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EV smart charging: How tariff selection influences grid stress and 
carbon reduction 

Farzaneh Daneshzand , Phil J Coker *, Ben Potter , Stefan T Smith 
School of Built Environment, University of Reading, Reading, UK   

H I G H L I G H T S :  

• Assesses grid impact of EV charging under diverse tariff and control strategies. 
• Stepwise Time of Use tariffs cause higher peak loads than on-demand EV charging. 
• Smart tariffs reduce grid carbon emissions with dynamic tariffs most effective. 
• Diversity of tariffs should be encouraged to mitigate the risk from demand peaks. 
• Smart tariffs fail to avoid local EV peak loads with capacity management necessary.  

A R T I C L E  I N F O   
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A B S T R A C T   

With the rapid increase in ownership of Electric Vehicles (EVs), widespread concern has been raised regarding 
the potential for EV charging demand to overload electricity grids. Smart control of charging is advocated as a 
solution, gaining attention from business and support from policymakers. However, the ultimate grid benefits (or 
disbenefits) of smart charging will follow from a combination of user behaviour and pricing arrangements / 
tariffs. Local clustering of vehicle uptake can lead to unintended consequences as national incentives fail to align 
with local pressures. In this paper, we describe a simulation of the dynamic electricity demand pattern arising 
from a fleet of grid connected EVs. The model developed for this study combines stochastic sampling of data from 
a UK-based smart charging trial (Western Power Distribution’s Electric Nation project) with a set of plausible 
tariffs, including a strategy which specifically seeks to minimize grid carbon emissions. This provides insights 
into the potential impacts of EV charging by encompassing a wider range of tariffs than previously assessed, 
while also separating the control actions of optimising cost and managing capacity. We examine the carbon 
implications of tariff choice and introduce a range of grid overload metrics that reveal nuances in the tariff 
implications and evolution of impacts as EV penetration increases. The results show that smart charging is not 
necessarily a better solution for the grid compared to on-demand charging. Stepwise tariffs, currently favoured 
by UK energy suppliers, present a particular risk. Such tariffs can tend to increase load synchronization by 
shifting load towards periods where more cars are connected and awaiting charge. This can lead to an increased 
peak load even at moderate EV uptake levels. Dynamic tariffs proved preferable but still increase peak demand at 
higher vehicle uptakes. All smart tariffs offer a strong carbon benefit, but, again, current stepwise tariffs are 
failing to realise the full potential that could be realized by targeting low carbon time periods. Separate local 
capacity management was able to eliminate overload at the secondary substation, even with very high EV up-
take, with only rare, very small levels of unserved demand.   

1. Introduction 

The impact of EV charging is featuring not only in a wide range of 
research but also as a significant strand in government energy policy and 

commercial service development. Deregulated energy systems, such as 
the UK, are facing rapid changes in demand dynamics alongside a 
diverse array of emerging consumer tariffs and services which may in 
turn be enabled or restricted by interventions from the electricity system 
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operator and network owners. While benefits can be envisaged in terms 
of carbon reduction, cost saving and security, this changing landscape 
brings the risk for unexpected negative consequences to result from 
conflicting incentives or dramatic coincident behaviours. 

Widespread concern has been raised regarding the potential for EV 
charging loads to overload electricity grid capacity. Attention is often 
given to overlap with peak demand periods established before vehicle 
electrification, typically in the early evening. Many earlier studies 
assessed the impact of uncontrolled (or on-demand) charging, assuming 
that vehicles would be charged at their maximum rate from the moment 
that users choose to connect them to a charger. For example, [1] 
simulated the impact of uncoordinated home charging on the residential 
load in a US distribution network, noting that the charging rate plays a 
significant role at a low voltage level and can decrease the expected life 
of the transformer. By contrast, [2] observed that studies which assume 
that EVs plug in every day, after their last daily trip, can overestimate 
the charging load and the cost of distribution grid upgrades required 
when more diverse behaviour is considered, even if uncontrolled 
charging is maintained. A further study [3] used data from a UK based 
trial for EV charging behaviour and illustrated that the distribution grid 
has a higher capacity to accommodate EVs compared to the studies that 
base their analysis on more rigid assumptions around charging behavior, 
even with uncontrolled charging. 

As EV connection time is usually longer than the time needed to 
transfer the required demand [4], consideration can be given to 
controlled (or smart) charging. Controlling the time and rate of charging 
has potential to shift EV load to times with lower demand from other 
services and reduce negative impact on the grid. As well as numerous 
research studies, controlled charging solutions are now advocated by 
policymakers (as seen, for example, with the UK Electric Vehicles (Smart 
Charge Points) Regulations 2021 [5]) and being developed by a diverse 
range of private enterprises including energy utilities and vehicle 
manufacturers. One study [6] assumed that the utility can optimize the 
EV charging load to minimize its impact on the grid assets with power 
system level communication. The authors show that their proposed 
approach significantly increases the number of EVs that can be charged 
at a specific time. Meanwhile [7] quantified the impact of possible 
conflict from smart charging with respect to distribution network and 
transmission network criteria. They concluded that smart charging 
could avoid the need for additional generation capacity in the UK. 
Moreover, the percentage of the distribution grid that requires upgrade 
decreases to 9% with smart charging compared to 28% with uncon-
trolled charging. Another team [8] studied the impact of non-systematic 
EV connections, i.e. EVs do not connect to be charged every day 
necessarily, versus everyday connection peak load and flexibility 
potential. 

