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A control structure for bilateral
telemanipulation

William Harwin1

School of Systems Engineering, University of Reading, UK

Abstract. A framework for considering the stability of bilateral tele-
manipulator systems is considered. The approach adapts the work of
Lawrence[3] to use a state-space formulation thus simplifying the identi-
fication of the stability conditions from the eigenvalues of the feedback
system. Both numerical and symbolic stability conditions are considered.
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1 Background

Telemanipulator theory forms the basis for applications that include remote
handling, surgical robots, exoskeletons and haptic systems[5]. In many cases,
to avoid the complexity of the control system, the system operates as a strict
master-slave system where position coordinates are generated by the master
and the slave is servoed to follow these positions. In such cases the operator
must rely on visual feedback when contact is made between the slave and the
remote environment. Better control can be achieved when position and force
information available at the slave is directed back to the master. One example
is the OOEC Magpie[1] which is a foot operated assisted dining device that
give direct mechanical feedback of forces encountered by the eating utensil to
the operator’s foot. A similar principal applies to orthotic devices such as the
Wilmington Robotics Exoskeleton (WREX)[4] where there is a close coupling
between the orthosis and the arm.

In more complex telemanipulator systems some form of closed-loop control
around the actuator mechanisms is needed. In most cases this is based on position
feedback control of small permanent magnet motors. Where there is backdrivable
transmission between the motor and the linkage joint it is possible to estimate
the external forces applied to the linkage[6], and these forces can then be reflected
into the associated master or slave.

Lawrence[3] identified four connections that can be made between the master
and slave of a backdrivable linkage telemanipulator system that can then allow
permutations of position, force, impedance or admittance to be reflected into
the master and slave systems.

2 Simplified structure of a master-slave telemanipulator

A variation of the Lawrence[3] control structure is shown in Fig 2 It consists of



Fig. 1. Bilateral telemanipulator as a coupled control system. The upper system (C1

P1) will be considered as the master and the lower as the slave although in general the
master and slave can be exchanged without loss of generality

two control systems that are assumed to be backdrivable. Thus the upper part of
the figure (the master) consists of a plant P1 that is assumed to contain the robot
linkage and transmission, and the controller C1 is assumed to also include the
characteristics of the actuator. Evidently with this structure in a unity closed-
loop feedback system as shown it is possible to show that the position gain y1/u1
is given as

y1 = (1 + P1C1)−1P1C1u1

Thus under a restricted set of conditions P1C1 can be considered to dominate
with respect to unity and the output will try to match the input. These condi-
tions require a high controller gain without local instability so are likely to be
realised when the system is tuned with an algorithm such as Zeigler-Nichols. In
a similar argument the gain due to the ’disturbance’ f1 can be expressed in the
form

y1 = (1 + P1C1)−1P1f1

and in this case with the same restricted set of conditions the admittance of the
mechanism, the position response to the disturbance force f1, can be considered
to be C1. The controller gain can be seen to relate directly to the impedance
(stiffness) of the closed-loop system and inversely to the admittance.

The four gains k1, k2, k3, k4 in the controller structure shown in Fig 2 can be
considered in two parts. Gains k1 and k2 simply set the position demand, master
to slave and slave to master. To assess the effect of the remaining two gains k3
and k4 it should be noted that the gains k1k4 supplement the controller C1 and
the gains k2k3 supplement the controller C2. With this adaption the impedance
of the master can be considered to be set by C1(1 + k4k1) and the stiffness of



the slave is set by C2(1 +k2k3). Alternatively the two controller gains k1, k3 can
be chosen to be an estimate of f1 and scaled to be a force demand of the slave
with a similar argument for the gains k2, k4[6].

Thus it can be seen that forces or positions from the master can be reflected
into the slave, and vice versa.

2.1 A simplified state-space representation of a bilateral
telemanipulator.

If we assume each ’plant’ is a mass and damper so ẋ = Ax + Bε and y = Cx.
This assumption provides a minimal system that uses Newton’s second law along
with the damper to provide a channel for the energy dissipation.

If each system has two states and decoupled we can generate a combined
state matrix

where x = [x1 ẋ1 x2 ẋ2]T and ε = [ε1 ε2]T

For example the figure without the gain terms k1 to k4 could be considered
as

A =


0 1 0 0
0 −b1 0 0
0 0 0 1
0 0 0 −b2

 B =


0 0
c1 0
0 0
0 c2

 (1)

The output matrix C then selects outputs y1 and y2

C =

(
1 0 0 0
0 0 1 0

)
A gain matrix can be identified from[

1 −k4
−k3 1

] [
ε1
ε2

]
=

[
−1 k2
k1 −1

] [
y1
y2

]
That is ε = Ky where

K =

(
−k1 k4−1

k3 k4−1 −
k2−k4

k3 k4−1
− k1−k3

k3 k4−1 −
k2 k3−1
k3 k4−1

)
The feedback gain and original system can be combined to for a new state-

space system of the form.

ẋ = (A−BKC)x+BKr

So the revised A matrix is

A′ =


0 1 0 0

c1 (k1 k4−1)
k3 k4−1 −b1 c1 (k2−k4)

k3 k4−1 0

0 0 0 1
c2 (k1−k3)
k3 k4−1 0 c2 (k2 k3−1)

k3 k4−1 −b2

 (2)



We can crosscheck see it is still stable by setting the k gains to 0 and testing

the eigenvalues, which require negative real part of the expression− b1
2 ±
√

b12−4 c1
2

Setting any one of the gains k1, k2, k3, k3 to be non zero makes no change to the
eigenvalues and hence to the system stability.

