
Current and future risk of unprecedented 
hydrological droughts in Great Britain 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Chan, W. C.H., Arnell, N. W. ORCID: https://orcid.org/0000-
0003-2691-4436, Darch, G., Facer-Childs, K., Shepherd, T. G. 
ORCID: https://orcid.org/0000-0002-6631-9968, Tanguy, M. 
and van der Wiel, K. (2023) Current and future risk of 
unprecedented hydrological droughts in Great Britain. Journal 
of Hydrology, 625. 130074. ISSN 0022-1694 doi: 
10.1016/j.jhydrol.2023.130074 Available at 
https://centaur.reading.ac.uk/112811/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.jhydrol.2023.130074 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Journal of Hydrology 625 (2023) 130074

Available online 9 August 2023
0022-1694/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research papers 

Current and future risk of unprecedented hydrological droughts in 
Great Britain 

Wilson C.H. Chan a,c,*, Nigel W. Arnell a, Geoff Darch b, Katie Facer-Childs c, Theodore 
G. Shepherd a, Maliko Tanguy c, Karin van der Wiel d 

a Department of Meteorology, University of Reading, United Kingdom 
b Anglian Water, Peterborough, United Kingdom 
c UK Centre for Ecology & Hydrology (UKCEH), Wallingford, United Kingdom 
d Royal Netherlands Meteorological Institute (KNMI), Netherlands   

A R T I C L E  I N F O   

Keywords: 
Climate Change 
Large ensembles 
Drought 
Storylines 
Great Britain 

A B S T R A C T   

The UK has experienced recurring hydrological droughts in the past and their frequency and severity are pre-
dicted to increase with climate change. However, quantifying the risks of extreme droughts is challenging given 
the short observational record, the multivariate nature of droughts and large internal variability of the climate 
system. We use EC-Earth time-slice large ensembles, which consist of 2000 years of data each for present-day, 
2◦C and 3◦C conditions relative to pre-industrial, to drive hydrological models of river catchments in Great 
Britain (GB) to obtain a large set of plausible droughts. Since future warming is certain, the uncertainty in 
drought is mainly associated with uncertainty in precipitation. Estimates of unprecedented extremes show that 
the chance of a summer month in a given year drier than the observed driest summer (1995) is projected to 
increase with future warming (from 9% in the present-day (PD) to 18% in a 3◦C warmer world (3C) for southeast 
England). For winter, the chance of a dry winter month drier than the observed driest winter (1991–92) slightly 
decreases (from 10% - PD to 8% − 3C for southeast England) but the chance of the driest winter does not change 
significantly with future warming. We add value to these probabilistic estimates by sampling for physical climate 
storylines of drought sequences characterised by dry spring-summers, autumn-winters and consecutive dry 
winters. Dry spring-summers are estimated to become drier with future warming primarily driven by reduced 
precipitation in summer. Dry autumn-winters may become wetter mainly driven by the general trend of more 
precipitation in winter although drought conditions triggered by moderate autumn–winter precipitation deficits 
may worsen given the higher likelihood of being followed by a dry summer. Similarly, drought impacts of 
consecutive dry winters, a particular risk for slow-responding catchments in the English Lowlands, may worsen 
with future warming as the intervening summer is projected to become hotter and drier. These storylines can be 
used to stress-test hydrological systems and inform decision-making.   

1. Introduction 

Hydrological droughts threaten public water supply and incur sig-
nificant socio-economic and environmental consequences. The United 
Kingdom (UK) has experienced recurring periods of severe hydrological 
drought in the past (Marsh et al. 2007) and more recent events such as 
the 2010-12 (Kendon et al. 2013), 2018-19 (Turner et al. 2021) and 
2022 droughts (Parry, 2022) showed that the UK remains vulnerable to 
the impacts of droughts. The latest UK climate projections (UKCP18) 
indicate wetter winters and drier summers with global temperature rise 

(Lowe et al. 2018). Some studies have found that this can translate into 
more intense and frequent drought events across the UK with southeast 
England more vulnerable to long duration multi-year droughts (Brunner 
and Tallaksen 2019; Arnell et al. 2021). The application of successive 
generations of UK climate change projections has shown that there is 
relative certainty over a reduction in summer flows, with river flow 
responses in other seasons dependent on catchment characteristics such 
as hydrogeology (e.g. Arnell 1992; Arnell 2003; Charlton and Arnell 
2014; Kay et al. 2021). Uncertainty in the variability of future droughts 
is determined by changes in precipitation trends as droughts will always 
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coincide with hot extremes relative to the present day as the climate 
continues to warm (Diffenbaugh et al. 2015; Bevacqua et al. 2022). The 
timing and sequence of precipitation deficits (e.g. consecutive dry 
winters) have been highlighted as particular sources of uncertainty 
(Folland et al. 2015; Chan et al. 2022a). 

Water companies in the UK are required to publish quinquennial 
drought and water resources management plans outlining the manage-
ment measures taken during droughts and strategies to increase resil-
ience to severe droughts (1 in 200 years). Recent guidance has suggested 
for water resources management plans to outline actions needed to 
improve resilience to extreme droughts with a return period of 1 in 500 
years (Ofwat, 2022). Understanding the nature of extreme droughts is 
challenging given the short observational record. This is further 
complicated by the multivariate nature of droughts, climate non- 
stationarity and internal climate variability. To expand the sample 
size, stochastic weather generators are regularly used in a risk-based 
approach where synthetic weather sequences are generated and a like-
lihood is assigned to the exceedance of certain critical thresholds (e.g. 
duration of water shortage) (Hall et al. 2020). Synthetic droughts can 
also be perturbed with climate model information on future changes in 
rainfall and temperature (Borgomeo et al. 2015). Another strategy is to 
reconstruct past river flows using hydrological models. Rainfall and 
river flow reconstructions have improved understanding of pre-1961 
droughts and identified key drought periods that were previously not 
considered significant (Spraggs et al. 2015; Barker et al. 2019). These 
historic droughts can update existing reference droughts used by water 
companies to test supply systems and provide benchmarks for stochas-
tically generated synthetic droughts (Barker et al. 2019). 

An alternative approach to stochastic methods is the use of large 
ensemble model simulations. Lopez et al. (2009) and Fung et al. (2013) 
were among the first in the UK to use transient large ensemble climate 
model simulations in hydrological modelling with perturbed parameter 
ensembles (PPE) created by systematic variation of parameters within a 
single climate model. Applied at two river catchments, the studies 
highlighted the added value of large ensemble simulations for decision- 
making in water resources management and demonstrated a risk-based 
approach using physically based dynamical models. The UK’s national 
climate change projections 2009 (UKCP09) and 2018 (UKCP18) also 
provide transient PPE regional climate model simulations which have 
been applied to assess high and low flows in the UK (e.g. Prudhomme 
et al. 2012; Kay 2021; Lane et al. 2022). The UKCP18 probabilistic 
projections strand extends the PPE simulations through statistical em-
ulators to provide 10,000 samples of probabilistic monthly changes in 
climate variables but they are not spatially coherent which limits their 
use in spatial drought analyses. The main drawback of PPE simulations 
is that they combine both epistemic (due to lack of knowledge about 
climate processes) and aleatoric (due to randomness arising from in-
ternal climate variability) uncertainties, which restricts the robustness 
of risk estimates of regional climate extremes (Shepherd 2019). 
Compared to statistical and stochastic methods, large ensembles may be 
considered more physically based where rare outcomes are spatially and 
internally consistent which allows for an investigation of drivers of 
extreme events (van der Wiel et al. 2019; Maher et al. 2021; Mankin 
et al. 2020). Later studies expanded this providing a larger sample of 
PPE simulations enabled by volunteer computing from the weath-
er@home project (Guillod et al. 2018). Applying the simulations for the 
Thames basin, Borgomeo et al. (2018) showed how large ensemble 
simulations can help assess the robustness of different water manage-
ment options. The weather@home large ensemble applied on a national 
scale further highlighted the management challenges of spatially 
extensive droughts and concurrent severe drought conditions across 
different water resource zones (Rudd et al. 2019; Dobson et al. 2020; 
Murgatroyd et al. 2022). 

