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Abstract. We introduce a proof of concept to parametrise
the unresolved subgrid scale of sea-ice dynamics with deep
learning techniques. Instead of parametrising single pro-
cesses, a single neural network is trained to correct all model
variables at the same time. This data-driven approach is ap-
plied to a regional sea-ice model that accounts exclusively for
dynamical processes with a Maxwell elasto-brittle rheology.
Driven by an external wind forcing in a 40km× 200km do-
main, the model generates examples of sharp transitions be-
tween unfractured and fully fractured sea ice. To correct such
examples, we propose a convolutional U-Net architecture
which extracts features at multiple scales. We test this ap-
proach in twin experiments: the neural network learns to cor-
rect forecasts from low-resolution simulations towards high-
resolution simulations for a lead time of about 10 min. At this
lead time, our approach reduces the forecast errors by more
than 75%, averaged over all model variables. As the most
important predictors, we identify the dynamics of the model
variables. Furthermore, the neural network extracts localised
and directional-dependent features, which point towards the
shortcomings of the low-resolution simulations. Applied to
correct the forecasts every 10 min, the neural network is run
together with the sea-ice model. This improves the short-term
forecasts up to an hour. These results consequently show that
neural networks can correct model errors from the subgrid
scale for sea-ice dynamics. We therefore see this study as an

important first step towards hybrid modelling to forecast sea-
ice dynamics on an hourly to daily timescale.

1 Introduction

Sea-ice models with elasto-brittle rheologies (e.g. Rampal
et al., 2016) simulate the dynamics of sea ice with an un-
precedented accuracy for Arctic-wide simulations in the
mesoscale, with horizontal resolutions of around 10km (Ra-
batel et al., 2018; Bouchat et al., 2022; Boutin et al., 2022).
These models reproduce the observed temporal and spa-
tial scale invariance of the sea-ice deformation and drift
across multiple scales, up to the resolution of a single grid
cell (Dansereau et al., 2016; Rampal et al., 2019; Ólason
et al., 2021). Elasto-brittle rheologies parametrise the unre-
solved subgrid-scale processes associated with brittle fractur-
ing through a progressive damage framework (Tang, 1997;
Amitrano et al., 1999; Girard et al., 2011). Such framework
connects the elastic modulus of the material at the grid cell
level to the degree of fracturing at the subgrid scale. Com-
prised between 0, undamaged, and 1, completely damaged
material, the fracturing is represented by the level of damage.
When the internal stress exceeds a given damage criterion lo-
cally, the level of damage increases, and the elastic modulus
decreases, thereby reducing the local effective stress. Exces-
sive stress is elastically redistributed throughout the mate-
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Figure 1. Snapshot of sea-ice damage for a 1 h forecast with the
here-used regional sea-ice model. Shown are the high-resolution
simulations (a, 4 km resolution) and low-resolution forecasts (b, c).
To initialise the low-resolution forecasts, the initial conditions of
the high-resolution are projected into a low-resolution space with
8 km resolution. Started from these projected initial conditions, the
low-resolution forecast (b) generates too much damage compared
to the high-resolution field. Running the low-resolution model to-
gether with our learned model error correction (c) leads to a better
representation of the damaging process, which improves the fore-
cast by 62% in this example.

rial, causing overcritical stress elsewhere. Hence, the damage
is highly localised and progressively propagated through the
material, which also leads to a strong localisation of the de-
formation. The Maxwell elasto-brittle rheology (Dansereau
et al., 2016) adds to this framework the concept of an “appar-
ent” viscosity. Coupled with the level of damage, the added
viscosity allows accounting for the relaxation of stresses by
permanent deformations within a fractured sea-ice cover. Al-
though models with such rheologies successfully reproduce
the observed scaling properties of sea-ice deformation, they
locally underestimate very high convergence and shear rates
in some instances (Ólason et al., 2022). Thus, some impor-
tant, possibly subgrid-scale, processes are still unresolved at
resolutions of around 10km or are unrepresented in elasto-
brittle rheologies and their damage parametrisations.

To exemplify the impact of these unresolved subgrid-scale
processes on the sea-ice dynamics, and to see how deep
learning can remedy these issues, we perform twin exper-
iments with a regional sea-ice model that depicts exclu-
sively the dynamics in a Maxwell elasto-brittle rheology
(Dansereau et al., 2016, 2017, 2021). In a 40km× 200km
(x× y direction) domain, we impose an external wind forc-

ing with a sinusoidal velocity in the y direction. This forcing
generates sharp transitions from unfractured to almost com-
pletely fractured sea ice. Such an instance of sharp transi-
tions is exemplary shown in Fig. 1a for a simulation with a
4km horizontal resolution and a lead time of 1 h. Initialised
with the same but projected initial conditions, a simulation
at a 8km horizontal resolution leads to a different trajec-
tory, Fig. 1b. Such different instances of sea-ice dynamics
are caused by differently integrated processes. Consequently,
the sea-ice damage can already significantly differ after 1 h of
simulation. Here, in the transition zones, the low-resolution
simulation fractures the sea ice too strongly compared to
the high resolution. In this study, we introduce a baseline
deep learning approach to correct the missing processes. By
parametrising the subgrid scale, the hybrid model can better
reproduce the temporal evolution of high-resolution simula-
tions at the lower resolution, Fig. 1c.

Subgrid-scale parametrisations with machine learning
have already been proved useful for other Earth system com-
ponents (Brenowitz and Bretherton, 2018; Beucler et al.,
2021; Irrgang et al., 2021). In the atmosphere, cloud pro-
cesses can be learned from emulating super-parametrised
or super-resolved models within a lower-resolution model
(Gentine et al., 2018; Rasp et al., 2018; Seifert and Rasp,
2020). Additionally, machine learning can parametrise tur-
bulent dynamics in the atmosphere (Beck and Kurz, 2021;
Cheng et al., 2022) and in the ocean (Zanna and Bolton,
2020; Guillaumin and Zanna, 2021).

To predict the sea-ice concentration, purely data-driven
surrogate models can replace geophysical models at daily
(Liu et al., 2021) and seasonal forecast horizons (Anders-
son et al., 2021). Furthermore, small neural networks can
emulate granular simulations of ocean–sea-ice interactions,
allowing one to parametrise the effect of ocean waves onto
the sea ice (Horvat and Roach, 2022). In this study, we take
another point of view and show more generally that subgrid-
scale processes for sea-ice dynamics can be parametrised
with deep learning, correcting all prognostic model variables
at the same time.

The dynamics of sea ice hereby impose new challenges for
neural networks (NNs) that should parametrise the subgrid
scale.

– Current sea-ice models represent leads in a band of a
few pixels, and sharp transition zones can appear as a
non-continuous step function within the data. For such
discrete–continuous mixture data distributions, NNs
that simply learn to regress into the future tend to dif-
fuse and blur the target (Ayzel et al., 2020; Ravuri et al.,
2021) if trained by a pixel-wise loss function. A cor-
rect representation of sharp transitions can thus induce
problems within the training of the NN, resulting in a
diffusion of the normally concentrated transition zones.

– In elasto-brittle models, the handling of the internal
stress depends on the fragmentation of sea ice. This de-
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pendency also leads to different forecast error distribu-
tions for different fragmentation levels, even for vari-
ables only indirectly related to the stress, like the sea-
ice thickness. Consequently, for model error correction,
an NN has to be trained across a range of fragmentation
levels and should be able to output multimodal predic-
tions in the best case.

– As sea ice is scale-invariant up to the kilometre scale,
fragmentation of sea ice propagates from small, unre-
solved, scales to the larger, resolved, scales. Because
the small scales are unresolved, the appearance of lin-
ear kinematic features seems to be stochastic from
the resolved macro-scale point of view. Furthermore,
such features are inherently multifractal and propagate
in an anisotropic medium (Wilchinsky and Feltham,
2006, 2011).

Finally, the found subgrid-scale parametrisation approach
should be scalable to a range of resolutions, from re-
gional models used in this study to Arctic-wide models, like
neXtSIM (Rampal et al., 2016; Ólason et al., 2022).

As a first step towards solving these challenges for NNs
and giving a proof of concept, we present the aforementioned
twin experiments with a regional model. Our goal is to train
NNs to correct the output of simulations with a 8km horizon-
tal resolution towards simulation with a 4km resolution. As
the low-resolution model setup resolves fewer processes than
the high-resolution setup, the NN has to account for the un-
resolved subgrid-scale processes to correct model errors. For
this goal, we have found a baseline deep learning architec-
ture, based on the U-Net approach (Ronneberger et al., 2015)
and with applied tricks, e.g. from the ConvNeXt architecture
(Liu et al., 2022). The NNs are trained to correct all nine
prognostic model variables for a lead time of 10min and 8s
(a multiplier of our 16s model time step). During forecast-
ing, the so-trained NN can be applied every 10min and 8s
to continuously correct the model output. Based on this ap-
proach, we present first the promising results for short-term
forecasting (up to 60min), as showcased in Fig. 1c.

We introduce the problem that we try to solve, the regional
sea-ice model, and our strategy to train the NNs in Sect. 2.
The NN for the model error correction is briefly explained
in Sect. 3. Results are given in Sect. 5, summary and discus-
sion in Sect. 6, and final, concise, conclusions in Sect. 7. A
more rigorous introduction of the model can be found in the
Appendix A and a more technical description of the NN in
Appendix B.

2 Twin experiments for deep learning a model error
correction

Our goal is to make a proof of concept that subgrid-scale
processes can be parametrised by neural networks (NNs). We
hereby parametrise subgrid-scale processes with an NN that

corrects model errors. As a test bed, we use a regional sea-
ice model that depicts sea-ice dynamics in a Maxwell elasto-
brittle rheology. To train the neural networks, we use twin
experiments, where we compare a low-resolution forecast to
a known high-resolved truth, simulated with the same sea-ice
model.

2.1 Problem formulation

Our goal is to parametrise unresolved processes of the fore-
cast model M(·) that maps an initial state xin

t−1 at time t − 1
to a forecast xf

t at time t

xf
t =M(xin

t−1), (1)

to simplify the notation, time has been discretised, t ∈ N.
Normally, parametrisations for single processes are inte-
grated together with the forecast model. Instead, we learn a
model error correction that has to parametrise subgrid-scale
processes and correct all prognostic model variables at the
same time.

The correction is represented by the output of an NN,
f (xin

t−1,x
f
t ,φ), which makes use of the initial state and the

forecast as input and combines them with its parameters φ.
The NN is trained to predict the residual 1xt = xt

t − x
f
t be-

tween the truth xt
t and the forecasted state.

To apply the model error correction for continuous fore-
casting, the predicted residual is added to the forecast, re-
sulting into the corrected forecast xc

t . This corrected forecast
can then be used as a subsequent initial state for the forecast
model

xc
t = x

f
t + f (x

in
t−1,x

f
t ,φ),x

in
t = x

c
t . (2)

Applied to correct the model variables in this way, the neural
network can be used together with the sea-ice model.

2.2 Test bed with a regional sea-ice model

The model depicts the dynamical processes of sea ice with
a Maxwell elasto-brittle rheology (Dansereau et al., 2016).
The thermodynamics consist of only redistribution of sea-ice
thickness, handled as tracer variable similarly to the sea-ice
area. The elasto-brittle rheology introduces a damage vari-
able that parametrises subgrid-scale processes and represents
the fragmentation level of the sea ice on a grid-box level. De-
pending on the state of the sea ice and especially the cohe-
sion, the sea-ice deformation, represented as stress, is con-
verted into permanent damage. In this model, the stress and
the sea-ice velocity are driven by the atmospheric surface
wind as only external forcing. In total, the model has nine
prognostic variables, which will all be corrected by the model
error correction. We refer to Sect. A for a more technical and
complete description of the regional sea-ice model.

