architectures working on dif-
fering datasets. The ability to compare the robustness of different networks also offers the
opportunity to propagate only the most robust variations of networks when developing newer,
stronger models.

Comparing network robustness is possible due to the systematic manner in which the
defined internal and external stress is applied to the evaluated networks. Furthermore, the
characterisations of fragility, robustness, and antifragility encapsulate the effects of different
stress methods applied, thus allowing us to differentiate between networks with varying
architecture arrangements. We bound the effects of an adversarial attack applied on a
DNN to be equal for all networks, and achieve this by setting constraints on the adversarial
perturbation magnitude. This consequently allows us to analyse the external robustness of
networks within a confined range. The defined internal perturbation methods, in the synaptic
filters, are also systematic in function and operate with a process that is the same for different
network architectures. The synaptic filters target and remove the connective network weights
of convolutional and linear parameters. The combination of using a relative adversarial attack
constraint, along with a systematic filtering methodology, results in a comparable space upon
which we can evaluate networks.
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Applications of the Analysis The primary goal in analysing the robustness of DNNs is to
further our understanding of how the networks respond to sub-optimal conditions and in the
case of adversarial robustness, the worst-case conditions. We employ network parameter
filtering as a way of enforcing sub-optimal conditions with respect to network architecture.
The combination of internal and external stress, in network parameter filtering and adversarial
attacks, allows us to observe the response of networks to sub-optimal conditions where both
input and network are considered. We carry out such an evaluation to ascertain whether
a trained network is able to generalise on unforeseen examples, as is case in real-world
applications. We direct our work on identifying and reinforcing networks developed for real-
world applications, where data exhibit forms of randomness that may be difficult to include in
network training. Particularly, in this thesis we focused our analysis on various applications
of DNNs for radar signal classification, as the task is highly sensitive to randomness from
the environmental and measurement system alike. Such applications require networks to
function under sub-optimal conditions and thus, the proposed analysis is used to drive the
development of mode robust networks.

In further experiments, we apply the developed analysis methods on two applications
using novel DNNs designed for custom radar signal datasets. The first task, we address, is a
denoising filter selection algorithm based on a novel DNN architecture. We apply the analysis
to identify the fragility, robustness, and antifragility of DNN components, and subsequently
apply selective backpropagation to omit specifically the fragile components from the training
process. In employing this method of network reinforcement, we observe an increase in both
the test accuracy, as well as the adversarial robustness of the network. We further develop an
activity identification DNN and an intensity classification DNN for a custom radar signal
dataset, which is preprocessed using the aforementioned denoising filter selection algorithm.
We again observe an increase in both the test accuracy and adversarial robustness for the
network using the methodologies developed in this thesis. The results show that it is possible
to selectively omit large parts of a network during the training process, leading a network that
exhibits an increase in test performance. The implemented novel selective backpropagation
methodology is successful in making DNNs perform better against both adversarial attacks
and, in some instances, also the regular training dataset. The implications of the selective
backpropagation is two fold; increase in performance, both adversarially and regularly, and
requiring less computations compared to regular network training.
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6.1 Future Work

The work presented in this thesis offers a novel methodology, to the best of our knowledge,
of analysing DNNs under both adversarial settings and network parameter perturbations
in conjunction. The analytical methods discussed in the preceding chapters have been
extended to application on real-world implementations of DNNs, specifically for radar signal
classification. The novel DNNs developed for the real-world implementation have been
developed in collaboration with an industrial partner, for whom the custom recorded dataset
and network architecture have been the subject of a patenting application. Furthermore, there
has been work carried out in collaboration with undergraduate final year projects [68, 73],
where the preliminary findings of this thesis have aided in the development of robust DNN
applications.

A possible research direction of the work detailed in this thesis is to evaluate the proposed
methodologies in greater extent to further benchmarks and real-world applications, such
that the robustness of the procedures is evaluated in practice. Referring specifically to the
work presented in Chapter 3, there are opportunities to evaluate the proposed nodal dropout
method against various other forms of noise, such as different adversarial attacks and other
forms of input distortions. This would constitute as a future direction of research from that
presented in this thesis, as with the introduction of different forms of input distortions, we
are confronted with selecting other relevant distortion methods, of which there are many. It is
possible to use the work presented in Chapter 4 as the basis for studying the similarities and
differences of different networks on a variety of benchmark tasks. The objective for such a
study would be to highlight the fragility, robustness, and antifragilitiy of a variety of network
architecture designs, thus, offering a systematic approach on designing new networks. The
work developed in this thesis sets out a method of achieving these very objectives.

Additionally, we direct future work to address the robustness of more real-world appli-
cations of DNNs, so as to bridge the space between implementations of deep learning in
research environments and commercial use. There are several other directions of research
that arise from the work carried out in this thesis. We highlight a number of directions in the
following paragraphs.