While recognizing the value of controlled charging, some authors 
have begun to point to the potential for unintended consequences. Much 
of this has been revealed through assessments of the likely influence of 
various tariff options or pricing arrangements. Two newly introduced 
static Time of Use (ToU) tariffs, specifically designed for EV charging in 
the commercial and industrial sectors, are assessed in [9]. Their analysis 
indicates that these tariffs create new peaks in otherwise off-peak hours 
and are inefficient in reducing load on grid assets. [10] made a similar 
conclusion for ToU tariffs and concluded that uncontrolled charging is 
preferable to a two-step tariff. Times of high wind generation in the 
Netherlands are examined in [11], with the authors observing that the 
electricity price will fall and local network loads could be unduly high 
due to increased EV charging. They concluded that non-systematic plug- 
in should reduce this adverse impact on the distribution grid, though in 
turn this can reduce the real charging flexibility available, especially for 
EVs with larger batteries and lower plug-in frequency. Multiple charging 
strategies were modelled in [12], alongside different load caps to eval-
uate the lifetime of transformers in a workplace. They concluded that 
optimizing just for ToU rates creates higher peaks which is worse than 
uncontrolled charging for the transformer and emphasize the 

importance of capping total load. The impacts of ToU and time-of-export 
tariffs for solar home batteries were analyzed in [13], with concerns 
raised that the peak at low voltage level is not sufficiently reflected by 
ToU tariffs. They identify the risk that overnight load could increase due 
to overnight battery charging when solar is not utilized and conclude 
this consequence could increase for EV charging given their inherently 
larger batteries. The effect of Swiss EV penetration levels on utilization 
of high-voltage substations were studied in [14]. The authors used 
driving statistics to estimate the charging requirements with static and 
dynamic pricing regimes, and also modelled the impact of load on price 
by using a regression model. They conclude that consumers managing 
their charging based on dynamic prices will reduce substation overloads 
compared to static (flat) prices, in a scenario with a low renewable en-
ergy capacity increase. However, in a scenario with high renewable 
generation, dynamic prices can lead to increasing high-voltage grid 
overload. 

There has been a growing recognition that identifying the time 
period when electricity is drawn from the grid is significant in attrib-
uting grid related carbon emissions to demand. Notwithstanding wide-
spread use of the term “Zero Emission Vehicle” the act of driving an EV 
brings responsibility for carbon emissions arising from power stations 
that generate the requisite amount of electricity. Annual average grid 
carbon intensity values have become widely established in carbon 
footprint calculations (for UK data, see [15]). More recently, calls have 
come for carbon assessment to reflect the time varying nature of the grid 
generation mix, with researchers [16,17] advocating dynamic ap-
proaches. Such proposals neglect the nuances of assessing marginal 
impact, as described in [18] and further quantified in [19]. However, 
there can be incompatibilities between the dynamic and marginal ap-
proaches; at the time of writing, short term marginal generation in the 
UK is almost always gas fired, so this metric would offer little value to an 
assessment seeking differences in time of use. While neglecting the true 
marginal impact, a grid averaged dynamic approach gives a clearer 
credit for flexibility initiatives that seek to align electricity demand with 
preferential times for low carbon generation. Accordingly, grid average 
dynamic values are featuring alongside calls for flexibility measures, as 
reflected by the UK ESO’s publication of time varying carbon intensity 
[20]. 

In the work described below we build on the body of smart charging 
research by exploring the influence of a wider range of plausible tariff 
structures. Given that none of the tariffs tested fully avoid an increase in 
peak demand, the paper proceeds to assess their interaction with an 
independent network capacity control. We have used data from a real- 
world smart charging trial to condition a stochastic model for gener-
ating charging demand, connection times and charging data. This 
approach connects control strategies with data on real user behaviour 
and improves on studies which assume common user behaviour by 
introducing heterogeneity in the frequency of charging, charging de-
mand and time of plug-in. 

This work advances understanding of EV charging impacts by (i) 
drawing on a diverse range of plausible tariffs, including stepwise and 
fully dynamic ToU tariffs, (ii) distinguishing between price based con-
trol strategies and separate local capacity management actions and (iii) 
examining how the various charging regimes affect carbon emissions as 
well as grid loading. In regard to aspect (i), studies mentioned above 
have addressed a wide range of tariffs but only dealt separately with 
stepwise [8,9,10,12,13] and fully dynamic [14] tariffs. For (ii), while 
certain studies compare price and capacity optimisation, they assume a 
single controller who can choose which aspect to focus on [11,12]. This 
is entirely reasonable for the workplace scenario addressed by [12]; 
however for domestic charging these factors will often fall to different 
stakeholders and may be managed entirely separately. At present in the 
UK, various tariffs are offered by national energy suppliers reflecting 
temporal dynamics of wholesale energy trading. Meanwhile local ca-
pacity management requires separate intervention from a network 
owner, with a variety of mechanisms reflected through local trials. Our 
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research design seeks to explore this disconnect. For (iii), although the 
time varying nature of grid carbon emissions has seen increasing 
recognition [16,17,20] this has been largely absent from the EV studies 
noted above. Only [6] addresses this aspect, including carbon in the 
charging optimisation, albeit based on a fixed daily generation dispatch 
profile. Further to these three aspects, we introduce a range of grid 
impact metrics which reveal some surprising nuances to the impact of 
different combinations of tariff and EV penetration. While this lacks the 
technical sophistication of the established transformer model used by 
[12], it brings an insight into grid impacts which is more widely appli-
cable, through avoiding dependence on local network topology and 
temperature variations. Finally, our study builds on previous research by 
drawing on data from an extensive EV user trial. With widespread EV 
adoption being a recent phenomenon, early studies typically relied on 
travel surveys of fossil fueled cars to derive patterns of driver behaviour 
[1,10,11,14]. There has been a growing recognition that these ap-
proaches neglect uncertain plug in behaviours which are being seen to 
evolve as EV ranges increase [8]. This has led researchers to use real 
world trial data wherever possible [2,3,4,7,8,12]. Our study draws on 
the Electric Nation dataset, as used by [8], one of the largest trial data 
sets available when our research commenced. 