The model’s equations are spatially discretised by a first-
order continuous Galerkin scheme for the sea-ice veloc-
ity components, and a zeroth-order discontinuous Galerkin
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Figure 2. (a) The model domain with the high- (red) and low-
resolution (blue) grid; (b) snapshot of the surface wind velocity in
the y direction in ms−1, used as wind forcing for the shown case,
the white arrows indicate the main movement direction; (c) snap-
shot of the stress, σxy in Pa, where the arrows correspond to von
Neumann boundary conditions on all four sides; and (d) snapshot
of the damage, where the arrows correspond to an inflow of undam-
aged sea ice on all four sides. All snapshots are taken at an arbitrary
time and represent a typically encountered case in our dataset.

scheme for all other model variables. The model is inte-
grated in time with a first-order Eulerian implicit scheme,
and a semi-implicit fixed point scheme iteratively solves the
equations for the velocities, the stress, and the damage. The
model area spans 40km× 200km in the x and y direction,
respectively (Fig. 2a), and we run the model at two different
resolutions, at a 4 km and a coarsened 8km resolution. The
integration time step is 8 s for the high-resolution setup and
16s for the low resolution.

As external wind forcing, depending on the spatial x and
y position and the temporal t position, we impose a surface
wind defined by the velocity ua(x,y, t) in the y direction

ua(x,y, t)= A · sin
[

2π
λ
(φ+ y+ t · ν)

]
+ u0. (3)

Given base velocity u0, the wind velocity is sinusoidal with
amplitude A, wave length λ, phase φ, and advection veloc-
ity ν. To generate different situations in our experiments, the
forcing parameters are randomly drawn (see also Sect. 4), re-
sulting in a velocity field such as that depicted in Fig. 2b. As
a consequence of such a forcing, the sea ice experiences de-
formations in localised zones (Fig. 2c), leading to quick tran-

Figure 3. In our twin experiments, the high-resolution state with
a 4km resolution is propagated from time t to time t + 1 with the
high-resolution true model; one discrete time step corresponds here
to a lead time of 10min and 8s. The high-resolution truth at time
t is projected by Lagrange interpolation into low-resolution space
(8km resolution), acting as initial state for the forecast. The fore-
cast is performed by the low-resolution forecast model M, which
propagates the state from time t to time t + 1 in the low-resolution
space. The model error correction is learned by comparing the low-
resolution forecast at time t + 1 to the truth at the same time, pro-
jected into low-resolution space.

sitions between unfractured and completely fractured sea ice
(Fig. 2d).

We use von-Neumann boundary conditions and an inflow
of undamaged sea ice. With this model setup, the simula-
tions can generally be seen as a zoomed-in region within an
undamaged sea-ice field.

2.3 Twin experiments

In our twin experiments we have two kinds of simulations,
as depicted in Fig. 3: we define the low-resolution model
setup as our forecast model, which we want to correct to-
wards high-resolution setup as the true model. The initial
conditions at the high-resolution are integrated with the true
model to simulate the truth at the target lead time, in our case
10min and 8s.

To initialise the forecast that should be corrected towards
the truth, we project the true initial conditions from the high
resolution to the low resolution. As projection operator, we
make use of the interpolation defined by first-order contin-
uous Galerkin and zeroth-order Galerkin elements, corre-
sponding to Lagrange interpolation with (linear) barycentric
and nearest neighbour interpolation, respectively.

To generate the forecast, the initial conditions at the low
resolution are integrated to the target lead time with the fore-
cast model. As we want to reinitialise the forecast model with
the corrected model fields later, the model error correction
has to be estimated at the low resolution. To consequently

The Cryosphere, 17, 2965–2991, 2023 https://doi.org/10.5194/tc-17-2965-2023



T. S. Finn et al.: Learning subgrid-scale parametrisations for sea-ice dynamics 2969

match the resolution of the forecast with the truth, we project
the truth at the target lead time to the low resolution with our
previously defined projection operator.

The neural network targets the difference between truth
and forecast at the low resolution (see also Sect. 2.1). Us-
ing this strategy and an ensemble of initial conditions and
forcing parameters, we generate our training dataset, which
is then used to learn the model error correction. Addition-
ally, we evaluate the performance of the learned model error
correction on a similar but independent test dataset.

3 A convolutional U-Net baseline

The neural network (NN) should learn to relate the input pre-
dictors to the output targets. The inputs and targets are spa-
tially discretised as finite elements, and the NN should di-
rectly act on this triangular model grid. Moreover, the NN
architecture should be scalable from regional models, as used
in this study, to Arctic-wide models, like neXtSIM. As we ex-
pect that the model errors from the sea-ice dynamics have an
anisotropic behaviour, we additionally want to directly en-
code the extraction of localised features with a directional-
dependent weighting into the NN. Therefore, as depicted in
Fig. 4, we use an NN based on a convolutional U-Net ar-
chitecture (Ronneberger et al., 2015). For a more technical
description of this NN architecture, we refer to Sect. B.

Convolutional NNs are optimised for their use on Carte-
sian spaces, where they can easily exploit spatial autocorre-
lations. The model variables are additionally defined on dif-
ferent positions at the triangles: the velocities are defined on
the nodes of the triangles, whereas all other variables are
constant across a triangle. Consequently, we project from
triangular space into Cartesian space, where the convolu-
tional NN is applied to extract features. As in the projection
step from high-resolution model grid to low-resolution grid,
we again use Lagrange interpolation with a Barycentric and
nearest neighbour interpolation, as in our twin experiments
(see also Sect. 2). To mitigate a possible loss of information
by the projection step, we define a Cartesian space with a
much higher resolution than the original triangular space.

The U-Net uses convolutional filters and shares its weights
across all grid points. This way, the U-Net extracts shift-
invariant and localised features which represent common
motifs. To learn features at different scales, the features are
coarse grained once in the encoding part of the U-Net (left
part of the U-Net in Fig. 4a) and upscaled in the decoding
part of the U-Net (right part of the U-Net in Fig. 4a), giv-
ing the U-Net its distinct name. We implement the coarse-
graining using strided convolutions (Springenberg et al.,
2015), where grid points are skipped, and the upscaling with
bilinear interpolation followed by a convolution layer (Odena
et al., 2016). To retain fine-grained features, the upscaled in-
formation is combined with information from the finer scale
by a skip connection (i.e. the output of identity functions),

Figure 4. In our deep learning approach (a), the input fields are
projected by a fixed linear projection operator P from their triangu-
lar space into a Cartesian space that has a higher resolution, where
the learnable U-Net extracts features. Back-projected into triangu-
lar space by the pseudo-inverse of the linear projection operator P†,
these features are combined by learnable linear functions to obtain
the output. In our case, the U-Net consists of multiple ConvNeXt-
like blocks (b) that have a branch path and a fixed skip connec-
tion (i.e. the output of an identity function): in the branch path, a
learnable convolutional layer extracts depth-wise, i.e. without mix-
ing the channels, spatial features with a kernel size of 7× 7. The
resulting features are layer-normalised and combined by two con-
secutive learnable convolutions with a 1× 1 kernel and a Gaussian
error linear unit (Gelu) activation function in between. In the end,
the features are added to the output of the skip connection. Through-
out the Figure, blue-coloured connections indicate a fixed function,
red colours represent a learnable function, and dotted lines in the
U-Net and ConvNeXt block represent skip connections.

as indicated in Fig. 4a by the horizontal dashed blue line.
This allows the U-Net to extract localised features across two
scales.

Instead of commonly used convolutional blocks with stan-
dard convolutional filters, followed by a normalisation and
non-linear activation function, we make use of blocks in-
spired by the ConvNeXt architecture (Liu et al., 2022), as
shown in Fig. 4b. In these blocks, the feature extraction is
split into extraction of features from spatial correlations and
correlations across features. This makes the U-Net compu-
tationally more efficient and shows empirically an improved
performance (see also Sect. C). After the U-Net has extracted
the features, the features are pushed through a rectified lin-
ear unit (relu, xout =max(0,xin)) non-linearity to introduce
a discontinuity in the features, which empirically helps the

https://doi.org/10.5194/tc-17-2965-2023 The Cryosphere, 17, 2965–2991, 2023
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NN to represent sharp transitions in the level of damage (see
also Sect. D4).

The extracted features are projected back from the Carte-
sian space into the triangular space. Because the projection
operator is purely linear, the back-projection operator can be
analytically estimated by the pseudo-inverse of the projec-
tion matrix. As the Cartesian space is higher resolved, the
back-projection averages the features of several Cartesian el-
ements into features of single triangular elements.

Back in the triangular space, the extracted features are
combined by learnable linear functions. These linear func-
tions process each element-defining grid point independently
but using the same weights across all grid points. To estimate
their own model error correction out of the features, each of
the nine model variables has its own linear function.

In total, by projecting the input into a Cartesian space, the
convolutional U-Net extracts features which are then the ba-
sis for the estimation of the output in the original triangular
space. The use of the U-Net allows us to extract localised fea-
tures and an efficient implementation, even for Arctic-wide
models. The extraction of features at a higher resolution bun-
dled with their combination in triangular space makes the NN
directly applicable for finite-element models.

4 Data generation and training

We train and test different NNs with twin experiments using
the regional sea-ice model, as described in Sect. 2. We sim-
ulate high-resolution truth trajectories with a resolution of
4km and an integration step of 8s and low-resolution fore-
casts with an 8km resolution and a 16s step. The NNs are
trained to correct these low-resolution forecasts for a lead
time of 10min and 8s.

We train the NNs on an ensemble of 100 trajectories. The
NN hyperparameters, like the depth of the network or the
number of channels, are tuned against a distinct validation
dataset with 20 trajectories. Finally, the scores are estimated
using an independent test dataset with 50 trajectories.

All high-resolution trajectories are initialised with a ran-
domly chosen cohesion field and randomly drawn forcing pa-
rameters, as specified in Table 1. These parameters are cho-
sen such that most trajectories have fractured sea ice in dif-
ferent regions of the simulated domain. The low-resolution
setup uses the same forcing parameters, whereas the cohe-
sion field is one of the prognostic model variables and, hence,
is projected to the low resolution.

Defining the truth trajectories, the high-resolution simula-
tions are run for 3 d of simulation time. The forcing is lin-
early increased to its full strength, as in Dansereau et al.
(2016), during the first day of simulation, which is conse-
quently treated as a spin-up and omitted from the evalua-
tion. Over the subsequent 2 d, the truth trajectories are hourly
sliced to obtain the initial conditions. Projected into low res-
olution, the initial conditions are integrated with the forecast

Table 1. The random ensemble parameters and their distribution;
U(a,b) specifies a random variable drawn from a continuous uni-
form distribution with its two boundaries a and b. The cohesion
is independently drawn for each grid point and ensemble member,
whereas each ensemble member has one set of forcing parameters.

Description Value

Cohesion C U(5× 103 Pa,1× 104 Pa)

Amplitude A U(8ms−1,20ms−1)
Wave length λ U(50km,200km)
Phase φ U(−100km,100km)
Advection ν U(−0.5ms−1,0.5ms−1)

Base velocity u0 max(20ms−1
−A,U(0ms−1,10ms−1))

model until the forecast lead time of 10min and 8s. To gen-
erate the datasets for the training of the NNs, these forecasts
are compared to the projected truth fields at the same lead
time.

These datasets contain input–target pairs. The inputs for
the NNs consist of 20 fields: nine forecast model fields and
one forcing field for the initial conditions and the forecast
lead time. The targets are the difference between the pro-
jected truth and the forecasted state at the forecast lead time
and consist of nine fields. The inputs and targets are nor-
malised by a global per-variable mean and standard devia-
tion, both estimated from the training dataset.

The hourly slicing gives us 48 samples per trajectory, re-
sulting in 4800, 960, and 2400 samples for the training, val-
idation, and test dataset, respectively. In total, the training
dataset has 12.3× 106 degrees of freedom (number of sam-
ples × number of variables × number of grid points). The
NN configuration used in our experiments (see also Table B1
in Sect. B) has 1.2× 106 parameters, an order of magnitude
smaller than the degrees of freedom in the training dataset.
During training, the NNs experience no overfitting, even if
only 10% of the training data are used, as shown in Sect. D1.

We train the NNs by minimising a loss function propor-
tional to a weighted mean absolute error (MAE); a more
rigorous treatment of the loss function can be found in
Sect. B3. The MAE is estimated for each variable indepen-
dently. To average these MAEs across all variables, the in-
dividual MAEs are weighted by a per-variable weight. The
weights are learned alongside the NN and can be seen as
an uncertainty estimate from the training dataset. In our
case, the weighted MAE empirically performs better than a
weighted mean-squared error loss function and than if the
weighting is automatically learned from data (Sect. D3).