Studies have also employed initialized large ensemble simulations to 
assess the chance of a range of unprecedented climate extremes. These 
ensembles are based on simulations from a single climate or weather 

forecast model. Different realisations of weather sequence are generated 
by perturbations made to the initial conditions for each ensemble 
member (known as single model initial condition large ensembles – 
SMILEs). Compared to existing transient PPE large ensembles, SMILEs 
represent stationary climate conditions at different global warming 
levels, with the uncertainty entirely aleatoric. Thus, SMILEs represent an 
opportunity to more robustly sample extreme events from an expanded 
range of possible outcomes (Suarez-Gutierrez et al., 2018; van der Wiel 
et al. 2019; Deser et al., 2020). This approach tackles the limitations of 
short observational records and explicitly isolates the effects of internal 
climate variability. One example of this is the UNprecedented Simula-
tion of Extremes using ENsembles (UNSEEN) method presented by 
Thompson et al. (2017), using hindcasts generated from initialized 
climate model simulations to estimate the risk of high winter UK rainfall 
in the present day climate. Previous studies have also used seasonal 
hindcasts from an operational weather forecasting system to improve 
estimates of extreme storm surges (e.g. van den Brink et al., 2004). More 
recent studies have used initialized ensembles to explore climate ex-
tremes such as high rainfall (Thompson et al. 2017; Kelder et al. 2020; 
Kent et al. 2022), crop failures (Coughlan de Perez et al. 2023), heat-
waves (Kay et al. 2020), meteorological droughts (Kent et al. 2019) and 
wildfires (Squire et al. 2021). In hydrology, initialised large ensembles 
have also been used in conjunction with hydrological models to un-
derstand hydrological extremes (e.g. van der Wiel et al. 2019; van 
Kempen et al. 2021; Kelder et al. 2022a; Brunner et al. 2021a; Brunner 
and Slater 2022). Similar approaches such as reinitialised simulations 
from a dynamical climate or weather forecast model based on observed 
atmospheric initial conditions have recently been used to generate 
additional plausible events that are even more extreme than observed 
extreme events (e.g. Gessner et al. 2022; Leach et al. 2022). 

Alongside the development of a probabilistic risk-based approach, 
studies looking at the hydrological impacts of climate change have also 
employed more “bottom-up” sensitivity-focused approaches (see Chan 
et al. 2022b for a review on the uptake of various approaches over time 
in the UK). Stress-tests and storyline approaches have emerged to 
complement traditional climate change impact assessments that are 
typically top-down and constrained by selected GCMs (Stoelzle et al. 
(2018)). Storylines represent plausible pathways of how extreme events 
unfold based on discrete changes to event drivers and characteristics and 
can include outcomes beyond climate model simulations based on pro-
cess understanding and other sources of evidence (Shepherd et al. 2018; 
Shepherd 2019). They need not have probabilities attached to them and 
add value to existing risk-based estimates by increasing process under-
standing of low-likelihood, high-impact events and decision-relevant 
outcomes. Rather than aggregating climate extremes, the storyline 
approach can also be used to better understand specific unfoldings of 
compound climate extremes (Zscheischler et al. 2020). The larger 
sample size of a SMILE provides an opportunity to bridge probabilistic 
estimates of climate extremes and more bottom-up storylines condi-
tioned on specific compound conditions that are known to lead to high 
impact events (van der Wiel et al. 2020; Bevacqua et al. 2021). 

In this study, we employ large ensemble climate model output to 
estimate the chance of unprecedented events and construct storylines of 
hydrological droughts in present and future climate. The specific ob-
jectives of this research are to: 

• Employ SMILE data to estimate current and future chance of un-
precedented low rainfall, high temperatures and hydrological 
droughts  

• Understand the characteristics of unprecedented hydrological 
droughts and compare unprecedented droughts with past severe 
droughts  

• Sample for storylines resembling specific conditions in present and 
future climate, including: 1) dry summer succeeding dry spring, 2) 
dry winter succeeding dry autumn and 3) consecutive dry winters, 
and construct stress tests for contrasting catchments. 
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2. Methods 

2.1. Data 

2.1.1. Observations and study catchments 
In this study, river catchments from the Low Flow Benchmark 

Network (LFBN) designated by the National River Flow Archive (NRFA) 
that are within Great Britain (England, Scotland and Wales) are selected 
(Harrigan et al. 2018) (Figure. S1). An additional ten catchments were 
selected to consider key abstraction catchments for public water supply 
in the East Anglia region. The LFBN consists of catchments deemed 
suitable for low flow analyses and the same set of catchments has pre-
viously been used to analyse both past and future droughts in GB (Smith 
et al. 2019; Barker et al. 2019; Chan et al. 2022a). Daily precipitation 
and potential evapotranspiration (PET) from 1965 to 2015 are used to 
drive hydrological models of the selected catchments. Daily mean 
observed precipitation over a baseline period (1965–2015) is extracted 
from the CEH-GEAR dataset (Tanguy et al. 2018), observed temperature 
from CEH-CHESS (Robinson et al., 2020) and observed daily river flow 
from the National River Flow Archive (NRFA) via the rnrfa R package 
(Vitolo et al. 2016). PET is calculated using the temperature-based 
McGuiness-Bordne equation specifically calibrated for the UK based 
on Tanguy et al. (2018). This method has previously been shown to 
achieve good performance for the UK when compared to the Penman- 
Monteith equation (Tanguy et al. 2018). The equation has been used 
to derive historic PET since 1891 to reconstruct past drought events at a 
similar set of catchments as in Barker et al. (2019). The use of this 
equation for this study ensures that the drought characteristics calcu-
lated can be comparable. The precipitation and temperature datasets are 
chosen as they have previously been used successfully as inputs to hy-
drological models of a wide range of UK catchments (e.g. Coxon et al. 
2019; Lane et al. 2022). As CEH-GEAR and CHESS do not provide data 
after 2017, mean seasonal temperature from the HadUK-Grid dataset 
(Hollis et al. 2019) from 2017 to 2021 is used to consider post-2015 
extremes in Section 2.4 when estimating the chance of unprecedented 
extremes. The HadUK-Grid dataset is not used in subsequent hydrolog-
ical modelling. 

2.1.2. Climate model data 
The SMILE data used is the EC-Earth time-slice large ensemble (van 

der Wiel et al. 2019). The large ensemble is based on the EC-Earth GCM 
v2.3 and is run for present day (equivalent to present day climate with 
observed global mean surface temperature for the period 2011–2015) 
and pre-industrial plus 2 ◦C and 3 ◦C global warming conditions. The 
spatial resolution of the EC-Earth v2.3 climate model is 1.1◦ x 1.1◦. In 
accordance with previous regional studies which employed this large 
ensemble (e.g. van der Wiel et al. 2019; van der Wiel et al. 2020; Goulart 
et al. 2021), the data was re-gridded to 0.5◦ x 0.5◦ via bilinear inter-
polation. The large ensemble is based on transient projections following 
the RCP8.5 emissions pathway with 16 ensemble members. For each 
ensemble member, 25 new realizations are created through stochastic 
parameterizations of the initial conditions and run for 5 years. In total, 
they make up 2000 years of weather and climate data for each global 
warming level (i.e. 16 ensemble members × 25 realizations × 5 years =
2000 years). Further discussion of the configuration of the large 
ensemble can be found in van der Wiel et al. (2019). The same large 
ensemble has been widely used for climate impact modelling using hy-
drological models (van der Wiel et al. 2019; van Kempen et al. 2021; 
Kelder et al. 2022a) and crop yield models (van der Wiel et al. 2020; 
Vogel et al. 2021; Goulart et al. 2021). In this study, all ensemble 
members are pooled to form a continuous 2000-year time series of 
temperature and precipitation as has been done in previous studies using 
the same large ensemble (van Kempen et al. 2021; Kelder et al. 2022a). 
Note that this introduces 399 (out of 1999) spurious December to 
January transitions; the implications of this choice will be discussed 
when relevant. 