The following section describes the modelling approach and under-
pinning assumptions. Grid hierarchies and assumptions such as network 
capacity have been developed in a generic manner so that the approach 
can be applied to any network structure. In the Results section, we 
present patterns of electricity demand that arise, alongside key metrics 
which highlight the impact of tariff choices on grid capacity exceedance 
and carbon emissions. Finally, cases that present particular risks for the 
distribution grid are revealed and discussed. 

2. Modelling 

In this paper, we describe the implementation of a model, which 
assesses the dynamic electricity demand pattern arising from a fleet of 
connected EVs. Model code has been made available, open source, at 
[21]. The model is structured to address all relevant network tiers, 
reflect a variety of tariff / incentive structures and allow representation 
of demand from a range of sources, not exclusively EVs. In the imple-
mentation described here, EV demand is allocated stochastically, with 
parameters and weightings drawn from a real world EV user trial. The 
impact of EV load on electricity price is neglected, reflecting a relatively 
near future situation. Accordingly, attention is restricted to lower-level 
secondary substations, where clustering of early adoption could 
reasonably lead to locally increased penetrations of EVs, in advance of 
the national uptake rate. The UK is targeting all new vehicle sales to be 
zero emission at point of use by 2030 [22,23]. Meanwhile, EV sales are 
increasing rapidly, alongside varying support to local charging 
infrastructure. 

The model comprises two main modules, EV simulation and charging 
dispatch.  

• The EV simulation module establishes: number of houses, number of 
EVs, allocation of EVs to houses, grid connection location, charger 
rates and battery capacities. Each charger is designated with a 
particular tariff. For each EV, plugin / out times and energy 
requirement are defined separately for every charging session across 
the whole simulation period. This is implemented as a stochastic 
simulation that draws on data from the smart charging trial as 
described in section 2.2.  

• The charging dispatch module calculates the preferred time of 
charging and energy delivered to each vehicle in every time step. The 
charging strategies and the algorithm for each is explained in section 
2.3. 

In the implementation described here each house is assigned at most 
one EV and they all charge at home. Each house is associated with a 

charger and the charger is connected to a secondary substation in the 
distribution grid. Secondary substations are connected to primary sub-
stations at a higher level based on the number of secondary to primary 
substations, described next. 

2.1. Data 

The Electric Nation trial data is used in this study for simulating EV 
requirements [24,25]. In this trial, led by Western Power Distribution in 
the UK, 673 volunteers were recruited to participate in smart charging 
trials between January 2017 and December 2018. This trial captured 
130,000 charging events and provides a well-established set of data 
required to better understand how users charge their EVs in practice. 
This was one of the world’s largest EV trials at the point when our 
investigation began and the data had become recently available. 

Each EV-charger combination is allocated to one of a range of tariffs, 
informing a price which the charge control algorithm seeks to minimise. 
These represent several current UK electricity tariff structures, as well as 
a flat price and a preference to minimise carbon intensity (CI), all 
collectively described as tariffs hereafter to avoid repetition:  

• Flat: the electricity price is a constant value per kWh over the day, 
weekday, or weekend (p/kWh).  

• Distribution Use of System (DUoS) informed: a stepwise tariff which 
varies with three time bands (green, amber, and red) across the day. 
Red represents the highest price, peak demand period (p/kWh).  

• Economy 7: a two-price stepwise tariff with lower price available 
through 7 overnight hours (p/kWh).  

• Dynamic: a half hourly (HH) varying dynamic price, with discrete 
values for each HH period (p/kWh).  

• Carbon intensity: HH varying dynamic carbon intensity (gCO2/ 
kWh). 

These tariffs (see Fig. 1.b) are not mutually consistent in magnitude, 
given differences in target customer and time frame; however, it is only 
the internal pattern within each tariff that governs model behaviour. 
Accordingly, results are presented only in terms of energy and carbon. 
The DUoS informed tariff is based on a recent tariff provided by an 
anonymous commercial user. The only element which varies with time 
is the DUoS charge, details of which are available at [26]. Typical 
Economy 7 values and times are shown in Fig. 1(b). To represent a dy-
namic ToU tariff, we use the Agile tariff from Octopus Energy (a UK 
energy supplier) taking values from January 2019 as a period with 
relatively stable energy market behaviour. Agile tariff data is available 
at [27]. More recent dynamic ToU price profiles have been affected by 
global issues such as the Covid19 pandemic and recent surges in gas 
prices. Octopus Energy’s Agile tariff for December ’21 is included in 
Fig. 1(b) to illustrate this sensitivity of the average daily profile to wider 
energy market issues. Dynamic ToU tariff profiles are only considered 
under a relatively stable market, reflecting supplier trends to concen-
trate on less complex price structures during this period of uncertainty. 
Of the six energy suppliers listed in a recent UK market comparison site 
study [28], five offered smart tariffs, with all being two tier, step-wise 
tariffs offering a cheaper rate in a fixed off-peak time period. In the 
model, prices are exogenous variables and the interaction between 
electricity demand and dynamic price is not modelled. UK grid carbon 
intensity data is available at [29]. Non-EV load is modelled by multi-
plying the number of houses by domestic load per household captured 
from the Elexon profile depicted in Fig. 1.a [30]. 

As well as using carbon intensity data from [29] to inform one of the 
tariff choices, it is also used later to calculate the grid carbon emissions 
that can be attributed to charging under each tariff. This reflects the 
dynamic nature of grid carbon intensity and whether charging occurs at 
time periods where this is higher or lower. 