If not otherwise specified, all NNs are trained for 1000
epochs, with a batch size of 64. To optimise the NNs, we use
Adam (Kingma and Ba, 2017) with a learning rate of γ = 3×
10−4, β1 = 0.9, and β2 = 0.999. We refrain from learning-
rate decay or early stopping, as such methods would make
the experiments harder to compare.
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All experiments are performed on the CNRS/IDRIS
(French National Centre for Scientific Research) Jean
Zay supercomputer, using a single NVIDIA Tesla V100
GPU or NVIDIA Tesla A100 GPU per experiment. The
NNs are implemented in PyTorch (Paszke et al., 2019),
with PyTorch lightning (Falcon et al., 2019) and Hy-
dra (Yadan, 2019). The code is publicly available under
https://doi.org/10.5281/Zenodo.7997435.

5 Results

We propose a baseline architecture based on the U-Net, as
described in Sect. 3, in the following simply called U-NeXt.
We have selected the parameters of the U-NeXt architecture
(see also Table B1 in Sect. B) after a randomised hyperpa-
rameter screening in the validation dataset with 200 different
network configurations.

We evaluate our trained NNs on the test dataset, with the
mean absolute error (MAE) in the low resolution. To get
comparable performances across the nine model variables,
we normalise their errors by their expected MAE in the train-
ing dataset. Note that this normalisation results in a constant
weighting, differing from the adaptive weighting used during
the training process, which depends on the training trajectory.
Furthermore, this normalisation allows us to estimate the per-
formance of the NNs with a single metric, averaged over all
model variables. The NNs are trained 10 times with different
random seeds (s ∈ [0,9]), and all results are averaged over
the 10 trained networks.

As a baseline method, we use a persistence forecast with
the initial conditions as a constant prediction. We addition-
ally compare the forecasts corrected by the NN to the uncor-
rected forecasts from our sea-ice model.

In the following, we discuss the results on the test dataset
in Sect. 5.1, what we can learn about the residuals by
analysing the sensitivity of the NN to its inputs in Sect. 5.2,
and how we can combine the NN with the geophysical model
for lead times up to 1 h in Sect. 5.3.

5.1 Performance on the test dataset

In the first step, we evaluate the performance of our model
error correction on the test dataset, without applying the cor-
rection together with the geophysical model, Table 2. For ad-
ditional results we refer to Sect. C and Sect. D, where we,
among other things, compare with other NN architectures,
other loss functions, and other activation functions.

The NN corrects the model forecasts across all variables.
This results in an averaged gain of the hybrid model over
75% compared to the sea-ice model. For the stress, dam-
age, and area, the persistence forecast performs better than
the sea-ice model, as the model forecast drifts towards the
attractor of the low-resolution model setup, as discussed in
Sect. 5.3. Since the NN uses the initial conditions as input,

Table 2. Normalised MAE on the test dataset, estimated in low res-
olution and averaged over 10 NNs trained with different seeds. Re-
ported are the errors for the velocity component in y direction v, for
the stress component σyy , the damage d , and the area A. The mean
6 is the error averaged over all nine model variables, including the
non-shown ones. A score of 1 would correspond to the MAE of the
sea-ice model in the training dataset. Bold scores are the best scores
in a column. For a table with standard deviation across seeds, we
refer to Table C1.

Name v σyy d A 6

Persistence 0.37 0.29 0.60 2.37 0.79
Sea-ice model 1.14 0.91 1.09 0.94 1.03
Hybrid model 0.23 0.17 0.38 0.33 0.24

Table 3. Normalised MAE on the test dataset for different Cartesian
grid sizes, x direction × y direction. The error components are es-
timated as in Table 2. The training loss is estimated as the expected
Laplace negative log-likelihood, averaged over the training dataset,
variables, and 10 NNs trained from different seeds. The bold grid
size is the used grid size, and bold scores are the best scores in a
column.

Grid size Loss v σyy d A 6

8× 32 −9.31 0.29 0.42 0.64 0.72 0.50
16× 64 −18.58 0.26 0.18 0.41 0.43 0.28
32× 128 −18.47 0.23 0.17 0.38 0.33 0.24

the hybrid model surpasses the performance of persistence,
even for variables where persistence is better than the sea-ice
model. In Sect. C, we show that the model error of the sea-ice
model is mostly driven by a dynamical error such that simply
correcting the bias has almost no impact on the performance.
In total, the NN consistently improves the forecast on the test
dataset.

To apply convolutional NNs (CNNs) to the raw data of
our finite-elements-based sea-ice model, we project from tri-
angular to Cartesian space, where the features are extracted.
The number of elements in the Cartesian space determines
its effective resolution and, thus, the finest scale on which
the NN can extract features. To demonstrate the effect of dif-
ferent resolutions on the result, we perform three different
experiments, where we change the grid size while keeping
the NN architecture the same (Table 3).

The training loss, here the negative Laplace log-likelihood,
measures how well an NN can be fitted towards the training
dataset. Although its resolution is higher than the original
resolution of 8km, the back-projection for the 8× 32 grid is
underdetermined, as the mapping is non-surjective, degrad-
ing the performance of the NN. Starting at the 16× 64 grid,
the Cartesian space covers all triangular grid points, and all
NNs have a similar predictive power with similar training
losses. Nevertheless, the MAE of the finest 32× 128 grid is
the lowest for all variables. As we keep the architecture the
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Figure 5. Normalised feature map in Cartesian space for grid sizes
of (a) 8×32, (b) 16×64, and (c) 32×128. The feature map is esti-
mated based on the same sample in the test dataset. The specific fea-
ture maps are selected such that the extracted features qualitatively
match for all three resolutions. As the maps might have different
order of magnitudes, they are normalised by their 99th percentile
for visualisation purpose; the colours are thus proportional to the
activation.

same for all resolutions, the higher the resolution, the smaller
the receptive field of the NN. At the highest resolution, the
NN is thus forced to extract more localised features. Such lo-
calised features seem to better represent the processes needed
for the prediction of the residuals and for parametrising the
subgrid scale; this improvement by using a finer Cartesian
space will be discussed more in detail in Sect. 6.

In Fig. 5, we visualise a typical output of the U-Net before
it gets projected back into triangular space and linearly com-
bined. The higher the resolution, the sharper and more fine-
grained the feature map. Sharper features can better repre-
sent anisotropy and discrete processes in sea ice. Exhibiting
more fine-grained motifs, in the highest resolution, Fig. 5c,
the network can extract features along the x and y direc-
tion and can even represent small-scale structures in diagonal
directions. These fine-grained features indicate an ability to
parametrise the effect of the subgrid scale onto the resolved
scales. Moreover, as a consequence of the extraction of more
localised features for finer spaces, the NN also localises the
background noise such that the field appears to be much nois-
ier in the case of inactive zones, where the activation is low.

5.2 Sensitivity to the input

The inputs of the NN have a crucial impact on the perfor-
mance of the model error correction. In the following, we
evaluate the sensitivity of the NN with respect to its input
variables. In a first step, we alter the input and measure the
resulting performance of the NN with the normalised MAE,
Table 4.

Usually, only the initial conditions are used for a neural-
network-based model error correction (Farchi et al., 2021a).
As sea-ice dynamics are a first-order Markov system, the re-
sults are very similar when using only the initial conditions

Table 4. Normalised MAE on the test dataset for different input sets.
The error components are estimated as in Table 2. nin corresponds
to the number of input channels. The bold scores are the best scores
in a column.

Name nin v σyy d A 6

Initial only 10 0.63 0.63 0.77 0.34 0.60
Forecast only 10 0.66 0.62 0.75 0.35 0.60
Both 20 0.23 0.17 0.38 0.33 0.24
W/o forcing 18 0.24 0.18 0.37 0.33 0.25

Difference only 10 0.19 0.15 0.37 0.30 0.23
+ initial state 20 0.17 0.15 0.33 0.26 0.21
+ forecasted state 20 0.17 0.14 0.33 0.26 0.21

or only the forecast state as input. Compared to input from
a single time, using both times as input improves the predic-
tion by around 60%. In this case, the NN learns to correct the
model error based on the difference between the forecast and
initial conditions, representing the sea-ice dynamics. If only
a single time is used as input, the NN has to internally learn
an emulator of the dynamics. Explicitly giving the difference
to the NN instead of raw states improves the correction, al-
though the number of predictors is halved. With the differ-
ence, the network has direct access to the model dynamics.
Further adding the initial conditions or forecasted state to the
difference improves the correction; the network then has ac-
cess to relative and absolute values.

In the second step, we analyse how the input variables in-
fluence the output of the NN. As we want to quantify the im-
pact of the dynamics on the output, we base the analysis on
the previous “Initial+Difference” experiment from Table 4.
As a global measure, we use the permutation feature impor-
tance (Breiman, 2001): the NN is applied several times; each
time, another input variables is shuffled across the samples.
By shuffling an input variable, its information is destroyed,
and the output of the NN is changed. This possibly changes
the prediction error compared to the unperturbed original
output. Focussing on active regions, we measure the errors
with the RMSE, estimated over the whole test dataset. The
higher the RMSE for a shuffled input variable, the higher the
importance for this variable onto the errors, as summarised in
Table 5. Because the information of only single variables are
destroyed, the permutation feature importance is sensitive to
correlated input variables (Sect. D5). Consequently, the inter-
variable importance in Table 5 is likely underestimated.

All model variables are highly sensitive to their own dy-
namics. Furthermore, the feature importance reflects the re-
lations inherited by the model equations (see also Sect. 2.2;
Dansereau et al., 2017). For instance, caused by the depen-
dence of the thickness upon the sea-ice area, they are linked
together in the input–output relation. The wind forcing ex-
ternally drives and influences the sea-ice velocity in the y
direction, v. The v velocity, however, advects and mixes the
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Table 5. The permutation feature importance of the RMSE for the given output variable with respect to the input variable for “Ini-
tial+Difference” as input, estimated over the whole test dataset. The numbers show the multiplicative RMSE increase of a specific output
variable (row) if a given input variable (column) is permuted; a higher number corresponds to a higher feature importance. The colours are
normalised by the highest feature importance for a given row (output variable) and proportionally to the feature importance. The “Difference”
variables specify the difference of the forecast state to the initial conditions as input into the NN.

cohesion, area, and thickness. By modulating the momentum
equation and mechanical parameters, respectively, the area
and thickness influence the velocity and stress components.
In total, for each model variable, their dynamics are in fact
the single most important input variable on which basis the
neural network extracts features.

As a local measure, we move to the sensitivity ∂f (x,θ)
∂x

of
the NN output to its input fields (Simonyan et al., 2013),
again for the “Initial+Difference” experiment. To showcase
what the NN has learned in spatial meanings, we concentrate
here on a single grid point in a single prediction for the sea-
ice area. The initial conditions, the dynamics, the forecast
error, and the NN prediction for the sea-ice area are shown
in Fig. 6a–d. To smooth the sensitivity and reduce its noise,
we perturb the input variables 128 times with noise drawn
from N (0,0.12) and average the sensitivity over these noised
versions (Smilkov et al., 2017). The resulting saliency maps
(Fig. 6e–h) show which grid points influence the selected
output. The larger its amplitude, the more sensitive the output
to that grid point is.

For the selected grid point, the prediction is especially sen-
sitive to the area itself and the thickness, in absolute val-
ues, Fig. 6e, and their dynamics, Fig. 6f. This underlines
the already mentioned relation between the sea-ice area and
thickness and confirms the global results of the permuta-
tion feature importance in Table 5. The sensitivity addition-
ally exhibits a strong localisation for the damage dynamics,
Fig. 6g, and is directionally dependent on the velocity dy-
namics, Fig. 6h. Hence, the NN seems to rely on localised
and anisotropic features to predict the residual.

Based on these sensitivities, we can interpret what features
the NN has learned, guiding us towards a physical meaning
of the model errors. The diametral impacts of the thickness
and area in absolute values and dynamics indicate that the
sea-ice model tends to overestimate the effect of the dynam-
ics, whereas the initial conditions have a stronger persisting
influence than predicted by the model. However, the connec-
tivity between grid points is underestimated by the model,
as seen in Fig. 6f. In general, the model overestimates the
fracturing process, leading to a mean error of 2.31× 10−3

for the damage in the training dataset. This overestimation
of fracturing could also explain the very localised impact of
the damage dynamics, Fig. 6g. The directional dependency
on the velocity dynamics, Fig. 6h, additionally indicates an
overestimation of the effects of the velocity divergence; if
fracturing processes are induced by divergent stresses, the
NN tries to decrease their impact on the sea-ice area.