2.2. Climate change scenarios 

In this study, two methods are used to apply climate change sce-
narios in hydrological models: 1) the delta change method and 2) the 
direct use of bias-adjusted large ensemble simulations. 

2.2.1. Delta change method 
The delta change method scales or shifts the observed time series by 

change factors representative of projected climate change. Monthly 
change factors are calculated for each catchment by comparing the 
present-day and future monthly mean observed precipitation and tem-
perature in the climate model. Change factors are applied multiplica-
tively (precipitation) or additively (temperature) to the observations. 
The basic delta method retains the temporal variability of the observa-
tions and a single set of change factors aggregated across the large 
ensemble may not reflect the full range of plausible changes arising from 
climate variability, e.g. changes in persistence. Hence, a modified delta 
change method based on the resampling methodology in Ledbetter et al. 
(2012) is used to give an indication of the possible range of change. For 
each original ensemble member, a resampling procedure randomly se-
lects with replacement a block of monthly precipitation in the future 
period to form a new 30-year time series. This is repeated 30 times to 
create 30 change factor sets for each ensemble member for each catch-
ment (30 change factor sets × 16 ensemble members = 480 change 
factor sets per catchment). Given that temperature values exhibit higher 
dependence between months, only one change factor set for temperature 
is created for each ensemble member. This method of resampling is 
appropriate given that UK precipitation exhibits low month to month 
autocorrelation and can be considered independent for each month (as 
shown in Ledbetter et al., 2012). 

2.2.2. Bias adjustment method 
The second method to apply climate projections in hydrological 

models to simulate river flows is by bias adjusting and downscaling 
climate model simulations so they can be directly used as input to hy-
drological models. It is common for climate model data to be bias- 
adjusted against observations before application in hydrological 
modelling. In this study, bias adjustment is performed for each catch-
ment. Modelled precipitation is adjusted to match monthly observed 
means using multiplicative correction factors and temperature is 
adjusted additively. Initial tests found that the modelled GB-averaged 
mean monthly precipitation has a lower standard deviation compared 
to the observations. A power transformation is thus applied at each 
catchment to adjust the precipitation data to first match the monthly 
observed coefficient of variation and subsequently match monthly mean 
precipitation following the method set out in Leander and Buishand 
(2007). The data is corrected for excessive “drizzle”, a well-known 
problem for GCMs, by setting precipitation below a threshold to zero. 
The threshold was determined for each catchment by matching the 
number of monthly precipitation days in the modelled data and obser-
vations. The threshold is then applied to the 2 ◦C and 3 ◦C simulations. 
An assumption is made that the biases targeted for correction and the 
bias correction technique maintain their validity for future time periods. 

2.3. Hydrological modelling 

The GR6J hydrological model is used to simulate river flows. GR6J is 
a bucket-type catchment hydrological model with six parameters 
available for calibration (Pushpalatha et al., 2011). The additional two 
parameters in GR6J compared to its sister model GR4J relate to an 
additional routing store and flow component designed to capture river 
flow recession (e.g. drainage from aquifers). This means that GR6J could 
be more appropriate in simulating flows in slower responding catch-
ments underlain by permeable aquifers. GR4J has previously been used 
for drought analyses in GB (Smith et al. 2019; Barker et al. 2019; Chan 
et al. 2022a) and GR6J is used by individual water companies (e.g. 
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Anglian, 2022). Both models are most recently used within the eFLaG 
ensemble to assess UK droughts using the latest UKCP18 climate pro-
jections, showing that GR6J consistently outperforms GR4J for most 
catchments (Hannaford et al. 2023). 

Calibration and validation of GR6J follows the Latin Hypercube 
Sampling (LHS) calibration strategy in Smith et al. (2019) which used 
LHS to identify suitable parameter sets for GR4J based on a number of 
model performance metrics for high, mean and low flows (Table S1). As 
shown in Smith et al. (2019), high flows, timing of flows and the overall 
water balance are all important components to consider for flow 
response during dry years. In Smith et al. (2019), the top 500 parameter 
sets were shown to be able to simulate past drought episodes in the UK 
well. 10,000 parameter sets for the six model parameters of GR6J were 
generated using LHS within the parameter limits outlined in Table S2 
and used to simulate river flows for each catchment over a baseline 
period (1965–2015). The 10,000 parameter sets were ranked for each of 
the evaluation metrics from best to worst and a total score based on the 
sum of the ranks for each metric was assigned for each parameter set. For 
each catchment, the parameter set with the lowest total score (i.e. top 
performing) is then used to simulate river flows forced by daily pre-
cipitation and temperature (for PET) from the EC-Earth large ensemble. 
Figure S2 shows the performance of the top parameter set for each 
catchment for the six evaluation metrics. 

2.3.1. Drought extraction and catchment clusters 
Drought events are extracted using the variable threshold method 

(Van Loon 2015). This method is widely used and has been used to 
extract droughts at GB catchments from simulated river flows driven by 
the UKCP09 climate projections (e.g. Rudd et al. 2019). In this study, the 
70th percentile of the flow duration curve (Q70) for each month is used 
as the threshold and any period below the monthly varying Q70 is 
defined as a drought. The variable threshold method is capable of 
extracting periods of low river flows in all seasons and can identify 
multi-year droughts which are particularly prevalent in southern En-
gland (due to the major role played by groundwater storage). For each 
event, maximum intensity (max. % deviation from threshold), mean 
deficit (mean % deviation from threshold divided by drought duration) 
and total duration are calculated. Short events separated by one month 
are pooled and droughts shorter than one month are removed. 

River catchment clusters with similar drought dynamics are created 
following the same approach as in previous studies (Fleig et al. 2011; 
Hannaford et al. 2011; Kingston et al., 2013). For each catchment, a 
binary series of drought occurrence is created based on the drought 

events extracted. Agglomerative hierarchical clustering, implemented 
using the TSclust R package (Montero and Vilar 2014), is used to group 
catchments into clusters using the Ward’s minimum variance method 
(Ward, 1963) based on the binary drought occurrence series. Fig. 1 
shows the four clusters defined for the selected catchments. Clusters 
separate east and west Scotland and distinguish catchments in SE En-
gland. The clusters are able to separate the catchments based on a 
number of physical catchment characteristics as explained in Table S3. 
For example, the slower responding groundwater-dominated catch-
ments in southern England (i.e. GB3 and some in GB4) with a higher 
baseflow index are particularly prone to multi-year droughts. The 
regional drought index (RDI) is calculated for each cluster by dividing 
the number of catchments in drought at any time by the total number of 
catchments in the cluster. The index thus varies between 0 (i.e. none of 
the catchments in the cluster are in drought) and 1 (i.e. all catchments in 
the cluster are in drought) for each time step. Spatially extensive 
drought events are defined as events affecting over 70% of the catch-
ments in each cluster at the same time (i.e. RDI ≥ 0.7). For each of the 
spatially extensive events identified using RDIQ70, the max. intensity and 
mean deficit of the event is taken as the mean of the characteristics in the 
affected catchments. 

2.4. Chance of unprecedented extremes 

The modelled precipitation from the EC-Earth large ensemble should 
be deemed credible compared to the observations before it can be used 
to estimate the chance of unprecedented extremes. The fidelity test for 
large ensemble data set out in Thompson et al. (2017) is applied indi-
vidually for each catchment using bias adjusted precipitation. The test 
checks whether the model data can be considered as alternative re-
alizations of the real world by comparing the statistical moments of the 
model data and the observations. 10,000 subsamples of monthly pre-
cipitation the same length as the observations are created through 
bootstrapping and the mean, standard deviation, skewness and kurtosis 
of each subsample are calculated. The resulting distribution of statistical 
moments from all subsamples is compared to the observed statistical 
moments. The model data is deemed to be statistically indistinguishable 
from the observations if the observed statistic falls within 95% (i.e. 
2.5–97.5th percentiles) of the model distribution. Only the catchments 
where the fidelity test is passed are considered appropriate for use and 
included for hydrological modelling. As the bias adjustment procedure 
corrects for mean and standard deviation, the fidelity test is applied to 
skewness and kurtosis. Fig. 2 shows the model fidelity test at an example 

Fig. 1. a) Catchment clusters defined from spatially extensive droughts using the regional drought index (RDIQ70) over the baseline period (1965–2015). b) Dis-
tribution of four selected catchment characteristics. The physical catchment characteristics include Latitude (◦), SAAR – Standardised annual average rainfall (mm), 
BFI – Baseflow index, and catchment steepness (m/km) for catchments in each cluster. 
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catchment in SE England and the 95 catchments that have passed the 
fidelity test and retained for subsequent analysis. Catchments that did 
not pass the fidelity test include ones in central Wales, northwest En-
gland and northwest Scotland. These catchments fail as kurtosis and 
skewness remains outside the 95% of model distribution after bias 
adjustment. Failed catchments are mostly characterized by compara-
tively more complex orography at higher elevations which is less well 
represented in the relatively low-resolution climate models. 