The results presented in this paper focus explicitly on the impact of 
EV load at secondary substation level, reflecting a risk that EV uptake in 
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certain local areas could be much higher than average national levels. 
Availability of free or low-cost chargers in an area, access to off-street 
parking, local authority action, commercial targeting or peer to peer 
encouragement from neighbours could all deliver an uneven spatial 
influence. Secondary substations represent the infeed to the lowest 
voltage level in the UK power system. For context, transmission net-
works typically operate at 400 or 275 kV (in England). Distribution 
networks connect through Bulk Supply Points which may see an initial 
voltage reduction before primary substations reduce to 33/11 kV and 
secondary substations reduce to low voltage, i.e. 433 V across three 
phases [31]. A generic UK distribution network was described by [32], 
with each 33/11 kV primary substation supplying six 11 kV feeders and 
each of these feeders suppling eight 11/0.433 kV secondary substations. 

2.2. EV simulation 

The EV simulation module establishes the EV fleet and their charging 
requirements over the simulation period (t1, t2). Each vehicle is allocated 
a battery capacity and the home charger that each is associated with. 
Charging requirements are set for all charging sessions of the fleet over 
the simulation period. Here, a charging session is taken as the time 
period starting when an EV is plugged in and ending when it is next 
plugged out. Charging sessions are assigned with perfect foresight for 
the entire simulation period. 

In the Electric Nation trial, 42% of EV chargers were rated at 3.6 kW 
with the remaining 58% at 7 kW (data available at [33], descriptive 
analysis in [34]). The battery capacity of EVs with 3.6 kW chargers 
varies from 4 to 30 kWh, while the capacity of vehicles with 7 kW 
chargers is between 8 and 100 kWh. EVs with larger batteries are typi-
cally associated with higher rate chargers. In the model, the charger 
rates of 3.6 and 7 kW are allocated to EVs randomly, based on their 
probability in the trial. When the charger rate of each EV is specified, its 
battery capacity is selected randomly from the list of all battery capac-
ities associated with the specific charger rating. Within the Electric 
Nation trial, the frequency of EV plug in was seen to be influenced by 
both the battery capacity and the time of year. Cars with larger batteries 
plug in less frequently than those with smaller batteries. Moreover, the 
frequency of connection increases in colder months, potentially due to 
reduced efficiency coupled with increased heating and lighting demand. 

The number of times (n) that each EV plugs in over each month 
depends on the battery capacity range and the month and the number of 
days of that month. n days are randomly selected from that month. For 
each plug-in day chosen, the time of plug-in and plug-out needs to be 

identified. The profile of plug-in times is derived from Electric Nation 
data. As illustrated in Fig. 2, there is a significant difference between the 
times of connections during weekdays compared to weekends. Car plug- 
in time has a high peak between 4 and 8 PM over weekdays, with a more 
even profile over weekends. The plug-out times were not separately 
reported in the Electric Nation trial. The plug-out probability profile has 
been taken as a mirror image of the plug-in profile, centred around mid- 
day. This reflects an assumption that users departing earlier are more 
likely to be away for an extended period such as a commuting journey, 
while allowing for some shorter trips. It also reflects a high likelihood 
that cars will be home overnight. 

For each charging session, each EV is allocated an energy demand 
sampled from the real demand data in the Electric Nation trial [33]. 
Fig. 3 shows the demand per session reported in the trial, grouped by 
size of battery. It is notable, though not surprising, that the average and 
spread of charging demand per session is seen to increase with the in-
crease in battery size. 

2.3. Charging dispatch 

2.3.1. Charging schemes 
Three types of charging schemes are represented in the model: on- 

demand, smart, and capacity-managed charging.  

• In on-demand charging, charging begins immediately the car is 
plugged in and ends once all required energy has been received.  

• Smart charging is used here to explicitly refer to the case where 
charging is managed in order to gain the greatest advantage from a 
chosen tariff. This effectively represents an automated process that 
could be affected by an on-site controller or remote third party ser-
vice provider.  

• Capacity-managed charging is used here to refer to a separate control 
step that seeks to avoid overload of an assumed grid capacity. 
Imposition of a grid limit has the potential that some EVs do not 
receive their full required energy in an individual charging session. 

Under smart charging each user is allocated to one of the tariffs 
described in section 2.1. Model runs are presented below assuming all 
users adopt the same one of the five tariffs. A balanced case is also 
modelled with a share of 20% of the users allocated to each tariff. 

2.3.2. Smart charging heuristic 
A simple heuristic was developed to minimize the carbon or cost of 

Fig. 1. (a) domestic load for unconstrained customer [30], (b) Electricity price in different tariffs in the UK [26,27], average half-hourly carbon intensity in the 
UK [29]. 
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charging depending on each user’s tariff, described as scheduling here-
after. The output of the scheduling is the energy transferred to each EV 
at each time step, here set to 30 min. At each iteration, the scheduling 
algorithm is implemented over the scheduling window which is smaller 
than the total simulation period. 

In the implementation described here, the scheduling window is set 
to one week, starting from 12 PM on Monday to 12 PM the following 
Monday. If a car remains connected over two sequential scheduling 
windows, it is assumed that the car disconnects as the first window ends 
at 12 PM and immediately reconnects at the start of the next scheduling 
window. Any energy shortfall from the first window is rescheduled into 
the next scheduling window. To do this, another session for this car is 
generated with plug-in time on 12 PM Monday and the plug-out time as 
for the original plug-out time. 12 PM was chosen for the start of 
scheduling windows as fewer cars are typically connected at midday, 
reducing the number of sessions interrupted in this way. 