In general, this analysis has shown that the NN relies not
only on a single time step as a predictor but also on how the
fields develop over time, indicating that the dynamics them-
self are the biggest source of model error between different
resolutions. Additionally, the network extracts localised and
anisotropic features, which are physically interpretable and
point towards general shortcomings in the dynamics of the
sea-ice model.

5.3 Forecasting with model error correction

After establishing the importance of the dynamics for the er-
ror correction, we use the error correction together with the
low-resolution forecast model for short-term forecasting. As
trained for a forecast horizon of 10min and 8s, we apply
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Figure 6. Snapshots at an arbitrary time of (a) sea-ice area at ini-
tial time, (b) the difference in area between forecast time and initial
time, (c) the difference in area between projected truth and forecast
at forecast time, and (d) the prediction of the NN for the area. In
the lower part, we show the sensitivity of the prediction for the area
at a chosen grid point, indicated by a white or black dot, on (e) the
thickness at initial time, (f) the difference in area, (g) the difference
in damage, and (h) the difference in velocity in the y direction. The
black arrow in panel (h) indicates the main sea-ice movement direc-
tion.

the NN to correct the forecasted states every 10min and 8s.
Because the prognostic sea-ice thickness is represented as a
ratio between the actual sea-ice thickness and the area, its
error distribution can have very fat tails and can be non-well-
behaved. Thus, we predict as an output the actual sea-ice
thickness, then, as a post-processing step, translate it into the
prognostic sea-ice thickness. We additionally enforce physi-
cal bounds on all variables by limiting the values to physical
reasonable bounds after error correction. We change the per-
formance metric to be the RMSE, a commonly used metric
to evaluate forecast performances. We evaluate the perfor-
mance across all 2400 hourly time slices on the test dataset.
For forecasting purposes, the NN with the initial and fore-
casted fields as input performs generally better than the NN
with initial and difference fields (Sect. D6); for simplifica-
tion in the following, we use only the NN with the initial and
forecasted fields, again calling it the “hybrid model”.

Overall, the hybrid models surpass the performance of the
original geophysical model (Fig. 7). However, for the fore-
cast with the sea-ice model and the hybrid model, a strong

Table 6. Normalised RMSE on the test dataset for a lead time of
60min. The last update in the hybrid models was at a lead time of
50min and 40s. The errors are normalised by the expected stan-
dard deviation for a lead time of 60min on the training dataset. The
symbolic representation of the variables has the same meaning as in
Table 2. The bold scores are the best scores in a column.

Name v σyy d A 6

Persistence 1.13 0.81 0.83 2.58 1.19
Sea-ice model 1.34 0.93 1.06 0.98 1.06
Hybrid model 1.16 0.95 0.68 0.46 0.81

drift is evident. As correcting the bias has almost no impact
on the performance in the test dataset (Sect. C), this drift is
not caused by model biases. Instead, the projected initial state
lays not on the attractor of the forecast model, but the fore-
cast drifts towards the model attractor, a behaviour similar
to what is typical in seasonal or decadal climate predictions
initialised with observed data. This results in large devia-
tions between geophysical forecast and projected truth, and
the persistence forecast is better than the forecast model for
the velocity, the stress, and the damage. And yet, correcting
the model states with NNs improves the forecasts at correc-
tion time, even compared to persistence. Even so, the correc-
tion nudges the forecast towards the projected truth and out
of the attractor. Consequently, between two consecutive up-
dates, the forecast drifts again towards the attractor when the
model runs freely, which leads to a decreased impact of the
error correction. Nevertheless, the accumulated model error
correction results in an improved forecast for a lead time of
60min (Table 6), especially for the sea-ice area and damage,
even if the last correction is already 9min ago.

The forecast error generally increases with lead time, but
the error reduction gets smaller with each update, especially
for the sea-ice area. Since the NN correction is imperfect,
the error during the next forecast cycle is an interplay be-
tween the errors from the initial conditions and from the
model. The NN is trained with perfect initial conditions to
correct the model error only. As the influence of the initial
condition error increases with each update, the error distri-
bution shifts, and the statistical relationship between input
and residual changes with lead time; the network can correct
fewer and fewer forecast errors. This effect has an larger im-
pact on the forecast if the lead time between two corrections
with the NN is further reduced (Sect. D2).

To show the effect of this error distribution shift, we anal-
yse the differences between the first and fifth update step with
the centred spatial pattern correlation (Houghton et al., 2001,
p. 733) between the NN prediction and the true residual: we
centre all fields by removing their mean and estimate Pear-
son’s correlation coefficient between the prediction and the
residual in space. By centring the fields, we omit the influ-
ence of the amplitudes upon the performance of the NN. The
higher the correlation, the higher the similarity in the patterns
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Figure 7. Normalised RMSE for (a) the velocity in the y direction, (b) the divergent stress in the y direction, (c) the damage, and (d) the
sea-ice area as a function of lead time on the test dataset, normalised by the expected RMSE on the training dataset for a lead time of 10min
and 8s. In the hybrid model, the forecast is corrected every 10min and 8s, and the performance is averaged over all 10 networks trained with
different random seeds.

Table 7. Centred pattern correlation on the test dataset between the
updates and the residuals for the first update and fifth update. The
symbols of the variables are the same as in Table 2.

Update v σyy d A 6

First update 0.94 0.99 0.93 0.92 0.98
Fifth update 0.70 0.89 0.59 0.28 0.76

between the prediction and the residual, and a correlation of
1 would indicate a perfect pattern correlation.

The correlations are estimated over space for each test
sample and variable independently and averaged via a Fisher
z-transformation (Fisher, 1915): the single correlations are
transformed by the inverse hyperbolic tangent function. In
transformed space, the values are approximately Gaussian
distributed, and we average them across samples. The aver-
age is transformed back by the hyperbolic tangent function.

Since they are trained for this, the NNs can almost per-
fectly predict the residual patterns for the first update. At the
fifth update, larger parts of the residual patterns are unpre-
dictable for our trained NN. Especially, the sea-ice area has
a longer memory for error corrections such that the predicted
patterns are almost unrelated to the residual patterns for the
fifth update. Caused by the drift towards the attractor, the sea-
ice model forgets parts of the previous error correction for
the velocity and divergent stress component, and these for-
gotten parts get corrected again in the fifth update. However,

the pattern correlation is also decreased for these dynamical
variables for the fifth update. Based on these results, the error
distribution shift is one of the main challenges for the appli-
cation of such model error corrections for forecasting.

Our proposed parametrisation is deterministic and is de-
signed to target the median value. On the resolved scale, sea-
ice dynamics can look stochastically noised, with suddenly
appearing strains and linear kinematic features, as discussed
in the introduction. We show the effect of the seemingly
stochastic behaviour in Fig. 8, with the temporal develop-
ment of damage and total deformation for the high-resolution
simulation, the forecast model without parametrisation, and
the parametrised hybrid model.

The initial state exhibits damaged sea ice in the centre,
corresponding to a diagonal main strain in the total defor-
mation. In the high-resolution simulation, the damaging pro-
cess continues, leading to more widespread damaging of sea
ice. Related to new strains, the damage is extended towards
the south. The low-resolution forecast model only diffuses
the deformation without the remaining main strain in the al-
ready damaged sea ice. As a result, the model misses the
southward-extending strain and damaging process. Further-
more, the model extends the damage and deformation south-
wards, although the newly developed strain is weaker than
in the high resolution. The parametrisation can represent
widespread damaging of sea ice. However, the parametrisa-
tion misses the development of new strains and positions the
main strain at the wrong place. This problem can especially
occur on longer forecasting timescales, where the damage
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Figure 8. Snapshots of damage (left) and total deformation (right),
showing their temporal evolution, in the high-resolution simulation
(top), in the low-resolution forecast model (middle), and in the low-
resolution hybrid model (bottom).

field is further developed compared to its initial state. There-
fore, we see the need for parametrisations that can also repro-
duce the stochastic effects of subgrid scales onto the resolved
scales.

6 Summary and discussion

We have introduced an approach to parametrise subgrid-scale
dynamical processes in sea-ice models based on deep learn-
ing techniques. Using twin experiments with a model of sea-
ice dynamics that implements a Maxwell elasto-brittle rhe-
ology, the NN learns to correct low-resolution forecasts to-
wards high-resolution simulations for a forecast lead time of
10min and 8s.

Our results show that NNs are able to correct model errors
related to the sea-ice dynamics and can thus parametrise the
unresolved subgrid-scale processes as for other Earth system
components. In addition, we are able to directly transfer re-
cent improvements in deep learning, like ConvNeXt blocks
(Liu et al., 2022), to ameliorate the representation of the sub-
grid scale. Instead of parametrising single processes, we cor-
rect all model variables at the same time with one big NN,
here with 1.5× 106 parameters.

For feature extraction, we map from the triangular model
space into a Cartesian space with a higher resolution to pre-
serve correlations of the input data. Our results hereby show
that higher-resolved Cartesian spaces improve the parametri-

sation; the network can then extract more information about
the subgrid scale. In the Cartesian space, a convolutional
U-Net architecture extracts localised and anisotropic fea-
tures on two scales. Mapped back into the original triangular
space, the extracted features are linearly combined to pre-
dict the residuals, which parametrises the effect of the sub-
grid scale upon the resolved scales. Therefore, using a map-
ping into Cartesian space, we can apply CNNs to Arctic-wide
models with unstructured grids, like neXtSIM.

Our results suggest that the finer the Cartesian space reso-
lution, the better the performance of the NN. This improve-
ment could emerge from our type of twin experiments, where
the main difference in the resolved processes is a result of dif-
ferent model resolutions. Consequently, extracting features at
a higher resolution than the forecast model might be needed
to represent the processes of the higher-resolution simula-
tions; the NN would act as an emulator for these processes.
In this case, the resolution needed for the projection would
be linked to the resolution of the targeted simulations. How-
ever, in light of our results, this link seems to be unlikely:
the performance of the finer 32× 128 grid is higher than the
16×64 grid, although the latter one already has a higher reso-
lution than the grid from our targeted simulations. Addition-
ally, the link cannot explain the increased training loss, but it
decreased test errors for the finer grid.

The gain likely results from an inductive bias in the NN
for Cartesian spaces with higher resolutions. We keep the
NN architecture and its hyperparameters, like the size of the
convolutional kernels, the same, independent of the resolu-
tion in the Cartesian space. Consequently, viewed from the
original triangular space, the receptive field of the NN is re-
duced by increasing the resolution. The function space rep-
resentable by such NN is more restricted, and, as the fitting
power is reduced, the training loss increases again. The NN
is biased towards more localised features. These localised
features help the network to represent previously unresolved
processes better. This better representation improves the gen-
eralisation of the NN, resulting in lower test errors. How-
ever, as this study is performed with twin experiments in very
specific settings, it remains unknown to us if the projection
into a space that has a higher resolution is advantageous for
subgrid-scale parametrisations in general.

The permutation feature importance as a global feature im-
portance and sensitivity maps as a local importance help us to
explain the learned NN by physical reasoning. The sensitiv-
ity map has additionally shown that the convolutional U-Net
can extract anisotropic and localised features, depending on
the relation between input and output. We see such an anal-
ysis as especially relevant for subgrid-scale parametrisations
learned from observations, as the feature importance can be
utilised to find the sources of model errors and guide model
developments.

Applying the NN correction together with the forecast
model improves the forecasts up to 1 h. Since the error cor-
rection is imperfect, the initial condition errors accumulate
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for longer forecast horizons. The longer the forecast horizon,
the less the targeted residuals in the training data are repre-
sentative of the true residuals. Such issues would be solved in
online training of the NNs (Rasp, 2020; Farchi et al., 2021a),
which nevertheless could be too costly for real-world appli-
cations. Offline reinforcement learning additionally tackles
similar issues (Levine et al., 2020; Lee et al., 2021; Pruden-
cio et al., 2022) and thus can be a way to partially solve them.