Estimates of the chance of unprecedented low precipitation, high 
temperature and hydrological droughts are quantified by comparing 
simulated events in the present-day, 2 ◦C and 3 ◦C large ensemble with 
the observations. For precipitation, simulated mean precipitation totals 
for summer (JJA) and winter (DJF) are ranked and the chance of any 
given month with total precipitation lower than the lowest observed 
mean summer or winter precipitation in any given year is calculated. 
The uncertainty of the estimates is calculated by creating subsamples of 
the model months 10,000 times and taking the 2.5% and 97.5% per-
centiles. The same procedure is repeated for temperature to calculate the 
chance of exceeding the highest observed mean summer and winter 
temperatures (1965–2015 CEH-CHESS and 2015–2021 HadUK-Grid). 
Unprecedented hydrological droughts represent the possibility of a 
drought with greater intensity or deficit than the worst observed 
drought in the baseline period. 

2.5. Storylines of specific conditions 

Storylines are constructed by following guidelines outlined in Bev-
acqua et al. (2021) and van der Wiel et al. (2021) to sample within large 
ensemble simulations to identify combinations of multiple drivers that 
can lead to extreme impacts. Given uncertainties associated with the 
atmospheric circulation response to climate change and the represen-
tation of drought persistence in climate models (Shepherd 2014; Moon 
et al. 2018), narrowing the focus by imposing specific conditions can 
provide a basis to understand worst cases, which can arise from the 
combination of the various storylines considered. In this study, we 
consider the following storylines: 1) dry springs (MAM) followed by dry 
summers (JJA), 2) dry autumns followed by dry winters (DJF) and 3) 
consecutive dry winters. These storylines are selected as they resemble 
conditions in past severe droughts. For example, the 1975–76 drought 
was characterized by a dry spring-summer period following a dry winter 

(Rodda and Marsh 2011) while the 1920–21 drought was mainly char-
acterized by a dry autumn followed by a dry winter (van der Schrier 
et al. 2021). Storylines are selected by searching for consecutive nega-
tive mean precipitation anomalies relative to a 1965–2015 climatology 
for the respective seasons. Hydrological droughts arising from these 
conditions are preconditioned compound events where impacts may be 
amplified from a combination of successive climate-driven conditions 
(Zscheischler et al. 2020; van der Wiel et al. 2022). 

Storylines can be used to stress test hydrological systems by testing 
their sensitivity to different combinations of event drivers (e.g. Stoelzle 
et al., 2020; Chan et al. 2022a; Wilby 2022). Synthetic drought se-
quences are created following the UKWIR drought vulnerability 
response surface framework (Counsell et al. 2017) by sampling within 
the large ensemble for months matching specific precipitation deficit 
levels to create progressively drier drought sequences (e.g. progressively 
drier spring-summers and autumn-winters). A 5-year warm-up period is 
created by selecting months within the large ensemble that are closest to 
mean conditions in terms of precipitation anomalies. A new meteoro-
logical sequence is then created comprising 1) a 5-year warm-up period, 
2) a drought year where individual months are selected based on specific 
precipitation deficit levels, and 3) a repetition of the warm-up period. 
Temperature (and PET) is not varied, and average daily temperature is 
used. The entire sequence represents 10 years with one precipitation 
drought year characterized by the storyline conditions (e.g. dry spring- 
summer or dry autumn–winter). The sequence is fed through GR6J to 
obtain simulated river flows for each catchment. 

3. Results 

3.1. Precipitation and river flow changes 

Projected changes in precipitation over the selected catchments in 
the EC-Earth large ensemble show drier summers and wetter winters 
with increasing temperature rise. Figure S3 compares the different es-
timates of projected changes in precipitation obtained from the delta 
method and directly from the bias-adjusted precipitation across the 16 
ensemble members. The impact of the bias adjustment on temperature 
and precipitation is shown in Figure S4. The expanded set of change 
factors in the modified delta method incorporates climate variability 
and therefore shows a greater range of changes compared to a single set 

Fig. 2. Left) the distribution of mean, standard devi-
ation, skewness and kurtosis of monthly mean pre-
cipitation (mm) from bootstrapped samples of model 
simulations at an example catchment in se england 
before (green) and after (yellow) bias adjustment 
compared to the observed value (1965–2015) (black 
line). The dotted lines indicate the 5th and 95th per-
centiles of the modelled distribution. Right) Fidelity 
result for all selected catchments across GB. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   
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of change factors per ensemble member. Variation in the estimated 
rainfall changes for the latter two estimates mainly correspond to spread 
across the selected catchments. 

River flows are projected to reduce in summer and early autumn 
across all catchment clusters but at different magnitudes. There is a 
greater reduction in river flows during these months in relatively slower 
responding catchments in GB3 (including groundwater dominated 
catchments with high BFI) compared to fast responding catchments in 
GB1. Catchments in GB3 are also more likely to experience a decrease in 
river flows in both the late spring and autumn months. The application 
of additional change factors from resampled precipitation also results in 
a greater range of projected changes in river flows compared to a single 
set of change factors per catchment and to using the bias-adjusted pre-
cipitation directly (Fig. 3). Monthly average river flows simulated with 
the bias-adjusted precipitation show a greater increase over spring and 
winter months compared to the delta method. 

3.2. Simulated droughts 

Using simulated river flows driven by the bias-adjusted precipitation 
and temperature enables the extraction of a much larger sample of 
drought events than is possible using observational datasets. Drought 
characteristics are generally projected to worsen with climate change, 
with differences in the magnitude of change between different catch-
ments as shown by the selected examples in Fig. 4. For all three drought 
characteristics, projected change is similar in both magnitude and di-
rection between the delta method and the bias-adjusted climate model 
data. The variability of drought characteristics extracted from droughts 
simulated using the bias-adjusted data is larger compared to using the 
delta method which retains observed drought periods. Although the 
sensitivity of droughts to climate change is broadly similar in the two 

estimates, the delta method may underestimate risk of extreme droughts 
especially if the worst historical record is a weak record that may be 
easily broken with a larger sample size and the effect of internal climate 
variability. Consequently, the simulated drought events are much better 
sampled using the bias-adjusted large ensemble data. 

The physical credibility of the simulated events in a large ensemble 
can be assessed by investigating their atmospheric drivers and spatio- 
temporal variability (Kelder et al. 2022a,b). Comparison of the simu-
lated droughts in the present-day large ensemble with observed 
droughts gives confidence that the simulated events are plausible (Fig. 5 
for four example catchments). Simulated droughts span the entire range 
of drought characteristics in observed events. Unprecedented events, 
namely those with higher maximum intensity or greater deficit than the 
worst observed event, can also be identified (red dots in Fig. 5). A 
comparison of the atmospheric circulation patterns during the driest 
years shows that both dry summers and winters in the observations and 
the present-day large ensemble are characterized by blocking conditions 
and high pressure across the British Isles and continental Europe 
(Figure S5). While we do not expect the circulation patterns to be exactly 
the same between the model and the observations because of the effects 
of internal variability, the high pressure associated with the top five 
driest years in the model is of a similar magnitude to that of the top five 
driest years in the observations. The individual circulation patterns are 
associated with processes that would be expected to bring dry conditions 
to GB and show alternative patterns that could have been realised during 
droughts in the observed record. 

