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Cooperative Perception With Learning-Based V2V
Communications

Chenguang Liu, Yunfei Chen, Senior Member, IEEE, Jianjun Chen,
Ryan Payton, Michael Riley, and Shuang-Hua Yang, Senior Member, IEEE

Abstract—Cooperative perception has been widely used in
autonomous driving to alleviate the inherent limitation of single
automated vehicle perception. To enable cooperation, vehicle-
to-vehicle (V2V) communication plays an indispensable role.
This work analyzes the performance of cooperative perception
accounting for communications channel impairments. Different
fusion methods and channel impairments are evaluated. A new
late fusion scheme is proposed to leverage the robustness of
intermediate features. In order to compress the data size incurred
by cooperation, a convolution neural network-based autoencoder
is adopted. Numerical results demonstrate that intermediate
fusion is more robust to channel impairments than early fusion
and late fusion, when the SNR is greater than 0 dB. Also,
the proposed fusion scheme outperforms the conventional late
fusion using detection outputs, and autoencoder provides a good
compromise between detection accuracy and bandwidth usage.

Index Terms—Cooperative perception, machine learning, V2V
communications.

I. INTRODUCTION

PERCEPTION of the dynamic environment plays a vital
role in autonomous driving. Due to the advancement

of sensor technologies and deep learning algorithms, the
performance of 3D detection for autonomous vehicles has
been continuously improved with 3D scanners, such as light
detection and ranging (LiDAR) [1], [2]. LiDAR can sweep
the surrounding by emitting and detecting the reflected laser
light to obtain a 3D point cloud, which contains rich geo-
metric, shape, and scale information. However, the detection
performance of a single autonomous vehicle (AV) relies on the
onboard sensors’ physical capabilities, including resolution,
detection range, and scan frequency. When the target objects
are occluded or distantly located, a single automated vehicle
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cannot provide sufficient information to detect and range this
object accurately. This performance degradation may conse-
quently lead to severe driving safety issues.

To alleviate the inherent limitation of a single AV per-
ception, a cooperative perception system has been proposed,
which consist of one ego car and multiple connected au-
tomated vehicles (CAVs) to leverage the information from
multiple viewpoints. The CAVs can transmit their sensed in-
formation to the ego vehicle through vehicle-to-vehicle (V2V)
communications so that the ego vehicle can aggregate the re-
ceived information for best detection. Several works have been
conducted on cooperative perception using different types of
shared information, including raw point cloud data (i.e. early
fusion) [3], intermediate features (i.e. intermediate fusion) [4]–
[8] and detection outputs of single CAVs (i.e. late fusion) [9].
However, although the transmission data size [5], [7], time
delay, and imperfect localization [6] have been considered in
these works, none of them has considered communications
channel impairments. In practice, V2V communications will
suffer from the obstructed line of sight and channel distortion
due to mobile antennas and multi-path fading. In a collabora-
tive object detection system, these V2V channel impairments
could result in severe performance degradation.

Previous works have neglected communication channel im-
pairments. To address this, we first evaluate the detection
performance of a cooperative perception system consider-
ing communications channel impairments for different fusion
schemes and shared information. Based on this evaluation, we
propose a new late fusion that utilizes intermediate features
to leverage their robustness. Moreover, to reduce the data size
incurred by fusion for cooperation and mitigate signal distor-
tion, a convolution neural network (CNN)-based autoencoder
is adopted. Previous works only used autoencoder to compress
data but without channel impairment and signal distortion
as studied in this work. Numerical results show this new
fusion scheme outperforms the conventional late fusion, and
the proposed use of autoencoder can balance the requirements
on accuracy and data size with channel impairments.

II. SYSTEM MODEL

A. V2V communications model

The V2V communications system for cooperative percep-
tion is shown in Fig. 1. Consider a single-input single-output
(SISO) system with free-space path loss and Rician fading.
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Fig. 1: Cooperative perception with V2V communications. (a)
Early fusion. (b) Intermediate fusion. (c) Late fusion.

When the k-th CAV transmits the information to the ego
vehicle, the received signal is

yk = Λkhkxk +wk (1)

where Λk =
√

p0

dn
k

denotes the path loss with p0 determined
by antennas and channel characteristics, dk being the distance
between transmitter and receiver and n being the path loss
factor, yk ∈ CL×1 and xk ∈ CL×1 denotes the complex-
valued received signals and transmitted signals, respectively,
hk denotes the Rician fading channel following CN (µ, σ2

h),
wk denotes the additive white Gaussian noise following
CN (0, σ2

w). Assume that the transmitted signals are recovered
by zero-forcing detector with perfect channel state information
(CSI).

To leverage the information from multiple CAVs, denote the
shared information at the ego car as

f = F (xego, x̂1, x̂2, ..., x̂K) (2)

where F (·) denotes the fusion algorithm to aggregate the
shared information, xego denotes the information sensed at
the ego vehicle itself and x̂k denotes the recovered sensed
information from yk for the k-th CAV, k = 1, 2, · · · ,K.