Although the here-learned NNs can make continuous cor-
rections, they represent only deterministic processes. As the
evolution of sea ice propagates from the subgrid scale to
larger scales, unresolved processes can appear like stochas-
tic noise from the resolved point of view. Consequently, the
deterministic model error correction is unable to parametrise
such stochastic-like processes, which can lead, for example,
to wrongly positioned strains and linear kinematic features.
Generative deep learning (Tomczak, 2022) can offer a solu-
tion to such problems and could introduce a form of stochas-
ticity into the subgrid-scale parametrisation, e.g. by mean-
ings of generative adversarial networks (Goodfellow et al.,
2014) or denoising diffusion models (Sohl-Dickstein et al.,
2015). Such techniques can also be used to learn the loss
metric, circumventing issues by defining a loss function for
training.

Because of missing subgrid-scale processes in the low-
resolution forecast model, the high-resolution simulations,
projected into the low resolution, are far off the low-
resolution attractor. Consequently, when the forecast is run
freely, it drifts toward its own attractor, resulting in large de-
viations from the projected high-resolution states. This diffi-
cult forecast setting is indeed quite realistic, as models in re-
ality also miss subgrid-scale processes (Bouchat et al., 2022;
Ólason et al., 2022), such that empirical free-drift or even
persistence forecasts are difficult to beat with forecast mod-
els (Schweiger and Zhang, 2015; Korosov et al., 2022). As
the attractor of the forecast models does not match the at-
tractor of the observations or the projected high-resolution
state, also finding the best state on the model attractor would
not necessarily lead to an improved forecast (e.g. Stockdale,
1997; Carrassi et al., 2014). The only way is therefore to im-
prove the forecast model, thereby changing its attractor, e.g.
by directly parametrising the subgrid-scale processes with a
tendency correction.

A subgrid-scale parametrisation can generally be seen as
a kind of forcing. Here, we use a resolvent correction, where
we correct the forecast model with NNs at integrated time
steps; the parametrisation is like Euler integrated in time. Our
results show that the NN needs access to the dynamics of
the model to correct tendencies related to the drift towards
the wrong attractor, at least at correction time. One strategy
can thus be to increase the update frequency or to distribute
the correction over an update window, similarly to an incre-
mental analysis update in data assimilation (Bloom et al.,
1996). Another strategy is to use tendency corrections (Boc-
quet et al., 2019; Farchi et al., 2021a), where the parametris-

ing NN is directly incorporated as an external forcing term
into the model equation. As the tendency correction is in-
cluded in the model itself, it also changes and possibly cor-
rects the attractor. Needed to train such a tendency correction
(Farchi et al., 2021a), the adjoint model is typically unavail-
able for large-scale sea-ice models. To remedy such needs,
one could train the NN as a resolvent correction and scale
the correction to a tendency correction.

This study and its experiments are designed to be a proof
of concept. The NN is able to correct model errors; our
results nevertheless indicate shortcomings and challenges
towards an operational application of such subgrid-scale
parametrisations. Our sea-ice model exhibits a strong drift
towards its own attractor, which leads to large differences be-
tween simulations at different resolutions. It is yet unknown
for us if this strong drift is only evident in our model or if it
also prevails for other sea-ice models. Nevertheless, the NN
should ideally take the models’s attractor into account such
that the corrected states stay on this attractor.

Additionally, the NN is trained to correct forecasts for a
specific model setup and a specific model resolution. Nor-
mally, the NN has to be retrained for other setups and espe-
cially other resolutions. However, we might be lucky in cor-
recting model errors from sea-ice dynamics: as sea-ice dy-
namics are temporally and spatially scale-invariant for res-
olutions up to at least 1km, we might be able to apply the
same model error correction for different resolutions. In any
case, the NN trained for one resolution could be used as a
starting point to fine tune it towards another resolution.

In our case, we apply twin experiments, where we train
the NN to correct forecasts with perfectly known initial con-
ditions towards a high-resolution simulation. Although such
training is simple and in our case sufficient, the NN suffers
from an error distribution shift. Applying twin experiments
for the training of subgrid-scale parametrisations, the NN
learns to emulate processes of the high-resolution simula-
tions. Such an emulation could allow us to achieve a similar
performance with low-resolution simulations as with high-
resolution simulations, which would speed up the simula-
tions. However, in this case, the NN learns instantiations of
already known processes.

Instead, subgrid-scale parametrisations should ideally be
learned by incorporating observations into the forecast. This
way, the parametrisation could learn to incorporate pro-
cesses which might yet be unknown. Such learning from
sparsely distributed observations can be enabled by combin-
ing machine learning with data assimilation (Bocquet et al.,
2019, 2020; Brajard et al., 2020, 2021; Farchi et al., 2021b;
Geer, 2021). Therefore, we see this combination as one of
the next steps towards the goal of using observations to learn
data-driven parametrisations for sea-ice models.
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7 Conclusions

Based on our results for twin experiments with a sea-ice-
dynamics-only model in a channel setup, we conclude the
following.

– Deep learning can correct forecast errors and can thus
parametrise unresolved subgrid-scale processes related
to the sea-ice dynamics. For its trained forecast hori-
zon, the neural network can reduce the forecast errors
by more than 75%, averaged over all model variables.
This error correction makes the forecast better than per-
sistence for all model variables at correction time.

– A single big neural network can parametrise processes
related to all model variables at the same time. The
needed weighting parameters can hereby be spatially
shared and learned with a maximum likelihood ap-
proach. A Laplace likelihood improves the extracted
features compared to a Gaussian likelihood and is better
suited to parametrise the sea-ice dynamics.

– Convolutional neural networks with a U-Net architec-
ture can represent important processes for sea-ice dy-
namics by extracting localised and anisotropic features
from multiple scales. For sea-ice models defined on a
triangular or unstructured grid, such scalable convolu-
tional neural networks can be applied for feature extrac-
tion by mapping the input data into a Cartesian space
that has a higher resolution than the original space. The
finer Cartesian space hereby keeps correlations from the
input data intact and enables the network to extract bet-
ter features related to subgrid-scale processes.

– Because forecast errors in the sea-ice dynamics are
likely linked to errors of the forecast model attractor,
we have to apply the model error correction as a post-
processing step and input into the neural network the
initial and forecasted state. This way, the neural network
has access to the model dynamics and can correct them.
Consequently, the dynamics of the forecast model vari-
ables are the most important predictors in a model error
correction for sea-ice dynamics.

– Although only trained for correction at the first up-
date step, applying the error correction together with
the forecast model improves the forecast, tested up to
1 h. The accumulation of uncorrected errors results in a
distribution shift in the forecast errors, making the er-
ror correction less efficient for longer forecast horizons.
Online training or techniques borrowed from offline re-
inforcement learning would be needed to remedy this
distribution shift.

– The deterministic model error correction leads to an im-
proved representation of the fracturing processes. Nev-
ertheless, the unresolved subgrid scale in the sea-ice

Table A1. The parameters for the regional sea-ice model that de-
picts the sea-ice dynamics (Dansereau et al., 2016, 2017) used in
this study.

Parameter Values

Poisson’s ratio ν 0.3
Internal friction coefficient µ 0.7
Ice density ρ 900kgm−3

Velocity of the elastic shear in ice c 500ms−1

Undamaged elastic modulus E0 5.85× 108 Pa
Undamaged apparent viscosity η0 5.85× 1015 Pas
Undamaged relaxation time λ0 1× 107 s
Damage exponent α 4
Characteristic time for damage td 16s
Characteristic time for healing th 5× 105 s
Average grid resolution 1x 4km (high-res)

8km (low-res)
Integration time step 1t 8s (high-res)

16s (low-res)
Air drag coefficient Cda 1.5× 10−3

Air density ρa 1.3kgm−3

Water drag coefficient Cdw 5.5× 10−3

Water density ρw 1× 103 kgm−3

The characteristic time in the damaging process is chosen to be no source of
forecast error.

dynamics can have seemingly stochastic effects on the
resolved scales. These stochastic effects can result in
wrongly positioned strains and fracturing processes for
a deterministic error correction. To properly parametrise
such effects, we would need generative neural networks.

Appendix A: The regional sea-ice model with a Maxwell
elasto-brittle rheology

In the following paragraphs, we will describe the most im-
portant properties of the regional sea-ice model used in this
study. For a more technical presentation of the model, we re-
fer the reader to Dansereau et al. (2016, 2017). Our chosen
model parameters are given in Table A1.

Compared to Arctic and pan-Arctic sea-ice models, like
neXtSIM (Rampal et al., 2016; Ólason et al., 2022), this
model is a regional standalone model that accounts exclu-
sively for dynamical processes. Like most sea-ice models,
it is two-dimensional and based on a plane stress approxi-
mation. Nine variables constitute its prognostic state vector:
sea-ice velocity in the x and y direction, the three stress com-
ponents, level of damage, cohesion, thickness, and concen-
tration.

Atmospheric wind stress is the sole external mechanical
forcing, whereas the ocean beneath the sea ice is assumed to
be at rest. Given the small horizontal extent of our simulation
domain (see Fig. 2), we also neglect the Coriolis force.
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The Maxwell elasto-brittle rheology from Dansereau et al.
(2016) specifies the constitutive law of the model. It com-
bines elastic deformations, with an associated elastic modu-
lus and permanent deformations, with an associated apparent
viscosity. The ratio of the viscosity to the elastic modulus
defines the rate at which stresses are dissipated into perma-
nent deformations. Both variables are coupled with the level
of damage: deformations are strictly elastic over undamaged
ice and completely irreversible over fully damaged ice. The
level of damage propagates in space and time due to damag-
ing and healing. Ice is damaged, and thus the level of dam-
age increases, when and where the stresses are overcritical
according to a Mohr–Coulomb damage criteria (Dansereau
et al., 2016). This mechanism parametrises the role of brittle
failure processes from the subgrid scale onto the mechani-
cal weakening of ice at the mesoscale. Reducing the level of
damage, ice is healed at a constant rate, which parametrises
the effect of subgrid-scale refreezing of cracks onto the me-
chanical strengthening of the ice. By neglecting thermody-
namic sources and sinks in the model, cohesion, thickness,
and area are solely driven by advection and diffusion pro-
cesses; the prognostic variable for the thickness is hereby the
thickness of the ice-covered portion of a grid cell, defined as
the ratio between thickness and area. For the prognostic sea-
ice thickness and area, a simple volume-conserving scheme
is introduced to represent the mechanical redistribution of
the ice thickness associated with ridging (Dansereau et al.,
2017).

The model equations are discretised in time using a first-
order Eulerian implicit scheme. Due to the coupling of the
mechanical parameters to the level of damage, the constitu-
tive law is non-linear, and a semi-implicit fixed point scheme
is used to iteratively solve the momentum, the constitutive,
and the damage equations. Within a model integration time
step, these three fields are updated first. Cohesion, thickness,
and area are updated secondly, using the already updated
fields of sea-ice velocity and damage.

The equations are discretised in space by a discontinues
Galerkin scheme. The velocity and forcing components are
defined by linear, first-order, continuous finite elements. All
other variables and derived quantities like deformation and
advection are characterised by constant, zeroth-order, dis-
continuous elements. The model is implemented in C++ and
uses the Rheolef library (Version 6.7, Saramito, 2020).

Our virtual area spans 40km× 200km: a channel-like
setup, which is nevertheless anisotropy-allowing. The model
is based on a triangular grid with an average triangle size of
8km for the low-resolution forecasts. The grid for the high-
resolution truth trajectories is a refined version of the low
resolution with a spacing of 4km (Fig. 2a).

If not otherwise stated, we initialise the simulations with
undamaged sea ice, the velocity and stress components are
set to zero and the area and thickness to one. The cohesion is
initialised with a random field, drawn from a uniform distri-
bution between 5× 103 Pa and 1× 104 Pa. We use Neumann

boundary conditions on all four sides (Fig. 2c), with an in-
flow of undamaged sea ice (Fig. 2d) and a random cohesion,
again between 5×103 and 1×104 Pa. The model configura-
tion thus simulates a zoom into an (almost) undamaged re-
gion of sea ice, e.g. in the centre of the Arctic.