Accumulation of precipitation (Table S4) and river flows (Table 1) 
across a 12- and 24-month period over lowland England (i.e. all catch-
ments in GB3 and GB4) shows years with similar or greater accumulated 
deficits compared to the driest events in the observations. Folland et al. 
(2015) previously found, for lowland England, the driest 12-month 

Fig. 3. Projected change in monthly river flows across catchments in GB1 (top) and GB3 (bottom) for 2 ◦C warming (orange) and 3 ◦C warming (blue) using a single 
set of change factors per catchment (a and d), 30 sets of change factors from resampled precipitation per catchment (b and e) and bias-adjusted precipitation and 
temperature per catchment (c and f). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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period between 1910 and 2012 was 1975–76 which had 60% of average 
precipitation, and the driest 24-month period was 1990–92 with 73% of 
average precipitation. The driest 12-month period in terms of accumu-
lated river flows in the observations was September 1975–76 with 34% 
of the 1965–2015 average, while the driest 24-month period was April 
2010 to 2012 with 56% of the 1965–2015 average. The temporal evo-
lution of daily river flows during the driest years in the present-day large 
ensemble also seems consistent with the hydrological behavior in the 
driest year in the observations with similar flow timing, adding to the 
physical credibility of the simulated events (Figure S6 for selected 
catchment examples). Relatively fast-responding catchments (e.g. 
16003, 78004 and 25006) are characterized by a rapid decline in river 
flows over a short period of time, whereas slower responding catchments 
(e.g. 39019, 34004, 41027) see a gradual decline in river flows lasting 
over the entirety of the 12-month period and beyond. Accumulated 
precipitation and flow deficit over a longer period (>12 months) may be 
more appropriate for slower responding systems (such as a critical 
period of deficit accumulated over 18-months including two winters for 
several reservoir systems within East Anglia – Anglian, 2022). 

3.3. Chance of unprecedented extremes 

3.3.1. Low precipitation and high temperature 
Fig. 6 and Table 2 shows the estimates for the chance of extremely 

low precipitation and high temperature in any summer and winter 
month in a given year for present-day, 2 ◦C and 3 ◦C warming averaged 
across two contrasting regions - GB1 (western Scotland) and GB4 
(southeast England) (Figure S7 for catchments in GB2 and GB3). The 
warmest summer in the baseline period is 1995 for GB1 and 1976 for 
GB4 while the warmest winter is 1988–89 for GB1 and 2015–16 for GB4. 
There is little separating the warmest summers in the observations. For 
example, averaged across GB1, summer 1995 is tied with 1976 and 2021 
at 13.9 ◦C. There is also only a 0.1 ◦C difference between summer 1976 
and 2018 averaged over GB4. In the present-day, the estimates show 
that the chance of exceeding the observed maximum is higher in the 
summer compared to the winter. There is a clear increase in the chance 
of unprecedented high temperatures with warming. The warmest sum-
mer in the 3 ◦C large ensemble is estimated to be nearly 5 ◦C warmer 
than the observed maximum, whereas in winter this is > 2.5%. Average 
temperature for summer 2022 has exceeded records over southeast 
England (primarily including catchments in GB4). The mean 

Fig. 4. Projected mean drought deficit (top), max. 
drought intensity (middle), and drought duration 
(bottom) for present day (grey), 2 ◦C (orange) and 
3 ◦C (blue) extracted from simulated river flow using 
the delta method (solid colours) and the direct use of 
bias-adjusted temperature and precipitation 
(hatched). The boxplots show the median and span 
the 25th and 75th percentile with dots representing 
outliers higher than the 75th percentile. The numbers 
indicate selected catchment examples. (For interpre-
tation of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   
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temperature over southeast England for summer 2022 in the HadUK- 
Grid dataset is 18.02 ◦C (i.e. 0.2 ◦C higher than 1976) (NCIC, 2022). 
This is shown by the dashed line for GB4, indicating a 4% chance of 
exceedance in the present day, which increases to 24.4% and 53.5% 
with 2 ◦C and 3 ◦C warming. 

The current and future chance of unprecedented dry summers and 
winters are more complex compared to temperature extremes. Summer 
1976 and winter 1984–85 were the driest for GB1, and summer 1995 
and winter 1991–92 for GB4. In the present day, catchments in GB1 are 
more likely to encounter an exceptionally dry summer month compared 
to GB4 while both clusters have a similar chance of an unprecedented 
dry winter. Like summer temperatures, the chance of an unprecedented 
dry summer is also estimated to increase with warming. Dry summers 
are estimated to be progressively drier with warming where events with 
a 1% probability of occurrence are estimated to have months with 
monthly precipitation that is 60% lower than the lowest observed mean 
summer precipitation for both regions. 

The chance of any given winter month being drier than the observed 
driest winter is estimated to decline with future warming. This is 
consistent with projections of wetter winters in general. Despite this, 
both the chance and magnitude of the lowest probability events (<1% 
chance) are estimated to be similar across the present-day, 2 ◦C and 3 ◦C 
large ensemble. Events with a 1% chance of occurrence include winter 
months with less than half the lowest observed mean monthly seasonal 

precipitation totals for both regions. This implies that the chance of 
moderately dry winters may decrease but the chance of the driest win-
ters with the highest return period may not decrease in likelihood 
compared to the present day. 

3.3.2. Hydrological droughts 
The chance of any given drought exceeding the mean drought deficit 

of six past selected severe droughts is estimated to increase with future 
warming (Fig. 7). The impacts of past drought events in GB vary 
spatially as reflected by the fact that certain past events are notably hard 
records to break for catchments in different clusters. The estimates 
indicate that past observed, and reconstructed droughts could be 
regarded as benchmark worst cases for certain catchments in the 
present-day but the chance of exceeding them is estimated to increase 
with future warming. For example, the 1975–76 drought is notably se-
vere in terms of mean deficit for catchments in southern England, mostly 
coinciding with catchments in GB3 and GB4. The chance of exceeding it 
in these catchments for the present day is estimated to be particularly 
low with little change for GB4 even with future warming, confirming the 
extremeness of the river flow response during this drought. The 1975–76 
drought was preceded by wetter than average conditions and flow 
response for slow responding catchments with higher BFI (included in 
GB3) was less impactful than otherwise, hence the fact that the chance of 
exceedance is higher for catchments in GB3 compared to GB4. River 

Fig. 5. Max. intensity and deficit of droughts extracted from the present-day large ensemble and in the baseline observed period (1965–2015) at four example 
catchments in SE England. Notable severe droughts in the observations are labelled. Red dots represent unprecedented events with either greater deficit or higher 
max. intensity than the worst observed event. The grey histogram represents the density of droughts in the observed period and the black line is the density in the 
large ensemble. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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flow constructions from Smith et al. (2019) and Barker et al. (2019) 
showed that the mean deficit of the 1891–1910 “long drought” was most 
severe for catchments in GB1 and this is reflected by the relatively low 
chance of its exceedance for GB1 compared to the other clusters. In the 
present day, the chance of any given drought exceeding all four post- 
1965 droughts is < 10% across all catchments, except for GB1 and 
GB2 for the 2010–2012 drought which mostly affected southern catch-
ments in GB3 and GB4 (Kendon et al. 2013). The change in chance of an 
unprecedented drought is least clear for the slow responding catchments 
in GB4. 