In each scheduling window the scheduling algorithm, depicted in 
Fig. 4, iterates over all tariffs in set C. If at least one user uses a tariff as 
its criteria for smart charging, that tariff is included in C. CkεC is a matrix 
with two columns: time stamp, t, and the tariff of that time stamp, c. This 

matrix is sorted by tariff in ascending order. The time with minimum 
tariff is selected and all the EVs that are connected at that time and use 
this tariff (EVti) are considered to be charged at this time stamp. Their 
remaining demand is then updated accordingly. In the next iteration, the 
next time with the second smallest tariff is selected and all EVs that are 
connected at that time and use this tariff are charged. This continues 
until all EVs receive their energy demand. 

The subroutine shown to the right of the main column in Fig. 4 is only 
implemented when capacity-managed charging is applied. In this case, 
at each time stamp, the total load from charging EVs in sum(PEVti) is 
compared with the spare headroom of the transformer at that time 
stamp, ht. The spare headroom at each time is the transformer rating in 
kW minus the non-EV load at that time. If the load exceeds the spare 
headroom, some EVs need to be removed from EVti. The EVs in EVti are 
prioritized based on their connection time in the current session. Those 
with shorter connection times are given higher priority. Excluded EVs 
are removed from EVti until sum(PEVti) is smaller or equal to ht. If 
remaining capacity is less than the maximum charger rate of the next EV 
with the highest priority, that EV will be charged at a reduced rate up to 
the spare capacity of the transformer; otherwise, all EVs are charged at 
maximum speed. 

2.3.3. Loads and average loads formulation 
Half-hourly load profiles averaged across each simulation period are 

presented amongst results below, to enable ready comparison between 
simulations. The analysis combines dynamic half hourly values for 
simulated EV load with a static profile to represent established non-EV 
load. Eqn. (1), (2) and (3) detail the average load calculation for each 
of the 48 time stamps for all days, weekdays and weekends respectively. 
The total load at any time stamp is the sum of EV load and non-EV load 
in that time stamp (Eq (4)). 

Pki =

∑n days
d=1 Pkdi

n days
, k ∈ [EV, nonEV, total], i ∈ [1, 48], d ∈ [1, n days]

(1)  

Pwkdays
ki =

∑n wkdays
d=1 Pkdi

n wkday
, k∈ [EV, nonEV, total], i∈ [1, 48], d ∈ [1, n wkdays]

(2)  

Fig. 2. Plug-in/out time profile (Plug-in times from [34]. Plug-out times adopt midday mirrored approach, described in text, below).  

Fig. 3. Electric Nation trial - average charging demand per session (Data 
from [33]). 
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Pwkends
ki =

∑n wkend
d=1 Pkdi

n wkend
, k ∈ [EV, nonEV, total], i∈ [1, 48], d ∈ [1, n wkends]

(3)  

Ptotal,d,i = PEV,d,i +PnonEV,d,i (4) 

d: index for days. 
i: index for time stamps in a day, 1–48. 
k: index for EV, non-EV, or total. 
P: load (kW). 
n_days: number of days of the simulation period. 
n_wkdays: number of weekdays of the simulation period. 
n_wkends: number of weekends of the simulation period. 
Pki: Average EV, non-EV, or total load (kW) in n_days, at time stamp i, 

i ∊ [1, 48]. 

Pwkdays
ki : Average EV, non-EV, or total load (kW) in n_wkdays, at time 

stamp i, i ∊ [1, 48]. 

Pwkends
ki : Average EV, non-EV, or total load (kW) in n_wkend, at time 

stamp i, i ∊ [1, 48]. 
Although a useful indicator, average loads at each time stamp are not 

sufficient to effectively describe network stress. Therefore, other mea-
sures have been introduced to reflect the length of time that the grid is 
under stress as well as its severity. Transformers can tolerate a load 
somewhat above their nameplate capacity for a certain time and yet 

even a short period of overload can be problematic if far beyond the 
level of tolerance. There are various standards based on the type of 
transformer and weather conditions. For instance, the primary trans-
former application and rating policy (TRAN-01–004) states that ONAN1 

transformers can have a generic cyclic overload up to 130% for 3 h. For 
the remaining hours in a 24-hour period, the load of the transformer 
should be 80% or less of the rated capacity to allow the transformer to 
cool down [35]. WPD’s Standard Technique TP4B/2 states that when 
selecting fuses for 11 kV and 6.6 kV transformers, “Transformer over-
loads up to 150% of nameplate rating shall be possible” [36]. 

Overload at any time stamp is taken as the difference between the 
total load at that time and the capacity. If the total load is less than the 
capacity, the overload is zero (Eq (5)). The percentage of exceedance 
incidents is defined by the number of time stamps when exceedance 
happens (Eq (6)), divided by the total number of time stamps in the 
entire simulation period (Eq (7)). The severity of the stress is taken as the 
average of the load divided by the capacity of the substation, only when 
the load on the transformer is higher than its capacity (Eq (8)). 

P overdi = min(0, cap − Ptotal,d,i) (5)  

n over = count(P overdi|whereP overdi > 0) (6) 

Fig. 4. The scheduling algorithm.  

1 Oil Natural Air Natural. 
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%n over =
n over
n HH

× 100 (7)  

P over pos =

∑n days

d=1

∑48
i=1

(Ptotal,d,i |Ptotal,d,i>cap)
n over

cap
× 100 (8)  

Peak =

∑ndays
d=1 Max(Ptotal,i), i ∈ [1, 48]

ndays
(9) 

P_overdi: overload at day d and time stamp i. 
n_over: the number of time stamps with overload. 
%n_over: overload percentage. 
P over pos: Average overload percentage when overload is greater 

than zero. 
cap: The capacity of substation. 
n_HH: the number of half hours in the entire simulation period. 

3. Results 

The following results are drawn from model runs examining sec-
ondary substation level only, with an assumed 384 houses connected 
through low voltage feeders. Each house is taken to have no more than 
one EV and dedicated charger. 