For the atmospheric wind forcing, we impose a sinusoidal
velocity in the y direction and no velocity in the x direction,
see also Eq. (3). Because of the anisotropy, the sea ice can
nevertheless move in the x direction. Depending on its length
scale and amplitude, the sinusoidal forcing generates cases of
rapid transitions between undamaged and fully damaged sea
ice. As spin-up for the high-resolution simulations, the wind
forcing is linearly increased over the course of the first simu-
lation day. The parameters of the wind forcing are randomly
drawn, as described in Sect. 4. The wind forcing is updated at
each model integration time step (8s for the high-resolution
simulations and 16s for the low-resolution simulations).

Appendix B: U-NeXt architecture

To represent spatial correlations and anisotropic features, we
use CNNs. We train a model error correction as a subgrid-
scale parametrisation (see also Sect. 2.1), applied in a post-
processing step, after the model forecast is generated. Since
the Maxwell elasto-brittle model is spatially discretised on
a triangular space (see also Sect. 2.2), we introduce a lin-
ear projection operator P (Sect. B1), interpolating from the
triangular space to a Cartesian space that has a higher reso-
lution, and where convolutions can easily be applied. After
this projection, we apply a U-Net (Sect. B2) to extract fea-
tures in Cartesian space from the projected input fields. These
features are then projected back into the triangular space
with the pseudo-inverse of the projection operator P†. There,
linear functions combine pixel-wise (i.e. processing each
element-defining grid point independently) the extracted fea-
tures to the predicted residual, one for each variable. Each
linear function is learned and shared across all grid points.
The NN predicts the residuals for all nine forecast model
variables at the same time with one shared U-Net. By shar-
ing the U-Net across tasks, the NN has to learn patterns and
features for error correction of all variables. To weight the
nine different loss functions, we make use of a maximum
likelihood approach (Sect. B3). This proposed pipeline (vi-
sualised in Fig. 4) can be seen as a baseline that enables a
subgrid-scale parametrisation with deep learning for sea-ice
dynamics, correcting all model variables at the same time.

B1 The projection operator

For the Cartesian space, we chose a discretisation of 32×128
elements in the x and y directions, defined by constant,
zeroth-order, Cartesian elements evenly distributed in the
40km× 200km domain. As each Cartesian element has a
resolution of 1.25km×1.5625km, the Cartesian space has a
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higher resolution than the original triangular space (∼ 8km).
Using such a super resolution mitigates the loss of informa-
tion caused by the projection. Furthermore, the NN can learn
interactions between variables on a smaller scale than that
used in the model, which helps to parametrise the subgrid
scale, as we will see in Sect. 5.1.

As projection operator P , we use Lagrange interpolation
from the original triangular elements to the Cartesian ones.
For the velocity and forcing components, defined as first-
order elements, this interpolation corresponds to a (linear)
Barycentric interpolation and to a nearest neighbour inter-
polation for all other variables, defined as zeroth-order el-
ements; P thus reduces to a linear operator, hereafter writ-
ten as P. Because of the higher resolution, there are multiple
Cartesian elements per triangular element, and the inverse
of the operator does not exist, as the linear system is over-
determined. Consequently, in order to define the backward
projection from the Cartesian space to the triangular space,
we use the Moore–Penrose pseudo-inverse P†. Since the rank
of P is by construction equal to the dimension of the trian-
gular space, i.e. its column number, the pseudo-inverse is, in
our case, equal to P†

= (P>P)−1P>, where P> corresponds
to the transposed operator. Note, for coarse Cartesian spaces,
the mapping from Cartesian space to triangular space can be
non-surjective, meaning that not all triangular elements are
covered by at least one Cartesian element: the pseudo-inverse
is in this case rank deficient.

In the case of zeroth-order discontinuous Galerkin ele-
ments, the projection operator assigns to each Cartesian el-
ement one triangular element. The back-projection operator
then corresponds to an averaging of the Cartesian elements
into their assigned triangular element. This averaging can be
seen as a type of ensembling the information from smaller,
normally unresolved, scales to larger, resolved, scales. We
have implemented this projection operator as an NN layer
with fixed weights in PyTorch.

B2 The U-Net feature extractor

We use CNNs in Cartesian space. The feature extractor
should be able to extract multiscale features and to repre-
sent rapid spatial transitions, which might occur only on finer
scales. Consequently, we have selected a deep NN architec-
ture with a U-like representation, a so-called U-Net (Ron-
neberger et al., 2015). The encoding part (on Fig. 4a, the left
side of the U-Net) extracts information on multiple scales
(here on two), by cascading downsampling steps. The de-
coding part (on Fig. 4a, the right side of the U-Net) refines
coarse-scale information up and combines them with infor-
mation from finer scales and outputs the extracted features.
Consequently, the U-Net architecture can extract features at
multiple scales, mapped onto the finest scale.

Our typical U-Net architecture consists of three different
blocks: residual blocks, mainly inspired by ConvNeXt blocks
(Liu et al., 2022); a downsampling block; and an upsampling

Table B1. Proposed baseline U-NeXt architecture based on
ConvNeXt-like blocks. “Down” and “Up” correspond to down-
sampling and upsampling blocks, respectively. Counting with the
weights of the linear functions in triangular space, the architecture
has in total around 1.2× 106 parameters.

Stage Operation Params nin nout nx ny

Input ConvNeXt 23 056 20 128 32 128

Down 1 Down 295 424 128 256 16 64
ConvNeXt 145 152 256 256 16 64
ConvNeXt 145 152 256 256 16 64

Bottleneck ConvNeXt 145 152 256 256 16 64

Up 1 Up 295 552 256 128 32 128
ConvNeXt 95 744 128 128 32 128
ConvNeXt 39 808 128 128 32 128

Output ConvNeXt 39 808 128 128 32 128
relu – 128 128 32 128

block. Our complete U-net architecture has in total approx-
imately 1.2× 106 trainable parameters and consists of five
stages; see also Table B1. The rectified linear unit (relu) in
the output stage, hout =max(0,hout-1), introduces a discon-
tinuity into the features, which can help the NN to represent
sharp transitions in the level of damage. The input fields pro-
jected into the Cartesian space are treated as input channels
for the input stage and include nine state variables and one
forcing field for both input time steps, resulting in total to 20
input channels. The architecture is quite thick, with 128 out-
put channels, to extract features for all model variables at the
same time.

B2.1 The ConvNeXt blocks

In our standard configuration, the processing blocks are
mainly inspired by ConvNeXt blocks (Liu et al., 2022). The
output hl = fl(hl−1)+ gl(hl−1) of the lth block is calcu-
lated based on the output of the previous block hl−1 by
adding a residual connection fl(hl−1) to a branch connec-
tion gl(hl−1), as depicted in Fig. 4b.

The residual connection is an identity function fl(hl−1)=

hl−1 if the number of its output channels nout equals the num-
ber of its input channels nin. Otherwise, a convolution with
a 1× 1 kernel, called in the following a 1× 1 convolution,
combines the nin input channels to nout output channels as a
linear pixel-wise shared function.

In the branch connection, a single convolutional layer with
a 7× 7 kernel is applied depth-wise (i.e. on each input chan-
nel independently) to extract information about neighbouring
pixels; before applying the convolution, the fields are zero
padded by three pixels on all four sides, such that the output
of the layer has the same size as the input. The output of this
spatial extraction layer is normalised by layer normalisation
(Ba et al., 2016) across all channels and grid points. Com-
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pared to batch normalisation (Szegedy et al., 2014), layer
normalisation is independent of the number of samples per
batch and performs on par in this type of block (Liu et al.,
2022).

Afterwards, a convolution layer with a 1× 1 kernel mixes
up the normalised channel information. If not otherwise de-
picted, the output of this intermediate layer gets activated by
a Gaussian error linear unit (Gelu; Hendrycks and Gimpel,
2020). The last 1× 1 convolution linearly combines the acti-
vated channels into nout channels. The output of this branch
connection is scaled by learnable factors γ , one for each out-
put channel, and initialised with γi = 1× 10−6. This type
of scaling improves the convergence for deeper networks
with residual layers (Bachlechner et al., 2020; De and Smith,
2020).

B2.2 The down- and upsampling

For the downsampling operation, in the encoding part of
the U-Net, we use a layer normalisation, followed by zero
padding of one pixel on all four sides, and a convolution with
a kernel size of 3× 3 and stride of 2× 2, similar to Liu et al.
(2022). As this operation halves the data sizes in the x and
y direction, the number of channels is doubled in the convo-
lution. By replacing max-pooling operations with a strided
convolution, the downsampling operation becomes learnable
(Springenberg et al., 2015).

For the upsampling operation, in the decoding part of
the U-Net, we use a sequence of bilinear interpolation,
which doubles the spatial resolution, layer normalisation,
zero padding of one pixel on all four sides, and a convolution
with a 3× 3 kernel, which halves the number of channels. A
bilinear interpolation followed by a convolution avoids un-
wanted checker-board effects (Odena et al., 2016), which
can occur when using transposed convolutions for upsam-
pling. Before further processing, the output of the upsam-
pling block is concatenated with the output of the encoding
part at the same spatial resolution, indicated by the dotted
blue line in Fig. 4a.

B3 Learning via maximum likelihood

In our NN architecture, we want to predict a model error cor-
rection for all nine model variables at the same time, which
causes nine different loss function terms, like nine different
mean-squared errors or mean absolute errors (MAEs). As
each of these variables has its own error magnitude, vari-
ability, and issues to correct, we have to weight the loss
functions against each other with parameters λ ∈ R9, Ltotal =∑9
i=1λiLi . To tune these parameters, we use a maximum

likelihood approach, which relates the weighting parame-
ters to the uncertainty of the nine different model variables
(Cipolla et al., 2018).

In the maximum likelihood approach, a conditional proba-
bility distribution p(1x | x,θ) parametrised by θ is assumed

to approximate the true, but unknown, data, generating a con-
ditional probability distribution of the residuals1x given the
input x – note that for conciseness the initial state xin and
the forecasted state xf have here been gathered in a single
input vector x. The parameters of this probability distribu-
tion are optimised such that the negative log-likelihood of
the observed residuals 1x given the input x and parameters
is minimised

θ? , argmin
θ
[− lnp(1x | x,θ)].

The log-likelihood factorises hereby as the sum over multiple
dimensions like the samples or variables.

We treat the output of our NN f (x,φ) with its weights
φ as the median of a univariate approximated Laplace dis-
tribution. From the perspective of the NN, the negative log-
likelihood is thus a weighted MAE loss function. As all data
points are equally weighted, a Laplace distribution results
in a more robust estimation against outliers than a Gaussian
distribution. Contrary to the median predicted as a field, we
use a single scale parameter per variable bi shared across all
grid points. We optimise the nine scale parameters together
with the NN by minimising the negative log-likelihood, av-
eraged over B data pairs (xj ,1xj ). As we utilise a variant
of stochastic gradient descent for optimisation, the data pairs
are drawn from the training dataset D at each iteration. Be-
fore summing all nine loss terms up, we average the negative
log-likelihood per variable across all grid points (here simpli-
fied denoted as average acrossM grid points), as the velocity
components have fewer data points than all other variables,
caused by their spatial discretisation (see also Sect. 2.2)

Ltotal =
1
BM

9∑
i=1

B∑
j=1

M∑
k=1

1
bi
|1xi,j,k−fi,j,k(x,φ)|+ ln(2bi).

The factor in front of the absolute error, λi = 1
bi

, is the
weighting factor; the MAE can be recovered by setting bi =
1 as a constant. The additional term, ln(2bi), originates from
the normalisation of the Laplace distribution, is independent
of the errors, and counteracts a too-small bi . This approach
optimises bi to match the expected MAE (Norton, 1984) in
the training dataset and can be seen as an uncertainty esti-
mate, e.g. recently used in Cipolla et al. (2018); Rybkin et al.
(2020). Compared to using a fixed climatological value, this
approach adaptively weights the loss, depending on the error
of the NN for the different variables. This adaptive weight-
ing marginally improves the training of the NN, as shown in
Sect. D3. Since we learn the scale parameters purely from
data, this approach can be seen as type II maximum likeli-
hood or empirical Bayes approach (Murphy, 2012).