3.4. Storylines of specific conditions 

3.4.1. Dry spring-summers and autumn-winters 
The unfolding of plausible droughts can be investigated using 

storylines characterized by different combinations of seasonal precipi-
tation deficits. Fig. 8 shows, for relatively slow responding catchments in 
southern England (i.e. GB3), standardized temperature and precipita-
tion anomalies for 1) dry springs followed by dry summers and 2) dry 
autumns followed by dry winters (see Figure S8 for equivalent figure for 
faster responding catchments in GB1). Drought years with dry spring- 
summers are more likely to have above average temperature anoma-
lies, particularly in the summer months. Conversely, drought years with 
dry autumn-winters show no temperature signal in autumn and slightly 
below average temperatures in winter. Temperature anomalies across 
spring-summers and autumn-winters are projected to increase in all 

Table 1 
Top 10 a) 12- and b) 24-month periods with lowest accumulated river flows 
(expressed in mm) for catchments in southern England (GB3 and GB4) in the 
present-day large ensemble and the baseline period (the latter indicated with a 
specific year in bold).  

a) 12-months 

Rank Total river flows 
(mm) 

% of 1965-2015 
average 

Deficit 
(mm) 

Start 
month 

1 84.5 31.4 -184.7 12 
2 87.0 32.3 -182.4 11 
3 87.0 32.3 -182.6 10 
4 88.6 32.8 -181.3 9 
5 90.8 33.7 -178.6 11 
6 90.9 33.6 -179.5 1 
7 91.5 33.9 -178.3 9 
8 - 

1975 
92.3 34.2 -177.3 10 

9 92.8 34.4 -177.2 2 
10 93.7 34.7 -176.2 8 

b) 24-months 

1 226.4 42.1 -310.8 9 
2 227.6 42.4 -309.8 8 
3 227.6 42.4 -309.2 10 
4 235.2 43.8 -302.4 7 
5 239.4 44.6 -297.0 11 
6 239.7 44.6 -297.7 6 
7 242.5 45.1 -295.2 4 
8 242.9 45.2 -294.4 5 
9 252.2 47.0 -284.2 12 
10 252.8 47.1 -283.6 11 
2010 302.2 56.2 -235.4 4  

Fig. 6. Estimate of the chance of any given summer or winter month with unprecedented a) high mean summer (JJA) and winter (DJF) temperature and b) low mean 
summer (JJA) and winter (DJF) precipitation, for a single year, in GB1 and GB4 for the present-day (grey), 2 ◦C (orange) and 3 ◦C (blue) large ensemble. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Chance (%) of any given summer or winter month in a single year with un-
precedented (compared to 1965–2022 observations) a) high mean summer 
(JJA) and winter (DJF) temperatures and b) low mean summer (JJA) and winter 
(DJF) precipitation across all catchment clusters for the present-day (PD), 2C 
and 3C large ensemble. Values are rounded up to the nearest whole number.   

GB1 GB2 GB3 GB4  

a) High temperature 

Summer     
PD (present-day) 9 8 6 6 
2 ◦C warming 36 35 31 30 
3 ◦C warming 66 64 60 58 
Winter     
PD (present-day) 1 2 3 2 
2 ◦C warming 6 12 14 9 
3 ◦C warming 26 37 37 31  
b) Low rainfall 
Summer     
PD (present-day) 14 8 7 9 
2 ◦C warming 18 12 12 14 
3 ◦C warming 20 15 15 18 
Winter     
PD (present-day) 14 11 12 10 
2 ◦C warming 11 9 10 9 
3 ◦C warming 9 12 8 8  
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cases under future warming, with summer temperatures estimated to 
increase by the greatest magnitude. Except for drier summers with 
future warming in dry spring-summer sequences, there is a lack of 
change in the precipitation anomalies associated with dry springs and 
dry autumn-winters with future warming. 

The time series of cumulative precipitation, PET and P-PET anoma-
lies of the top 20 driest dry spring-summers and autumn-winters show 
how future events with the same conditions could develop (Fig. 9). The 
magnitude of change is greater for cumulative P-PET anomalies 
compared to cumulative precipitation anomalies, indicating that the 
projected increase in PET due to future summer warming is a significant 
contributor to future spring-summer drying. This is also shown by lower 
latent heat flux anomalies and greater cumulative P-AET anomalies for 
future dry spring-summers compared to the present-day, which is more 
prominent for GB3 (Figure S9). The projected increase in precipitation 
for both autumn and winter is more apparent in GB1 with wetter con-
ditions in both seasons in future dry autumn-winters. Given the 

relatively faster responding catchments in GB1 and GB2, dry spring- 
summers or dry autumn-winters often coincide with short seasonal 
droughts in the winter or summer half years. The mean deficit of future 
droughts associated with the two storylines are estimated to worsen with 
future warming (Figure S10). Conversely, for GB3 and GB4, droughts 
coinciding with dry autumn-winters are more likely to have greater 
deficit compared to other droughts, reflecting the slow-responding na-
ture of these catchments and their dependence on winter recharge 
(Figure S10). 

Composite mean Z500 anomalies in present day and 3 ◦C warming 
show how high pressure circulation anomalies across the UK contribute 
to dry conditions during dry spring-summers and autumn-winters 
(Fig. 10). For present-day droughts in GB3 catchments, the centre of 
the high pressure is situated further southwards compared to droughts in 
GB1 catchments. In the future, dry conditions during years with dry 
spring-summers are characterized by a deepening of the high pressure 
over the UK in spring with larger changes for events impacting GB1. 

Fig. 7. Estimate of the chance of a given drought 
exceeding mean drought deficit of past drought events 
for catchments across the catchment clusters for the 
present-day (grey), 2 ◦C (orange) and 3 ◦C (blue) large 
ensemble. *Data for the 1891–1910 and 1920–22 
droughts are based on river flow reconstructions from 
Smith et al. (2019) using the GR4J model applied for 
the LFBN catchments. (For interpretation of the ref-
erences to colour in this figure legend, the reader is 
referred to the web version of this article.)   

Fig. 8. Standardised precipitation and temperature 
anomalies from dry spring-summers (left) and dry 
autumn-winters (right) averaged across catchments in 
GB3. The top panel compares temperature and pre-
cipitation in all 2000 years of the large ensemble 
(green), in years with hydrological droughts (purple) 
and in selected storyline years in the present-day large 
ensemble (orange). The bottom panels show the 
equivalent anomalies for the two storylines in the 
present-day (grey), 2 ◦C (orange) and 3 ◦C (blue) large 
ensemble (standardised based on PD statistics). (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   

W.C.H. Chan et al.                                                                                                                                                                                                                             



Journal of Hydrology 625 (2023) 130074

11

However, drier conditions in the summer months are characterized by 
weaker high-pressure conditions in the future for both GB1 and GB3 
with a greater weakening of the high pressure for droughts in GB3 
catchments. For future dry autumn-winters, the high pressure is esti-
mated to deepen and shift eastwards in autumn for GB1 but weaken in 
the winter, consistent with general wetter winter conditions especially 
prevalent in Scotland and the English uplands. This is contrasted by the 
deepening of the high pressure during dry autumn-winters for GB3. It 
should be noted that circulation patterns were not bias-adjusted and 
future changes in circulation also include possible model bias. 

3.4.2. Consecutive dry winters 
Consecutive dry winters is a key driver of severe hydrological 

droughts for slow responding catchments in southern England 
(including catchments in GB3 and some catchments in GB4). The tem-
poral dynamics of consecutive dry winters is worth exploring as the 
intervening seasons between dry winters do not necessarily need to be 
dry for significant impacts on river flows to develop. For example, the 
2010–12 drought was characterized by two consecutive dry winters but 
both summers 2010 and 2011 had average precipitation over southern 
England (near 100% long term average) (Marsh et al., 2013). Fig. 11a 

Fig. 9. Time series of mean cumulative precipitation, PET and P-PET anomalies during the top 20 (i.e. ~ 1 in 100 year events) driest a) dry spring-summers and b) 
dry autumn-winters for catchments in GB1 and GB3 in the present-day (black), 2 ◦C (orange) and 3 ◦C (blue) large ensembles. A 30-day running mean is applied for 
all variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and b shows precipitation and temperature anomalies associated with 
consecutive dry winters in the observations averaged across catchments 
in GB3, including years with severe droughts in the observations. Due to 

the set-up of the large ensemble, spurious Dec-Jan transitions are 
removed. Sampling for consecutive dry winters within the large 
ensemble shows that there are consecutive winters in the present-day 

Fig. 10. Composite mean Z500 anomalies relative to 1965–2015 (ERA5) during dry spring-summers (top row) and dry autumn-winters (bottom row) for GB1 (left) 
and GB3 (right). Contours are Z500 anomalies in the present-day and the colours represent the change in anomalies between events in the 3 ◦C large ensemble minus 
the events in the present-day large ensemble. 