Robustness in Training Deep neural networks have proven to be intrinsically vulnerable
to specific manifestations of noise and the most effective method of protecting networks to
such randomness is adversarial training. Adversarial training is a scheme in which adversarial
examples, the product of an adversarial attack on input examples, are used as part of the
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training procedure [114, 34, 33]. In practice, this is a computationally expensive process,
particularly when dealing with large networks and datasets. From the findings in Chapter 3
and Chapter 4, we observe comparable network performances, and in some cases improved
performance, when we omit large portions of the network periodically during the training
process. There have also been numerous studies into few-shot learning methods, where
partial examples of the complete dataset are used to train the network [219]. The notion
that not all components of either the dataset or network are required to achieve satisfactory
network performance is one of the key findings from our work. We outline a method of
categorising different components of a network as fragile, robust, and antifragile relative to
the influence of the categorised component, on the network performance.

Through the proposed identification method, we identify opportunities to investigate
novel training mechanisms and schemes, such that the selective backpropagation of network
weights is varied. Furthermore, future work into incorporating adversarial examples into the
training process, as is the case in adversarial training, may also aid in identifying patterns of
the fragility, robustness, and antifragility in network architectures. Such investigations of
network characterisation may also draw parallels with research on regularisation techniques
employed during network training [116, 117, 24]. There are directions of research into
identifying overparameterised network architectures during the network training process
using the study proposed in this thesis. The methodologies we detail in this thesis can be
used in the synthesis of more robust networks, and this is shown in the results we present in
the thesis.

Robust Model Designs Thus far we have discussed how the analytical methods we develop
can be used during network training, in order to increase network performance and robustness.
A possible direction of work leading on from these findings is also in the development of
more robust network architectures. The robustness in question may be adversarial [19] and
architectural [107], as both themes are investigated in conjunction in this work. An important
aspect in developing more robust networks is the ability to compare different network
architectures applied to different tasks. Using the defined relative adversarial magnitude
constraints and systematic synaptic filtering techniques, we are able to compare the relative
effects of internal and external perturbations on the network, thus identifying which are more
fragile, robust, or antifragile. This finding is a prerequisite to an effective network selection
procedure that experimentally identifies the critical strengths and weaknesses of different
architectures.
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Analysis to Application A significant aspect of this thesis is directed at applying the
developed analysis methods on different applications of DNNs. In Chapter 5, we specifically
investigate DNNs applied to two different tasks; firstly, predicting the optimum ECG signal
denoising filter for noisy waveforms, and secondly, classifying human activities and inten-
sities using an ultra-wideband (UWB) radar system. The task of radar signal classification
poses a challenging task due to the nature of the noisy recordings and sensitivity of the radar
system to environmental noise. We apply the developed analysis to identify fragile, robust,
and antifragile network parameters and subsequently, apply selective backpropagation at
periodic intervals in the training to improve the performance of the DNNs, both under adver-
sarial settings and the regular test datasets. Future work may investigate the effectiveness
of applying the analysis and selective backpropagation on the performance of DNNs for
different tasks.

There exist various forms of perturbations for applications of DNNs. An investigation
into the proposed analysis applied to other forms of dataset corruption, such as miss-labeling
errors and dataset trend variations, is another direction of future work that has the potential to
yield interesting results. The ultimate goal of such an undertaking is to replicate the potential
performances of DNNs developed in and for research environments, to the real-world where
the operating conditions are seldom ideal.

6.2 Outlook

We, in this thesis, have investigated the robustness analysis of deep neural networks both
under adversarial settings (external stress) and network parameter perturbations (internal
stress). We have developed the notions of fragility, robustness, and introduced the concept of
antifragile within the context of DNNs, to aid in improving network performances to various
forms of disturbances. This has allowed us to experimentally observe several interesting
phenomena of DNNs, whose behaviour when subjected external and internal stress exhibits
various commonalities between different network architectures for the same task, and equally,
the stress response of a particular network architecture exhibits commonalities when applied
to different tasks. We show that selectively updating specific network parameters, and
omitting others, results in networks that perform better on adversarial examples. Indeed, we
also observe that, in certain instances, the network performance on a regular dataset is also
improved using the proposed selective training method.

In finding patterns of behaviour within DNNs, we show that the task of robustness
analysis, and in particular adversarial robustness, offers the opportunity to understand the
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what explicitly renders certain networks robust and other not. Beyond the research of
robustness analysis, we also hope that the work detailed in this thesis may assist in the
development of stronger networks designed for application in the real-world. We hope that
the methodologies discussed in this thesis, and the preliminary results presented, act as
motivation for further investigations into the fascinating phenomena of deep neural networks
and adversarial properties.
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Appendix

We present the supplementary analysis on the learning landscape of different networks in the
following sections. Sec. A.1, Sec. A.2, Sec. A.3, and Sec. A.4 for the ResNet-18, ResNet-50,
SqueezeNet-V1.1, and ShuffleNet V2x1.0 results respectively. These results reflect network
test accuracy for our synaptic filtering techniques presented in Secs 3.