3.1. Smart charging – Assessing peak load impact with increasing EV 
penetration levels. 

Simulations were run with EV penetration varying from zero to 
100% in 5% increments, for each of the tariffs. The results are shown as 
box plots in Fig. 5, representing 50 model runs for each penetration / 
tariff combination. Each data point shows the percentage increase in the 
30 day average half hourly domestic peak due to the additional charging 
demand calculated by subtracting the non EV load at each time period 
from the total with EV load (Eq (9)). 

The increase in peak load varies substantially by tariff, with the 
average increase ranging from 7% to 97% above the non EV peak for 
50% EV penetration. In on-demand charging, the increase in peak is a 
linear function of EV penetration. In this case, plug-in times tend to 
coincide with peaks in non-EV load in the evening and any increase in 
EV penetration increases the peak load. Except at very low penetrations 
(15% or below), the DUoS based tariff leads to a notably greater increase 
in peak than the on-demand case. A similar trend is seen with the 
Economy7 tariff, albeit lower and only exceeding on-demand for pene-
trations above 35%. These two step-wise tariffs present the greatest 

impact for the distribution grid even at modest EV penetrations. This can 
be explained through a combination of the tariff structure and user 
behaviour. Both tariffs drop price at a fixed time in the evening / 
overnight when a large share of vehicles are back at home, connected 
and awaiting charge. 

By contrast, the dynamic tariffs (dynamic price and carbon intensity) 
lead to much less stress on the grid than the stepwise tariffs. Up to 40% 
EV penetration, these tariffs do not give rise to any increase in peak as all 
additional load is accommodated at off-peak times when electricity price 
is lower. As EV penetration is increased above 40%, these tariffs grad-
ually give rise to a new peak load, with combined demand at lower price 
time slots beginning to exceed the traditional non-EV evening peak. This 
result is a feature of applying dynamic prices without grid constraints or 
any price feedback, discussed further in section 4. 

The combination of tariffs selected for the balanced case appear the 
most sympathetic in terms of network stress. Although some increase in 
peak demand is seen for all stages of EV uptake, this remains at a low 
level and is the least of all the cases tested for EV penetrations above 
55%. This increase in peak is still concerning, however, rising above 
50% of the non-EV peak with 100% EV uptake. 

3.2. Smart charging - impact on load profile 

To further explain the increases in peak load seen above, this section 
examines average half-hourly load at discrete time steps, set against an 
assumed secondary substation capacity threshold. Attention is given to 
cases with 40% EV penetration. This represents the highest level, as seen 
in Fig. 5, where EVs can be introduced following dynamic tariffs without 
an increase in the half-hourly average peak. At such levels, only the 
DUoS informed tariff shows an increase in peak greater than on-demand 
charging. An indicative headroom capacity of 30% is selected, being the 
headroom needed to accommodate the half hourly average peak 
resulting from on-demand charging at 40% EV penetration. The output 
is shown in Fig. 6, including the average EV and average non-EV load at 
half-hourly time stamp i∊[1, 48] for all days of simulation, Pki, for 

weekdays Pwkdays
ki , and weekends Pwkends

ki during the entire simulation 
period. 

As noted above, the shape of the load profile is influenced by the 
users’ choices of plug-in times in combination with the tariff’s price-time 
function. This produces some widely varied results:  

• With on demand charging the additional load adds directly to the 
evening non-EV peak with many vehicles arriving home and 

Fig. 5. Increase in domestic peak demand (shown as % of non EV peak) with EV adoption level.  
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Fig. 6. Half-hourly load with various tariff / smart charging assumptions, 40% EV penetration. First three columns show HH load averaged across all days, weekdays 
and weekends respectively. Final column shows discrete loads at all time steps. 
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plugging in across this period. This effect is smaller at weekends with 
plugin times spread more evenly across the day.  

• With the DUoS informed tariff, prices drop at 8:30 PM on weekdays, 
leading to an instantaneous pickup for all EVs that are connected and 
awaiting charge at that time. As a high share of EVs are connected by 
this time, this creates a very sharp load increase. Over weekends the 
price structure is flat so load profile is identical to the on-demand 
case.  

• Economy 7 prices drop at midnight, leading to a sharp increase 
similar to T2 only somewhat later in the overnight period.  

• With both the dynamic price and carbon intensity tariffs, sharp peaks 
in the average profile are avoided with most charging happening 
between midnight and 6 AM.  

• In the balanced case, people use different tariffs and objectives for 
charging. This creates more diversity in selecting the best time slots 
for charging and decreases the overloads and stress on the grid. 

The fourth column of subplots in Fig. 6 shows the discrete half hourly 
load for all time steps across the 30 day analysis period. This reveals a 
very different picture. Having selected a capacity threshold which is 
acceptable for the on-demand case it is seen that all other single tariffs 
show multiple overload events, some of which are of significant 
magnitude. Only the case with a combination of tariffs performs better 
than on-demand from this standpoint. Closer attention is given below to 
quantifying these events. 

3.3. Smart charging – Assessing overload 

Section 2.3.3 noted a diversity of approaches in quantifying trans-
former overload and defined four relevant metrics. These metrics have 
been recorded from a set of 1000 model runs for each tariff combination 
at 40% and 100% penetration levels. Results are illustrated as box plots 
in Fig. 7 alongside average loading. 

Differences are seen when stepping from 40% to 100% EV 

Fig. 7. Overload statistics for 40% and 100% EV penetration for the six tariff schemes. Boxes indicate quartiles, while whiskers show full variability excluding 
outliers identified as separate points. 
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penetration, with the on-demand case now resulting in the greatest 
number of overloads. The length of overloads increases across all tariff 
cases while remaining highest for the on-demand case. Again the com-
bination case remains the most benign, yet even this case shows some 
lengthy overload events. 