B. Detection backbone

In this work, the same backbone algorithm as SECOND [2]
is used for cooperative perception. SECOND is a deep learn-
ing based approach, which inherits the end-to-end trainable
structure of VoxelNet [1] and adopts sparsely embedded con-
volutional layers to improve the efficiency of object detection.

The SECOND detector has three components: a voxel
feature extractor (VFE), a sparse convolution middle layer, and
a region proposal network (RPN). Firstly, raw point clouds are
iteratively converted into voxel representation by assigning the
points to the corresponding voxels. Then, a voxel-wise feature
encoding layer is applied to the points in each voxel to extract
their point-wise features. Subsequently, a sparse convolutional
layer is applied to learn the 3D voxel features and reshape
them to 2D image-like data. Specifically, sparse convolutional
layers only apply the convolution to the non-zero inputs of the
sparse embeddings, without processing all inputs. This could
greatly reduce the computation cost and improve the efficiency
when many of inputs are zero. Similar to the residual structure,
RPN conducts two levels of downsampling and upsampling
for the input features after sparse 3D convolution and then
concatenates the outputs of each level into a feature map.
Downsampling is performed by multiple layers of 2D convolu-
tion following batch normalization and ReLU activation, while
upsampling utilizes one layer of deconvolution to restore the
data size. Finally, a single-shot detector (SSD) is used to output
the classification results of objects and the regression results of
box localization. Instead of using separate networks in region
proposals and objects, SSD generates object detection results
with a single feedforward passing through the network, which
is computationally more efficient.

C. End-to-end training

End-to-end training is adopted for cooperative perception
with V2V communications, as the end-to-end trainable struc-
ture of SECOND allows any part of the information to be
transmitted through the learning-based communications sys-
tem. Since CAVs have different coordinates, the raw point
clouds and detection outputs need to be normalized for each
axis to follow the distribution with mean 0 and variance 1 for
transmission. In this case, the learning-based communication
and the detection algorithm can be trained together using the
same loss function as in SECOND [2]. Signal distortion during
communication can also be considered in training.

III. COOPERATIVE PERCEPTION WITH LEARNING-BASED
V2V COMMUNICATIONS

A. Conventional fusion schemes

As shown in Fig. 1, the conventional cooperative perception
systems can be categorized into three types: early fusion,
intermediate fusion and late fusion, which share the raw point
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clouds, intermediate features and detection outputs, respec-
tively. The raw point cloud has the most information, but its 
transmission requires the largest bandwidth. The detection out-
put consumes the least bandwidth but has the least information. 
Intermediate features are extracted from the raw point cloud 
to reduce the amount of the information transmitted.

At the receiver side, early fusion simply concatenates the 
received point clouds to aggregate the information, since the 
raw point clouds are unordered and transformation invariant. 
Before concatenation, pre-processing is applied by cropping 
and filtering them according to the detection range to save the 
cost of computation. For intermediate fusion, such as attentive 
fusion [5], it adopts the downsampled features before decon-
volution. Then, these features are processed by an attention-
based neural network to obtain higher-level representations 
iteratively based on the number of residual layers. Unlike 
early fusion and intermediate fusion that require collaborative 
learning at the receiver, late fusion only uses the detection 
outputs from all CAVs. This simplifies t he a ggregation of 
the information from CAVs without offline l earning. I n late 
fusion, the detection outputs are selected by non-maximum 
suppression (NMS) and filtered b y t he d etection r ange to 
obtain the final outputs.

These three systems have been proposed in the literature 
without considering wireless channel impairments. However, 
the raw data, intermediate features and detection outputs 
may have different robustness against channel impairments. 
Thus, this work will analyze their performances considering 
impairments.

B. New late fusion using convolution features

Fig. 2: The cooperative perception using convolution features
in late fusion.

Based on the levels of convolution, the intermediate features
can be the downsampled feature, the 3D convolution feature
and the 2D convolution feature. The 3D and 2D convolution
features are generated by the 3D SpConv and RPN, respec-
tively, while the downsampled feature is by the downsampling
convolution before deconvolution in RPN.

In the conventional scheme in Fig. 1(b), only the downsam-
pled feature is used. In this work, new late fusion schemes
using the 3D and 2D convolution features are proposed, as
in Fig. 2. The reason is that intermediate convolution feature
has rich information about the raw point clouds, and late
fusion does not need offline training. This could provide

robustness and computation efficiency for the ego vehicle.
However, this requires the ego vehicle to correctly generate
the detection outputs from received convolution features for
each CAVs. Therefore, an autoencoder is applied as encoder-
decoder to compress the convolution features at the transmitter
and recover the desired information at the receiver.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, the effects of channel impairments are first
examined. OPV2V [5] is used as the training and evaluation
dataset. Attentive fusion [5] is used for the intermediate fusion.
The training uses the Adam optimizer with a learning rate of
0.002, and the number of epochs is 60 with a batch size of 2.
Consider Rician fading with Rician K factor of 1 and additive
white Gaussian noise with signal-to-noise ratio (SNR) from -
10 to 30 dB. Average precision (AP) is adopted to measure the
detection accuracy by calculating precision and recall values
at different thresholds of intersection over union (IoU) and
averaging the precision according to the recall values to obtain
the AP score. Precision is the percentage of number of true
positive out of the total detections, while recall refers to the
percentage of number of true positive out of the total number
of ground truth objects. The computation uses the Oracle
Cloud Infrastructure with NVIDIA Tesla V100.
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Fig. 3: Average precision of cooperative perception for differ-
ent fusion schemes.