A.1 ResNet-18

A.1.1 Clean Dataset Responses

The ResNet-18 network test accuracy responses to the proposed synaptic filters (See Sec.
3) on the clean, unperturbed datasets is given for all layers of the network. We present the
ResNet-18 responses for synaptic filters h1,h2,h3 and the combined system response (see Sec.
3.3) for the MNIST dataset in Figs. A.1 to A.4. The Pixel intensities in the presented figures
show the measured network accuracy for all threshold values α ranging from α0 to αA, as per
Sec.3, measured every 10 epochs from 10 to 100 epochs during network training. Similarly,
the network responses for ResNet-18 on the CIFAR10 dataset, are presented in Figs. A.13
to A.16. The ResNet-18 network test accuracy responses for the ImageNet Tiny dataset are
presented in Figs. A.25 to A.28. Using the results presented in Figs. A.1 to A.4, Figs. A.13
to A.16, and Figs. A.25 to A.28 we find layers, such as layers ’conv1’, ’layer3.0.conv1’ and
’layer4.1.conv1’ for example, where there are invariant response characteristics to different
synaptic filters for the three evaluated datasets on the ResNet-18 network. Further analysis
of these results is presented in Sec. 5.
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A.1.2 Adversarial Dataset Responses

The ResNet-18 network test accuracy responses to the different synaptic filters (See Sec. 3)
on the adversarial datasets is given for all layers of the network. We present the ResNet-18
responses for synaptic filters h1,h2,h3 and the combined system response (see Sec. 3.3
Combined System Response) for the adversarially perturbed MNIST dataset in Figs. A.5
to A.8. The constraints for the perturbation magnitude of the attack is given in Sec. 3.
The Pixel intensities in the presented figures show the measured network accuracy for all
threshold values α ranging from α0 to αA, as per Sec. 3, measured every 10 epochs from
10 to 100 epochs during network training. Similarly, the network test accuracy responses
for ResNet-18 on the adversarially perturbed CIFAR10 dataset, are presented in Figs. A.17
to A.20. The ResNet-18 network test accuracy responses for the adversarially perturbed
ImageNet tiny dataset are presented in Figs. A.29 to A.32. Using the results presented in
Figs. A.5 to A.8, Figs. A.17 to A.20, and Figs. A.29 to A.32 we find layers, similar to those
highlighted for the clean dataset responses, where there are invariant response characteristics
to different synaptic filters for the three evaluated adversarial datasets on the ResNet-18
network. Further analysis of results is given in Sec. 5.