The eigenvalues of the full system2 where all the gains k1, k2, k3, k3 are set,
can be computed in Matlab but are too large to be of any value.

2.2 A strict symmetrical bilateral telemanipulator

By setting the master and slave to have identical components as well as ensuring
k2 = k1 and k4 = k3 we get a symmetrical bilateral telemanipulator. In this case
the eigenvalues relatively simple, that is

λ = −b1
2
± 1

2

√
4C1

1 + k1
k3 − 1

+ b1
2

λ = −b1
2
± 1

2

√
4C1

k1 − 1

k3 + 1
+ b1

2

The four values come about because k1 and k3 range from 0 to ∞ Evidently
setting k3 = ±1 would result in an unstable response.

Essentially need the C1 term to be negative. C1 itself must be positive so k1
must be less than 1 and k3 greater than 1. This strict arrangement is of limited
value.

2.3 A simplified identical bilateral telemanipulator

A further simplification is to make the master and slave identical so that the
controllers c1 and c2 are the same proportional gain, and both plants have a the
same damping term. Under these conditions the eigenvalues are considerably
simpler and the four values can be computed as.

The revised A matrix becomes

A′ =


0 1 0 0

− c1 (k1 k4−1)
k3 k4−1 −b1 − c1 (k2−k4)

k3 k4−1 0

0 0 0 1

− c1 (k1−k3)
k3 k4−1 0 − c1 (k2 k3−1)

k3 k4−1 −b1


so the eigenvalues are

λ = −b1
2
± 1

2

√
4 c1 + 2 c1 β − b12 − 2 c1 k1 k4 − 2 c1 k2 k3 + b1

2 k3 k4
k3 k4 − 1

where

β = ±
√
k1

2 k4
2 − 2 k1 k2 k3 k4 + 4 k1 k2 − 4 k1 k4 + k2

2 k3
2 − 4 k2 k3 + 4 k3 k4



Fig. 2. Movement of eigenvalues towards the positive real axis. Test conditions are
m1 = m2 = 1, b1 = .2 b2 = .24, c1 = c2 = .1, k1 = 2, k3 is set to the values −1.5 0 1
and 1.5. k4 is varied between −0.1 and 0.5. Note that for values of k3 below 1.5 the
eigenvalues all move across into the positive half plane. Thus unusually a higher gain
results in a more stable system, however this is at the expense of the forward position
gain of the master-slave system.

3 Numerical simulation

Further insight is possible by numerical simulation. It is first assumed that the
master and slave are independently stable via the linear controllers c1 and c2.
Although the numerical simulation could enforce the master and slave to have
identical plant and controller gains, a slightly less restrictive condition is inves-
tigated where the master and slave are simply close (in the sense of the damping
values b1 and b2 having similar values. The simulations are all done with k1 set
to 2 so there is a position magnification of 2.

4 Discussion

In reality exoskeletons and telerobotics are non-linear thus further complicating
the stability analysis. Local stability can be considered by linearising around a
set of operating points however it is unlikely that a completely general stability
condition can be set, in particular once other nonlinear effects start to manifest,
in particular the discontinuous forces that result from the slave making contact
with the environment. It is possible that gain scheduling via Linear parameter-
varying control, or passivity estimators[2] may allow changing the gains to ensure
stability of complete system across all operation modes.



Fig. 3. Step response of the numerical system with only the position forward gain k1.
The response in this case can be seen to be stable with the master acting as a second
order system and the response from the slave following a forth order response.

5 Conclusions

This paper outlines the control considerations for a bilateral force reflecting
feedback mechanisms, in particular the eigenvalues of a simple telemanipulator
with no attempt to convey slave forces back to the operator, and a force feedback
approach that uses the controller error term as an indication of impedance. The
paper outlines a convenient state-space representation of a simple master-slave
telemanipulator that facilitates analysis.
Acknowledgements. The authors is pleased to acknowledge the help of Gareth
Barnaby and Rory Mangles who helped to highlight the structure of bilateral
telemanipulation during their final year project.

References

1. Bajcsy, R., Kumar, V., Harwin, W., Harker, P.: Rapid design and prototyping of
customised rehabilitation aids. Communications of the ACM: Special Section on
Computers in Manufacturing 39(2), 55–61 (February 1996)

2. Hannaford, B., Ryu, J.: Time domain passivity control of haptic interfaces. IEEE
Trans. on Robotics and Automation 18(1), 1–10 (Feb 2002)

3. Lawrence, D.: Stability and transparency in bilateral teleoperation. Robotics and
Automation, IEEE Transactions on 9(5), 624–637 (Oct 1993)

4. Rahman, T., Sample, W., Jayakumar, S., King, M.M., et al.: Passive exoskeletons for
assisting limb movement. Journal of rehabilitation research and development 43(5),
583 (2006), http://www.rehab.research.va.gov/jour/06/43/5/pdf/Rahman.pdf

5. Salisbury, K., Conti, F., Barbagli, F.: Haptic rendering: introductory concepts. Com-
puter Graphics and Applications, IEEE 24(2), 24–32 (2004)

6. Thomas, R., Harwin, W.: Estimation of contact forces in a backdrivable linkage for
cognitive robot research. In: Towards Autonomous Robotic Systems. pp. 235–246.
Springer Berlin Heidelberg (2014)