Appendix C: Screening of architectures

As our NN architecture accommodates multiple decisions,
here we will explore how they influence the results on the test
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dataset. We show what would happen if we would use other
CNN architectures (Table C1). Detailed NN configurations
can be found in Sect. C1. We have selected the parameters
of the U-Net architecture after a randomised hyperparameter
screening in the validation dataset with 200 different network
configurations per architecture, like for the U-NeXt architec-
ture.

The simplest approach to correct the model forecast is to
estimate a global bias, one for each variable, in the training
dataset and to correct the forecast by this constant. As we
measure the MAE, we take as bias the median error instead
of the mean error in the training dataset. Correcting the bias
has almost no impact on the scores, and, consequently, the
model error is dominated by dynamical errors.

As a next level of complexity, we introduce a shallow CNN
architecture with one layer as feature extractor. Using dila-
tion in the convolutional kernel, this layer can extract shal-
low multiscale spatial information for each grid point. This
shallow architecture with only around 5× 104 parameters
constantly improves the forecast by around 65% on aver-
age. Introducing a hierarchy of five convolutional layers in
the “Conv (×5)” architecture increases the number of pa-
rameters to 2.9× 105. However, the averaged metric is only
marginally better than for the shallow CNN. Its multiscale
capacity is limited, and the NN cannot scale with the depth
of the network to extract more information. Caused by their
limited capacity, the NNs have problems converging, which
harms the performance, like the damage in the case of “Conv
(×5)”. A shallow network with a single convolutional layer
can nevertheless be an option to obtain a small and fast NN
for a subgrid-scale parametrisation. Such a fast NN can be
helpful if the additional latency time impacts its application
in a sea-ice model.

An approach to extract multiscale information is to use a
U-Net architecture that extracts and combines information
from different levels of coarsened resolution. To make the
approaches comparable, we use almost the same configura-
tion as specified in Sect. B2 and Table B1, except that we
replace the ConvNeXt blocks by simple convolutional layers
with a kernel size of 3× 3, followed by batch normalisation
(Szegedy et al., 2014) and a Gaussian error linear unit acti-
vation function. Using such a U-Net decreases the forecast
errors by more than 20% compared to the basic CNN. Al-
though the improvement is only small compared to the sim-
pler networks for some variables, the U-Net improves the
balance between different variables. Consequently, the met-
ric for the U-Net is always better than for persistence, show-
ing its capacity and potential to extract multiscale informa-
tion.

Replacing the classical convolutional layers with Con-
vNeXt blocks as described in Sect. B2 gives an additional
improvement in the performance of the NNs. Although the
number of parameters for the U-NeXt is only a third of the
number for the U-Net, the ConvNeXt blocks reduce the fore-
cast errors by an additional 14%. The blocks hereby reduce

the errors in the damage and area especially. The ConvNeXt
blocks are able to extract more information from existing
data than the convolutional layers. Because the U-NeXt is
also the best-performing method in the validation dataset, we
use this architecture throughout the paper.

Training “Conv (×1)” for each model variable indepen-
dently has only a marginal impact on the scores, although
their latencies are much larger than for the shared NN. The
convergence issues in the “Conv (×5)” and “Independent
Conv (×1, 128)” architecture indicate that the improvement
of the bigger neural networks is not only related to an in-
creased number of parameters but also because of their mul-
tiscale layout. These results signify that training one big neu-
ral network for model error correction of all model variables
allows us to use bigger networks, which improves their gen-
eral performance.

C1 Neural network configurations

By mapping from triangular space into high-resolution
Cartesian space, several Cartesian elements are caught in
one triangular element. Consequently, a simple convolutional
layer would have problems extracting information across
multiple scales. To circumvent such problems, we apply in
the case of the naively stacked convolutional layers two con-
volutional layers at the same time – one local filter with a
3× 3 kernel and one larger-scale filter with a 3× 3 kernel
and a dilation of 6× 7, such that the filter sees the next tri-
angular element – we call such a layer “MultiConv”. Using
zero padding, we keep the output of the layers the same. The
output of both convolutional layers is averaged to get a sin-
gle output. As usual for CNNs, we use batch normalisation
instead of layer normalisation. We keep Gelu as the activa-
tion function, as for the ConvNeXt blocks, except for the
last layer, where we use relu. The “Conv (×1)” uses a sin-
gle block (Table C2), whereas the “Conv (×5)” stacks five
blocks (Table C3) with an increasing number of feature chan-
nels.

Our baseline “U-Net” (Ronneberger et al., 2015) has clas-
sical convolutional blocks instead of ConvNeXt blocks. Like
in the case for the U-NeXt, we have optimised the hyper-
parameters for this U-Net with a random hyperparameter
sweep over 200 different network configurations. Similarly
to the U-NeXt (see also Table B1), the here-used configu-
ration is based on one level of depth, where the fields are
downsampled in the encoder and upsampled in the decoder
part. Our convolutional blocks have one convolutional layer
with a 3× 3 kernel with zero padding, batch normalisation,
and Gelu as the activation layer. For the downsampling in the
encoder, we sequentially use one convolutional layer with a
3×3 kernel, stride of 2×2, and zero padding; batch normal-
isation; and Gelu as the activation layer. For the upsampling
in the decoder, we sequentially use bilinear interpolation; one
convolutional layer with a 3× 3 kernel, stride of 2× 2, and
zero padding; batch normalisation; and Gelu as the activation
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Table C1. Normalised MAE on the test dataset for different NN architectures, shown are average and standard deviation across 10 training
seeds. Reported are the errors for the velocity component in y direction v, for the stress component σyy , the damage d , and the area A. The
mean6 is the error averaged over all nine model variables, including the non-shown ones. A score of 1 would correspond to the performance
of the raw forecast in the training dataset. Models in the first block are the baseline methods; models in the second block are the multiscale
convolutional models and in the third block the U-Nets; and models in the fourth block are like the “Conv (x1)” architecture but trained for
each variable independently and with the specified number of channels in the hidden layer. Bold scores correspond to best scores in that
column.

Name Params v σyy d A 6

(×106)

Persistence – 0.37± 0.00 0.29± 0.00 0.60± 0.00 2.37± 0.00 0.79± 0.00
Raw forecast – 1.14± 0.00 0.91± 0.00 1.09± 0.00 0.94± 0.00 1.03± 0.00
Bias-corrected forecast – 1.14± 0.00 0.90± 0.00 1.09± 0.00 0.94± 0.00 1.02± 0.00

Conv. (×1) 0.05 0.36± 0.02 0.27± 0.01 0.48± 0.01 0.63± 0.01 0.36± 0.01
Conv (×5) 0.29 0.33± 0.01 0.24± 0.01 1.00± 0.15 0.35± 0.01 0.35± 0.02

U-Net 3.7 0.35± 0.00 0.24± 0.00 0.41± 0.00 0.33± 0.00 0.28± 0.00
U-NeXt 1.2 0.23± 0.00 0.17± 0.00 0.38± 0.01 0.33± 0.00 0.24± 0.00

Independent Conv (×1, 16) 0.05 0.35± 0.01 0.25± 0.02 0.46± 0.01 0.60± 0.01 0.35± 0.00
Independent Conv (×1, 128) 0.42 0.47± 0.04 0.36± 0.05 0.96± 0.22 0.70± 0.05 0.47± 0.05

Table C2. “Conv (×1)” based on a single multiscale convolutional
layer, with “Batch norm” as batch normalisation.

Operation Params nin nout nx ny

MultiConv 46 208 20 128 32 128
Batch norm 256 128 128 32 128
relu – 128 128 32 128

Table C3. “Conv (×5)” based on five stages with multiscale convo-
lutional layer, with “Batch norm” as batch normalisation.

Stage Operation Params nin nout nx ny

Stage 1 MultiConv 11 552 20 32 32 128
Batch norm 64 32 32 32 128
Gelu – 32 32 32 128

Stage 2 MultiConv 18 464 32 32 32 128
Batch norm 64 32 32 32 128
Gelu – 32 32 32 128

Stage 3 MultiConv 36 928 32 64 32 128
Batch norm 128 64 64 32 128
Gelu – 64 64 32 128

Stage 4 MultiConv 73 792 64 64 32 128
Batch norm 128 64 64 32 128
Gelu – 64 64 32 128

Stage 5 MultiConv 147 584 64 128 32 128
Batch norm 256 128 128 32 128
relu – 128 128 32 128

Table C4. “U-Net” with normal convolutional blocks, where down
and up correspond to downsampling and upsampling operations,
respectively. Each convolutional block is a sequence of a convo-
lutional layer, batch normalisation, and a Gelu activation function,
which is skipped in the last “Output Conv” block.

Stage Operation Params nin nout nx ny

Input Conv 23 296 20 128 32 128

Down 1 Down 295 424 128 256 16 64
Conv 590 336 256 256 16 64
Conv 590 336 256 256 16 64
Conv 590 336 256 256 16 64

Bottleneck Conv 590 336 256 256 16 64

Up 1 Up 295 168 256 128 32 128
Conv 295 168 128 128 32 128
Conv 147 712 128 128 32 128
Conv 147 712 128 128 32 128

Output Conv 147 712 128 128 32 128
relu – 128 128 32 128

layer. The encoder and decoder are connected via a bottle-
neck and a shortcut connection at the non-scaled level. Be-
cause we use several convolutional layers which extract spa-
tial information and mix the channel at the same time, the
network has much more parameters than the U-NeXt (Ta-
ble C4).
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Figure D1. The negative log-likelihood for a Laplace distribution,
proportional to the mean absolute error (MAE), with a fixed weight-
ing in the validation dataset as a function of epochs for different
fractions of training data; the brighter the colour, the less training
data are used. The smaller Figure shows the averaged MAE in the
test dataset as a function of the fraction of training data. A fraction
of 1.0 corresponds to around 12.3× 106 degrees of freedom in the
training dataset.

Appendix D: Additional results

In this section, we provide additional results, showing the
influence of different choices in the training on the perfor-
mance in the testing dataset.

D1 Number of training samples

Large NNs have many parameters, in the case of the U-NeXt
1.2× 106, and could fit functions with as many degrees of
freedom. If the number of degrees of freedom in the train-
ing dataset is similar or even lower, the NN might perfectly
fit and remember the training dataset. As there is noise and
spurious correlations within the dataset, the NN would also
learn these “features” and overfit towards the training dataset.
In this overfitting case, the NN would fail to generalise and
to give good predictions to data unseen during training.

In the following, we analyse the training behaviour of the
NN and see what happens if we artificially train on a portion
of data only (Fig. D1). For the validation dataset, over the
course of the training, we show the negative log-likelihood
(NLL) with a Laplace assumption and scaling parameters
fixed to their climatological values. This loss is proportional
to a mean absolute error (MAE) with a fixed weighting,
where the weights are given by the inverse scaling parame-
ters. Additionally, we analyse the weighted MAE in the test-
ing dataset for the different NNs after training.

For all fractions of training data, the validation NLL
smoothly decreases over the course of training. Conse-
quently, we see no overfitting, even with only 10% of train-
ing data. Additionally, the loss and the weighted MAE sat-
urates as a function of fraction in the training data: the gain
training on more data is larger for small sample sizes than

for larger sample sizes. Such a logarithmic data scaling be-
haviour is expected and can even be observed for very large
language models (Kaplan et al., 2020). Given this scaling, we
would need much more data to scale the performance further.

We can now wonder why the NN trained on only 10%
of training data shows no overfitting, even though the NN
has roughly as many degrees of freedom as the training data.
We attribute this behaviour to our projection step or to fitting
one NN on all model variables. The most NN parameters are
stored within the feature extractor in Cartesian space. Caused
by the back-projection step mapping from Cartesian to tri-
angular space, the features are averaged across grid points.
Consequently, we hypothesise that the true number of NN
parameters as seen from the triangular space is much smaller
than 1.2×106. Furthermore, fitting one NN on all model vari-
ables acts as a kind of regularisation. To gain a balanced per-
formance across all variables, the NN has to extract features
shared across variables. Seen for a single variable alone, fea-
ture sharing reduces the capacity of the NN. Additionally, by
sharing, the NN is encouraged to extract more generalisable
features. In general, this would mean that training a single big
NN for multiple variables could really improve data-driven
forecasting, even for only a limited number of data.