A.1.3 Scaled Response Difference

The ResNet-18 network scaled test accuracy response differences (see Sec. 3.2) between the
clean and adversarial datasets, to the different synaptic filters is given for all layers of the
network. We present the ResNet-18 responses difference for synaptic filters h1,h2,h3 and
the combined system response (see Sec. 3.3) for the MNIST dataset in Figs. A.9 to A.12.
The constraints for the perturbation magnitude of the attack is given in Sec. 3. The Pixel
intensities in the presented figures show the measured network accuracy for all threshold
values α ranging from α0 to αA, as per Sec. 3, measured every 10 epochs from 10 to 100
epochs during network training. The network test accuracy response differences for ResNet-
18 on the CIFAR10 dataset, are presented in Figs. A.21 to A.24. The ResNet-18 network
test accuracy response differences, for the ImageNet Tiny dataset are presented in Figs. A.33
to A.36. Using the results presented in Figs. A.9 to A.12, Figs. A.21 to A.24, and Figs. A.33
to A.36 we find links and layers where the adversary is targeting the ResNet-18 network. We
also find layer response differences that show different characteristics for different datasets,
further analysis of results is given in Sec. 5.
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Fig. A.1 ResNet-18 response to clean MNIST dataset, for synaptic filter h1.
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Fig. A.2 ResNet-18 response to clean MNIST dataset, for synaptic filter h2.
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Fig. A.3 ResNet-18 response to clean MNIST dataset, for synaptic filter h3.
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Fig. A.4 Combined ResNet-18 response to clean MNIST dataset, for all synaptic filters in h.
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Fig. A.5 ResNet-18 response to adversarial MNIST dataset, for synaptic filter h1.
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Fig. A.6 ResNet-18 response to adversarial MNIST dataset, for synaptic filter h2.
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Fig. A.7 ResNet-18 response to adversarial MNIST dataset, for synaptic filter h3.
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Fig. A.8 Combined ResNet-18 response to adversarial MNIST dataset, for all synaptic filters
in h.
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Fig. A.9 Difference in ResNet-18 responses to Clean and adversarial MNIST datasets, for
synaptic filter h1.
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Fig. A.10 Difference in ResNet-18 responses to Clean and adversarial MNIST datasets, for
synaptic filter h2.
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Fig. A.11 Difference in ResNet-18 responses to Clean and adversarial MNIST datasets, for
synaptic filter h3.
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Fig. A.12 Combined difference in ResNet-18 responses to Clean and adversarial MNIST
datasets, for all synaptic filters in h.
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Fig. A.13 ResNet-18 response to clean CIFAR10 dataset, for synaptic filter h1.
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Fig. A.14 ResNet-18 response to clean CIFAR10 dataset, for synaptic filter h2.
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Fig. A.15 ResNet-18 response to clean CIFAR10 dataset, for synaptic filter h3.
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Fig. A.16 Combined ResNet-18 response to clean CIFAR10 dataset, for all synaptic filters in
h.
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Fig. A.17 ResNet-18 response to adversarial CIFAR10 dataset, for synaptic filter h1.
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Fig. A.18 ResNet-18 response to adversarial CIFAR10 dataset, for synaptic filter h2.
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Fig. A.19 ResNet-18 response to adversarial CIFAR10 dataset, for synaptic filter h3.
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Fig. A.20 Combined ResNet-18 response to adversarial CIFAR10 dataset, for all synaptic
filters in h.
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Fig. A.21 Difference in ResNet-18 responses to Clean and adversarial CIFAR10 datasets, for
synaptic filter h1.
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Fig. A.22 Difference in ResNet-18 responses to Clean and adversarial CIFAR10 datasets, for
synaptic filter h2.
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Fig. A.23 Difference in ResNet-18 responses to Clean and adversarial CIFAR10 datasets, for
synaptic filter h3.
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Fig. A.24 Combined difference in ResNet-18 responses to Clean and adversarial CIFAR10
datasets, for all synaptic filters in h.
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Fig. A.25 ResNet-18 response to clean ImageNet Tiny dataset, for synaptic filter h1.
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Fig. A.26 ResNet-18 response to clean ImageNet Tiny dataset, for synaptic filter h2.
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Fig. A.27 ResNet-18 response to clean ImageNet Tiny dataset, for synaptic filter h3.
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Fig. A.28 Combined ResNet-18 response to clean ImageNet Tiny dataset, for all synaptic
filters in h.
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Fig. A.29 ResNet-18 response to adversarial ImageNet Tiny dataset, for synaptic filter h1.
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Fig. A.30 ResNet-18 response to adversarial ImageNet Tiny dataset, for synaptic filter h2.
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Fig. A.31 ResNet-18 response to adversarial ImageNet Tiny dataset, for synaptic filter h3.
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Fig. A.32 Combined ResNet-18 response to adversarial ImageNet Tiny dataset, for all
synaptic filters in h.
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Fig. A.33 Difference in ResNet-18 responses to Clean and adversarial ImageNet Tiny datasets,
for synaptic filter h1.
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Fig. A.34 Difference in ResNet-18 responses to Clean and adversarial ImageNet Tiny datasets,
for synaptic filter h2.
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Fig. A.35 Difference in ResNet-18 responses to Clean and adversarial ImageNet Tiny datasets,
for synaptic filter h3.
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Fig. A.36 Combined difference in ResNet-18 responses to Clean and adversarial ImageNet
Tiny datasets, for all synaptic filters in h.
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A.2 ResNet-50

A.2.1 Clean Dataset Responses

The ResNet-50 network test accuracy responses to the proposed synaptic filters (See Sec.
3) on the clean, unperturbed, datasets is given for all layers of the network. We present the
ResNet-50 responses for synaptic filters h1,h2,h3 and the combined system response (see
Sec. 3.3) for the MNIST dataset in Figs. A.37 to A.40. The Pixel intensities in the presented
figures show the measured network accuracy for all threshold values α ranging from α0 to
αA, as per Sec. 3, measured every 10 epochs from 10 to 100 epochs during network training.
Similarly, the network test accuracy responses for ResNet-50 on the CIFAR10 dataset, are
presented in Figs. A.49 to A.52. The ResNet-50 network test accuracy responses for the
ImageNet tiny dataset are presented in Figs. A.61 to A.64. Using the results presented in
Figs. A.37 to A.40, Figs. A.49 to A.52, and Figs. A.61 to A.64 we find layers, such as layers
’conv1’, ’layer2.0.conv1’ and ’layer4.0.downsample.0’ for example, where there are invariant
response characteristics to different synaptic filters for the three evaluated datasets on the
ResNet-50 network.