A. Effects of channel impairment

Fig. 3 shows the performance of cooperative perception
for different fusion methods. For communications with noise
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and fading, the accuracy of early fusion has a stable increase 
from 30% to 50% for IoU = 0.7 and from 35% to over 
70% for IoU = 0.3, when the SNR increases from -10 to 30 
dB. For late fusion, the accuracy ranges from 20% to 80%
for IoU = 0.3 and from 10% to 75% for IoU = 0.7, which 
outperforms early fusion when the SNR is larger than 10 dB. 
However, intermediate fusion has very stable accuracy over 
76% for IoU=0.7 and 80% for IoU=0.3 for all SNRs. Thus, 
intermediate fusion has robustness to noise and fading.

For communications with path loss, fading and noise, in-
termediate fusion has similar accuracy to the case without 
impairments when the SNR is greater than 10 dB. However, 
the accuracy drops from above 80% to about 10% when 
the SNR decreases from 10 to -10 dB. Different from the 
intermediate fusion, the accuracy of early fusion and late 
fusion increases as the SNR decreases from 10 to -10 dB. 
This is because the unreliable received raw point clouds and 
detection results are filtered out due to large distortion beyond 
the physical detection range. Thus the ego vehicle relies 
more on its own measurement when SNR is below 10 dB. 
Therefore, using more reliable raw point clouds and detection 
results could lead to an accuracy improvement. In addition 
to the path loss, a Gaussian disturbance with a mean 0 and 
variance 0.1 is added to the CSI to simulate the imperfect 
CSI. This causes around 10% performance degradation to the 
intermediate fusion while it has limited effects on early fusion 
and late fusion when SNR is less than 20 dB.

B. Effects of path loss factor
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Fig. 4: Average precision for different path loss factors.

Fig. 4 shows how the performance varies with the path loss
factor. For early fusion, it is barely affected by the path loss
factor but its accuracy remains low at around 30% and 50% for
IoU = 0.3 and 0.7, respectively. Late fusion degrades from over
75% and 50% to around 10% and 30%, as the path loss factor
increases from 1 to 2 and remains low. Intermediate fusion has
high accuracy of above 80% until n = 2.5 before a sharp drop
to about 40% when n = 3. Thus, transmitting intermediate
features is the best choice when n ≤ 2.5. However, early
fusion has a stable performance regardless of the path loss
factor and a similar accuracy to intermediate fusion for IoU
= 0.7 when n = 3. Considering the large bandwidth required
for transmitting raw point clouds, transmitting intermediate
features is more cost-efficient.

C. New late fusion using 3D and 2D features
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Fig. 5: Average precision using different intermediate features
in the late fusion.

Fig. 5 demonstrates the performances of late fusion using
different convolution features. A CNN-based autoencoder is
also used as the encoder-decoder to compress the 3D features,
which has 64 times of data compression for the sparse features
before transmission. First, new schemes using 2D and 3D
convolution features perform better than the conventional late
fusion using detection outputs, as the intermediate features are
more robust than the detection results as transmitted informa-
tion. Furthermore, 3D convolution features can achieve over
70% accuracy even when the SNR is -10 dB. It outperforms
2D convolution features when the SNR is less than 0 dB.
Comparing it with the case using autoencoder, one sees that
the autoencoder loses about 5% accuracy when the SNR is
greater than 10 dB, and this loss increases to around 20%
when the SNR decreases to -10 dB. This performance loss can
be considered as the tradeoff for the 64x data compression of
the transmitted information. However, it is still better than 2D
convolution features and detection outputs, especially when the
SNR is between -10 and 0 dB. Thus, autoencoder is beneficial
to effectively compress the 3D convolution features without
losing too much accuracy.

V. CONCLUSION

This work has studied a V2V communications model for
cooperative perception and proposed the use of new interme-
diate features in late fusion with a CNN-based autoencoder.
Different fusion methods and transmitted information have
been evaluated for different SNRs and path loss factors.
Numerical results have shown that intermediate fusion have
better robustness against fading, noise, and path loss than
the early fusion and late fusion. Also, using intermediate
convolution features in the late fusion can significantly out-
perform the conventional late fusion using detection outputs.
Numerical results have also shown that autoencoder is capable
of compressing data with acceptable performance loss with
channel impairments.
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