D2 Lead time between two correction steps

One of our fixed parameters is the lead time for which the NN
is trained and applied for forecasting. In the following, we
will shortly discuss the impact of the lead time between two
correction steps (hereafter correction time) on the forecasting
performance, again measured by the normalised RMSE.

Decreasing the correction time decreases how long the
trajectory freely drifts towards the attractor of the sea-ice
model. Model errors can, additionally, be corrected earlier,
before they have a too-large impact on the forecast. Conse-
quently, we would expect that the shorter the correction time,
the better the forecasting performance. However, in our case,
the forecasting performance is worse for a lead time of 80s
than for 10min and 8s. Decreasing the correction time also
increases the number of correction steps in a given time win-
dow. The more correction steps, the more the error distribu-
tion can shift. We have already identified the distribution shift
as one of the main challenges towards the application of such
model error corrections for forecasting. For a decreased cor-
rection time, the impact of the distribution shift outweighs
the positive impact of earlier model error corrections. This
results in a negative model error correction impact after a
forecasting lead time of 60min, if the correction time is de-
creased.

For an increased correction time of 20min, we get a
slightly improved performance at correction times compared
to the shorter correction time of 10min and 8s. Their perfor-
mance is, however, generally comparable. Therefore, these
results clearly point out again the negative impact of the dis-
tribution shift on the forecasting performance.
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Figure D2. Normalised RMSE for (a) the velocity in the y direction, (b) the divergent stress in the y direction, (c) the damage, and (d) the
sea-ice area as a function of lead time on the test dataset, normalised by the expected RMSE on the training dataset for a lead time of 10min
and 8s. In the hybrid models, the forecast is corrected after each specified lead time in brackets.

Table D1. The average RMSE and MAE, normalised by their ex-
pected climatology, on the test dataset for different training loss
functions. The bold loss function is the selected loss functions, and
bold scores are the best scores in a column.

Name RMSE MAE

Gaussian (fixed) 0.34 0.30
Gaussian (trained) 0.33 0.29
Laplace (fixed) 0.33 0.25
Laplace (trained) 0.32 0.24

D3 Loss functions

Optimising the Laplace log-likelihood corresponds to min-
imising the mean absolute error (MAE), whereas an opti-
misation of a Gaussian log-likelihood minimises the mean-
squared error. Thus, we report the averaged root-mean-
squared error (RMSE) and MAE over all variables to mea-
sure the influence of the loss function on the performance
of the NNs (Table D1). As the RMSE and MAE are nor-
malised by their climatological values in the training dataset,
the weighting between the model variables is fixed to their
climatological values, favouring fitting networks with fixed
climatological weighting.

Compared to a Gaussian log-likelihood with trainable vari-
ance parameters, the Laplace log-likelihood as the loss func-
tion improves not only the MAE by around 17% but also the
RMSE by around 3%. Despite the fixed weighting, fitting
the uncertainty parameters together with the NN marginally

improves these metrics in both cases. Using adaptive uncer-
tainty parameters modulates the gradient during training, and
the optimisation benefits from this adaption, resulting in the
shown error decrease.

The loss function influences the output of the NN and
the learned features before they are linearly combined to
the output (Fig. D3). In the learned features, a Laplace log-
likelihood increases the contrast between highly activated,
active regions and passive regions in the background with
a low activation value, Fig. D3a and b. Here, we define the
contrast of a feature map as the ratio between its spatially
averaged standard deviation σ to its spatially averaged mean
value µ. For the Laplace log-likelihood, the median contrast
(1.15) is higher than for the Gaussian log-likelihood (0.93),
as can be seen in Fig. D3c. The distribution for the Laplace
log-likelihood is additionally more balanced, meaning that
less extreme values appear on both ends. We attribute these
differences to the different behaviour of the loss function
(Hodson, 2022). As the Gaussian log-likelihood is more sen-
sitive to larger errors in the training dataset, the NN has to
learn specialised feature maps for these cases. The Laplace
log-likelihood leads to a higher contrast in the feature maps
and to more balanced feature maps. Based on its increased
contrast, we hypothesise that the Laplace log-likelihood re-
sults in better linearly separable feature maps. On their basis,
the linear functions can more easily combine the features to
predict sharper and more localised residuals, improving the
performance of the NN.
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Figure D3. Two typical feature maps for a NN trained with ei-
ther (a) a Gaussian log-likelihood or (b) a Laplace log-likelihood.
For visualisation purposes, the feature maps are again normalised
by their 99th percentile, as in Fig. 5. The contrast (c) is estimated
as the spatial standard deviation σ divided by the spatial mean µ
of each feature map, extracted from the test dataset. The number of
inactivate features maps (constant zero) is normalised by the same
value as the cumulative distribution function (CDF). A higher con-
trast indicates better linear separable features.

D4 Activation functions

Another decision that we took in our architecture is to use the
Gaussian error linear unit (Gelu) in the blocks and the recti-
fied linear unit activation (relu) function as the activation of
the features, before they are projected back into triangular
space and linearly combined. The Gelu activation function
is recommended for use in a ConvNeXt block (Liu et al.,
2022), but its performance seems to us to be on par with the
relu activation function. Whereas the Gelu activation func-
tion is a smooth function inspired by dropout (Hendrycks and
Gimpel, 2020), relu is a non-smooth function, which induces
sparsity in the feature maps.

As similarly found in Liu et al. (2022), replacing the Gelu
activation function with a relu activation function in the Con-
vNeXt blocks leads to almost the same results on the test
dataset (Table D2). Furthermore, the activation function for
the extracted features at the end of the feature extractor also
has only a small influence. Even using no activation function
at this position degrades the mean performance by 4%; for
some variables, like the damage or area, using no activation
function leads to the best results. Because the Gelu activation
function is state of the art in many deep learning tasks and is

Table D2. Normalised MAE on the test dataset for different acti-
vation functions in the ConvNeXt blocks and as feature activation
(w/o: no activation function). The error components are estimated
as in Table 2, and the same acronyms are used. The bold combina-
tion shows the selected activation functions, and bold scores are the
best scores in a column.

Activation v σyy d A 6

relu & relu 0.24 0.17 0.37 0.34 0.24
Gelu & Gelu 0.23 0.17 0.39 0.33 0.24
Gelu & w/o 0.22 0.16 0.42 0.34 0.25
Gelu & relu 0.23 0.17 0.38 0.33 0.24

Figure D4. Snapshot of typical feature maps for (a) no feature ac-
tivation (w/o), (b) the Gaussian error linear unit (Gelu), or (c) the
rectified linear unit (relu). For visualisation purposes, the feature
maps are normalised by their 99th percentile. The numbers indicate
the percentiles of the normalised feature maps. The histogram (d)
represents the unnormalised feature activation values over the whole
test dataset. As the histogram for the relu activation function have a
large spike at 0 in (d), the y axis is broken.

recommended Liu et al. (2022), we use the Gelu within the
ConvNeXt blocks.

In the following, we show feature maps for different ac-
tivation functions at the feature output of the U-Net as a
qualitative measure (Fig. D4). Using no activation func-
tion (Fig. D4a) extracts continuous features. These features
roughly follow a Cauchy distribution around 0 without en-
forcing sparsity (Fig. D4d, the black contour line is the
Cauchy distribution fitted via maximum likelihood). Caused
by its weighting with the Gaussian error function, Gelu
squashes the negative values of the activation values together,
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leading to a peak of the values around zero. Nevertheless,
only a few values are truly zero, as Gelu does not set values
explicitly to zero. In contrast, using relu enforces sparsity,
and the NN can extract localised and “patchified” features
(Fig. D4c). Consequently, the relu activation generates many
deactivated pixels. Although the performance of the relu ac-
tivation is the same as for the Gelu activation, we hypoth-
esise that sparse features can improve the representation of
subgrid-scale processes, as sea ice has a discrete character,
especially at the marginal ice zone or around leads. There-
fore, for our experiments we use the Gelu activation function
as the activation in the ConvNeXt blocks and the relu activa-
tion function as the feature activation, before the features are
linearly combined.

D5 Permutation feature importance for variable
groups

Using the permutation feature importance, we have anal-
ysed that all model variables are very sensitive to their own
dynamics as predictors. Nevertheless, by permuting single
predictors independently, we only destroy information con-
tained in this predictor. As other variables might hold sim-
ilar information, e.g. for the sea-ice area and thickness, the
inter-variable importance is likely to be underestimated, and
the permutations can lead to unphysical instances. To see the
effect of the correlations on the importance, we permute dif-
ferent variable groups and estimate their importance on the
nine output variables.

For the sea-ice velocities, their dynamics are clearly the
predictors with the biggest impact. However, the absolute
values of sea-ice area and thickness have combined a small
but considerable impact on the velocity in y direction, prob-
ably explainable by their coupling via momentum equation.

The stress components and damage are highly sensitive to
their own dynamics if only a single variable is shuffled, as
shown for the reference feature importance; however, they
are insensitive if the stress components and damage are shuf-
fled as a group. For their correction, the NN seems to rely on
features that extract relative combinations of these variables.
Shuffling a single variable then creates unphysical instances,
which destroys such features, whereas they are kept intact
when the stress components and the damage are shuffled to-
gether. The same feature importance as for the reference is
reached if the velocities and the stress variables are shuffled
together. Here, the dynamics are as important as the absolute
values. Because the area and thickness have no influence, the
errors of the stress components and damage are also driven
by the dynamical variables, as in our sea-ice model.

For the area and thickness, if their dynamics are shuffled
alone, their importance is higher than shuffling their dynam-
ics at the same time. Additionally, similar differences can be
observed if the stress components are shuffled and combined
with or without damage. Again, we attribute this to the nat-
urally high correlation in some variables, which leads to un-
physical instances, skewing the permutation feature impor-
tance. The importance of having physically consistent sam-
ple instances manifests one of the downsides of the permuta-
tion feature importance for correlated input variables. Never-
theless, this importance also shows that the NN takes groups
of input variables and their correlations into account, which
could explain the efficiency of the NN.

D6 Forecasting with differences as network input

For forecasting with the model error correction, we only
show results for the NNs with the initial conditions and the
forecasts as input, although the NNs with initial conditions
and the difference between forecast and initial conditions
performs better in the testing dataset. Here, we will shortly
discuss the forecasting results of these latter NNs with the
initial conditions and the differences as input (Table D4).

The dynamics are explicitly represented as the difference
between the forecast and initial conditions. On the one hand,
this helps the NN to extract more information from the dy-
namics than for the “Initial+Forecast” experiment (see also
Table 4). On the other hand, this explicit representation in-
troduces an assumption that the dynamics are additive to the
initial conditions. In some sense, the NN can overfit towards
the use of the dynamics for a model error correction. Caused
by this sort of overfitting, the hybrid model performs worse
for the velocity, the stress, and the damage than the hybrid
model that uses the raw forecast, but their differences gener-
ally remain small. As the hybrid model with the initial con-
ditions and the forecast as input has fewer assumptions, we
present its results with greater detail in Sect. 5.3.
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Table D3. Permutation feature importance of different variable groups. The colouring is the same as in Table 6 of the original paper. SIU
stands for velocity in the x direction, SIV for velocity in the y direction, F for wind forcing, σ for all stress variables, DAM for damage, SIA
for sea-ice area, and SIT for sea-ice thickness. The reference is the permutation feature importance of the dynamics for a specific variable.

Table D4. Normalised RMSE on the test dataset for a lead time of
60min. The last update in the hybrid models was at a lead time of
50min and 40s. The errors are normalised by the expected standard
deviation for a lead time of 60min on the training dataset. The two
bottom models correspond to the two hybrid models with different
input variables. The symbolic representation of the variables has the
same meaning as in Table 6.

Name v σyy d A 6

Persistence 1.13 0.81 0.83 2.58 1.19
Sea-ice model 1.34 0.93 1.06 0.98 1.06

“Initial + Forecast” 1.16 0.95 0.68 0.46 0.81
“Initial+Difference” 1.20 1.00 0.71 0.41 0.82

Code and data availability. The authors will provide access to the
data and weights of the neural networks upon request. The source
code for the experiments and the neural networks is publicly avail-
able under https://doi.org/10.5281/zenodo.7997435 (Finn, 2023).
The regional sea-ice model source code will be made available upon
request.
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