Adversarial Dataset Responses

The ResNet-50 network test accuracy responses to the different synaptic filters (See Sec. 3)
on the adversarial datasets is given for all layers of the network. We present the ResNet-50
responses for synaptic filters h1,h2,h3 and the combined system response (see Sec. 3.3) for
the adversarially perturbed MNIST dataset in Figs. A.41 to A.44. The constraints for the
perturbation magnitude of the attack is given in Sec. 3. The Pixel intensities in the presented
figures show the measured network accuracy for all threshold values α ranging from α0 to
αA, as per Sec. 3, measured every 10 epochs from 10 to 100 epochs during network training.
Similarly, the network test accuracy responses for ResNet-50 on the adversarially perturbed
CIFAR10 dataset, are presented in Figs. A.53 to A.56. The ResNet-50 network test accuracy
responses, for the adversarially perturbed ImageNet Tiny dataset are presented in Figs. A.65
to A.68. Using the results presented in Figs. A.41 to A.44, Figs. A.53 to A.56, and Figs. A.65
to A.68 we find layers, similar to those highlighted for the clean dataset responses, where
there are invariant response characteristics to different synaptic filters for the three evaluated
adversarial datasets on the ResNet-50 network. Further analysis of results is given in Sec. 5.
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Scaled Response Difference

The ResNet-50 network scaled response differences (see Sec. 3.2) between the clean and
adversarial datastes, to the different synaptic filters is given for all layers of the network. We
present the ResNet-50 responses difference for synaptic filters h1,h2,h3 and the combined
system response (see Sec. 3.3) for the MNIST dataset in Figs. A.45 to A.48. The constraints
for the perturbation magnitude of the attack is given in Sec. 3. The Pixel intensities
in the presented figures show the measured network accuracy for all threshold values α

ranging from α0 to αA, as per Sec. 3, measured every 10 epochs from 10 to 100 epochs
during network training. The network response differences for ResNet-50 on the CIFAR10
dataset, are presented in Figs. A.57 to A.60. The ResNet-50 network test accuracy response
differences, for the ImageNet Tiny dataset are presented in Figs. A.69 to A.72. Using the
results presented in Figs. A.45 to A.48, Figs. A.57 to A.60, and Figs. A.69 to A.72 we find
links and layers where the adversary is targeting the ResNet-50 network links and layers. We
also find layer response differences that show different characteristics for different datasets,
further analysis of results is given in Sec. 5.

A.3 SqueezeNet-v1.1

A.3.1 Clean Dataset Responses

The SqueezeNet-v1.1 network test accuracy responses to the ideal high-pass synaptic filter
(see Sec. 3) on the clean, unperturbed datasets is given for all layers of the network. We
present the SqueezeNet-v1.1 responses to the synaptic filter h1, for the MNIST dataset
in Fig. A.73. The Pixel intensities in the presented figures show the measured network
accuracy for all threshold values α ranging from α0 to αA, as per Sec. 3, measured every 10
epochs from 10 to 100 epochs during network training. Similarly, the network test accuracy
responses for SqueezeNet-v1.1 on the CIFAR10 dataset, are presented in Fig. A.76. The
SqueezeNet-v1.1 network test accuracy responses, for the ImageNet tiny dataset are presented
in Fig. A.79. Using the results presented in Figs. A.73, Fig. A.73, and Fig. A.79 we find
layers, such as layers ’features.3.squeeze’, ’features.9.squeeze’ and ’features.11.squeeze’ for
example, where there are invariant response characteristics to different synaptic filters for the
three evaluated datasets on the SqueezeNet-v1.1 network.
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Fig. A.37 ResNet-50 response to clean MNIST dataset, for synaptic filter h1.