3.4. Carbon emissions 

Carbon emissions attributed to grid electricity for charging the ve-
hicles are presented in Fig. 8. From this perspective, all smart tariffs 
deliver a considerable improvement over uncontrolled charging. Of the 
stepwise tariffs, Economy 7 results in much lower carbon emissions than 
a DUoS informed option, reflecting reduced carbon intensity during the 
later overnight periods. Dynamic tariffs tend to reduce emissions 
further, with the dynamic price based tariff leading to emissions close to 
the tariff that seeks the very lowest carbon periods. 

3.5. Capacity-managed charging 

From the results above it was seen that none of the plausible smart 
charging tariffs (or combination) was successful in completely avoiding 
an increase in peak demand, with some element of overload seen in each 
case, even at just 40% penetration. This raises the question whether 
alternative control strategies would be more effective at protecting the 
local network. To test for this, an algorithm was implemented which 
sought to reschedule all load away from the peak period. Each tariff case 
was simulated with 100% EV penetration. The average half-hourly loads 
in all days, weekdays, and weekends as well as the individual loads 
versus transformer capacity are presented in Fig. 9. 

With 30% headroom assumed, as above, the capacity managed 
approach was seen to successfully deliver the required energy in most 
cases, with an almost negligible level of unserved demand in some 
model runs. A sample of 10 model runs were examined in detail, 
revealing no unserved demand in 6 of the runs and no more than 2 car 
charging sessions, out of 7376, being affected in each of the other runs. 
These tended to be small levels of under-delivery for large session 
charging requirements, at most a 7kWh shortfall from a 73.5kWh 
requirement. 

Under this capacity managed regime, the influence of the individual 

tariffs on the average profile remains notable. On-demand charging 
leads to an extended period, in the early evening, where transformer 
capacity is saturated. Although within the assigned limit, such extended 
high demand still risks damage to network infrastructure. Similarly, 
step-wise tariffs also lead to periods of saturated capacity, beginning in 
the late evening for the DUoS informed tariff and after midnight for 
Economy 7. The dynamic tariffs give rise to less regular periods of 
maximum load, with the average profiles showing some headroom 
remaining at all time periods. 

4. Discussion 

The heterogeneity of EV users and their diverse requirements for 
charging have been widely discussed in the literature. Different user 
typologies (e.g. commuter/non-commuter, income level, etc.) lead to a 
range of charging requirements in terms of plugin / out times and energy 
demand which are important factors in understanding the aggregate 
charging load. The results above show the need to consider specific 
tariffs in combination with user requirements when assessing the impact 
of EV charging, considered in terms of load profile as well as peak de-
mand and the frequency and size of overloads. 

The results have shown substantive differences in the EV charging 
load profiles that result from the interplay between a range of tariff 
design and behavioural choices. Some stochastic variation was applied 
to user actions, notably connection time and state of charge; however 
the governing probabilities were drawn from a single user study – the 
Electric Nation trial. This trial reflects a particular moment in time in 
terms of vehicle battery size (and subsequently ranges) and plausibly 
some self-selection bias from the early adopters choosing to participate. 
Nonetheless, a wide spread in plug-in times and energy needed per 
charge leads to a lower grid impact from on-demand charging than 
suggested by some earlier studies. Rather than explicitly examining user 
behaviours, the model runs described above were designed to explore 
the impact of a range of plausible tariff designs, with automated design 
response. Tariff choice was seen to have a very significant impact on the 
aggregate load profile, with certain tariff choices leading to grid over-
loads that are potentially worse than the “flat” on-demand case. 

The impact of different tariffs was seen to vary with the EV pene-
tration level assumed. At low penetrations (<15%) the uncontrolled 
tariff makes a small impact to peak load, by directly increasing the 
evening peak (see Fig. 5). However, at penetrations above this, stepwise 
tariffs lead to a higher overnight peak which begins to dominate. At very 
high penetrations (greater than 80%), even the fully dynamic tariffs lead 
to a new peak that is higher than the uncontrolled case. This arises as 
these tariffs exhibit a single cheapest half-hour period which attracts 
whatever demand possible, considered further below. At modest (40%) 
penetration, the DUoS informed tariff gives rise to the largest number of 
overload events and the highest percentage increase in peak. In turn, 
with 100% EV penetration the uncontrolled tariff leads to the highest 
number of overloads. 

Stepwise tariffs are seen to have the potential to be particularly 
problematic. This concern has been recognized for some time. In the UK, 
Economy 7 and similar tariffs lead to a small but notable demand peak 
after midnight. However, in this study we see that the combination of 
overnight cheap periods with the predominance of cars being connected 
and available to charge at this time exacerbates the impact. This con-
trasts with the smoothing to on-demand charging that comes from 
staggered evening homecoming. The combination of user behaviour and 
tariff design is critical here. 