Fig. 11. A) precipitation (% of long term average 1975–2015) and b) temperature anomalies (◦C) associated with all occurrences of consecutive dry winters in the 
present-day large ensemble (grey) and observation (red dots) averaged for catchments in GB3. The bottom row compares c) seasonal precipitation anomalies and d) 
cumulative P-PET anomalies during all drought years with consecutive dry winters in the present-day (grey), 2 ◦C (orange) and 3 ◦C (blue) large ensemble. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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large ensemble with greater precipitation deficit for both the preceding 
and succeeding winter than the driest observed consecutive dry winter 
sequence. Fig. 11c shows precipitation anomalies during future 
consecutive dry winters and the intervening seasons. Winter precipita-
tion anomalies are not estimated to change significantly, likely reflect-
ing the fact that the chance of the driest winter remains relatively 
unchanged with future warming (see Fig. 6). Drought years with 
consecutive dry winters show a large variation in the precipitation 
anomalies for intervening seasons. There is large variation in precipi-
tation anomalies during spring and autumn (the median shows slightly 
wetter conditions) but a clear change in the intervening summer which 
is estimated to become drier with future warming in line with the gen-
eral projections of drier summers. Composite mean P-PET anomalies 
across drought years with consecutive dry winters also show that drier 
summers and higher evaporative demand will generate greater cumu-
lative deficit in future multi-year events with dry winter conditions 
(Fig. 12d). The equivalent figure for latent heat flux anomalies and cu-
mulative P-AET anomalies also reflect this (Figure S11). The intervening 
summer between two consecutive dry winters is projected to experience 
enhanced evaporative demand which results in greater overall P-AET 
deficit compared to the present-day even though the intervening spring 
and autumn months are projected to be wetter, with more positive latent 
heat flux. 

3.4.3. Storylines for stress testing 
Storylines can be used to stress test hydrological systems by condi-

tioning on different specified combinations of event drivers (Stoelzle 
et al., 2020; Chan et al. 2022a; Wilby 2022). Fig. 12 shows the impacts 
on 18-month (April start) river flow totals from dry spring-summer and 

autumn–winter sequences at various precipitation deficit levels for two 
contrasting catchments. Varying autumn–winter precipitation has a 
greater effect on 18-month river flow totals compared with spring- 
summer precipitation. The two catchments show a contrasting hydro-
logical response with the impacts over 18-months being larger at Bed-
ford Ouse (Cluster 4) compared to the Greta (Cluster 2), reflecting the 
persisting influence of precipitation deficits for slow-responding catch-
ments. Certain outcomes may be implausible (e.g. 90% deficit for both 
spring and summer months in a year) and land–atmosphere feedbacks 
may be underestimated (due to temperature and PET not being varied). 
However, dry spring-summers and autumn-winters in the large 
ensemble (the crosses in Figure 14) clearly cover a large proportion of 
the response surface with seasonal combinations of precipitation deficits 
that are beyond what has been observed (the yellow dots in Fig. 12). 
Counterfactual event storylines can also be created by varying the 
intervening spring-summer periods between dry winters by different 
deficit levels to visualize the impacts on accumulated river flows over a 
critical period. 

4. Discussion 

4.1. Risk of extreme droughts 

Compared to existing approaches such as the traditional climate 
model output or stochastic weather generators, initialized large 
ensemble climate model simulations can explore a fuller range of 
plausible outcomes and better consider plausible worst cases (Mankin 
et al. 2020). An additional advantage is that the physical credibility of 
simulated events can be verified more easily compared to stochastic 

Fig. 12. Stress tests of two contrasting catchments based on sequences of dry spring-summers (top) and dry autumn-winters (bottom) at varying precipitation deficit 
levels. The colour shading shows the resulting 18-month river flow deficit as a percentage of the 1965–2015 average (April start). Yellow dots show observed events, 
crosses the events from the present-day large ensemble. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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weather generators. This is because analyses are based on a dynamical 
model that is physically self-consistent and the metrics describing the 
meteorological drivers of extreme events are more readily computable 
(e.g. Kay et al. 2020). It should be noted that depending on the set up of 
the large ensemble, their usefulness in assessing long-duration multi- 
year droughts may decline if simulations are reinitialised 12 months 
apart (e.g. the DePreSys3 dataset) or on seasonal timescales. 

Results show an increasing chance of unprecedented hot and dry 
summers with future warming. This is consistent with multiple gener-
ations of climate projections estimating an increased severity of summer 
droughts across the UK driven by summer warming and increased PET, 
particularly for fast responding catchments (e.g. Blenkinsop and Fowler, 
2007; Rudd et al. 2019). The results also show that although winters are 
projected to become wetter in general, the chance and magnitude of the 
driest winter occurring in any given year remains similar across the 
present-day, 2 ◦C and 3 ◦C large ensemble, indicating a continued risk of 
the most extreme dry winter months. The present-day chance of a given 
drought exceeding the characteristics of severe post-1891 droughts is 
consistent with the spatial patterns of worst-case historic droughts found 
in Barker et al. (2019). Although the chance of exceedance varies be-
tween catchments, our results show that the set of post-1891 droughts 
are relatively hard records to break although it becomes more likely that 
a given drought in a 2 ◦C and 3 ◦C warmer world will be more severe. 
Unprecedented droughts in the future are more likely to include pre-
cipitation deficits in the summer and river flow responses may be 
exacerbated due to the impacts of elevated evaporative demand from 
increased summer temperatures (as shown in Reyniers et al. 2023 with 
UKCP18). For example, Brunner et al. (2021b) has found that recent 
temperature increase has contributed to an increase in the spatial extent 
of US droughts from higher evaporative demand and more severe soil 
moisture deficits. 

Compared to the EC-Earth large ensemble, the UKCP18 projections 
project a smaller increase in winter precipitation and a greater decrease 
in summer precipitation with greater warming. The UKCP18 projections 
also project drier autumns and springs over southeast England (Arnell 
et al. 2021), which leads to a delay in the soil wetting date (Kay et al. 
2022) and shortens the groundwater recharge season. This may explain 
the differences in hydrological drought characteristics in the eFLaG 
ensemble compared to this study with the occurrence of longer and more 
severe hydrological droughts where low, median and high flows are all 
projected to decline for catchments southern and eastern England 
(Hannaford et al. 2023; Parry et al. 2023). 

4.2. Bridging risk estimates and storylines 

Storylines are complementary to the risk-based probabilistic esti-
mates in Section 3.3. Although no probabilities are attached to each 
storyline, sampling for specific conditions within the large ensemble 
enable a fuller investigation of plausible worst cases and the unfolding of 
future events with the same drivers (van der Wiel et al. 2021, van der 
Wiel et al. 2022). The dry spring-summer and dry autumn–winter 
storylines resemble conditions observed in past severe droughts used as 
benchmark worst-case droughts (e.g. 1975–76 and 1921). The formu-
lation of storylines which resemble known conditions in past events 
contributes to the growing use of event-based case studies to guide 
adaptation planning (Sillmann et al. 2021). For example, Baker et al. 
(2021) found that the likelihood of an extreme hot summer succeeding 
an extreme dry winter-spring period and the probability of an extreme 
hot-dry summer have increased since the 1970 s. The storylines in this 
study complement this result by showing that future dry spring-summers 
are estimated to generate greater deficit. van Garderen et al. (2021) 
demonstrated how storylines and a probabilistic approach can be com-
plementary in climate attribution of extreme events. Similarly, Table 3 
shows the insights gained in this study from the probabilistic estimates 
of unprecedented extremes and the different storylines of drought 
conditions. 