184 Appendix

Fig. A.38 ResNet-50 response to clean MNIST dataset, for synaptic filter h2.
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Fig. A.39 ResNet-50 response to clean MNIST dataset, for synaptic filter h3.
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Fig. A.40 Combined ResNet-50 response to clean MNIST dataset, for all synaptic filters in h.
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Fig. A.41 ResNet-50 response to adversarial MNIST dataset, for synaptic filter h1.
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Fig. A.42 ResNet-50 response to adversarial MNIST dataset, for synaptic filter h2.
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Fig. A.43 ResNet-50 response to adversarial MNIST dataset, for synaptic filter h3.
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Fig. A.44 Combined ResNet-50 response to adversarial MNIST dataset, for all synaptic
filters in h.
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Fig. A.45 Difference in ResNet-50 responses to Clean and adversarial MNIST datasets, for
synaptic filter h1.
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Fig. A.46 Difference in ResNet-50 responses to Clean and adversarial MNIST datasets, for
synaptic filter h2.
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Fig. A.47 Difference in ResNet-50 responses to Clean and adversarial MNIST datasets, for
synaptic filter h3.
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Fig. A.48 Combined difference in ResNet-50 responses to Clean and adversarial MNIST
datasets, for all synaptic filters in h.
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Fig. A.49 ResNet-50 response to clean CIFAR10 dataset, for synaptic filter h1.
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Fig. A.50 ResNet-50 response to clean CIFAR10 dataset, for synaptic filter h2.
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Fig. A.51 ResNet-50 response to clean CIFAR10 dataset, for synaptic filter h3.
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Fig. A.52 Combined ResNet-50 response to clean CIFAR10 dataset, for all synaptic filters in
h.
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Fig. A.53 ResNet-50 response to adversarial CIFAR10 dataset, for synaptic filter h1.
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Fig. A.54 ResNet-50 response to adversarial CIFAR10 dataset, for synaptic filter h2.
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Fig. A.55 ResNet-50 response to adversarial CIFAR10 dataset, for synaptic filter h3.
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Fig. A.56 Combined ResNet-50 response to adversarial CIFAR10 dataset, for all synaptic
filters in h.
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Fig. A.57 Difference in ResNet-50 responses to Clean and adversarial CIFAR10 datasets, for
synaptic filter h1.
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Fig. A.58 Difference in ResNet-50 responses to Clean and adversarial CIFAR10 datasets, for
synaptic filter h2.
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Fig. A.59 Difference in ResNet-50 responses to Clean and adversarial CIFAR10 datasets, for
synaptic filter h3.
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Fig. A.60 Combined difference in ResNet-50 responses to Clean and adversarial CIFAR10
datasets, for all synaptic filters in h.
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Fig. A.61 ResNet-50 response to clean ImageNet Tiny dataset, for synaptic filter h1.
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Fig. A.62 ResNet-50 response to clean ImageNet Tiny dataset, for synaptic filter h2.
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Fig. A.63 ResNet-50 response to clean ImageNet Tiny dataset, for synaptic filter h3.
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Fig. A.64 Combined ResNet-50 response to clean ImageNet Tiny dataset, for all synaptic
filters in h.
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Fig. A.65 ResNet-50 response to adversarial ImageNet Tiny dataset, for synaptic filter h1.
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Fig. A.66 ResNet-50 response to adversarial ImageNet Tiny dataset, for synaptic filter h2.
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Fig. A.67 ResNet-50 response to adversarial ImageNet Tiny dataset, for synaptic filter h3.
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Fig. A.68 Combined ResNet-50 response to adversarial ImageNet Tiny dataset, for all
synaptic filters in h.
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Fig. A.69 Difference in ResNet-50 responses to Clean and adversarial ImageNet Tiny datasets,
for synaptic filter h1.
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Fig. A.70 Difference in ResNet-50 responses to Clean and adversarial ImageNet Tiny datasets,
for synaptic filter h2.
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Fig. A.71 Difference in ResNet-50 responses to Clean and adversarial ImageNet Tiny datasets,
for synaptic filter h3.
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Fig. A.72 Combined difference in ResNet-50 responses to Clean and adversarial ImageNet
Tiny datasets, for all synaptic filters in h.
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A.3.2 Adversarial Dataset Responses

The SqueezeNet-v1.1 network test accuracy responses to the different synaptic filters (see
Sec. 3) on the adversarial datasets is given for all layers of the network. We present the
SqueezeNet-v1.1 responses to the synaptic filter h1, for the adversarially perturbed MNIST
dataset in Fig. A.74. The constraints for the perturbation magnitude of the attack is given in
Sec. 3. The Pixel intensities in the presented figures show the measured network accuracy for
all threshold values α ranging from α0 to αA, as per Sec. 3, measured every 10 epochs from
10 to 100 epochs during network training. Similarly, the network test accuracy responses for
SqueezeNet-v1.1 on the adversarially perturbed CIFAR10 dataset, are presented in Fig. A.77.
The SqueezeNet-v1.1 network responses for the adversarially perturbed ImageNet Tiny
dataset are presented in Fig. A.80. Using the results presented in Fig. A.74, Fig. A.77, and
Fig. A.80 we find links and layers, similar to those highlighted for the clean dataset responses,
where there are invariant response characteristics to different synaptic filters for the three
evaluated adversarial datasets on the SqueezeNet-v1.1 network. Further analysis of results is
presented in Sec. 5.