In noting concerns with dynamic tariffs it must be stressed that this 
study does not incorporate price feedback. Results with EV penetrations 
over 85% have shown new demand peaks occurring, due to time shifted 
EV charging, which exceed the previous non-EV evening peak. This 
would be unlikely were demand feeding back effectively to price. As the 
level of load seeking low prices increases it might be expected that 
increased demand at any given time would lead to a simultaneous price 

Fig. 8. Comparative carbon emissions per unit of charge for the five tar-
iff options. 
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increase and a smoothing effect would occur, reducing the level of de-
mand shifted. However, in the current market, dynamic tariffs follow 
wholesale prices which emerge nationally so such smoothing would only 
occur when national EV penetrations reach high levels. This raises the 
question whether EV uptake will cluster spatially such that excessive 
local penetrations would be seen before national price smoothing occurs 
and, if so, how high might such local penetrations reach. This would 
seem most likely to occur at the lowest network tier first (secondary 
substation level). Further research to examine this potential and effec-
tive monitoring of EV uptake would be recommended. Some element of 
local pricing could mitigate this risk, though true local, dynamic pricing 

might be seen as excessively complex and potentially inequitable. 
Single tariff cases, where all users adopt the same tariff, lead to the 

most extreme load characteristics seen, whereas the combined case 
appears less challenging for grid operation. It would be hoped that 
widespread adoption of a single tariff would be avoided in an effective, 
diversified market. However, there is a risk that local factors, such as 
neighbourhood cooperation, targeted marketing or local authority 
support could lead to a single scheme being adopted intensively in one 
area. There is also a risk that multiple tariffs could be driven by a single, 
synchronizing factor such as the wholesale price or the DUoS pricing 
scheme. Such effects could present a network risk, which again suggests 

Fig. 9. Half-hourly load with various tariffs combined with capacity-managed charging, 100% EV penetration. First three columns show HH load averaged across all 
days, weekdays and weekends respectively. Final column shows discrete loads at all time steps. 
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a need to understand tariff adoption with high spatial granularity. 
By contrast with metrics of grid stress, all smart tariffs present an 

improvement in carbon emissions, with a true dynamic price closest to a 
tariff that tracks carbon intensity directly. The most striking difference is 
seen with the two step-wise tariffs. With consistently low overnight 
carbon intensity due to reduced demand, a traditional Economy 7 
approach leads to a much greater reduction in carbon emissions than a 
tariff that simply seeks to avoid the evening peak as represented by 
DUoS charging bands. Energy suppliers have begun to offer a variety of 
EV specific tariffs, many of which are simple step-wise tariffs to avoid 
the complexity of true dynamic pricing. The results suggest that signif-
icant carbon benefit could be realized by ensuring such tariffs actively 
target low carbon times, rather than just avoiding the time of most 
extreme peak demand. In the longer term, as with the potential for price 
feedback, high levels of demand response can be expected to change the 
pattern of carbon intensity. This potential is of strong interest for future 
research, together with the competing response between EV charging 
and other demand sectors. 

The approach implemented has sought to distinguish between the 
influence of smart charging, following plausible commercial tariffs 
(which would likely be influenced by wholesale prices and national scale 
factors) from a separate capacity management strategy to control any 
unacceptable demand peak which could arise from local clustering of EV 
adoption. Certain tariffs were seen to help mitigate the peak but these do 
not offer a perfect solution. Meanwhile a strategy to deliberately allocate 
charging away from any overload showed that it was possible to serve all 
required charging demand in most cases with unserved demand negli-
gible even in the rare model runs where it occurred. 

Although unserved demand resulting from capacity management 
was negligible, given the 30% headroom assumption, the implementa-
tion process raised some challenges. We were not able to define a single, 
inherently fair approach to share any unserved demand which should 
arise. Any approach adopted essentially represents a human judgement 
and could be seen as unfair by some participants. There is potential for 
complexity in markets such as the UK where a multitude of actors could 
have a role in such decision making. Control actions implemented by a 
network operator might differ from those enacted by charge control 
management companies acting on a commercial basis. Expectations 
around visibility to the end user and approach to cost / benefit sharing 
need scrutiny as stakeholder responsibilities and commercial offerings 
evolve. 

The analysis presented above concentrates specifically on flexible 
load from charging EVs, while non-EV load is treated as a fixed, static 
profile. There are numerous opportunities to shift electricity demand for 
other services, especially with demand growth anticipated from heat 
electrification. This could bring a comparable risk that other flexible 
demand also grows unevenly in certain localities and amplifies concerns 
raised by this paper. The framework described can be readily extended 
to address flexibility in non-EV loads and the authors are actively 
seeking opportunities to progress research with this in mind. 

5. Conclusions 

We have presented a charging dispatch model, developed to assess 
the impact of smart EV charging to the power grid under various tariff 
designs and multiple vehicle adoption levels. The work has covered a 
wider range of tariffs than previous studies, while examining the sepa-
rate implementation of a capacity management strategy and assessing 
the power grid carbon emissions from each scenario. Insights have been 
gained regarding the risks and benefits from certain tariff designs, the 
change in these risks with increased EV adoption and the need to ensure 
a diversity of tariffs are adopted. 

Stepwise tariffs presented the greatest threat of grid overload, lead-
ing to greater peaks at different times to established non-EV peak loads. 
On-demand charging can lead to longer and more frequent overloads, 
though staggered homecoming of Electric Nation participants limited 

the increase in peak demand seen. A combination of tariffs reduced the 
grid impact well below that of any single tariff. Regulatory intervention 
may be required to avoid mass adoption of single tariffs or over-similar 
tariffs. 

All smart tariffs result in a reduction in charging related carbon 
emissions from the electricity grid, with the greatest saving seen from a 
true dynamic tariff. A stepwise tariff which specifically targets low 
carbon time periods has potential to deliver notably greater savings than 
one that just avoids peak demand. This has clear implications for the 
design of EV tariffs, with many energy suppliers currently favouring 
stepwise offerings. 

At higher EV adoption levels, smart charging under market-based 
tariffs fails to avoid peak load increase. By contrast, targeted capacity 
management was able to eliminate overload even at very high EV uptake 
levels, with only rare, very small levels of unserved demand (given 30% 
non-EV headroom at secondary substation level). Such active control 
measures could become necessary for network operators if clusters of 
high local EV penetrations occur ahead of national EV adoption. Care 
would be needed to ensure a small number of end users do not face an 
unfair burden if such actions are implemented. 
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