Circulation patterns for dry years in the present day large ensemble 
resemble both the dipole (high pressure centered over eastern Atlantic 
with positive anomalies to the north and negative anomalies to the 
south) and Azores high (high pressure centered over western Europe) 
circulation patterns responsible for European droughts identified in 
Kingston et al. (2015). The weakening of the high pressure with future 
warming during the summer months during dry spring-summer se-
quences is consistent with van der Wiel et al. (2021) which extracted 
summer drought analogues from the same large ensemble for the Rhine 
basin and showed weaker summer high pressure anomalies with future 
warming. This result could reflect a stronger influence of atmospheric 
circulation with warming as weaker anomalies lead to similar or higher 
levels of precipitation deficits. An increased influence of weather pat-
terns associated with drier, settled conditions was found in both summer 
and autumn in the future in the UKCP18 projections (Cotterill et al. 
2022; Pope et al. 2022). Although the EC-Earth large ensemble project in 
general wetter autumns, De Luca et al. (2019) found that CMIP5 models 
projecting a decrease in cyclonic type circulation patterns in autumn 
may lead to lower soil moisture and groundwater recharge at the 
beginning of winter. Given the continued risk of dry winters, this may 
increase the likelihood of winter droughts due to a shortened recharge 
season. 

4.3. Limitations and further work 

The main limitation of this study is that the EC-Earth large ensemble 
has a relatively coarse spatial resolution. This represents a drawback for 
impact modelling as bias adjustment and statistical downscaling pro-
cedures are required. Although requiring bias adjustment, large 

Table 3 
Example of how probabilistic estimates and the storyline approach can com-
plement each other to provide additional insights to the nature of extreme 
droughts in present and future climate.  

Probabilistic estimate of 
unprecedented extremes (Section 
3.3) 

High temperature - Averaged over catchments 
in southeast England, the chance of a given 
year with unprecedented high temperatures 
increases from 5.7% and 1.5% in the present 
day to 58.3% and 30.5% in a 3 ◦C warmer 
world for summer and winter respectively. 
Low precipitation - Averaged over catchments 
in southeast England, there is an 8.8% and 
10.1% chance of an unprecedented dry 
summer or winter month, respectively, in any 
given year. This increases to 18.1% for 
summer and slightly decreases to 7.5% for 
winter in a 3 ◦C warmer world. The chance of 
the driest winter month in the large ensemble 
does not change significantly between present 
and future climate. 

Storylines of drought conditions ( 
Section 3.4) 

Dry spring-summers are estimated to become 
drier with dry springs associated with 
deepening of high pressure and dry summers 
associated with enhanced evaporative 
demand. 
Dry autumn-winters may become wetter, due 
to wetter winters, but dry conditions may be 
prolonged even with moderate 
autumn–winter precipitation deficit if 
followed by a dry summer which is projected 
to become drier with warming. 
Multi-year droughts characterised by 
consecutive dry winters may worsen 
especially for slow-responding catchments (i. 
e. GB3) if the intervening summers are hotter 
and drier. Despite an expectation of future 
winter wetting, there is no clear change in the 
precipitation anomalies associated with future 
consecutive dry winters because of the need to 
make up for the lack of rainfall and higher 
evaporative losses in the intervening summer.  
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ensembles can provide valuable insights into plausible worst case 
droughts if simulated events are physically credible as demonstrated in 
this study. The bias correction factors applied to catchments in GB1 and 
GB2 were larger than for other catchments. This could be due to the 
spatial resolution of the large ensemble where complex orography in 
upland catchments is less well represented. A large bias adjustment 
could lead to events that are physically implausible (Kelder et al. 
2022b), meaning the estimated chance of unprecedented extremes at 
these catchments may be over- or under-estimated. Although the 
meteorological drivers and the temporal dynamics of the driest events 
seem physically credible, future work could make use of SMILEs 
generated from regional climate models (e.g. Böhnisch et al. 2021). As 
the large ensemble is based on a single climate model, comparing results 
from different SMILEs could also increase the robustness of our results. 

The estimate of unprecedented extremes only considers the chance of 
exceedance in the baseline period and is not sequentially updated as 
records are broken over time (the present-day estimates reflect the 
chance of exceedance based on 2011–2015 conditions). Future work 
could update this by tracking how the chance has changed over time. For 
example, Barker et al. (2019) showed that the risk of the 1975–76 
drought has already increased since the 1970 s due to recent climate 
change. Similarly, Kay et al. (2020) showed that the chance of exceeding 
the 2018 heatwave temperatures has increased since 1960. The chang-
ing risk of compound hot and dry extremes is also not explicitly 
considered in this study as drought storylines are selected using pre-
cipitation anomalies. Given the focus of this study, this is justified as 
precipitation trends are the key driver of variability in future droughts. 
The storylines therefore already include the hottest and driest events as 
heat extremes are more likely in a 2 ◦C and 3 ◦C warmer world. How-
ever, more research is needed to consider the role of temperature as a 
driver of drought magnitude and intensity. For example, the role of 
land–atmosphere feedbacks during droughts in the UK requires further 
investigation, such as the soil moisture deficit exacerbating hot extremes 
and reinforcing low precipitation during anticyclonic conditions 
(Schumacher et al., 2019). 

The choice of PET estimation method can affect simulated river 
flows. Although studies have suggested that PET-related uncertainty is 
generally less than GCM-related uncertainty due to the wide range of 
projected change in precipitation across climate models (e.g. Kay and 
Davies, 2008), future work could test the sensitivity of the results to 
alternative PET estimation methods. Furthermore, future work should 
also test the validity of simple temperature-based PET equations under 
non-stationary conditions. Additionally, given the set-up of the large 
ensemble (i.e. stitched together 5-year runs), the occurrence of consec-
utive dry winters (and thus multi-year droughts) is not well sampled, 
and the probability of their occurrence cannot be robustly estimated. 
Hence, it was not possible to specifically sample for three or more 
consecutive dry winters in the large ensemble, which is a well-known 
concern for the UK water industry. Future work could investigate the 
persistence of consecutive dry seasons (e.g. Wilby et al., 2015) and 
sample for multi-year events in different large ensemble datasets (e.g. 
van der Wiel et al. 2022). Possible changes in hydrological variability (e. 
g. drought to flood events) with climate change could also be sampled 
from large ensemble simulations to investigate changes in drought 
termination characteristics (e.g. Parry et al. 2016). The occurrence of 
dry winters arising from ENSO or other teleconnection patterns (e.g. 
Svensson and Hannaford 2019) also merits further investigation. 

5. Conclusions 

This study uses the EC-Earth time-slice large ensemble to estimate 
the current and future chance of unprecedented low rainfall, high 
temperature and hydrological droughts. Estimates suggest an increased 
risk of extremely dry summer months but a slight decrease in the chance 
of dry winter months with warming. Simulated river flows of GB 
catchments show a worsening of drought characteristics for most 

catchments with temperature rise. Comparing the much larger sample of 
plausible hydrological droughts with a selected number of severe post- 
1891 droughts highlights the spatial signature of past drought epi-
sodes and identifies droughts that are especially hard records to break 
for different parts of Great Britain. 

The probabilistic risk estimates can be complemented by the story-
line approach. Storylines of dry springs followed by dry summers, dry 
autumns followed by dry winters and consecutive dry winters are 
considered to understand the atmospheric circulation patterns associ-
ated with dry sequences and the unfolding of future events driven by the 
same conditions. Dry spring-summers are estimated to become drier 
with spring conditions associated with a deepening of the associated 
high-pressure system and summer conditions associated with increased 
evaporative demand. Winter conditions in dry autumn-winters are 
estimated to be wetter in the future compared to the present day, which 
implies a higher likelihood of seasonal summer droughts broken up by 
wet winters for fast-responding catchments. However, for slow- 
responding catchments and in southeast England, future severe multi- 
year droughts can unfold if multiple dry winters occur which are more 
likely to be associated with an intervening dry summer. Stress tests 
conditioned on different seasonal precipitation deficits of the various 
storylines can be designed to understand the effects of different seasonal 
combinations of precipitation deficits on accumulated river flows over 
critical periods and provide a basis for the construction of plausible 
worst case unrealised droughts. 
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