A.3.3 Scaled Response Difference

The SqueezeNet-v1.1 network scaled test accuracy responses difference (see Sec. 3.2)
between the clean and adversarial datastes, to the different synaptic filters is given for all
layers of the network. We present the SqueezeNet-v1.1 response differences to the synaptic
filter h1 for the MNIST dataset in Figs. A.75. The constraints for the perturbation magnitude
of the attack is given in Sec. 3. The Pixel intensities in the presented figures show the
measured network accuracy for all threshold values α ranging from α0 to αA, as per Sec. 3,
measured every 10 epochs from 10 to 100 epochs during network training. The network test
accuracy response differences, for SqueezeNet-v1.1 on the CIFAR10 dataset are presented in
Fig. A.78. The SqueezeNet-v1.1 network response differences for ImageNet Tiny dataset are
presented in Fig. A.81. Using the results presented in Fig. A.75, Fig. A.78, and Fig. A.81
we find links and layers where the adversary is targeting the SqueezeNet-v1.1 network. We
also find layer response differences that show different characteristics for different datasets,
further analysis of results is given in Sec. 5.
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Fig. A.73 SqueezeNet-v1.1 response to clean MNIST dataset, for synaptic filter h1.
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Fig. A.74 SqueezeNet-v1.1 response to adversarial MNIST dataset, for synaptic filter h1.
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Fig. A.75 Difference in SqueezeNet-v1.1 responses to Clean and adversarial MNIST datasets,
for synaptic filter h1.
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Fig. A.76 SqueezeNet-v1.1 response to clean CIFAR10 dataset, for synaptic filter h1.
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Fig. A.77 SqueezeNet-v1.1 response to adversarial CIFAR10 dataset, for synaptic filter h1.
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Fig. A.78 Difference in SqueezeNet-v1.1 responses to Clean and adversarial CIFAR10
datasets, for synaptic filter h1.
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Fig. A.79 SqueezeNet-v1.1 response to clean ImageNet Tiny dataset, for synaptic filter h1.
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Fig. A.80 SqueezeNet-v1.1 response to adversarial ImageNet Tiny dataset, for synaptic filter
h1.
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Fig. A.81 Difference in SqueezeNet-v1.1 responses to Clean and adversarial ImageNet Tiny
datasets, for synaptic filter h1.
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A.4 ShuffleNet V2x1.0

A.4.1 Clean Dataset Responses

The ShuffleNet V2x1.0 network test accuracy responses to the ideal high-pass synaptic filter
(see 3) on the clean, unperturbed, datasets is given for all layers of the network. We present
the SqueezeNet-v1.1 responses to the synaptic filter h1, for the MNIST dataset in Fig. A.82.
The Pixel intensities in the presented figures show the measured network accuracy for all
threshold values α ranging from α0 to αA, as per Sec. 3, measured every 10 epochs from
10 to 100 epochs during network training. Similarly, the network test accuracy responses
for ShuffleNet V2x1.0 on the CIFAR10 dataset, are presented in Fig. A.85. The ShuffleNet
V2x1.0 network test accuracy responses, for the ImageNet tiny dataset are presented in
Fig. A.88. Using the results presented in Figs. A.82, Fig. A.82, and Fig. A.88 we find layers,
such as layers ’stage3.branch1.0’, ’stage4.0.branch1.0’ and ’fc’ for example, where there are
invariant response characteristics to different synaptic filters for the three evaluated datasets
on the ShuffleNet V2x1.0 network.

Adversarial Dataset Responses

The ShuffleNet V2x1.0 network test accuracy responses to the different synaptic filters (see
Sec. 3) on the adversarial datasets is given for all layers of the network. We present the
ShuffleNet V2x1.0 responses for the synaptic filter h1 for the adversarially perturbed MNIST
dataset in Fig. A.83. The constraints for the perturbation magnitude of the attack is given in
Sec. 3. The Pixel intensities in the presented figures show the measured network accuracy for
all threshold values α ranging from α0 to αA, as per Sec. 3, measured every 10 epochs from
10 to 100 epochs during network training. Similarly, the network test accuracy responses
for ShuffleNet V2x1.0 on the adversarially perturbed CIFAR10 dataset, are presented in
Fig. A.86. The ShuffleNet V2x1.0 network test accuracy responses, for the adversarially
perturbed ImageNet Tiny dataset are presented in Fig. A.89. Using the results presented in
Fig. A.83, Fig. A.86, and Fig. A.89 we find layers, similar to those highlighted for the clean
dataset responses, where there are invariant response characteristics to different synaptic
filters for the three evaluated adversarial datasets on the ShuffleNet V2x1.0 network. Further
analysis of these results is presented in Sec. 5.
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Scaled Response Difference

The ShuffleNet V2x1.0 network scaled test accuracy responses difference (see Sec. 3.2)
between the clean and adversarial datasets, to the different synaptic filters is given for all
layers of the network. We present the ShuffleNet V2x1.0 response differences for the synaptic
filter h1 for the MNIST dataset in Figs. A.84. The constraints for the perturbation magnitude
of the attack is given in Sec. 3. The Pixel intensities in the presented figures show the
measured network accuracy for all threshold values α ranging from α0 to αA, as per Sec. 3,
measured every 10 epochs from 10 to 100 epochs during network training. The network test
accuracy response differences, for ShuffleNet V2x1.0 on the CIFAR10 dataset are presented
in Fig. A.87. The ShuffleNet V2x1.0 network test accuracy response differences for ImageNet
Tiny dataset are presented in Fig. A.90. Using the results presented in Fig. A.84, Fig. A.87,
and Fig. A.90 we find links and layers where the adversary is targeting the ShuffleNet V2x1.0
network. We also find layer response differences that show different characteristics for
different datasets, further analysis of the presented results is given in Sec. 5.
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Fig. A.82 ShuffleNet V2x1.0 response to clean MNIST dataset, for synaptic filter h1.
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Fig. A.83 ShuffleNet V2x1.0 response to adversarial MNIST dataset, for synaptic filter h1.
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Fig. A.84 Difference in ShuffleNet V2x1.0 responses to Clean and adversarial MNIST
datasets, for synaptic filter h1.
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Fig. A.85 ShuffleNet V2x1.0 response to clean CIFAR10 dataset, for synaptic filter h1.
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Fig. A.86 ShuffleNet V2x1.0 response to adversarial CIFAR10 dataset, for synaptic filter h1.
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Fig. A.87 Difference in ShuffleNet V2x1.0 responses to Clean and adversarial CIFAR10
datasets, for synaptic filter h1.
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Fig. A.88 ShuffleNet V2x1.0 response to clean ImageNet Tiny dataset, for synaptic filter h1.
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Fig. A.89 ShuffleNet V2x1.0 response to adversarial ImageNet Tiny dataset, for synaptic
filter h1.



A.4 ShuffleNet V2x1.0 239

Fig. A.90 Difference in ShuffleNet V2x1.0 responses to clean and adversarial ImageNet
datasets, for synaptic filter h1.





A.4 ShuffleNet V2x1.0 241


	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Research Problems and Contributions
	1.2 Thesis Outline
	1.3 Publications

	2 Background
	2.1 Architectures of Deep Neural Networks (DNNs)
	2.1.1 Robustness of DNNs
	2.1.2 DNN Architecture Compression
	2.1.3 Robustness and Compression

	2.2 Adversarial Robustness
	2.3 Applications of Robustness Analysis

	3 Adversarial Robustness for DNNs: Attacks on Fragile Neurons
	3.1 Overview
	3.1.1 Adversarial Vulnerabilities
	3.1.2 Targeted DNN Neurons

	3.2 Related Works
	3.2.1 Adversarial Defenses
	3.2.2 Adversarial Learning
	3.2.3 Targeting and Influence

	3.3 Adversarial Attack and Defense Formulations
	3.3.1 Attack Formulation
	3.3.2 Defense Formulation
	3.3.3 Fragile and Non-fragile Kernels Identification

	3.4 Adversarial Targeting Algorithm
	3.4.1 Filtering Non-fragile Kernels
	3.4.2 Amplification of Fragile Kernels S
	3.4.3 Back-propagation Filters
	3.4.4 Adversarial Targeting of Fragile and Non-fragile Kernels

	3.5 Results and Discussion
	3.6 Summary

	4 Fragility, Robustness and Antifragility for DNNs
	4.1 Overview
	4.2 Related Work
	4.3 Definitions
	4.3.1 Stress on DNNs
	4.3.2 Fragility, Robustness and Antifragility

	4.4 Methodology of DNN parameters characterization
	4.4.1 Framework of internal and external stress on DNNs
	4.4.2 Parameter scoring for DNN parameter characterization
	4.4.3 Experimental set-up

	4.5 Results and Analysis
	4.6 Summary

	5 Robustness of Deep Learning in Real-World Applications
	5.1 Signal Denoising Filter Selection Algorithm
	5.1.1 Overview of The Application
	5.1.2 Related Work
	5.1.3 Denoising Filter Classification Modelling
	5.1.4 Results and Discussions
	5.1.5 Selective Backpropagation for Signal Denoising Filter Selection
	5.1.6 Summary of Signal Denoising Filter Selection Algorithm

	5.2 Activity Classification Application
	5.2.1 Overview of Activity Classification
	5.2.2 Related Work
	5.2.3 Signal Processing and Experimental Set-Up
	5.2.4 Activity and Intensity Classification
	5.2.5 Results and Analysis
	5.2.6 Selective Backpropagation for Radar Signal Classification
	5.2.7 Activity Classification Summary


	6 Conclusions
	6.1 Future Work
	6.2 Outlook

	References
	Appendix A Appendix
	A.1 ResNet-18
	A.1.1 Clean Dataset Responses
	A.1.2 Adversarial Dataset Responses
	A.1.3 Scaled Response Difference

	A.2 ResNet-50
	A.2.1 Clean Dataset Responses

	A.3 SqueezeNet-v1.1
	A.3.1 Clean Dataset Responses
	A.3.2 Adversarial Dataset Responses
	A.3.3 Scaled Response Difference

	A.4 ShuffleNet V2x1.0
	A.4.1 Clean Dataset Responses



